• Zum Inhalt springen  (Accesskey: 1)
  • Zur Navigation springen  (Accesskey: 2)
  • Zur Suche springen  (Accesskey: 7)
Seitennavigation schließen
Seitennavigation öffnen
  • TU Wien
    • Übersicht
    • Aktuelles
    • fuTUre fit
    • Über die TUW
    • Organisation
    • TUW für alle
    • Arbeiten an der TUW
    • TUW Community
    • Campus
    • Kontakt
  • Studium
    • Übersicht
    • Studienangebot
    • Studieninteressierte
    • Studienanfänger_innen
    • Studierende
    • International Studieren
    • Lehrende , öffnet eine externe URL in einem neuen Fenster
    • Schüler_innen
    • Best Teaching Awards 2025
  • Forschung
    • Übersicht
    • Profil
    • News
    • Events
    • Facilities
    • Erfolge
    • Netzwerke
    • TUW Doctoral Center
    • FTI Support
    • TUW interne Fördermöglichkeiten
    • Datenbanken
  • Kooperationen
    • Übersicht
    • Erfindungen, Patente, Kommerzialisierung
    • Spenden und Unterstützen
    • Start-ups
    • Technology Offers
    • Wirtschaftskooperationen
    • Center for Technology and Society , öffnet eine externe URL in einem neuen Fenster
    • TU Austria , öffnet eine externe URL in einem neuen Fenster
    • EULIST
  • Services
    • Übersicht
    • Bibliothek
    • Campus IT-Services
    • Campus-Services
    • Eventmanagement
    • Medien
    • Meldesystem
    • Newsletter
  • Intern
    • Übersicht
    • Portal (TISS, SAP, TYPO3,...) , öffnet eine externe URL in einem neuen Fenster

externe Veranstaltungen

  1. Forschung /
  2. Events /
  3. externe Veranstaltungen /

zurück zum Forschungs-Veranstaltungskalender

 

29. Oktober 2008, 17:00 bis 19:15

Mechanische Bauteile: Modellierung, Optimierung, Qualitätssicherung

Andere

PROGRAMM

Schwingungsanalyse mechanischer Bauteile
Eigenschwingungen mechanischer Bauteile können zu frühzeitigem Verschleiß und Funktionsausfall führen. An der TU Wien werden im Rahmen der experimentellen Modalanalyse berührungsfreie Messungen des Schwingungs- und Dehnungsverhaltens von mechanischen Bauteilen durchgeführt. Die Messergebnisse tragen dazu bei, möglichen Qualitätseinbußen bereits in der Produktentwicklung vorzubeugen oder konstruktive Lösungsansätze zu entwickeln. Die experimentelle Modalanalyse und die eingesetzte Geräteausstattung werden anhand von Praxisbeispielen präsentiert.
Ao.Univ.Prof. Dr. Johann Wassermann, Institut für Mechanik und Mechatronik  

Numerische Ingenieursmethoden in der Bauteilberechnung
Anhand von Anwendungsbeispielen aus Industrieprojekten werden aktuelle Methoden zur Deformations-, Spannungs- und Stabilitätsanalyse von mechanischen Bauteilen vorgestellt. Weiters werden neue Ansätze für das Design und die mechanische Charakterisierung von Verbundwerkstoffen, inbesondere von Hochleistungswerkstoffen präsentiert. In der betrieblichen Praxis wird diese Expertise beispielsweise für das Komponentendesign und die Optimierung von Bauteilen hinsichtlich ihrer Tragfähigkeit und Stabilität genutzt.
O.Univ.Prof. Dr. Franz Rammerstorfer, Institut für Leichtbau und Struktur-Biomechanik

Werkstoffcharakterisierung in der Qualitätssicherung
Unternehmen nutzen das werkstoffwissenschaftliche Know-How der TU Wien für die Überprüfung zugelieferter Materialien, für die Optimierung der Lebensdauer von Bauteilen sowie für die Schadensanalyse. Die Präsentation gibt einen Überblick über aktuelle Methoden zur Werkstoffcharakterisierung mit dem Schwerpunkt Kunststoffe. Anhand von Praxisbeispielen werden neue Prüfverfahren zur Bestimmung des Alterungsverhaltens von Kunststoffen, des Aushärtungsgrades von Harzen und Lacken, zur berührungslosen Dehnungsmessung und Methoden zur Untersuchung der chemischen Zusammensetzung von Kunststoffen – sogenannte „Fingerprints" - vorgestellt.
O.Univ.Prof. Dr. Sabine Seidler, Institut für Werkstoffwissenschaft und Werkstofftechnologie

3D-Objekterfassung in der Produktion
Fertigungsprodukte werden an der TU Wien durch 3D-Laserscanning hochpräzise vermessen. Unternehmen nutzen diese Präzisionsmessungen für die Defekterkennung oder die automatisierte Sortierung. In Kooperation mit der TU Wien können Qualitätssicherungssysteme entwickelt werden, welche die Vorzüge des 3D-Laserscannings integrieren. Diese Systeme zeichnen sich besonders durch ihre hohe Messgenauigkeit, Zuverlässigkeit und flexible Parametrierbarkeit aus. Sie eignen sich besonders für die Qualitätssicherung von Produkten, die in geringen Stückzahlen produziert werden.
Ao.Univ.Prof. Dr. Robert Sablatnig, Institut für Rechnergestützte Automation

Kalendereintrag

Veranstaltung Details

Öffentlich
Ja
Kostenpflichtig
Nein
Anmeldung erforderlich
Ja
Zur Fußzeile springen

TU Wien

  • Aktuelles
  • fuTUre fit
  • Über die TUW
  • Organisation
  • Corona
  • TUW für alle
  • Arbeiten an der TUW
  • TUW Community
  • Campus
  • Kontakt

Studium

  • News
  • Studienangebot
  • Zulassung
  • Studieren an der TUW
  • Student Support
  • Lehren an der TUW
  • International
  • Schüler_innen
  • Academy for Continuing Education
  • ÖH-Wahl 2025
  • Best Teaching Awards 2025

Forschung

  • Noctua Science Ventures
  • Profil
  • News
  • Events
  • Facilities
  • Science Days
  • Erfolge
  • Netzwerke
  • TUW Doctoral Center
  • FTI Support
  • TUW interne Fördermöglichkeiten
  • Datenbanken

Kooperationen

  • Erfindungen, Patente, Kommerzialisierung
  • Spenden und Unterstützen
  • Start-ups
  • Technology Offers
  • Wirtschaftskooperationen
  • Center for Technology and Society, öffnet eine externe URL in einem neuen Fenster
  • TU Austria, öffnet eine externe URL in einem neuen Fenster
  • EULIST

Services

  • Bibliothek
  • Campus IT-Services
  • Campus-Services
  • Eventmanagement
  • Karriere, öffnet eine externe URL in einem neuen Fenster
  • Medien
  • Meldesystem
  • Newsletter

Intern

  • Portal (TISS, SAP, TYPO3,...), öffnet eine externe URL in einem neuen Fenster

© TU Wien  # 12508

  • Impressum
  • Barrierefreiheitserklärung
  • Datenschutzerklärung (PDF)
  • Cookieeinstellungen
  • Zur 1. Menü Ebene Forschung
  • Zurück zur letzten Ebene: Events
  • externe Veranstaltungen
  • TechForum: Millstatt TechForum: Millstatt
  • Blickpunkt Forschung Blickpunkt Forschung
  • Facebook
  • LinkedIn
  • YouTube
  • Instagram
  • Bluesky

Hinweis zu Cookies und anderen Techniken

Unsere Website verwendet Cookies und bindet Inhalte von Drittanbietern ein, um die grundlegende Funktionalität unserer Website zu gewährleisten sowie die Zugriffe auf unserer Website zu analysieren und um Funktionen für soziale Medien und zielgerichtete Werbung anbieten zu können. Hierzu ist es nötig Informationen an die jeweiligen Dienstanbieter weiterzugeben. Weitere Informationen zu Cookies und Inhalten von Drittanbietern auf der Website finden Sie in unserer Datenschutzerklärung.

Erforderlich

Diese Cookies werden für eine reibungslose Funktion unserer Website benötigt.

Name Zweck Ablauf Typ Anbieter
CookieConsent Speichert Ihre Einstellungen zur Verwendung von Cookies auf dieser Website. 1 Jahr HTML Homepage TU Wien
SimpleSAML Wird benötigt, um die Sessions der eingeloggten Benutzer_innen voneinander unterscheiden zu können. Session HTTP Login TU Wien
SimpleSAMLAuthToken Wird benötigt, um die Sessions der eingeloggten Benutzer_innen voneinander unterscheiden zu können. Session HTTP Login TU Wien
fe_typo_user Wird benötigt, damit im Falle eines Typo3-Frontend-Logins die Session-ID wiedererkannt wird um Zugang zu geschützten Bereichen zu gewähren. Session HTTP Homepage TU Wien
staticfilecache Wird benötigt, um die Auslieferungszeit der Website zu optimieren. Session HTTP Homepage TU Wien
JESSIONSID Wird benötigt, damit im Falle eines LectureTube-Logins die Session-ID wiedererkannt wird um Zugang zu geschützten Bereichen zu gewähren. Session HTTP LectureTube TU Wien
_shibsession_lecturetube Wird benötigt, um die Sessions der eingeloggten Benutzer_innen voneinander unterscheiden zu können. Session HTTP LectureTube TU Wien
Webstatistiken

Mit Hilfe dieser Cookies können wir unser Angebot laufend verbessern und unsere Website an Ihre Bedürfnisse anpassen. Dabei werden pseudonymisierte Daten über die Websitenutzung gesammelt und statistisch ausgewertet.

Name Zweck Ablauf Typ Anbieter
_pk_id Wird verwendet, um ein paar Details über den Benutzer wie die eindeutige Besucher-ID zu speichern. 13 Monate HTML Matomo TU Wien
_pk_ref Wird benutzt, um die Informationen der Herkunftswebsite des Benutzers zu speichern. 6 Monate HTML Matomo TU Wien
_pk_ses Wird benötigt, um vorübergehende Daten des Besuchs zu speichern. 30 Minuten HTML Matomo TU Wien
Marketing

Mithilfe dieser Cookies und Drittanbieterinhalte sind wir bemüht, unser Angebot für Sie zu verbessern. Mittels pseudonymisierter Daten von Websitenutzern kann der Nutzerfluss analysiert und beurteilt werden. Dies gibt uns die Möglichkeit, Werbe- und Websiteinhalte zu optimieren.

Name Zweck Ablauf Typ Anbieter
facebook Wird verwendet, um Anzeigen auszuliefern oder Retargeting zu ermöglichen 90 Tage HTTP Meta
__fb_chat_plugin Wird zum Speichern und Verfolgen von Interaktionen (Marketing/Tracking) benötigt. Persistent HTTP Meta
_js_datr Wird benötigt, um Benutzer_inneneinstellungen zu speichern. 2 Jahre HTTP Meta
_fbc Wird benötigt, um den letzten Besuch zu speichern (Marketing/Tracking). 2 Jahre HTTP Meta
fbm Wird benötigt, um Kontodaten zu speichern (Marketing/Tracking). 1 Jahr HTTP Meta
xs Wird zum Speichern einer eindeutigen Sitzungs-ID benötigt (Marketing/Tracking). 1 Jahr HTTP Meta
wd Wird benötigt, um die Bildschirmauflösung zu loggen. 1 Woche HTTP Meta
fr Wird benötigt, um Anzeigen zu schalten und deren Relevanz zu messen und zu verbessern. 3 Monate HTTP Meta
act Wird benötigt, um angemeldete Benutzer_innen zu speichern (Marketing/Tracking). 90 Tage HTTP Meta
_fbp Wird zum Speichern und Verfolgen von Besuchen auf verschiedenen Websites benötigt (Marketing/Tracking). 3 Monate HTTP Meta
datr Wird benötigt, um den Browser für Sicherheits- und Website-Integritätszwecke, einschließlich der Wiederherstellung von Konten und der Identifizierung von potenziell gefährdeten Konten zu identifizieren. 2 Jahre HTTP Meta
dpr Wird für Analysezwecke verwendet. Technische Parameter werden protokolliert (z. B. Seitenverhältnis und Abmessungen des Bildschirms), damit Facebook-Apps korrekt angezeigt werden können. 1 Woche HTTP Meta
sb Wird benötigt, um Browserdetails und Sicherheitsinformationen des Facebook-Kontos zu speichern. 2 Jahre HTTP Meta
dbln Wird benötigt, um Browserdetails und Sicherheitsinformationen des Facebook-Kontos zu speichern. 2 Jahre HTTP Meta
spin Wird für Werbezwecke und Berichterstattung über soziale Kampagnen benötigt. Session HTTP Meta
presence Enthält den "Chat"-Status eingeloggter Benutzer_innen. 1 Monat HTTP Meta
cppo Wird für statistische Zwecke benötigt. 90 Tage HTTP Meta
locale Wird benötigt, um die Spracheinstellungen zu speichern. Session HTTP Meta
pl Wird für Facebook Pixel benötigt. 2 Jahre HTTP Meta
lu Wird für Facebook Pixel benötigt. 2 Jahre HTTP Meta
c_user Wird für Facebook Pixel benötigt. 3 Monate HTTP Meta
bcookie Wird zur Speicherung von Browserdaten benötigt (Marketing/Tracking). 2 Jahre HTTP LinkedIn
li_oatml Wird verwendet, um LinkedIn-Mitglieder außerhalb von LinkedIn zu Werbe- und Analysezwecken zu identifizieren. 1 Monat HTTP LinkedIn
BizographicsOptOut Wird zum Speichern von Datenschutzeinstellungen benötigt. 10 Jahre HTTP LinkedIn
li_sugr Wird zur Speicherung von Browserdaten benötigt (Marketing/Tracking). 3 Monate HTTP LinkedIn
UserMatchHistory Wird zur Bereitstellung von Werbeeinblendungen oder Retargeting benötigt (Marketing/Tracking). 30 Tage HTTP LinkedIn
linkedin_oauth_ Wird benötigt, um seitenübergreifende Funktionen bereitzustellen. Session HTTP LinkedIn
lidc Wird benötigt, um durchgeführte Aktionen auf der Website zu speichern (Marketing/Tracking). 1 Tag HTTP LinkedIn
bscookie Wird benötigt, um durchgeführte Aktionen auf der Website zu speichern (Marketing/Tracking). 2 Jahre HTTP LinkedIn
X-LI-IDC Wird benötigt, um seitenübergreifende Funktionen bereitzustellen (Marketing/Tracking). Session HTTP LinkedIn
AnalyticsSyncHistory Speichert den Zeitpunkt, zu dem der/die Benutzer_in mit dem "lms_analytics"-Cookie synchronisiert wurde. 30 Tage HTTP LinkedIn
lms_ads Wird benötigt, um LinkedIn-Mitglieder außerhalb von LinkedIn zu identifizieren. 30 Tage HTTP LinkedIn
lms_analytics Wird benötigt, um LinkedIn-Mitglieder zu Analysezwecken zu identifizieren. 30 Tage HTTP LinkedIn
li_fat_id Wird für eine indirekte Mitgliederidentifikation benötigt, die für Conversion Tracking, Retargeting und Analysen verwendet wird. 30 Tage HTTP LinkedIn
U Wird benötigt, um den Browser zu identifizieren. 3 Monate HTTP LinkedIn
_guid Wird benötigt, um ein LinkedIn-Mitglied für Werbung über Google Ads zu identifizieren. 90 Tage HTTP LinkedIn