Das Institut für Chemische Technologien und Analytik an der Fakultät für Technische Chemie überbrückt unterschiedliche Aspekte der Chemie, Technologie, Analytischen Chemie, Materialwissenschaften, Bioanalytik, Elektrochemie und Umweltchemie und vereint Grundlagenforschung und Angewandte Forschung in einem Institut - ein Alleinstellungsmerkmal im Zentral- und Osteuropäischen Raum. 

Der wissenschaftliche Fokus des Instituts liegt zum Einen bei der Entwicklung von Analytischen Strategien, Methoden und Instrumenten (zum Beispiel: (Bio)Sensoren, Omics-techniken, Massenspektrometrie, Imaging-techniken, Ultra-spuren-trenntechniken und Detektionstechniken auf elementarem und molekularen Level) und zum Anderen im Zusammenhang mit Technologien von Spezialmaterialien, von Metallen, zu seltenen Metallen, High-performance Keramiken, Dünnfilm und Compositen, bis hin zu biomedizinischen Materialien, als auch Energiespeicher und Umwandlungs-geräten im Bereich der elektrochemischen Technologien. Die Entwicklung von analytischen Techniken für die Strukturaufklärung als auch für Umweltchemische Fragestellungen sind weitere Fokuspunkte am Institut.

Die Stärke des Instituts liegt in der bemerkenswerten Kombination von industrie-getriebenen angewandten Forschungsprojekten mit einer außergewöhnlichen Bandbreite an analytische, chemischen und strukturellen Methoden, die durch den großen Pool an "High-end" wissenschaftlichen Equipment und Instrumentierungen dargestellt wird. Um ein Beispiel zu nennen: Das Institut verfügt über einen exzellenten internen Gerätepool, der kompetitive Forschung an einer großen Anzahl an unterschiedlichen Anwendungsfeldern erlaubt - von anorganischen Metall Materialien bis biologischen Gewebeproben.

Das Institut für Chemische Technologien ist in 5 Forschungsbereiche gegliedert, und besteht aus 12 Forschungsgruppen, die jeweils von international anerkannten Wissenschaftlern und Wissenschaftlerinnen, und high-potential Jungakademikern und Jungakademikerinnen geleitet werden.

Characteristics of quantum emitters in hexagonal boron nitride suitable for integration with nanophotonic platforms

Logo

Single photon emitters in two-dimensional (2D) hexagonal boron nitride (hBN) are promising solid-state quantum emitters for photonic applications and quantum networks. Despite their favorable properties, it has so far remained elusive to determine the origin of these emitters. We focus on two different kinds of hBN samples that particularly lend themselves for integration with nanophotonic devices, multilayer nanoflakes produced by liquid phase exfoliation (LPE) and a layer engineered sample from hBN grown by chemical vapour deposition (CVD). We investigate their inherent defects and fit their emission properties to computationally simulated optical properties of likely carbon-related defects. Thereby we are able to narrow down the origin of emitters found in these samples and find that the C2CB defect fits our spectral data best. In addition, we demonstrate a scalable way of coupling LPE hBN to optical nanofibers that are directly connected to optical fibers. Our work brings us one step closer to specifying the origin of hBN's promising quantum emitters and sheds more light onto the characteristics of emitters in samples that are particularly suited for integration with nanophotonics. This knowledge will prove invaluable for novel nanophotonic platforms and may contribute towards the employment of hBN for future quantum technologies.

arXiv:2210.11099, öffnet eine externe URL in einem neuen Fenster

Goto publications...