Preprints
arXiv, opens an external URL in a new window
- P. Lederer, X. Mooslechner, J. Schöberl: High-order preojection-based upwind method for simulation of transitional turbulent flows, arXiv:2408.06698, 2024
Preprints aus dem reposiTUm
- | A Reduced Basis Method for Fractional Diffusion Operators I at reposiTUm , opens an external URL in a new windowDanczul, T., & Schöberl, J. (2019). A Reduced Basis Method for Fractional Diffusion Operators I. arXiv. https://doi.org/10.48550/arXiv.1904.05599
- | A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Lederer, P. L., & Schöberl, J. (2019). A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry. arXiv. https://doi.org/10.48550/arXiv.1901.04648
- | Avoiding Membrane Locking with Regge Interpolation at reposiTUm , opens an external URL in a new windowNeunteufel, M., & Schöberl, J. (2019). Avoiding Membrane Locking with Regge Interpolation. arXiv. https://doi.org/10.48550/arXiv.1907.06232
- | A mass conserving mixed stress formulation for the Stokes equations at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Lederer, P. L., & Schöberl, J. (2018). A mass conserving mixed stress formulation for the Stokes equations. arXiv. https://doi.org/10.48550/arXiv.1806.07173
- | Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows Part II at reposiTUm , opens an external URL in a new windowLederer, P. L., Lehrenfeld, C., & Schöberl, J. (2018). Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows Part II. arXiv. https://doi.org/10.48550/arXiv.1805.06787
- | An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods at reposiTUm , opens an external URL in a new windowBraess, D., Pechstein, A., & Schöberl, J. (2017). An Equilibration Based A Posteriori Error Estimate for the Biharmonic Equation and Two Finite Element Methods. arXiv. https://doi.org/10.48550/arXiv.1705.07607
- | Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows at reposiTUm , opens an external URL in a new windowLederer, P. L., Lehrenfeld, C., & Schöberl, J. (2017). Hybrid Discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. arXiv.
- | Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods at reposiTUm , opens an external URL in a new windowLederer, P. L., Schöberl, J., & Merdon, C. (2017). Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods. arXiv. https://doi.org/10.48550/arXiv.1712.01625
- | Mapped tent pitching schemes for hyperbolic systems at reposiTUm , opens an external URL in a new windowGopalakrishnan, J., Schöberl, J., & Wintersteiger, C. (2016). Mapped tent pitching schemes for hyperbolic systems. arXiv. https://doi.org/10.48550/arXiv.1604.01081
- | Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements at reposiTUm , opens an external URL in a new windowLederer, P. L., Linke, A., Merdon, C., & Schöberl, J. (2016). Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations With Continuous Pressure Finite Elements. arXiv. https://doi.org/10.48550/arXiv.1609.03701
- | An analysis of the TDNNS method using natural norms at reposiTUm , opens an external URL in a new windowPechstein, A., & Schöberl, J. (2016). An analysis of the TDNNS method using natural norms. arXiv. https://doi.org/10.48550/arXiv.1606.06853
- | Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations at reposiTUm , opens an external URL in a new windowSchöberl, J., & Lederer, P. L. (2016). Polynomial robust stability analysis for H(div)-conforming finite elements for the Stokes equations. arXiv. https://doi.org/10.48550/arXiv.1612.01482