• Numerik von PDEs
  • Finite Elemente Methoden
  • kontraktive iterative Lösungsverfahren
  • optimale Rechenkosten von adaptiver FEM

  1. M. Innerberger, A. Miraçi, D. Praetorius, J. Streitbergerhp-robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, 58 (2024), 247–272 . [www], [arXiv:2210.10415]
  2. P. Bringmann, C. Carstensen, J. Streitberger: Local parameter selection in the C0 interior penalty method for the biharmonic equation, Journal of Numerical Mathematics (2023). [www], [arXiv:2209.05221]
  3. M. Brunner, P. Heid, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs, IMA Journal of Numerical Analysis (2023). [www], [corrigendum], [arXiv:2212.00353]

  1. A. Miraçi, D. Praetorius, J. Streitberger: Parameter-robust full linear convergence and optimal complexity of adaptive iteratively linearized FEM for nonlinear PDEs, [arXiv:2401.17778], 2024
  2. M. Brunner, D. Praetorius, J. StreitbergerCost-optimal adaptive FEM for semilinear elliptic PDEs, submitted to Proceedings of ENUMATH 2023, 2024
  3. M. Brunner, D. Praetorius, J. StreitbergerOptimal cost of (goal-oriented) adaptive FEM for general second-order linear elliptic PDEs, submitted to Proceedings of ENUMATH 2023, 2024
  4. M. Brunner, D. Praetorius, J. Streitberger: Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs, [arXiv:2401.06486], 2024
  5. P. Bringmann, M. Brunner, D. Praetorius, J. Streitberger: Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs, [arXiv:2312.00489], 2023
  6. P. Bringmann, M. Feischl, A. Miraçi, D. Praetorius, J. Streitberger: On full linear convergence and optimal complexity of adaptive FEM with inexact solver, [arXiv:2311.15738], 2023

  1. P. Bringmann, M. Brunner, A. Miraçi, D. Praetorius, J. Streitberger: Cost-optimal goal-oriented adaptive FEM for linear elliptic PDEs, ENUMATH 2023, Lisbon, Portugal, 04. September 2023 [Folien]
  2. M. Brunner, P. Heid, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger: Adaptive FEM for linear elliptic PDEs: optimal complexity, 17th Austrian Numerical Analysis Day, Wien, 27.-28. April 2023 [Folien]
  3. M. Brunner, A. Miraçi, D. Praetorius, J. Streitberger: Optimal cost of AFEM for linear elliptic PDEs, 2nd SFB International Workshop 2023 "Taming Complexity in Partial Differential Systems", Wien, 19.-21. April 2023