News

Nano-Poren für bessere Radarsensoren

Nanostrukturen, in die Oberfläche geätzt: Eine neue Bearbeitungstechnik der TU Wien verbessert die elektrischen Eigenschaften von Glaskeramik-Leiterplatten.

Durch das Ätzverfahren erzeugte poröse Oberfläche mit dadurch stärkerer Abstrahlung.

1 von 4 Bildern oder Videos

Durch das Ätzverfahren erzeugte poröse Oberfläche mit dadurch stärkerer Abstrahlung.

Durch das Ätzverfahren erzeugte poröse Oberfläche mit dadurch stärkerer Abstrahlung.

Simulation der Abstrahlcharakteristik der Patchantenne.

1 von 4 Bildern oder Videos

Simulation der Abstrahlcharakteristik der Patchantenne.

Simulation der Abstrahlcharakteristik der Patchantenne.

Durchgängige Metallisierung auf poröser Oberfläche, hergestellt durch Pulse-Plating Verfahren.

1 von 4 Bildern oder Videos

Durchgängige Metallisierung auf poröser Oberfläche, hergestellt durch Pulse-Plating Verfahren.

Durchgängige Metallisierung auf poröser Oberfläche, hergestellt durch Pulse-Plating Verfahren.

Achim Bittner, Frank Steinhäußer, Ulrich Schmid (v.l.n.r.)

1 von 4 Bildern oder Videos

Achim Bittner, Frank Steinhäußer, Ulrich Schmid (v.l.n.r.)

Achim Bittner, Frank Steinhäußer, Ulrich Schmid (v.l.n.r.)

Man nimmt entspannt den Fuß vom Gaspedal, ein Radar-Sensor erkennt den Abstand zu den anderen Autos und passt die Geschwindigkeit intelligent an. Solche Technologien sorgen heute bereits für mehr Sicherheit im Straßenverkehr, ihre Verbreitung wird noch weiter zunehmen. Aus elektrotechnischer Sicht ist die Herstellung solcher Sensoren allerdings recht schwierig: Die Sensoren sollen mit sehr hohen Frequenzen arbeiten und trotzdem präzise und effizient funktionieren. An der TU Wien wurde nun eine neue Bearbeitungstechnik entwickelt, mit der man glaskeramische Leiterplatten ganz gezielt nanostrukturieren kann. Damit lassen sich Materialeigenschaften anpassen und das elektromagnetische Verhalten des Sensors wird deutlich verbessert.

Das Material beeinflusst die Strahlung

Die Antennen eines Radarsensors haben wenig mit den langen Metallstäben gemeinsam, die aus einem Radiogerät herausragen. Sensor-Antennen werden heute sehr klein gebaut und direkt auf die Leiterplatten aufgebracht. Die Leiterplatten selbst können beispielsweise aus spezieller Glaskeramik bestehen („Low Temperature Cofired Ceramics“, LTCC), die aus verschiedenen Schichten aufgebaut ist,  zwischen denen  Leiterbahnen angebracht sein können. Auf der obersten Schicht befindet sich die Patch-Antenne.

„Die Abstrahlcharakteristik einer Antenne wird stark vom darunterliegenden Material beeinflusst“, erklärt Prof. Ulrich Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien. Abhängig von den elektromagnetischen Eigenschaften der Leiterplatte kann das Material die Abstrahlung stören, es kann die ausgesendeten Wellen absorbieren und sich dabei im Extremfall so sehr aufheizen, dass Halbleiterchips in Mitleidenschaft gezogen werden. Besonders problematisch ist das im Hochfrequenzbereich: Radar-Sensoren von Autos arbeiten bei etwa 77 GHz, das hat einerseits technische Gründe, andererseits auch juristische: Dieser Frequenzbereich wurde gesetzlich für Radarsensoren im Straßenverkehr reserviert.

Um störende Materialeffekte zu verhindern hat man bereits versucht, die Glaskeramik der Leiterplatten mit organischen Materialien zu verbinden, doch das bringt wieder neue Probleme mit sich. „Übergänge zwischen unterschiedlichen Materialien sollte man eher vermeiden“, sagt Ulrich Schmid. Ganz besonders dann, wenn man es mit unterschiedlichen Materialgruppen zu tun hat, die sich bei Erwärmung unterschiedlich stark ausdehnen, sinkt die Lebensdauer des Radarsensors.

Der Trick mit den Nano-Poren
An der TU Wien suchte man daher nach einer Methode, die elektromagnetischen Eigenschaften der Leiterplatten ganz gezielt zu verändern, ohne dafür ein zusätzliches Material verwenden zu müssen. Die Glaskeramik besteht aus winzigen Körnchen, die durch Hitze „aneinandergebacken“ werden. Dabei entsteht Feldspat, der sich mit Säure wegätzen lässt – das restliche Substratmaterial bleibt übrig. Das Forschungsteam stellte fest, dass man das Glaskeramik-Material auf diese Weise mit einer komplizierten Porenstruktur im Nano-Maßstab versehen kann, wodurch sich lokal die Eigenschaften des Materials verändern.

Die Durchlässigkeit eines Materials für elektrische Felder wird als „elektrische Permittivität“ bezeichnet. „Vor der Säurebehandlung messen wir eine Permittivität von sieben bis acht – durch die Nanoporen sinkt die Permittivität um bis zu 30% - und das mit geringstem technologischem Aufwand und in konventionellen Tapesystemen, die gar nicht für diesen Ätzprozess hergestellt wurden. Das ist beachtlich“, sagt Dr. Achim Bittner. Bittner untersuchte diesen Effekt bereits vor mehreren Jahren, nun entwickelte sein Kollege Frank Steinhäußer in Zusammenarbeit mit der österreichischen Galvanik-Firma Happy Plating die Technik weiter und erzielte dabei sehr vielversprechende Ergebnisse. Die weiteren Herstellungsschritte für die Antennenplatine wurden von deutschen Partnern durchgeführt. So wurden die Glaskeramiken von der Firma MSE aus Material von der Fa. Kerafol gesintert. Die Hochfrequenzsimulationen sowie das Design der Antenne wurden an der Universität Erlangen-Nürnberg sowie von der Fa. Astyx durchgeführt.

Die neue Ätz-Technik kann man punktgenau einsetzen, sodass die Glaskeramik an unterschiedlichen Stellen unterschiedliche Eigenschaften erhält. Das kann beispielsweise bei Arrays aus mehreren Antennen sehr nützlich sein, die zusammengeschaltet werden, um eine elektromagnetische Welle in eine ganz bestimmte Richtung zu senden. Außerdem wird man die Technik in Zukunft als Diagnosemethode einsetzen, um mehr über das Verhalten des Glaskeramikmaterials zu erfahren und sie weiterhin grundlegend verbessern zu können.

<link https: www.tuwien.ac.at dle pr aktuelles downloads nano_poren _blank>Download


Rückfragehinweise:
Prof. Ulrich Schmid
Institut für Sensor- und Aktuatorsysteme
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-1-58801-36689
<link>ulrich.e366.schmid@tuwien.ac.at

Dr. Achim Bittner
Institut für Sensor- und Aktuatorsysteme
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-1-58801-76637
<link>achim.bittner@tuwien.ac.at

Dipl.-Ing. Frank Steinhäußer
Institut für Sensor- und Aktuatorsysteme
Technische Universität Wien
Floragasse 7, 1040 Wien
T: +43-1-58801-36688
<link>frank.steinhaeusser@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
<link>florian.aigner@tuwien.ac.at

TU Wien - Mitglied der TU Austria
<link http: www.tuaustria.at>www.tuaustria.at