News

Die Glasfaser, in der das Licht stehenbleibt

Ein wichtiger Schritt für die Quanten-Datenübertragung gelang an der TU Wien: Photonen in einer Glasfaser können durch Atome auf die Geschwindigkeit eines Schnellzugs abgebremst und für kurze Zeit sogar gestoppt werden.

 Atome, gekoppelt an eine Glasfaser, können das Licht in der Faser drastisch verlangsamen.

1 von 2 Bildern oder Videos

Atome, gekoppelt an eine Glasfaser, können das Licht in der Faser drastisch verlangsamen.

 Durch neue Quantentechnologien soll ein weltweites Quanten-Internet möglich werden.

1 von 2 Bildern oder Videos

Durch neue Quantentechnologien soll ein weltweites Quanten-Internet möglich werden.

Licht ist ein sehr nützliches Instrument für die Quantenkommunikation, doch es hat einen entscheidenden Nachteil: Es bewegt sich normalerweise mit Lichtgeschwindigkeit und kann nicht festgehalten werden. Ein Forschungsteam der TU Wien hat nun gezeigt, dass sich dieses Problem beheben lässt - und zwar nicht bloß in exotischen Quantensystemen, sondern in den bereits existierenden Glasfasernetzwerken. 

Durch die geschickte Kopplung von Atomen an die Glasfaser konnte das Licht auf 180 km/h verlangsamt werden. Es gelang sogar, das Licht für kurze Zeit komplett anzuhalten und dann wieder abzurufen. Diese Technik ist eine wichtige Voraussetzung für ein zukünftiges Glasfaser-basiertes Quanten-Internet, in dem man Quanten-Information über große Distanzen teleportieren kann.

Lichtpulse, langsamer als ein Schnellzug 
Im freien Raum ist die Lichtgeschwindigkeit immer gleich groß - ungefähr 300 Millionen Meter pro Sekunde. Schickt man Licht durch ein Medium wie Glas oder Wasser, wird es durch seine Wechselwirkung mit dem Medium allerdings ein bisschen abgebremst. "Bei unserem System ist dieser Effekt extrem, weil wir gezielt eine äußerst starke Wechselwirkung zwischen Licht und Materie erzeugen", sagt Prof. Arno Rauschenbeutel (Atominstitut der TU Wien / Vienna Center for Quantum Science and Technology). "Die Geschwindigkeit des Lichts in unserer atombesetzten Glasfaser beträgt bloß 180 km/h - der Railjet der Österreichischen Bundesbahn ist schneller."

Quantenkommunikation im bestehenden Glasfaser-Netz 
"Es gibt heute verschiedene Ansätze, Information quantenphysikalisch zu übertragen", sagt Dr. Clément Sayrin (ebenfalls TU Wien). "Glasfasern sind eine technologisch besonders interessante Variante - schließlich gibt es bereits ein weltweites Glasfasernetz, über das wir täglich Daten austauschen." An der TU Wien wurden Cäsium-Atome an eine ultradünne Glasfaser gekoppelt. Wenn das Atom das Licht eines Lasers absorbiert, kann es von einem Zustand niedriger Energie in einen Zustand höherer Energie übergehen - vorausgesetzt, die Energie des absorbierten Photons entspricht der Energiedifferenz zwischen den beiden Zuständen. Das Problem ist dabei allerdings, dass auf diese Weise "gespeichertes" Licht nicht kontrolliert wieder abgerufen werden kann.

Im Experiment wurde deswegen zusätzlich noch ein Kontroll-Laser verwendet, der den Zustand höherer Energie an einen dritten Atomzustand koppelt. "Durch das Zusammenspiel dieser drei Zustände kann man erreichen, dass ein Photon nicht mehr wie sonst einfach absorbiert und dann später zufällig wieder ausgesandt wird. Stattdessen wird die Information des Photons kontrolliert auf ein Ensemble von Atomen übertragen und für definierte Zeit festgehalten." Aus dem Lichtteilchen wird so eine kollektive Anregung von Atomen.

Nach zwei Mikrosekunden, einer Zeitspanne in der das Licht sonst bereits ungefähr einen halben Kilometer zurückgelegt hätte, wurden im Experiment die Atome mit Hilfe des Kontroll-Lasers dazu gebracht, das gespeicherte Licht wieder zurück in die Glasfaser zu senden. Die Eigenschaften der Photonen bleiben bei diesem Verfahren erhalten - eine wichtige Voraussetzung für die Quantenkommunikation. 

Information von Lichtteilchen zu speichern ist ein wichtiger technologischer Schritt auf dem Weg zur Quanten-Kommunikation über große Distanzen. "Quantenphysikalisch kann man eine Verbindung zwischen Sender und Empfänger herstellen, die von außen nicht abgehört werden kann", erklärt Arno Rauschenbeutel. "Die grundlegenden Gesetze der Quantenphysik verhindern, dass irgendjemand in diese Verbindung eingreift, ohne dass die beiden beteiligten Personen das bemerken."

Publikation:
C. Sayrin, C. Clausen, B. Albrecht, P. Schneeweiss, A. Rauschenbeutel Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms, Optica.
http://www.opticsinfobase.org/optica/abstract.cfm?uri=optica-2-4-353, öffnet eine externe URL in einem neuen Fenster 
Frei zugängliche Version: arXiv:1502.01151 (2015) 

Bilder (honorarfrei, Copyright: TU Wien) 
http://www.florianaigner.at/slowlight.jpg, öffnet eine externe URL in einem neuen Fenster      
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2013/quantendatenhighway, öffnet eine externe URL in einem neuen Fenster 

Rückfragehinweise:
Dr. Christoph Clausen
Atominstiut
Technische Universität Wien
Stadionallee 2
+43-1-58801-141713
christoph.clausen@tuwien.ac.at   

Prof. Arno Rauschenbeutel
Atominstitut
Vienna Center for Quantum
Science and Technology
Technische Universität Wien
Stadionallee 2, 1020 Wien
T: +43-1-58801-141761
arno.rauschenbeutel@tuwien.ac.at    

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
+43-1-58801-41027
florian.aigner@tuwien.ac.at  


Quantum Physics & Quantum Technologies ist - neben Computational Science & Engineering, Materials & Matter, Information & Communication Technology sowie Energy & Environment - einer von fünf Forschungsschwerpunkten der Technischen Universität Wien. Erforscht werden mögliche Anwendungen von Quantenphänomenen. Diese reichen von fundamentalen Wechselwirkungen der Elementarteilchen über Strahlungsquellen für ultrakurze Photonenpulse bis hin zur Steuerung der Zustände einzelner Atome und damit zu Bauelementen für den Quantencomputer.



TU Wien - Mitglied der TU Austria
www.tuaustria.at, öffnet eine externe URL in einem neuen Fenster