News

Elastische Nano-Schichten für bessere Li-Ionen-Akkus

An der TU Wien wurde eine Messmethode entwickelt, durch die es nun möglich werden soll, die Speicherkapazität von Lithium-Ionen-Akkus deutlich zu vergrößern.

Silizium und Graphit

Die fest/flüssig Grenzfläche auf Graphit Elektroden ist beim Entladen/Laden auf Grund der geringen Volumsausdehnung stabil. Auf Silizium zerbröselt diese nur wenige Nanometer dicke Schicht aufgrund der hohen Volumenänderung und geringen...

Die fest/flüssig Grenzfläche auf Graphit Elektroden ist beim Entladen/Laden auf Grund der geringen Volumsausdehnung stabil. Auf Silizium zerbröselt diese nur wenige Nanometer dicke Schicht aufgrund der hohen Volumenänderung und geringen Flexibilität der Schicht. (Download und Verwendung honorarfrei © TU Wien)

Prof. Markus Valtiner

(Download und Verwendung honorarfrei © TU Wien)

(Download und Verwendung honorarfrei © TU Wien)

Sie liefern Energie für unsere Elektroautos, für unsere Handys und Laptops: Mit Lithium-Ionen-Akkus haben wir Tag für Tag zu tun. Es gibt interessante Ideen aus der Materialforschung, mit denen man die Energiespeicher-Kapazität dieser Akkus deutlich erhöhen könnte, etwa indem man die bisher in den Akkus eingebaute Graphit durch Silizium ersetzt. Allerdings muss dafür eine ultradünne Grenzschicht rund um die Elektroden genau analysiert und optimiert werden, und dafür gab es bisher keine passenden Untersuchungsmethoden.

An der TU Wien wurde nun in Zusammenarbeit mit der Universität Hasselt in Belgien eine Technik entwickelt, mit der man die physikalischen Eigenschaften dieser Schichten genau vermessen kann. Ein Kraftmikroskop übt eine genau definierte Kraft aus, gleichzeitig wird mit Hilfe von Lichtwellen exakt registriert, wie sehr sich das Material infolgedessen verformt. Damit wird es nun möglich, nach passenden Elektrolyten zu suchen, mit denen man die Kapazität von Li-Ionen Akkus deutlich verbessern könnte – theoretisch bis zu einem Faktor sechs.

Wie viele Ionen haben Platz?

„Der Lithium-Ionen-Akku ist eine Erfolgsgeschichte“, ist Prof. Markus Valtiner vom Institut für Angewandte Physik der TU Wien überzeugt. „Aber egal wie gut ein Akku ist, man wünscht sich immer einen noch besseren. Um der e-Mobilität zum Durchbruch zu verhelfen wollen wir natürlich das theoretische Maximum erreichen.“

In einem voll aufgeladenen Lithium-Ionen-Akku werden die Lithium-Ionen derzeit in Graphit gespeichert um dort Elektronen zu stabilisieren. Während der Akku aufgeladen wird, wandern mehr und mehr Lithium-Ionen und Elektronen in den Graphit und speichern so elektrische Energie.

Im Graphit bilden jeweils sechs Kohlenstoff-Atome einen Ring, in dessen Mitte ein Elektron und ein Lithium-Ion festgehalten werden kann. Das ist aber nicht die effizienteste Art, Elektronen durch Lithium-Ionen zu stabilisieren. „Kleine Silizium-Kristalle wären eigentlich besser geeignet“, sagt Markus Valtiner. „Pro Silizium-Atom könnte man ein Lithium-Ion speichern, damit ließe sich die Speicherkapazität theoretisch auf das Sechsfache steigern.“

Das Problem daran ist: Im Gegensatz zu Graphit werden Silizium-Körnchen in einer Batterie bei der Lithiumaufnahme bis zu viermal größer und können dabei einfach zerbröseln. Man könnte sich damit helfen, das Silizium nicht vollständig zu laden, oder durch ausgeklügelte Nanostrukturen stabilere Partikel herzustellen – wenn man dabei nicht noch auf eine weitere Schwierigkeit stoßen würde. Die Elektroden-Körnchen in der Batterie sind nämlich auch noch mit einer nanometerdünnen Schicht umhüllt.

In einem Lithiumionen Akku sind die Materialien in ständigem Kontakt mit dem flüssigen Elektrolyten, in dem beim Lade- und beim Entladevorgang komplexe chemische Abbaureaktionen ablaufen. Und so bildet sich an der Oberfläche der Elektroden immer ein dünner Film aus ionenleitfähigen Abbauprodukten. Auf Graphit ist diese Schicht – ähnlich einer Passivschicht auf Edelstahl - nach wenigen Ladezyklen stabil und wächst nicht mehr weiter. Doch wenn man Silizium-Körnchen verwendet, die ihr Volumen drastisch vergrößern, reißt diese dünne Grenzschicht immer wieder auf, an den Rissen bildet sich eine neue Schicht. Damit wird bei jedem Ladezyklus ein bisschen Elektrolyt aufgebraucht, und das führt zu einer kurzen Lebensdauer des Akkus.

Bessere Elektrolyte für elastische Grenzschichten

„Optimal wäre eine elastische Grenzschicht, die keine Risse bekommt, wenn das Silizium-Körnchen wächst“, sagt Markus Valtiner. Erreichen könnte man das durch die Entwicklung spezieller Elektrolyte die diese Schicht elastisch machen – und dafür wurde an der TU Wien nun das passende Messgerät entwickelt. In einem speziellen Rasterkraftmikroskop kann man nun die elastischen Eigenschaften der Grenzschicht genau analysieren –insbesondere während des Auf- und Entladens. Eine spezielle Konstruktion erlaubt es, Wachstum und Elastizität der Grenzschicht auf winziger Größenskala zu vermessen, während eine Kraft auf sie ausgeübt wird. Damit will das Team von Markus Valtiner nun in Zusammenarbeit mit Frank Renner aus Hasselt (Belgien) unterschiedliche Material-Varianten untersuchen und passende Elektrolyten für Silizium-basierte Lithium-Ionen-Akkus finden.

„Die Forschung auf diesem Gebiet ist derzeit extrem spannend“, sagt Valtiner. „An manchen Technologien, etwa an Verbrennungsmotoren, kann man kaum noch etwas verbessern, weil sie bereits seit Jahrzehnten optimiert werden. Doch bei Lithium-Ionen-Akkus gibt es noch großes Potenzial.“ Eine Steigerung der Batteriekapazitäten um das Doppelte hält Markus Valtiner jedenfalls für realistisch. Erste Ergebnisse zeigen schon heute, dass mit siliziumbasierten Akkus um 15-50% höhere Speicherdichten erreicht werden können, und erste Markeinführungen dieser Technologie sind in den nächsten 3-5 Jahren zu erwarten.

Originalpublikation

B. Moeremans et al., In Situ Mechanical Analysis of the Nanoscopic Solid Electrolyte Interphase on Anodes of Li‐Ion Batteries, Advanced Science 6, 1900190 (2019).

Kontakt

Prof. Markus Valtiner
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T +43-1-58801-13440
markus.valtiner@tuwien.ac.at

Aussender:
Dr. Florian Aigner
PR und Marketing
Technische Universität Wien
Resselgasse 3, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at