Una Radojicic
Publikationen
- | Robust functional PCA for density data at reposiTUm , opens an external URL in a new windowOguamalam, J., Filzmoser, P., Hron, K., Menafoglio, A., & Radojicic, U. (2024). Robust functional PCA for density data. arXiv. https://doi.org/10.34726/8739
- | Expainable outlier detection for multivariate random processes with separable covariance structure at reposiTUm , opens an external URL in a new windowRadojicic, U., Mayrhofer, M., & Filzmoser, P. (2024, December 17). Expainable outlier detection for multivariate random processes with separable covariance structure. ICSDS2024, Nizza, France.
- | Explainable Outlier Detection for Multivariate Functional Data at reposiTUm , opens an external URL in a new windowRadojičić, U., Mayrhofer, M., & Filzmoser, P. (2024, October 25). Explainable Outlier Detection for Multivariate Functional Data. Turku Applied Mathematics and Statistics Seminar, Finland.
- | Explainable outlier detection for multivariate functional data based on a functional Mahalanobis distance at reposiTUm , opens an external URL in a new windowRadojicic, U., Mayrhofer, M., & Filzmoser, P. (2024, October 3). Explainable outlier detection for multivariate functional data based on a functional Mahalanobis distance. Statistical seminar of Department of Mathematics, Croatia.
- | Functional Outlier Detection at reposiTUm , opens an external URL in a new windowOguamalam, J., Radojičić, U., & Filzmoser, P. (2024, September 5). Functional Outlier Detection. SMPS2024, Salzburg, Austria.
- | Robust covariance estimation for matrix-valued data at reposiTUm , opens an external URL in a new windowMayrhofer, M., Radojicic, U., & Filzmoser, P. (2024, August 13). Robust covariance estimation for matrix-valued data. Bernoulli-ims 11th World Congress in Probability and Statistics, Bochum, Germany.
- | Robust PCA and explainable outlier detection for multivariate functional data based on a functional Mahalanobis distance at reposiTUm , opens an external URL in a new windowMayrhofer, M., Radojičić, U., & Filzmoser, P. (2024, July 31). Robust PCA and explainable outlier detection for multivariate functional data based on a functional Mahalanobis distance. ICORS meets DSSV 2024, United States of America (the).
- | Minimum Regularized Covariance Trace Estimator and Outlier Detection for Functional Data at reposiTUm , opens an external URL in a new windowOguamalam, J., Radojičić, U., & Filzmoser, P. (2024). Minimum Regularized Covariance Trace Estimator and Outlier Detection for Functional Data. Technometrics, 66(4), 588–599. https://doi.org/10.1080/00401706.2024.2336542
- | Explainable anomaly detection using Shapley values at reposiTUm , opens an external URL in a new windowMayrhofer, M., Radojicic, U., & Filzmoser, P. (2024, April 4). Explainable anomaly detection using Shapley values. Statistiktage 2024, Wien, Austria.
- | Robust covariance estimation and functional anomaly detection based on the Minimum Regularized Covariance Trace estimator at reposiTUm , opens an external URL in a new windowOguamalam, J., Radojicic, U., & Filzmoser, P. (2024). Robust covariance estimation and functional anomaly detection based on the Minimum Regularized Covariance Trace estimator. In PROGRAM AND ABSTRACTS - Austrian Statistical Days 2024. Austrian Statistical Days 2024, Wien, Austria.
- | Exploratory functional data analysis of multivariate densities for the identification of agricultural soil contamination by risk elements at reposiTUm , opens an external URL in a new windowMatys Grygar, T., Radojičić, U., Pavlu, I., Greven, S., Nešlehová, J. G., Tůmová, Š., & Hron, K. (2024). Exploratory functional data analysis of multivariate densities for the identification of agricultural soil contamination by risk elements. Journal of Geochemical Exploration, 259, Article 107416. https://doi.org/10.1016/j.gexplo.2024.107416
- | A minimum covariance determinant approach for matrix-variate data at reposiTUm , opens an external URL in a new windowMayrhofer, M., Radojicic, U., & Filzmoser, P. (2024). A minimum covariance determinant approach for matrix-variate data. In Statistische Woche 2024: Book of Abstracts (pp. 88–88).
- | The Asymptotic Properties of the One-Sample Spatial Rank Methods at reposiTUm , opens an external URL in a new windowMöttönen, J., Nordhausen, K., Oja, H., & Radojicic, U. (2024). The Asymptotic Properties of the One-Sample Spatial Rank Methods. In M. Barigozzi, S. Hörmann, & D. Paindaveine (Eds.), Recent Advances in Econometrics and Statistics: Festschrift in Honour of Marc Hallin (pp. 49–69). Springer. https://doi.org/10.1007/978-3-031-61853-6_3
- | Explainable outlier identification for matrix-valued observations at reposiTUm , opens an external URL in a new windowFilzmoser, P., Mayrhofer, M., Radojicic, U., & Lewitschnig, H. (2023). Explainable outlier identification for matrix-valued observations. In Book of Abstracts : International Conference on Data Science : ICDS 2023 : Multidimensional Perspectives: From Statistical Learning to Data Science Applications (pp. 13–13).
- | Functional Outlier Detection based on the Minimum Regularized Covariance Trace Estimator at reposiTUm , opens an external URL in a new windowOguamalam, J., Radojicic, U., & Filzmoser, P. (2023). Functional Outlier Detection based on the Minimum Regularized Covariance Trace Estimator. In Book of abstracts: Joint conference of Data Science, Statistics & Visualisation and the European Conference on Data Analysis (pp. 102–102).
- | Minimum Regularized Covariance Trace Estimator and Outlier Detection for Functional Data at reposiTUm , opens an external URL in a new windowOguamalam, J., Radojicic, U., & Filzmoser, P. (2023). Minimum Regularized Covariance Trace Estimator and Outlier Detection for Functional Data. In Book of Abstracs - Olomoucian Days of Applied Mathematics ODAM 2023 (pp. 57–57).
- | Outlier detection and explanation for matrix-valued data at reposiTUm , opens an external URL in a new windowMayrhofer, M., Radojicic, U., Lewitschnig, H., & Filzmoser, P. (2023, May 24). Outlier detection and explanation for matrix-valued data. International Conference on Robust Statistics (ICORS) - 2023, Toulouse, France.
- | Numerical Considerations and a new implementation for invariant coordinate selection at reposiTUm , opens an external URL in a new windowArchimbaud, A., Drmac, Z., Nordhausen, K., Radojičić, U., & Ruiz-Gazen, A. (2023). Numerical Considerations and a new implementation for invariant coordinate selection. SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 5(1), 97–121. https://doi.org/10.1137/22M1498759
- | Singular Spectrum Analysis at reposiTUm , opens an external URL in a new windowRadojičić, U., Nordhausen, K., & Taskinen, S. (2022). Singular Spectrum Analysis. In Encyclopedia of Mathematical Geosciences. https://doi.org/10.1007/978-3-030-26050-7_294-1
- | Dimension Estimation in Two-Dimensional PCA at reposiTUm , opens an external URL in a new windowRadojicic, U., Lietzen, N., Nordhausen, K., & Virta, J. (2021). Dimension Estimation in Two-Dimensional PCA. In 2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA). 12th Int´l Symposium on Image and Signal Processing and Analysis, Zagreb, Croatia. https://doi.org/10.1109/ispa52656.2021.9552114
- | Kurtosis-based projection pursuit for matrix-valued data at reposiTUm , opens an external URL in a new windowRadojicic, U., Nordhausen, K., & Virta, J. (2021). Kurtosis-based projection pursuit for matrix-valued data. Twenty-eight International Workshop on Matrices and Statistics, Manipal, India, India.
- | Large-sample properties of blind estimation of the linear discriminant using projection pursuit at reposiTUm , opens an external URL in a new windowRadojicic, U., Nordhausen, K., & Virta, J. (2021). Large-sample properties of blind estimation of the linear discriminant using projection pursuit. Online Conference Data Science, Statistics & Visualization (DSSV) 2021, Rotterdam, online, Netherlands (the).
- | Least Absolute Value at reposiTUm , opens an external URL in a new windowRadojičić, U., & Nordhausen, K. (2021). Least Absolute Value. In Encyclopedia of Mathematical Geosciences. https://doi.org/10.1007/978-3-030-26050-7_177-1
- | Large-sample properties of blind estimation of the linear discriminant using projection pursuit at reposiTUm , opens an external URL in a new windowRadojičić, U., Nordhausen, K., & Virta, J. (2021). Large-sample properties of blind estimation of the linear discriminant using projection pursuit. Electronic Journal of Statistics, 15(2). https://doi.org/10.1214/21-ejs1956
- | Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace at reposiTUm , opens an external URL in a new windowRadojicic, U., & Nordhausen, K. (2020). Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace. Online International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2020), London, United Kingdom of Great Britain and Northern Ireland (the).
- | Order Determination for Matrix-valued Observations Using Data Augmentation at reposiTUm , opens an external URL in a new windowRadojicic, U., Lietzen, N., Nordhausen, K., & Virta, J. (2020). Order Determination for Matrix-valued Observations Using Data Augmentation. Statistical Seminar, J. J. Strossmayer University of Osijek Department of Mathematics, Osijek, Croatia.
- | Notion of Information and Independent Component Analysis at reposiTUm , opens an external URL in a new windowRadojicic, U., Nordhausen, K., & Oja, H. (2020). Notion of Information and Independent Component Analysis. Online Conference Data Science, Statistics & Visualization (DSSV) 2020, Durham, United Kingdom of Great Britain and Northern Ireland (the).
- | Notion of Information and Independent Component Analysis at reposiTUm , opens an external URL in a new windowRadojicic, U., Nordhausen, K., & Oja, H. (2020). Notion of Information and Independent Component Analysis. Online International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2020), London, United Kingdom of Great Britain and Northern Ireland (the).
- | Notion of Information and Independent Component Analysis at reposiTUm , opens an external URL in a new windowRadojicic, U., Oja, H., & Nordhausen, K. (2020). Notion of Information and Independent Component Analysis. Statistical Seminar, J. J. Strossmayer University of Osijek Department of Mathematics, Osijek, Croatia.
- | Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace at reposiTUm , opens an external URL in a new windowRadojičić, U., & Nordhausen, K. (2020). Non-Gaussian Component Analysis: Testing the Dimension of the Signal Subspace. In M. Maciak, M. Pesta, & M. Schindler (Eds.), Analytical Methods in Statistics (pp. 101–123). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-48814-7_6
- | Notion of Information and Independent Component Analysis at reposiTUm , opens an external URL in a new windowRadojičić, U., Nordhausen, K., & Oja, H. (2020). Notion of Information and Independent Component Analysis. Applications of Mathematics, 65(3), 311–330. https://doi.org/10.21136/am.2020.0326-19