MooAFEM: An object oriented Matlab code for higher-order (nonlinear) adaptive FEM
Description
MooAFEM is an open-source Matlab package for (adaptive) finite element analysis.
- Easy to use and modify
- Covers a wide range of equations
- Efficient implementation of general polynomial orders
- Integrated algebraic multilevel solvers
- A lot of built-in convenience functions
Downloads
- Publication on MooAFEM: [10.1016/j.amc.2022.127731, open access]
- MooAFEM can be downloaded here: MooAFEM (zip-file)
- or from the TU-Gitlab
Team (TU Wien)
- Dirk Praetorius (Professor)
- Michael Innerberger (Postdoc, main developer)
- Philipp Bringmann (Postdoc)
- Ani Miraçi (Postdoc)
- Maximilian Brunner (PhD Student)
- Julian Streitberger (PhD Student)
Code for selected publications
- P. Bringmann, A. Miraçi, D. Praetorius: Iterative solvers in adaptive FEM, Advances in Applied Mechanics, 59 (2024), 147-212.[Preprint], [Chapter]
Download Code (tested with MooAFEM) (ZIP) - P. Bringmann, M. Brunner, D. Praetorius, J. Streitberger: Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs, [Preprint]
Download Code (tested with MooAFEM v1.2) (ZIP) - P. Bringmann, M. Feischl, A. Miraçi, D. Praetorius, J. Streitberger: On full linear convergence and optimal complexity of adaptive FEM with inexact solvers, [Preprint]
Download Code (tested with MooAFEM v1.2) (ZIP) - M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger: hp-robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs, ESAIM: Mathematical Modelling and Numerical Analysis, published online first (2023). [Preprint], [Paper (open access)]
Download Code (tested with MooAFEM v1.2) (ZIP) - M. Brunner, P. Heid, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs, IMA Journal of Numerical Analysis (2023). [preprint], [paper (open access)]
Download Code (tested with MooAFEM v1.2) (ZIP) - R. Becker, M. Innerberger, D. Praetorius: Adaptive FEM for parameter-errors in elliptic linear-quadratic parameter estimation problems, SIAM Journal on Numerical Analysis, 60/3 (2022), 1452-1471. [preprint], [paper (open access)]
Download Code (tested with MooAFEM v1.1) (ZIP) - R. Becker, M. Innerberger, D. Praetorius: Optimal convergence rates for goal-oriented FEM with quadratic goal functional, Computational Methods in Applied Mathematics, 21 (2021), 267-288. [preprint], [paper (open access)]
Download Code (tested with MooAFEM v1.1) (ZIP) - M. Innerberger, D. Praetorius: Instance-optimal goal-oriented adaptivity, Computational Methods in Applied Mathematics, 21 (2021), 109-126. [preprint], [paper]
Download Code (tested with MooAFEM v1.1) (ZIP)