Univ.Prof. Aleksandr Ovsianikov

Leiter der Gruppe 3D Printing and Biofabrication

Mitglied des Teams Additive Manufacturing Technologies

Höhepunkte:

Im November 2017 hat Aleksandr Ovsianikov seinen zweiten ERC-Grant erhalten. Ziel des Projekts ist die Entwicklung von Methoden zur künstlichen Erzeugung von biologischem Gewebe. Mit einem 3D-Drucker, der auf Multiphotonen-Polymerisation basiert, lassen sich winzige Strukturen herstellen, die Gewebebestandteile enthalten, die jeweils aus vielen Zellen bestehen.

Publikationen:

Google Scholar Link, öffnet eine externe URL in einem neuen Fenster

Aktuelle Bücher:

3D Printing and Biofabrication
A. Ovsianikov, J. Yoo, V. Mironov (Eds.) Tissue Engineering and Regeneration Series,
Springer International Publishing (2018) [ISBN 978-3-319-45444-3, öffnet eine externe URL in einem neuen Fenster]

Multiphoton Lithography: Techniques, Materials, and Applications
J. Stampfl, R. Liska, A. Ovsianikov (Eds.)
John Wiley & Sons (2016), [ISBN: 978-3-527-33717-0, öffnet eine externe URL in einem neuen Fenster]

Original Artikel (seit 2004):

100. O. Guillaume, O. Kopinski-Grünwald, G. Weisgrab, T. Baumgartner, A. Arslan, K. Whitmore, S. Van Vlierberghe and A. Ovsianikov,
Hybrid Spheroid Microscaffolds as Modular Tissue Units to Build Macro-Tissue Assemblies for Tissue Engineering,
accepted to Acta Biomaterialia (2022) [doi: 10.1016/j.actbio.2022.03.010, öffnet eine externe URL in einem neuen Fenster]

99. T. Mikulchyk, M. Oubaha, A. Kaworek, B. Duffy, M. Lunzer, A. Ovsianikov, S. E‐Gul, I. Naydenova, D. Cody,
Synthesis of Fast Curing, Water-Resistant and Photopolymerizable Glass for Recording of Holographic Structures by One- and Two-Photon Lithography,
Adv. Optical Mater. (2022) 2102089 [doi: 10.1002/adom.20210208, öffnet eine externe URL in einem neuen Fenster]

98. M. Lunzer, B. Maryasin, T. Zandrini, S. Baudis, A. Ovsianikov and R. Liska,
A disulfide-based linker for thiol–norbornene conjugation: formation and cleavage of hydrogels by the use of light,
Polym. Chem. (2022) 13, 1158–1168 [doi: 10.1039/D1PY00914A, öffnet eine externe URL in einem neuen Fenster]

97. K. Hölzl, M. Fürsatz, H. Göcerler, B. Schädl, S. Žigon-Branc, M. Markovic, C. Gahleitner, J. Van Hoorick, S. Van Vlierberghe, A. Kleiner, S. Baudis, A. Pauschitz, H. Redl, A. Ovsianikov and S. Nürnberger,
Gelatin methacryloyl as environment for chondrocytes and cell delivery to superficial cartilage defects,
J Tissue Eng Regen Med. (2022) 16:207–222 [doi: 10.1002/term.3273, öffnet eine externe URL in einem neuen Fenster]

96. A. Arslan, K. Vanmol, A. Dobos, A. Natale, J. Van Hoorick, P. Roose, H. Van den Bergen, T. Chalyan, A. Ovsianikov, S. Baudis, V. Rogiers, T. Vanhaecke, R. M. Rodrigues, H. Thienpont, J. Van Erps, S. Van Vlierberghe, and P. Dubruel,
Increasing the Microfabrication Performance of Synthetic Hydrogel Precursors through Molecular Design,
Biomacromolecules (2021) 22 (12), 4919-4932 [doi: 10.1021/acs.biomac.1c00704, öffnet eine externe URL in einem neuen Fenster]

95. A. Arslan, W. Steiger, P. Roose, H. Van den Bergen, P. Gruber, E. Zerobin, F. Gantner, O. Guillaume, A. Ovsianikov, S. Van Vlierberghe, P. Dubruel,
Polymer architecture as key to unprecedented high-resolution 3D-printing performance: The case of biodegradable hexa-functional telechelic urethane-based poly-ε-caprolactone,
Materials Today (2021) [doi: 0.1016/j.mattod.2020.10.005, öffnet eine externe URL in einem neuen Fenster]

94. A. Dobos, F. Gantner, M. Markovic, J. Van Hoorick, L. Tytgat, S. Van Vlierberghe, A. Ovsianikov,
On-chip high-definition bioprinting of microvascular structures,
Biofabrication, 13 : 015016 (2020) [doi: 10.1088/1758-5090/abb063, öffnet eine externe URL in einem neuen Fenster]

93. J. Van Hoorick, A. Dobos, M. Markovic, T. Gheysens, L. Van Damme, P. Gruber, L. Tytgat, J. Van Erps, H. Thienpont, P. Dubruel, A. Ovsianikov, S. Van Vlierberghe,
Thiol-Norbornene gelatin hydrogels: influence of thiolated crosslinker on network properties and high definition 3D printing
Biofabrication (2020) [doi: 1, öffnet eine externe URL in einem neuen Fenster0.1088/1758-5090/abc95f, öffnet eine externe URL in einem neuen Fenster]

92. A. Hofecker, P. Knaack, P. Steinbauer, M. Markovic, A. Ovsianikov, R. Liska,
Novel Synthesis Routes for the Preparation of Low Toxic Vinyl Ester and Vinyl Carbonate Monomers,
Synthetic Communication, 1–13 (2020) [doi: 10.1080/00397911.2020.1808995, öffnet eine externe URL in einem neuen Fenster]

91. G. Weisgrab, O. Guillaume, Z. Guo, P. Heimel, P. Slezak, A. Poot, D. Grijpma, A. Ovsianikov,
3D Printing of Large-Scale and Highly Porous Biodegradable Tissue Engineering Scaffolds from Poly(Trimethylene-Carbonate) Using Two-Photon-Polymerization,
Biofabrication, 12 (4) 045036 (2020) [doi: 10.1088/1758-5090/abb539, öffnet eine externe URL in einem neuen Fenster]

90. L. Tytgat, A. Dobos, M. Markovic, L. Van Damme, J. Van Hoorick, F. Bray, H. Thienpont, H. Ottevaere, P. Dubruel, A. Ovsianikov, S. Van Vlierberghe,
High-Resolution 3D Bioprinting of Photo-Cross-Linkable Recombinant Collagen to Serve Tissue Engineering Applications,
Biomacromolecules, 21 (10), 3997–4007 (2020) [doi: 10.1021/acs.biomac.0c00386, öffnet eine externe URL in einem neuen Fenster]

89. E. Zerobin, M. Markovic, Z. Tomášiková, X.‐H. Qin, D. Ret, P Steinbauer, J. Kitzmüller ,W. Steiger, P. Gruber, A. Ovsianikov, R. Liska, S. Baudis,
Hyaluronic acid esters: A toolbox toward controlling mechanical properties of hydrogels for 3D microfabrication,
J Polym Sci., 58, 1288–1298 (2020) [doi: 10.1002/pol.20200073, öffnet eine externe URL in einem neuen Fenster]

88. T. Ren, W. Steiger, P. Chen, A. Ovsianikov and U. Demirci,
Enhancing cell packing in buckyballs by acoustofluidic activation,
Biofabrication, 12, 025033 (2020) [doi: 10.1088/1758-5090/ab76d9, öffnet eine externe URL in einem neuen Fenster]

87. J. Van Hoorick, L. Tytgat, A. Dobos, H. Ottevaere, J. Van Erps, H. Thienpont, A. Ovsianikov, P. Dubruel, S. Van Vlierberghe,
(Photo-)crosslinkable gelatin derivatives for biofabrication applications,
Acta Biomaterialia (2019) [doi: 10.1016/j.actbio.2019.07.035, öffnet eine externe URL in einem neuen Fenster]

86. A. Dobos, J. Van Hoorick, W. Steiger, P. Gruber, M. Markovic, O. Andriotis, A. Rohatschek, P. Dubruel, P. Thurner, S. Van Vlierberghe, S. Baudis, A. Ovsianikov,
Thiol–Gelatin–Norbornene Bioink for Laser‐Based High‐Definition Bioprinting,
Adv. Healthcare Mater. 1900752 (2019) [doi: 10.1002/adhm.201900752, öffnet eine externe URL in einem neuen Fenster]

85. G. Weisgrab, A. Ovsianikov, and P. F. Costa,
Functional 3D Printing for Microfluidic Chips,
Adv. Mater. Technol. 2019, 1900275 (2019) [doi: 10.1002/admt.201900275, öffnet eine externe URL in einem neuen Fenster]

84. W. Steiger, P. Gruber, D. Theiner, A. Dobos, M. Lunzer, J. Van Hoorick, S. Van Vlierberghe, R. Liska, and A. Ovsianikov,
Fully automated z-scan setup based on a tunable fs-oscillator,
Opt. Mater. Express 9, 3567-3581 (2019) [doi: 10.1364/OME.9.003567, öffnet eine externe URL in einem neuen Fenster]

83. A. Dobos, W. Steiger, D. Theiner, P. Gruber, M. Lunzer, J. Van Hoorick, S. Van Vlierberghe and A. Ovsianikov,
Screening of two-photon activated photodynamic therapy sensitizers using a 3D osteosarcoma model,
Analyst 144, 3056-3063 (2019) [doi: 10.1039/C9AN00068B, öffnet eine externe URL in einem neuen Fenster]

82. L. Tytgat, M. Markovic, T. H. Qazi, M. Vagenende, F. Bray, J. C. Martins, C. Rolando, H. Thienpont, H. Ottevaere, A. Ovsianikov, P. Dubruel and S. Van Vlierberghe,
Photo-crosslinkable recombinant collagen mimics for tissue engineering applications,
J. Mater. Chem. B (2019) [doi: 10.1039/C8TB03308K, öffnet eine externe URL in einem neuen Fenster]

81. P. Gauss, M. Griesser, M. Markovic, A. Ovsianikov, G. Gescheidt, P. Knaack, and R. Liska,
α-Ketoesters as Nonaromatic Photoinitiators for Radical Polymerization of (Meth)acrylates,
Macromolecules 52 (7), 2814-2821 (2019) [doi: 10.1021/acs.macromol.8b02640, öffnet eine externe URL in einem neuen Fenster]

80. B. Holzer, M. Lunzer, A. Rosspeintner, G. Licari, M. Tromayer, S. Naumov, D. Lumpi, E. Horkel, C. Hametner, A. Ovsianikov, R. Liska, E. Vauthey, J. Fröhlich,
Towards efficient initiators for two-photon induced polymerization: fine tuning of the donor/acceptor properties,
Mol. Syst. Des. Eng. (2019) [doi: 10.1039/C8ME00101D, öffnet eine externe URL in einem neuen Fenster]

79. S. Zigon-Branc, M. Markovic, J. Van Hoorick, S. Van Vlierberghe, P. Dubruel, E. Zerobin, S. Baudis, A. Ovsianikov,
Impact of hydrogel stiffness on differentiation of human adipose-derived stem cell microspheroids,
Tiss. Eng. A (2019) [doi: 10.1089/ten.TEA.2018.0237, öffnet eine externe URL in einem neuen Fenster]

78. J. Groll, J. Burdick, D.-W. Cho, B. Derby, M. Gelinsky, S. Heilshorn, T. Jüngst, J. Malda, V. Mironov, K. Nakayama, A. Ovsianikov, W. Sun, S. Takeuchi, J. Yoo, T. Woodfield,
A definition of bioinks and their distinction from biomaterial inks,
Biofabrication 11 : 013001 (2019) [doi: 10.1088/1758-5090/aaec52, öffnet eine externe URL in einem neuen Fenster]

77. M. Tromayer, P. Gruber, A. Rosspeintner, A. Ajami, W. Husinsky, F. Plasser, L. González, E. Vauthey, A. Ovsianikov, R. Liska,
Wavelength-optimized Two-Photon Polymerization Using Initiators Based on Multipolar Aminostyryl-1,3,5-triazines,
Scientific Reports 8 : 17273 (2018) [doi: 10.1038/s41598-018-35301-x, öffnet eine externe URL in einem neuen Fenster]

76. M. Lunzer, L. Shi, O. Andriotis, P. Gruber, M. Markovic, P. Thurner, D. Ossipov, R. Liska, and A. Ovsianikov,
A Modular Approach to Sensitized Two‐Photon Patterning of Photodegradable Hydrogels,
Angew. Chem. (2018) [doi: 10.1002/ange.201808908, öffnet eine externe URL in einem neuen Fenster]

75. D. Mandt, P. Gruber, M. Markovic, M. Tromayer, M. Rothbauer, S. Krayz, F. Ali, J. Van Hoorick, W. Holnthoner, S. Mühleder, P. Dubruel, S. Van Vlierberghe, P. Ertl, R. Liska, A. Ovsianikov,
Fabrication of placental barrier structures within a microfluidic device utilizing two-photon polymerization,
International Journal of Bioprinting 4:2 (2018) [doi: 10.18063/ijb.v4i2.144, öffnet eine externe URL in einem neuen Fenster]

74. M. Mitterbauer, P. Knaack, S. Naumov, M. Markovic, A. Ovsianikov, N. Moszner, R. Liska,
Acylstannanes: Cleavable and Highly Reactive Photoinitiators for Radical Photopolymerization at Wavelengths above 500 nm with Excellent Photobleaching Behavior,
Angew. Chem. Int. Ed. 57, 12146 (2018) [doi: 10.1002/anie.201804094, öffnet eine externe URL in einem neuen Fenster]

73. A. Ajami, W. Husinsky, A. Ovsianikov, R. Liska,
Dispersive white light continuum single Z-scan for rapid determination of degenerate two-photon absorption spectra,
Appl. Phys. B 124: 142 (2018) [doi: 10.1007/s00340-018-7011-0, öffnet eine externe URL in einem neuen Fenster]

72. J. Van Hoorick, P. Gruber, M. Markovic, M. Rollot, G.‐J. Graulus, M. Vagenende, M. Tromayer, J. Van Erps, H. Thienpont, J. C. Martins, S. Baudis, A. Ovsianikov, P. Dubruel, S. Van Vlierberghe,
Highly Reactive Thiol‐Norbornene Photo‐Click Hydrogels: Toward Improved Processability,
Macromol. Rapid Commun. 39, 1800181 (2018) [doi: 10.1002/marc.201800181, öffnet eine externe URL in einem neuen Fenster]

71. L. Kain, O. G. Andriotis, P. Gruber, M. Frank, M. Markovic, D. Grech, V. Nedelkovski, M. Stolz, A. Ovsianikov, P. J. Thurner,
Calibration of colloidal probes with atomic force microscopy for micromechanical assessment,
Journal of the Mechanical Behavior of Biomedical Materials (2018) [doi: 10.1016/j.jmbbm.2018.05.026, öffnet eine externe URL in einem neuen Fenster]

70. A. Ovsianikov, A. Khademhosseini, V. Mironov,
The Synergy of Scaffold-Based and Scaffold-Free Tissue Engineering Strategies, Trends in Biotechnology,
36 (4) 348-357 (2018) [doi: 10.1016/j.tibtech.2018.01.005, öffnet eine externe URL in einem neuen Fenster]

69. M. Tromayer, A. Dobos, P. Gruber, A. Ajami, R. Dedic, A. Ovsianikov and R. Liska,
A biocompatible diazosulfonate initiator for direct encapsulation of human stem cells via two-photon polymerization,
Polym. Chem., 9, 3108 (2018) [doi: 10.1039/C8PY00278A, öffnet eine externe URL in einem neuen Fenster]

68. S. Theis, A. Iturmendi, C. Gorsche, M. Orthofer, M. Lunzer, S. Baudis, A. Ovsianikov, R. Liska, U. Monkowius, I. Teasdale,
Metallo-Supramolecular Gels that are Photocleavable with Visible and Near-Infrared Irradiation,
Angew. Chem. Int. Ed. 56, 15857 (2017) [doi: 10.1002/anie.201707321, öffnet eine externe URL in einem neuen Fenster]

67. J. Van Hoorick, P. Gruber, M. Markovic, M. Tromayer, J. Van Erps, H. Thienpont, R. Liska, A. Ovsianikov, P. Dubruel, and S. Van Vlierberghe,
Crosslinkable Gelatins with Superior Mechanical Properties Through Carboxylic Acid Modification: Increasing the Two-Photon Polymerization Potential,
Biomacromolecules (2017) [doi: 10.1021/acs.biomac.7b00905, öffnet eine externe URL in einem neuen Fenster]

66. A. Ajami, W. Husinsky, M. Tromayer, P. Gruber, R. Liska, A. Ovsianikov,
Measurement of degenerate two-photon absorption spectra of a series of developed two-photon initiators using a dispersive white light continuum Z-scan,
Appl. Phys. Lett. 111, 071901 (2017) [doi: 10.1063/1.4989917, öffnet eine externe URL in einem neuen Fenster]

65. L. Shi, H. Carstensen, K. Hoelzl, M. Lunzer, H. Li, J. Hilborn, A. Ovsianikov, D. Ossipov,
Dynamic Coordination Chemistry Enables Free Directional Printing of Biopolymer Hydrogel,
ACS Chemistry of Materials (2017) [DOI: 10.1021/acs.chemmater.7b00128, öffnet eine externe URL in einem neuen Fenster]

64. A. Houben, P. Roose, H. Van den Bergen, H. Declercq, J. Van Hoorick, P. Gruber, A. Ovsianikov, D. Bontinck, S. Van Vlierberghe, P. Dubruel,
Flexible oligomer spacers as the key to solid-state photopolymerization of hydrogel precursors,
Materials Today Chemistry 4, 84-89 (2017) [doi: 10.1016/j.mtchem.2017.01.005, öffnet eine externe URL in einem neuen Fenster]

63. M. Tromayer, P. Gruber, M. Markovic, A. Rosspeintner, E. Vauthey, H. Redl, A. Ovsianikov and R. Liska,
A biocompatible macromolecular two-photon initiator based on hyaluronan,
Polym. Chem. (2017), [doi: 10.1039/C6PY01787H, öffnet eine externe URL in einem neuen Fenster]

62. K. R. Silva, R. A. Rezende, F. D. Pereira, P. Gruber, M. P. Stuart, A. Ovsianikov, K. Brakke, V. Kasyanov, J. V. da Silva, J. M. Granjeiro, L. S. Baptista , V Mironov,
Delivery of Human Adipose Stem Cells Spheroids into Lockyballs,
PLoS ONE 11(11): e0166073. (2016) [doi: 10.1371/journal.pone.0166073, öffnet eine externe URL in einem neuen Fenster]

61. K. Hölzl, S. Lin, L. Tytgat, S. Van Vlierberghe, L. Gu, A. Ovsianikov,
Bioink properties before, during and after 3D bioprinting,
Biofabrication 8 (3), (2016) [doi: 10.1088/1758-5090/8/3/032002, öffnet eine externe URL in einem neuen Fenster]

60. S. Baudis, D. Bomze, M. Markovic, P. Gruber, A. Ovsianikov, and R. Liska,
Modular material system for the microfabrication of biocompatible hydrogels based on thiol–ene-modified poly(vinyl alcohol),
J. Polym. Sci. Part A: Polym. Chem. (2016) [doi: 10.1002/pola.28073, öffnet eine externe URL in einem neuen Fenster]

59. L. Jonušauskas, M. Lau, P. Gruber, B. Gökce, S. Barcikowski, M. Malinauskas, A. Ovsianikov,
Plasmon assisted 3D microstructuring of gold nanoparticle-doped polymers,
Nanotechnology, 27 (15), 154001 (2016) [doi: 10.1088/0957-4484/27/15/154001, öffnet eine externe URL in einem neuen Fenster]

58. S. Benedikt, J. Wang, M. Markovic, N. Moszner, K. Dietliker, A. Ovsianikov, H. Grützmacher, R. Liska,
Highly efficient water‐soluble visible light photoinitiators,
Journal of Polymer Science Part A: Polymer Chemistry, 54 (4), 473-479 (2016) [doi: 10.1002/pola.27903, öffnet eine externe URL in einem neuen Fenster]

57. M. Markovic, J. Van Hoorick, K. Hölzl, M. Tromayer, P. Gruber, S. Nürnberger, P. Dubruel, S. Van Vlierberghe, R. Liska, A. Ovsianikov,
Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation,
J. Nanotechnol. Eng. Med 6(2), (2015) [doi: 10.1115/1.4031466, öffnet eine externe URL in einem neuen Fenster]

56. A. Ajami, P. Gruber, M. Tromayer, W. Husinsky, J. Stampfl, R. Liska, A. Ovsianikov,
Evidence of concentration dependence of the two-photon absorption cross section: Determining the “true” cross section value,
Optical Materials, 47, 524–529 (2015) [doi:10.1016/j.optmat.2015.06.033, öffnet eine externe URL in einem neuen Fenster]

55.     X.-H. Qin, A Ovsianikov, J Stampfl, R Liska,
Additive manufacturing of photosensitive hydrogels for tissue engineering applications,
BioNanoMaterials 15 (3-4), 49-70 (2015) [doi: 10.1515/bnm-2014-0008, öffnet eine externe URL in einem neuen Fenster].

54. P. Petrochenko, J. Torgersen, P. Gruber, L. Hicks, J. Zheng, G. Kumar, R. Narayan, P. Goering, R. Liska, J. Stampfl, J. and A. Ovsianikov,
Laser 3D Printing with Sub-Microscale Resolution of Porous Elastomeric Scaffolds for Supporting Human Bone Stem Cells,
Advanced Healthcare Materials, 4: 739–747 (2014) [doi: 10.1002/adhm.201400442, öffnet eine externe URL in einem neuen Fenster]

53. S. Muehleder, A. Ovsianikov, J. Zipperle, H. Redl and W. Holnthoner,
Connections matter: channeled hydrogels to improve vascularization,
Frontiers in Bioengineering and Biotechnology 2:52. (2014) [doi: 10.3389/fbioe.2014.00052, öffnet eine externe URL in einem neuen Fenster]

52. X.-H. Qin, P. Gruber, M. Markovic, B. Plochberger, E. Klotzsch, J. Stampfl, A. Ovsianikov, R. Liska,
Enzymatic synthesis of hyaluronic acid vinyl esters for two-photon microfabrication of biocompatible and biodegradable hydrogel constructs,
Polymer Chemistry 5:22, 6523-6533 (2014) [doi: 10.1039/C4PY00792A, öffnet eine externe URL in einem neuen Fenster]

51. A. Ovsianikov, S. Mühleder, J. Torgersen, Z. Li, X.-H. Qin, S. Van Vlierberghe, P. Dubruel, W. Holnthoner, H. Redl, R. Liska, and J. Stampfl,
Laser Photofabrication of Cell-Containing Hydrogel Constructs,
Langmuir, 30 (13), 3787–3794 (2014) [doi:10.1021/la402346z, öffnet eine externe URL in einem neuen Fenster].

50. S. D. Gittard, B. Chen, H. Xu, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, and R. J. Narayan,
The effects of geometry on skin penetration and failure of polymer microneedles,
J. Adhes. Sci. Technol. 27(3), 227–243 (2013) [doi:10.1080/01694243.2012.705101, öffnet eine externe URL in einem neuen Fenster].

49. J. Torgersen, X.-H. Qin, Z. Li, A. Ovsianikov, R. Liska, and J. Stampfl,
Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix,
Adv. Funct. Mater. 23(36), 4542–4554 (2013) [doi:10.1002/adfm.201203880, öffnet eine externe URL in einem neuen Fenster].

48. Z. Li, J. Torgersen, A. Ajami, S. Mühleder, X. Qin, W. Husinsky, W. Holnthoner, A. Ovsianikov, J. Stampfl, and R. Liska,
Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct 3D microfabrication of hydrogels,
RSC Adv. 3(36), 15939 (2013) [doi:10.1039/c3ra42918k, öffnet eine externe URL in einem neuen Fenster].

47. Z. Li, E. Stankevičius, A. Ajami, G. Račiukaitis, W. Husinsky, A. Ovsianikov, J. Stampfl, and R. Liska,
3D alkyne–azide cycloaddition: spatiotemporally controlled by combination of aryl azide photochemistry and two-photon grafting,
Chem. Commun. 49(69), 7635 (2013) [doi:10.1039/c3cc43533d, öffnet eine externe URL in einem neuen Fenster].

46. X.-H. Qin, J. Torgersen, R. Saf, S. Mühleder, N. Pucher, S. C. Ligon, W. Holnthoner, H. Redl, A. Ovsianikov, J. Stampfl, and R. Liska,
Three-dimensional microfabrication of protein hydrogels via two-photon-excited thiol-vinyl ester photopolymerization,
J. Polym. Sci. Part Polym. Chem. (2013) [doi:10.1002/pola.26903, öffnet eine externe URL in einem neuen Fenster].

45. Z. Li, A. Ajami, E. Stankevičius, W. Husinsky, G. Račiukaitis, J. Stampfl, R. Liska, and A. Ovsianikov,
3D photografting with aromatic azides: A comparison between three-photon and two-photon case,
Opt. Mater. 35(10), 1846–1851 (2013) [doi:10.1016/j.optmat.2013.04.007, öffnet eine externe URL in einem neuen Fenster].

44. R. A. Rezende, F. D. A. S. Pereira, V. Kasyanov, A. Ovsianikov, J. Torgensen, P. Gruber, J. Stampfl, K. Brakke, J. A. Nogueira, V. Mironov, and J. V. L. da Silva,
Design, physical prototyping and initial characterisation of ‘lockyballs’,
Virtual Phys. Prototyp. 7(4), 287–301 (2012) [doi:10.1080/17452759.2012.740877, öffnet eine externe URL in einem neuen Fenster].

43. J. Torgersen, A. Ovsianikov, V. Mironov, N. Pucher, X. Qin, Z. Li, K. Cicha, T. Machacek, R. Liska, V. Jantsch, and J. Stampfl,
Photo-sensitive hydrogels for three-dimensional laser microfabrication in the presence of whole organisms,
J. Biomed. Opt. 17(10), 105008–105008 (2012) [doi:10.1117/1.JBO.17.10.105008, öffnet eine externe URL in einem neuen Fenster].

42. A. Ovsianikov, V. Mironov, J. Stampf, and R. Liska,
Engineering 3D cell-culture matrices: multiphoton processing technologies for biological and tissue engineering applications,
Expert Rev. Med. Devices 9(6), 613–633 (2012) [doi:10.1586/erd.12.48, öffnet eine externe URL in einem neuen Fenster].

41. V. F. Paz, M. Emons, K. Obata, A. Ovsianikov, S. Peterhänsel, K. Frenner, C. Reinhardt, B. Chichkov, U. Morgner, and W. Osten,
Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization,
J. Laser Appl. 24(4), 042004 (2012) [doi:10.2351/1.4712151, öffnet eine externe URL in einem neuen Fenster].

40.  M. Emons, K. Obata, T. Binhammer, A. Ovsianikov, B. N. Chichkov, and U. Morgner,
Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses,
Opt. Mater. Express 2(7), 942 (2012) [doi:10.1364/OME.2.000942, öffnet eine externe URL in einem neuen Fenster].

39. A. Ovsianikov, Z. Li, J. Torgersen, J. Stampfl, and R. Liska,
3D Photografting: Selective Functionalization of 3D Matrices Via Multiphoton Grafting and Subsequent Click Chemistry,
Adv. Funct. Mater. 22(16), 3527–3527 (2012) [doi:10.1002/adfm.201200419, öffnet eine externe URL in einem neuen Fenster].

38. A. Ovsianikov, Z. Li, A. Ajami, J. Torgersen, W. Husinsky, J. Stampfl, and R. Liska,
3D grafting via three-photon induced photolysis of aromatic azides,
Appl. Phys. 108(1), 29–34 (2012) [doi:10.1007/s00339-012-6964-9, öffnet eine externe URL in einem neuen Fenster].

37. Y. Kiyan, A. Limbourg, R. Kiyan, S. Tkachuk, F. P. Limbourg, A. Ovsianikov, B. N. Chichkov, H. Haller, and I. Dumler,
Urokinase Receptor Associates With Myocardin to Control Vascular Smooth Muscle Cells Phenotype in Vascular Disease,
Arterioscler. Thromb. Vasc. Biol. 32(1), 110–122 (2011) [doi:10.1161/ATVBAHA.111.234369, öffnet eine externe URL in einem neuen Fenster].

36. K. Cicha, Z. Li, K. Stadlmann, A. Ovsianikov, R. Markut-Kohl, R. Liska, and J. Stampfl,
Evaluation of 3D structures fabricated with two-photon-photopolymerization by using FTIR spectroscopy,
J. Appl. Phys. 110, 064911 (2011) [doi:10.1063/1.3639304, öffnet eine externe URL in einem neuen Fenster].

35. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich,
Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,
Acta Biomater. 7(3), 967–974 (2011) [doi:10.1016/j.actbio.2010.10.023, öffnet eine externe URL in einem neuen Fenster].

34. A. Ovsianikov, A. Deiwick, S. Van Vlierberghe, P. Dubruel, L. Möller, G. Dräger, and B. Chichkov,
Laser Fabrication of Three-Dimensional CAD Scaffolds from Photosensitive Gelatin for Applications in Tissue Engineering,
Biomacromolecules 12(4), 851–858 (2011) [doi:10.1021/bm1015305, öffnet eine externe URL in einem neuen Fenster].

33. S. D. Gittard, P. R. Miller, R. D. Boehm, A. Ovsianikov, B. N. Chichkov, J. Heiser, J. Gordon, N. A. Monteiro-Riviere, and R. J. Narayan,
Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles,
Faraday Discuss 149(0), 171–185 (2011) [doi:10.1039/C005374K, öffnet eine externe URL in einem neuen Fenster].

32. M. Oubaha, R. Copperwhite, C. Boothman, A. Ovsianikov, R. Kiyan, V. Purlys, M. O’Sullivan, C. McDonagh, B. Chichkov, R. Gadonas, and B. D. MacCraith,
Influence of hybrid organic–inorganic sol–gel matrices on the photophysics of amino-functionalized UV-sensitizers,
J. Mater. Sci. 46(2), 400–408 (2010) [doi:10.1007/s10853-010-4853-1].

31. M. R. Pollard, S. W. Botchway, B. Chichkov, E. Freeman, R. N. J. Halsall, D. W. K. Jenkins, I. Loader, A. Ovsianikov, A. W. Parker, R. Stevens, R. Turchetta, A. D. Ward, and M. Towrie,
Optically trapped probes with nanometer-scale tips for femto-Newton force measurement,
New J. Phys. 12(11), 113056 (2010) [doi:10.1088/1367-2630/12/11/113056, öffnet eine externe URL in einem neuen Fenster].

30. A. Koroleva, S. Schlie, E. Fadeeva, S. D. Gittard, P. Miller, A. Ovsianikov, J. Koch, R. J. Narayan, and B. N. Chichkov,
Microreplication of laser-fabricated surface and three-dimensional structures,
J. Opt. 12(12), 124009 (2010) [doi:10.1088/2040-8978/12/12/124009, öffnet eine externe URL in einem neuen Fenster].

29. A. Doraiswamy, A. Ovsianikov, S. D. Gittard, N. A. Monteiro-Riviere, R. Crombez, E. Montalvo, W. Shen, B. N. Chichkov, and R. J. Narayan,
Fabrication of Microneedles Using Two Photon Polymerization for Transdermal Delivery of Nanomaterials,
J. Nanosci. Nanotechnol. 10(10), 6305–6312 (2010) [doi:10.1166/jnn.2010.2636, öffnet eine externe URL in einem neuen Fenster].

28. S. D. Gittard, A. Ovsianikov, B. N. Chichkov, A. Doraiswamy, and R. J. Narayan,
Two-photon polymerization of microneedles for transdermal drug delivery,
Expert Opin. Drug Deliv. 7(4), 513–533 (2010) [doi:10.1517/17425241003628171, öffnet eine externe URL in einem neuen Fenster].

27. A. Ovsianikov, M. Gruene, M. Pflaum, L. Koch, F. Maiorana, M. Wilhelmi, A. Haverich, and B. Chichkov,
Laser printing of cells into 3D scaffolds,
Biofabrication 2(1), 014104 (2010) [doi:10.1088/1758-5082/2/1/014104, öffnet eine externe URL in einem neuen Fenster].

26. S. D. Gittard, A. Ovsianikov, H. Akar, B. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, B. Chisholm, C.-C. Shin, C.-M. Shih, S.-J. Lin, Y.-Y. Su, and R. J. Narayan,
Two Photon Polymerization-Micromolding of Polyethylene Glycol-Gentamicin Sulfate Microneedles,
Adv. Eng. Mater. 12(4), B77–B82 (2010) [doi:10.1002/adem.200980012, öffnet eine externe URL in einem neuen Fenster].

25. M. Farsari, I. Sakellari, D. Gray, M. Vamvakaki, C. Fotakis, A. Ovsianikov, and B. N. Chichkov,
Three-dimensional direct writing of novel sol-gel composites for photonics applications,
Int. J. Nanomanufacturing 6, 164 (2010) [doi:10.1504/IJNM.2010.034781, öffnet eine externe URL in einem neuen Fenster].

24. A. I. Kuznetsov, A. B. Evlyukhin, C. Reinhardt, A. Seidel, R. Kiyan, W. Cheng, A. Ovsianikov, and B. N. Chichkov,
Laser-induced transfer of metallic nanodroplets for plasmonics and metamaterial applications,
J. Opt. Soc. Am. B 26(12), B130 (2009) [doi:10.1364/JOSAB.26.00B130, öffnet eine externe URL in einem neuen Fenster].

23. S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm,
Pulsed laser deposition of antimicrobial silver coating on Ormocer® microneedles,
Biofabrication 1(4), 041001 (2009) [doi:10.1088/1758-5082/1/4/041001, öffnet eine externe URL in einem neuen Fenster].

22. S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan,
Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,
J. Diabetes Sci. Technol. 3(2), 304–311 (2009).

21. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov,
Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,
Opt. Express 17(4), 2143 (2009) [doi:10.1364/OE.17.002143, öffnet eine externe URL in einem neuen Fenster].

20. F. Claeyssens, E. A. Hasan, A. Gaidukeviciute, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari,
Three-Dimensional Biodegradable Structures Fabricated by Two-Photon Polymerization,
Langmuir 25(5), 3219–3223 (2009) [doi:10.1021/la803803m, öffnet eine externe URL in einem neuen Fenster].

19.  S. D. Gittard, R. Narayan, J. Lusk, P. Morel, F. Stockmans, M. Ramsey, C. Laverde, J. Phillips, N. A. Monteiro-Riviere, A. Ovsianikov, and B. N. Chichkov,
Rapid prototyping of scaphoid and lunate bones,
Biotechnol. J. 4(1), 129–134 (2009) [doi:10.1002/biot.200800233, öffnet eine externe URL in einem neuen Fenster].

18. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis,
Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,
ACS Nano 2(11), 2257–2262 (2008) [doi:10.1021/nn800451w, öffnet eine externe URL in einem neuen Fenster].

17.  A. Ovsianikov, A. Gaidukeviciute, B. N. Chichkov, M. Oubaha, B. D. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis,
Two-Photon Polymerization of Hybrid Sol-Gel Materials for Photonics Applications,
Laser Chem. 2008, 1–7 (2008) [doi:10.1155/2008/493059, öffnet eine externe URL in einem neuen Fenster].

16. M. Farsari, A. Ovsianikov, M. Vamvakaki, I. Sakellari, D. Gray, B. N. Chichkov, and C. Fotakis,
Fabrication of three-dimensional photonic crystal structures containing an active nonlinear optical chromophore,
Appl. Phys. 93(1), 11–15 (2008) [doi:10.1007/s00339-008-4642-8, öffnet eine externe URL in einem neuen Fenster].

15. V. Dinca, E. Kasotakis, J. Catherine, A. Mourka, A. Ranella, A. Ovsianikov, B. N. Chichkov, M. Farsari, A. Mitraki, and C. Fotakis,
Directed Three-Dimensional Patterning of Self-Assembled Peptide Fibrils,
Nano Lett. 8(2), 538–543 (2008) [doi:10.1021/nl072798r, öffnet eine externe URL in einem neuen Fenster].

14. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov,
Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,
J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007) [doi:10.1002/term.57, öffnet eine externe URL in einem neuen Fenster].

13. S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H.-A. Kolb, H. Haferkamp, and B. N. Chichkov,
Three-Dimensional Cell Growth on Structures Fabricated from ORMOCER(R) by Two-Photon Polymerization Technique,
J. Biomater. Appl. 22(3), 275–287 (2007) [doi:10.1177/0885328207077590, öffnet eine externe URL in einem neuen Fenster].

12. R. Houbertz, P. Declerck, S. Passinger, A. Ovsianikov, J. Serbin, and B. N. Chichkov,
Investigations on the generation of photonic crystals using two-photon polymerization (2PP) of inorganic-organic hybrid polymers with ultra-short laser pulses,
Phys. Status Solidi 204(11), 3662–3675 (2007) [doi:10.1002/pssa.200776416, öffnet eine externe URL in einem neuen Fenster].

11. N. Grossman, A. Ovsianikov, A. Petrov, M. Eich, and B. Chichkov,
Investigation of optical properties of circular spiral photonic crystals,
Opt. Express 15(20), 13236 (2007) [doi:10.1364/OE.15.013236, öffnet eine externe URL in einem neuen Fenster].

10. A. Ovsianikov, B. Chichkov, O. Adunka, H. Pillsbury, A. Doraiswamy, and R. Narayan,
Rapid prototyping of ossicular replacement prostheses,
Appl. Surf. Sci. 253(15), 6603–6607 (2007) [doi:10.1016/j.apsusc.2007.01.062, öffnet eine externe URL in einem neuen Fenster].

9. A. Ovsianikov, A. Ostendorf, and B. Chichkov,
Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,
Appl. Surf. Sci. 253(15), 6599–6602 (2007) [doi:10.1016/j.apsusc.2007.01.058, öffnet eine externe URL in einem neuen Fenster].

8. R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey,
Laser Processing of Advanced Bioceramics,
Adv. Eng. Mater. 9(1-2), 83–83 (2007) [doi:10.1002/adem.200500155, öffnet eine externe URL in einem neuen Fenster].

7. T. Boland, A. Ovsianikov, B. Chichkov, A. Doraiswamy, R. J. Narayan, W.-Y. Yeong, K.-F. Leong, and C.-K. Chua,
Rapid prototyping of artificial tissues and medical devices,
Adv. Mater. Process. 165(4), 51–53 (2007).

6. A. Ovsianikov, B. Chichkov, P. Mente, N. A. Monteiro-Riviere, A. Doraiswamy, and R. J. Narayan,
Two-Photon Polymerization of Polymer-Ceramic Hybrid Materials for Transdermal Drug Delivery,
Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007) [doi:10.1111/j.1744-7402.2007.02115.x, öffnet eine externe URL in einem neuen Fenster].

5. A. Doraiswamy, C. Jin, R. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. Chrisey, A. Ovsianikov, and B. Chichkov,
Two-photon induced polymerization of organic–inorganic hybrid biomaterials for microstructured medical devices,
Acta Biomater. 2(3), 267–275 (2006) [doi:10.1016/j.actbio.2006.01.004, öffnet eine externe URL in einem neuen Fenster].

4. R. J. Narayan, C. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey,
Laser Processing of Advanced Bioceramics,
Adv. Eng. Mater. 7(12), 1083–1098 (2005) [doi:10.1002/adem.200500155, öffnet eine externe URL in einem neuen Fenster].

3. R. J. Narayan, C. Jin, T. Patz, A. Doraiswamy, R. Modi, D. B. Chrisey, Y.-Y. Su, S.-J. Lin, A. Ovsianikov, and B. N. Chichkov,
Laser processing of advanced biomaterials,
pp. 39–42, ADVANCED MATERIALS & PROCESSES (2005).

2. F. Korte, J. Koch, J. Serbin, A. Ovsianikov, and B. N. Chichkov,
Three-Dimensional Nanostructuring With Femtosecond Laser Pulses,
IEEE Trans. Nanotechnol. 3(4), 468–472 (2004) [doi:10.1109/TNANO.2004.834189, öffnet eine externe URL in einem neuen Fenster].

1. J. Serbin, A. Ovsianikov, and B. Chichkov,
Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties,
Opt. Express 12(21), 5221 (2004) [doi:10.1364/OPEX.12.005221, öffnet eine externe URL in einem neuen Fenster].

Buchkapitel:

B1. A. Ovsianikov, S. Passinger, R Houbertz, and B.N. Chichkov, Three Dimensional Material Processing with Femtosecond Lasers, in: "Laser Ablation and its Applications", Phipps, Claude (Ed.) Springer Series in Optical Science 2006

B2. A. Ovsianikov and B.N. Chichkov, Two-photon polymerization - High Resolution 3D Laser Technology and its Applications, in: "Nanoelectronics and Photonics", From Atoms to Materials, Devices, and Architectures, Korkin, Anatoli; Rosei, Federico (Eds.), Springer Series in Nanostructure Science and Technology 2008

B3. A. Ovsianikov, M. Farsari, and B. N. Chichkov, Photonic and Biomedical applications of the two-photon polymerization technique, in: "Stereolithography: materials, processes and applications", Bártolo, Paolo (Ed) Springer: New York, 2011

B4. A. Ovsianikov and B.N. Chichkov, Three-dimensional Microfabrication by Two-photon Polymerization Technique, in: Computer-Aided Tissue Engineering, Liebschner, Michael; Sun, Wei (Eds.), Volume 868 of the series Methods in Molecular Biology pp 311-325, Springer, 2012 [ISBN: 978-1-61779-763-7, öffnet eine externe URL in einem neuen Fenster]

B5. B. Husár, M. Hatzenbichler, V. Mironov, R. Liska, J. Stampfl, A. Ovsianikov, Photopolymerization-based additive manufacturing for the development of 3D porous scaffolds, in: Biomaterials for Bone Regeneration, P. Dubruel and S. V. Vlierberghe (Eds) pages 149-201, Woodhead / Elsevier, 2014 [ISBN: 978-0-85709-804-7, öffnet eine externe URL in einem neuen Fenster]

Dissertation:

Investigation of Two-Photon Polymerization Technique for Applications in Photonics and Biomedicine
Cuvillier Göttingen; 2009; ISBN-10: 3867279160, ISBN-13: 9783867279161
http://www.cuvillier.de/flycms/en/html/30/-UickI3zKPS7zdEs=/Buchdetails.html?SID=t5KfyQh3d5a9, öffnet eine externe URL in einem neuen Fenster