• Zum Inhalt springen  (Accesskey: 1)
  • Zur Navigation springen  (Accesskey: 2)
  • Zur Suche springen  (Accesskey: 7)
Seitennavigation schließen
EN
Seitennavigation öffnen
  • TU Wien
    • Übersicht
    • Aktuelles
    • fuTUre fit
    • Über die TUW
    • Organisation
    • TUW für alle
    • Arbeiten an der TUW
    • TUW Community
    • Campus
    • Kontakt
  • Studium
    • Übersicht
    • Studienangebot
    • Studieninteressierte
    • Studienanfänger_innen
    • Studierende
    • International Studieren
    • Lehrende , öffnet eine externe URL in einem neuen Fenster
    • Schüler_innen
    • Best Teaching Awards 2025
  • Forschung
    • Übersicht
    • Profil
    • News
    • Events
    • Facilities
    • Erfolge
    • Netzwerke
    • TUW Doctoral Center
    • FTI Support
    • TUW interne Fördermöglichkeiten
    • Datenbanken
  • Kooperationen
    • Übersicht
    • Erfindungen, Patente, Kommerzialisierung
    • Spenden und Unterstützen
    • Start-ups
    • Technology Offers
    • Wirtschaftskooperationen
    • Center for Technology and Society , öffnet eine externe URL in einem neuen Fenster
    • Universitätsallianzen
    • TU Austria , öffnet eine externe URL in einem neuen Fenster
    • EULIST
  • Services
    • Übersicht
    • Bibliothek
    • Campus IT-Services
    • Campus-Services
    • Eventmanagement
    • Medien
    • Meldesystem
    • Newsletter
  • Intern
    • Übersicht
    • Portal (TISS, SAP, TYPO3,...) , öffnet eine externe URL in einem neuen Fenster

externe Veranstaltungen

  1. Forschung /
  2. Events /
  3. externe Veranstaltungen /

zurück zum Forschungs-Veranstaltungskalender

 

12. September 2022 bis 16. September 2022 ganztags

SCtrain Training Week: HPC in Engineering: focus on CFD (Computational Fluid Dynamics)

Andere

The course aims at sharing numerical methods implemented in state-of-the-art CFD industrial codes running on High Performance Computing (HPC) clusters, relying on the expertise of HPC specialists coming from four different European countries.

Between applicants 15 participants per partner country (Italy, Slovenia, Austria and Czech republic) will be selected. All travel and accommodation costs will be fully covered for the selected participants.

Description:

Mathematical models describing real-world engineering problems such as modelling flows around turbine blades, wind turbulence around a vehicle or boat, improving turbine engine performance, modelling of weather predictions, etc. are quite large in size due to many unknowns involved. On top of that, they present time dependency, meaning that the solution changes at each time step - at every second or even at smaller steps. Solving such problems is not a simple task and the use of HPC technologies and infrastructures enables to perform large simulations and to reduce their runtime. The participants will be introduced to the most common numerical methods used in engineering and will learn how to setup and perform a simulation using different softwares, both open-source and commercial, in an HPC cluster.

Target audience:

The program is intended for students and others that are interested in Computational Fluid Dynamics (CFD) and would like to expand their knowledge on using CFD as a predictive tool for real life engineering problems that need HPC resources to be solved.
Number of involved students from each country (Italy, Slovenia, Austria, Czech Republic) is limited to 15.

Prerequisite knowledge:

Participants should be familiar with the basics of engineering principles, fluid-mechanics, numerical analyses and be able to perform simple analyses. Furthermore, they should be able to work with Linux and have basic knowledge in programming. No specific experience with supercomputing systems is necessary.

Workflow:

The course will take place as an in-person event, using SSH remote connection to HPC clusters hosted in CINECA. Participants are expected to bring their own laptops to the event. Several different software will be demonstrated for dealing with CFD problems.

Software requirements:

During the training event several different software  for dealing with CFD problems will be demonstrated - Comsol, OpenFOAM, Ansys. The requirements for each software are:

- For installation of Ansys software on your laptop, an image of Windows OS is necessary.
- The installation of Comsol software on your laptop is possible for several OS-es.
- The installation of OpenFOAM software on your laptop is possible for several OS-es.
- To access the HPC cluster at CINECA additional software for the connection will be required.

All accepted participants will be informed on more detailed software requirements and how to install it before the training week.

Skills to be gained:

At the end of the course the student will be familiar with:

- a Linux-based HPC environment
- the theoretical background of the Computational Fluid-Mechanics
- the most common discretization techniques of the Navier-Stokes equations (Finite Volume, Finite Element)
- setup and run a simulation in parallel on a HPC cluster with three different CFD software (OpenFOAM, Ansys Fluent, Comsol)
- meshing concepts and possibilities within ANSYS CFD package

The training is offered by SCtrain - project aimed at complementing the gaps in current HE courses and taking up high performance computing (HPC) knowledge for future science, technology, engineering and mathematics (STEM) professionals. VSC Research Center at TU Wien is one of the four partners of SCtrain.

Kalendereintrag

Veranstaltung Details

Veranstaltungsort
SCtrain
Bologna, Italien
Veranstalter
SCtrain
Info-Link
https://sctrain.eu/course/hpc-cfd/
Öffentlich
Ja
Kostenpflichtig
Nein
Anmeldung erforderlich
Ja

Registration , öffnet eine externe URL in einem neuen Fensterfor the event is due before 31 July 2022, you will be informed whether you've been selected for participation no later than 15 August 2022. All travel and accommodation costs will be fully covered for the selected participants. Therefore, please inform us immediately if your plans to participate change and you would like to withdraw your application.

Zur Fußzeile springen

TU Wien

  • Aktuelles
  • fuTUre fit
  • Über die TUW
  • Organisation
  • Corona
  • TUW für alle
  • Arbeiten an der TUW
  • TUW Community
  • Campus
  • Kontakt

Studium

  • News
  • Studienangebot
  • Zulassung
  • Studieren an der TUW
  • Student Support
  • Lehren an der TUW
  • International
  • Schüler_innen
  • Academy for Continuing Education
  • ÖH-Wahl 2025
  • Best Teaching Awards 2025

Forschung

  • Profil
  • News
  • Events
  • Facilities
  • Erfolge
  • Netzwerke
  • TUW Doctoral Center
  • FTI Support
  • TUW interne Fördermöglichkeiten
  • Datenbanken

Kooperationen

  • Erfindungen, Patente, Kommerzialisierung
  • Spenden und Unterstützen
  • Start-ups
  • Technology Offers
  • Wirtschaftskooperationen
  • Center for Technology and Society, öffnet eine externe URL in einem neuen Fenster
  • Universitätsallianzen
  • TU Austria, öffnet eine externe URL in einem neuen Fenster
  • EULIST

Services

  • Bibliothek
  • Campus IT-Services
  • Campus-Services
  • Eventmanagement
  • Karriere, öffnet eine externe URL in einem neuen Fenster
  • Medien
  • Meldesystem
  • Newsletter

Intern

  • Portal (TISS, SAP, TYPO3,...), öffnet eine externe URL in einem neuen Fenster

© TU Wien  # 12508

  • Impressum
  • Barrierefreiheitserklärung
  • Datenschutzerklärung (PDF)
  • Cookieeinstellungen
  • Zur 1. Menü Ebene Forschung
  • Zurück zur letzten Ebene: Events
  • externe Veranstaltungen
  • TechForum: Millstatt TechForum: Millstatt
  • Blickpunkt Forschung Blickpunkt Forschung
  • Facebook
  • LinkedIn
  • YouTube
  • Instagram
  • Bluesky

Hinweis zu Cookies und anderen Techniken

Unsere Website verwendet Cookies und bindet Inhalte von Drittanbietern ein, um die grundlegende Funktionalität unserer Website zu gewährleisten sowie die Zugriffe auf unserer Website zu analysieren und um Funktionen für soziale Medien und zielgerichtete Werbung anbieten zu können. Hierzu ist es nötig Informationen an die jeweiligen Dienstanbieter weiterzugeben. Weitere Informationen zu Cookies und Inhalten von Drittanbietern auf der Website finden Sie in unserer Datenschutzerklärung.

Erforderlich

Diese Cookies werden für eine reibungslose Funktion unserer Website benötigt.

Name Zweck Ablauf Typ Anbieter
CookieConsent Speichert Ihre Einstellungen zur Verwendung von Cookies auf dieser Website. 1 Jahr HTML Homepage TU Wien
SimpleSAML Wird benötigt, um die Sessions der eingeloggten Benutzer_innen voneinander unterscheiden zu können. Session HTTP Login TU Wien
SimpleSAMLAuthToken Wird benötigt, um die Sessions der eingeloggten Benutzer_innen voneinander unterscheiden zu können. Session HTTP Login TU Wien
fe_typo_user Wird benötigt, damit im Falle eines Typo3-Frontend-Logins die Session-ID wiedererkannt wird um Zugang zu geschützten Bereichen zu gewähren. Session HTTP Homepage TU Wien
staticfilecache Wird benötigt, um die Auslieferungszeit der Website zu optimieren. Session HTTP Homepage TU Wien
JESSIONSID Wird benötigt, damit im Falle eines LectureTube-Logins die Session-ID wiedererkannt wird um Zugang zu geschützten Bereichen zu gewähren. Session HTTP LectureTube TU Wien
_shibsession_lecturetube Wird benötigt, um die Sessions der eingeloggten Benutzer_innen voneinander unterscheiden zu können. Session HTTP LectureTube TU Wien
Webstatistiken

Mit Hilfe dieser Cookies können wir unser Angebot laufend verbessern und unsere Website an Ihre Bedürfnisse anpassen. Dabei werden pseudonymisierte Daten über die Websitenutzung gesammelt und statistisch ausgewertet.

Name Zweck Ablauf Typ Anbieter
_pk_id Wird verwendet, um ein paar Details über den Benutzer wie die eindeutige Besucher-ID zu speichern. 13 Monate HTML Matomo TU Wien
_pk_ref Wird benutzt, um die Informationen der Herkunftswebsite des Benutzers zu speichern. 6 Monate HTML Matomo TU Wien
_pk_ses Wird benötigt, um vorübergehende Daten des Besuchs zu speichern. 30 Minuten HTML Matomo TU Wien
Marketing

Mithilfe dieser Cookies und Drittanbieterinhalte sind wir bemüht, unser Angebot für Sie zu verbessern. Mittels pseudonymisierter Daten von Websitenutzern kann der Nutzerfluss analysiert und beurteilt werden. Dies gibt uns die Möglichkeit, Werbe- und Websiteinhalte zu optimieren.

Name Zweck Ablauf Typ Anbieter
facebook Wird verwendet, um Anzeigen auszuliefern oder Retargeting zu ermöglichen 90 Tage HTTP Meta
__fb_chat_plugin Wird zum Speichern und Verfolgen von Interaktionen (Marketing/Tracking) benötigt. Persistent HTTP Meta
_js_datr Wird benötigt, um Benutzer_inneneinstellungen zu speichern. 2 Jahre HTTP Meta
_fbc Wird benötigt, um den letzten Besuch zu speichern (Marketing/Tracking). 2 Jahre HTTP Meta
fbm Wird benötigt, um Kontodaten zu speichern (Marketing/Tracking). 1 Jahr HTTP Meta
xs Wird zum Speichern einer eindeutigen Sitzungs-ID benötigt (Marketing/Tracking). 1 Jahr HTTP Meta
wd Wird benötigt, um die Bildschirmauflösung zu loggen. 1 Woche HTTP Meta
fr Wird benötigt, um Anzeigen zu schalten und deren Relevanz zu messen und zu verbessern. 3 Monate HTTP Meta
act Wird benötigt, um angemeldete Benutzer_innen zu speichern (Marketing/Tracking). 90 Tage HTTP Meta
_fbp Wird zum Speichern und Verfolgen von Besuchen auf verschiedenen Websites benötigt (Marketing/Tracking). 3 Monate HTTP Meta
datr Wird benötigt, um den Browser für Sicherheits- und Website-Integritätszwecke, einschließlich der Wiederherstellung von Konten und der Identifizierung von potenziell gefährdeten Konten zu identifizieren. 2 Jahre HTTP Meta
dpr Wird für Analysezwecke verwendet. Technische Parameter werden protokolliert (z. B. Seitenverhältnis und Abmessungen des Bildschirms), damit Facebook-Apps korrekt angezeigt werden können. 1 Woche HTTP Meta
sb Wird benötigt, um Browserdetails und Sicherheitsinformationen des Facebook-Kontos zu speichern. 2 Jahre HTTP Meta
dbln Wird benötigt, um Browserdetails und Sicherheitsinformationen des Facebook-Kontos zu speichern. 2 Jahre HTTP Meta
spin Wird für Werbezwecke und Berichterstattung über soziale Kampagnen benötigt. Session HTTP Meta
presence Enthält den "Chat"-Status eingeloggter Benutzer_innen. 1 Monat HTTP Meta
cppo Wird für statistische Zwecke benötigt. 90 Tage HTTP Meta
locale Wird benötigt, um die Spracheinstellungen zu speichern. Session HTTP Meta
pl Wird für Facebook Pixel benötigt. 2 Jahre HTTP Meta
lu Wird für Facebook Pixel benötigt. 2 Jahre HTTP Meta
c_user Wird für Facebook Pixel benötigt. 3 Monate HTTP Meta
bcookie Wird zur Speicherung von Browserdaten benötigt (Marketing/Tracking). 2 Jahre HTTP LinkedIn
li_oatml Wird verwendet, um LinkedIn-Mitglieder außerhalb von LinkedIn zu Werbe- und Analysezwecken zu identifizieren. 1 Monat HTTP LinkedIn
BizographicsOptOut Wird zum Speichern von Datenschutzeinstellungen benötigt. 10 Jahre HTTP LinkedIn
li_sugr Wird zur Speicherung von Browserdaten benötigt (Marketing/Tracking). 3 Monate HTTP LinkedIn
UserMatchHistory Wird zur Bereitstellung von Werbeeinblendungen oder Retargeting benötigt (Marketing/Tracking). 30 Tage HTTP LinkedIn
linkedin_oauth_ Wird benötigt, um seitenübergreifende Funktionen bereitzustellen. Session HTTP LinkedIn
lidc Wird benötigt, um durchgeführte Aktionen auf der Website zu speichern (Marketing/Tracking). 1 Tag HTTP LinkedIn
bscookie Wird benötigt, um durchgeführte Aktionen auf der Website zu speichern (Marketing/Tracking). 2 Jahre HTTP LinkedIn
X-LI-IDC Wird benötigt, um seitenübergreifende Funktionen bereitzustellen (Marketing/Tracking). Session HTTP LinkedIn
AnalyticsSyncHistory Speichert den Zeitpunkt, zu dem der/die Benutzer_in mit dem "lms_analytics"-Cookie synchronisiert wurde. 30 Tage HTTP LinkedIn
lms_ads Wird benötigt, um LinkedIn-Mitglieder außerhalb von LinkedIn zu identifizieren. 30 Tage HTTP LinkedIn
lms_analytics Wird benötigt, um LinkedIn-Mitglieder zu Analysezwecken zu identifizieren. 30 Tage HTTP LinkedIn
li_fat_id Wird für eine indirekte Mitgliederidentifikation benötigt, die für Conversion Tracking, Retargeting und Analysen verwendet wird. 30 Tage HTTP LinkedIn
U Wird benötigt, um den Browser zu identifizieren. 3 Monate HTTP LinkedIn
_guid Wird benötigt, um ein LinkedIn-Mitglied für Werbung über Google Ads zu identifizieren. 90 Tage HTTP LinkedIn