News

Neuartige Quanten-Bits in zwei Dimensionen

Wenn man zwei ultradünne Materialschichten kombiniert, ergeben sich neue Möglichkeiten für die Quanten-Elektronik. Ein Forschungsteam mit TU-Beteiligung präsentiert flexibel steuerbare Quantensysteme.

Winzige Nanostrukturen erlauben ausgezeichnete Kontrolle über einzelne Elektronen.

Winzige Nanostrukturen erlauben ausgezeichnete Kontrolle über einzelne Elektronen.

Winzige Nanostrukturen erlauben ausgezeichnete Kontrolle über einzelne Elektronen. 1/3 Bilder

Winzige Nanostrukturen erlauben ausgezeichnete Kontrolle über einzelne Elektronen.

Florian Libisch

Florian Libisch

Florian Libisch 1/3 Bilder

Florian Libisch

Zwei neuartige Materialien, die jeweils nur aus einer einzigen Schicht von Atomen bestehen, und dazu die Spitze eines Rastertunnelmikroskops – das sind die Zutaten, mit denen es nun gelungen ist, eine neue Art sogenannter „Quantenpunkte“ herzustellen. Dabei handelt es sich um winzige Nanostrukturen, die eine ausgezeichnete Kontrolle über einzelne Elektronen erlauben, deren Energie gezielt verändert werden kann. Für moderne Quantentechnologien sind solche Strukturen ein wichtiges Werkzeug.

Die theoretische Arbeit und die Computersimulationen für die neue Technologie kamen vom Team um Prof. Florian Libisch und Prof. Joachim Burgdörfer an der TU Wien, das Experiment wurde an der RWTH Aachen von der Forschungsgruppe von Prof. Markus Morgenstern durchgeführt. Beteiligt daran war auch das Team der nobelpreisgekrönten Graphen-Entdecker Andre Geim und Kostya Novoselov aus Manchester, die die Materialproben beisteuerten. Publiziert wurden die Ergebnisse nun im Fachjournal „Nature Nanotechnology“.

Energieunterschiede nach Wunsch einstellen
„Für viele Anwendungen im Bereich der Quantentechnologie braucht man ein Quantensystem, in dem ein Elektron zwei verschiedene Zustände annehmen kann – ähnlich wie ein klassischer Lichtschalter, nur mit dem Unterschied, dass die Quantenphysik auch beliebige Überlagerungen der beiden möglichen Zustände erlaubt“, erklärt Prof. Florian Libisch vom Institut für Theoretische Physik der TU Wien.

Eine ganz wichtige Eigenschaft solcher Systeme ist die Energiedifferenz zwischen diesen beiden Quantenzuständen: „Man will in einem solchen System die Information, die in Form des Elektrons abgespeichert ist, möglichst gut kontrollieren, speichern und auslesen können. Dafür wünscht man sich ein System, in dem sich die Energiedifferenz zwischen den beiden Zuständen kontinuierlich einstellen lässt – von fast null bis möglichst groß“, erklärt Libisch.

Bei in der Natur vorkommenden Systemen – etwa in einem Atom – ist das schwierig. Dort sind die Energien und damit die Energiedifferenzen zwischen zwei erlaubten Zuständen fix vorgegeben. Möglich wird das gezielte Ändern des Energieabstands allerdings in synthetisierten Nanostrukturen, in denen Elektronen eingesperrt werden. Man bezeichnet solche Strukturen als „Quantenpunkte“ oder auch als „künstliche Atome“.

Zwei ultradünne Materialien: Graphen und Bornitrid

Dem internationalen Forschungsteam von TU Wien, RWTH Aachen und Universität Manchester gelang es nun, neuartige Quantenpunkte zu entwickeln, in dem sich die einzelnen Energieniveaus der Elektronen viel besser und in größerem Ausmaß steuern und kontrollieren lassen als bisher. Möglich wurde das durch eine Kombination von zwei ganz besonderen Materialien: Zum einen Graphen, das aus nur einer einzigen leitenden Schicht von Kohlenstoff-Atomen besteht, zum anderen hexagonales Bornitrid, einem Graphen stark ähnelnden atomar dünnen Material, das aber isolierend ist.

Genau wie Graphen bildet auch Bornitrid eine sechseckig-wabenartige Struktur aus einzelnen Atomlagen. „Die Sechsecke im Graphen und die Sechsecke im Bornitrid sind allerdings nicht exakt gleich groß“, sagt Florian Libisch. „Wenn man nun eine einzige Schicht Graphen sorgfältig auf hexagonales Bornitrid legt, dann passen die beiden Schichten nicht perfekt zusammen, dadurch entsteht eine Superstruktur mit einer Größe von einigen Nanometern, die sich verbiegt und extrem regelmäßige Wellen schlägt.“

Wie die aufwändigen Berechnungen zeigten, die an der TU Wien durchgeführt werden, sind genau diese Verbiegungen einer kombinierten Graphen-Bornitrid-Struktur der ideale Ort, um Elektronen zu kontrolieren. Die regelmäßigen Wellen in der dünnen Struktur bilden eine Potentiallandschaft, in die man mit Hilfe eines Rastertunnelmikroskops den Quantenpunkt punktgenau einpassen oder sogar kontinuierlich verschieben kann. Je nachdem, an welcher Stelle sich die Spitze des Mikroskops befindet, ändern sich die erlaubten Energieniveaus der Elektronen. „Durch eine Verschiebung um wenige Nanometer kann man den Unterschied zwischen zwei benachbarten Elektronen-Energien zwischen -5 und +10 Milli-Elektronenvolt punktgenau einstellen – das ist etwa das Fünfzigfache dessen, was bisher möglich war“, sagt Florian Libisch.

Auf dem Weg zu „Valleytronics“
Die Spitze des Rastertunnelmikroskops könnte in Zukunft durch eine Reihe nanoelektronischer Bauteile ersetzt werden. So sollen die nun entdeckten Möglichkeiten des Kombinationsmaterials aus Graphen und Bornitrid zu einer skalierbaren Quanten-Technologien führen – man spricht von „Valleytronics“.

„Das ist heute ein vieldiskutiertes Forschungsgebiet, das freilich noch am Anfang steht“, meint Florian Libisch. „Die potenziellen technischen Möglichkeiten dieser ultradünnen Materialien sind jedenfalls vielversprechend – weshalb die TU Wien 2017 auch ein Doktorandenkolleg zu diesem Thema ins Leben gerufen hat.“


Originalpublikation:Freitag et al., Large tunable valley splitting in edge-free graphene quantum dots on boron nitride, Nature Nanotechnology, 2018. DOI: 10.1038/s41565-018-0080-8

Das Doktoratskolleg TU-D:https://tu-d.tuwien.ac.at/home/

Bilderdownload


Rückfragehinweis:
Dr. Florian Libisch
Institut für Theoretische Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13608
florian.libisch@tuwien.ac.at


Aussender:
Dr. Florian Aigner
Technische Universität Wien
PR und Marketing
Resselgasse 3, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at