News

Beinahe Unmögliches aus dem 3D-Drucker

Schwebende Fische und balancierende Monster: Objekte aus dem 3D-Drucker kann man durch ein Verfahren der TU Wien so anpassen, dass sie beeindruckende geometrische Eigenschaften zeigen.

Querschnitt der Figur

© TU Wien

1 von 6 Bildern oder Videos

Ein Hohlraum mit perfekt ausgeklügelter Form ist das Geheimnis dieses Kreisels.

Kleine Kreisel

© TU Wien

1 von 6 Bildern oder Videos

Von außen betrachtet würde man nicht glauben, dass dieser Kreisel ein stabiles Rotationsverhalten zeigt

Eine geometrisch optimierte Kreisel-Schildkröte.

© TU Wien

1 von 6 Bildern oder Videos

Eine geometrisch optimierte Kreisel-Schildkröte.

Auch die Schildkröte hat durch die inneren Hohlräume ganz andere physikalische Eigenschaften bekomme

© TU Wien

1 von 6 Bildern oder Videos

Auch die Schildkröte hat durch die inneren Hohlräume ganz andere physikalische Eigenschaften bekommen.

Fische mit Hohlraum und exakt austariertem Schwimmverhalten.

© TU Wien

1 von 6 Bildern oder Videos

Fische mit Hohlraum und exakt austariertem Schwimmverhalten.

Fischfigur

© TU Wien

1 von 6 Bildern oder Videos

Ein Kunststoff-Fisch wird ins Wasser geworfen und schwebt knapp unter der Wasseroberfläche, weil er im Inneren einen Hohlraum mit exakt richtig gewählter Form und Größe hat. Um ein so genau balanciertes Objekt herzustellen, hätte man bisher wohl eine ganze Reihe von Versuchen gebraucht. In Zukunft werden sich solche geometrischen Sonderwünsche allerdings recht einfach realisieren lassen. An der TU Wien wurde in Zusammenarbeit mit der RWTH Aachen eine Methode entwickelt, mit der man den inneren Hohlraum von Objekten aus dem 3D-Drucker so anpassen kann, dass ihre Balance oder andere physikalische Eigenschaften genau zum Einsatzzweck passen.

Mehr dazu: Youtube-Video, öffnet eine externe URL in einem neuen Fenster

Was man am Institut für Computergraphik und Algorithmen der TU Wien produziert hat, sieht auf den ersten Blick aus wie Kinderspielzeug, hat aber einen interessanten wissenschaftlichen Hintergrund. So wurde etwa die Drehachse einer Plastikschildkröte so angepasst, dass man sie als Kreisel verwenden kann. Fische mit eingebautem Hohlraum wurden so optimiert, dass ihre Dichte genau zu verschiedenen Flüssigkeiten passt. Besonders verblüffend ist die Wunderflasche: Sie sieht aus wie eine merkwürdig verbogene Getränkeflasche. Wenn man sie mit Wasser füllt, dann kippt sie um und läuft aus. Wenn man sie allerdings mit Alkohol füllt, dann bleibt sie stehen.

Der Grund dafür ist, dass die Dichte von Alkohol geringfügig kleiner ist als die Dichte von Wasser. Die Flasche wurde so optimiert, dass dieser kleine Dichteunterschied genau zwischen Stehenbleiben und Umfallen entscheidet.

Ausgeklügelte Wanddicke
Um das zu erreichen, muss die Wand der Flasche angepasst werden. Sie ist auf einer Seite viel dicker als auf der anderen, um den Schwerpunkt der Flasche genau richtig zu justieren. Angepasst wird das ganz automatisch am Computer, mit einem mathematischen Optimierungsverfahren, das Przemyslaw Musialski und sein Team an der TU Wien entwickelt haben. „Eingegeben wird die äußere Form der Figur und zusätzlich bestimmte Vorgaben – etwa die Rotationsachse oder die Schwebeausrichtung“, erklärt Musialski. „Die Software liefert dann zusätzlich zur äußeren Form auch die Form des Hohlraums im Inneren des Objektes, so dass es die Wunschvorgaben erfüllt.“

Dabei muss man dem Computer noch zusätzliche Beschränkungen auferlegen: Das Objekt muss am Ende von einem 3D-Drucker produziert werden können. Allzu komplizierte, zackige Formen sind also ungünstig, der Computercode favorisiert einfache, weiche Formen. Ob auch die äußere Form angepasst werden darf oder ob sie streng vorgegeben ist, kann von Fall zu Fall entschieden werden.

Individuelles Produktdesign
„Unsere Methode hat eine ganze Reihe von Vorteilen“, sagt Przemyslaw Musialski. „Sie ist schnell, denn die Berechnung dauert nur einige Sekunden, sie ist wenig fehleranfällig und wie wir zeigen konnten, lässt sie sich im Vergleich zu ähnlichen Methoden für viele ganz unterschiedliche Optimierungsaufgaben verwenden.“ In Zukunft wird man viele Objekte – vom Ziergegenstand bis zum technischen Ersatzteil – wohl nicht mehr im Geschäft kaufen, sondern am Computer individuell gestalten und dann ausdrucken. Optimierungsverfahren sollen dann dafür sorgen, dass die User-generierten Objekte auch zuverlässig die nötigen physikalischen Eigenschaften haben.

Für die Entwicklung der Methode wurde Przemyslaw Musialski mit dem Austrian Computer Graphics Award (ACCA) in der Kategorie "Best Technical Solution" ausgezeichnet. Der Preis wurde bei der „PixelVienna“, einer internationalen Konferenz für Computergraphik und Animation überreicht.


Download Fotos und Videolink


Rückfragehinweis:
Dr. Przemyslaw Musialski
Institut für Computergraphik und Algorithmen
Technische Universität Wien
Favoritenstr. 9-11,
T: +43-1-58801-18623
przemyslaw.musialski@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41027
florian.aigner@tuwien.ac.at