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Abstract

This paper investigates solution stability properties of unregularized tracking-type optimal control
problems constrained by the Boussinesq system. In our model, the controls may appear linearly and
distributed in both of the equations that constitute the Boussiniesq system and in the objective functional.
We establish, not only the existence of weak solutions, but also unique existence of strong solutions in
Lp sense for the Boussinesq system as well as its corresponding linearized and adjoint systems. The
optimal control problem is then analyzed by providing the existence of an optimal control, and by
establishing first-order necessary and second order sufficient conditions. Then, using assumptions on the
joint growth of the first and second variations of the objective functional, we prove the strong metric
Hölder subregularity of the optimality mapping, which in turn allows the study of solution stability of
the optimal control and states under various linear and nonlinear perturbations. Such perturbations
may appear in the Boussinesq system and the objective functional. As an application, we provide a
convergence rate for the optimal solutions of the Tikhonov regularized problem as the Tikhonov parameter
tends to zero. Furthermore, the obtained stability of the optimal states provides, to the best knowledge
of the authors, the first result on the stability of the second-order sufficient condition in affine PDE-
constrained optimization under an assumption on the desired profile which is natural for tracking-type
objective functionals.

1 Introduction

Optimal control is concerned with finding a function that steers a given dynamical system according to some
goal. For instance, driving a fluid toward a given velocity field. In the past few decades, optimal control
problems with dynamics given by solutions of partial differential equations have become of great interest
among mathematicians and engineers alike. This is of course because a lot of phenomena related to physics
or economics are modeled with such kinds of equations. Notably challenging are optimal control problems
with equations describing nonlinear dynamics, of which one is considered in this paper. In particular, we
shall consider the so-called Boussinesq system that describes a heat-conducting fluid and is governed by the
viscous incompressible Navier–Stokes equations and the heat equation. The fluid is affected by the local
variations of the temperature along the direction of the gravitational force, while the temperature is affected
by the fluid by virtue of the drift of the fluid velocity. Such systems, and their variations, have been well-
studied due to their ability to model fluid flow phenomena wherein thermal effects cannot be ignored, eg.
on atmospheric models [19] and ocean circulation [18]. Mathematically speaking, the Boussinesq system has
also gained attention due to its nonlinear nature. We refer to the recent works [2, 17, 25, 30] dealing with
specific variations of the system we intend to study.
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Optimal control problems subject to the Boussinesq system have also been the focus of several papers.
For example, in [5] the authors established the existence of an optimal solution for a tracking-type objec-
tive functional and a corresponding Pontryagin minimum principle for the controls appearing in the heat
equation. Li [23], on another hand, studied a problem where constraints are imposed on the fluid velocity
and temperature variable. The author further considered a generalized objective function that consists of a
Lipschitz continuous functional with respect to the state variables and a functional that is at least quadratic.
We also mention the following works that dealt with optimal control subject to the Boussinesq system
[3, 10, 22, 24]. In the present paper, the controls may appear both on the momentum and the heat equation
and are supported on small regions of the domain. This allows the model to apply to various situations,
for instance, a control problem subject to a two-dimensional Navier–Stokes equation, which is reciprocally
influenced by a separately controlled heat equation. We study distributed optimal control problems where
the control appears at most affinely in the governing state equations and the objective functional. Affinely
controlled optimal control problems have attracted much attention recently as they appear naturally when
considering tracking type objective functionals where the Tikhonov regularization term is absent. This set-
ting promotes a bang-bang structure of the optimal controls. The study of optimal control problems subject
to partial differential equations involving bang-bang solutions can only be traced to a handful of works. We
mention [13] where the authors provided methods for approximating the solutions for a bang-bang optimal
control problem for a system governed by the Poisson equation. In the aforementioned paper, the authors
also laid out special cases wherein the so-called structural assumption for the adjoint variable will imply
that the controls are indeed bang-bang. In [6], E. Casas provided a second-order sufficient condition for an
optimization problem constrained with an elliptic semilinear equation. For the analysis of optimal control
problems with bang-bang solutions concerning more involved nonlinear systems, we mention [7], wherein
a data-tracking problem is analyzed for the Navier–Stokes equations. The authors established necessary
and sufficient conditions for the mentioned optimization and provided error estimates for the finite element
approximation of the solutions.

Aside from the necessary and sufficient conditions for the optimization problem, this paper delves into
the stability of the optimal controls as well as the optimal states. The analysis in this direction will be
aided by the so-called strong metric Hölder subregularity which has been studied in the case of elliptic
[8, 15], parabolic [11], and the Navier–Stokes equations [12]. The underlying concept in such regularity is the
stability, under well-chosen perturbations, of the optimality mapping derived from the first-order optimality
conditions.

In what follows we present an overview of the core results of the present paper. For that let us first fix
some terminology. Let Ω ⊂ R2 be a domain with C3 boundary ∂Ω, and let 0 < T ∈ R be a fixed final
time. We denote I := (0, T ), Q := I × Ω and Σ := I × ∂Ω. And fix target functions ud : (0, T ) × Ω → R2,
uT : Ω → R2, θd : (0, T )×Ω → R and θT : Ω → R. For us to be able to consider controls of bang-bang type
we consider the functions q = (q1, q2),q = (q

1
, q

2
) ∈ L∞((0, T )× ωq)

2, and Θ,Θ ∈ L∞((0, T )× ωh), which
gives us the set of admissible controls that satisfy box constraints, i.e.

U :=
{
(q,Θ) ∈ L∞((0, T )× ωq)

2 × L∞((0, T )× ωh)
∣∣∣ q ≤• q ≤• q, Θ ≤ Θ ≤ Θ

}
, (1)

where the notation ≤• stands for component-wise inequality, i.e. (a1, a2) ≤• (b1, b2) if and only if a1 ≤ b1 and
a2 ≤ b2. The Boussinesq system consists of the following equations

∂tu− ν∆u+ (u · ∇)u+∇p = e2θ + f + qχωq in Q, (2)

divu = 0 in Q, (3)

∂tθ − κ∆θ + u · ∇θ = h+Θχωh in Q, (4)

u = 0, θ = 0 on Σ, (5)

u(0, ·) = u0, θ(0, ·) = θ0 in Ω, (6)

where ωq, ωh ⊂ Ω are two subdomains with sufficient regularity, (u, p) : (0, T ) × Ω → R2 × R denotes the
fluid velocity and pressure, θ : (0, T )×Ω → R accounts for the temperature, the term e2θ, with e2 := (0, 1),
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takes into account the buoyancy force, q and Θ are external force and heat source for the fluid and the
temperature acting as controls, f and h respectively are given distributed external force and heat source,
and the constant parameters ν > 0 and κ > 0 are the fluid viscosity and heat conductivity, respectively. The
tracking type optimal control problem, which is the main object of interest in our study, is then defined by

min
(q,Θ)∈U

J(q,Θ) :=
α1

2

∫
Q

|u− ud|2 dxdt+
α2

2

∫
Q

|θ − θd|2 dxdt

+
β1
2

∫
Ω

|u(T, ·)− uT |2 dx+
β2
2

∫
Ω

|θ(T, ·)− θT |2 dx,
(7)

subject to (2)–(6), where α1, α2, β1, β2 ≥ 0 are weight parameters that satisfy α1 + α2 + β1 + β2 > 0.

The paper is concerned with the solution stability of the optimal controls and states of (7). To concertize
this and to state the main result in this paper, let us consider the Tikhonov regularized problem with
additional perturbations in the desired data:

min
(q,Θ)∈U

α1

2

∫
Q

|u− (ud + ûd)|2 dxdt+
α2

2

∫
Q

|θ − (θd + θ̂d)|2 dxdt+
β1
2

∫
Ω

|u(T, ·)− uT |2 dx (8)

+
β2
2

∫
Ω

|θ(T, ·)− θT |2 dx+
ε1
2

∫ T

0

∫
ωq

|q|2 dxdt+ ε2
2

∫ T

0

∫
ωh

|Θ|2 dxdt

subject to (2)-(6), but also with perturbations on the initial data, i.e., u(0, ·) = u0+ û0 and θ(0, ·) = θ0+ θ̂0,

and on the distributed external force and heat source denoted as f̂ and ĥ. Suppose that (q⋆,Θ⋆) ∈ U is a
local solution to the unperturbed optimal control problem. Then, under assumptions on the joint growth
of the first and second variation of the objective functional to be specified later on, we obtain the following
stability estimate for the regularized and perturbed problem in terms of the perturbations: there exist
positive constants c, α and µ ∈ [1, 2) such that

∥q⋆ − q∥L1((0,T )×ωq) + ∥Θ⋆ −Θ∥L1((0,T )×ωh)

≤ c
(
∥ûd∥+ ∥θ̂d∥+ ∥f̂∥+ ∥ĥ∥+ ∥û0∥+ ∥θ̂0∥+ ε1∥q⋆∥L∞(Q) + ε2∥Θ⋆∥L∞

)1/µ
for all local minimizers (q⋆,Θ⋆) ∈ U of the perturbed optimal control problem satisfying

∥q⋆ − q∥L1((0,T )×ωq) + ∥Θ⋆ −Θ∥L1((0,T )×ωh) < α.

The stability under perturbations of the control problem is practical also in estimating the error of the
numerical approximation obtained by FEM schemes see [20] or the SQP-method which is generally known.
But solution stability also has implications of analytical type. For instance, in a forthcoming paper, the
authors show the applicability of solution stability for the investigation of the regularity of the local value
function. Furthermore, as we shall see in Section 5.2.1, the stability of the optimal states implies a result
regarding the stability of the second-order optimality condition. That is, assume that the optimal solution
(q⋆,Θ⋆) of (7) satisfies

∥u⋆ − ud∥Ls(Q) + ∥θ⋆ − θd∥Ls(Q) <
min{α1, α2}

δ
for s ≥ 4, (9)

for a positive constant δ. Then we prove that for sufficiently small perturbations the second-order derivative
of the perturbed functional satisfies a growth with respect to the difference of the optimal states for the
perturbed problem. One can easily see that condition (9) is natural for a tracking type problem, in the sense
that it is satisfied as soon as the set of admissible controls allows for a good approximation of the desired
data.
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The remainder of this article is as follows: Section 2 is dedicated to introducing the functional analysis
tools. The analysis for the governing equations will be presented in Section 3, additionally, we establish the
existence of weak and strong solutions for the corresponding linearization of the nonlinear system (2)–(6)
as well as its adjoint system. The control problem will be analyzed in Section 4. In Section 5 we discuss
the stability of solutions in detail, evoking notions and approaches from Variational Analysis. In particular,
we discuss in subsection 5.1 the stability of the optimal control and states emanating from assumption on
the growth of the derivatives of the objective functional with respect to the controls (see Assumption 4.17).
While subsection 5.2 deals with the state stability under the assumption on the growth of the derivatives of
the objective functional with respect to the states (see Assumption 4.18). We conclude and give our final
remarks in Section 6.

2 Preliminaries

Given a Banach space X with the norm ∥ · ∥X , we denote its dual as X∗ and we write ⟨x∗, x⟩X for the
dual pairing of x ∈ X and x∗ ∈ X∗. The space of Lebesque measurable and s-integrable, with s ≥ 1, on
a measurable set D is denoted by Ls(D). Following the usual notation, we write ∥ · ∥Ls for the norm in
Ls(D), whenever the domain D is known, and we write (·, ·)D for the L2-inner product in the domain D.
The Sobolev-Slobodeckij spaces, given s ≥ 1 and m ≥ 0, are denoted as Wm,s(Ω) and for the case s = 2 we
use the notation Hm(Ω) := Wm,2(Ω). The norm in Wm,s(Ω) is denoted by ∥ · ∥Wm,s . Due to the Dirichlet
conditions imposed on the governing equations, we are also inclined to consider zero trace Sobolev spaces
which we denote as Wm,s

0 (Ω). To emphasize spaces consisting of vector-valued functions, we write in bold
letter, for instance, Ls(Ω), Wm,s(Ω). For simplicity, we use the notations H := L2(Ω) and V := H1

0 (Ω)
which will be primarily used for the analysis of the temperature.

To facilitate the analyses, we review some useful estimates.

Lemma 2.1 (Rellich-Konrachov). Let Ω be C1, 0 < m, 0 ≤ m̄ and 1 ≤ s, s1, s2. Suppose that either of
the two cases holds: i. m > 0 and 1 ≤ s2 ≤ 2s1/(2 −ms2); or ii. 2 = ms1 and 1 ≤ s2 < +∞. Then the
embedding Wm,s1(Ω) ↪→ Ls2(Ω) is compact. Furthermore, if ms > 2 then we get the compact embedding
Wm+m̄,s(Ω) ↪→ Cm̄(Ω).

Lemma 2.2 (Gagliardo-Nirenberg). Let Ω be a Lipschitz domain, and suppose that m1,m2 ∈ N with m1 <
m2, 1 ≤ s1, s2, s3 and θ ∈ [0, 1] satisfy

1

s1
=
m1

2
+ θ

(
1

s2
− m2

2

)
+

1− θ

s3
,

m1

m2
≤ θ ≤ 1.

Then there exists c > 0 such that

∥Dm1u∥Ls1 ≤ c∥u∥θWm2,s2 ∥u∥1−θLs3

for any u ∈ Ls3(Ω) ∩Wm2,s2(Ω).

To take into account the incompressibility of the fluid we consider the following solenoidal spaces

Wm,s
0,σ := {φ ∈Wm,s

0 (Ω) : divφ = 0 in Ω} and Hσ := {φ ∈ L2(Ω) : divφ = 0 in L2(Ω),u · n = 0 on ∂Ω}.

We also use the notation Vσ := W 1,2
0,σ. The pairs (V,H) and (Vσ,Hσ) are known to satisfy the Gelfand

triple, i.e., the embeddings Vσ ↪→ Hσ ↪→ V∗
σ and V ↪→ H ↪→ V ∗ are dense, continuous and compact. In

fact, the compactness follows from Rellich-Kondrachov embedding and Schauder theorems. The orthogonal
complement of Hσ can be characterized as H⊥

σ = {ψ ∈ L2(Ω) : ψ = ∇q for some q ∈ H1(Ω)}. The
representation L2(Ω) = Hσ ⊕H⊥

σ is called the Helmholtz–Leray decomposition, from which we define the
Leray projection operator P : L2(Ω) → Hσ by Pψ = ψ1, where ψ1 is the unique element of Hσ such
that ψ − ψ1 belongs to H⊥

σ . The Stokes operator Aσ : Vσ ∩H2(Ω) ⊂ Hσ → Hσ is then defined by
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Aσψ = −P∆ψ and can be identified as a linear operator from Vσ to V∗
σ by ⟨Aσψ1,ψ2⟩V = (∇ψ1,∇ψ2)Ω

for any ψ1,ψ2 ∈ Vσ.

Due to the time-dependence of our state equations, we consider also spaces of functions defined on the
interval I mapped to Banach spaces X. We begin with the space of functions from I to X that can be
continuously extended on the closed interval I, which we denote as C(I;X). The space Ls(I;X) consists of
functions ψ : I → X such that t → ∥ψ(t)∥X belongs to Ls(0, T ). We see that the elements of Ls(I;Ls(Ω))
can be identified as elements in Ls(Q). The spaces that we are particularly interested in are the following

W s(X) := {v ∈ L2(I;X) : ∂tv ∈ Ls(I;X∗)}, W 2,1
s := {ψ ∈ Ls(I;W 2,s(Ω) ∩ V ) : ∂tψ ∈ Ls(Q)}

W 2,1
s,σ := {φ ∈ Ls(I;W 2,s(Ω) ∩ Vσ) : ∂tφ ∈ Ls(Q)}.

We see by Aubin-Lions-Simon embedding theorem thatW 2(V ) ↪→ C(I;H) andW 2(Vσ) ↪→ C(I;Hσ). From

Amman embedding theorem [1, Theorem 3], we get the compact embeddingsW 2,1
s ↪→ C(I;W

2−2/s,s
0 (Ω)) and

W 2,1
s,σ ↪→ C(I;W

2−2/s,s
0,σ (Ω)). These embeddings compel us to assume that the initial data satisfy u0 ∈ Hσ

and θ0 ∈ H for the weak solution, while we assume u0 ∈W 2−2/s,s
0,σ (Ω) and θ0 ∈ W

2−2/s,s
0 (Ω) for the strong

solutions. Furthermore, due Rellich-Kondrachov embedding theorem we have the compact embeddings
W 2,1
s ↪→ C(Q) and W 2,1

s,σ ↪→ C(Q)2 if s > 2, and W 2,1
s ↪→ C(I;C1(Ω)) and W 2,1

s,σ ↪→ C(I;C1(Ω)2) if s > 4.

3 Analysis of the governing systems

In this section, we provide existence results for the governing equations, including the linearization of (2)–(4)
and a corresponding adjoint system.

Solutions to the nonlinear system

We begin this section by providing the existence of solutions for the system

∂tu− ν∆u+ (u · ∇)u+∇p = e2θ + F in Q, (10)

divu = 0 in Q, (11)

∂tθ − κ∆θ + u · ∇θ = G in Q, (12)

u = 0, θ = 0 on Σ, (13)

u(0, ·) = u0, θ(0, ·) = θ0 in Ω. (14)

Let us define the notion of a weak solution. We say that (u, θ) : Q → R2 × R is a weak solution of the
system (10)–(14) if the following variational system is satisfied for a.e. t ∈ (0, T )

⟨∂tu(t),φ⟩V∗
σ
+ ν(∇u(t),∇φ) + ((u(t) · ∇)u(t),φ) = (e2θ(t),φ) + ⟨F(t),φ⟩V∗

σ
∀φ ∈ Vσ, (15)

⟨∂tθ(t), ψ⟩V ∗ + κ(∇θ(t),∇ψ) + (u(t) · ∇θ(t), ψ) = ⟨G(t), ψ⟩V ∗ ∀ψ ∈ V, (16)

and that the initial conditions u(0) = u0 and θ(0) = θ0 are satisfied in Hσ and H, respectively.
The following theorem gives us the existence of weak solution in the sense defined above.

Theorem 3.1. Let F ∈ L2(I;V∗
σ), G ∈ L2(I;V ∗), u0 ∈ Hσ and θ0 ∈ H. Then there exists a unique

element (u, θ) ∈W 2(Vσ)×W 2(V ) that solves (15)–(16) and satisfies the estimates

∥u∥L∞(Hσ) + ∥u∥L2(Vσ) + ∥θ∥L∞(H) + ∥θ∥L2(V ) ≤ c(∥F∥L2(V∗
σ)

+ ∥G∥L2(V ) + ∥u0∥Hσ
+ ∥θ0∥H) (17)

∥∂tu∥L2(V∗
σ)

+ ∥∂tθ∥L2(V ∗) ≤ c
(
1 + ∥F∥L2(V∗

σ)
+ ∥G∥L2(V ∗) + ∥u0∥Hσ

+ ∥θ0∥H
)

×
(
∥F∥L2(V∗

σ)
+ ∥G∥L2(V ∗) + ∥u0∥Hσ + ∥θ0∥H

)
.

(18)

for some constant c := c(Ω, T ) > 0.
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Proof. The proof of the theorem above shall utilize a Galerkin method wherein we discretize the system and
show that the solutions of the discretized system converge to a solution to the original system. To do this
one relies on the a priori estimates to get precisely the uniform bounds on the spaces stated in the theorem.
From there, compactness and density arguments will establish the wanted convergence. Since this follows a
series of routine steps, we only show the very crucial part, which is the establishment of a priori estimates.

Indeed, by taking φ = u(t) and ψ = θ(t), and applying Hölder and Young inequalities to (10) and (11)
yields

1

2

d

dt

(
∥u(t)∥2Hσ

+ ∥θ(t)∥2H
)
+
ν

2
∥u(t)∥2Vσ +

κ

2
∥θ(t)∥2V

≤ ce2

2

(
∥u(t)∥2Hσ

+ ∥θ(t)∥2H
)
+

1

ν
∥F(t)∥2V∗

σ
+

1

κ
∥G(t)∥V ∗ ,

(19)

where ce2
:= max

{
1, ∥e2∥2L∞

}
> 0. Ignoring for the meantime the parts with the norms in Vσ and V ,

Gronwall lemma implies that

∥u∥L∞(Hσ) + ∥θ∥L∞(H) ≤ c

(
1√
ν
∥F∥L2(V∗

σ)
+

1√
κ
∥G∥L2(V ∗) + ∥u0∥Hσ

+ ∥θ0∥H
)
, (20)

where c ≈ exp (ce2
T/2) >. Integrating (19) over (0, T ) and using (20) thus give us

ν∥u∥L2(Vσ) + κ∥θ∥L2(V ) ≤ c

(
1√
ν
∥F∥L2(V∗

σ)
+

1√
κ
∥G∥L2(V ∗) + ∥u0∥Hσ

+ ∥θ0∥H
)
, (21)

where c ≈ max{1,
√
ce2
T exp (ce2

T/2)}. We see that on the discretized level, (20) and (21) provide the
uniform boundedness from which we extract the solution.

For the time derivatives, we see that by definition

∥∂tu∥L2(V∗
σ)

≤
(
ν∥u∥L2(Vσ) + ∥u∥2L4 + cP,e2

∥θ∥L2(H) + ∥F∥L2(V∗
σ)

)
,

∥∂tθ∥L2(V ∗) ≤
(
κ∥θ∥L2(V ) + ∥u∥L4∥θ∥L4 + ∥G∥L2(V ∗)

)
,

where cP,e2 := cP ∥e2∥L∞ > 0 and cP > 0 is the Poincaré constant.
For any variable φ ∈ L2(I;V ) ∩ L∞(I;L2(Ω)) we see by virtue of the Ladyzhenskaya inequality that

∥φ∥L4 ≤ cL

(∫ T

0

∥φ(t)∥2L2∥φ(t)∥2V dt

)1/4

≤ cL∥φ∥1/2L∞(L2)∥φ∥
1/2
L2(V ),

where cL > 0 is the Ladyzhenskaya constant. From this, we see that

∥∂tu∥L2(V∗
σ)

+ ∥∂tθ∥L2(V ∗) ≤ c
(
1 + ∥F∥L2(V∗

σ)
+ ∥G∥L2(V ∗) + ∥u0∥Hσ

+ ∥θ0∥H
)

×
(
∥F∥L2(V∗

σ)
+ ∥G∥L2(V ∗) + ∥u0∥Hσ + ∥θ0∥H

)
,

where c > 0 is some constant not dependent on u and θ. From the estimate above Aubin-Lions embedding
gives us strong convergences on the discretized level. Furthermore, the estimate above implies that (u, θ) ∈
W 2(V∗

σ) ×W 2(V ∗) through which the compact embedding W 2(V∗
σ) ×W 2(V ∗) ↪→ C(I;Hσ ×H) validates

the spaces where we take the initial conditions.

Let us now discuss the regularity of the solution, given that we assume better regularity for the data. In
particular, we consider solutions whose external forces and heat source are in some Lp space, for some p ≥ 2.
Although the analysis that follows is based on the work of C. Gerhardt [16], to the best of our knowledge, the
following regularity result is a novelty. The existence of a unique strong solution to (2)–(6) is summarized
in the theorem below.
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Theorem 3.2. Let s ≥ 2, F ∈ Ls(Q), G ∈ Ls(Q), u0 ∈ W 2−1/s,s
0,σ (Ω) and θ0 ∈ W

2−1/s,s
0 (Ω). Then, the

weak solution of (10)–(14) satisfies (u, θ) ∈W 2,1
s,σ ×W 2,1

s . Furthermore, there exists p ∈ Ls(I;W 1,s(Ω)/R)
satisfying – together with (u, θ) – the energy estimate

∥u∥W 2,1
s,σ

+ ∥θ∥W 2,1
s

+ ∥p∥Ls(I;W 1,s(Ω)/R)

≤ c
(
∥F∥Ls + ∥G∥Ls + ∥u0∥W 2−1/s,s

0,σ (Ω)
+ ∥θ0∥W 2−1/s,s

0 (Ω)

)
,

(22)

for some constant c > 0 independent of (u, θ) and p.

Proof. Inspired by the work of C. Gerhardt [16], we prove the regularity in three steps: i. s = 2; ii. 2 < s < 4;
and iii. 4 ≤ s <∞.
Step I. Let us take the L2-inner product of (10) and (12) with φ = Aσu and ψ = −∆θ, respectively. This
gives us

1

2

d

dt

(
∥u(t)∥2Vσ + ∥θ(t)∥2V

)
+

5ν

8
∥Aσu(t)∥2Hσ

+
4κ

6
∥∆θ(t)∥2H

≤ c
(
∥e2∥L∞∥θ(t)∥2H + ∥F(t)∥2L2 + ∥G(t)∥2L2 + ∥(u(t) · ∇)u(t)∥2L2 + ∥u(t) · ∇θ(t)∥2L2

)
.

(23)

From Hölder, Galiardo-Nirenberg and Young inequalities we thus get

c∥(u(t) · ∇)u(t)∥2L2 ≤ c∥u(t)∥2Hσ
∥u(t)∥4Vσ +

ν

8
∥Aσu(t)∥2Hσ

,

c∥u(t) · ∇θ(t)∥2L2 ≤ c∥u(t)∥2Hσ
∥u(t)∥2Vσ∥θ(t)∥

2
V +

κ

6
∥Aθ(t)∥2H .

These give us(
∥u(t)∥2Vσ + ∥θ(t)∥2V

)
+ ν∥Aσu∥2L2(Hσ)

+ κ∥∆θ∥2L2(H)

≤ c
(
∥F∥2L2 + ∥G∥2L2 + ∥u0∥2Vσ + ∥θ0∥2V +

∫ T

0

∥u(t)∥2Hσ
∥u(t)∥2Vσ

(
∥u(t)∥2Vσ + ∥θ(t)∥2V

)
dt
)
.

Since we have ∫ T

0

∥u(t)∥2Hσ
∥u(t)∥2Vσ dt ≤ ∥u∥2L∞(Hσ)

∥u∥2L2(Vσ)
<∞,

we can employ Grönwall inequality which yields

∥u∥2L∞(Vσ)
+ ∥θ∥2L∞(V ) ≤ c

(
∥F∥2L2 + ∥G∥2L2 + ∥u0∥2Vσ + ∥θ0∥2V

)
.

Using the estimate above, we further get

ν∥Aσu∥2L2(Hσ)
+ κ∥∆θ∥2L2(H) ≤ c

(
∥F∥2L2 + ∥G∥2L2 + ∥u0∥2Vσ + ∥θ0∥2V

)
.

One can get the estimate for the time derivative by taking φ = ∂tu and ψ = ∂tθ and following the same
steps. We get

∥u∥W 2,1
2,σ

+ ∥θ∥W 2,1
2

≤ c
(
∥F∥L2 + ∥G∥L2 + ∥u0∥W 2,2−1/2

0,σ (Ω)
+ ∥θ0∥W 2,2−1/2

0 (Ω)

)
. (24)

Step II. In this case, it follows that (u, θ) ∈ W 2,1
2,σ × W 2,1

2 . This implies, by Sobolev embedding, that

(u, θ) ∈ W 2,1
2,σ ×W 2,1

2 ↪→ Lq1(Q) × Lq2(Q) for any 1 ≤ q1, q2 < ∞. With these observations, we establish
our result by showing that (u · ∇)u ∈ Ls(Q) and u · ∇θ ∈ Ls(Q).
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Let s̄ ≥ 1 be such that 1
4 + 1

s̄ ≤ 1
s . By utilizing Hölder and Gagliardo-Nirenberg inequalities we get

∥(u · ∇)u∥Ls ≤ ∥u∥Ls̄∥∇u∥L4 ≤ ∥u∥1/2L2(Vσ)
∥u∥3/2

W 2,1
2,σ

.

Using similar arguments, we can estimate the transport term for the heat as follows:

∥u · ∇θ∥Ls ≤ ∥u∥Ls̄∥∇θ∥L4 ≤ ∥u∥W 2,1
2,σ

∥θ∥1/2L2(V )∥θ∥
1/2

W 2,1
2

.

As every term on the right-hand side of the two inequalities above is bounded, we thus find by [29, Theorem
1.1] and [21, Theorem 4.9.1] the existence of unique strong solutions. From (17) and (24), one also get an
estimate of the form (22).
Step III. Due to the assumption on the powers of the data, we now have (u, θ) ∈ W 2,1

s1,σ ×W 2,1
r1 for any

s1, r1 ∈ (2, 4), and thus we have the compact embedding W 2,1
s1,σ ×W 2,1

r1 ↪→ C(Q)2 × C(Q). In this final
step, we point out that the crucial part in the proof of the previous cases was estimating the nonlinear parts
where we used a bootstrap argument. For now, we only establish (u · ∇)u ∈ Ls(Q) as the other nonlinearity
can be handled similarly. From Hölder and Gagliardo-Nirenberg inequalities , and by choosing s1 = 3 and
letting θ = (5s− 6)/6s we have

∥(u · ∇)u∥Ls ≤ ∥u∥W 2,1
3,σ

∥∇u∥Ls ≤ c∥u∥W 2,1
3,σ

∥u∥θL3(W 2,3)∥u∥
1−θ
L3 .

All terms on the right-hand side of the inequality above are bounded due to Step II.
Again, (17) and (24) implies an estimate of the form (22).

Remark 3.3. For that case s = r = 2, it is enough to assume that u0 ∈ Vσ and θ0 ∈ V .

Solutions to the linearized system

Given u1,u2 ∈W 2(Vσ), θ ∈W 2(V ), (F, G) ∈ V∗ × V we consider the system

∂tv − ν∆v + (u1 · ∇)v + (v · ∇)u2 +∇q = e2ϑ+ F in Q, (25)

divv = 0 in Q, (26)

∂tϑ− κ∆ϑ+ u1 · ∇ϑ+ v · ∇θ = G in Q, (27)

v = 0, ϑ = 0 on Σ, (28)

v(0, ·) = v0, ϑ(0, ·) = ϑ0 in Ω. (29)

To establish the existence of weak solutions we point out that the only crucial part are the terms ((v ·
∇)u2,v) and (v ·∇θ, ϑ) after multiplying v and ϑ to (25) and (27), respectively. To eliminate all the tedium,
we now present how we treat such terms. Using Hölder, Gagliardo-Nirenberg and Young inequalities, we get
for any ε > 0

|((v · ∇)u2,v)| ≤ ∥v∥2L4∥u2∥Vσ ≤ c∥v∥Hσ
∥v∥Vσ∥u2∥Vσ

≤ c(ε)∥u2∥2Vσ∥v∥
2
Hσ

+ ε∥v∥2Vσ .

Here, c(ε) > 0 results from the Young inequality. Similarly, for arbitrary ε1, ε2 > 0 we have

|(v · ∇θ, ϑ)| ≤ ∥v∥L4∥θ∥V ∥ϑ∥L4 ≤ c∥v∥1/2Hσ
∥v∥1/2Vσ

∥θ∥V ∥ϑ∥1/2H ∥ϑ∥1/2V

≤ c(ε1, ε2)∥θ∥2V
(
∥v∥2Hσ

+ ∥ϑ∥2H
)
+ ε1∥v∥2Vσ + ε2∥ϑ∥2V ,

where again c(ε) > 0 results from the Young inequality.
Using the same arguments as in Theorem 3.1, we have the following theorem.
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Theorem 3.4. Let F ∈ L2(I;V∗
σ), H ∈ L2(I;V ∗), v0 ∈ Hσ and ϑ0 ∈ H. Then the unique weak solution

(v, ϑ) ∈W 2(Vσ))×W 2(V )) of (25)–(29) exists and satisfies the estimates

∥v∥L∞(Hσ) + ∥v∥L2(Vσ) + ∥ϑ∥L∞(H) + ∥ϑ∥L2(V ) ≤ c(∥F∥L2(V∗
σ)

+ ∥G∥L2(V ) + ∥v0∥Hσ
+ ∥ϑ0∥H) (30)

∥∂tv∥L2(V∗
σ)

+ ∥∂tϑ∥L2(V ∗) ≤ c
(
1 + ∥F∥L2(V∗

σ)
+ ∥G∥L2(V ∗) + ∥v0∥Hσ + ∥ϑ0∥H

)
×
(
∥F∥L2(V∗

σ)
+ ∥G∥L2(V ∗) + ∥v0∥Hσ

+ ∥ϑ0∥H
)
.

(31)

for some constant c := c(Ω, T, ∥u1∥2Vσ , ∥u2∥2Vσ , ∥θ∥
2
V ) > 0.

For the analysis of strong solutions, we additionally assume u1,u2 ∈W 2,1
s,σ, θ ∈W 2,1

s , (F, G) ∈ Ls(Q)×
Ls(Q) and (v0, ϑ0) ∈W 2−1/s,s

0,σ (Ω)×W
2−1/s,s
0 (Ω). Since the convection and transport terms are linear with

respect to the unknown variable (v, ϑ), the analysis providing the strong solutions is more accessible. We
skip the proof, which follows the same arguments we used for the nonlinear case.

Theorem 3.5. Let s ≥ 2, F ∈ Ls(Q), G ∈ Ls(Q), u1,u2 ∈ W 2,1
s,σ, θ ∈ W 2,1

s , v0 ∈ W
2−1/s,s
0,σ (Ω) and

ϑ0 ∈W
2−1/s,s
0 (Ω). Then, the weak solution of (25)–(29) satisfies (v, ϑ) ∈W 2,1

s,σ ×W 2,1
s . Furthermore, there

exists q ∈ Ls(I;W 1,s(Ω)/R) satisfying the energy estimate

∥v∥W 2,1
s,σ

+ ∥ϑ∥W 2,1
s

+ ∥q∥Ls(I;W 1,s(Ω)/R)

≤ c
(
∥F∥Ls + ∥G∥Ls + ∥v0∥W 2,2−1/p

0,σ (Ω)
+ ∥ϑ0∥W 2−1/s,s

0 (Ω)

)
,

(32)

for some constant c := c(Ω, T, ∥u∥W 2,1
s,σ
, ∥θ∥W 2,1

s
) > 0 independent of (v, ϑ) and q.

Solutions to the adjoint system

The analysis of the optimal control problem will be aided by the so-called adjoint method. For this reason
we consider, given u1,u2 ∈W 2(Vσ), θ ∈W 2(V ), (F, G) ∈ V∗ × V , the following adjoint system

−∂tw − ν∆w − (u1 · ∇)w + (∇u2)
⊤w +Ψ∇θ +∇r = F in Q, (33)

divv = 0 in Q, (34)

−∂tΨ− κ∆Ψ− u1 · ∇Ψ = e2 ·w +G in Q, (35)

w = 0, Ψ = 0 on Σ, (36)

w(T, ·) = wT , Ψ(T, ·) = ΨT in Ω. (37)

The weak solution of the system above can be easily proven to exist using the same flow as we did for
the nonlinear system. The only differences are:
• i. to get the L∞(I;L2(Ω)) estimates, we mention that we get an estimate of the form (23) but have a
negative sign on the part with the time derivative. To handle this, we integrate over the interval (t, T ) for
t ∈ [0, T ).
• ii. the time derivates will satisfy ∂tw ∈ L4/3(I;V∗) and ∂tΨ ∈ L4/3(I;V ∗). The reason is that
we will encounter the terms ((φ · ∇)u2,w) and (φ · ∇θ,Ψ) where φ ∈ Vσ and ψ ∈ V are such that
max{∥φ∥Vσ , ∥ψ∥V } ≤ 1. We note that in this part of the proof, we should have been able to prove that
w ∈ L2(I;Vσ)∩L∞(I;Hσ) and Ψ ∈ L2(I;V )∩L∞(I;H). Thus, to handle such terms, we have the following
computation ∫ T

0

|((φ · ∇)u2,w)|4/3 dt ≤
∫ T

0

∥u2∥4/3V ∥w∥2/3Hσ
∥w∥2/3Vσ

dt

≤ c

∫ T

0

(
∥u2∥2Vσ + ∥w∥2Hσ

∥w∥2Vσ
)
dt

≤ c
(
∥u2∥L2(Vσ) + ∥w∥L∞(Hσ)∥w∥L2(Vσ)

)
.
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The same arguments can be applied to the other term. From these, we prove our claim.
The summary of the existence of a weak solution to the adjoint system is written below.

Theorem 3.6. Let F ∈ L2(I;V∗
σ), H ∈ L2(I;V ∗), wT ∈Hσ and ϑT ∈ H. Then at least one weak solution

(w,Ψ) ∈W 4/3(Vσ)×W 4/3(V ) of (33)–(37) exists and satisfies the estimates

∥w∥L∞(Hσ) + ∥w∥L2(Vσ) + ∥Ψ∥L∞(H) + ∥Ψ∥L2(V ) ≤ c(∥F∥L2(V∗
σ)

+ ∥G∥L2(V ) + ∥wT ∥Hσ
+ ∥ΨT ∥H) (38)

∥∂tw∥L4/3(V∗
σ)

+ ∥∂tΨ∥L4/3(V ∗) ≤ c
(
1 + ∥F∥L2(V∗

σ)
+ ∥G∥L2(V ∗) + ∥wT ∥Hσ + ∥ΨT ∥H

)
×
(
∥F∥L2(V∗

σ)
+ ∥G∥L2(V ∗) + ∥wT ∥Hσ

+ ∥ΨT ∥H
)
.

(39)

for some constant c := c(Ω, T, ∥u∥2Vσ , ∥θ∥
2
V ) > 0.

Even though we find some differences between the weak solutions of the adjoint system and the other
two systems we considered — such as uniqueness and the regularity of the time derivative — additional
regularity on the given variables for the adjoint system will lead to the same nice regularity we previously
got.

Theorem 3.7. Let s ≥ 2, F ∈ Ls(Q), G ∈ Ls(Q), u1,u2 ∈ W 2,1
s,σ, θ ∈ W 2,1

s , wT ∈ W
2−1/s,s
0,σ (Ω) and

ΨT ∈ W
2−1/s,s
0 (Ω). Then, the weak solution of (33)–(37) is unique and satisfies (w,Ψ) ∈ W 2,1

s,σ ×W 2,1
s .

Furthermore, there exists r ∈ Ls(I;W 1,s(Ω)/R) such that the solution (w,Ψ) and r satisfy the energy
estimate

∥w∥W 2,1
s,σ

+ ∥Ψ∥W 2,1
s

+ ∥r∥Ls(I;W 1,s(Ω)/R)

≤ c
(
∥F∥Ls + ∥G∥Lr + ∥wT ∥W 2−1/s,s

0,σ (Ω)
+ ∥ΨT ∥W 2−1/s,s

0 (Ω)

)
,

(40)

for some constant c := c(Ω, T, ∥u∥W 2,1
s,σ
, ∥θ∥W 2,1

s
) > 0 independent of (v, ϑ) and q.

To end the section we give a stability result for the linear and the adjoint systems to facilitate some of
the analyses we shall delve into later.

Lemma 3.8. Let s > 2, F ∈ Ls(Q), G ∈ Ls(Q), (u, θ) ∈W 2,1
s,σ ×W 2,1

s , v0 = 0 and ϑ0 = 0. Then for any
s̄ ∈ [1, 2) there exists c > 0 such that

∥v∥Ls̄ + ∥ϑ∥Ls̄ ≤ c(∥F∥L1 + ∥G∥L1). (41)

Proof. By virtue of Theorem 3.5 and the embedding W 2,1
s,σ × W 2,1

s ↪→ C(Q)2 × C(Q), we get (v, ϑ) ∈
C(Q)2×C(Q). This implies that (|v|s̄−2v, |ϑ|r̄−2ϑ) ∈ Ls̄

′
(Q)×Lr̄′(Q), where s̄′ > 2 is the Hölder conjugates

of s̄.
By letting (w,Ψ) ∈ W 2,1

s̄′,σ ×W 2,1
s̄′ to be the adjoint variable solving (33)–(37) with F = |v|s̄−2v, G =

|ϑ|s̄−2ϑ, wT = 0 and ΨT = 0 we get

∥w∥W 2,1

s̄′,σ
+ ∥Ψ∥W 2,1

s̄′
≤ c(∥v∥s̄−1

Ls̄ + ∥ϑ∥s̄−1
Ls̄ ). (42)
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From the adjoint and linear systems, by using Hölder inequality, and (42) we get

∥v∥s̄Ls̄ + ∥ϑ∥s̄Ls̄ =
∫
Q

|v|s̄−2v · v + |ϑ|s̄−2ϑ · ϑ dx dt

=

∫
Q

(
−∂tw − ν∆w − (u · ∇)w + (∇u)⊤w +Ψ∇θ +∇r

)
· v dxdt

+

∫
Q

(−∂tΨ− κ∆Ψ+ u · ∇Ψ− e2 ·w)ϑ dx dt

=

∫
Q

w · (∂tv − ν∆v + (u · ∇)v + (v · ∇)u+∇q − e2ϑ) dxdt

+

∫
Q

Ψ(∂tϑ− κ∆ϑ+ u · ∇ϑ+ v · ∇θ) dx dt

=

∫
Q

w · F+ΨGdxdt ≤ cmax
{
∥v∥s̄−1

Ls̄ , ∥ϑ∥
s̄−1
Ls̄

}
(∥F∥L1 + ∥G∥L1).

Now, if ∥v∥Ls̄ ≤ ∥ϑ∥Ls̄ we have

∥ϑ∥s̄Ls̄ ≤ ∥ϑ∥s̄−1
Ls̄ c(∥F∥L1 + ∥G∥L1).

On the other hand if ∥ϑ∥Ls̄ ≤ ∥v∥Ls̄ we get

∥v∥s̄Ls̄ ≤ ∥v∥s̄−1
Ls̄ c(∥F∥L1 + ∥G∥L1).

In both cases, we get (41).

4 Analysis of the optimal control problem

Here, we prove the existence of at least one global optimal solution and introduce the optimality conditions.
Before we begin, we recall

U =
{
ϱ := (q,Θ) ∈ L∞(I × ωq)× L∞(I × ωh)

∣∣∣ q ≤• q ≤• q, Θ ≤ Θ ≤ Θ
}
.

As a convention, whenever we use scripts on an element of U , we also assume that such notation is carried
over its arguments, e.g., ϱ⋆ = (q⋆,Θ⋆). For any s, r ∈ [1,+∞] we also use the notation

∥ϱ∥Ls×Lr := ∥q∥Ls((0,T )×ωq) + ∥Θ∥Lr((0,T )×ωh) ∀ϱ ∈ U .

By the definition of U , we see that there exists MU > 0 such that

∥ϱ∥L∞×L∞ ≤MU ∀ϱ ∈ U . (43)

For this reason, we can observe that even though the energy estimates for the solutions of the nonlinear,
linear, and adjoint systems may be dependent on the norms of the controls with more than one power, we
can instead assume linear dependence on the said norms.

Let us reiterate our optimal control problem:

min
ϱ∈U

J(ϱ) subject to (2)− (3). (P)

For the analysis of the optimal control problem in this section, we give the following assumptions.

Assumption 4.1. The following statements hold:
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i. The set Ω is an open connected bounded subset of R2 with boundary ∂Ω of class C3;

ii. the initial data u0 ∈W 2−2/s,s
0,σ (Ω)2 and θ0 ∈W

2−2/s,s
0 (Ω)2 for arbitrary s > 2 are fixed;

iii. the external force f ∈ L∞(Q) and heat source h ∈ L∞(Q) are given.

With the assumptions laid out, we present a continuity of the control-to-state operator, which we shall
introduce later.

Lemma 4.2. Suppose that s > 2 and that Assumption 4.1 hold. Let {ϱn}n ⊂ U be a sequence converging
weakly to ϱ ∈ U in Ls(I ×ωq)×Ls(I ×ωh). Then (un, θn) → (uϱ, θϱ) in C(Q)2×C(Q), where (un, θn) and
(uϱ, θϱ) are the strong solutions of (2)–(6) with ϱn and ϱ as controls, respectively.

Proof. This is a direct consequence of Theorem 3.2 and the compact embedding W 2,1
s,σ ×W 2,1

s ↪→ C(Q)2 ×
C(Q).

The lemma above can be used to establish the existence of an optimal control ϱ ∈ U . Since this follows
a routine procedure we skip the proof, but one can refer to the arguments used in [31, Theorem 2.1].

Theorem 4.3. The optimal control problem (P) has at least one solution.

The optimal control problem is nonlinear and nonconvex; we may have local minima besides at least one
global minimum. We recall the two notions of local minimizers from [4, Definition 1.6] which we adapted to
the problem in this paper.

Definition 4.4. Let ϱ⋆ ∈ U and (u⋆, θ⋆) ∈ W 2,1
s,σ ×W 2,1

s be the strong solution of (2)–(6) with ϱ⋆ as the
control.

• We say that ϱ⋆ ∈ U is a weak local minimizer of (P), if there exists a positive constant α such that

J(ϱ)− J(ϱ⋆) ≥ 0, (44)

for all ϱ ∈ U with ∥q− q⋆∥L1(Q) + ∥Θ−Θ⋆∥L1(Q) < α.

• We say that ϱ⋆ ∈ U is a strong local minimizer of (P), if there exists a positive constant α such that
(44) holds for all ϱ ∈ U with ∥u− u⋆∥L∞(Q) + ∥θ − θ⋆∥L∞(Q) < α, where (u, θ) is the strong solution
of (2)–(6) with ϱ as control.

To facilitate the analysis of the optimality conditions we introduce the map

F : W 2,1
s,σ ×W 2,1

s ×W 2−1/s,s
0,σ (Ω)×W

2−1/s,s
0 (Ω)× Ls(I;Ls(ωq)× Ls(ωh))

→ Lsσ(Q)× Ls(Q)×W 2−1/s,s
0,σ (Ω)×W

2−1/s,s
0 (Ω)

defined as

F(u, θ,u0, θ0,q,Θ) :=


∂tu+ νAσu+ (u · ∇)u− e2θ − f − qχωq

∂tθ + κAθ + u · ∇θ − h−Θχωh
u(0)− u0

θ(0)− θ0

 . (45)

We define the data-to-state operator

S̃ : W
2−1/s,s
0,σ (Ω)×W

2−1/s,s
0 (Ω)×W 2−1/s,s

0,σ (Ω)×W
2−1/s,s
0 (Ω)× Ls(I;Ls(ωq)× Ls(ωh))

→W 2,1
s,σ ×W 2,1

s
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as

S̃(f , h,u0, θ0,q,Θ) = (S1(f , h,u0, θ0,q,Θ), S2(f , h,u0, θ0,q,Θ)) = (u, θ) (46)

if and only if F(u, θ,u0, θ0,q,Θ) = 0. The well-definedness of the maps introduced is backed up by The-
orem 3.2. As we assumed the initial data and the distributed external force and heat source to be fixed,
we also introduce the control-to-state operator S : Ls(I;Ls(ωq) × Ls(ωh)) → W 2,1

s,σ × W 2,1
s defined as

S(q,Θ) = S̃(f , h,u0, θ0,q,Θ).

Proposition 4.5. The control-to-state operator is of class C∞. The first-order Fréchet derivative at ϱ ∈
Ls(I;Ls(ωq)× Ls(ωh)) in direction δϱ ∈ Ls(I;Ls(ωq)× Ls(ωh)), denoted by

S ′(ϱ)(δϱ) =: (v, ϑ) ,

is given as the solution to the linearized Boussinesq system (25)–(29) with u1 = u2 = S1(ϱ) and θ = S2(ϱ),
F = δqχωq , G = δΘχωh , v0 = 0 and ϑ0 = 0. The second-order Fréchet derivative at ϱ ∈ Ls(I;Ls(ωq) ×
Ls(ωh)) in direction (δϱ1, δϱ2) ∈ Ls(I;Ls(ωq)× Ls(ωh))

2, denoted by

S ′′(ϱ)[δϱ1, δϱ2] :=
(
ṽ, ϑ̃

)
, (47)

is the solution to the linearized Boussinesq system (25)–(29) with u1 = u2 = S1(ϱ) and θ = S2(ϱ), F = −[(v1·
∇)v2 + (v2 · ∇)v1], G = − [v1 · ∇ϑ2 + v2 · ∇ϑ1], v(0, ·) = 0 and ϑ(0, ·) = 0, where (v1, ϑ1) = S ′(ϱ)(δϱ1)
and (v2, ϑ2) = S ′(ϱ)(δϱ2).

Proof. The differentiability follows from the fact the F is at most quadratic and from the Implicit Function
Theorem, see, e.g., [27]. We move on to deriving the system that the derivatives solve.

We introduce the operator L : W 2,1
s,σ × W 2,1

s → L(W 2,1
s,σ × W 2,1

s ,Ls(Q) × Ls(Q) × W
2−1/s,s
0,σ (Ω) ×

W
2−1/s,s
0 (Ω)) as

L(u, θ)(v, ϑ) =


∂tv + νAσv + (u · ∇)v + (v · ∇)u− e2ϑ

∂tϑ+ κAϑ+ u · ∇ϑ+ v · ∇θ
v(0)

ϑ(0)

 . (48)

We note that by (3.5) L(u, θ) ∈ L(W 2,1
s,σ × W 2,1

s ,Ls(Q) × Ls(Q) × W
2−1/s,s
0,σ (Ω) × W

2−1/s,s
0 (Ω)) is an

isomorphism. We use the chain rule over F(S(ϱ),ϱ) = 0, where we omitted the initial data for the meantime.
Hence, we have L(S(ϱ))S ′(ϱ)δϱ+ ∂F

∂ϱ δϱ = 0. Since ∂F
∂ϱ δϱ = −(δqχωq , δΘχωh , 0, 0)

⊤, we get that S ′(ϱ)δϱ =

L(S(ϱ))−1
(
δqχωq , δΘχωh , 0, 0

)⊤
is the unique solution of (25)–(29) with F = δqχωq , G = δΘχωh , v0 = 0

and ϑ(0) = 0.
Using the chain rule again, we get L′(S(ϱ))[S ′(ϱ)δϱ1,S ′(ϱ)δϱ2] + L(S(ϱ))(S ′′(ϱ)[δϱ1, δϱ2]) = 0. Note

that for any (v1, θ1), (v2, θ2) ∈W 2,1
s,σ ×W 2,1

r , we have

L′(u, θ)[(v1, θ1), (v2, θ2)] = ((v2 · ∇)v2 + (v2 · ∇)v1,v2 · ∇ϑ1 + v1 · ∇ϑ2, 0, 0)⊤.

This implies that S ′′(ϱ)[δϱ1, δϱ2] = −L′(S(ϱ))−1 (L′(S(ϱ))[S ′(ϱ)δϱ1,S ′(ϱ)δϱ2]) solves (25)–(29) with F, G,
v0 and ϑ(0) as mentioned in the proposition.

Let us define the operator D : Ls(Q) × Ls(Q) → Ls(Q) × Ls(Q) ×W
2−1/s,s
0,σ (Ω) × W

2−1/s,s
0 (Ω) by

D(ϱ) = (qχωq ,Θχωh , 0, 0), its dual can then be defined as D∗(q,Θ,φ, ψ) = (qχωq ,Θχωh) for any (φ, ψ) ∈
W

2−1/s,s
0,σ (Ω) ×W

2−1/s,s
0 (Ω). From these operators, we see that S ′(ϱ) = L(S(ϱ))−1D. We thus define the

operator S ′(ϱ)∗ = D∗(L(S(ϱ))−1
)∗

as the adjoint of S ′(ϱ). Now, define gT :W 2,1
s,σ×W 2,1

s →W
2−1/s,s
0,σ (Ω)∗×

W
2−1/s,s
0 (Ω)∗ by

⟨gT (φ, ψ), (v, ϑ)⟩ = (φ,v(T )) + (ψ, ϑ(T )).

13



From this we see that the adjoint variable (w,Ψ) = S ′(ϱ)∗(δϱ + gT (wT ,ΨT )) solves (33)–(37) with u1 =
u2 = S1(ϱ) and θ = S2(ϱ), F = δq, G = δΘ, w(T ) = wT and Ψ(T ) = ΨT . Indeed, for any ϱ

⋆ ∈ U we have

⟨ϱ⋆, (w,Ψ)⟩ = ⟨S ′(ϱ)ϱ⋆, δϱ+ gT (wT ,ΨT )⟩ = ⟨(v, ϑ), δϱ⟩+ (v(T ),wT ) + (ϑ(T ),ΨT ), (49)

where (v, ϑ) = S ′(ϱ)ϱ⋆ and the left-most term should be understood as ⟨ϱ⋆, (w,Ψ)⟩ = (q⋆χωq ,w) +
(Θ⋆χωh ,Ψ). On the other hand, since (v, ϑ) solves (25)–(29) with u1 = u2 = S1(ϱ) and θ = S2(ϱ),
F = q⋆χq, G = Θ⋆χh, v0 = 0 and ϑ0 = 0, we get

⟨ϱ⋆, (w,Ψ)⟩ =
∫
Q

(∂tv − ν∆v + (u · ∇)v + (v · ∇)u+∇q − e2ϑ) ·w dx dt

+

∫
Q

(∂tϑ− κ∆ϑ+ u · ∇ϑ+ v · ∇θ)Ψdxdt

=

∫
Q

v ·
(
−∂tw − ν∆w − (u · ∇)w + (∇u)⊤w +Ψ∇θ +∇r

)
dxdt∫

Q

ϑ (−∂tΨ− κ∆Ψ+ u · ∇Ψ− e2 ·w) dx dt+ (v(T ),w(T )) + (ϑ(T ),Ψ(T )).

The arbitrary nature of ϱ⋆ supports our claim. From this, we finally define the control-to-adjoint operator
as

D(ϱ) = S ′(ϱ)∗((α1(S1(ϱ)− ud), α2(S2(ϱ)− θd)) + gT (β1(S1(ϱ)(T )− uT ), β2(S2(ϱ)− θT ))),

where S1 and S2 are the components of the control-to-state operator as defined in (46). For convenience, we
define the map

G(u, θ,w,Ψ) :=


−∂tw − ν∆w − (u · ∇)w + (∇u)⊤w +Ψ∇θ +∇r − α1(u− ud)

−∂tΨ− κ∆Ψ− u · ∇Ψ− e2 ·w − α2(θ − θd)

w(T )− β1(u(T )− uT )

Ψ(T )− β2(θ(T )− θT )

 . (50)

Theorem 4.6. The objective functional is of class C∞. Furthermore, the first and second variations can be
calculated as stated below:

J ′(ϱ)(δϱ) = α1

∫
Q

(u− ud) · v dxdt+ α2

∫
Q

(θ − θd)ϑdxdt

+ β1

∫
Ω

(u(T )− uT ) · v(T ) dx+ β2

∫
Ω

(θ(T )− θT )ϑ(T ) dx

=

∫ T

0

∫
ωq

w · δq dxdt+

∫ T

0

∫
ωh

Ψ · δΘdxdt

(51)

J ′′(ϱ)(δϱ, δϱ) = α1∥v∥2L2 + α2∥ϑ∥2L2 + β1∥v(T )∥2L2 + β2∥ϑ(T )∥2L2

+ α1

∫
Q

(u− ud) · ṽ dx dt+ α2

∫
Q

(θ − θd)ϑ̃ dx dt

+ β1

∫
Ω

(u(T )− uT ) · ṽ(T ) dx+ β2

∫
Ω

(θ(T )− θT )ϑ̃(T ) dx

= α1∥v∥2L2 + α2∥ϑ∥2L2 + β1∥v(T )∥2L2 + β2∥ϑ(T )∥2L2

− 2((v · ∇)v,w)Q − 2(v · ∇ϑ,Ψ)Q.

(52)

where (u, θ) := S(ϱ), (v, ϑ) := S ′(ϱ)(δϱ), (w,Ψ) := D(ϱ) and (ṽ, ϑ̃) = S ′′(ϱ)[δϱ, δϱ].
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Proof. We use the chain rule to prove the theorem. For the first-order derivative, we have

J ′(ϱ)δϱ = α1 (S1(ϱ)− ud, S
′
1(ϱ)δϱ)Q + α2 (S2(ϱ)− θd, S

′
2(ϱ)δϱ)Q

+ β1(S1(ϱ)(T )− uT , S
′
1(ϱ)δϱ(T ))Ω + β2 (S2(ϱ)(T )− θT , S

′
2(ϱ)δϱ(T ))Ω

= ⟨(α1(S1(ϱ)− ud), α2(S2(ϱ)− θd)),S ′(ϱ)δϱ⟩
+ ⟨gT (β1(S1(ϱ)(T )− uT ), β2(S2(ϱ)(T )− θT )),S ′(ϱ)δϱ⟩

= ⟨(w,Ψ), δϱ⟩ = (w, δq)ωq + (Ψ, δΘ)ωf .

Using the chain rule once again, we get

J ′′(ϱ)[δϱ, δϱ] = α1∥S′
1(ϱ)δϱ∥2L2 + α2∥S′

2(ϱ)δϱ∥2L2 + β1∥S′
1(ϱ)δϱ(T )∥2L2 + β2∥S′

2(ϱ)δϱ(T )∥2L2

+ α1 (S1(ϱ)− ud, S
′′
1 (ϱ)[δϱ, δϱ])Q + α2 (S2(ϱ)− θd, S

′′
2 (ϱ)[δϱ, δϱ])Q

+ β1(S1(ϱ)(T )− uT , S
′′
1 (ϱ)[δϱ, δϱ](T ))Ω + β2 (S2(ϱ)(T )− θT , S

′′
2 (ϱ)[δϱ, δϱ](T ))Ω

Denoting for simplicity for now (w,Ψ) = D(ϱ), (u, θ) = S(ϱ) and (v, ϑ) = S ′′(ϱ)[δϱ, δϱ] we further get

J ′′(ϱ)[δϱ, δϱ] = α1∥S′
1(ϱ)δϱ∥2L2 + α2∥S′

2(ϱ)δϱ∥2L2 + β1∥S′
1(ϱ)δϱ(T )∥2L2 + β2∥S′

2(ϱ)δϱ(T )∥2L2

+
(
−∂tw − ν∆w − (u · ∇)w + (∇u)⊤w +Ψ∇θ +∇r,v

)
Q

+ α2 (−∂tΨ− κ∆Ψ+ u · ∇Ψ− e2 ·w, ϑ)Q + (w(T ),v(T ))Ω + (Ψ(T ), ϑ(T ))Ω

= α1∥S′
1(ϱ)δϱ∥2L2 + α2∥S′

2(ϱ)δϱ∥2L2 + β1∥S′
1(ϱ)δϱ(T )∥2L2 + β2∥S′

2(ϱ)δϱ(T )∥2L2

+ (w, ∂tv − ν∆v + (u · ∇)v + (v · ∇)u+∇q − e2ϑ)Q

+ α2 (Ψ, ∂tϑ− κ∆ϑ+ u · ∇ϑ+ v · ∇θ)Q
= α1∥S′

1(ϱ)δϱ∥2L2 + α2∥S′
2(ϱ)δϱ∥2L2 + β1∥S′

1(ϱ)δϱ(T )∥2L2 + β2∥S′
2(ϱ)δϱ(T )∥2L2

− 2((v · ∇)v,w)Q − 2(v · ∇ϑ,Ψ)Q.

We can now give the first-order necessary condition whose proof is straightforward.

Theorem 4.7. Let ϱ⋆ ∈ U be a local minimizer of problem (1)-(6) and (w⋆,Ψ⋆) = D(ϱ⋆). Then for all
ϱ ∈ U it holds ∫ T

0

[∫
ωq

w⋆ · (q− q⋆) dx+

∫
ωh

Ψ⋆(Θ−Θ⋆) dx

]
dt ≥ 0. (53)

Further, testing with controls of the form ϱ = (q,Θ⋆) and ϱ = (q⋆,Θ) we find that it holds for all ϱ ∈ U∫ T

0

∫
ωq

w⋆ · (q− q⋆) dxdt ≥ 0, and

∫ T

0

∫
ωh

Ψ⋆(Θ−Θ⋆) dxdt ≥ 0. (54)

Even stronger, we have for i ∈ {1, 2}

w⋆ · (q− q⋆) ≥ 0 a.e. on [0, T ]× ωq, and Ψ⋆(Θ−Θ⋆) ≥ 0 a.e. on [0, T ]× ωh. (55)

To help us analyze the second-order sufficient conditions, we present the following lemmata.

Lemma 4.8. Let ϱ,ϱ⋆ ∈ Ls(I;Ls(ωq) × Ls(ωh)), (u, θ) = S(ϱ), (u⋆, θ⋆) = S(ϱ∗) ∈ W 2,1
s,σ ×W 2,1

s . Then
there exists a constant c > 0 such that

∥u− u⋆∥W 2,1
s,σ

+ ∥θ − θ⋆∥W 2,1
s

≤ c(∥q− q⋆∥Ls(ωq) + ∥Θ−Θ⋆∥Ls(ωh)) (56)
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Proof. Knowing that v = u−u⋆ ∈W 2,1
s,σ and ϑ = θ− θ⋆ ∈W 2,1

s solves a linear system of the form (25)–(29)
with u1 = u⋆, u2 = u, F = (ϱ− ϱ⋆)χωq , G = (Θ−Θ⋆)χωh , v0 = 0, ϑ0 = 0. Utilizing Theorem 3.5 gives us
the desired estimate.

Lemma 4.9. Let ϱ,ϱ⋆ ∈ Ls(I;Ls(ωq) × Ls(ωh)), (u, θ) = S(ϱ), (u⋆, θ⋆) = S(ϱ∗) ∈ W 2,1
s,σ × W 2,1

s and

(v⋆, ϑ⋆) = S ′(ϱ⋆)(ϱ− ϱ⋆) ∈W 2,1
s,σ ×W 2,1

s . Then there exists c > 0 such that

∥u−u⋆ − v⋆∥L∞(L2) + ∥θ − θ⋆ − ϑ⋆∥L∞(L2) ≤ c∥u− u⋆∥L∞

(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)
(57)

∥∇(u−u⋆ − v⋆)∥L2 + ∥∇(θ − θ⋆ − ϑ⋆)∥L2 ≤ c∥u− u⋆∥L∞

(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)
. (58)

Proof. Note that the variables v = u − u⋆ − v⋆ ∈ W 2,1
s,σ and ϑ = θ − θ⋆ − ϑ⋆ ∈ W 2,1

s solve a system
of the form (25)–(29) with u1 = u2 = u∗, θ = θ⋆, v0 = 0, ϑ0 = 0, F = −((u − u⋆) · ∇)(u − u⋆) and
G = −(u− u⋆) · ∇(θ − θ⋆). Estimate (30) thus gives us

∥v∥L∞(L2) + ∥∇v∥L2(L2) + ∥ϑ∥L∞(L2) + ∥∇ϑ∥L2(L2)

≤ c(∥((u− u⋆) · ∇)(u− u⋆)∥L2(V∗
σ)

+ ∥(u− u⋆) · ∇(θ − θ⋆)∥L2(V ∗))

≤ sup
(φ,ψ)∈L2(V)×L2(V )

∥φ∥
L2(V)

=∥ψ∥
L2(V )

=1

c
(∣∣∣(((u− u⋆) · ∇)φ,u− u⋆

)∣∣∣+ ∣∣∣((u− u⋆) · ∇ψ, θ − θ⋆
)∣∣∣)

≤ c∥u− u⋆∥L∞

(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)
.

Lemma 4.10. Let ϱ,ϱ⋆ ∈ Ls(I;Ls(ωq) × Ls(ωh)), (u, θ) = S(ϱ), (u⋆, θ⋆) = S(ϱ∗) ∈ W 2,1
s,σ ×W 2,1

s and

(v⋆, ϑ⋆) = S ′(ϱ⋆)(ϱ− ϱ⋆) ∈W 2,1
s,σ ×W 2,1

s . Then there exists c > 0 such that

∥∇v⋆∥L2 + ∥∇ϑ⋆∥L2 ≤ c∥ϱ− ϱ⋆∥1/2
L2×L2

(
∥u− u⋆∥1/2

L2 + ∥θ − θ⋆∥1/2L2

)
(59)

Proof. Recall that (v⋆, ϑ⋆) = S ′(ϱ⋆)(ϱ − ϱ⋆) ∈W 2,1
s,σ ×W 2,1

s solves the linearized Boussinesq system (25)–
(29) with u1 = u2 = u, F = (q − q⋆)χωq , G = (Θ − Θ⋆)χωh , v0 = 0 and ϑ0 = 0. Taking the L2 inner
product of such system with (v⋆, ϑ⋆) results to

1

2

d

dt

(
∥v⋆∥2L2 + ∥ϑ⋆∥2L2

)
+ ν∥∇v⋆∥2L2 + κ∥∇ϑ⋆∥2L2

≤ c
(
∥e2∥L∞∥ϑ⋆∥L2∥v⋆∥L2 + ∥u∥L∞∥v⋆∥L2∥∇v⋆∥L2 + ∥θ∥L∞∥v⋆∥L2∥∇ϑ⋆∥L2

+
∣∣((q− q⋆)χωq ,u− u⋆ − v⋆)

∣∣+ ∣∣((q− q⋆)χωq ,u− u⋆)
∣∣

+
∣∣((Θ−Θ⋆)χωh , θ − θ⋆ − ϑ⋆)

∣∣+ ∣∣((Θ−Θ⋆)χωh , θ − θ⋆)
∣∣)

≤ c
(
∥e2∥2L∞ , ∥u∥2L∞ , ∥θ∥2L∞

) (
∥v⋆∥2L2 + ∥ϑ⋆∥2L2

)
+
ν

2
∥∇v⋆∥2L2 +

κ

2
∥∇ϑ⋆∥2L2

+ ∥q− q⋆∥L2(ωq)∥u− u⋆ − v⋆∥L2 + ∥q− q⋆∥L2(ωq)∥u− u⋆∥L2

+ ∥Θ−Θ⋆∥L2(ωh)∥θ − θ⋆ − ϑ⋆∥L2 + ∥Θ−Θ⋆∥L2(ωh)∥θ − θ⋆∥L2 .

Moving the terms with the gradient on the last line of the computation above the left-hand side, and using
(57), we get

1

2

(
∥v⋆∥2L2 + ∥ϑ⋆∥2L2

)
+
ν

2
∥∇v⋆∥2L2 +

κ

2
∥∇ϑ⋆∥2L2

≤
∫ T

0

c
(
∥e2∥2L∞ , ∥u∥2L∞ , ∥θ∥2L∞

) (
∥v⋆∥2L2 + ∥ϑ⋆∥2L2

)
dt

+

∫ T

0

∥ϱ− ϱ⋆∥L2×L2 (∥u− u⋆∥L∞ + 1)
(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)
dt.

(60)
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The Grönwal lemma thus leads to

∥v⋆∥2L∞(L2) + ∥ϑ⋆∥2L∞(L2) ≤ ∥ϱ− ϱ⋆∥L2×L2

(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)
,

where we used the fact that ∥u−u⋆∥L∞ ≤ cM
1/s
U where s > 2. Plugging the estimate above into (60) yields

our desired estimate.

Lemma 4.11. Let ϱ,ϱ⋆ ∈ Ls(I;Ls(ωq) × Ls(ωh)), (u, θ) = S(ϱ), (u⋆, θ⋆) = S(ϱ∗) ∈ W 2,1
s,σ ×W 2,1

s and

(v⋆, ϑ⋆) = S ′(ϱ⋆)(ϱ − ϱ⋆) ∈ W 2,1
s,σ ×W 2,1

s . There exists δ > 0 such that whenever ∥ϱ − ϱ⋆∥L1×L1 < δ we
have

∥u− u⋆∥L2 + ∥θ − θ⋆∥L2 ≤ 2 (∥v⋆∥L2 + ∥ϑ⋆∥L2) ≤ 3
(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)
. (61)

Proof. From (57) we see that

∥u− u⋆∥L2+∥θ − θϱ⋆∥L2 ≤ ∥u− u⋆ − v⋆∥L2 + ∥v⋆∥L2 + ∥θ − θ⋆ − ϑ⋆∥L2 + ∥ϑ⋆∥L2

≤ c1∥u− u⋆∥L∞

(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)
+ ∥v⋆∥L2 + ∥ϑ⋆∥L2 .

Meanwhile, (56) and the embedding W 2,1
s,σ ↪→ C(Q)2 imply that

∥u− u⋆∥L∞ ≤ c(∥q− q⋆∥Ls(ωq) + ∥Θ−Θ⋆∥Ls(ωh)) ≤ c2M
(s−1)/s
U ∥ϱ− ϱ⋆∥1/s

L1×L1 .

By choosing δ > 0 such that δ ≤ 1/(2c1c2)
sMs−1

U , we get that if ∥ϱ− ϱ⋆∥L1×L1 < δ then

1

2
(∥u− u⋆∥L2 + ∥θ − θ⋆∥L2) ≤ ∥v⋆∥L2 + ∥ϑ⋆∥L2 .

On the other hand, using similar arguments and similar choice of δ > 0 yield

∥v⋆∥L2 + ∥ϑ⋆∥L2 ≤ ∥u− u⋆ − v⋆∥L2 + ∥θ − θ⋆ − ϑ⋆∥L2 + ∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

≤ c1c2M
(s−1)/s
U ∥ϱ− ϱ⋆∥1/s

L1×L1

(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)
+ ∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

≤ 3

2

(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)
.

Lemma 4.12. Let ϱ,ϱ⋆, δϱ ∈ Ls(I;Ls(ωq)× Ls(ωh)), (u, θ) = S(ϱ), (u⋆, θ⋆) = S(ϱ∗) ∈W 2,1
s,σ ×W 2,1

s and

(v, ϑ) = S ′(ϱ)δϱ, (v⋆, ϑ⋆) = S ′(ϱ⋆)δϱ ∈W 2,1
s,σ ×W 2,1

s . Then there exists c > 0 such that

∥v − v⋆∥L∞(L2) + ∥ϑ− ϑ⋆∥L∞(L2) + ∥v − v⋆∥W 2(Vσ) + ∥ϑ− ϑ⋆∥W 2(V )

≤ c
(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v⋆∥L2 + ∥ϑ⋆∥L2

)
.

(62)

As a consequence, one can find a δ > 0 such that whenever ∥ϱ− ϱ⋆∥L1×L1 < δ we have

∥v⋆∥L2 + ∥ϑ⋆∥L2 ≤ 2
(
∥v∥L2 + ∥ϑ∥L2

)
≤ 3
(
∥v⋆∥L2 + ∥ϑ⋆∥L2

)
. (63)

Proof. The elements v = v− v⋆ ∈W 2,1
s,σ and ϑ = ϑ− ϑ⋆ ∈W 2,1

s solves a system of the form (25)–(29) with
u1 = u2 = u, F = ((u⋆ − u) · ∇)v⋆ + (v⋆ · ∇)(u⋆ − u), and G = (u⋆ − u) · ∇ϑ⋆ + v⋆ · ∇(θ⋆ − θ), with
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initial data both equal to zero. Using the same arguments as in the proof of Lemma 4.9 with the help of
Theorem 3.4 we get the following computation

∥v∥L∞(L2) + ∥v∥W 2(Vσ) + ∥ϑ∥L∞(L2) + ∥ϑ∥W 2(V )

≤ c
(
∥((u⋆ − u) · ∇)v⋆∥L2(V∗

σ)
+ ∥(v⋆ · ∇)(u⋆ − u)∥L2(V∗

σ)

+ ∥(u− u) · ∇ϑ⋆∥L2(V ∗) + ∥v⋆ · ∇(θ⋆ − θ)∥L2(V ∗)

)
≤ c
(
∥u⋆ − u∥L∞ (2∥v⋆∥L2 + ∥ϑ⋆∥L2) + ∥θ⋆ − θ∥L∞∥v⋆∥L2

)
≤ c
(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v⋆∥L2 + ∥ϑ⋆∥L2

)
.

(64)

From (64) we thus infer that

∥v⋆∥L2 + ∥ϑ⋆∥L2 ≤ ∥v − v⋆∥L2 + ∥ϑ− ϑ⋆∥L2 + ∥v∥L2 + ∥ϑ∥L2

≤ c
(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v⋆∥L2 + ∥ϑ⋆∥L2

)
+ ∥v∥L2 + ∥ϑ∥L2 .

Using same argument as we did in Lemma 4.9, we can find an δ > 0 such that if ∥ϱ − ϱ⋆∥L1×L1 < δ then

c
(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)
≤ 1

2 . It holds

∥v⋆∥L2 + ∥ϑ⋆∥L2 ≤ 2
(
∥v∥L2 + ∥ϑ∥L2

)
.

Similar steps can be done to get the other inequality in (63).

Remark 4.13. We mention that Lemma 4.11 and the second part of Lemma 4.12 can be established with a
weaker assumption, i.e. there exists δ > 0 such that whenever ∥u − u⋆∥L∞ + ∥θ − θ⋆∥L∞ < δ we get (104)
and (63).

Lemma 4.14. Let s > 2, ϱ,ϱ⋆ ∈ U , (u, θ) = S(ϱ), (u⋆, θ⋆) = S(ϱ∗) ∈ W 2,1
s,σ × W 2,1

s and (w,Ψ) =

D(ϱ), (w⋆,Ψ⋆) = D(ϱ⋆) ∈W 2,1
s,σ ×W 2,1

s . There exists c > 0 such that

∥∇(w −w⋆)∥L∞(L2) + ∥∇(Ψ−Ψ⋆)∥L∞(L2)

≤ c
(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2 + β1∥u− u⋆∥W 2,1

2,σ
+ β2∥θ − θ⋆∥W 2,1

2

)
.

(65)

Proof. Following the same arguments as in the proof of Theorem 3.2 we can get

∥∇(w −w⋆)∥L∞(L2) + ∥∇(Ψ−Ψ⋆)∥L∞(L2) ≤ c (∥F∥L2 + ∥G∥L2 + ∥wT ∥Vσ + ∥ΨT ∥V ) ,

where

F = ((u− u⋆) · ∇)w + (∇(u⋆ − u))⊤w +Ψ∇(θ⋆ − θ) + α1(u− u⋆),

G = (u⋆ − u) · ∇Ψ+ α2(θ − θ⋆),

wT = β1(u(T )− u⋆(T )), and ΨT = β2(θ(T )− θ⋆(T )).

Before we move forward in estimating F and G, we take note that from Theorem 3.7, for any s > 4 we
have

∥w∥W 2,1
s,σ

+ ∥Ψ∥W 2,1
s

≤ c
(
α1∥u− ud∥Ls + α2∥θ − θd∥Ls + β1∥u(T )− uT ∥W 2−1/s,s

0,σ
+ β2∥θ(T )− θT ∥W 2−1/s,s

0

)
≤ c
(
∥u∥W 2,1

s,σ
+ ∥θ∥W 2,1

s
+ ∥ud∥Ls + ∥θd∥Ls + ∥uT ∥W 2−1/s,s

0,σ
+ ∥θT ∥W 2−1/s,s

0

)
≤ c
(
∥ϱ∥Ls×Ls + ∥u0∥W 2−1/s,s

0,σ
+ ∥θ0∥W 2−1/s,s

0
+ ∥ud∥Ls + ∥θd∥Ls + ∥uT ∥W 2−1/s,s

0,σ
+ ∥θT ∥W 2−1/s,s

0

)
≤ c
(
M

1/s
U + ∥u0∥W 2−1/s,s

0,σ
+ ∥θ0∥W 2−1/s,s

0
+ ∥ud∥Ls + ∥θd∥Ls + ∥uT ∥W 2−1/s,s

0,σ
+ ∥θT ∥W 2−1/s,s

0

)
(66)
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Since all of the terms in the last line are fixed, we can denote the last line of the inequality as MA, and as a
consequence of the embedding W 2,1

s,σ ×W 2,1
s ↪→ C(I;C1(Ω)2)× C(I;C1(Ω)) we get

∥∇w∥L∞ + ∥∇Ψ∥L∞ ≤MA. (67)

The boundedness above helps us in estimating F and G. In fact, we have for any φ ∈ L2(Q) with
∥φ∥L2 ≤ 1

∥F∥L2 ≤ (∥∇w∥L∞ + α1)∥u− u⋆∥L2 + |((φ · ∇)(u− u⋆),wϱ)|+ |(φ · ∇(θ⋆ − θ),Ψ)|
≤ (MA + α1)∥u− u⋆∥L2 +MA∥φ∥L2(∥u− u⋆∥L2 + ∥θ − θ⋆∥L2)

≤ (2MA + α1)∥u− u⋆∥L2 +MA∥θ − θ⋆∥L2 .

Similarly, using Hölder inequality

∥G∥L2 ≤MA∥u− u⋆∥L2 + α1∥θ − θ⋆∥L2 .

Finally, from the embedding W 2,1
2,σ ×W 2,1

2 ↪→ C(I;Vσ × V ) we get the estimates needed for wT and
ΨT .

Lemma 4.15. Let ϱ⋆ ∈ U . There exists µ ∈ [1, 2) such that for every ε > 0 one finds a δ > 0 such that

|[J ′′(ϱ)− J ′′(ϱ⋆)](ϱ− ϱ⋆)2| ≤ ε
(
∥ϱ− ϱ⋆∥1+µ

L1×L1 + β1∥v⋆(T )∥2L2 + β2∥ϑ⋆(T )∥2L2

)
, (68)

for all ϱ ∈ U with ∥ϱ− ϱ⋆∥L1×L1 < δ, where (v⋆, ϑ⋆) = S ′(ϱ⋆)(ϱ− ϱ⋆).

Proof. Let (v, ϑ) = S ′(ϱ)(ϱ − ϱ⋆), (u⋆, θ⋆) = S(ϱ⋆), (u, θ) = S(ϱ), (w,Ψ) = D(ϱ) and (w⋆,Ψ⋆) = D(ϱ⋆).
Then [

J ′′(ϱ)− J ′′(ϱ⋆)
]
(ϱ− ϱ⋆)2 = α1

(
∥v∥2L2 − ∥v⋆∥2L2

)
+ α2

(
∥ϑ∥2L2 − ∥ϑ⋆∥2L2

)
+ β1

(
∥v(T )∥2L2 − ∥v⋆(T )∥2L2

)
+ β2

(
∥ϑ(T )∥2L2 − ∥ϑ⋆(T )∥2L2

)
+ 2
[
− ((v · ∇)v,w)Q − (v · ∇ϑ,Ψ)Q + ((v⋆ · ∇)v⋆,w⋆)Q + (v⋆ · ∇ϑ⋆,Ψ⋆)Q

]
= I1 + I2 + I3 + I4 + I5.

We estimate the terms I1 and I2 by virtue of Hölder inequality and (63)

|I1| ≤ α1∥v + v⋆∥L2∥v − v⋆∥L2 ≤ α1(∥v∥L2 + ∥v⋆∥L2)∥v − v⋆∥L2

≤ 2α1c(∥v∥2L2 + ∥ϑ∥2L2)∥u⋆ − u∥L∞ .

|I2| ≤ α2∥ϑ+ ϑ⋆∥L2∥ϑ− ϑ⋆∥L2 ≤ α2(∥ϑ∥L2 + ∥ϑ⋆∥L2)∥ϑ− ϑ⋆∥L2

≤ 2α2c(∥v∥2L2 + ∥ϑ∥2L2)∥θ⋆ − θ∥L∞ .

Taking the sum of these two estimates, using (56) and (41) would then give us for any s̃ ∈ (3/2, 2)

|I1|+ |I2| ≤ c
(
∥v∥2L2 + ∥ϑ∥2L2

)(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)
≤ c
(
∥v∥s̃Ls̃∥v∥

2−s̃
L∞ + ∥ϑ∥s̃Ls̃∥ϑ∥

2−s̃
L∞

)
∥ϱ⋆ − ϱ∥Ls̃′×Ls̃′

≤ c∥ϱ⋆ − ϱ∥s̃L1×L1∥ϱ⋆ − ϱ∥2−s̃
Ls̃

′×Ls̃′∥ϱ
⋆ − ϱ∥Ls̃′×Ls̃′ ≤ c∥ϱ⋆ − ϱ∥

3−s̃
s̃′ +s̃

L1×L1
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For I3 and I4 we utilize the embedding W 2(Vσ)×W 2(V ) ↪→ C(I;Hσ ×H) and (62)

|I3| ≤ β1∥v(T ) + v⋆(T )∥L2∥v(T )− v⋆(T )∥L2 ≤ β1(∥v(T )∥L2 + ∥v⋆(T )∥L2)∥v − v⋆∥W 2(Vσ)

≤ cβ1(∥v(T )− v⋆(T )∥L2 + 2∥v⋆(T )∥L2)∥v − v⋆∥W 2(Vσ)

≤ cβ1(∥v − v⋆∥W 2(Vσ) + 2∥v⋆(T )∥L2)∥v − v⋆∥W 2(Vσ)

≤ cβ1

[(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v⋆∥L2 + ∥ϑ⋆∥L2

)
+ 2∥v⋆(T )∥L2

]
∥v − v⋆∥W 2(Vσ)

|I4| ≤ β2∥ϑ(T ) + ϑ⋆(T )∥L2∥ϑ(T )− ϑ⋆(T )∥L2 ≤ β2(∥ϑ(T )∥L2 + ∥ϑ⋆(T )∥L2)∥ϑ− ϑ⋆∥W 2(V )

≤ cβ2(∥ϑ(T )− ϑ⋆(T )∥L2 + 2∥ϑ⋆(T )∥L2)∥ϑ− ϑ⋆∥W 2(V )

≤ cβ2(∥ϑ− ϑ⋆∥W 2(V ) + 2∥ϑ⋆(T )∥L2)∥ϑ− ϑ⋆∥W 2(V )

≤ cβ2

[(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v⋆∥L2 + ∥ϑ⋆∥L2

)
+ 2∥ϑ⋆(T )∥L2

]
∥ϑ− ϑ⋆∥W 2(V ).

The sum of the two estimates above can then be further majorized by using (62), (56), and (41).

|I3|+ |I4|

≤ c
[(
β1∥v⋆(T )∥L2 + β2∥ϑ⋆(T )∥L2

)
+
(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v⋆∥L2 + ∥ϑ⋆∥L2

)]
×
(
∥v − v⋆∥W 2(Vσ) + ∥ϑ− ϑ⋆∥W 2(V )

)
≤ c
[(
β1∥v⋆(T )∥L2 + β2∥ϑ⋆(T )∥L2

)
+ ∥ϱ⋆ − ϱ∥Ls̃′×Ls̃′

(
∥v∥L2 + ∥ϑ∥L2

)]
×
(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v⋆∥L2 + ∥ϑ⋆∥L2

)
≤ c
(
β1∥v⋆(T )∥L2 + β2∥ϑ⋆(T )∥L2

)
∥ϱ⋆ − ϱ∥Ls̃′×Ls̃′

(
∥u⋆ − u∥L2 + ∥θ⋆ − θ∥L2

)
+ c∥ϱ⋆ − ϱ∥2

Ls̃
′×Ls̃′

(
∥v∥2L2 + ∥ϑ∥2L2

)
≤ c
(
β1∥v⋆(T )∥2L2 + β2∥ϑ(T )∥2L2

)
∥ϱ⋆ − ϱ∥1/s̃

′

L1×L1∥ϱ⋆ − ϱ∥L2×L2

+ c∥ϱ⋆ − ϱ∥2
Ls̃

′×Ls̃′
(
∥v∥2L2 + ∥ϑ∥2L2

)
≤ c∥ϱ⋆ − ϱ∥

3−s̃
s̃′ +s̃+1

L1×L1 + c
(
β1∥v⋆(T )∥2L2 + β2∥ϑ⋆(T )∥2L2

)
∥ϱ⋆ − ϱ∥1/s̃

′+1/2

L1×L1 .

(69)

To estimate the term I5, let us first rewrite I5 as

1

2
I5 =

[
((v⋆ · ∇)v⋆,w⋆)Q − ((v · ∇)v,w)Q

]
+
[
(v⋆ · ∇ϑ⋆,Ψ⋆)Q − (v · ∇ϑ,Ψ)Q

]
=
[
(((v⋆ − v) · ∇)v⋆,w⋆)Q + ((v · ∇)(v⋆ − v),w⋆)Q + ((v · ∇)v,w⋆ −w)Q

]
+
[
((v⋆ − v) · ∇ϑ⋆,Ψ⋆)Q + (v · ∇(ϑ⋆ − ϑ),Ψ⋆)Q + (v · ∇ϑ,Ψ⋆ −Ψ)Q

]
.

Using the antisymmetry of the trilinear forms, the Hölder and Gagliardo-Nirenberg inequalities, and the
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estimates (59), (62), (65) and (67), we get

1

2
|I5| ≤ ∥∇w∥L∞∥v⋆ − v∥L2

(
∥v⋆∥L2 + ∥v∥L2

)
+ ∥∇(w⋆ −w)∥L∞(L2)∥v∥2L4

+ ∥∇Ψ⋆∥L∞

(
∥v⋆ − v∥L2∥ϑ⋆∥L2 + ∥v∥L2∥ϑ⋆ − ϑ∥L2

)
+ ∥∇(Ψ⋆ −Ψ)∥L∞(L2)∥v∥L4∥ϑ∥L4

≤MA

(
∥v⋆ − v∥L2 + ∥ϑ⋆ − ϑ∥L2

)(
∥v∥L2 + ∥ϑ∥L2

)
+
(
∥∇(w⋆ −w)∥L∞(L2) + ∥∇(Ψ⋆ −Ψ)∥L∞(L2)

)
×
(
∥v∥L2 + ∥ϑ∥L2

)(
∥∇v∥L2 + ∥∇ϑ∥L2

)
≤MA

(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v∥2L2 + ∥ϑ∥2L2

)
+
(
∥v∥L2 + ∥ϑ∥L2

)(
∥u⋆ − u∥1/2

L2 + ∥θ⋆ − θ∥1/2L2

)
×
(
∥u⋆ − u∥L2 + ∥θ⋆ − θ∥L2 + β1∥u⋆ − u∥W 2,1

2,σ
+ β2∥θ⋆ − θ∥W 2,1

2

)
∥ϱ− ϱ⋆∥1/2

L2×L2 .

After some rearrangement, and by vitue of (104) and (63), we see that if ∥ϱ − ϱ⋆∥L1×L1 < min{δ1, δ2} –
where δ1, δ2 > 0 are as prescribed in Lemma 4.11 and Lemma 4.12 — then

1

2
|I5| ≤MA

(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v∥2L2 + ∥ϑ∥2L2

)
+ ∥ϱ− ϱ⋆∥1/2

L2×L2

(
∥v∥5/2

L2 + ∥ϑ∥5/2L2

)
+ ∥ϱ− ϱ⋆∥1/2

L2×L2

(
β1∥u⋆ − u∥W 2,1

2,σ
+ β2∥θ⋆ − θ∥W 2,1

2

)(
∥v∥3/2

L2 + ∥ϑ∥3/2L2

)
.

Furthermore, (56) and (41) imply that

1

2
|I5| ≤MA

(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v∥2L2 + ∥ϑ∥2L2

)
+ ∥ϱ− ϱ⋆∥1/2

L2×L2

(
∥u⋆ − u∥1/2

L2 + ∥θ⋆ − θ∥1/2L2

)(
∥v∥2L2 + ∥ϑ∥2L2

)
+ ∥ϱ− ϱ⋆∥1/2

L2×L2

(
β1∥u⋆ − u∥W 2,1

2,σ
+ β2∥θ⋆ − θ∥W 2,1

2

)(
∥v∥3/2

L2 + ∥ϑ∥3/2L2

)
≤MA

(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v∥2L2 + ∥ϑ∥2L2

)
+ ∥ϱ− ϱ⋆∥1/2

L2×L2

(
∥v∥5/2

L2 + ∥ϑ∥5/2L2

)
+ ∥ϱ− ϱ⋆∥3/2

L2×L2

(
∥v∥3/2

L2 + ∥ϑ∥3/2L2

)
≤ c
(
∥ϱ⋆ − ϱ∥

3−s̃
s̃′ +s̃

L1×L1 + ∥ϱ⋆ − ϱ∥
16s̃−10

4s̃

L1×L1 + ∥ϱ⋆ − ϱ∥
12s̃−6

4s̃

L1×L1

)
.

To summarize, we have the following estimate for the difference between the second derivatives∣∣∣[J ′′(ϱt)− J ′′(ϱ⋆)
]
(ϱ− ϱ⋆)2

∣∣∣ ≤ c
[
∥ϱ⋆ − ϱ∥

3−s̃
s̃′ +s̃+1

L1×L1 + ∥ϱ⋆ − ϱ∥
3−s̃
s̃′ +s̃

L1×L1

+ ∥ϱ⋆ − ϱ∥
16s̃−10

4s̃

L1×L1 + ∥ϱ⋆ − ϱ∥
12s̃−6

4s̃

L1×L1 +
(
β1∥v⋆(T )∥2L2 + β2∥ϑ⋆(T )∥2L2

)
∥ϱ⋆ − ϱ∥1/s̃

′+1/2

L1×L1

]
.

Since s̃ ∈ (3/2, 2) one finds ℓ1, ℓ2, ℓ3, ℓ4, ℓ5 > 0 such that 3−s̃
s̃′ + s̃ = 2 + ℓ1 + ℓ2,

3−s̃
s̃′ + s̃ + 1 = 2 + ℓ1 + ℓ3,

16s̃−10
4s̃ = 2 + ℓ1 + ℓ4,

12s̃−6
4s̃ = 2 + ℓ1 + ℓ5. If we then choose

δ ≤ min{(ε/4c)
1
ℓ2 , (ε/4c)

1
ℓ3 , (ε/4c)

1
ℓ4 , (ε/4c)

1
ℓ5 , (ε/c)2s̃

′/(s̃′+2), δ1, δ2},

we get ∣∣∣[J ′′(ϱ)− J ′′(ϱ⋆)
]
(ϱ− ϱ⋆)2

∣∣∣ ≤ ε
(
∥ϱ⋆ − ϱ∥1+µ

L1×L1 + β1∥v⋆(T )∥2L2 + β2∥ϑ⋆(T )∥2L2

)
whenever ∥ϱ⋆ − ϱ∥L1×L1 < δ, where µ = 1 + ℓ1.
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Lemma 4.16. Let ϱ⋆ ∈ U , β1 = β2 = 0 and (u⋆, θ⋆) = S(ϱ⋆). For every ε > 0 there exists a δ > 0 such
that ∣∣∣[J ′′(ϱ)− J ′′(ϱ⋆)

]
(ϱ− ϱ⋆)2

∣∣∣ ≤ ε
(
∥u− u⋆∥2L2 + ∥θ − θ⋆∥2L2

)
, (70)

for all ϱ ∈ U with ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < δ, where (u, θ) = S(ϱ).

Proof. Using similar notations and arguments as in the proof of Lemma 4.15, we see that∣∣∣[J ′′(ϱ)− J ′′(ϱ⋆)
]
(ϱ− ϱ⋆)2

∣∣∣ ≤ |I1|+ |I2|+ |I5|

≤ c
(
∥v∥2L2 + ∥ϑ∥2L2

)(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)
+MA

(
∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)(
∥v∥2L2 + ∥ϑ∥2L2

)
+ ∥ϱ− ϱ⋆∥1/2

L2×L2

(
∥u⋆ − u∥1/2

L2 + ∥θ⋆ − θ∥1/2L2

)(
∥v∥2L2 + ∥ϑ∥2L2

)
≤ c
[(

∥u⋆ − u∥L∞ + ∥θ⋆ − θ∥L∞

)
+
(
∥u⋆ − u∥1/2L∞ + ∥θ⋆ − θ∥1/2L∞

)](
∥v∥2L2 + ∥ϑ∥2L2

)
,

where c = max
{
c,MA,

√
2MU

}
. Choosing δ ≤ min{ε/2c, (ε/2c)2} and utilizing Lemma 4.11 and Lemma 4.12

gives us ∣∣∣[J ′′(ϱ)− J ′′(ϱ⋆)
]
(ϱ− ϱ⋆)2

∣∣∣ ≤ ε
(
∥u− u⋆∥2L2 + ∥θ − θ⋆∥2L2

)
whenever ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < δ.

We consider two distinct growth conditions that guarantee strict local optimality.

Assumption 4.17. Let µ ∈ [1, 2), τ ∈ {1/2, 1} and ϱ⋆ ∈ U . There exist positive constants c and α such
that

J ′(ϱ⋆)(ϱ− ϱ⋆) + τJ ′′(ϱ⋆)(ϱ− ϱ⋆)2 ≥ c
(
∥ϱ− ϱ⋆∥1+µ

L1×L1 + β1∥v⋆(T )∥2L2 + β2∥ϑ⋆(T )∥2L2

)
(71)

for all ϱ ∈ U with ∥ϱ− ϱ⋆∥L1×L1 < α, where (v⋆, ϑ⋆) = S ′(ϱ⋆)(ϱ− ϱ⋆).

Assumption 4.17 implies the optimal controls to be bang-bang, see [15]. We also mention that this
assumption was first considered in the stability analysis in ODE optimal control in [26] and in [15, 11] for
semilinear elliptic and parabolic PDEs. Furthermore, as proved in [14, Proposition 2.12], bang-bang optimal
controls for affine optimal control problems are shown to necessarily satisfy a growth condition of the same
spirit as Assumption 4.17.

The following condition which is weaker than Assumption 4.17 allows us to consider optimal controls
that are not of bang-bang structure. However, we can only provide error estimates for the optimal states
under this assumption.

Assumption 4.18. Let τ ∈ {1/2, 1}, ϱ⋆ ∈ U and (u⋆, θ⋆) = S(ϱ⋆). There exist positive constants c and α
such that

J ′(ϱ⋆)(ϱ− ϱ⋆) + τJ ′′(ϱ⋆)(ϱ− ϱ⋆)2 ≥ c
(
∥u− u⋆∥2L2 + ∥θ − θ⋆∥2L2

)
, (72)

for all ϱ ∈ U with ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < α, where (u, θ) = S(ϱ).

Assumptions 4.17 and 4.18 imply strict weak or strong local optimality.

Theorem 4.19. Let ϱ⋆ ∈ U satisfy Assumption 4.17 with τ = 1/2, then there exist δ, σ > 0 such that

J(ϱ)− J(ϱ⋆) ≥ σ
(
∥ϱ− ϱ⋆∥1+µ

L1 + β1∥v⋆(T )∥2L2 + β2∥ϑ⋆(T )∥2L2

)
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for all ϱ ∈ U with ∥ϱ − ϱ⋆∥L1×L1 < δ, where (v⋆, ϑ⋆) = S ′(ϱ⋆)(ϱ − ϱ⋆). Suppose that ϱ⋆ ∈ U and
(u⋆, θ⋆) = S(ϱ⋆) satisfy Assumption 4.18 and β1 = β2 = 0, one finds δ, σ > 0 such that

J(ϱ)− J(ϱ⋆) ≥ σ
(
∥u− u⋆∥2L2 + ∥θ − θ⋆∥2L2

)
,

for all ϱ ∈ U with ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < δ, where (u, θ) = S(ϱ).

Proof. By Taylor’s theorem, there exists an t ∈ (0, 1) such that

J(ϱ)− J(ϱ⋆) = J ′(ϱ⋆)(ϱ− ϱ⋆) + 1

2
J ′′(ϱt)(ϱ− ϱ⋆)2

≥ J ′(ϱ⋆)(ϱ− ϱ⋆) + 1

2
J ′′(ϱ⋆)(ϱ− ϱ⋆)2 + 1

2t2

([
J ′′(ϱt)− J ′′(ϱ⋆)

]
(ϱt − ϱ⋆)2

)
.

where ϱt = ϱ
⋆ + t(ϱ− ϱ⋆).

Part 1. From Assumption 4.17 and Lemma 4.15 we get

J(ϱ)− J(ϱ⋆) ≥ c
(
∥ϱ− ϱ⋆∥1+µ

L1×L1 + β1∥v⋆(T )∥2L2 + β2∥ϑ⋆(T )∥2L2

)
− ε
(
t∥ϱ− ϱ⋆∥1+µ

L1×L1 + β1∥v⋆t (T )∥2L2 + β2∥ϑ⋆t (T )∥2L2

)
.

whenever ∥ϱ−ϱ⋆∥L1×L1 < δ := min{α, δ1}, where δ1 > 0 is as in Lemma 4.15, and (v⋆t , ϑ
⋆
t ) = S ′(ϱ⋆)(ϱt−ϱ⋆).

By uniqueness of solution to the linearized Boussinesq system and since δϱt = tδϱ, we see that ∥v⋆t (T )∥2L2 +
∥ϑ⋆t (T )∥2L2 = t∥v⋆(T )∥2

L2 + t∥ϑ⋆(T )∥2L2 . Thus, because t ∈ [0, 1] and by choosing ε = c/2, we have

J(ϱ)− J(ϱ⋆) ≥ σ
(
∥ϱ− ϱ⋆∥1+µ

L1×L1 + β1∥v⋆(T )∥2L2 + β2∥ϑ⋆(T )∥2L2

)
.

Part 2. Using Assumption 4.18 and Lemma 4.16 imply

J(ϱ)− J(ϱ⋆) ≥ c
(
∥u− u⋆∥2L2 + ∥θ − θ⋆∥2L2

)
− ε
(
∥ut − u⋆∥2L2 + ∥θt − θ⋆∥2L2

)
.

From Lemma 4.11 and because ∥ϱt−ϱ⋆∥L1×L1 ≤ ∥ϱ−ϱ⋆∥L1×L1 , we get that whenever ∥ϱ−ϱ⋆∥L1×L1 < δ1

J(ϱ)− J(ϱ⋆) ≥ c
(
∥u− u⋆∥2L2 + ∥θ − θ⋆∥2L2

)
− 2ε

3

(
∥v⋆t ∥2L2 + ∥ϑ⋆t ∥2L2

)
.

From uniqueness of solution to (25)–(29) we get ∥v⋆t ∥2L2 + ∥ϑ⋆t ∥2L2 ≤ ∥v⋆∥2
L2 + ∥ϑ⋆∥2L2 . Thus, from applying

Lemma 4.11 again we get taking σ = c/3

J(ϱ)− J(ϱ⋆) ≥ σ
(
∥u− u⋆∥2L2 + ∥θ − θ⋆∥2L2

)
whenever ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < δ where δ = min

{
α, (2MU )

(s−1)/sδ
1/s
1

}
.

Let us discuss the recovery of the assumptions above. It turns out that for the type of optimal control
problem – with β1 = β2 = 0 – considered in this paper, given that the data is tracked well enough, the
growth condition in Assumption 4.18 appears to be natural.

Theorem 4.20. Let ϱ⋆ ∈ U be a local minimizer of (P). Then there exists δ > 0, such that if (u⋆, θ⋆) =
S(ϱ⋆) satisfies

∥u⋆ − ud∥Ls(Q) + ∥θ⋆ − θd∥Ls(Q) <
min{α1, α2}

δ
for s ≥ 4, (73)

then Assumption 4.18 is satisfied.
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Proof. Since ϱ⋆ ∈ U is a local minimizer, it holds that J ′(ϱ⋆)(ϱ − ϱ⋆) ≥ 0 for all ϱ ∈ U . Further, we can
estimate the second variation from below by

J ′′(ϱ⋆)(ϱ− ϱ⋆)2 = α1∥v⋆∥2L2 + α2∥ϑ⋆∥2L2 + β1∥v⋆(T )∥2L2 + β2∥ϑ⋆(T )∥2L2

− 2((v⋆ · ∇)v⋆,w⋆)Q − 2(v⋆ · ∇ϑ⋆,Ψ⋆)Q
≥ α1∥v⋆∥2L2 + α2∥ϑ⋆∥2L2 − 2c(∥v⋆∥2L2 + ∥ϑ⋆∥2L2)(∥∇w⋆∥L∞ + ∥∇Ψ⋆∥L∞)

≥ {min{α1, α2} − δ(∥u⋆ − ud∥Ls(Q) + ∥θ⋆ − θd∥Ls(Q))}(∥v⋆∥2L2 + ∥ϑ⋆∥2L2).

Now it is clear that due to the estimate (66) Assumption 4.18 holds.

If we invoke the so-called structural assumption on the adjoint state, as it is often done for affine optimal
control problems without a Tikhonov term, we can guarantee the growth of the first order derivative of J
with the same spirit as in Assumption 4.17.

Proposition 4.21. Let there exist positive constants c and ci, i ∈ {1, 2} such that the adjoint states
(w⋆,Ψ⋆) = D(ϱ⋆) corresponding to the optimal control ϱ⋆ ∈ U satisfy for some µ ∈ [1, 2), and all ε > 0

|{(t, x) ∈ Q : |w⋆
i | ≤ ε}| ≤ ciε

µ and |{(t, x) ∈ Q : |Ψ⋆| ≤ ε}| ≤ cεµ, where w⋆ = (w⋆
1,w

⋆
2). (74)

Then there exists c̃ > 0 such that J ′(ϱ⋆)(ϱ− ϱ⋆) ≥ c̃∥ϱ− ϱ⋆∥1+µ
L1×L1 .

Proof. Suppose that (74) holds, and let us take positive constants κ1 and κ2 such that

κ1 <
( 1

c1∥q− q∥L∞

)1/µ
and κ2 <

( 1

c2∥q− q∥L∞

)1/µ
.

For brevity, let us define Ai := {(t, x) ∈ Q : |w⋆
i | > ε}. Now we take εi := κi∥qi − q⋆i ∥

µ
L1 , where the

subscripts stand for the components of the vectors q and q⋆,∫
Q

w⋆ · (q− q⋆) dxdt =

∫
Q

|w⋆
1||q1 − q⋆1|+ |w⋆

2||q2 − q⋆2| dxdt

≥
∫
A1

ε|q1 − q⋆1| dxdt+
∫
A2

ε|q2 − q⋆2| dxdt

≥ ε1

∫
Q

|q1 − q⋆1| dxdt− ε1∥q− q∥L∞ |Q \A1|+ ε2

∫
Q

|q2 − q⋆2| dxdt− ε2∥q− q∥L∞ |Q \A2|

≥ ĉ
(
∥q1 − q⋆1∥

1+µ
L1 + ∥q2 − q⋆2∥

1+µ
L1

)
≥ c̃∥ϱ− ϱ⋆∥1+µ

L1×L1 .

The proof of the claim for Ψ⋆ϱ⋆ follows the same arguments.

Remark 4.22. The implication of the proposition above is that one can relax the assumption on the second-
order derivative of the objective functional to obtain a sufficient optimality condition. It allows us to have
the second variation of the objective functional attain negative values, i.e., we can assume

J ′′(ϱ⋆)(ϱ− ϱ⋆)2 ≥ −c∥ϱ− ϱ⋆∥1+µ
L1×L1

where c < c̃, which would then imply Assumption 4.17 and thus the optimality of ϱ⋆ ∈ U .

As it would, in most cases, be hard to verify if (74) indeed holds, the next result gives us a property from
which we can recover (74). The proof is based on the proof of [13, Lemma 3.2].

Proposition 4.23. Let ϱ ∈ U and s > 4. Suppose that for any t ∈ [0, T ] the adjoint (w, ψ) = D(ϱ) ∈
W 2,1

s,σ ×W 2,1
s satisfy

min

{
min
Kw

|∇w(x, t)|,min
Kψ

|∇ψ(x, t)|
}
> 0, (75)

where Kw := {x ∈ Ω : w(x, ·) = 0} and Kψ := {x ∈ Ω| ψ(x, ·) = 0}. Then ϱ ∈ U satisfies (74) for µ = 1.
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Proof. Let us define for |τ | ≤ ε the sets Kw(τ) := {x ∈ Ω : |w(x, ·)| = τ} and Kψ(τ) := {x ∈ Ω : |ψ(x, ·)| =
τ}. From (75) and since W 2,1

s,σ ×W 2,1
s ↪→ C(I;C1(Ω)2) × C(I;C1(Ω)) we infer the existence of constants

c1, c2 > 0 such that
|∇w| > c1 on Kw(s) and H(Kw(τ)) ≤ c2,

where H denotes the Hausdorff measure. By virtue of the co-area formula, we find for i ∈ {1, 2}

|{(x, t) ∈ Q : |wi(x, t)| ≤ ε}| ≤ 1

c1

∫ T

0

∫
{x∈Ω:|wi(x,t)|≤ε}

|∇w|dxdt ≤ 1

c1

∫ T

0

∫ ε

−ε
H(Kw(τ)) dτ dt ≤ 2c2T

c1
ε.

Using the same arguments, we obtain the claim for the adjoint ψ.

5 Solution stability

We study the stability properties of optimal controls and states under perturbation in the Boussinesq system
and the objective functional. To prove the solution stability of the optimal control problem at local optimal
controls satisfying the growth Assumptions 4.17 or 4.18, let us introduce some terminology. The normal
cone to U at ϱ̂ is denoted and defined as

NU (ϱ̂) :=

{
(ς,Λ) ∈ L1(I;L1(ωq)× L1(ωh)) :

∫ T

0

∫
ωq

ς ·(q− q̂) dx+

∫
ωh

Λ(Θ− Θ̂) dxdt ≤ 0 ∀ϱ ∈ U

}
.

Let us fix an initial data (u0, θ0). Utilizing the notion of the normal cone and the mappings (45), (50), we
can now define the set-valued optimality mapping.

𭟋(u, θ,w,Ψ,q,Θ) =

F(u, θ,u0, θ0,q,Θ)

G(u, θ,w,Ψ)

(w,Ψ) +NU (ϱ)

 .
If ϱ⋆ ∈ U is a local optimal control of (P) it holds – according to Theorem 4.7 – that

0 ∈ 𭟋(u⋆, θ⋆,w⋆,Ψ⋆,ϱ⋆), (76)

where (u⋆, θ⋆) = S(ϱ⋆) and (w⋆,Ψ⋆) = D(ϱ⋆). We also use the perturbed control-to-state operator Ŝ :
Ls(I;Ls(ωq)× Ls(ωh)) →W 2,1

s,σ ×W 2,1
s defined as

Ŝ(ϱ) = S̃(f + f̂ , h+ ĥ,u0 + û0, θ0 + θ̂0,ϱ).

Using similar arguments as in the previous section, we get the differentiability of the perturbed control-to-
state operator.

Proposition 5.1. The perturbed control-to-state operator is of class C∞. The first-order Fréchet derivative
at ϱ ∈ Ls(I;Ls(ωq)× Ls(ωh)) in direction δϱ ∈ Ls(I;Ls(ωq)× Ls(ωh)), denoted by

Ŝ ′(ϱ)(δϱ) =: (v̂, ϑ̂),

is given as the solution to the linearized Boussinesq system (25)–(29) with u1 = u2 = Ŝ1(ϱ) and θ = Ŝ2(ϱ),
F = δqχωq , G = δΘχωh , v0 = 0 and ϑ0 = 0. The second-order Fréchet derivative at ϱ ∈ Ls(I;Ls(ωq) ×
Ls(ωh)) in direction (δϱ1, δϱ2) ∈ Ls(I;Ls(ωq)× Ls(ωh))

2, denoted by

Ŝ ′′(ϱ)[δϱ1, δϱ2] :=
(
ṽ, ϑ̃

)
, (77)

is the solution to the linearized Boussinesq system (25)–(29) with u1 = u2 = Ŝ1(ϱ) and θ = Ŝ2(ϱ), F = −[(v̂1·
∇)v̂2 + (v̂2 · ∇)v̂1], G = −

[
v̂1 · ∇ϑ̂2 + v̂2 · ∇ϑ̂1

]
, v(0, ·) = 0 and ϑ(0, ·) = 0, where (v̂1, ϑ̂1) = Ŝ ′(ϱ)(δϱ1)

and (v̂2, ϑ̂2) = Ŝ ′(ϱ)(δϱ2).
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Analogously, we see that the adjoint variable (w,Ψ) = Ŝ ′(ϱ)∗(δϱ + gT (wT ,ΨT )) solves (33)–(37) with

u1 = u2 = Ŝ1(ϱ) and θ = Ŝ2(ϱ), F = δq, G = δΘ, w(T ) = wT and Ψ(T ) = ΨT . We also define the adjoint
operator

D̂(ϱ) = Ŝ ′(ϱ)∗((α1(Ŝ1(ϱ)− ud) + η, α2(Ŝ2(ϱ)− θd) + η) + gT (β1(Ŝ1(ϱ)(T )− uT ), β2(Ŝ2(ϱ)(T )− θT ))).

As we mentioned in the introduction, the goal is to study the stability of the optimal control problem
with respect to several perturbations. For simplicity we denote by

P ⊂ Ls(Q)× Ls(Q)×W 2−2/s,s
0,σ ×W

2−2/s,s
0 ×L∞(Q)× L∞(Q)× L∞(I;L∞(ωq)× L∞(ωh))

the space of admissible perturbations which is a Banach space under the norm defined as the sum of the
norms of its arguments.

For the set of feasible perturbations P, we assume that there exists a constant MP > 0 such that

∥(f̂ , ĥ, û0, θ̂0,η, η, ς,Λ)∥P ≤MP for all (f̂ , ĥ, û0, θ̂0,η, η, ς,Λ) ∈ P.

To lighten the notation, we write ζ = (f̂ , ĥ, û0, θ̂0,η, η, 0, 0,− ς,−Λ). Now we can formulate one of our main
tasks of the paper, the study of the solution stability of the optimal controls and states under perturbations
in the optimality map, that is

ζ ∈ 𭟋(u, θ,w,Ψ,q,Θ). (78)

In fact, ζ ∈ 𭟋(u, θ,w,Ψ,q,Θ) implies −(ς,Λ) ∈ D̂(ϱ) +NU (ϱ).
The following lemmata lays the foundation for us to be able to prove the stability results under Assump-

tions 4.17 and 4.18.

Lemma 5.2. Let ϱ ∈ Ls(I;Ls(ωq) × Ls(ωh)) and (u, θ) = S(ϱ), (û, θ̂) = Ŝ(ϱ) ∈ W 2,1
s,σ ×W 2,1

s . Then it
holds that

∥u− û∥W 2,1
s,σ

+ ∥θ − θ̂∥W 2,1
s

≤ c
(
∥û0∥W 2−2/s,s

0,σ
+ ∥θ̂0∥W 2−2/s,s

0
+ ∥f̂∥Ls + ∥ĥ∥Ls

)
. (79)

Proof. The functions v := u − û and ϑ := θ − θ̂ are a solution to (25)-(29) with u1 = û, u2 = u, θ = θ,

F = f̂ , G = θ̂, v0 = û0 and ϑ0 = θ̂0. Then, applying Theorem 3.5 yields the claim.

Lemma 5.3. Let ϱ, δϱ ∈ Ls(I;Ls(ωq) × Ls(ωh)), (u, θ) = S(ϱ), (û, θ̂) = Ŝ(ϱ), (v, ϑ) = S ′(ϱ)δϱ and

(v̂, ϑ̂) = Ŝ ′(ϱ)δϱ. There exists a constant c > 0 such that

∥v − v̂∥L2 + ∥∇(v − v̂)∥L2 + ∥ϑ− ϑ̂∥L2 + ∥∇(ϑ− ϑ̂)∥L2

≤ c
(
∥u− û∥L∞ + ∥θ − θ̂∥L∞

)(
∥v∥L2 + ∥ϑ∥L2

) (80)

Proof. As the element (v, ϑ) = (v − v̂, ϑ− ϑ̂) ∈W 2,1
s,σ ×W 2,1

s satisfies a system of the form (25)–(29) with

u1 = u2 = û, θ = θ̂, F = ((û − u) · ∇)v + (v · ∇)(û − u), G = (û − u) · ∇ϑ + v · ∇(θ̂ − θ), v0 = 0, and
ϑ0 = 0, (30) implies that

∥v − v̂∥L2 + ∥∇(v − v̂)∥L2 + ∥ϑ− ϑ̂∥L2 + ∥∇(ϑ− ϑ̂)∥L2 ≤ c(∥F∥L2(V∗
σ)

+ ∥G∥L2(V ∗))

Using similar arguments as in the proof of Lemma 4.9 gives us the estimate

∥v − v̂∥L2 + ∥∇(v − v̂)∥L2 + ∥ϑ− ϑ̂∥L2 + ∥∇(ϑ− ϑ̂)∥L2

≤ c
(
∥u− û∥L∞ + ∥θ − θ̂∥L∞

)(
∥v∥L2 + ∥ϑ∥L2

)
.
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Lemma 5.4. Let s > 2, ϱ ∈ U , (w,Ψ) ∈ D(ϱ) and (ŵ, Ψ̂) ∈ D̂(ϱ). There exists c > 0 such that

∥w − ŵ∥W 2,1
2,σ

+ ∥Ψ− Ψ̂∥W 2,1
2

≤ c
(
∥û0∥W 2−2/s,s

0,σ
+ ∥θ̂0∥W 2−2/s,s

0,σ
+ ∥f̂∥Ls + ∥ĥ∥Ls + ∥η ∥L∞ + ∥η∥L∞

)
. (81)

Proof. The element (w,Ψ) = (w − ŵ,Ψ − Ψ̂) ∈ W 2,1
2,σ ×W 2,1

2 solves a system of the form (33)-(37) with
right hand side

F = ((u− û) · ∇)w + (∇(û− u))⊤w +Ψ∇(θ̂ − θ) + α1(u− û) + η,

G = (û− u) · ∇Ψ+ α2(θ − θ̂) + η,

wT = β1(u(T )− û(T )), and ΨT = β2(θ(T )− θ̂(T )),

where (u, θ) = S(ϱ) and (û, θ̂) = Ŝ(ϱ).
We obtain for any φ ∈ L2′(Q) with ∥φ∥L2′ ≤ 1 that

∥F∥L2 ≤ c(∥∇w∥L∞ + α1)∥u− û∥L∞ + |((φ · ∇)(u− û),w)|+ |(φ · ∇(θ̂ − θ),Ψ)|+ c∥η ∥L∞

≤ c(∥∇w∥L∞ + α1)∥u− û∥L∞ + |((φ · ∇)w,u− û)|+ |(φ · ∇Ψ, θ̂ − θ)|+ c∥η ∥L∞

≤ c(∥∇w∥L∞ + α1)∥u− û∥L∞ + cMA∥φ∥L2′ (∥u− û∥L∞ + ∥θ − θ̂∥L∞) + c∥η ∥L∞

≤ c(∥∇w∥L∞ + α1)∥u− û∥L∞ + cMA∥θ − θ̂∥L∞ + c∥η ∥L∞

For G, we estimate

∥G∥Lr ≤ c
(
MA∥u− û∥L∞ + α2∥θ − θ̂∥L∞ + ∥η∥L∞

)
Through the embedding W 2,1

s,σ ×W 2,1
s ↪→ C(I;W

2−1/2,2
0,σ (Ω)×W

2−1/2,2
0 (Ω)) we get

∥wT ∥W 2−1/2,2
0,σ (Ω)

+ ∥ΨT ∥W 2−1/2,2
0 (Ω)

≤ β1∥u− û∥W 2,1
s,σ

+ β2∥θ − θ̂∥W 2,1
s
.

From here on, it is clear that the claim follows due to Lemma 5.2.

5.1 Stability under Assumption 4.17

As the title of this subsection suggests, in this portion of the paper we shall utilize Assumption 4.17 to estab-
lish the stability of controls. As a preparation for the proof of the main statement, we consider perturbations
on the normal cone.

Lemma 5.5. Let ϱ⋆ ∈ U satisfy Assumption 4.17 with τ = 1. Then there exist a positive constant c and α
such that

∥ϱ− ϱ⋆∥L1×L1 ≤ c(∥ ς ∥L∞(I×ωq) + ∥Λ∥L∞(I×ωh))
1/µ. (82)

for all (ς,Λ) ∈ L∞(I × ωq)×L∞(I × ωh) and ϱ ∈ U with (ς,Λ) ∈ (w,Ψ)+NU (ϱ) and ∥ϱ− ϱ⋆∥L1×L1 < α,
where (w,Ψ) = D(ϱ).

Proof. From the definition of the normal cone, we see that

0 ≥
∫ T

0

[∫
ωq

(w − ς) · (q− q∗) dx+

∫
ωh

(Ψ− Λ)(Θ−Θ⋆) dx

]
dt

≥ J ′(ϱ⋆)(ϱ− ϱ⋆) + [J ′(ϱ)(ϱ− ϱ⋆)− J ′(ϱ⋆)(ϱ− ϱ⋆)]
− ∥ ς ∥L∞(I×ωq)∥q− q⋆∥L1 − ∥Λ∥L∞(I×ωh)∥Θ−Θ⋆∥L1

(83)
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By virtue of the mean value theorem there exists t ∈ (0, 1) such that

J ′′(ϱt)(ϱ− ϱ⋆)2 = J ′(ϱ)(ϱ− ϱ⋆)− J ′(ϱ⋆)(ϱ− ϱ⋆),

where ϱt = ϱ
⋆+ t(ϱ−ϱ⋆). This, together with Assumption 4.17 and Lemma 4.15, give us further estimation

for (83):

0 ≥ J ′(ϱ⋆)(ϱ− ϱ⋆) + J ′′(ϱ⋆)(ϱ− ϱ⋆)2 + [J ′′(ϱt)(ϱ− ϱ⋆)2 − J ′′(ϱ⋆)(ϱ− ϱ⋆)2]
− ∥ ς ∥L∞(I×ωq)∥q− q⋆∥L1 − ∥Λ∥L∞(I×ωh)∥Θ−Θ⋆∥L1

≥ J ′(ϱ⋆)(ϱ− ϱ⋆) + J ′′(ϱ⋆)(ϱ− ϱ⋆)2 + 1

t2
[J ′′(ϱt)− J ′′(ϱ⋆)](ϱt − ϱ⋆)2

− ∥ ς ∥L∞(I×ωq)∥q− q⋆∥L1 − ∥Λ∥L∞(I×ωh)∥Θ−Θ⋆∥L1

≥ c
(
∥ϱ− ϱ⋆∥1+µ

L1×L1 + β1∥v⋆(T )∥2L2 + β2∥ϑ⋆(T )∥2L2

)
+ [J ′′(ϱt)− J ′′(ϱ⋆)](ϱt − ϱ⋆)2

− ∥ ς ∥L∞(I×ωq)∥q− q⋆∥L1 − ∥Λ∥L∞(I×ωh)∥Θ−Θ⋆∥L1

≥ (c− tε)∥ϱ− ϱ⋆∥1+µ
L1×L1 + (c− ε)

(
β1∥v⋆(T )∥2L2 + β2∥ϑ⋆(T )∥2L2

)
− ∥ ς ∥L∞(I×ωq)∥q− q⋆∥L1 − ∥Λ∥L∞(I×ωh)∥Θ−Θ⋆∥L1 ,

(84)

where (v⋆, ϑ⋆) = S ′(ϱ⋆)(ϱ − ϱ⋆). We note that we get the last two lines from the fact that t ∈ (0, 1) and
by assuming that ∥ϱ − ϱ⋆∥L1×L1 < min{δ, α}, where δ, α > 0 are the constants from Assumption 4.17 and
Lemma 4.15. We can, furthermore, choose ε = c which gives us

∥ ς ∥L∞(I×ωq)∥q− q⋆∥L1 + ∥Λ∥L∞(I×ωh)∥Θ−Θ⋆∥L1 ≥ c∥ϱ− ϱ⋆∥1+µ
L1×L1 . (85)

We employ the Peter-Paul inequality to estimate

∥ ς ∥L∞(I×ωq)∥q− q⋆∥L1 ≤
∥ ς ∥(µ+1)/µ

L∞(I×ωq)

c1/µ(µ+ 1)/µ
+
c∥q− q⋆∥µ+1

L1

(µ+ 1)
, (86)

and

∥Λ∥L∞(I×ωh)∥Θ−Θ⋆∥L1 ≤
∥Λ∥(µ+1)/µ

L∞(I×ωh)

c1/µ(µ+ 1)/µ
+
c∥Θ−Θ⋆∥µ+1

L1

(µ+ 1)
. (87)

Utilizing (86) and (87) and since µ ∈ [1, 2), (85) can further be estimated as

µ

c1/µ(µ+ 1)

(
∥ ς ∥L∞(I×ωq) + ∥Λ∥L∞(I×ωh)

)(µ+1)/µ

≥ c

2
∥ϱ− ϱ⋆∥1+µ

L1×L1 .

From this, we infer the existence of a positive constant ĉ such that

(∥ ς ∥L∞(I×ωq) + ∥Λ∥L∞(I×ωh))
1/µ ≥ ĉ∥ϱ− ϱ⋆∥1+µ

L1×L1 .

Now, we can prove the strong metric Hölder subregularity of the optimality map.

Theorem 5.6. Let ϱ⋆ ∈ U satisfy Assumption 4.17 with τ = 1. Then the optimality map is strong metric
Hölder subregular at ϱ⋆ with constants c, α and 1/γ, that is

∥ϱ− ϱ⋆∥L1×L1 ≤ c∥ ζ ∥1/µP (88)

and
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2 ≤ c∥ ζ ∥1/2µP (89)

for all ζ ∈ 𭟋(Ŝ(ϱ), D̂(ϱ),ϱ) whenever ϱ ∈ U satisfies ∥ϱ − ϱ⋆∥L1×L1 < α, where (u, θ) ∈ S(ϱ), (u⋆, θ⋆) =
S(ϱ⋆).
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Proof. By assumption, −(ς,Λ) ∈ (ŵ, Ψ̂) +NU (ϱ), where (ŵ, Ψ̂) = D̂(ϱ), we find

0 ≥
∫ T

0

[∫
ωq

(ŵ + ς) · (q− q̃) dx+

∫
ωh

(Ψ̂ + Λ)(Θ− Θ̃) dx

]
dt, (90)

for arbitrary ϱ̃ ∈ U . We define

B := (w − ŵ − ς), and B := (Ψ− Ψ̂− Λ),

where (w,Ψ) = D(ϱ). Thus (90) becomes

0 ≥
∫ T

0

[∫
ωq

(w −B) · (q− q̃) dx+

∫
ωh

(Ψ−B) · (Θ− Θ̃) dx

]
dt.

This implies that (B, B) ∈ (w,Ψ) +NU (ϱ). Now we apply Lemma 5.5 to conclude

∥ϱ− ϱ⋆∥L1×L1 ≤ c(∥B∥L∞ + ∥B∥L∞)1/µ.

We estimate the right-hand side using Lemma 5.4 and the embeddingW 2,1
s,σ×W 2,1

s ↪→ L∞(Q)×L∞(Q) and
obtain

∥B∥L∞ + ∥B∥L∞ ≤ ∥ ς ∥L∞ + ∥Λ∥L∞ + ∥ŵ −w∥L∞ + ∥Ψ̂−Ψ∥L∞

≤ ∥ ς ∥L∞ + ∥Λ∥L∞ + c
(
∥û0∥W 2−2/s,s

0,σ
+ ∥θ̂0∥W 2−2/s,s

0,σ
+ ∥f̂∥Ls + ∥ĥ∥Ls + ∥η ∥Ls + ∥η∥Ls

)
.

Thus, (88) holds true. The estimate (89) follows from the estimate

∥u− û∥L2 + ∥θ − θ̂∥L2 ≤ c∥ϱ− ϱ⋆∥1/2
L1 .

5.1.1 Solution with respect to linear perturbations

To demonstrate the meaning of (78), let us define the perturbed objective function

Jζ(ϱ) :=
α1

2

∫
Q

|u− ud|2 dxdt+
α2

2

∫
Q

|θ − θd|2 dx dt+
β1
2

∫
Ω

|u(T )− uT |2 dx

+
β2
2

∫
Ω

|θ(T )− θT |2 dx+

∫ T

0

[∫
ωq

ς ·q dx+

∫
ωh

ΛΘdx

]
dt+

∫
Q

η ·u+ η θ dx dt,

(91)

while we also consider the perturbed state equations

∂tu− ν∆u+ (u · ∇)u+∇p = e2θ + f + f̂ + qχωq in Q, (92)

divu = 0 in Q, (93)

∂tθ − κ∆θ + u · ∇θ = h+ ĥ+Θχωh in Q, (94)

u = 0, θ = 0 on Σ, (95)

u(0, ·) = u0 + û0, θ(0, ·) = θ0 + θ̂0 in Ω, (96)

The goal is to investigate the behavior of the solution of the perturbed optimal control problem

min
ϱ∈U

Jζ(ϱ) subject to (92)− (96) (Pζ)

compared to the original problem (P).
We can easily find the derivatives of the perturbed objective functional just as in the case of the previous

one.
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Theorem 5.7. The objective functional Jζ is of class C∞. Furthermore, the first and second variation can
be calculated as stated below:

J ′
ζ(ϱ)(δϱ) = α1

∫
Q

(û− ud) · v̂ dxdt+ α2

∫
Q

(θ̂ − θd)ϑ̂ dxdt+ β1

∫
Ω

(û(T )− uT ) · v̂(T ) dx

+ β2

∫
Ω

(θ̂(T )− θT )ϑ̂(T ) dx+

∫ T

0

[∫
ωq

ς · δq dx+

∫
ωh

ΛδΘdx

]
dt+

∫
Q

η ·v̂ + η ϑ̂ dxdt

=

∫ T

0

∫
ωq

(ŵ + ς) · δq dx dt+

∫ T

0

∫
ωh

(Ψ̂ + Λ)δΘdx dt

(97)

J ′′
ζ (ϱ)(δϱ, δϱ) = α1∥v̂∥2L2 + α2∥ϑ̂∥2L2 + β1∥v̂(T )∥2L2 + β2∥ϑ̂(T )∥2L2

− 2((v̂ · ∇)v̂, ŵ)Q − 2(v̂ · ∇ϑ̂, Ψ̂)Q.
(98)

where (û, θ̂) := Ŝ(ϱ), (v̂, ϑ̂) := Ŝ ′(ϱ)(δϱ), (ŵ, Ψ̂) := D̂(ϱ).

We can thus see that a minimizer ϱζ ∈ U of (91) satisfies (78), i.e., ζ ∈ 𭟋(Ŝ(ϱζ), D̂(ϱζ),ϱζ). For

simplicity, we also use the notation 𭟋(ϱ) := 𭟋(Ŝ(ϱ), D̂(ϱ),ϱ) The next theorem shows the convergence of
solutions of the perturbed problem (Pζ) to a solution of (P).

Theorem 5.8. Let {ζk} ⊂ P be a sequence satisfying ∥ ζk ∥P → 0 as k → ∞. If ϱζk ∈ U is a global solution

to (Pζ) for each ζk, then there exists ϱ⋆ ∈ U such that, up to a subsequence, ϱζk⇀
∗ ϱ⋆ in L∞(I;L∞(ωq)×

L∞(ωh)). Furthermore, ϱ⋆ ∈ U is a global solution of (P) and Ŝ(ϱζk) → S(ϱ⋆) in C(Q)2 × C(Q).

Proof. The claim follows from arguments similar to those in [8, Theorem 4.2].

The following converse holds.

Theorem 5.9. Let ϱ⋆ be a strict strong local solution to (P). Then there exists a sequence of strong local

minimizers ϱζk (Pζ) such that ϱζk⇀
∗ ϱ⋆ in L∞(I;L∞(ωq)×L∞(ωh)) and Ŝ(ϱζk) → S(ϱ⋆) in C(Q)2×C(Q).

Proof. The claim follows from arguments similar to those in [8, Theorem 4.3].

As an application of the obtained regularity, we get the stability of the solution of (Pζ) with respect to
linear perturbations on the optimal control problem (P).

Theorem 5.10. Let ϱ⋆ ∈ U be a weak local solution to (P). Let Assumption 4.17 be satisfied for a τ = 1.
Then, there exist positive constants c, α such that

∥q− q⋆∥L1(I×ωq) + ∥Θ−Θ⋆∥L1(I×ωh)

≤ c
(
∥ ς ∥L∞(I×ωq) + ∥Λ∥L∞(I×ωh) + ∥û0∥W 2−2/s,s

0,σ
+ ∥θ̂0∥W 2−2/s,s

0,σ
+ ∥f̂∥Ls + ∥ĥ∥Ls + ∥η ∥Ls + ∥η∥Ls

)1/µ
for all local minimizers ϱ ∈ U of (91) with ∥ϱ− ϱ⋆∥L1×L1 < α.

Proof. One can easily check that because ϱ ∈ U is a local minimizer of (91) then ζ ∈ 𭟋(ϱ). We then directly
apply Theorem 5.6 to obtain the desired estimate.

Remark 5.11. In Theorem 5.10, stability of the optimal controls and states under linear perturbations
was considered. The approach used also allows for nonlinear perturbations. To not further extend the
presentation, we refer to [15, Section 5] and [11, Section 5] a detailed discussion on dealing with nonlinear
perturbations. As an example, we present the Tikhonov regularization in the subsection below.
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5.1.2 Stability with respect to the Tikhonov regularization and the desired data

As a special case of the perturbed problem above, we may consider the Tikhonov regularization of the
problem with additional disturbances in the initial data and the data that is to be tracked; that is, we may
consider

min
ϱ∈U

JT (ϱ) :=
α1

2

∫
Q

|u− (ud + ûd)|2 dx dt+
α2

2

∫
Q

|θ − (θd + θ̂d)|2 dx dt (99)

+
αT
2

∫
Ω

|u(T, ·)− uT |2 dx+

∫ T

0

[
ε1
2

∫
ωq

|q|2 dx+
ε1
2

∫
ωh

|Θ|2 dx

]
dt

subject to (1) and (92)-(96).
We can easily find the derivatives of objective functional just as in the case of the previous one.

Theorem 5.12. The objective functional JT is of class C∞. Furthermore, the first and second variation
can be calculated as stated below:

J ′
T (ϱ)(δϱ) =α1

∫
Q

(û− ud − ûd) · v̂ dxdt+ α2

∫
Q

(θ̂ − θd − θ̂d)ϑ̂ dxdt+ β1

∫
Ω

(û(T )− uT ) · v̂(T ) dx

+ β2

∫
Ω

(θ̂(T )− θT )ϑ̂(T ) dx+

∫ T

0

[
ε1

∫
ωq

q · δq dx+ ε2

∫
ωh

Θ δΘdx

]
dt

=

∫ T

0

∫
ωq

(ŵ + ε1q) · δq dxdt+

∫ T

0

∫
ωh

(Ψ̂ + ε2Θ)δΘdx dt,

(100)

J ′′
T (ϱ)(δϱ, δϱ) = α1∥v̂∥2L2 + α2∥ϑ̂∥2L2 + β1∥v̂(T )∥2L2 + β2∥ϑ̂(T )∥2L2 + ε1∥q∥2L2(I;L2(ωq))

+ ε2∥Θ∥2L2(I;L2(ωh))
− 2((v̂ · ∇)v̂, ŵ)Q − 2(v̂ · ∇ϑ̂, Ψ̂)Q.

(101)

where (û, θ̂) := Ŝ(ϱ), (v̂, ϑ̂) := Ŝ ′(ϱ)(δϱ), (ŵ, Ψ̂) := D̂(ϱ) with η = −α1ûd and η = −α2θ̂d

Below, we obtain the estimate for the Tikhonov regularized problem.

Theorem 5.13. Let ϱ⋆ ∈ U be a weak local solution to (P). Let Assumption 4.17 be satisfied for τ = 1.
Then, there exist positive constants c, α such that

∥q− q⋆∥L1(I×ωq) + ∥Θ−Θ⋆∥L1(I×ωh)

≤ c
(
ε1 + ε2 + ∥û0∥W 2−2/s,s

0,σ
+ ∥θ̂0∥W 2−2/s,s

0,σ
+ ∥f̂∥Ls + ∥ĥ∥Ls + ∥ûd∥Ls + ∥θ̂d∥Ls

)1/µ
,

for all local minimizers ϱ ∈ U of (99) with ∥ϱ− ϱ⋆∥L1×L1 < α.

Proof. Because ϱ ∈ U is a weak local minimizer of (99) we see that

ζ = (f̂ , ĥ, û0, θ̂0,−α1ûd,−α2θ̂d, 0, 0,−ε1q,−ε2Θ) ∈ 𭟋(ϱ).

A direct application of Theorem 5.6 and (43) will thus give us the desired estimate.

Remark 5.14. We mention that the underlying assumption to achieve this stability is that τ = 1 in As-
sumption 4.17. Nevertheless, we can also achieve such stability with τ = 1/2, see the proof of [12, Theorem
5.2]. We decided not to repeat the proof here since if the second variation is nonnegative both the assumptions
are equivalent.

Remark 5.15. If both Assumption 4.17 and Assumption 4.18 are satisfied at the same time, we can extend
the interval for feasible µ from [1, 2) to [1,∞). See the arguments in [20, Remark 6.10].
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5.2 Stability under Assumption 4.18

To obtain the error estimates for the optimal controls we used Assumption 4.17 which deals with the growth
of the objective functional with regards to the controls. Under Assumption 4.18, which employs a growth
of the objective functional with respect to the states, we can still obtain stability estimates. However,
Assumption 4.18 allows only stability estimates of the states and adjoint states, and we can not utilize the
normal cone formulation and Lemma 5.5. Instead, we prove the estimates directly. In what follows, we
assume β1 = β2 = 0, and use perturbations of the form ζ0 = (f̂ , ĥ, û0, θ̂0,η, η, 0, 0, 0, 0) if not otherwise
indicated.

Theorem 5.16. Let ϱ⋆ ∈ U satisfy Assumption 4.18 for τ = 1, and (u⋆, θ⋆) = S(ϱ⋆). Then there exists
constants c, α such that

∥u− u⋆∥L2 + ∥θ − θ⋆∥L2 ≤ c∥ ζ0 ∥P (102)

for all ϱ ∈ U with ζ0 ∈ 𭟋(ϱ) and ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < α, where (u, θ) = S(ϱ).

Proof. Since 0 ∈ (ŵ, Ψ̂) + NU (ϱ), where (ŵ, Ψ̂) = D̂(ϱ), we see, according to (100), Assumption 4.18 and
the mean value theorem, that

0 ≥ J ′
ζ0
(ϱ)(ϱ− ϱ⋆) ≥ J ′(ϱ⋆)(ϱ− ϱ⋆) + J ′′(ϱ⋆)(ϱ− ϱ⋆)2 −

∣∣∣J ′
ζ0
(ϱ)(ϱ− ϱ⋆)− J ′(ϱ)(ϱ− ϱ⋆)

∣∣∣
−
∣∣∣J ′(ϱ)(ϱ− ϱ⋆)− J ′(ϱ⋆)(ϱ− ϱ⋆)− J ′′(ϱ⋆)(ϱ− ϱ⋆)2

∣∣∣
≥ c
(
∥u− u⋆∥2L2 + ∥θ − θ⋆∥2L2

)
−
∣∣∣J ′

ζ0
(ϱ)(ϱ− ϱ⋆)− J ′(ϱ)(ϱ− ϱ⋆)

∣∣∣
−
∣∣∣J ′′(ϱt)(ϱ− ϱ⋆)2 − J ′′(ϱ⋆)(ϱ− ϱ⋆)2

∣∣∣,
where (u, θ) = S(ϱ), (u⋆, θ⋆) = S(ϱ⋆) and ϱt = ϱ⋆ + t(ϱ− ϱ⋆) for some t ∈ [0, 1], as long as ∥u− u⋆∥L∞ +
∥θ − θ⋆∥L∞ < α1, where α1 > 0 is as in Assumption 4.18. Thus, by letting (ut, θt) = S(ϱt), Lemma 4.16
gives us – whenever ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < min{α1, δ} –∣∣∣J ′

ζ0
(ϱ)(ϱ− ϱ⋆)− J ′(ϱ)(ϱ− ϱ⋆)

∣∣∣ ≥ c
(
∥u− u⋆∥2L2(Q) + ∥θ − θ⋆∥2L2(Q)

)
− ε
(
∥ut − u⋆∥2L2(Q) + ∥θt − θ⋆∥2L2(Q)

)
Using the same arguments as in the proof of Theorem 4.19, we thus see that∣∣∣J ′

ζ0
(ϱ)(ϱ− ϱ⋆)− J ′(ϱ)(ϱ− ϱ⋆)

∣∣∣ ≥ c1
(
∥u− u⋆∥2L2 + ∥θ − θ⋆∥2L2

)
≥ c1

2

(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)2
whenever ∥u − u⋆∥L∞ + ∥θ − θ⋆∥L∞ < α for some α > 0. It is left for us to estimate the left-hand side.
Using (51), (100) and Hölder inequality, we thus see that∣∣∣J ′

ζ0
(ϱ)(ϱ− ϱ⋆)− J ′(ϱ)(ϱ− ϱ⋆)

∣∣∣ ≤ α1(∥v∥L2∥û− u∥L2 + ∥û− ud∥L2∥v̂ − v∥L2)

+ α2(∥ϑ∥L2∥θ̂ − θ∥L2 + ∥θ̂ − θd∥L2∥ϑ̂− ϑ∥L2) + ∥η ∥L2∥v̂∥L2 + ∥η∥L2∥ϑ̂∥L2

where (v, ϑ) = S ′(ϱ)(ϱ − ϱ⋆) and (v̂, ϑ̂) = Ŝ ′(ϱ)(ϱ − ϱ⋆). Let us now majorize the terms, first by utilizing
Lemma 5.2 to get

α1∥v∥L2∥û− u∥L2 + α2∥ϑ∥L2∥θ̂ − θ∥L2

≤ c
(
∥v∥L2 + ∥ϑ∥L2

)(
∥û0∥W 2−2/s,s

0,σ
+ ∥θ̂0∥W 2−2/s,s

0
+ ∥f̂∥Ls + ∥ĥ∥Ls

)
,

On the other hand, we use Lemmata 5.2 and 5.3

α1∥û− ud∥L2∥v̂ − v∥L2 + α2∥θ̂ − θd∥L2∥ϑ̂− ϑ∥L2

≤ c
(
∥v∥L2 + ∥ϑ∥L2

)(
∥û0∥W 2−2/s,s

0,σ
+ ∥θ̂0∥W 2−2/s,s

0
+ ∥f̂∥Ls + ∥ĥ∥Ls

)
,
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where the constant c > 0 consists of the constants MU and MP . Similarly, we get by virtue of Lemmata 5.2
and 5.3

∥η ∥L2∥v̂∥L2 + ∥η∥L2∥ϑ̂∥L2 ≤
(
∥η ∥L2 + ∥η∥L2

)(
∥v∥L2 + ∥ϑ∥L2 + ∥v̂ − v∥L2 + ∥ϑ̂− ϑ∥L2

)
≤
(
1 +MP

)(
∥η ∥L2 + ∥η∥L2

)(
∥v∥L2 + ∥ϑ∥L2

)
,

We finally use (63) and (104) to find an α > 0 for which ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < α implies

c1
2

(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)2
≤ c
(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)(
∥û0∥W 2−2/s,s

0,σ
+ ∥θ̂0∥W 2−2/s,s

0
+ ∥f̂∥Ls + ∥ĥ∥Ls + ∥η ∥L2 + ∥η∥L2

)
.

If ∥u − u⋆∥L2 + ∥θ − θ⋆∥L2 = 0 then (103) holds trivially. Otherwise, we can divide both sides by ∥u −
u⋆∥L2 + ∥θ − θ⋆∥L2 which then gives us (103).

If we allow also control perturbations in the objective functional we still obtain Hölder stability.

Theorem 5.17. Let ϱ⋆ ∈ U satisfy Assumption 4.18 for τ = 1, and (u⋆, θ⋆) = S(ϱ⋆). Then there exists
constants c, α > 0 such that

∥u− u⋆∥L2 + ∥θ − θ⋆∥L2 ≤ c∥ ζ ∥1/2P (103)

for all ϱ ∈ U with ζ ∈ 𭟋(ϱ) and ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < α, where (u, θ) = S(ϱ).

To prove the theorem we shall rely on the following lemmata which are analogous to, and whose proofs
can be patterned with that of Lemma 4.11.

Lemma 5.18. Let ϱ, ϱ̂ ∈ Ls(I;Ls(ωq) × Ls(ωh)), (û, θ̂) = Ŝ(ϱ), (û⋆, θ̂⋆) = Ŝ(ϱ̂) ∈ W 2,1
s,σ × W 2,1

s and

(v̂⋆, ϑ̂⋆) = Ŝ ′(ϱ̂)(ϱ− ϱ̂) ∈W 2,1
s,σ×W 2,1

s . There exists δ > 0 such that whenever ∥û⋆− û∥L∞ +∥θ̂⋆− θ̂∥L∞ < δ
we have

∥û⋆ − û∥L2 + ∥θ̂⋆ − θ̂∥L2 ≤ 2
(
∥v̂⋆∥L2 + ∥ϑ̂⋆∥L2

)
≤ 3
(
∥û⋆ − û∥L2 + ∥θ̂⋆ − θ̂∥L2

)
(104)

Proof of Theorem 5.17. The proof follows that of Theorem 5.16, using (63) and (104) to find an α > 0 for
which ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < α implies

c1
2

(
∥u− u⋆∥L2 + ∥θ − θ⋆∥L2

)2 ≤ c∥ϱ− ϱ⋆∥L1×L1∥ ζ ∥P .

Due to the box constraints, we have a uniform upper bound on ∥ϱ − ϱ⋆∥L1×L1 , and taking the root yields
the claim.

As a direct consequence, we obtain the following stability result for the adjoint states.

Corollary 5.19. Let ϱ∗ ∈ U satisfy Assumption 4.18 with τ = 1. Then, there exist positive constants c, α
such that

∥∇(w −w⋆)∥L∞(Q) + ∥∇(Ψ−Ψ⋆)∥L∞(Q) ≤ c∥ ζ0 ∥
2/5
P (105)

for all local minimizers ϱ ∈ U of (Pζ) with ζ0 and ∥u − u⋆∥L∞ + ∥θ − θ⋆∥L∞ < α, where (u, θ) = S(ϱ),
(u⋆, θ⋆) = S(ϱ⋆), (w,Ψ) = D(ϱ) and (w⋆,Ψ⋆) = D(ϱ⋆). If control perturbations in the objective functional
are admissible in ζ, there exist constants c, α > 0 such that

∥∇(w −w⋆)∥L∞(Q) + ∥∇(Ψ−Ψ⋆)∥L∞(Q) ≤ c∥ ζ ∥2/10P (106)

for all local minimizers ϱ ∈ U of (Pζ) with ζ and ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < α.
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Proof. From the embedding W 2,1
5,σ ×W 2,1

5 ↪→ C(I;C1(Ω)2 × C1(Ω)) and by virtue of Theorem 3.7

∥∇(w −w⋆)∥L∞(Q) + ∥∇(Ψ−Ψ⋆)∥L∞(Q) ≤ c (∥F∥L5 + ∥G∥L5) ,

where

F = ((u− u⋆) · ∇)w + (∇(u⋆ − u))⊤w +Ψ∇(θ⋆ − θ) + α1(u− u⋆),

G = (u⋆ − u) · ∇Ψ+ α2(θ − θ⋆),

wT = β1(u(T )− u⋆(T )), and ΨT = β2(θ(T )− θ⋆(T )).

Using similar arguments as in Lemma 4.14 and 5.4 we see that

∥∇(w −w⋆)∥L∞(Q) + ∥∇(Ψ−Ψ⋆)∥L∞(Q)

≤ c (∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞)
3/5

(∥u− u⋆∥L2 + ∥θ − θ⋆∥L2)
2/5

.

Finally, Theorem 5.16 gives us the desired estimate. The second claim is then a consequence of Theorem 5.17.

5.2.1 Stability of the the second-order sufficient optimality condition

In this section, we advance in discussing an open question regarding the stability of the second-order sufficient
optimality condition commonly used in PDE-constrained optimal control. The investigation of second-order
optimality conditions has been carried out extensively in the last decades, for an overview we refer to the
survey paper [9]. We are interested in the following stability result: Assume that there exists a positive
constant c such that the optimal control ϱ⋆ and optimal state (u⋆, θ⋆) = S(ϱ⋆) of (P) satisfies

J ′′(ϱ⋆)(ϱ− ϱ⋆)2 ≥ c
(
∥u− u⋆∥2L2 + ∥θ − θ⋆∥2L2

)
for all (ϱ− ϱ⋆) ∈ Cτϱ⋆ , (107)

where (u, θ) = S(ϱ) and Cτϱ⋆ is the extended cone of critical directions in ϱ⋆. Now consider a sufficiently

small perturbation ζ, a solution ϱ̂ for the perturbed problem (Pζ), and (û⋆, θ̂⋆) = Ŝ(ϱ̂) its optimal state.
Can we infer from (107) the existence of a positive constant ĉ such that

J ′′
ζ (ϱ̂)(ϱ− ϱ̂)2 ≥ ĉ

(
∥û− û⋆∥2L2 + ∥θ̂ − θ̂⋆∥2L2

)
for all (ϱ− ϱ̂) ∈ Cτϱ̂ (108)

where (û, θ̂) = Ŝ(ϱ), with ϱ⋆ − ϱ̂ being sufficiently small? This question was discussed for instance in [28,
Theorem 4.6], where the authors show that (108) holds for the directions ϱ − ϱ⋆, that is for the cone Cτϱ⋆ .
But this cone is not a critical cone for the perturbed problem (Pζ). In this section, we show that by making a
stronger assumption than (107), but which is still very reasonable for tracking type optimal control problems,
we can derive the growth in (108). Namely, we ask for the following: there exists a positive constant c̃ such
that

min{α1, α2} − 2 (∥∇w⋆∥L∞ + ∥∇Ψ⋆∥L∞) ≥ c̃. (109)

It is clear that (107) is implied by (109) and that (109) holds if (73) is satisfied, which on the other hand
is very reasonable for tracking-type problems. Then we can infer the stability of the second-order condition
(108) as a consequence of the solution stability obtained in Theorem 5.16 for sufficiently small perturbations.

Theorem 5.20. Let ϱ⋆ ∈ U satisfy (73) and let ζ be sufficiently small. Suppose that ϱ̂ ∈ U and α > 0 are
such that ζ ∈ 𭟋(ϱ̂) and ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < α, where (u⋆, θ⋆) = S(ϱ⋆), (u, θ) = S(ϱ̂) and α > 0 is
as in Theorem 5.16. Then there exist positive constants c and δ such that

J ′′
ζ (ϱ̂)(ϱ− ϱ̂)2 ≥ c

(
∥û− û⋆∥2L2 + ∥θ̂ − θ̂⋆∥2L2

)
(110)

for all ϱ ∈ U with ∥û− û⋆∥L∞ + ∥θ̂ − θ̂⋆∥L∞ < δ, where (û, θ̂) = Ŝ(ϱ) and (û⋆, θ̂⋆) = Ŝ(ϱ̂).
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Proof. First, if condition (73) is fulfilled, there exist a positive constant c̃, such that the control ϱ⋆ satisfies

min{α1, α2} − 2 (∥∇w⋆∥L∞ + ∥∇Ψ⋆∥L∞) ≥ c̃, (111)

where (w⋆,Ψ⋆) = D(ϱ⋆). Furthermore, we infer from the proof of Theorem 4.20 that (111) implies

J ′′(ϱ⋆)(ϱ− ϱ⋆)2 ≥ c
(
∥u− u⋆∥2L2 + ∥θ − θ⋆∥2L2

)
, (112)

whenever ∥u− u⋆∥L∞ + ∥θ − θ⋆∥L∞ < α1 for some α1 > 0, where (u, θ) = S(ϱ). This also implies that ϱ⋆

is a strong local minimizer of (P). Now to prove (110), let us first denote as (v̂⋆, ϑ̂⋆) = Ŝ ′(ϱ̂)(ϱ − ϱ̂) and

(ŵ⋆, Ψ̂⋆) ∈ D̂(ϱ̂), we thus estimate the second variation of the perturbed problem below as follows:

J ′′
ζ (ϱ̂)(ϱ− ϱ̂)2 = α1∥v̂⋆∥2L2 + α2∥ϑ̂⋆∥2L2 − 2((v̂⋆ · ∇)v̂⋆, ŵ⋆)Q − 2(v̂⋆ · ∇ϑ̂⋆, Ψ̂⋆)Q

= α1∥v̂⋆∥2L2 + α2∥ϑ̂⋆∥2L2 − 2((v̂⋆ · ∇)v̂⋆,w⋆)Q − 2(v̂⋆ · ∇ϑ̂⋆,Ψ⋆)Q
− 2((v̂⋆ · ∇)v̂⋆, ŵ⋆ −w⋆)Q − 2(v̂⋆ · ∇ϑ̂⋆, Ψ̂⋆ −Ψ⋆)Q

≥
(
min{α1, α2} − 2 (∥∇w⋆∥L∞ + ∥∇Ψ⋆∥L∞)

)(
∥v̂⋆∥2L2 + ∥ϑ̂⋆∥2L2

)
− 2

(
∥∇(ŵ⋆ −w⋆)∥L∞ + ∥∇(Ψ̂⋆ −Ψ⋆)∥L∞

) (
∥v̂⋆∥2L2 + ∥ϑ̂⋆∥2L2

)
Denoting by (w,Ψ) = D(ϱ̂), from Lemma 5.4 and Corollary 5.19 we get

∥∇(ŵ⋆ −w⋆)∥L∞ + ∥∇(Ψ̂⋆ −Ψ⋆)∥L∞

≤ ∥∇(ŵ⋆ −w)∥L∞ + ∥∇(Ψ̂⋆ −Ψ)∥L∞ + ∥∇(w −w⋆)∥L∞ + ∥∇(Ψ−Ψ⋆)∥L∞

≤ c
(
∥ ζ ∥P + ∥ ζ ∥1/5P

)
.

Therefore, by utilizing Lemma 5.18 and by choosing ζ small enough such that ∥ ζ ∥P + ∥ ζ ∥1/5P < c̃, we get
the desired estimate.

It is clear that the constant c > 0 in (110) holds for all ζ small enough such that ∥ ζ ∥P +∥ ζ ∥1/5P < c̃. As
a direct consequence of Theorem 5.20 we have the following result, which highlights the optimality of ϱ̂ ∈ U
and uniform growth.

Corollary 5.21. Suppose that the assumptions in Theorem 5.20 hold. Then there exist constants δ > 0 and
ĉ > 0, which is independent on ζ, such that

Jζ(ϱ)− Jζ(ϱ̂) ≥ ĉ
(
∥û− û⋆∥2L2 + ∥θ̂ − θ̂⋆∥2L2

)
(113)

and all ϱ ∈ U such that ∥û− û⋆∥L∞ +∥θ̂− θ̂⋆∥L∞ < δ, where (û⋆, θ̂⋆) = Ŝ(ϱ̂) and (û, θ̂) = Ŝ(ϱ). This shows
that ϱ̂ ∈ U is a strong local minimizer of (Pζ).

Proof. We apply Taylor’s theorem and Theorem 5.20 to infer

Jζ(ϱ)− Jζ(ϱ̂) = J ′
ζ(ϱ̂)(ϱ− ϱ̂) + 1

2
J ′′
ζ (ϱ̂t)(ϱ− ϱ⋆,ζ)2

≥ J ′
ζ(ϱ̂)(ϱ− ϱ̂) + 1

2
J ′′
ζ (ϱ̂)(ϱ− ϱ̂)2 − 1

2

∣∣∣J ′′
ζ (ϱ̂t)(ϱ− ϱ̂)2 − J ′′

ζ (ϱ̂)(ϱ− ϱ̂)2
∣∣∣

≥ c
(
∥û− û⋆∥2L2 + ∥θ̂ − θ̂⋆∥2L2

)
− 1

2

∣∣∣J ′′
ζ (ϱ̂t)(ϱ− ϱ̂)2 − J ′′

ζ (ϱ̂)(ϱ− ϱ̂)2
∣∣∣.

where ϱ̂t = ϱ̂+ t(ϱ− ϱ̂) for some t ∈ (0, 1) and c > 0 is as in Theorem 5.20. Using arguments as in the proof
of Lemma 4.15 and Lemma 4.16, the last term can be estimated by

1

2

∣∣∣J ′′
ζ (ϱ̂t)(ϱ− ϱ̂)2 − J ′′

ζ (ϱ̂)(ϱ− ϱ̂)2
∣∣∣ ≤ ε(∥û− û⋆∥2L2 + ∥θ̂ − θ̂⋆∥2L2), (114)

for all ϱ ∈ U with ∥û−û⋆∥L∞+∥θ̂−θ̂⋆∥L∞ < α, where ε > 0 can be chosen arbitrarily small and independent
of ζ. Thus we can select a uniform growth constant ĉ := c− ε > 0.
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Remark 5.22. The results in this section rely on (73) which already implies global growth of the second
variation, therefore the restriction of the second-order condition to the extended critical cone is not needed.

6 Conclusion

In this paper, we studied a tracking-type optimal control problem subject to the Boussinesq system and
the controls appear distributively both on the continuity and heat equations which satisfy a box constraint.
Since the objective functional contains no regularization for the controls, the solution is expected to be of
bang-bang type. We provided first order necessary and second order sufficient conditions for the optimal
control problem. The main objective in this paper was to establish the stability of the problem with respect
to several perturbations: i.) linear perturbations on both the objective functional and the state equations;
ii.) nonlinear perturbations in the form of the Tikhonov regularization and perturbation on the desired data.

Aside from the said stability results, we also provided the Lp regularity of the solutions of the Boussinesq
system, its linearization and a corresponding adjoint system, which – as far as we are aware – is a novelty.
Another novelty that we would want to highlight is the stability of the growth of the second-order derivative
of the objective functional with respect to sufficiently small perturbations which does not depend on the
extended critical cone of critical directions for the optimal bang-bang control.
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