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Abstract

In this paper, we are concerned with error estimates for the numerical approximation for affine optimal con-
trol problems subject to semilinear elliptic PDEs. For the error estimates, we focus on local minimizers that satisfy
certain local growth conditions. The local growth conditions we consider appeared recently in the context of so-
lution stability and encompass the joint growth of the first and second variation of the objective functional. These
types of growth conditions are especially meaningful for affine control constrained optimal control problems,
due to the fact that the first variation can satisfy a local growth, which is not the case for unconstrained problems.
The main results of this paper are the achievement of error estimates for the numerical approximations generated
by a finite element scheme with piecewise constant controls or a variational discretization scheme. Even though
the considered growth conditions are weaker than the ones appearing in the recent literature on finite element
error estimates for afhine problems, in this paper we substantially improve the existing error estimates for both
the optimal controls and the states.

1 Introduction

Afhine optimal control problems, by which we mean problems, where the controls appear at most in an affine way
in the objective functional and the constraining equation, are a relatively recent subject of study, especially when
PDE constraints are considered. For the analysis of affine optimal control problems subject to ODE constraints,
we refer to the papers [23] 27, 33} 36, 37, 38} |39} |40} |41} 42] which contain results related to sufficient second-
order conditions and the metric regularity and stability of the optimal control problems, especially for ones with
bang-bang structure of the optimal controls. An application of the regularity and stability investigations is for
error estimates for the discretized problem, for instance, the Euler discretization, which can be found in [39]]. For
PDE-constrained problems, the earliest work related to affine problems is to the best knowledge of the author the
work [6], which was extended to problems with different constraining PDEs or objective functionals for instance
in [2,|14} 15, |16l 24, 25]]. Recently, the study of afine PDE-constrained optimal control problems was done in the
works [7, (18, 19| under assumptions resembling partially the assumptions that appeared in the context of ODE-
optimal control in [39]. A typical example of an affine problem is the tracking type objective functional which is
a common type of objective functional that is used in many applied situations including engineering, finance, and
more recently machine learning. Often a so-called Tikhonov regularization term, a quadratic term with respect
to the controls, is added to the objective functional. This is mainly for two reasons. First, in some situations,
it is of interest to penalize the control cost. Second, the incorporation of the Tikhonov regularization term has
some significant implications for the analysis of the control problem. One of which is that by adding such a term,
under mild additional assumptions, a quadratic growth of the second variation of the objective functional can be
guaranteed, making the problem coercive. This then has many implications in the analysis of the problem, for
instance, the study of error estimates for the numerical approximation. On the other hand, this comes with the
price that adding such a term represents a distortion of the original problem; the optimal controls and states of the
regularized problem can have substantially different structures. For instance, the bang-bang property of optimal
controls can be expected in affine problems but not in regularized ones.

To compensate for the missing coercivity due to the absence of a Tikhonov regularization term, the analysis
of affine (unregularized) optimal control problems, in general, builds on certain assumptions related to the growth
of the objective functional at local minimizers. In this paper, to study error estimates for the numerical approx-
imation, we rely on assumptions that were recently studied in the context of strong sub-metric regularity and
solution stability. These growth conditions encompass the local joint growth of the first and second variations,
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and are weaker than the growth of the objective functional satisfied by Tikhonov regularized problems and also
the usual assumptions made in the study of afhine problems.

Using these assumptions, which we will specify below, we consider error estimates for the numerical approx-
imation generated by a finite element scheme with piecewise constant controls and a variational discretization
scheme. The analysis is motivated by the works [9, |12} 21, 25] on which the results of this paper build. Still, in
comparison to the results therein, the error estimates for the optimal controls and states are under the assumptions
introduced in [7, |19], which are weaker than the ones assumed in [9} |12, 21, 25]. For a detailed comparison in
case of a parabolic constraining PDE, we refer to [8|18], for the convenience of the reader, we provide a short
discussion at the end of Section [3} For instance, we utilize the following assumption: given a reference optimal
control @ and a number € (0, 1], there exist positive constants v and ¢ such that

1
J(u) — J(u) > c||u — a||ﬁ(”m for all feasible controls u with |[u — @11 0) < a. (1.1)

Conditions of the type arise naturally in characterizing strict bang-bang optimal controls. They also appear
due to sufficient second-order optimality conditions and the structural assumption on the adjoint state, see [12]. A
slightly stronger assumption that implies was first considered in [39] for affine ODE optimal control problems
and [19] for PDE optimal control problems. Recently, appeared in [34] 35] in the context of eigenvalue
optimization problems. There, it was shown that for a certain type of eigenvalue optimization problem, condition
(1.1) is implied by a growth of the second-order shape derivatives.

In this paper we do not explicitly consider a sparsity-promoting term in the objective functional as it is done
for instance in [9]. Still, the proofs can be easily adapted to include such a term following the arguments in
[9]. Also, we expect the approach presented in the paper, to apply to the situation of having a semilinear elliptic
non-monotone and non-coercive state equation as in [[10] using the results of [[11].

To the author’s best knowledge, the assumptions considered in this paper are the weakest so far that still allow
error estimates for the numerical approximation for problems where the control appears at most in an affine way
in the objective functional and we expect to approach discussed in this paper to be easily adaptable to optimal
control problems constrained by various other PDEs. It may also be feasible to achieve error estimates for the
numerical approximation for a 2-dimensional Neumann boundary control problem. But we postpone the analysis
to future work.

Let us list the novelties in the paper. In Proposition we answer a question raised in [7] on the structure of
optimal controls satisfying one of the assumptions introduced in [[7]. This result allows us to apply the assumption
for error estimates for the numerical approximation later on. Under conditions similar to the one introduced
in [7] in the context of solution stability and conditions , we derive error estimates for a finite element
discretization scheme with piecewise constant controls in Theorem In the first part of the proof of the main
theorem, Theorem we argue similarly as in the first steps of the proof of [9, Theorem 7], in contrast to the
proof in [9, Theorem 7], we employ arguments centered around the linearized state. This allows us to improve
the error estimates for the optimal controls for v € (0,1), from ||a, — @11 (,) < ch™ to ||an — | pr(a,) < ch?
(and similarly for the states). Under additional assumptions on the structure of the level set of the switching
function, which is given by the adjoint state for particular tracking type problems, we can further improve the

. _ _ _ _ 2y . . .
error estimate from ||y, — @/ L1 (q,) < ch? to |[up — 1|1 (q,) < ch 71 in Theorem Using the assumptions of

[19,7]], we prove error estimates for a variational discretization scheme in Theorem and discuss a relationship
with solution stability afterward.

The paper is structured as follows: In the remainder of this section, we state the main assumptions that hold
throughout the paper and state some additional remarks on the notation. In Section [2| we collect results on
the involved PDEs, and in Section [3| the optimal control problem is discussed. In Section 4l we define the
discretization schemes and prove error estimates.

Let © C R", n € {2,3}, be a bounded domain with C*!-boundary. Given constants u,,u, € R such that
uq < up, define the set of feasible controls by

U :={ue L>®Q)| u, <ulx) <uy foraa. z e Q} (1.2)

and consider the optimal control problem

min{J(u) ::/QL(:r,y(x),u(x))dx}, (1.3)

ueU



subject to

Ay+f(ay):u in Qa
{ y=20 onl'. (1.4)

Denote by y, the unique solution of the state equation that corresponds to the control u. The objective inte-
grand L appearing in (1.3) satisfies additional smoothness conditions, given below in Assumption

1.1 Main assumptions and notation
The following assumptions, close to those in [7, 8} (9, |12]], are standing in all of the paper.

Assumption 1.1. The following statements are fulfilled.
(i) The operator A : H}(2) — H (), is given by

Ay == Z 87;j (ai,j(x)awiy)v

=1
where a; j € C%Y(Y). Further, the a; ; satisfy the uniform ellipticity condition

Ing >0: Ml < Z a; ()& forall € € R™ and a.a. x € Q.

ij=1
(ii) We assume that f : @ x R — R is a Carathéodory function of class C* with respect to the second variable satisfying:

F(,0) € L(Q) and GL(z,y) > 0y € R,

VM >03Csp >0s.t ﬂ(x )+62—f(a: W <CrumVy <M
M S L ay Y 8y2 YY) S UM VY > )
Yo > 0and VM > 03 & > 0 such that

2f 92

f .
afyg(%yz) - a—yQ(mﬂ) < p Yyl lye| < M with |ys — y1| < e,

for almost every x € Q.
Assumption 1.2. The function L : Q@ x R? — R is Carathéodory and of class C* with respect to the second variable.

In addition, we assume that
L(x» Y, u) = La(xv y) =+ Lb(x, y)u With La('v O)a Lb('a O) € LI(Q)a
VM > 03CL ar > 0 such that

L 2L
S )| +| 55 (o] < Crar Vol ful <
Vo > 0and M > 0 Je > 0 such that

0L 0L
Tyg(xaymu) - aTJQ(%yl,U)

< plyil, ly2| < M with lya — y1| <,

for almost every x € Q.

In the paper, we denote by ¢ a positive constant that may change its value from line to line.

2 Auxiliary results for the state equation

We collect properties of solutions to linear and semilinear elliptic PDEs. The results in this section are standard by
now; we refer to [7, [9]. In [7]], the results are obtained for a non-monotone and non-coercive semilinear elliptic
PDE. The PDE considered in this paper can be seen as a special case, and the results apply. Let ag € L>(2) be a
nonnegative function. We consider the properties of solutions to the linear equation

Az+apz=vinQ, z=0o0nT. (2.1)



Theorem 2.1. |7 Lemma 2.2] Let v € L"(Y) with r > n/2. Then the linear equation (2.1) has a unique solution
Zy € Hé (Q) N C(QY). Further there exists a positive constant C,. indcpendent ofao and v such that

o (2.2)

HZUHH(%(Q) + ”ZUHC(Q) < Cr|lv

Lemma 2.2. |7 Lemma 2.3] Assume that s € [1,-"5), s is its conjugate, and let ag € L>(Q) be a nonnegative
function. Then, there exists a constant Cs/ independent of ag such that

HZ’U|L5(Q) < CS/H'U”Ll(Q), Yov € Hﬁl(ﬂ)ﬂLl(Q), (23)
where z, satisfies the equation (2.1), and Cy is given by (2.2) withr = §'.
For the semilinear state equation, we cite the following regularity result.

Theorem 2.3. [9, Theorem 1] For every u € L" () with r > n/2 there exists a unique y,, € Y := H}(Q) N C(Q)
solution of (1.4). Moreover, there exists a constant T, > 0 independent of w such that

yull ) + vulle@ < Trlllullzr@) + 11£(0)lne ()
If wi, — w weakly in L" (), then we have the strong convergence
Y, = Yullzz @) + 1Yu, — Yullo@) — 0
Further if u € L*(Q), we have y,, € W () for all r < co and

lallwarei@y < Mor (Jlull ey + 170l )

for a positive constant My independent of w and r.
For each r > n/2, we define the map G, : L"(Q) — H} () N C(Q) by G, (u) = yu.

Theorem 2.4. |7, Theorem 2.6] Let Assumption|1.1| hold. For every v > % the map G, is of class C?, and the first
and second derivatives at w € L™(Q) in the directions v,v1,v2 € L"(Q), denoted by z,., = G| (u)v and zy, v, =
G (u)(v1,v2), are the solutions of the equations

Azt Sz =vin®, s =o o, (24)
0 0
Azt aig(x’ yu)z - _aiyé(@ yu)zu,m Zu,va in€l, z=0onl, <25)

respectively.

Lemma 2.5. |7, Lemma 2.7] The following statements are fulfilled. Suppose that s € [1, ). Then, there exist a
constant M depending on s such that for every u,u € U

1Yu — Ya — 2a,u—al Ls() < M|lyu — yﬂ”%2(Q)~ (2.6)
There exists € > 0 such that for all w, @ € U with ||y, — yallc() < € the following inequality is satisfied

1/2|lyu — vallc@) < lzau-allo@) < 3/21vu — yallo@)- (2.7)

1/2(lyu — yallz2 o) < llzau-allr2@) < 3/20yu — yallL2()- (2.8)

We need the following lemma which is standard, proofs can be found in [[29) Theorem 8.30] or [44,
Theorem 4.2] respectively. The claim is well known.

Lemma 2.6. Let u,@ € U. Then for n < p and some positive constant C,, independent of w and @ it holds
(7 *yﬁHH[}(Q) < 1/Aallu—allw-1o. (2-9)

19u — vallo@ < Cpllu—tllw-10. (2.10)



3 The optimal control problem

The optimal control problem (1.2)-(1.3) is well posed under Assumptions [1.1] and By the direct method
of calculus of variations, we obtain the existence of at least one global minimizer, see [45, Theorem 5.7]. In
this section, we calculate the first and second variation of the objective functional, state the first-order necessary
optimality conditions, and introduce the sufficient conditions for optimality.

Definition 3.1. We say that t € U is an L™ (Q)-weak local minimum of problem (1.2)-(1.4), if there exists some positive
¢ such that

J(@) < J(u) Vu el with |lu—alLrq) <e.
We say that @ € U is a strong local minimum of (1.2)-(1.4), if there exists € > 0 such that
J(u) < J(u) Yu €U with ||y, — yallc@) <&
We say that @ € U is a strict weak (strong) local minimum if the above inequalities are strict for u # .

The notion of strong local minimizers was first considered in [[1, Definition 1.6]. For a discussion of these
notions of optimality, we refer to [8| Lemma 2.8].

Theorem 3.2. For every r > %, the functional J : L"(Q) — R is of class C*. Moreover, given u,v,v1,vs € L"()
we have

J' (u)v = /Q [%(m,yu,u)} Zuw T {g—i(x,yu,u)}vdx = /Q [gpu +Lb(x,yu)]vdm,

0L 0% f oLy
1 _ — o, —2 —_—
J (u) (U17 U2) = /Q [3y2 (I, Yu, u) Pu 6y2 (I7 yu)} Zu,vy Fu,vo dz + /Q |: By (x, yu)} (Zu,mUQ + Zu,vzvl) dz.

Here, ¢, € Hg(Q) N C(Q) is the unique solution of the adjoint equation

of oL
A u = 5 > Juy ’ Qa
w =0 on 9N.

Due to the standing assumptions of the paper we can even infer that ¢, € W?P?, p < co. To obtain this
regularity for a variational solution to (3.1) it is necessary that the boundary has regularity C'1, see [30, Section
2]. We define the Hamiltonian 2 x R x R x R 3 (z,y, p,u) — H(z,y,¢,u) € R by

H(:E,y,cp,u) = L(x,y,u)+cp(uff(x,y)) (32)

The following local form of the Pontryagin type necessary optimality conditions for problem — stated
below, is well known (see e.g. [5, 8} 45] and [9, Theorem 4]).

Theorem 3.3. If @ is a weak or sirong local minimizer for problem (1.3)-(1.2), then there exist unique elements g, ¢ €
HY(Q) N L>°(Q) such that

AG+ f(,9) =ain,
{ gy =0 on 0N. (3.3)
A’—a—H( J, @, ) in
¥ = ay T,Y,p,u)inii, (34)
@ =0 on 0N.
/Qaali(x,y,go,u)(u—u)dmzo YueU. (3.5)



3.1 Sufficient assumption for local optimality

In this subsection, we discuss three assumptions of different strengths that all imply strict local optimality and
appeared recently in the context of affine PDE-constrained optimal control problems in [[7,19]. In what follows,
(@, 7, p) denotes a fixed triplet satisfying the first-order necessary optimality condition. To shorten the notation,

we denote H,(z) := %—IJ(I,Q(@, o(x),u(z)).

Assumption 3.4. Lety € (2/(2+n),1] and B € {1/2,1} be given. There exist positive constants k and « such that
/(= — 1"y — _\2 _ 1+%
P (@) =) + 87" (@) u— 1)? > wllu— 5y 69

Sor all w € U with ||u — 1|11 q) < a.

Assumption B = 1) was first considered in the context of elliptic PDE-constrained optimization in [19].
If @ satisfies the first-order optimality condition (3.5), Assumption (ﬁ = 1) implies Assumption[3.4(8 = 1/2).
If the second variation of the objective funcional at the control @ is nonnegative, the cases 5 € {1/2,1} are
equivalent. Indeed, the second variation can be negative at @ for certain directions for box-constrained optimal
control problems; see, for instance, [[18} Example 2]. Further Assumption [3.4|implies the bang-bang structure of
the control @, see [[19, Proposition 4.1]. At this point, let us also remark that if the control @ is bang-bang, then
the convergence uj, —* @ in L>(Q) implies the strong convergence of {u;}72; to @ in L'(€), see [[19, Lemma
4.2].

Let us consider the two assumptions on the optimal control problem introduced in [[7]. Due to , they
present a weakening of Assumption

Assumption 3.5. Let 3 € {1/2,1} be given. There exist positive constants r and o with
J' (@) (u—a) + BJ" (@) (u —a)* > k|l 2au—allr2(@)lu — @l 10 (3.7)
Jor all w € U with ||y — yallc@) < o
Assumption 3.6. Let 3 € {1/2,1} be given. There exist positive constants r and o with
J'(@)(u —a) + BJ" (@) (u — @) > kllzau-alli2() (3.8)
Jor all w € U with ||y — yallc@) < o

Assumption the weakest of the three assumptions and does not imply the bang-bang property of the
optimal controls. Assumption is especially interesting as it is the weakest assumption so far that allows for
solution stability estimates of the optimal states, see [7]. The interest of Assumption [3.5|stems from the fact that
it is the weakest assumption so far that still allows for solution stability for the optimal controls which is also
discussed in [7]]. Further, in [[7], it was conjectured that Assumption may also be satisfied by optimal controls
that are not bang-bang. If OTL; = 0, we can answer this negatively in the following proposition.

Proposition 3.7. Let Assumplion be satisfied and BB—Lyb = 0. Then, @ is bang-bang.

Proof. Assume that @ is not bang-bang and lgt it satisfy Assumption Since @ is not bang-bang, there exists
a set of positive measure E C €, such that H, = 0 on E. Let vg denote a control with vy = @ on Q\ E and
lve — /11 (@) < a. Then the first variation in direction vg — 1 is zero and by (3.7), we find

ﬁJ”(ﬂ)(’UE — U, Vg — ’U) > K,HZQ,UE_ﬁHLz(Q)H’UE - ﬂ”Ll(Q) (39)

By the affine structure of the optimal control problem, Assumption i), Assumption the fact that 4, ¢ €

C(f2), the calculations in Theorem (3.2 and the assumption that 88—Lyb = 0, we infer the existence of a positive
constant ¢ independent of the control v such that
8" (@) (vE — @, vp — 1) < Bellzavp—alliz(q)- (3.10)

Thus, using and (3.10), we conclude for all controls vg with vy =4 on Q\ E

1@ = vpllLi) < Be/kllzavp—allL2@)- (3.11)



Since @ is not bang-bang, we can select an ¢ > 0 and a set of positive measure E such that @(z) € [u,(z) +
e,up(x) — ¢] for a.e. x € E. Now consider a sequence {vF}3°, with v* € {—¢,¢} a.e. on Q and v¥ —* 0 in
L>=(Q) for k — oo. Finally, define a sequence {5¥}5%, by 9¥ := @on Q\ E and #* := @ + v¥ on E. It is clear
that 9% —* @ in L>(Q) and ||5¥ — @||1(q) = €| E| for all k € N. On the other hand, by Theorem ok~
in L>°(Q) implies ||25 55—zl 22(a) — 0 as k — oo. This contradicts . O

Consequently, the notion of strong or weak local minimizer is equivalent under Assumptionand Assump-
tion

Lemma 3.8. Lety € (0,1) and 8 € {1/2,1} be given. It is equivalent:

1. There exist positive constants r and o such that
! ( — (= —\2 _ 1ty
JH(u)(u—u) + BT (w)(u — u)” > kllu—ull 1 g (3.12)

Sorall w € U with ||u — @l L1 o) < a.
2. There exist positive constants ¢ and o such that (3.12) holds for all u € U
with ||y — yallc@) < o

oLy _

Further, if the objective integrand satisfies G =01t is equivalent

1. There exist positive constants r and o such that
J'(@)(u—u) + BJ" (@) (u — 1)* > kllu— || g o |za,u—al z2(0) (3.13)
Sorall w € U with ||u — a1 o) < a.

2. There exist positive constants r and o such that (3.13) holds for all uw € U
with ||y — yallc@) < o

Proof. The statement of Lemma E for Assumption with v = 1 was proven in [7, Proposition 5.2]. The
proof relies on the fact that (3.12) implies the bang-bang structure of @. But if ¥ € (0,1), still implies the
bang-bang structure and the arguments in [7, Proposition 5.2] hold true for v € (0, 1). By Proposition [3.7} the
Assumption implies the control @ to be bang-bang, thus the results can be obtained by the arguments as in
[7, Proposition 5.2]. O

The nextlemmas are needed for the estimations later on. Their well-known statement was proven for objective
functionals with varying generality for the case v = 1, [19, Lemma 11]. The proof for v € (2/(2+ n), 1) follows
by the same arguments. For Lemma below, see for instance 6, Lemma 2.7].

Lemma 3.9. Given~ € (2/(2+n),1] and @, u € U. Define ug := u + 6(u — @) for some measurable function 0 with
0 < 0(x) < 1. Forall € > 0 there exists § > 0 such that

. _ _ 1t
I (@)~ )2 = J" (o) (u — 0)?| < ellu— a1

ﬂ)f all Hu - 'ELHLI(Q) < 4.

Lemma 3.10. Given 4,u € U. Let % = 0 and define ug := u + 6(u — ) for some measurable function 6 with
0 < 0(x) < 1. Forall € > 0 there exists § > 0 such that

J"(@) (= 0)* = T (ug) (u = 0| < €23l

Jor all |y = yallo) < 0.

As a consequence of Lemmas and we obtain strict local optimality under Assumptions and
3.6l

Theorem 3.11. Let u € U be given and 8 € {1/2,1} in the assumptions reference below.



1. Let Assumption|3.4 hold. Then there exists positive constants k and o such that
Tw) = J@ 2 wlu—al 15, (.149)
Sorall w € U with ||u — @l L1 0) < a.
2. Let Assumption|3.6 hold for @ € U. There exist positive constants k and o such that
J(u) —J(u) > '%Hzﬁ,u*ﬁ”%?(ﬂ) (3.15)
Jor all w € U with ||y — yullc@) < o
3. Let Assumption[3.5 hold for u € U. Then there exist positive constants k. and o such that
J(u) = J(@) = &l zau—allL2 @) |t — vl Lr(o) (3.16)
Sor all w € U with ||ya — yullc@) < o

Proof. The statements with the growths (3.15) and (3.16) were proved in [[7]. The statement for (3.14) follows by
the same arguments using Lemma O

Remark 3.12. Assumption with v € (2/(n + 2),1], together with Lemma (3.9 is used to guarantee the existence of
positive constants r and o such that

J(u) — J(@) > klju — 71||1LJ1F(§]), Sorall w € U with ||u — |1 (q) < . (3.17)

I ;;;u = %L — 0 holds for the objective integrand, as a consequence of Lemma (3.17) can be obtained by considering

Assumption[3.4(8 = 1/2, ~v € (0,1]) together with Assumption B =1/2).
To see this, let k and o be positive constantsfor that Assumption ana’ are satisﬁea' simultaneously. Then, y[
an — @l L1 (o) is sufficiently small, applying Taylor’s theorem, Assumption and Lemmayields

J(u) = J(@) + J' (@) (u —a) + 1/2J" (1g) (v — @)% > J(a) + 1/2J (@) (v — u) + 1/4J" (@) (u — u)?
+1/2J" (@) (u — @) + 1/4J" (@) (u — a)? — 1/2[J" (1) (u — u)* — J" (@) (u — u)Q‘

12
> k/2lu—all 1 gy + 5/ zau-all 22 ()-

Thus, the constraint € (2/(2 +n), 1] can be weakened to € (0,1] for the cost of making both, Assumption[3.4and[3.6)

at the same time.

3.2 A short comparison with growth-related conditions in the literature
We provide a short discussion of the relationship of Assumptions and [3.6/and the by now classical as-
rol p

sumptions used for the analysis of affine PDE-constrained optimal control problems in the literature. By classical
assumptions, we understand the ones considered for instance in [6} 9, /11,|12]]. For this, let us define cones appear-
ing in affine PDE-constrained optimal control.

Definition 3.13. We consider the set

{v € L2(Q)

v >0ae on i =u,) andv <0 ae onlu = ub]}. (3.18)
Given T > 0, we define the sets

DI = {v € LQ(Q)’ v satisfies and v(z) = 0 if %—Z(z)‘ > T},

Gr = {v e L2(Q)( v satisfies (318) and J' (@) (v) < T||zﬁ,v||L1(Q)},
Cr .= DINGL.

Here, H denotes the Hamiltonian corresponding to the control @, that is H(z) := H(x, §(z), ¢(x), u(x)).



Usually for the analysis of affine problems, the following two assumptions are made. The first is the following
structural assumption on the switching function: There exist positive constants ¢ and y € (0, 1] such that

Hz € Q| |H,| <e}| <ce. (3.19)
It is well known, that this assumption implies for a possible different constant ¢ that

Y forallu e U. (3.20)

_ _ 1
T (@) —1) > clu—all LT

The second assumption is the so-called second-order sufficient condition
J" (@) (u—u)* > cHza,u_aH%Q(Q) for all u € U with (u — u) € CL. (3.21)

Utilizing and , error estimates for the numerical approximation are provided in [9].
To compare these assumptions with the one used in this paper, we first notice that it is equivalent to consider
Assumption@only for u € U with (u—1) € DZ, see [19, Proposition 6.2] for elliptic problems and for parabolic
7, Corollary 14]. Further, we have the following theorem that relates Assumption to ,

problems see
(3.20) and (3.21).
Theorem 3.14. Let aa—Lyb = 0 and let there exist positive constants ¢,k and o with k < ¢ such that

@) (u — @) > cllu— gty for all u €U,

and
1
(@) (u— @) > —klu—all 1 gy for all (u— 1) € CF with [lu— | 1) < .
1 4 : ALy __ "
Then Assumption B € {1/2,1}, holds for some appropriate constants. Further, let 5 = 0. Then condition (3.21)
implies Assumption|3.0

Proof. It is sufficient to prove the statement for the Assumption [3.4{ on the cone D7. Thus, we only need to
consider the case (u — @) ¢ G7. But by definition of (v — @) ¢ G7, J'(a)(u — @) > 7||za,u—alr1(q). Using
Theorem it is straight forward to estimate for some constant d independent of

J”(a)(u - 7«7)2 < d||Zﬂ,u—ﬂ||L°°(Q) ||Za,u—uHL1(Q)~
By the assumption of this theorem, it also holds

_ _ 1+
J(@)(u—u) > cllu—all i -

Thus combining the estimates we obtain for |[u — |1 (q) sufhciently small

_ _ 1
J'(@)(u—a) + (57 — dl|lzau—allL~ @) |zau—allL1 (@)

J(@)(u— ) + I (@)~ ) > :

oy RS
2 ¢/2f|u =l i) + (57— dlzau-al L= @)lzau-allL1@) 2 ¢/2lu =l 1 q).-

The claim regarding Assumption is straightforwardly obtained by similar arguments. O

4 Discrete model and error estimates

We come to the main part of this manuscript. The goal is to prove error estimates for the numerical approximation

under Assumption [3.4|for v € (2/(n + 2), 1] and Assumptions[3.5|and[3.6}



4.1 The finite element scheme

The finite element scheme we consider is close to the one in [9]; we also refer to [[4]] for an overview of the finite
element method. In this section, we assume 2 to be convex, see [43} Section 5.2]. Let {75, } 10 be a quasi-uniform
family of triangulations of Q. That is, for each T € 73,, p(T") denotes the diameter of T, and o(T') denotes the
diameter of the largest ball inscribed in 7. The mesh size is defined by h := maxre,, p(T'). We assume that there
exist two positive constants & and p such that

p(T) _ . h o _
ﬁ <o and m <p, (41)

for all T € 75, and all h > 0. Denote Q; = Ure,, T and define ), := intQy, and assume that every boundary
node of Q, is a point of I'. Suppose that there exists a constant Cr > 0 independent of h such that the distance dr
satisfies dr(x) < Crh? for every z € I'j, = 0. As a consequence, we infer the existence of a constant C, > 0
independent of & such that

1Q\ Q| < Coh?, (4.2)

where | - | denotes the Lebesgue measure, see [43| (5.2.19)]. We define the finite-dimensional space
Y, = {Zh S C(Q) D Zp|T € Pl(T) VT €1y, and zn, = 0 on Q\Qh},

where P;(T') denotes the polynomials in 7' of degree at most 1.
For u € L?(Q), the associated discrete state is the unique element yj, (u) € Y}, that solves

a(yn, zn) + flz,yn)znde = / uzpdr Vzp € Yy, (4.3)
Qh Qh

where

aly,z) = Z /Qaij&hy&gjzdx Yy,z € H(Q).

=1
The proof of the existence and uniqueness of a solution for (4.3) is standard, see for instance [13].

Lemma 4.1. |9, Lemma 3]. There exists a constant ¢ > 0, depending on the data of the problem but independent of the
discretization parameter h, s. 1. for every u € U

lyn(u) = yullL2() < ch?, (4.4)

yn (1) = yull () < ch®|log hl>. (4.5)

The set of feasible controls for the discrete problem is given by
Up = {un € L=(Q) : upr € Po(T) VT € 11}
By IIj, we denote the linear projection onto U, in the L?(£;,) given by

1
(Mpu)r = —/ udx, VT € 7.
IT| Jr

By uj, — u weak” in L°°(Q2) we mean, as in [9], that
/ uhvdx%/uvdx Yo e LYQ).
Q Q

Lemma 4.2. [9, Lemma 4] Given 1 < p < oo there exists a positive constant C, that depends on p and Q but is
independent of h such that

lu = Thullw-rr(,) < CohllullLr@) ¥ u € LP(Q).

10



We define Jy,(u) == [, L(z,yn(u),u) dz and Uy := Up NU. Then the discrete problem is given by

min Jh (uh) (46)

up EUR

The set Uy, is compact and nonempty, and the existence of a global solution of follows from standard argu-
ments. For v € L?(Q), the discrete adjoint state @5, (u) € Y, is the unique solution of
0 OL
aCemen) + [ Liagn@)onndr = [ 2@ yn(w), )z do vz, € Vi (+7)
Q dy Q Oy

Again the proof of the existence and uniqueness of a solution for (4.3) is standard, see [13]]. One can calculate that
Th(u)(v) = [q, (Lo(z,yn () + @n(u))vdz. Alocal solution of (4.6) satisfies the variational inequality

JilL(ﬂh)(uh —ap) >0 Yup € Up,.

In the following, similar as in [9]], we identify uj, = @ on © \ Q. The existence of a sequence of solutions to the
discrete problem that converges to an optimal solution of (1.3) is provided in the next theorem.

Theorem 4.3. [9, Theorem 6] Let @ be a strict strong local minimizer of (1.3). Then, there exists a sequence {up}p, of
local minimizes of (4.6) such that uy, — @ weak™ in L°°(2). Moreover, there exists hg > 0 such that

Jh(ﬂh) < Jh(uh) for all up € Uy, with ||yh(uh) - yh(ﬂh)”Loo(Qh) < p, ﬁ)f all h < hp. (48)

Conversely, let {tp}1, be a sequence of local minimizers o satisfying for some given p > 0 and such that
ap —* @ in L°°(Q). Then @ is a strong local solution of (1.3) satisfying

J(u) < J(u) for all w € U with ||y, — F|| 1) < p- (4.9)

Remark 4.4. Let i € L"(Q) and up, —* @ in L>®(Q). Then ||yn(@n) — yallpo() — 0 as h — 0. This follows
trivially since the right hand side of

lyn(@n) — yallLe @) < llyn(@n) — ya, L) + |Ya, — Yallze (o) (4.10)
tends to Zerofor h — 0 due to Theorem and Lemma see also the related statement in the proof of [9, Theorem 6].
To proceed, we need the following theorem, which proof is done along the proof of [9, Theorem 9].

Theorem 4.5. Let iy, denote a solution to (4.6). We denote by yu, and py, the solution to the continuous state equation
and to the corresponding adjoint equation with respect to uy,. By ¢y, (n,) we denote the discrete adjoint equation corresponding
to @y, and @l denotes the solution to the following equation

Ao+ S oyn@n))e == un(mn)  in Q,
2 =0 onT.

Then there the following estimates hold

loa, — O, L) < ch?, (4.11)
lon(@n) — @2 |l zoe(a) < ch?|loghl?. (4.12)

4.2 Discretization with piece-wise constant controls

The two main goals of this section are to prove that Assumptions and allow finite element error
estimates and to improve the error estimates in the literature for € (0, 1). Before stating the main theorems, let
us consider two preliminary lemmas. Let us recall that H,(z) := H,(z, §(z), (z), @(z)) = @¢(z) + Lp(z, §(z)).
The assumption that H, is Lipschitz is not a significant constraint for tracking-type objective functionals where
%—Lyb = 0. This is because of the assumptions on the control problem in this section, the adjoint state, ¢g, is already
Lipschitz continuous. If L, # 0, the significance of the constraints depends on the regularity of Ly (-, ), which
comes down to the regularity of the state y. Let us also recall that g € W??(£) as a consequence of the regularity
of the domain, the regularity of the coefficients of the elliptic operator, and the boundedness of the right-hand
side of the adjoint equation due to the boundedness of the solution to the state equation. Furthermore, the solution
to the state equation, § is due to Theorem [2.3/in W2?((2) and thus Lipschitz as well. Finally, due to Assumption

which gives us the needed regularity of Ly, we can infer the Lipschitz continuity of H,.
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Lemma 4.6. Consider a bang-bang control @ € U satisfying the first order optimality condition.
Then J'(u)(Ilpa — u) < Lipg, hlla — x| p1(q,)-

Proof. For the reader’s convenience, we present a proof which follows the arguments in [9, Lemma 7]. Let T be
a triangle such that H,, changes its sign in T'. Since H,, is Lipschitz continuous, there exists a point 2y € T’ with
H,(x¢) = 0. For z € T we obtain

|Ho(w)| = | Ho(w) — Ho(wo)| < Lipg, | — ol < Lipg, h. (4.13)

Let us denote by S, the union of elements T such that H,, changes the sign. Then on the set Sj, we have the
estimate ||H,| o (s,) < Lipg, h. If H, does not change the sign on an element 7', the bang-bang structure
implies IT, @ = @ on © \ Sj,. As a consequence, we obtain the estimate

J' () (Mt — u) = H,(Opu—u) dz < Lipg, h||I,a — @l 11(s,)-
Qp
O

The next lemma estimates the L!-distance of a bang-bang reference solution and its projection. It is needed
to obtain error estimates for the numerical approximation later on.

Lemma 4.7. Let i € U satisfy Assumption[34(8 = 1/2), here we allow ~ € (0,1]. There exists positive constants ¢
(independent of h) and a ho, such that for all h < hy:

|z — Hhﬂ||L1(Qh) <ch”. (414)
Proof. Since @ € U satisfies Assumption there exist positive constants x and « such that
_ o _ _ 141 _
J(@)(Mpa —a) + 1/2J" (@)(Tpa — a)? > &||,a — u||LJ1r(§/ZZ) Vh s.t. (|G — @l L1, < .
By Lemma [4.6] we obtain

J' (@) Iy — @) = / (¢ + Lo, ya)) (it — @) da < Lip ;. ATyt — s -
Q

We recall that according to Theorem it holds
_ _ 0%L B o2

P =0 = [ [ = o b )| e
oty y (4.15)
oLy - '

+ 2/Q [ﬁiy(’ ya)} Zamya—a(IIpt —u) de = I + Ip.

Givenn < p,n/2 < r, using Assumption|[1.2} Lemma[2.2} Lemma 2.5] Lemma2.6|and Lemma(4.2} the first term
of the second variation is estimated by

9L Rf
< | —(- _) — D . _
|Il| — H agy( 7yu) pu 82y( 7yu)

Loo(Q) |za,m,a-a H%z(g)

< 2(Cra + CrmCrar Q1Y) lyna — yall L= (@)l za,m,a-all L2(0)
< 2C5Cy(Crons + CoasCral @)Y — 1000 T — 22
< 2C5C,Cp(Crar + Crna Cp | Q1Y)IQ ) max{[ual, us| YAl Tt — @ L1 ()
It is left to estimate the term in the second line. Again using Assumption Lemmaand Lemma Lemma
we obtain

12| <201 mllzam,a—allLe @) [Tt — @l L1 ()
<40 mllyna — YallLe @ It — @l 11 (0,) (4.16)
< 407 Cp| Y max{|ual, [up|}h|TIna — @l L1 (ay)-
Thus we infer the existence of a positive constant ¢ such that

k|l — a7 < chl|Tya — al| i o, )-

Dividing both sides by [|1I5@ — || 11 (q,,), completes the proof. O
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Now, we are ready to state the main theorems of this section.

Theorem 4.8. Let @ be a local solution of (1.2)-(1.4). Consider the constant o corresponding to the Assumptions
or Consider a sequence of discrete optimal controls ), € Uy, of (4.6) that satisfy ||un — || 1o,y < o

1. Let Ly, = 0 in the objective functional and let @ satisfy Assumption ,3 = 1/2). Then, there exists a positive
constant ¢ ina’epena’ent ofh and a hg such that

lyn(@n) = Gl 220y + llpn(un) = pllr2() < evh forall h < ho. (4.17)

2. Let 88—6}’ = 0 in the objective functional and let @ satisfy Assumption|3.5(8 = 1/2). Then, there exists a positive
constant ¢ independent of h and a ho such that

lyn(@n) — yllL2) + llpa(tn) — plleo) < C\/h2 + h|[Tpa — @l forall h < hy. (4.18)

3. Let @ satisfy Assumption ﬁ = 1/2). Then, there exists a positive constant ¢ independent of h and a ho such that
@ = all 1o,y + lyn(@n) = gllcz) + llpn(@n) = pllrz) < ch? forall h < ho. (4.19)
If additionally Assumption @(ﬂ = 1/2) holds then (4.19) holds for v € (0, 1].

Proof. Let us consider a discrete control u, that satisfies the theorem’s assumptions. We first prove the existence
of a positive constant ¢ such that

J(un) — J(a) < |J(tn) — Jp(an)| + Jn(an) — Jn(Wpt) + |Jp(Mpa) — J(,a)|
+ |J(Mpa) — J(@)| = [ + T2 + |Is] + [1a] < ch't7.

To estimate the first term, we use Assumption|1.2} the estimates in Lemmal4.1} (4.2) and the mean value theorem
to obtain for intermediate functions vy and yy that

|11] =

/ L(‘xayﬁ}mah) dm+/ L(‘ray(ah)aah) _L(x7yﬁ;n’ah) dx
Q\Qh Qh

8y » Yy )Up

IN

oL

7“.’ CollL(-, yq, , @ - )h2
(H ay( ye)‘mm)JrH LZ(Qh)Jr ol LGy @)l (@)
< (Cp,m + Cpv max{|ugl, up]} + CoKu, w1, )h7,

where the constant Ky, o, 7, With || L(-, yu, u)|| L) < Ku,u,,1, for all w € U, as indicated by the subscripts,
depends on the control model though u,u;, and T,.. We have I, < 0 for the second term since @, is a minimizer
of (4.6). The term I5 can be estimated similarly as the first term,

|I5| = ‘/L(az,ynhu,ﬂhﬂ)dx/ L(z,yMya), ) de
Q Qp

/ L(z,yn,a, Ipu) de + / L(z,yn,a, Ipt) — Lz, y(IIpa), Hya) de
Q\Qh Qh,

IN

oL oLy

o (z, —,H*H CallL(z, yo. Ty || oo () | 12
e e e e
< (Cpm + Cpov max{|ugl, [up]} + CoKu, 1, )h7.

We come to the crucial part of the proof, the estimate of the last term I,. The estimation of the term I determines
the overall convergence rate since the other terms already satisfy the good rate |I1|,|Io| < ch?. To shorten the
notation, let us denote by L, , and L, , the derivatives of L, and L;, by y. By the mean value theorem, for some
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intermediate function yy we have

I4 = /S;L(x7ynh(ﬁ)7nh(ﬂ)) —L($7ya,ﬂ) d.r: /{;La,y(m,yg)(ynhﬂ—yﬂ)dx

4 [ L0 omya — v e + [ LoGe.y) (M — 1) da
Q

~

a,y(xa yﬂ)(yﬂhﬂ - yﬁ) dzx + /Q Lb,y(xvyﬂ)(yl'[hﬂ - yﬂ)ﬂ dz
Lb(xv yﬂ)(Hhﬂ' - 71) dz + /Q(La,y(xa y@) - La,y(xa yﬁ))(yﬂhﬂ - yﬁ) dx

+

+
S~ S—5— 35

Ly y(z,ya) (Y, — va)(Hpa — @) dz + /Q(Lb,y(xa Yo) — Loy (z,ya)) (ym,a — ya)Hpudz.
Thus,
Iy = [/(La,y(xvyﬂ) + Ly (2, ya)@)za,m,a-a dﬂ?] + [/ Ly(2, ya)(Ipu — a) do
Q Q

+ / (Lay(7,ya) + Ly (2, ya)) Upt) (Ym,a — Ya — 2a11,a-a) dl‘]
LJa

[ oo = L) s = ) da] + [ [ (L) = Ly ) om = o)yl

- 6
[ Lot om = v (i = 0y o] = Y- K
B i=1

is bang-bang. We estimate the terms K; and K> together, that is, integrating by parts, using Lemma [4.6{ and
Lemma 4.7| guarantee the existence of a positive constant ¢ such that

Let us first consider the arguments for the estimation (4.19). We remind that since @ satisfies Assumptio it

Ko+ Kol = | [ (pa+ Eafiyo)) (T — ) da|
Q

<Lipg [|Hul L@ Tn@ — al| L1(,) < cLipg A

The term K3 is estimated, using Assumption Lemma [2.5| Lemmaand Lemma
|K3] < Cpoar(1 4 max{|ual, [up|}lym,a — Ya — za,m,a—allF1 o)
< Cra My (14 max{|ug|, |up|})llym,a — vall 720
< CrmCp My (1 + max{|ual, [up|})|QIThE — @[3y 1. (0,
< CrmCRC2 My (1 + maxc{ g, [up 1) 2/ ma fual, lus |}

For the estimation of the term K, we use that due to Assumption L, 4 is locally Lipschitz continuous, with
Lipschitz constant denoted by Lip; . We obtain using again Lemma Lemma and Lemma that

|Ky| < LipLyYa;M‘meHhﬂ - yﬁH%w(Q)
< LipLayy;MCv’f,éﬂQ\Hg/p max{|ug|, |up|}2h>.

Denoting the local Lpischitz constant of Ly, by Lip, )/, the term K is estimated using the same arguments
WY

by
|K5| < LipLb _MO,?C*§|Q|1+2/P max{|ug|, |ub|}3h2.
R
Finally, for the term I,using Assumption [1.2) Lemma [2.5] Lemma and Lemma we estimate

|Ko| < Crmllym,a — Yall Lo @ 1 1Int — @l 1y,
< O Cpl Tt — il w10 () TR — @l L1 (0,
< Cp.uCoCpmax{|ug), [up| QI Peh 7.
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To complete the proof of (4.19), we conclude from the estimates of the terms I;, i € {1,...,6}, Theorem
i

and Theorem [3.14] that there exist positive constants x,k and a such that
1+ L
Kl|an — ’(_LHLT&)}L) < J(ap) — J(a) < kR for all 4, with |an — ﬂ”Ll(Qh) < .

P . e _ _ _ . _ _ .
This is equivalent to: (k/k)5+ThY > ||ay, — |11 (q,) for all @), with ||y — @[/ 1 (q,) < o. To estimate the states
and adjoint states we argue as follows. For the states we see by Lemma applied to z,, := ¥ — ya,, v = U — Up,

and Lemma , that

17— yn(@n)llL2) < 19— vanllzz@) + lva, — yn(an) |2
< ég”ﬂ — ﬂhHLl(Qh) + éQhQ < C’Q(Ii/k)’\//(’y-"_l)h—y + éth.

For the estimate of the adjoint states, we use that as a consequence of Lemma 2.2} |7 — pa,
Yan ||l 22(0) and .., thus 22

2@ < Colly —

1P — pr(an)|l2) < 1P — pay lL2) + [IPay, — pr(tn) | L2(0)
< CQ||ﬂ — ﬁhHLl(Qh) + éth < CA’Q(K//{)’Y/(’Y+1)}L’Y + 62h2.

and the proof of (4.19) is complete. Let us briefly comment on the procedure for the other claims (4.17) and
(4.18). Let us first consider (4.17). Here we do not assume that @ is bang-bang. The terms I; and I can be
estimated by the same arguments as before, thus we infer the existence of a positive constant ¢ such that

|Il|, |IQ| S ChZ.

The estimation of the term I, is substantially easier due to the assumption L, = 0. We only need to consider the
terms K1, K3 and Ky. For K7 we estimate using Assumption |1.2 Lemma [2.5] Lemma and Lemma to
obtain

|K:1| < Cpovllzamea—all 2 < 3/2C0 |22y — 9l =)
< 2/3C, mCpCpQY 2|yt — @l w100 < 2/3CL 1 CpCpQM TP max{|ug|, |up| .

The terms K3 and K} are estimated in the same way as before. Thus in total, we proved the existence of a positive
constant c such that
2 _ .
kol za,an—all12(q) < ch forall @y, with [lya, — yallL~@) < o

This of course using Lemmaimplies that || — yn (@n)|| £2(0) < ch!/2. Now the adjoint states can be estimated
as argued above. Finally, let us consider (4.18). The terms I; and I; are estimated as before. Since 88—Lyb =0 we
only have to estimate the terms K, i € {1,...,4} in I4. Since @ is bang-bang according to Proposition we

can employ Lemma 4.6|to infer
Ko+ Kol = | [ (pa+ Lafi,ya)) (T — )
Q
< CLiPﬁu ||Hhﬂ — aHLl(Qh)h'

The terms K3 and K, are estimated as before. Thus all in all we have a positive constant ¢ such that

K

G l2a.u—allZ2 () < sllzau—all2 @@ — ull i) < J(u) = J(@) < ch(h + [Tt — a1 (o),

which, estimating the adjoint states as above, completes the proof.
0

Under some mild additional assumption on the zero level set of H,, that exclude the appearance of singular
arcs, we can significantly improve the result of Theorem 4.8|using the next lemma instead of Lemma In what
follows, we denote by H™, the m-dimensional Hausdorff measure, see [26, Chapter 2].
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Lemma 4.9. Let @ € U be bang-bang. Let us denote by A the points where H,, = 0. Assume that A consists of a finite
union of C' curves (n = 2) or C1-hypersurfaces (n = 3). Then there exist positive constants ¢ (independent of h) and hy
such that for all h < hg:

||7:L - HhaHLl(Qh) < ch. (420)

Proof. First we notice that H"~!(A) < oo. Let @ be bang-bang and let, as before, denote by S, the collection of
the elements where there exists 2 € int T with H, () = 0 and denote, as in Lemman by S, the union of those
elements. Then

@ —Tpal| (o, = ||ﬂ —pa| pcsy)

Té/’ - D / ) dyfdo = Z/Hn ]/ ~ a(y) dyda
B Z / H(T / [u(z )| dydz < [Jup — ual|L= () Z H™(

TEeSH TEeSH

If the diameter h of the quasi-uniform triangulations is sufficiently small, the number of elements that cover the set
A can be estimated by the quotient of the diameter  and H"~1(A). That is, there exists a constant ¢ (independent
of h) and a hg such that for all h < hy

n—1

Z 1< CHT_(lA).

TeS,
This can be seen by the following arguments for the 2-dimensional case. The set A = U7, A; consists of a finite
union of C'-curves. Let us consider a given curve A; and a triangle T" € S,; we realize that A; intersects triangles
T such that for any given z € A;, maxyer d(z,y) < h. Now take for each z € A; the unit normal v(z) to A4;
and define the set E¥ := {z + {v(x)|¢ € [~h,h]} and E; := Upca, EF. Then H2(E;) = 2h - H(A;).

On the other hand, due to the quasi uniformity of the triangulation, there exists a positive constant ¢ such

that the measure of the triangles 7" is uniformly bounded from below by ¢h?. Therefore there are at most

H*(E;)  2H'(A)h  2H'(A)
ch? eh?2 ¢eh
triangles that intersect the curve A;. We obtain the claim by applying this to all the arcs A;. The three-dimensional

case follows by straightforward adaptions of the argument. From here, using that for a positive constant ¢, the
measure of the elements 7' can be uniformly estimated by |T'] < ¢h™, we conclude:

12 =Tl 120, = 18— TTht] £ags,) < llup — tall o) D HM(T)
Trh€ESh
can—l(A) an—l(A

< flup — Ua||L°o(Q)W %T}E%P}( HY(T) < flus — UaHLx(Q)Tl)CEhn-
O

Due to the assumption on the optimal control problem in this paper, the adjoint ¢ has regularity W22 (),
p < 00. We remark that due to [30} Section 2], for this result, it is necessary to have a C1:1 boundary. Then, due
to the WP () regularity of the adjoint, in dimension n = 2, the Morse-Sard theorem for Sobolev functions and
the implicit function theorem implies that for almost all ¢ in the image of @, the level set [¢ = ¢] consists of finitely
many disjoint C"! simple curves [3} 20, |28]]. This almost everywhere result can be improved if @ satisfies

gleiﬂ [Va(z)] >0, A={ze€Q|g(x) =0} (4.21)

Indeed, if (4.21) is satisfied, [p = 0] consists of a finite union of simple C! curves, see [17, Proposmon 2.4,
Corollary 2. 12 This supports the assumption of Lemmal4.9] On the other hand, if ¢ € C*(Q) satisfies (4.21), it
already holds [{z € Q] |@| < e}| < cz, see [22, Lemma 3.2]. We apply Lemmawhen we only expect

{z e Q gl <e}| <ce”, v€(0,1),
which permits mingc 4 |[Vg(z)| = 0.

We obtain the following improvement of the estimation in Theorem 4.8
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Theorem 4.10. Let @ be a local solution of (1.3). Consider the constant o corresponding to Assumptions or
Consider discrete optimal controls ty, € Uy, of (4.6) that satisfy ||un — @l 1 (q,) < a. Further, assume that H, satisfies

the assumption of Lemma

1. Let Ly = 0 in the objective functional, let @ be bang-bang and let @ satisfy Assumption[3.(8 = 1/2). Then, there
exists a positive constant ¢ independent of h and a ho such that

lyn(@n) — GllL2(@) + llon(@n) = pliL2) < ch forall h < hye. (4.22)

2. Let BTL; = 0 in the objective functional and let @ satisfy Assumption|3.5(8 = 1/2). Then, there exists a positive
constant ¢ independent of h and a ho such that

lyn(@n) = Gllz2 (@) + Ipa(tn) = plirz(e) < ch for all h < ho. (4.23)

3. Let u satisfy Assumption[34(8 = 1/2). Then, there exists a positive constant ¢ independent of h and a ho such that
2

[ = all 1) + ln (@n) = Gl L2y + IPa(@n) = BllL2i) < ch73T for all h < ho. (4.24)

Proof. Most of the steps of the proof are the same as in the proof of Theorem What is different is that instead
of Lemma we apply Lemma together with Lemma which allows for all bang-bang optimal controls
u, the estimate

|K1 + Ko| = |J'(w)(Ipu — a)| < Lipshlla — Uyt (q,) < ch®. (4.25)

From here we argue as before to obtain the estimate

wllan — all r g,y < J(an) — J(@) < ch? for all @y, with [[a, — a1, < o,

which yields following the same arguments as before the estimate (4.24). The claim under Assumption[3.5] (4.23),
follows again using the same estimations as in the proof of Theorem 4.8|together with the estimate (4.25). Finally,
(4.22) is also a direct consequence of the estimations in the proof of T eorem and (4.25). O

4.3 Variational discretization

We prove that Assumptions|zéltl, ’T_‘S andwith B = 1are sufficient for error estimates for a variational discretiza-
tion scheme. We refer to the [31]] for the idea and introduction of variational discretization. The assumptions on
the objective functional we are considering are weaker than the ones in [9], still the estimates given in Theorem
below agree with the estimates in [9, Remark 7] for the variational discretization. We come to the error
estimates for the variational discretization.

Theorem 4.11. Let @ be a local solution of (1.3). There exist positive constant ¢ and hq independent of h such that for
any sequence of solutions to the first-order optimality condition of the discrete problems, {up }1, the following holds:

1. Let Assumption[3.6(8 = 1) be satisfied by . Then
lyn(@n) = Gllz2 () + lon(@n) = @lle(o) < ch forall h < hy. (4.26)
2. Let Assumption[3.5(8 = 1) be satisfied by . Then
lyn(@n) = Gllz2(@) + len(an) = @l < c(hlloghl)® forall h < ho. (4.27)
3. Let Assumption ﬁ = 1) be satisfied by u for some v € (n/(2 +n),1]. Then

lan — tll 1o, + lyn(tn) = Gll2) + lon(tin) — @llL=(o) < c(hllogh)** forall h < ho.  (4.28)
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Proof. We consider (4.28). Since 1y, satisfies the first-order necessary optimality condition of the discrete problem,
it holds

0> Jy(an)(an —a) = J'(an)(an — @) + Jy (@n) (an — ) — J'(@n)(@n — )
> J'(@)(an — ) + J" (@) (un — )* — |J' (an) (@an — w) — J' (@) (an
+ Jp (@n) (@n — ) — J'(an) (an — @).

Utilizing Taylor’s theorem, Lemma([3.9]and Assumption [3.4] we obtain

_ (= _ N _ _ _lE
J'(ap) (up, — u) — Jy, (up) (ap, — ) > cl|up, — u||L1(}2h). (4.30)

Since the discrete problem depends only on the values of the optimal control on the set ©2j,, we may define @), = @
on 2\ ©, and write

Jp (ap) (up, — ) — J' () (an, — 0) = /Q (on(ap) + Ly(z, yn(an)))(ap — @) dz
- /Q (pa, + Lo(z,ya,)) @y —a)de = I.

To estimate I, we follow similar reasoning as in [9]], using (4.5 . Lemma Theoremﬂand also using the local
Lipschitz property of Lj for y, to infer for some positive constant c.

I < (len(un) = an llLee(@) + Lipy, yorllyna(@n) = ya, Lo @) ltn — tllr10,)
< (llen(@n) — o, o) + llok, = @a, I (@) lan — @l L1 ()
+ LiPL,),y;MHyh(ﬂh) —Yay L@ l@n — @,y < e(h? + h*|log h|*)|[an — @]l 1(qy)-

Altogether, utilizing (4.30) we obtain for a positive constant again denoted by ¢ that
[@n — @l 110, < c(h® + 2h%|log h|?)". (4.31)
For the states, we use (4.5), Lemma and Lemma to find for a positive constant ¢
lyn(an) — yall L2y < lyn(@n) = va, L2 + 1ya, — vallze@) < c(h® + an — @ll 21 (a,))

and the estimate follows from (4.31). The adjoints can be estimated from here by straight forward arguments.
Under Assumptlonn 3.5] by (3.16), it holds

cllan — allLro)llya, — vallz@) < J'(@n)(@n — @) — Jp (an) (@n — @).
Estimating as before, we obtain the existence of a positive constant ¢ that satisfies
IYa, — vallL2(@) < e(h? + h?|log h|?).

By again (4.4), (4.11) and (4.12) the claim (4.27) holds. Finally, consider Assumption [3.6/and apply Lemma/[3.10]
o (4.29), then it holds

clya, = yallLzi) < J'(n)(@n — @) — Jj (@) (an — ).

To estimate I, we use (4.11)-(4.12) to find

I < llen(an) — @a, L2 ltn — @l L2(0,)

< (len(@n) — ol 2y + 105, — anllz@)an — all2@,) < ch?|lta — wsl|L=(q),

for some positive constant ¢. This leads to the estimate ||ya, — yallr2(0) < ch, and by (4.4) and (4.11) the claim
O

-ho ds.

For a numerical example supporting the theoretical error estimates achieved in this paper, especially for the
case v < 1, we refer to [9]].
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4.4 Solution stability and variational discretization

One of the main results of this paper is that Assumptionsq 3.5 and[3.6/imply error estimates for the numerical
approximation. These assumptions appeared first in the study of the solution stability of optimal control and states
under perturbations appearing in the objective functional and the constraining PDE [19, 7, |18]]. We present an
application of the solution stability property to obtain error estimates for a variational discretization scheme. In
this sense, Theorembelow shows that a property related to solution stability guarantees the achievement of
error estimates for a variational discretization scheme. The intuition we propose is that once solution stability is
obtained under a growth condition on the objective functional, we can expect error estimates for the variational
discretization scheme.
First, let us fix a positive constant M and define the set of feasible perturbations by

{C = (&,m,p) € L*(Q) x L*(Q) x L=(Q)] €]l 220y + Inllz2@) + ol L) < M}~

Then, we define the perturbed problem by

ggg}{«fc( )= /QL(M/WU) + pu+ Ny dfc} (4.32)
subject to (1.2) and
{ Y =0 on 0f). (+.33)

The existence of a globally optimal solution to (4.32)-(4.33) is guaranteed by the assumptions on the optimal
control problem and the direct method in the calculus of variations. Let us define a property that we will call
strong solution stability.

Definition 4.12 (Strong solution stability). We call the optimal control problem (1.2)-(1.4) strong solution stable at
for V' C U, with parameters .,y and o 1f
8!
17— @l 0y + 17 = 5[l 20) + 16 = ¢l L= () < H(||§||L2(Q) + Iz ) + ||P||Loo(sz))
for all triples (aS, §¢, §°) corresponding to the perturbed problem (4.32)-(4.33) that satisfy
@ — a1 ) < eand JL(u)(v—u¢) >0 forallveV.

Assumption [3.4)implies strong solution stability. This can be observed by investigating the proof of the strong
metric subregularity property of the optimality mapping in [[18]].

Theorem 4.13. Let the optimal control problem be strong solution stable at @ for {a} with positive constants ~y, k and c.
Let {ip}1, be a sequence of solutions to the discrete problems (4.6) with ||uj, — @ z1(q) < cv. Then

lan — tll 1@,y + lyn(tn) = Gll2@) + llon(tin) — @llL= () < r(h|logh|)*

Proof. The idea is to construct a perturbed optimal control problem that relates the continuous problem with the
discrete. This is done by considering a certain affine perturbation of the control, similar to the discussion in [32,
p. 4]. Given a minimizer 1y, of the discrete problem (4.6), let ¢ := (0,0, p), with p := @ (i) — @a,. Then, we
define the perturbed optimal control problem

ueU

mig {Jc0) = [ Loyt u@)ao s [ (o) - oo uds),

subject to (1.4). It is easy to see that Ji(an)(@ —an) = [ @n(tn)(@ — ap)de > 0. Bue that is all we need of
up, to apply the strong solution stability at @. That is, we obtain [[an — ul[L1(q,) < &l (¢(@n) — Ya, )7~ o) BY

Theorem Lemma Lemma [4.1]and Theorem [4.1|the claim follows. O
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