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Solution stability of parabolic optimal control problems with

fixed state-distribution of the controls∗

Alberto Domı́nguez Corella† Nicolai Jork‡ Vladimir M. Veliov§

Abstract

The paper presents results about strong metric subregularity of the optimality mapping associated

with the system of first-order necessary optimality conditions for a problem of optimal control of

a semilinear parabolic equation. The control has a predefined spacial distribution and only the

magnitude at any time is a subject of choice. The obtained conditions for subregularity imply, in

particular, sufficient optimality conditions that extend the known ones.

The paper is complementary to a companion one by the same authors, in which a distributed

control is considered.

1 Introduction

Let T ∈ R and let Ω ⊂ Rn, 1 ≤ n ≤ 3, be a bounded domain with Lipschitz boundary ∂Ω. Denote by

Q := Ω × (0, T ) the space-time cylinder and by Σ := ∂Ω × (0, T ) its lateral boundary. In the present

paper, we investigate the following optimal control problem:

(P) min
u∈U

{
J(u) :=

∫
Q

[L0(x, t, y(x, t)) + ⟨L1(x, t, y(x, t)), u(t)⟩] dxdt
}
, (1.1)

subject to {
∂y
∂t +Ay + f(x, t, y) = ⟨g(x), u(t)⟩ in Q,

y = 0 on Σ, y(·, 0) = y0 on Ω.
(1.2)

Here y : Q→ R is the state, u : [0, T ] → Rm, is the control, m ∈ N, ⟨·, ·⟩ is the scalar product in Rm, the

functions L0, L1, f, g are of corresponding dimensions, A is an elliptic operator. Moreover, g := (g1, ..., gm)

with gj ∈ L∞(Ω) satisfies supp(gj)∩ supp(gi) = ∅ for all i, j = 1, ...,m, i ̸= j and meas(supp(gi)) > 0 for

at least one i. The set of admissible controls is

U := {u ∈ L∞(0, T )m| ua,j ≤ uj ≤ ub,j for a.e. t ∈ [0, T ], 1 ≤ j ≤ m}, (1.3)

where ua, ub ∈ L∞(0, T )m and ua,j(t) < ub,j(t) a.e. in [0, T ], 1 ≤ j ≤ m.

∗The research presented in this paper is supported by the Austrian Science Foundation (FWF) under grant No I4571.
†Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Austria,

alberto.corella@tuwien.ac.at
‡The same affiliation, nicolai.jork@tuwien.ac.at
§The same affiliation, vladimir.veliov@tuwien.ac.at

1



In the stability analysis and for approximation methods for optimization problems, in general, an im-

portant role is played by several regularity properties of the system of first-order necessary optimality

conditions, see e.g. [16]. The Strong Metric subRegularity (SMsR) property, [16, 13], of the mapping

associated with this system, the so-called optimality mapping, is especially relevant to the analysis of

numerical methods. This property of the optimality mapping associated with problem (1.1)–(1.3) is the

subject of investigation of the present paper.

Sufficient conditions for the SMsR property are usually formulated as strong positive definiteness

(coercivity) of the second derivative of the objective functional with respect to feasible control variations

(or on the so-called critical cone) with respect to the L2-norm of the controls. Conditions of this type

are also sufficient for optimality. In the paper, we present several sufficient conditions for SMsR of the

optimality mapping of problem (1.1)–(1.3), combining in a unified way strong and weak coercivity re-

quirements relative to the L1-norm. Due to the affine structure of the problem with respect to the control,

the conditions involve simultaneously the first and the second derivative of the objective functional. The

importance of including the first derivative in the coercivity condition in L1 is known from the existing

works on ODE affine optimal control problems (see e.g. [17]): . Moreover, the coercivity condition in-

volves not only a quadratic function of the L1-norm of the control variation; instead it involves a more

general homogeneous function of second order jointly depending on the control and the corresponding

state variation, therefore we call it “unified”.

The sufficient conditions for SMsR are proved in the paper to imply sufficiency of the first-order

optimality condition (the Pontryagin principle). Moreover, these conditions are then equivalently re-

formulated in terms of several “critical cones” that appear in the literature (see e.g. [3]), showing the

generality of the former.

In the recently submitted companion paper [15], we consider a similar problem where the control,

u(x, t), depends on the spacial position x and the time. In the present paper, following [5], the control

function u(t) depends only on the time, and each control component uj(t) has a fixed spacial distribution

given by the function gj(x), j = 1, . . . ,m. For the reader’s convenience, here we repeat several auxiliary

results from [15] in a slightly modified form. The main results—the strong subregularity theorems in

Section 5—are also similar to the ones in [15]. However, there are important differences: (i) the objective

functional is more general (in the companion paper, it is essential that the function L1 in the objective

functional is affine in y or even independent of y in some of the results); (ii) the hierarchy of the sufficient

conditions for optimality and subregularity introduced in Section 4 is similar to that in the elliptic case.

However, this hierarchy is not true for parabolic problems with controls depending on space and time;

(iii) in contrast to the present paper, several of the results about SMsR in [15] have the weaker form of

Hölder SMsR. We refer to the companion paper [15] for comprehensive discussions about the relationship

between conditions for SMsR, second-order sufficient optimality conditions, and stability analysis of

optimal control problems for elliptic and parabolic equations, which we do not repeat here.

The optimal control problem considered in this paper resembles the one in [6]1. First-order Pontryagin-

type necessary optimality conditions, as well as second-order sufficient optimality conditions for strong

local minimum, are established in this paper. In the present paper, we build upon a priori estimates for

the linearized states established in [6] and study metric subregularity of the optimality mapping, hence

1We are thankful to Eduardo Casas, who brought to our attention the problem with control depending only on time.
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also stability of the solution.

The paper is organized as follows. Section 2 presents notations, assumptions and known facts about

semilinear parabolic equations. Preliminary results about the optimal control problem (1.1)–(1.3) are

given in Section 3. The unified conditions for SMsR are introduced in Section 4 and their sufficiency for

optimality is discussed. Section 5.2 presents the main results – two theorems claiming that the SMsR

property of the optimality mapping holds under several sets of conditions. Some technical auxiliary

results and proofs are given in Appendix.

2 Notations, assumptions, and known facts

We begin with some notations and definitions. Given a non-empty, bounded and Lebesgue measurable

set Ω ⊂ Rn, we denote by Lp(Ω), 1 ≤ p ≤ ∞, the Banach spaces of all measurable functions Ω → R for

which the usual norm ∥ · ∥Lp(Ω) is finite. For a bounded Lipschitz domain Ω ⊂ Rn (that is, a set with

Lipschitz boundary), the Sobolev space H1
0 (Ω) consists of all functions Ω → R that have weak first order

derivatives in L2(Ω) and vanish on the boundary of Ω (in the trace sense). The space H1
0 (Ω) is equipped

with its usual norm denoted by ∥ ·∥H1
0 (Ω). By H

−1(Ω) we denote the topological dual of H1
0 (Ω), equipped

with the standard norm ∥ · ∥H−1(Ω). Given a real Banach space Z, the space Lp(0, T ; Z) consist of all

strongly measurable functions y : [0, T ] → Z that satisfy

∥y∥Lp(0,T ; Z) :=
(∫ T

0

∥y(t)∥pZ dt
) 1

p

<∞ if 1 ≤ p <∞,

∥y∥L∞(0,T ; Z) := inf{M ∈ R | ∥y(t)∥Z ≤M for a.e. t ∈ (0, T )} <∞.

The Hilbert spaceW (0, T ) consists of all functions in L2(0, T ; H1
0 (Ω)) that have a distributional derivative

in L2(0, T ; H−1(Ω)), that is

W (0, T ) :=

{
y ∈ L2(0, T ;H1

0 (Ω))
∣∣∣ ∂y
∂t

∈ L2(0, T ;H−1(Ω))

}
,

and is endowed with the norm

∥y∥W (0,T ) := ∥y∥L2(0,T ;H1
0 (Ω)) + ∥∂y/∂t∥L2(0,T ;H−1(Ω)).

The Banach space C([0, T ]; L2(Ω)) consists of all continuous functions y : [0, T ] → L2(Ω) and is equipped

with the norm maxt∈[0,T ] ∥y(t)∥L2(Ω). It is well known that W (0, T ) is continuously embedded in

C([0, T ]; L2(Ω)) and compactly embedded in L2(Q). We use the notation ⟨·, ·⟩X for the duality pair-

ing between a Banach space X and its dual.

The following assumptions, close to those in [2, 3, 5, 6, 8, 10, 11, 12] are standing in all the paper.

Assumption 1. The operator A : H1
0 (Ω) → H−1(Ω), is given by

A = −
n∑

i,j=1

∂xj (ai,j(x)∂xi),
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where ai,j ∈ L∞(Ω) satisfy the uniform ellipticity condition

∃λA > 0 : λA|ξ|2 ≤
n∑

i,j=1

ai,j(x)ξiξj ∀ξ ∈ Rn and a.a. x ∈ Ω.

The matrix with components ai,j is denoted by A.

Assumption 2. For every y ∈ R, the functions f(·, ·, y) ∈ Lr(Q), L0(·, ·, y) ∈ L1(Q), L1,j(·, ·, y) ∈ L1(Q)

1 ≤ j ≤ m, and y0 ∈ L∞(Ω), where r is a real number satisfying the inequality

r > max
{
2, 1 +

n

2

}
. (2.1)

We remark that the constraint r > 1+n/2 on the number appearing thought the paper, is used to guarantee

the boundedness of solutions to the PDEs. We use (2.1) to fix a number r that is feasible for all dimensions

n ∈ {1, 2, 3}. For a.e. (x, t) ∈ Q the first and the second derivatives of f ,L0 and L1,j with respect to

y exist and are locally bounded and locally Lipschitz continuous, uniformly with respect to (x, t) ∈ Q.

Moreover, ∂f
∂y (x, t, y) ≥ 0 for a.e. (x, t) ∈ Q and for all y ∈ R.

Next, for the reader’s convenience, we remind some facts about linear and semilinear parabolic equations.

By definition, the function y is a weak solution of the semilinear parabolic initial-boundary value

problem (1.2) if y ∈W (0, T ) with y(·, 0) = 0, and∫ T

0

〈∂y
∂t

+Ay, ψ
〉
H1

0
dt = −

∫ T

0

⟨f(·, y), ψ⟩L2(Ω) dt+

∫ T

0

⟨h, ψ⟩L2(Ω) dt (2.2)

for all ψ ∈ L2(0, T,H1
0 (Ω)), where h(x, t) := ⟨g(x), u(t)⟩.

A proof of the next theorem can be found in [3, Theorem 2.1].

Theorem 1. For any u ∈ L2(0, T )m the initial-boundary value problem (1.2) has a unique weak solution

yu ∈W (0, T ). If u ∈ Lr(0, T )m (see (2.1)) then yu ∈W (0, T )∩L∞(Q). Moreover, there exists a positive

constant Dr, independent of u, g, f and y0, such that

∥yu∥L2(0,T ;H1
0 (Ω)) + ∥yu∥L∞(Q) ≤ Dr

(
∥⟨u, g⟩∥Lr(Q) + ∥f(·, ·, 0)∥Lr(Q) + ∥y0∥

L∞(Ω
)). (2.3)

Finally, if uk ⇀ u weakly in Lr(Q), then

∥yuk
− yu∥L∞(Q) + ∥yuk

− yu∥L2(0,T ;H1
0 (Ω)) → 0. (2.4)

Below we remind some results concerning the linearized version of (1.2) and its adjoint equation.

We consider weak solutions (in the same sense as above) of the following linear parabolic equation:{
∂y
∂t +Ay + αy = h in Q,

y = 0 on Σ, y(·, 0) = y0 on Ω.
(2.5)

Lemma 2. Let 0 ≤ α ∈ L∞(Q) be given.

1. For each h ∈ L2(Q) equation (2.5) has a unique weak solution yh ∈W (0, T ). Moreover, there exists

a constant C2 > 0 independent of h and α such that

∥yh∥L2(0,T,H1
0 (Ω)) ≤ C2∥h∥L2(Q). (2.6)
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2. If, additionally, h ∈ Lr(Q) (we remind (2.1)) and y0 ∈ C(Q̄), then the weak solution yh of (2.5)

belongs to W (0, T )∩L∞(Q). Moreover, there exists a constant Cr > 0 independent of h and α such

that

∥yh∥L2(0,T,H1
0 (Ω)) + ∥yh∥L∞(Q) ≤ Cr∥h∥Lr(Q). (2.7)

All claims of the lemma are well-known, see [22, Theorem 3.13, Theorem 5.5] for the first statements

of the two items; for a proof of the independence of the constants C2 and Cr on α see [2] for a linear

elliptic PDE of non-monotone type, and [15] for the parabolic setting.

The differentiability of the control-to-state operator under Assumptions 1 and 2 is well known, see [6,

Theorem 2.4].

Theorem 3. Let q > 1. The control-to-state operator G : Lq(0, T )m → W (0, T ) ∩ L∞(Q), given by

G(u) := yu, is of class C2 and for every u, v, w ∈ Lq(0, T ), it holds that zu,v := G′(u)v is the solution of{
dz
dt +Az + fy(x, t, yu)z = ⟨g, v⟩ in Q,

z = 0 on Σ, z(·, 0) = 0 on Ω,
(2.8)

and ωu,(v,w) := G′′(u)(v, w) is the solution of{
dω
dt +Aω + fy(x, t, yu)ω = −fyy(x, t, yu)zu,vzu,w in Q,

ω = 0 on Σ, ω(·, 0) = 0 on Ω.
(2.9)

Lemma 4. ([6, Lemma 2.5]) Let α0 ∈ L∞(Q), u ∈ L1(0, T )m, and let z ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1
0 (Ω))

be the solution of {
∂y
∂t +Ay + α0y = ⟨g(x), u(t)⟩ in Q,

y = 0 on Σ, y(·, 0) = y0 on Ω.
(2.10)

Then, the following inequality holds:

∥z∥L∞(0,T ;L2(Ω)) ≤ 2 exp(∥α0∥L∞(Q)T ) max
1≤j≤m

∥gj∥L2(Ω)∥u∥L1(0,T )m . (2.11)

Remark 1. By the boundedness of U in L∞(0, T )m and Theorem 1, there exists a constant MU > 0 such

that

max{∥u∥L∞(0,T )m , ∥yu∥L∞(Q))} ≤MU ∀u ∈ U . (2.12)

The estimates in the next lemma constitute a key ingredient to derive stability results in the later

sections. It extends [2, Lemma 2.7] from elliptic equations to parabolic ones and was proved in [15].

Lemma 5. ([15, Lemma 5]) The following statements are fulfilled.

(i) There exists a positive constant M2 such that for every u, ū ∈ U and v ∈ Lr(Q)

∥zu,v − zū,v∥L2(Q) ≤M2∥yu − yū∥C(Q̄)∥zū,v∥L2(Q). (2.13)

(ii) Let X = L∞(Q) or X = L2(Q). Then there exists ε > 0 such that for every u, ū ∈ U with

∥yu − yū∥L∞(Q) < ε the following inequalities are satisfied

∥yu − yū∥X ≤ 2∥zū,u−ū∥X ≤ 3∥yu − yū∥X , (2.14)

∥zū,v∥X ≤ 2∥zu,v∥X ≤ 3∥zū,v∥X . (2.15)
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3 The optimal control problem

The optimal control problem (1.1)–(1.3) has a global solution due to the linearity with respect to the

control, the convexity and closedness of the set of admissible control values, and Theorem 1 (see e.g.

[22, Theorem 5.7]). On the other hand, the semilinear state equation makes the optimal control problem

possibly nonconvex, therefore it may have local minimizers. We recall the following definitions of local

optimality.

Definition 1. The control ū ∈ U is called weak local minimizer of problem (1.1)–(1.3), if there exists a

number ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ U with ∥u− ū∥L1(0,T )m ≤ ε;

ū ∈ U is called strong local minimizer of (P) if there exists ε > 0 such that

J(ū) ≤ J(u) ∀u ∈ U with ∥yu − yū∥L∞(Q) ≤ ε.

Moreover, ū ∈ U is called strict (weak or strong) local minimizer if the above inequalities are strict for

every admissible u ̸= ū.

Due to the boundedness of the set of admissible control values, one can equivalently replace the

inequality ∥u− ū∥L1(0,T )m ≤ ε in the definition of weak local optimality with ∥u− ū∥Lq(0,T )m ≤ ε, where

q is any (finite) number ≥ 1 (see [3, Lemma 2.8]).

The analysis below involves first and second-order optimality conditions for problem (1.1)–(1.3).

Further, we use the abbreviation

L(x, t, y, u) := L0(x, t, y) + ⟨L1(x, t, y), u⟩.

The next theorem provides a basis for obtaining such conditions. It is a consequence of Theorem 3 and

the chain rule, and adapts [6, Theorem 2.7] to the more general objective functional considered in the

present paper.

Theorem 6. Given, q > 1, the functional J : Lq(0, T )m −→ R is of class C2. Moreover, given

u, v, v1, v2 ∈ Lq(0, T )m we have

J ′(u)v =

∫
Q

(∂L0

dy
(x, t, yu) +

〈∂L1

dy
(x, t, yu), u

〉)
zu,v + ⟨L1(x, t, yu), v⟩dxdt (3.1)

=

∫
Q

⟨pug + L1(x, t, yu), v⟩dxdt, (3.2)

J ′′(u)(v1, v2) =

∫
Q

[∂2L
∂y2

(x, t, yu, u)− pu
∂2f

∂y2
(x, t, yu)

]
zu,v1

zu,v2 dxdt (3.3)

+

∫
Q

〈∂L1

dy
(x, t, yu), v2zu,v1 + v1zu,v2

〉
dxdt, (3.4)

Here, pu ∈W (0, T ) ∩ C(Q̄) is the unique solution of the adjoint equation −dp
dt

+A∗p+
∂f

∂y
(x, t, yu)p =

∂L0

dy
(x, t, yu) +

〈∂L1

dy
(x, t, yu), u

〉
in Q,

p = 0 on Σ, p(·, T ) = 0 on Ω,
(3.5)

where A∗ is the adjoint operator to A.
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We introduce the Hamiltonian Q×R×R×Rm ∋ (x, t, y, p, u) 7→ H(x, t, y, p, u) ∈ R in the usual way:

H(x, t, y, p, u) := L(x, t, y, u) + p(⟨u, g⟩ − f(x, t, y)).

We denote the derivative at ū in direction v ∈ Lr(0, T )m of H by ∂H
∂u (x, t, ȳ, p̄, ū)(v) := ⟨L1(x, t, ȳ) +

p̄(x, t)g(x), v(t)⟩ and further abbreviate ∂H̄
∂u (x, t) :=

∂H
∂u (x, t, ȳ, p̄, ū). Notice that ∂H

∂u (x, t, ȳ, p̄, ū) is actu-

ally independent of the last argument. The Pontryagin type necessary optimality conditions for problem

(1.1)-(1.3) appearing in the next theorem are well known (see e.g. [3, 6, 22]). For a problem with controls

depending only on time, we refer to [6, Theorem 3.3].

Theorem 7. If ū is a weak local minimizer for problem (1.1)-(1.3), then there exist unique elements

ȳ, p̄ ∈W (0, T ) ∩ L∞(Q) such that{
dȳ
dt +Aȳ + f(x, t, ȳ) = ⟨ū, g⟩ in Q,
ȳ = 0 on Σ, ȳ(·, 0) = y0 on Ω.

(3.6) −dp̄
dt

+A∗p̄ =
∂H

∂y
(x, t, ȳ, p̄, ū) in Q,

p̄ = 0 on Σ, p̄(·, T ) = 0 on Ω.
(3.7)

∫
Ω

∂H

∂uj
(x, t, ȳ, p̄, ū) dx (uj − ūj(t)) ≥ 0 ∀j ∈ {1, . . . ,m},∀uj ∈ [ua,j , ub,j ], and for a.e. t ∈ [0, T ]. (3.8)

As a consequence of (3.7), for any triplet (ȳ, p̄, ū), j ∈ {1, . . . ,m} and for a.e. t ∈ [0, T ] it holds that

ūj(t) =

{
ua,j(t) if

∫
Ω

∂H̄
∂uj

(x, t) dx > 0,

ub,j(t) if
∫
Ω

∂H̄
∂uj

(x, t) dx < 0.

4 Sufficient optimality conditions

In this section, we present a second-order sufficient optimality condition, which is based on a version of

[15, Assumption 3] adapted to the case of controls depending only on time. Below, ū is an admissible

reference control and ȳ is an element of W (0, T ) ∩ L∞(Q) (presumably the solution of (1.2)).

Assumption 3. For a number k ∈ {0, 1, 2}, at least one of the following conditions is fulfilled:

(Ak): There exist constants αk, γk > 0 such that

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ γk∥zū,u−ū∥kL2(Q)∥u− ū∥2−k
L1(0,T )m (4.1)

for all u ∈ U with ∥yu − ȳ∥L∞(Q) < αk.

(Bk): There exist constants α̃k, γ̃k > 0 such that (4.1) holds for all u ∈ U such that ∥u− ū∥L1(0,T )m < α̃k.

Assumption 3(B0) was first introduced in [18] in the ODE optimal control context, and was extended

to parabolic PDEs in [2], where also (A0) was introduced.

As it is proved in [15, Proposition 8], for any k ∈ {0, 1, 2}, Assumption (Ak) implies (Bk); if ū

is bang-bang (that is, ū(t) ∈ {ua(t), ub(t)} for a.e. t ∈ [0, T ]) then assumptions (Ak) and (Bk) are

equivalent.

Next, we obtain growth estimations for the objective functional, which show, in particular, that assump-

tions 3(Ak) and (Bk) are sufficient either for strict weak or strict strong local optimality, correspondingly.
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Theorem 8. The following statements hold.

1. Let the function L1 in the objective functional be independent of y. Let ū ∈ U satisfy the optimality

conditions (3.6)–(3.8) and Assumption 3(Ak) with some k ∈ {0, 1, 2}. Then, there exist positive

constants εk and ck > 0 such that:

J(ū) + ck∥yu − ȳ∥kL2(Q)∥u− ū∥2−k
L1(0,T )m ≤ J(u) (4.2)

for all u ∈ U such that ∥yu − ȳ∥L∞(Q) < εk.

2. Let the function L1 in the objective functional be affine with respect to y. Let ū ∈ U satisfy the

optimality conditions (3.6)–(3.8) and Assumption 3(Bk) with some k ∈ {1, 2}. Then, there exist

εk, ck > 0 such that (4.2) holds for all u ∈ U such that ∥u− ū∥L1(0,T )m < εk.

3. Let ū ∈ U satisfy the optimality conditions (3.6)–(3.8) and Assumption 3(B0). Then, there exist

ε0, c0 > 0 such that (4.2) holds for all u ∈ U such that ∥u− ū∥L1(0,T )m < ε0.

A proof of Theorem 8 in case of a less general objective functional can be found in [15]. It is a

consequence of the next two lemmas, which will be used also in Section 5. The first of them has been

proved for various types of objective functionals, see e.g. [8, Lemma 6],[7, Lemma 3.11] or [15, Lemma

10]. Due to the more general objective functional in the present paper and for readers’ convenience we

present a proof in the Appendix.

Lemma 9. Let ū ∈ U . The following holds.

1. For every ρ > 0 there exists ε > 0 such that

|[J ′′(ū+ θ(u− ū))− J ′′(ū)](u− ū)2| ≤ ρ∥u− ū∥2L1(0,T )m (4.3)

holds for all u ∈ U with ∥u− ū∥L1(0,T )m < ε and every θ ∈ [0, 1].

2. Let the function L1 in the objective functional be affine with respect to y. For every ρ > 0 there

exists ε > 0 such that

|[J ′′(ū+ θ(u− ū))− J ′′(ū)](u− ū)2| ≤ ρ∥zū,u−ū∥2L2(Q). (4.4)

holds for all u ∈ U with ∥u− ū∥L1(0,T )m < ε and θ ∈ [0, 1].

3. Let the function L1 in the objective functional be independent of y. For every ρ > 0 there exists

ε > 0 such that (4.4) holds for all u ∈ U with ∥yu − ȳ∥L∞(Q) < ε and θ ∈ [0, 1].

The next lemma shows that Assumption 3 implies a growth similar to (4.2) of the first derivative of

the objective functional in a neighborhood of ū.

Lemma 10. The following claims are fulfilled.

1. Let the function L1 in the objective functional be independent of y. Let ū satisfy assumption (Ak),

for some k ∈ {0, 1, 2}. Then, there exist ᾱk, γ̄k > 0 such that

J ′(u)(u− ū) ≥ γ̄k∥zū,u−ū∥kL2(Q)∥u− ū∥2−k
L1(0,T )m (4.5)

for every u ∈ U with ∥yu − ȳ∥L∞(Q) < ᾱk.
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2. Let the function L1 in the objective functional be affine with respect to y. Let ū satisfy assumption

(Bk) for some k ∈ {1, 2}. Then, there exist ᾱk, γ̄k > 0 such that (4.5) holds for every u ∈
U with ∥u− ū∥L1(0,T )m < ᾱk.

3. Let ū satisfy assumption (B0). Then, there exist ᾱ0, γ̄0 > 0 such that (4.5) holds for every u ∈
U with ∥u− ū∥L1(0,T )m < ᾱ0.

Reformulations of Assumption 3 using cones.
We recall that some of the items in Assumption 3 can be formulated equivalently by restricting the

admissible control variations v = u− ū to appropriate cones. This applies to (Bk) or to (Ak) depending

on whether the objective functional explicitly depends on the control or not.

Obviously any admissible control variation v = u− ū, u ∈ U , satisfies the conditions

v ∈ L2(0, T )m, vj(t) ≥ 0 whenever ūj(t) = ua,j(t) and vj(t) ≤ 0 whenever ūj(t) = ub,j(t). (4.6)

Then, for τ > 0 define

Dτ
ū :=

{
v ∈ L2(0, T )m

∣∣∣v satisfies (4.6) and vj(x, t) = 0 if
∣∣∣ ∂H̄
∂uj

(x, t)
∣∣∣ > τ, 1 ≤ j ≤ m

}
, (4.7)

Gτ
ū :=

{
v ∈ L2(0, T )m

∣∣∣v satisfies (4.6) and J ′(ū)(v) ≤ τ∥zū,v∥L1(Q)

}
, (4.8)

Eτ
ū :=

{
v ∈ L2(0, T )m

∣∣∣v satisfies (4.6) and J ′(ū)(v) ≤ τ∥zū,v∥L2(Q)

}
, (4.9)

Cτ
ū := Dτ

ū ∩Gτ
ū. (4.10)

The cones Dτ
ū, E

τ
ū and Gτ

ū were introduced in [4, 8] as extensions of the usual critical cone. Most recently,

the cone Cτ
ū was defined in [3] and also used in [5]. In the ODE control literature, a cone similar to Dτ

ū

has been in use for a long time, see [19].

Theorem 11. 1. For k ∈ {0, 2}, Assumption 3(Bk) is equivalent to the following condition (B̄k):

there exist constants αk, γk, τ > 0 such that

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ γk∥zū,u−ū∥kL2(Q)∥u− ū∥2−k
L1(0,T )m , (4.11)

for all u ∈ U for which (u− ū) ∈ Dτ
ū and ∥u− ū∥L1(0,T )m < αk.

2. Let the function L1 in the objective functional be independent of y, then Assumption 3(A2) is

equivalent to the following condition (Ā2): there exist constants α2, γ2, τ > 0 such that

J ′(ū)(u− ū) + J ′′(ū)(u− ū)2 ≥ γ2∥zū,u−ū∥2L2(Q) (4.12)

for all u ∈ U for which (u− ū) ∈ Cτ
ū and ∥yu − ȳ∥L∞(Q) < α2.

The proof goes along the lines of [15, Corollary 14,15].

By Theorem 8, the conditions (4.11) and (4.12) constitute sufficient conditions for strict weak or strong

local optimality.

Sufficient second-order conditions for (local) optimality based on (4.6)-(4.10) are given in [6, 3, 8].

For instance, it was proved in [4, 7, 8] that the condition:

∃δ > 0, τ > 0 such that J ′′(ū)v2 ≥ δ∥zū,v∥2L2(Q) ∀v ∈ G (4.13)
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is sufficient for weak (in the case G = Dτ
ū) or strong (in the case G = Eτ

ū) local optimality in the

elliptic and parabolic setting. It was proven in [3], that (4.13) with G = Cτ
ū is sufficient for strong local

optimality. To obtain and improve stability results, an additional assumption is usually imposed, called

the structural assumption. Adapted to the problem considered in this paper, it reads

∃κ > 0 such that meas
{
t ∈ [0, T ] :

∣∣∣ ∫
Ω

∂H̄

∂uj
(x, t) dx

∣∣∣ ≤ ε
}
≤ κε ∀ε > 0, j = 1, ...,m. (4.14)

It is known that the assumption (4.14) implies that ū is of bang-bang type and the existence of a constant

κ̃ > 0 such that the following growth property holds:

J ′(ū)(u− ū) ≥ κ̃∥u− ū∥2L1(0,T )m ∀u ∈ U . (4.15)

For a proof see [1], [17] or [21]. For stability results under these and additional conditions, see [7, 8, 10,

20, 11, 12, 15].

Remark 2. We compare the items in Assumption 3 to the ones using (4.13) and (4.14).

1. Assumption 3(A0) is implied by the structural assumption (4.14) and possible negative curvature as

in [11, 12]. For details see [14, Theorem 6.3].

2. Assumption 3(A1) is implied by the structural assumption (4.14) together with

J ′′(ū)(u− ū)2 ≥ −δ̃∥zū,u−ū∥L2(Q)∥u− ū∥L1(0,T )m

for all u ∈ U and any δ̃ > 0 sufficiently small. This is clear by Lemma 4 and (4.15).

3. By item two in Theorem 11, Assumption 3(A2) is implied by (4.13).

5 Strong metric subregularity and auxiliary results

In this section we study the strong metric subregularity property (SMSr) of the optimality mapping (see,

[16, Section 3I] or [13, Section 4]), beginning with a precise definition of the latter.

5.1 The optimality mapping

We begin by defining some mappings used to represent the optimality map in a convenient way. This is

done by a sight modification of [14, Section 2.1] and [15, Section 4.1]. Given the initial data y0 in (1.2),

we define the set

D(L) :=
{
y ∈W (0, T ) ∩ L∞(Q)

∣∣∣ ( d
dt

+A
)
y ∈ Lr(Q), y(·, 0) = y0

}
. (5.1)

To shorten notation, we define L : D(L) → Lr(Q) by L := d
dt +A. Additionally, we define the mapping

L∗ : D(L∗) → Lr(Q) by L∗ := (− d
dt +A∗), where

D(L∗) :=
{
p ∈W (0, T ) ∩ L∞(Q)

∣∣∣(− d

dt
+A∗

)
p ∈ Lr(Q), p(·, T ) = 0

}
.
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With the mappings L and L∗, we recast the semilinear state equation (1.2) and the linear adjoint

equation (3.7) in a short way:

Ly = ⟨u, g⟩ − f(·, ·, y),

L∗p =
∂L

∂y
(·, ·, yu, u)− p

∂f

∂y
(·, ·, yu) =

∂H

∂y
(·, ·, yu, p, u).

The normal cone to the set U at u ∈ L1(0, T )m is defined in the usual way:

NU (u) :=

{ {
ν ∈ L∞(0, T )m

∣∣ ∫ T

0
ν(v − u) dt ≤ 0 ∀v ∈ U

}
if u ∈ U ,

∅ if u ̸∈ U .

The first order necessary optimality condition for problem (1.1)-(1.3) in Theorem 7 can be recast as
0 = Ly + f(·, ·, y)− ⟨u, g⟩
0 = L∗p− ∂H

∂y (·, ·, y, p, u),
0 ∈

∫
Ω

∂H
∂u (x, ·, y, p, u) dx+NU (u).

(5.2)

For (5.2) to make sense, a solution (y, p, u) must satisfy y ∈ D(L), p ∈ D(L∗) and u ∈ U . For a local

solution ū ∈ U of problem (1.1)-(1.3), by Theorem 7, the triple (yū, pū, ū) is a solution of (5.2). We define

the sets

Y := D(L)×D(L∗)× U and Z := L2(Q)× L2(Q)× L∞(0, T )m, (5.3)

and consider the set-valued mapping Φ : Y ↠ Z given by

Φ

 y

p

u

 :=

 Ly + f(·, ·, y)− ⟨u, g⟩
L∗p− ∂H

∂y (·, ·, y, p, u)∫
Ω

∂H
∂u (x, ·, y, p, u) dx+NU (u)

 . (5.4)

With the abbreviation ψ := (y, p, u), the system (5.2) can be rewritten as the inclusion 0 ∈ Φ(ψ).

Therefore, the mapping Φ : Y ↠ Z is called the optimality mapping of the optimal control problem

(1.1)-(1.3). Our goal is to study the stability of system (5.2), or equivalently, the stability of the solutions

of the inclusion 0 ∈ Φ(ψ) under perturbations. For elements ξ, η ∈ Lr(Q) and ρ ∈ L∞(0, T )m we consider

the perturbed system 
ξ = −Ly + f(·, ·, y)− ⟨g, u⟩,
η = −L∗p+ ∂H

∂y (·, ·, y, p, u),
ρ ∈

∫
Ω

∂H
∂u (x, ·, y, p) dx+NU (u),

(5.5)

or equivalently, the inclusion ζ ∈ Φ(ψ), where ζ := (ξ, η, ρ) ∈ Z.

The next theorem is a consequence of the fact that (5.5) represents the Pontryagin maximum principle

for an appropriately perturbed version of problem (1.1)-(1.3), for which a solution exists by the same

argument as in the beginning of Section 3.

Theorem 12. For any perturbation ζ := (ξ, η, ρ) ∈ Lr(Q) × Lr(Q) × L∞(0, T )m there exists a triple

ψ := (y, p, u) ∈ Y such that ζ ∈ Φ(ψ).
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Given a metric space (X , dX ), we denote by BX (c, α) the closed ball of radius α > 0 centered at

c ∈ X . The spaces Y and Z, introduced in (5.3), are endowed with the metrics

dY(ψ1, ψ2) := ∥y1 − y2∥L2(Q) + ∥p1 − p2∥L2(Q) + ∥u1 − u2∥L1(0,T )m , (5.6)

dZ(ζ1, ζ2) := ∥ξ1 − ξ2∥L2(Q) + ∥η1 − η2∥L2(Q) + ∥ρ1 − ρ2∥L∞(0,T )m ,

where ψi = (yi, pi, ui) and ζi = (ξi, ηi, ρi), i ∈ {1, 2}. Further on, we denote ψ̄ := (yū, pū, ū).

The following extension of the previous theorem can be proved along the lines of [14, Theorem 4.12].

Theorem 13. Let Assumption 3(A0) hold. For each ε > 0 there exists δ > 0 such that for every

ζ ∈ BZ(0; δ) there exists ψ ∈ BY(ψ̄; ε) satisfying the inclusion ζ ∈ Φ(ψ).

5.2 Strong metric subregularity: main result

This subsection contains one of the main results in this paper: estimates of the difference between the

solutions of the perturbed system (5.5) and a reference solution of the unperturbed one, (5.2), by the

size of the perturbations. This will be done using the notion of strong metric subregularity recalled in the

next paragraphs.

Definition 2. Let ψ̄ satisfy 0 ∈ Φ(ψ̄). We say that the optimality mapping Φ : Y ↠ Z is strongly

metrically subregularity (SMsR) at (ψ̄, 0) if there exist positive numbers α1, α2 and κ such that

dY(ψ, ψ̄) ≤ κdZ(ζ, 0)

for all ψ ∈ BY(ψ̄; α1) and ζ ∈ BZ(0; α2) satisfying ζ ∈ Φ(ψ).

Notice that applying the definition with ζ = 0 we obtain that ψ̄ is the unique solution of the inclusion

0 ∈ Φ(ψ) ∩BY(ψ̄; α1). In particular, ū is a strict local minimizer for problem (1.1)-(1.3).

In the next assumption we introduce a restriction on the set of admissible perturbations, call it Γ,

which is valid for the remaining part of this section.

Assumption 4. For a fixed positive constant Cpe, the admissible perturbation ζ = (ξ, η, ρ) ∈ Γ ⊂ Z
satisfy the restriction

∥ξ∥Lr(Q) ≤ Cpe. (5.7)

For any u ∈ U and ζ ∈ Γ we denote by (yζu, p
ζ
u, u) a solution of the first two equations in (5.5). Using

(2.3) in Theorem 1 we obtain the existence of a constant Ky such that

∥yζu∥L∞(Q) ≤ Ky ∀u ∈ U ∀ζ ∈ Γ. (5.8)

Then for every u ∈ U , every admissible disturbance ζ, and the corresponding solution y of the first

equation in (5.5) it holds that (yζu(x, t), u(t)) ∈ R := [−Ky,Ky]× [ua, ub]
m.

Remark 3. We apply the local properties in Assumption 2 to the interval [−Ky,Ky], and denote by C̄ a

constant that majorates the bounds and the Lipschitz constants of f , L0 and L1 and their first and second

derivatives with respect to y ∈ [−Ky,Ky].
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By increasing the constant Ky, if necessary, we may also estimate the adjoint state:

∥pζu∥L∞(Q) ≤ Ky(1 + ∥η∥Lr(Q)) ∀u ∈ U ∀ζ ∈ Γ.

This follows from Theorem 2 with α = −∂f
∂y (x, t, y

ζ
u) and with ∂L

∂y (x, t, y
ζ
u, u) at the place of u.

The main result of this paper follows.

Theorem 14. Let assumption 3(B0) be fulfilled for the reference solution ψ̄ = (ȳ, p̄, ū) of 0 ∈ Φ(ψ).

Then the mapping Φ is strongly metrically subregular at (ψ̄, 0). More precisely, there exist αn, κn > 0

such that for all ψ ∈ Y with ∥u− ū∥L1(0,T )m ≤ αn and ζ ∈ Γ satisfying ζ ∈ Φ(ψ), the following inequality

is satisfied:

∥ū− u∥L1(0,T )m + ∥yū − yζu∥L2(Q) + ∥pū − pζu∥L2(Q) (5.9)

≤ κn

(
max

1≤j≤m
∥ρj∥L∞(0,T ) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
. (5.10)

To prove Theorem 14, we need some technical lemmas.

Lemma 15. ([15, Lemma 18]) Let u ∈ U be given and v ∈ Lr(0, T )m, ξ, η ∈ Lr(Q). Consider solutions

yu, pu, zū,v and yξu,p
η
u, z

ξ
ū,v of the equations

Ly + f(·, ·, y) = ⟨g, u⟩,
L∗p− ∂H

∂y (·, ·, yu, p, u) = 0,

L0z + fy(·, ·, yu)z = ⟨g, v⟩,


Ly + f(·, ·, y) = ⟨g, u⟩+ ξ,

L∗p− ∂H
∂y (·, ·, y

ξ
u, p, u) = η,

L0z + fy(·, ·, yξu)z = ⟨g, v⟩,
(5.11)

Here, L0 is defined as L, but on the domain (5.1) with y0 = 0. Then for every s ∈ [1, n+2
n ) there exist

constants Ks,K2, R2 > 0, independent of ζ ∈ Γ, such that the following inequalities hold

∥yξu − yu∥L2(Q) ≤ C2∥ξ∥L2(Q), (5.12)

∥zξu,v − zu,v∥L2(Q) ≤ K2∥ξ∥Lr(Q)∥zu,v∥L2(Q), (5.13)

∥zξu,v − zu,v∥Ls(Q) ≤ Ks∥ξ∥L2(Q)∥zu,v∥L2(Q), (5.14)

∥pηu − pu∥2 ≤ R2(∥ξ∥L2(Q) + ∥η∥L2(Q)), (5.15)

where C2 is the constant given in (2.6).

Lemma 16. Let u ∈ U and yu, pu be the corresponding state and adjoint state. Further, let yζu and pζu

be solutions to the perturbed state and adjoint equation in (5.5) for the control u.

1. Let the function L1 in the objective functional be independent of y. There exists a constant C > 0,

independent of ζ ∈ Γ, such that for all v ∈ Lr(0, T )m, the following estimate holds:∣∣∣ ∫
Q

〈∂H
∂u

(x, t, yu, pu)−
∂H

∂u
(x, t, yζu, p

ζ
u), v

〉
dxdt

∣∣∣ ≤ C(∥ξ∥L2(Q) + ∥η∥L2(Q))∥zu,v∥L2(Q). (5.16)

2. There exists a constant C̃ > 0, independent of ζ ∈ Γ, such that for all v ∈ Lr(0, T )m, the following

estimate holds:∣∣∣ ∫
Q

〈∂H
∂u

(x, t, yu, pu)−
∂H

∂u
(x, t, yζu, p

ζ
u), v

〉
dxdt

∣∣∣ ≤ C̃(∥ξ∥L2(Q) + ∥η∥L2(Q))∥v∥L1(0,T )m . (5.17)
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Proof. We begin with integrating by parts∣∣∣ ∫
Q

〈∂H
∂u

(x, t, yu, pu)−
∂H

∂u
(x, t, yζu, p

ζ
u), v

〉
dx dt

∣∣∣ ≤ ∣∣∣ ∫
Q

[∂L0

∂y
(x, t, yu)zu,v −

∂L0

∂y
(x, t, yζu)z

ζ
u,v

]
dxdt

∣∣∣
+
∣∣∣ ∫

Q

〈∂L1

∂y
(x, t, yu), v⟩zu,v − ⟨∂L1

∂y
(x, t, yζu), v

〉
zζu,v dxdt

∣∣∣+ ∣∣∣ ∫
Q

〈
L1(x, t, yu)− L1(x, t, y

ζ), v
〉
dxdt

∣∣∣
+
∣∣∣ ∫

Q

ηzζu,v dxdt
∣∣∣ = I1 + I2 + I3 + I4.

For the first term we use the Hölder inequality and the mean value theorem to estimate

I1 ≤
∫
Q

∣∣∣∂L0

∂y
(x, t, yu)−

∂L0

∂y
(x, t, yζu)

∣∣∣ ∣∣zu,v∣∣dx dt+ ∫
Q

∣∣∣∂L0

∂y
(x, t, yζu)

∣∣∣ ∣∣zu,v − zζu,v
∣∣dxdt

≤
∥∥∥∂2L0

∂y2
(x, t, yθ)

∥∥∥
L∞(Q)

∥yζu − yu∥L2(Q)∥zu,v∥L2(Q)

+Ks

∥∥∥∂L0

∂y
(x, t, yζu)

∥∥∥
Ls′ (Q)

∥ξ∥L2(Q)∥zu,v∥L2(Q),

where Ls′ is the dual space to Ls. By the mean value theorem, Assumption 2, (2.12), (5.12) and (5.27),

we can infer the existence of a constant B1 > 0 such that

I1 ≤ B1∥ξ∥L2(Q)∥zu,v∥L2(Q). (5.18)

The second term is estimated by using Assumption 2, (2.12), Hölder’s inequality, and (5.13):

I2 ≤
∣∣∣ ∫

Q

〈∂L1

∂y
(x, t, yu)−

∂L1

∂y
(x, t, yζu), v

〉
zu,v dxdt

∣∣∣+ ∣∣∣ ∫
Q

〈∂L1

∂y
(x, t, yζu), v

〉[
zu,v − zζu,v

]
dxdt

∣∣∣
≤ K2 max

1≤i≤m

∥∥∥∂2L1,i

∂y2
(x, t, yθi)vi

∥∥∥
L∞(Q)

∥yu − yζu∥L2(Q)∥zu,v∥L2(Q)

+Ks

∥∥∥〈∂L1

∂y
(x, t, yζu), v

〉∥∥∥
Ls′ (Q)

∥ξ∥L2(Q)∥zu,v∥L2(Q)

By the mean value theorem, Assumption 2, (2.12), (5.12) and (5.27), we can infer the existence of a

constant B2 > 0 such that

I2 ≤ B2∥ξ∥L2(Q)∥zu,v∥L2(Q). (5.19)

Applying the mean value theorem m times, we obtain for the third term

I3 ≤
∣∣∣ ∫

Q

⟨L1(x, t, yu)− L1(x, t, y
ζ), v⟩dxdt

∣∣∣
≤ max

1≤j≤m

∥∥∥∂L1,j

∂y
(x, t, yθj )

∥∥∥
L∞(Q)

∥yu − yζu∥L∞(0,T,L2(Ω))∥v∥L1(0,T )m

and infer by Assumption 2, (2.12), (5.27) and (5.12), the existence of a constant B3 > 0 with

I3 ≤ B3∥ξ∥L2(Q)∥v∥L1(0,T )m .

For the last term, we estimate by Assumption 2, (5.27), (2.12), (5.13) and (5.12)

I4 ≤ ∥η∥L2(Q)(∥zu,v∥L2(Q) + ∥zζu,v − zu,v∥L2(Q)) ≤ (1 +K2Cpe)∥η∥L2(Q)∥zu,v∥L2(Q)
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and define B4 := 1 +K2Cpe. If the function L1 in the objective functional is independent of y, the term

I3 does not appear and the first estimate (5.16) holds for C := 4max1≤i≤4Bi. For the other case, (5.17),

we use that by Theorem 3 and Lemma 4 it holds

∥zu,v∥L2(Q) ≤ 2 exp
(∥∥∥∂f

∂y
(·, ·, yu(·))

∥∥∥
L∞(Q)

T
)

max
1≤j≤m

∥gj∥L2(Ω)∥v∥L1(0,T )m

and define C̃ in a similar way. □

Proof of Theorem 14. We select α < α̃0 according to Lemma 10. Let ζ = (ξ, η, ρ) ∈ Z and ψ = (yζu, p
ζ
u, u)

with ∥u− ū∥L1(0,T )m ≤ α be such that ζ ∈ Φ(ψ), i.e.
ξ = Lyζu + f(·, ·, yζu)− u,

η = L∗pζu − ∂H
∂y (·, ·, y

ζ
u, p

ζ
u, u),

ρ ∈
∫
Ω

∂H
∂u (x, ·, y

ζ
u, p

ζ
u) dx+NU (u).

Let yu and pu denote the solutions to the unperturbed problem with respect to u, i.e.

⟨u, g⟩ = Lyu + f(·, ·, yu) and 0 = L∗pu − ∂H

∂y
(·, ·, yu, pu, u).

By Lemma 15, there exists C2, R2 > 0 independent of ψ and ζ such that

∥yζu − yu∥L2(Q) + ∥pζu − pu∥L2(Q) ≤ (C2 +R2)
(
∥ξ∥L2(Q) + ∥η∥L2(Q)

)
. (5.20)

By the definition of the normal cone, ρ ∈
∫
Ω

∂H
∂u (x, ·, y

ζ
u, p

ζ
u) dx+NU (u) is equivalent to

0 ≥
∫
Q

〈
ρ− ∂H

∂u
(x, t, yζu, p

ζ
u), w − u

〉
dxdt ∀w ∈ U .

We conclude for w = ū,

0 ≥
∫
Q

〈∂H
∂u

(x, t, yu, pu), u− ū
〉

dx dt+

∫
Q

〈
ρ+

∂H

∂u
(x, t, yu, pu)−

∂H

∂u
(x, t, yζu, p

ζ
u), ū− u

〉
dxdt

≥ J ′(u)(u− ū)− max
1≤j≤m

∥ρj∥L∞(0,T )∥ū− u∥L1(0,T )m

−
∣∣∣ ∫

Q

〈∂H
∂u

(x, t, yu, pu)−
∂H

∂u
(x, t, yζu, p

ζ
u), ū− u

〉
dx dt

∣∣∣.
By Lemma 16, we have an estimate on the third term. Since ∥u − ū∥L1(0,T )m < α, we estimate by

Lemma 10 and Lemma 16

∥u− ū∥2L1(0,T )m γ̄0 ≤ J ′(u)(u− ū)

≤ C̃
(
∥ξ∥L2(Q) + ∥η∥L2(Q)

)
∥u− ū∥L1(0,T )m + max

1≤j≤m
∥ρj∥L∞(0,T )∥ū− u∥L1(0,T )m

and consequently for an adapted constant, denoted in the same way

∥ū− u∥L1(0,T )m ≤ C̃
(

max
1≤j≤m

∥ρj∥L∞(0,T ) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
.
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To estimate the states, by Lemma 4, we use the estimate for the controls and obtain

∥yū − yu∥L2(Q) ≤ 2 exp(∥∂f
∂y

(·, ·, ȳ(·))∥L∞(Q)T ) max
1≤j≤m

∥gj∥L2(Ω)∥ū− u∥L1(0,T )m . (5.21)

Thus, for a constant again denoted by C̃

∥yū − yu∥L2(Q) ≤ C̃
(

max
1≤j≤m

∥ρj∥L∞(0,T ) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
.

Next, we realize that by Lemma 15 and (5.2)

∥yū − yζu∥L2(Q) ≤ ∥yū − yu∥L2(Q) + ∥yu − yζu∥L2(Q)

≤ max{C̃, C2}
(

max
1≤j≤m

∥ρj∥L∞(0,T ) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
.

Using ∥pū − pu∥L2(Q) ≤ C2∥yū − yu∥L2(Q) and (5.15), the same estimate holds for the adjoint state

∥pū − pζu∥L2(Q) ≤ ∥pū − pu∥L2(Q) + ∥pu − pζu∥L2(Q)

≤ (C2 max{C̃, C2}+R2)
(

max
1≤j≤m

∥ρj∥L∞(0,T ) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
,

subsequently we define κ := C2 max{C̃, C2}+R2. □

To obtain results under Assumption 3 for k ∈ {1, 2}, we need additional restrictions. We either don’t

allow perturbations ρ (appearing in the inclusion in (5.5)) or they need to satisfy

ρ = µσ (5.22)

where µ =
∫
Ω
g dx ∈ Rm and σ ∈W 1,2(0, T ) with σ(T ) = 0.

Theorem 17. Let some of the assumptions (A1), (B1) and (A2), (B2) be fulfilled for the reference solution

ψ̄ = (ȳ, p̄, ū) of 0 ∈ Φ(ψ). Further, for (A1), (A2) let the function L1 in the objective functional be

independent of y. For (B1), (B2) let L1 be affine with respect to y. In addition, the set Γ of feasible

perturbations is restricted to such ζ ∈ Γ for which the component ρ is either zero or satisfies (5.22). The

numbers αn, κn and ε are as in Theorem 14. Then the following statements hold for n ∈ {1, 2, 3}:
1. Under Assumption 3, cases (A1) and (B1), the estimation

∥ū− u∥L1(0,T )m + ∥yū − yζu∥L2(Q) + ∥pū − pζu∥L2(Q) ≤ κn

(
∥dσ
dt

∥L2(0,T ) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
,

hold for all u ∈ U with ∥yu − ȳ∥L∞(Q) < αn, in the case of (A1), or ∥u − ū∥L1(0,T )m < αn in the case

(B1), and for all ζ ∈ Γ satisfying ζ ∈ Φ(ψ).

2. Under Assumption 3, cases (A2) and (B2), the estimation

∥ȳ − yζu∥L2(Q) + ∥p̄− pζu∥L2(Q) ≤ κn

(
∥dσ
dt

∥L2(0,T ) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
hold for all u ∈ U with ∥yu − ȳ∥L∞(Q) < αn, in the case of (A2), or ∥u − ū∥L1(0,T )m < αn in the case

(B2), and for all ζ ∈ Γ satisfying ζ ∈ Φ(ψ).
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Proof. If the perturbation ρ ∈ L2(0, T,H−1(Ω)) satisfies (5.22), it holds∫ T

0

⟨ρ, u− ū⟩dt = ν

∫ T

0

⟨σ, u− ū⟩dt =
∫ T

0

∫
Ω

σ⟨g, u− ū⟩dx dt

=

∫ T

0

∫
Ω

(Lzū,u−ū + fy(·, t, yū)zū,u−ū)σ dxdt

=

∫ T

0

∫
Ω

(−dσ
dt

+ fy(·, t, yū)σ)zū,u−ū dxdt.

Thus we can estimate∣∣∣ ∫ T

0

⟨ρ, u− ū⟩dt
∣∣∣ ≤ K(∥dσ

dt
∥L2(0,T ) + ∥fy(x, t, yū)∥L∞(Q)∥σ∥L2(0,T ))∥zū,u−ū∥L2(Q)

≤ K(∥dσ
dt

∥L2(0,T ) + C2∥fy(x, t, yū)∥L∞(Q)∥
dσ

dt
∥L2(0,T ))∥zū,u−ū∥L2(Q).

Under Assumptions (A1), (B1), we can proceed as in the proof of Theorem 14 using Lemma 10 and (5.16)

in Lemma 16, to infer the existence of constants α1, κ1 > 0 such that

∥ū− u∥L1(0,T )m ≤ κ1

(
∥dσ
dt

∥L2(Q)m + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
,

for all u ∈ U with ∥yu − ȳ∥L∞(Q) < α1 or ∥u − ū∥L1(0,T )m < α1 depending on the assumption. By

standard estimates, using (2.14), there exists a constant E > 0, such that

∥yū − yu∥L2(Q) + ∥pū − pu∥L2(Q) ≤ E∥yū − yu∥L2(Q) ≤ 2E∥zu,u−ū∥L2(Q)

≤ 2κ1E
(
∥dσ
dt

∥L2(0,T ) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
,

for all u ∈ U with ∥yu − ȳ∥L∞(Q) < α1 or ∥u − ū∥L1(0,T )m < α1 depending on the assumption. From

here on, we can proceed as in the proof of Theorem 14 and redefine the constant κ1 > 0 accordingly.

Finally, by similar reasoning, under Assumption (A2), (B2) with Lemma 10 and Lemma 16, one obtains

the existence of a constant κ2 > 0 such that

∥yū − yu∥L2(Q) + ∥pū − pu∥L2(Q) ≤ κ2

(
∥dσ
dt

∥L2(0,T ) + ∥ξ∥L2(Q) + ∥η∥L2(Q)

)
,

for all u ∈ U with ∥yu− ȳ∥L∞(Q) < α2 or ∥u− ū∥L1(0,T )m < α2. Again, proceeding as in Theorem 14 and

increasing the constant κ2 if needed, proves the claim. □

Remark 4. Theorems 14 and 17 concern perturbations which are functions of x and t only. On the other

hand, [13, Theorem ] suggests that SMSr implies a similar stability property under classes of perturbations

that depend (in a non-linear way) on the state and control. We refer to [15, Section 5] for a detailed

discussion on this. By straightforward adaptations, the results therein hold also for the problem considered

in this paper.

Appendix

A proof of the following lemma can be found in [2, Lemma 3.5] or [6, Lemma 3.5].
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Lemma 18. Let X = L∞(Q) or L2(Q). Given ū ∈ U with associated state ȳ, there exists a constant

BX > 0 such that the following estimate holds

∥yū+θ(u−ū) − ȳ∥X ≤ BX∥yu − ȳ∥X ∀θ ∈ [0, 1] and ∀u ∈ U . (5.23)

We prove the analogous statement for the adjoint-state. For an elliptic state equation, a proof is given

in [2, Lemma 3.7].

Lemma 19. Let X = L∞(Q) or L2(Q). Given ū ∈ U with associated state ȳ and adjoint-state p̄, then

there exists a constant B̃X > 0 such that

∥pū+θ(u−ū) − p̄∥X ≤ B̃X(∥yu − ȳ∥X + ∥u− ū∥
1
r

L1(0,T )m), (5.24)

for all θ ∈ [0, 1] and u ∈ U . If the function L1 in the objective functional is independent of y, then there

exists a constant B̃X > 0 such that

∥pū+θ(u−ū) − p̄∥X ≤ B̃X∥yu − ȳ∥X , (5.25)

for all θ ∈ [0, 1] and u ∈ U .

Proof. Let us prove (5.24). Given u ∈ U and θ ∈ [0, 1], let us denote uθ = ū + θ(u − ū), yθ = yuθ
, and

pθ = puθ
. Subtracting the equations satisfied by pθ and p̄ we get with the mean value theorem

− d

dt
(pθ − p̄) +A∗(pθ − p̄) +

∂f

∂y
(x, t, ȳ)(pθ − p̄) =

∂L

∂y
(x, t, yθ, uθ)−

∂L

∂y
(x, t, ȳ, ū)

+
[∂f
∂y

(x, t, ȳ)− ∂f

∂y
(x, t, yθ)

]
pθ

=
∂L0

∂y
(x, t, yθ)−

∂L0

∂y
(x, t, ȳ) +

〈∂L1

∂y
(x, t, yθ)−

∂L1

∂y
(x, t, ȳ), uθ

〉
+
〈∂L1

∂y
(x, t, ȳ), uθ − ū

〉
+
[∂f
∂y

(x, t, ȳ)− ∂f

∂y
(x, t, yθ)

]
pθ

=
∂2L0

∂y2
(x, t, yϑ1

)(yθ − ū) +
∑

1≤j≤m

∂2L1,j

∂2y
(x, t, yϑj

)uj,θ(yθ − ȳ)

+
〈∂L1

∂y
(x, t, ȳ), uθ − ū

〉
+
∂2f

∂y2
(x, t, yϑm+1

)(ȳ − yθ)pθ,

where yϑi
= ȳ + ϑi(yθ − ȳ) for some measurable functions ϑi : Q −→ [0, 1], i = 0, ...,m+ 1. Now, we can

apply Theorem 2 and Remark 3 to conclude from the above equation the existence of a constant CX > 0

such that

∥pθ − p̄∥X ≤ CX(∥yθ − ȳ∥X + ∥u− ū∥Lr(Q))

≤ CX(BX∥yu − ȳ∥X + |Ω|(2MU )
r−1
r ∥u− ū∥

1
r

L1(0,T )m).

Defining B̃X := CX(BX + |Ω|(2MU )
r−1
r ), with BX being the constant from Lemma 18, concludes the

proof of the first claim. The second claim follows by the same argument and the fact that the right-hand

side of the equation satisfied by pθ − p̄ does not depend on L1. □

Below we shall use the next lemma, the proof of which can be found for linear elliptic equations in [2,

Lemma 2.3] and for parabolic equations in [15].
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Lemma 20. Let u ∈ Lr(Q) and 0 ≤ α ∈ L∞(Q). Let yu be the unique solution of (2.2) and let pu be a

solution of the problem {
−∂p

∂t +A∗p+ αp = u in Q,

p = 0 on Σ, p(·, T ) = 0 on Ω.
(5.26)

Then, for any sn ∈ [1, n+2
n ) there exists a constant Cs′n

> 0 independent of u and α such that

max{∥yu∥Lsn (Q), ∥pu∥Lsn (Q)} ≤ Cs′n
∥u∥L1(Q). (5.27)

Here s′n denotes the Hölder conjugate of sn.

Proof of Lemma 9. The second variation of the objective functional is given by Theorem 6. Let us denote

uθ, yθ, and φθ as in the proof of Lemma 19. From (3.4) we obtain that

|[J ′′(ū+ θ(u− ū))− J ′′(ū)](u− ū)2|

≤
∫
Q

∣∣∣[∂2L
∂y2

(x, t, yθ, uθ)−
∂2L

∂y2
(x, t, ȳ, ū)

]
z2uθ,u−ū

∣∣∣dxdt+ ∫
Q

∣∣∣(φ̄− φθ)
∂2f

∂y2
(x, t, yθ)z

2
uθ,u−ū

∣∣∣dxdt
+

∫
Q

∣∣∣φ̄[∂2f
∂y2

(x, t, ȳ)− ∂2f

∂y2
(x, t, yθ)

]
z2uθ,u−ū

∣∣∣ dx dt
+

∫
Q

∣∣∣[∂2L
∂y2

(x, t, ȳ)− φ̄
∂2f

∂y2
(x, t, ȳ)

]
(z2uθ,u−ū − z2ū,u−ū)

∣∣∣dxdt
+ 2

∫
Q

∣∣∣〈∂L1

∂y
(x, t, yθ)−

∂L1

∂y
(x, t, ȳ), zuθ,u−ū(u− ū)

〉∣∣∣dx dt
+ 2

∫
Q

∣∣∣〈∂L1

∂y
(x, t, ȳ), (zuθ,u−ū − zū,u−ū)(u− ū)

〉∣∣∣dx dt
= I1 + I2 + I3 + I4 + I5 + I6.

The first term, I1, can be estimated as

I1 ≤
∫
Q

∣∣∣[∂2L0

∂y2
(x, t, yθ)−

∂2L0

∂y2
(x, t, ȳ)

]
z2uθ,u−ū

∣∣∣dxdt
+

∫
Q

∣∣∣[〈∂2L1

∂y2
(x, t, yθ)−

∂2L1

∂y2
(x, t, ȳ), uθ

〉
+
〈∂2L1

∂y2
(x, t, ȳ), uθ − ū

〉]
z2uθ,u−ū

∣∣∣dxdt
= I1,1 + I1,2 + I1,3.

For the first two terms, we deduce from Assumption 2, Remark 1, Remark 3, (5.23), (2.14) and (2.15),

that for every ρ1,i > 0 there exists ε1,i > 0 such that

I1,i ≤ ρ1,i∥zū,u−ū∥2L2(Q) if ∥yu − ȳ∥L∞(Q) < ε1,i, i = 1, 2.

For I1,3 we estimate under Assumption 2, Remark 1, Remark 3, (5.23), (2.11), (2.14), (2.15), that for

∥yu − ȳ∥C(Q̄) sufficiently small∫
Q

∣∣∣〈∂2L1

∂y2
(x, t, ȳ), uθ − ū

〉
z2uθ,u−ū

∣∣∣dxdt
≤ ∥zuθ,u−ū∥2L∞(0,T,L2(Ω)∥uθ − ū∥L1(0,T )m max

j=1,...,m

∥∥∥∂2L1,j

∂y2
(x, t, ȳ)

∥∥∥
L∞(Q)

≤ 9

4
|Ω| 12 exp(∥∂f

∂y
(·, ·, y)∥L∞(Q))∥ȳ − yu∥L∞(Q)∥u− ū∥2L1(0,T )m max

j=1,...,m
∥gj∥L∞(Q) max

j=1,...,m

∥∥∥∂2L1,j

∂y2
(x, t, ȳ)

∥∥∥
L∞(Q)

.
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We can therefore infer, that for every ρ1,3 > 0 there exists ε1,3 > 0 such that

I1,3 ≤ ρ1∥u− ū∥2L1(0,T )m if ∥yu − ȳ∥L∞(Q) < ε1,3.

For the term I2, we first consider the general case. Using Assumption 2, Remark 1, Remark 3, (5.23),

(5.24), (2.14) and (2.15), we find for any ρ2 > 0 a ε2 > 0 such that

I2 ≤ 9

4
C̄B̃Cr(2MU )

r−1
r )∥u− ū∥

1
r

L1(0,T )m∥zū,u−ū∥2L2(Q) ≤ ρ2∥zū,u−ū∥2L2(Q) if ∥u− ū∥L1(0,T )m < ε2.

In the case that ∂L1

∂y ≡ 0, we deduce from Assumption 2, Remark 1, Remark 3, (5.23), (5.24), (2.14) and

(2.15), that for every ρ2 > 0 there exists ε2 > 0 such that

I2 ≤ ρj∥zū,u−ū∥2L2(Q) if ∥yu − ȳ∥L∞(Q) < ε2.

For the term I3 we deduce from Assumption 2, Remark 1, Remark 3, (5.23), (5.24), (2.14) and (2.15),

that for every ρ3 > 0 there exists ε3 > 0 such that

I3 ≤ ρ3∥zū,u−ū∥2L2(Q) if ∥yu − ȳ∥L∞(Q) < ε3

For I4 we define ψ := zū,u−ū − zuθ,u−ū. ψ solves the equation

dψ

dt
+Aψ +

∂f

∂y
(x, t, yū)ψ =

[∂f
∂y

(x, t, yuθ
)− ∂f

∂y
(x, t, yū)

]
zuθ,u−ū =

∂2f

∂y2
(x, t, yϑ)(yū − yuθ

)zuθ,u−ū,

where we used the mean value theorem to infer the existence of a function ϑ such that the above holds.

We apply (2.6) to ψ and estimate

I4 ≤
∥∥∥∂2L
∂y2

(x, t, ȳ)− φ̄
∂2f

∂y2
(x, t, ȳ)

∥∥∥
L∞(Q)

∥zuθ,u−ū + zū,u−ū∥L2(Q)∥zuθ,u−ū − zū,u−ū∥L2(Q)

≤ 3M2

2
∥yθ − ȳ∥L∞(Q)∥zū,u−ū∥2L2(Q).

Then by Assumption 2, Remark 1, Remark 3, (5.23), (2.14) and (2.15), for every ρ4 > 0 there exists

ε4 > 0 such that

I4 ≤ ρ4∥zū,u−ū∥2L2(Q) if ∥yu − ȳ∥L∞(Q) < ε4. (5.28)

The term I5, can be estimate similar as I1,3, therefore under under Assumption 2, Remark 1, Remark 3,

(5.23), (2.11), (2.14), (2.15), for every ρ5 > 0 there exists ε5 > 0 such that

I5 ≤ ρ5∥u− ū∥2L1(0,T )m if ∥yu − ȳ∥L∞(Q) < ε5.

To estimate I6, we select s as in Lemma 20 and apply (5.27) to ψ and estimate for ∥yu − ȳ∥L∞(Q)

sufficiently small

I6 ≤ 2M
s′−1
s′

U max
j=1,..,m

∥∥∥∂L1,j

∂y
(·, ȳ(·))

∥∥∥
L∞(Q)

∥u− ū∥
1
s′
L1(0,T )m∥zuθ,u−ū − zū,u−ū∥Ls(Q)

≤ 2M
s′−1
s′

U ∥∂
2f

∂y2
(x, t, yϑ)∥L∞(Q) max

j=1,..,m

∥∥∥∂L1,j

∂y
(·, ȳ(·))

∥∥∥
L∞(Q)

∥u− ū∥
1
s′
L1(0,T )m∥yuθ

− ȳ∥L2(Q)∥zūθ,u−ū∥L2(Q).

Thus, depending on the chosen estimation, under Assumption 2, Remark 1, Remark 3, (5.23), (2.14) and

(2.15), for every ρ6 > 0 there exists ε6 > 0 such that

I6 ≤ ρ6∥zū,u−ū∥2L2(Q) if ∥u− ū∥L1(0,T )m < ε6.
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We remark that by (2.7),

∥u− ū∥L1(0,T )m <
εr

(Cr|Ω|
1
r ∥g∥L∞(Ω)m∥ua − ub∥

r−1
r

L∞(0,T )m)r

implies ∥yu − ȳ∥L∞(Q) < ε.

If the function L1 in the objective functional is independent of y, the problematic parts in the terms

I1, I2, I5 and I6 are absent. Further, if the function L1 is affine with respect to y, the problematic parts

in the terms I1, I2, I5 and I6 are either absent or can be estimated under the condition that ∥u−ū∥L1(0,T )m

is sufficiently small. If this is not the case, we only obtain item 1 of the Lemma 9. Depending on the

terms in the objective functional, by taking ρi so small that Ii <
ρ
6 for every i ∈ {1, .., 6} and setting

ε = min1≤i≤6 εi, we complete the proof. □
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