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Abstract
The paper investigates stability properties of solutions of optimal control problems
constrained by semilinear parabolic partial differential equations. Hölder or Lipschitz
dependence of the optimal solution onperturbations are obtained for problems inwhich
the equation and the objective functional are affine with respect to the control. The
perturbations may appear in both the equation and in the objective functional and may
nonlinearly depend on the state and control variables. The main results are based on an
extension of recently introduced assumptions on the joint growth of the first and second
variation of the objective functional. The stability of the optimal solution is obtained
as a consequence of a more general result obtained in the paper–the metric subreg-
ularity of the mapping associated with the system of first order necessary optimality
conditions. This property also enables error estimates for approximation methods. A
Lipschitz estimate for the dependence of the optimal control on the Tikhonov regu-
larization parameter is obtained as a by-product.

Keywords 49K20 · 35K58 · 49K40 · 49J40

1 Introduction

Let� ⊂ R
n , 1 ≤ n ≤ 3, be a bounded domainwithLipschitz boundary ∂�. For a finite

T > 0, denote by Q := �× (0, T ) the space-time cylinder and by � := ∂�× (0, T )

its lateral boundary. In the present paper, we investigate the following optimal control
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problem:

(P) min
u∈U

{
J (u) :=

∫
Q

L(x, t, y(x, t), u(x, t)) dx dt

}
, (1)

subject to {
∂ y
∂t + Ay + f (·, y) = u in Q,

y = 0 on �, y(·, 0) = y0 on �.
(2)

Here y : Q → R is the state, u : Q → R is the control and A is an elliptic operator.
For functions ua, ub ∈ L∞(Q) such that ua < ub a.e in Q, the set of feasible controls
is given by

U := {u ∈ L∞(Q)| ua ≤ u ≤ ub for a.a. (x, t) ∈ Q}. (3)

Denote by yu the unique solution to the semilinear parabolic Eq. (2) that corresponds
to control u ∈ Lr (Q), where r is a fixed number satisfying the inequality r > 1 + n

2 .
The objective integrand in (1) is defined as

L(x, t, y, u) := L0(x, t, y) + (my + g)u, (4)

wherem is a number, g is a function in L∞(Q) and L0 satisfies appropriate smoothness
condition (see Assumption 2 in Sect. 1.1).

The goal of the present paper is to obtain stability results for the optimal solution
of problem (1)–(3). The meaning of “stability” we focus on, is as follows. Given a
reference optimal control ū and the corresponding solution ȳ, the goal is to estimate
the distance (call it �) from the optimal solutions (u, yu) of a disturbed version of
problem (1)–(3) to the pair (ū, ȳ), in terms of the size of the perturbations (call it δ).
The perturbations may enter either in the objective integrand or in the state equation,
and the meaning of “distance” and “size” in the previous sentence will be clarified in
the sequel in terms of appropriate norms. If an estimation � ≤ const.δθ holds with
θ ∈ (0, 1), we talk about Hölder stability, while in the case θ = 1 we have Lipschitz
stability.

A powerful technique for establishing stability properties of the solutions of opti-
mization problems is based on regularity properties of the system of first order
necessary optimality conditions (see e.g. [18]). In the case of problem (1)–(3), these
are represented by a differential variational inequality (see e.g. [16, 25]), consisting
of two parabolic equations (the primal equation (1) and the corresponding adjoint
equation) and one variational inequality representing the condition for minimization
of the Hamiltonian associated with the problem. The Lipschitz or Hölder stability of
the solution of problem (1)–(3) is then a consequence of the property of metric subreg-
ularity (see [15, 18]) of the mapping defining this differential variational inequality.
An advantage of this approach is that it unifies in a compact way the study of stability
of optimal solutions under a variety of perturbations (linear or nonlinear). Therefore,
the main result in the present paper focuses on conditions for metric subregularity of
the mapping associated with the first order optimality conditions for problem (1)–(3).
These conditions are related to appropriate second order sufficient optimality condi-
tions, which are revisited and extended in the paper. Several results for stability of the
solutions are obtained as a consequence.
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The commonly used second order sufficient optimality conditions for ODE or PDE
optimal control problems involve a coercivity condition, requiring strong positive
definiteness of the objective functional as a function of the control in a Hilbert space.
We stress that problem (1)–(3) is affine with respect to the control variable and such a
coercivity condition is not fulfilled. The theory of sufficient optimality conditions and
the regularity theory for affine optimal control of ODE systems have been developed
in the past decade, see [24] and the bibliography therein. Sufficient conditions for
weak or strong local optimality for optimal control problems with constraints given
by elliptic or parabolic equations are developed in [2, 3, 5, 8, 10, 12, 17]. A detailed
discussion thereof is provided in Sect. 2.1. In contrast with the elliptic setting, there are
only a few stability results for semilinear parabolic optimal control problems. Results
in this regard for a tracking type objective functional were obtained for instance in
[9, 10] where stability with respect to perturbations in the objective functional was
studied, and in [11], where stability with respect to perturbations in the initial data was
investigated. We mention that for a linear state equation and a tracking type objective
functional, Lipschitz estimates were obtained in [30] under an additional assumption
on the structure of the optimal control. More comprehensive discussion about the
sufficiency theory and stability can be found in Sect. 2.

The main novelty in the present paper is the study of the subregularity property
of the optimality mapping associated with problem (1)–(3). In contrast with the case
of coercive problems, our assumptions in the affine case jointly involve the first and
the second order variations of the objective functional with respect to the control.
These assumptions are weaker than the ones in the existing literature in the context
of sufficient optimality conditions, however, they are strong enough to imply metric
subregularity of the optimality mapping. The subregularity result is used to obtain
new Hölder- and Lipschitz estimates for the solution of the considered optimal control
problem. An error estimate for the Tikhonov regularization is obtained as a conse-
quence.

The obtained subregularity result provides a base for convergence and error analysis
for discretization methods applied to problem (1)–(3). The point is, that numerical
solutions of the discretized versions of the problem typically satisfy approximately
first order optimality conditions for the discretized problem and after appropriate
embedding in the continuous setting (1)–(3), satisfy the optimality conditions for the
latter problem with a residual depending on the approximation and the discretization
error. Then the subregularity property of the optimality mapping associated with (1)–
(3) provides an error estimate. Notice that the (Lipschitz) stability of the solution alone
is not enough for such a conclusion, and this is an important motivation for studying
subregularity of the optimality mapping rather than only stability of the solutions.
However, we do not go into this subject, postponing it to a later paper based on the
present one.

The paper is organized as follows. The analysis of the optimal control problem
(1)–(3) begins in Sect. 2. We recall the state of the art regarding second order suffi-
cient conditions for weak and strong (local) optimality, as well as known sufficient
conditions for stability of optimal controls and states under perturbations. In Sect. 3
we formulate and discuss the assumptions on which our further analysis on sufficiency
and stability is based. The strong subregularity of the optimality mapping is proved
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in Sect. 4. In Sect. 5, we obtain stability results for the optimal control problem under
non-linear perturbations, postponing some technicalities to Appendix A. Finally, we
support the theoretical results with some examples.

1.1 Preliminaries

We begin with some basic notations and definitions. Given a non-empty, bounded and
Lebesgue measurable set X ⊂ R

n , we denote by L p(X), 1 ≤ p ≤ ∞, the Banach
spaces of all measurable functions f : X → R for which the usual norm ‖ f ‖L p(X) is
finite. For a boundedLipschitz domain X ⊂ R

n (that is, a set with Lipschitz boundary),
the Sobolev space H1

0 (X) consists of functions that vanish on the boundary (in the
trace sense) and that have weak first order derivatives in L2(X). The space H1

0 (X)

is equipped with its usual norm denoted by ‖ · ‖H1
0 (X). By H−1(X) we denote the

topological dual of H1
0 (X), equipped with the standard norm ‖ · ‖H−1(X). Given a real

Banach space Z , the space L p(0, T ; Z) consist of all strongly measurable functions
y : [0, T ] → Z that satisfy

‖y‖L p(0,T ; Z) :=
( ∫ T

0
‖y(t)‖p

Z dt
) 1

p
< ∞ if 1 ≤ p < ∞,

or, for p = ∞,

‖y‖L∞(0,T ; Z) := inf{M ∈ R | ‖y(t)‖Z ≤ M for a.e t ∈ (0, T )} < ∞.

The Hilbert space W (0, T ) consists of all of functions in L2(0, T ; H1
0 (�)) that have

a distributional derivative in L2(0, T ; H−1(�)), i.e.

W (0, T ) :=
{

y ∈ L2(0, T ; H1
0 (�))

∣∣∣ ∂ y

∂t
∈ L2(0, T ; H−1(�))

}
,

which is endowed with the norm

‖y‖W (0,T ) := ‖y‖L2(0,T ;H1
0 (�)) + ‖∂ y/∂t‖L2(0,T ;H−1(�)).

The Banach space C([0, T ]; L2(�)) consists of all continuous functions y : [0, T ] →
L2(�) and is equipped with the norm maxt∈[0,T ] ‖y(t)‖L2(�). It is well known that
W (0, T ) is continuously embedded in C([0, T ]; L2(�)) and compactly embedded in
L2(Q). The duality pairing between a Banach space X and its dual is denoted by
〈·, ·〉X . For proofs and further details regarding spaces involving time, see [14, 20, 27,
31].

The following assumptions, close to those in [3, 5, 6, 8, 10–13], are standing in all
the paper, together with the inequality

r > max
{
2, 1 + n

2

}
(5)
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for the real number r that appears in some assumptions and many statements below
(we also remind that n ∈ {1, 2, 3}). Although for n = 1 it is admissible to have r = 2
(instead of r > 2), we keep the above restriction in order to treat all the cases in a
unified way.

Assumption 1 The operator A : H1
0 (�) → H−1(�), is given by

Ay = −
n∑

i, j=1

∂x j (ai, j (x)∂xi y),

where ai, j ∈ L∞(�) satisfy the uniform ellipticity condition

∃λA > 0 : λA|ξ |2 ≤
n∑

i, j=1

ai, j (x)ξiξ j for all ξ ∈ R
n and a.a. x ∈ �.

The functions f , L0 : Q × R −→ R of the variables (x, t, y), and the “initial”
function y0 have the following properties.

Assumption 2 For every y ∈ R, the functions f (·, ·, y) ∈ Lr (Q), L0(·, ·, y) ∈
L1(Q), and y0 ∈ L∞(�). For a.e. (x, t) ∈ Q the first and the second derivatives
of f and L0 with respect to y exist and are locally bounded and locally Lipschitz
continuous, uniformly with respect to (x, t) ∈ Q. Moreover, ∂ f

∂ y (x, t, y) ≥ 0 for a.e.
(x, t) ∈ Q and for all y ∈ R.

Remark 1 The last condition in Assumption 2 can be relaxed in the following way:

∃C f ∈ R : ∂ f

∂ y
(x, t, y) ≥ C f a.a. (x, t) ∈ Q and ∀y ∈ R,

see [5, 8]. However, this leads to complications in the proofs.

1.2 Facts regarding the linear and the semilinear equation

Let 0 ≤ α ∈ L∞(Q) and u ∈ L2(Q). We consider solutions of the following linear
variational equality for h ∈ W (0, T ) with h(·, 0) = 0:

∫ T

0

〈∂h

∂t
+ Ah, ψ

〉
H1
0 (�)

dt =
∫ T

0
〈u − αh, ψ〉L2(�) dt (6)

for all ψ ∈ L2(0, T , H1
0 (�)), that is, for weak solutions of the Eq. (2) with

f (x, t, h) := α(x, t)h and zero initial datum.

Theorem 1 Let 0 ≤ α ∈ L∞(Q) be given.
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1. For each u ∈ L2(Q) the linear parabolic equation (6) has a unique weak solution
hu ∈ W (0, T ). Moreover, there exists a constant C2 > 0 independent of u and α

such that
‖hu‖L2(0,T ,H1

0 (�)) ≤ C2‖u‖L2(Q). (7)

2. If, additionally, u ∈ Lr (Q) (we remind (5)) then the weak solution hu of (6)
belongs to W (0, T )∩C(Q̄). Moreover, there exists a constant Cr > 0 independent
of u and α such that

‖hu‖L2(0,T ,H1
0 (�)) + ‖hu‖C(Q̄) ≤ Cr‖u‖Lr (Q). (8)

Besides the independence of the constants C2, and Cr on α all claims of the the-
orem are well known, see [29, Theorem 3.13, Theorem 5.5]. A proof of a similar
independence statement can be found in [3] for a linear elliptic PDE of non-monotone
type. We further remark that item 2 of Theorem 1 is true in dimension n = 1 even for
r = 2, see [21, Section III.7].

Proof For convenience of the reader, we prove that the estimates are independent of
α. This is done along the lines of the proof of [3, Lemma 2.2]. By h0,u we denote a
solution of (6) for α = 0. It is well known that in this case there exist positive constants
Cr , C2 such that

‖h0,u‖C(Q̄) ≤ Cr‖u‖Lr (Q), ‖h0,u‖L2(Q) ≤ C2‖u‖L2(Q).

To apply this, we decompose u in positive and negative parts, u = u+ −u−, u+, u− ≥
0. By the weak maximum principle [14, Theorem 11.9], it follows that hα,u+ , hα,u− ≥
0. Again by the weak maximum principle, the equation

∂

∂t
(hα,u+ − h0,u+) + A(hα,u+ − h0,u+) + α(hα,u+ − h0,u+) = −αh0,u+

implies 0 ≤ hα,u+ ≤ h0,u+ , thus ‖hα,u+‖C(Q̄) ≤ ‖h0,u+‖C(Q̄). By the same reasoning,
it follows that 0 ≤ hα,u− ≤ h0,u− and ‖hα,u−‖C(Q̄) ≤ ‖h0,u−‖C(Q̄). Hence,

‖hα,u‖C(Q̄) ≤ ‖hα,u+‖C(Q̄) + ‖hα,u−‖C(Q̄) ≤ ‖h0,u+‖C(Q̄) + ‖h0,u−‖C(Q̄)

≤ Cr (‖u+‖Lr (Q) + ‖u−‖Lr (Q)) ≤ 2Cr‖u‖Lr (Q).

The estimate for L2(0, T , H1
0 (�)) can be obtained by similar arguments as in [3]. ��

The next lemma is motivated by an analogous result for linear elliptic equations [3,
Lemma 2.3], although, according to the nature of the parabolic setting, the interval of
feasible numbers s, is smaller.
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Lemma 2 Let u ∈ Lr (Q) and 0 ≤ α ∈ L∞(Q). Let hu be the unique solution of (6)
and let pu be a solution of the problem

{− ∂ p
∂t + A∗ p + α p = u in Q,

p = 0 on �, p(·, T ) = 0 on �.
(9)

Then, for any sn ∈ [1, n+2
n ) there exists a constant Cs′

n
> 0 independent of u and α

such that
max

{‖hu‖Lsn (Q), ‖pu‖Lsn (Q)

} ≤ Cs′
n
‖u‖L1(Q). (10)

Here s′
n denotes the Hölder conjugate of sn.

Proof First we observe that by Theorem 1, hu ∈ C(Q̄) ∩ W (0, T ) and as a conse-
quence, |hu |sn−1sign(hu) ∈ Ls′

n (Q). Moreover, sn < n+2
n implies that s′

n > 1+ n
2 . By

change of variables, see for instance [29, Lemma 3.17], a solution of Eq. (9) transforms
into a solution of (6). Thus according to Theorem 1, the solution q of

{− ∂q
∂t + A∗q + αq = |hu |sn−1sign(hu) in Q,

q = 0 on �, q(·, T ) = 0 on �.

belongs to W (0, T ) ∩ C(Q̄) and satisfies

‖q‖C(Q̄) ≤ Cs′
n
‖|hu |sn−1sign(hu)‖

Ls′n (Q)
= Cs′

n
‖hu‖sn−1

Lsn (Q),

where Cs′
n
is independent of α and v. Using these facts we derive the equalities

‖hu‖sn
Lsn (Q) =

∫
Q

|hu |sn dx = 〈− ∂q

∂t
+ A∗q + αq, hu

〉 = 〈∂hu

∂t
+ Ahu + αhu, q

〉

=
∫

Q
uq dx ≤ ‖u‖L1(Q)‖q‖C(Q̄) ≤ Cs′

n
‖u‖L1(Q)‖hu‖sn−1

Lsn (Q).

This proves (10) for hu . To obtain (10) for pu , one tests (9) with a weak solution of

{
∂h
∂t + Ah + αh = |qu |sn−1sign(qu) in Q,

h = 0 on �, h(·, 0) = 0 on �,

and argues in an analogous way. ��
Belowwe remind several results for the semilinear equation (2), which will be used

further. The first part of the proof of the next theorem can be found in [4, Theorem
2.1], the second in [5, Theorem 2.1].

Theorem 3 For every u ∈ Lq(0, T ; L p(�)) with 1
q + n

2p < 1 and q, p ≥ 2 there exists
a unique solution yu ∈ L∞(Q) ∩ W (0, T ) of (2). Moreover, the following estimates
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hold

‖yu‖L∞(Q) ≤ η(‖u‖Lq (0,T ;L p(�)) + ‖ f (·, ·, 0)‖Lq (0,T ;L p(�))

+‖y0‖L∞(�)), (11)

‖yu‖C([0,T ];L2(�)) + ‖yu‖L2(0,T ;H1
0 (�)) ≤ K (‖u‖L2(Q)

+‖ f (·, ·, 0)‖L2(Q) + ‖y0‖L2(�)), (12)

for a monotone non-decreasing function η : [0,∞) → [0,∞) and some constant K
both independent of u. Finally, if uk⇀u weakly in Lq(0, T ; L p(Q)), then

‖yuk − yu‖L∞(Q) + ‖yuk − yu‖L2(0,T ;H1
0 (�)) → 0. (13)

The differentiability of the control-to-state operator under the assumptions 1 and 2
is well known, see among others [8, Theorem 2.4].

Theorem 4 The control-to-state operatorG : Lr (Q) → W (0, T )∩L∞(Q), defined as
G(v) := yv , is of class C2 and for every u, v, w ∈ Lr (Q), it holds that zu,v := G′(u)v

is the solution of

{
dz
dt + Az + fy(x, t, yu)z = v in Q,

z = 0 on �, z(·, 0) = 0 on �
(14)

and ωu,(v,w) := G′′(u)(v,w) is the solution of

{
dz
dt + Az + fy(x, t, yu)z = − fyy(x, t, yu)zu,vzu,w in Q,

z = 0 on �, z(·, 0) = 0 on �.
(15)

In the case v = w, we will just write ωu,v instead of ωu,(v,v).

Remark 2 By the boundedness of U in L∞(Q) and by Theorem 3, there exists a
constant MU > 0 such that

max
{‖u‖L∞(Q), ‖yu‖L∞(Q)

} ≤ MU ∀u ∈ U . (16)

1.3 Estimates associated with differentiability

We employ results of the last subsection to derive estimates for the state Eq. (2) and its
linearisation (14). These estimates constitute a key ingredient to derive stability results
in the later sections. The next lemma extends [3, Lemma 2.7] from elliptic equations
to parabolic ones.

Lemma 5 The following statements are fulfilled.

(i) There exists a positive constant M2 such that for every u, ū ∈ U and v ∈ Lr (Q)

‖zu,v − zū,v‖L2(Q) ≤ M2‖yu − yū‖L∞(Q)‖zū,v‖L2(Q). (17)
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(ii) Let X = L∞(Q) or X = L2(Q). Then there exists ε > 0 such that for every
u, ū ∈ U with ‖yu − yū‖L∞(Q) < ε the following inequalities are satisfied

‖yu − yū‖X ≤ 2‖zū,u−ū‖X ≤ 3‖yu − yū‖X , (18)

‖zū,v‖X ≤ 2‖zu,v‖X ≤ 3‖zū,v‖X . (19)

The proof is a consequence of Lemma 29 given in Appendix A.

2 The control problem

The optimal control problem (1)-(3) is well posed under assumptions 1 and 2. Using
the direct method of calculus of variations one can easily prove that there exists at least
one global minimizer, see [29, Theorem 5.7]. On the other hand, the semilinear state
equation makes the optimal control problem nonconvex, therefore we allow global
minimizers as well as local ones. In the literature, weak and strong local minimizers
are considered.

Definition 1 We say that ū ∈ U is an Lr (Q)-weak local minimum of problem (1)-(3),
if there exists some ε > 0 such that

J (ū) ≤ J (u) ∀u ∈ U with ‖u − ū‖Lr (Q) ≤ ε.

We say that ū ∈ U a strong local minimum of (P) if there exists ε > 0 such that

J (ū) ≤ J (u) ∀u ∈ U with ‖yu − yū‖L∞(Q) ≤ ε.

We say that ū ∈ U is a strict (weak or strong) local minimum if the above inequalities
are strict for u �= ū.

Relations between these types of optimality are obtained in [5, Lemma 2.8].
As a consequence of Theorem 4 and the chain rule, we obtain the differentiability

of the objective functional with respect to the control.

Theorem 6 The functional J : Lr (Q) −→ R is of class C2. Moreover, given
u, v, v1, v2 ∈ Lr (Q) we have

J ′(u)v =
∫

Q

(d L0

dy
(x, t, yu) + mu

)
zu,v + (myu + g)v dx dt (20)

=
∫

Q
(pu + myu + g)v dx dt, (21)

J ′′(u)(v1, v2) =
∫

Q

[∂2L

∂ y2
(x, t, yu, u) − pu

∂2 f

∂ y2
(x, t, yu)

]
zu,v1 zu,v2 dx dt (22)

+
∫

Q
m(zu,v1v2 + zu,v2v1) dx dt, (23)
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Here, pu ∈ W (0, T ) ∩ C(Q̄) is the unique solution of the adjoint equation

⎧⎨
⎩

−dp

dt
+ A∗ p + ∂ f

∂ y
(x, t, yu)p = ∂L

∂ y
(x, t, yu, u) in Q,

p = 0 on �, p(·, T ) = 0 on �.

(24)

We introduce theHamiltonian Q×R×R×R � (x, t, y, p, u) �→ H(x, t, y, p, u) ∈
R in the usual way:

H(x, t, y, p, u) := L(x, t, y, u) + p(u − f (x, t, y)).

The local form of the Pontryagin type necessary optimality conditions for problem
(1)-(3) in the next theorem is well known (see e.g. [5, 8, 29]).

Theorem 7 If ū is a weak local minimizer for problem (1)-(3), then there exist unique
elements ȳ, p̄ ∈ W (0, T ) ∩ L∞(Q) such that

{ d ȳ
dt + Aȳ + f (x, t, ȳ) = ū in Q,

ȳ = 0 on �, ȳ(·, 0) = y0 on �.
(25)

⎧⎨
⎩

d p̄

dt
+ A∗ p̄ = ∂ H

∂ y
(x, t, ȳ, p̄, ū) in Q,

p̄ = 0 on �, p̄(·, T ) = 0 on �.

(26)

∫
Q

∂ H

∂u
(x, t, ȳ, p̄, ū)(u − ū) dx dt ≥ 0 ∀u ∈ U . (27)

2.1 Sufficient conditions for optimality and stability

In this subsection we discuss the state of the art in the theory of sufficient second order
optimality conditions in PDE optimal control, as well as related stability results for
the optimal solution. For this purpose, we recall the definitions of several cones that
are useful in the study of sufficient conditions. Given a triplet (ȳ, p̄, ū) satisfying the
optimality system in Theorem 7, and abbreviating ∂ H̄

∂u (x, t) := ∂ H
∂u (x, t, ȳ, p̄, ū), we

have from (27) that almost everywhere in Q

ū = ua if
∂ H̄

∂u
> 0 and ū = ub if

∂ H̄

∂u
< 0.

This motivates to consider the following set

{
v ∈ L2(Q)

∣∣∣v ≥ 0 a.e. on [ū = ua] and v ≤ 0 a.e. on [ū = ub]
}
. (28)

Sufficient second order conditions for (local) optimality based on (28) are given in [5,
8, 10]. Following the usual approach in mathematical programming, one can define
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the critical cone at ū as follows:

Cū :=
{
v ∈ L2(Q)

∣∣∣v satisfies (28) and v(x, t) = 0 if
∣∣∣∂ H̄

∂u
(x, t)

∣∣∣ > 0
}
.

Obviously, this cone is trivial if ∂ H̄
∂u (x, t) �= 0 for a.e. (x, t) (which implies bang-bang

structure of ū) thus no additional information can be gained based on Cū . To address
this issue, it was proposed in [19, 22] to consider larger cones on which second order
conditions can be posed. Namely, for τ > 0 one defines

Dτ
ū :=

{
v ∈ L2(Q)

∣∣∣v satisfies (28) and v(x, t) = 0 if
∣∣∣∂ H̄

∂u
(x, t)

∣∣∣ > τ
}
, (29)

Gτ
ū :=

{
v ∈ L2(Q)

∣∣∣v satisfies (28) and J ′(ū)(v) ≤ τ‖zū,v‖L1(Q)

}
, (30)

Eτ
ū :=

{
v ∈ L2(Q)

∣∣∣v satisfies (28) and J ′(ū)(v) ≤ τ‖zū,v‖L2(Q)

}
, (31)

Cτ
ū := Dτ

ū ∩ Gτ
ū . (32)

The cones Dτ
ū , Eτ

ū and Gτ
ū were introduced in [2, 10] as extensions of the usual critical

cone. It was proven in [2, 9, 10] that the condition:

∃δ > 0, τ > 0 such that J ′′(ū)v2 ≥ δ‖zū,v‖2L2(Q)
∀v ∈ G (33)

is sufficient for weak (in the case G = Dτ
ū ) or strong (in the case G = Eτ

ū ) local
optimality in the elliptic and parabolic setting. Most recently, the cone Cτ

ū was defined
in [5] and also used in [6]. It was proved in [5], that (33) with G = Cτ

ū is sufficient
for strong local optimality.
Under (33) it is possible to obtain some stability results. In [10] and [9] the authors
obtain Lipschitz stability in the (L2 − L∞)-sense for the states1, under perturbations
appearing in a tracking type objective functional and under the assumption that the
perturbations are Lipschitz. Further they obtain Hölder stability for the states under a
Tikhonov type perturbation. Hölder stability under (33) with exponent 1/2 was proved
in [11] with respect to perturbations in the initial condition.

To improve the stability results an additional assumption is needed. This role is
usually played by the structural assumption on the adjoint state or more general on
the derivative of the Hamiltonian with respect to the control. In the case of an elliptic
state equation, [26] uses the structural assumption

∃κ > 0 such that
∣∣∣{x ∈ � :

∣∣∣∂ H̄

∂u

∣∣∣ ≤ ε
}∣∣∣ ≤ κε ∀ε > 0. (34)

In the parabolic case this assumption (with � replaced with Q) is used in [11]. We
recall that the assumption (34) implies that ū is of bang-bang type. Further, (34) implies

1 For p, r ∈ [1, ∞], we speak of stability in the L p − Lr -sense for the optimal states ȳ with respect to
perturbations (may appear in the equation or the objective) ξ , if there exists a positive constant κ such that
‖yξ − ȳ‖L p(Q) ≤ κ‖ξ‖Lr (Q), for all ξ that are sufficiently small. Here, yξ denotes the state corresponding
to the perturbation ξ . We use this expression analogously for the optimal controls.
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the existence of a positive constant κ̃ such that the following growth property holds:

J ′(ū)(u − ū) ≥ κ̃‖u − ū‖2L1(�)
∀u ∈ U . (35)

For a proof see [1, 23] or [28]. If the control constraints satisfy ua < ub almost every-
where on�, both conditions, (34) and (35) are equivalent, see [17, Proposition 6.4]. In
[26], using (34) and (33) with G = Dτ

ū , the authors prove L1 − L2-Lipschitz stability
of the controls for an elliptic semilinear optimal control problem under perturbations
appearing simultaneously in the objective functional and the state equation. Assuming
(34), condition (33) may also be weakened to the case of negative curvature,

∃δ < κ̃, ∃τ > 0 such that J ′′(ū)v2 ≥ −δ‖v‖2L1(�)
∀v ∈ Cτ

ū . (36)

This was done in [12], [13] where it was proved that (34) together with (36) implies,
for the semililnear elliptic case, weak local optimality. Lipschitz stability results were
also obtained in [17] in the elliptic case. Finally, for a semilinear parabolic equation
with perturbed initial data, [11, Theorem4.6] obtains, under (33) and (34), L2−L2 and
L1−L2-Hölder stability (see Footnote 1), with exponent 2/3, for the optimal states and
controls respectively. Additionally, L1 − L∞ Lipschitz dependence on perturbations
is obtained.

3 A unified sufficiency condition

In this section, we introduce an assumption that unifies the first and second order
conditions presented in the previous section.

Assumption 3 Let ū ∈ U . For a number k ∈ {0, 1, 2}, at least one of the following
conditions is fulfilled:
(Ak): There exist constants αk, γk > 0 such that

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 ≥ γk‖zū,u−ū‖k
L2(Q)

‖u − ū‖2−k
L1(Q)

(37)

for all u ∈ U with ‖yu − yū‖L∞(Q) < αk .
(Bk): There exist constants α̃k, γ̃k > 0 such that (37) holds for all u ∈ U such that
‖u − ū‖L1(Q) < α̃k .

In the context of optimal control of PDE’s the conditions (A0) and (B0) were first
introduced in [17] and for k = 1, 2 in [3]. Condition(B0) originates from optimal
control theory of ODE’s where it was first introduced in [24] to deal with nonlinear
affine optimal control problems. The cases k = 1, 2 are extensions, adapted to the
nature of the PDE setting, while the case k = 0 can be hard to verify if a structural
assumption like (34) is not imposed. The conditions corresponding to k = 1, 2 are
applicable for the case of optimal controls that need not be bang-bang, especially
the case k = 2 seems natural for obtaining state stability. Condition (Ak) implies
strong (local) optimality, while condition (Bk) leads to weak (local) optimality. As
seen below, in some cases the two conditions are equivalent.
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For an optimal control problem subject to an semilinear elliptic equation the claim
of the next proposition with k = 0 was proven in [3, Proposition 5.2].

Proposition 8 For any k ∈ {0, 1, 2}, condition (Ak) implies (Bk). If ū is bang-bang
(that is, ū(x, t) ∈ {ua(x, t), ub(x, t)} for a.e. (x, t) ∈ Q) then conditions (Ak) and
(Bk) are equivalent.

The proof is given in Appendix A.

Remark 3 We compare the items in Assumption 3 to the ones using (34) and (36) or
(33).

1. Condition (A0) is implied by the structural assumption (34) and also allows for
negative curvature, similar to (36). For details see [17, Theorem 6.3].

2. Let g = 0. Condition (A1) is implied by the structural assumption (34) together
with (33), that is, by the conditions assumed in [11]. For the convenience of the
reader, this is proven in Proposition 16.

3. Let m, g = 0. Condition (A2) is implied by (33) together with the first order
necessary optimality condition. This is a conequence of Corollary 15.

3.1 Sufficiency for optimality of the unified condition

In this subsection we show that conditions (Ak) and (Bk) are sufficient either for strict
weak or strict strong local optimality, correspondingly.

Theorem 9 The following holds.

1. Let m = 0 in (4). Let ū ∈ U satisfy the optimality conditions (25)–(27) and
condition (Ak) with some k ∈ {0, 1, 2}. Then, there exist εk, κk > 0 such that:

J (ū) + κk

2
‖yu − yū‖k

L2(Q)
‖u − ū‖2−k

L1(Q)
≤ J (u) (38)

for all u ∈ U such that ‖yu − yū‖L∞(Q) < εk .
2. Let m ∈ R and let ū ∈ U satisfy the optimality conditions (25)–(27) and condition

(Bk) with some k ∈ {0, 1, 2}. Then, there exist εk, κk > 0 such that (38) holds for
all u ∈ U such that ‖u − ū‖L1(Q) < εk .

Before presenting a proof of Theorem 9, we establish some technical results. The
following lemma was proved for various types of objective functionals, see e.g. [10,
Lemma 6], [9, Lemma 3.11]. Nevertheless, our objective functional is more general,
therefore we present in Appendix A an adapted proof.

Lemma 10 Let ū ∈ U . The following holds.

1. Let m = 0. For every ρ > 0 there exists ε > 0 such that

|[J ′′(ū + θ(u − ū)) − J ′′(ū)](u − ū)2| ≤ ρ‖zū,u−ū‖2L2(Q)
(39)

for all u ∈ U with ‖yu − yū‖L∞(Q) < ε and θ ∈ [0, 1].
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2. Let m ∈ R. For every ρ > 0 there exists ε > 0 such that (39) holds for all u ∈ U
with ‖u − ū‖L1(Q) < ε and θ ∈ [0, 1].
For the assumptions with k ∈ {0, 1}, we need the subsequent corollary, which is

also given in Appendix A.

Lemma 11 Let ū ∈ U and let m = 0. Then

1. For every ρ > 0 there exists ε > 0 such that

|[J ′′(ū + θ(u − ū)) − J ′′(ū)](u − ū)2| ≤ ρ‖zū,u−ū‖L2(Q)‖u − ū‖L1(Q) (40)

for all u ∈ U with ‖yu − yū‖L∞(Q) < ε and for all θ ∈ [0, 1].
2. For every ρ > 0 there exists ε > 0 such that

|[J ′′(ū + θ(u − ū)) − J ′′(ū)](u − ū)2| ≤ ρ‖u − ū‖2L1(Q)
(41)

for all u ∈ U with ‖yu − ȳ‖L∞(Q) < ε and for all θ ∈ [0, 1].
The same assertions hold true for any m ∈ R with the inequality ‖yu − yū‖L∞(Q) < ε

replaced with ‖u − ū‖L1(Q) < ε.

The next lemma claims that Assumption 3 implies a growth similar to (38) of the
first derivative of the objective functional in a neighborhood of ū.

Lemma 12 Let ū ∈ U . The following claims are fulfilled.

1. Let m = 0 and ū satisfy condition (Ak), for some k ∈ {0, 1, 2}. Then, there exist
ᾱk, γ̄k > 0 such that

J ′(u)(u − ū) ≥ γ̄k‖zū,u−ū‖k
L2(Q)

‖u − ū‖2−k
L1(Q)

(42)

for every u ∈ U with ‖yu − yū‖L∞(Q) < ᾱk .
2. Let m ∈ R and let ū satisfy condition (Bk) for some k ∈ {0, 1, 2}. Then, there exist

ᾱk, γ̄k > 0 such that (42) holds for every u ∈ U with
‖u − ū‖L1(Q) < ᾱk .

Proof Since J is of class C2 we can use the mean value theorem to infer the existence
of a measurable function θ : Q → [0, 1] such that

J ′(u)(u − ū) − J ′(ū)(u − ū) = J ′′(ū + θ(u − ū))(u − ū)2.

Select k ∈ {0, 1, 2} such that condition (Ak) is satisfied, we infer the existence of
positive constants γk and αk such that

J ′(u)(u − ū) = J ′(ū)(u − ū) + J ′′(ū)(u − ū)2

+ [J ′(u)(u − ū) − J ′(ū)(u − ū) − J ′′(ū)(u − ū)2]
≥ γk‖zū,u−ū‖k

L2(Q)
‖u − ū‖2−k

L1(Q)

− |[J ′′(ū + θ(u − ū)) − J ′′(ū)](u − ū)2|,
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for all u ∈ U with ‖yu − yū‖L∞(Q) < αk . Using Lemma 10, we obtain that

J ′(u)(u − ū) ≥ (γk − ρk)‖zū,u−ū‖k
L2(Q)

‖u − ū‖2−k
L1(Q)

for all u ∈ U with ‖yu − yū‖L∞(Q) < ᾱk and ᾱk := min{αk, εk}, where εk > 0 is
chosen such that γ̄k := γk − ρk > 0. This proves the first claim of the lemma. Using
the last statement of Lemma 11 concerning the general case m ∈ R and the estimate

‖yu − yū‖L∞(Q) ≤ Cr (2MU )
r−1

r ‖u − ū‖
1
r
L1(Q)

we obtain the second claim. ��
Finally, we conclude this subsection with the proof of Theorem 9.

Proof of Theorem 9 Using the Taylor expansion and the first order optimality condition
satisfied by ū we have

J (u) = J (ū) + J ′(ū)(u − ū) + 1

2
J ′′(uθ )(u − ū)2

≥ J (ū) + 1

2
J ′(ū)(u − ū) + 1

2
J ′′(uθ )(u − ū)2

where uθ := ū + θ(u − ū) for a measurable function θ : Q → [0, 1]. We select
k ∈ {0, 1, 2} such that the corresponding condition in Assumption 3 is satisfied. Then
we continue the last inequality, using that, according to the condition, there exist
positive αk, γk such that (38) holds:

J (u) ≥ J (ū) + 1

2
[J ′(ū)(u − ū) + J ′′(ū)(u − ū)2] + 1

2
[J ′′(uθ ) − J ′′(ū)](u − ū)2]

≥ J (ū) + γk

2
‖zū,u−ū‖k

L2(Q)
‖u − ū‖2−k

L1(Q)
− 1

2

∣∣[J ′′(uθ ) − J ′′(ū)](u − ū)2
∣∣

for all u ∈ U with either ‖yu − yū‖L∞(Q) < αk or ‖u − ū‖L1(Q) < αk , depending on
the chosen condition (Ak) or (Bk). Letm = 0, by Lemma 10 or Lemma 11 (depending
on the condition) there exist ε > 0 and γ̄k < γk such that

|[J ′′(uθ ) − J ′′(ū)](u − ū)2| ≤ γ̄k‖zū,u−ū‖k
L2(Q)

‖u − ū‖2−k
L1(Q)

for every u ∈ U with ‖yu − yū‖L∞(Q) < ε. We may choose ᾱk > 0 and γ̄k > 0
according to Lemma 12 and depending on the chosen condition therein. Inserting this
estimate in the above expression and applying (18) gives

J (u) ≥ J (ū) + 1

2
(γk − γ̄k)‖zū,u−ū‖k

L2(Q)
‖u − ū‖2−k

L1(Q)

≥ J (ū) + 3(γk − γ̄k)

4
‖yu − yū‖k

L2(Q)
‖u − ū‖2−k

L1(Q)
,
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for all u ∈ U with ‖yu − yū‖L∞(Q) < min{ε, ᾱk} and condition (Ak) follows. For
condition (Bk), we use that

‖yu − yū‖L∞(Q) ≤ Cr (2MU )
r−1

r ‖u − ū‖
1
r
L1(Q)

to apply Lemma 10 or Lemma 11 depending on k ∈ {0, 1, 2}. Finally, for m ∈ R and
under (Bk) the claim follows by the above arguments applying Lemma 10 or Lemma
11 depending on k ∈ {0, 1, 2}. ��

3.2 Some equivalence results for the assumptions on cones

In this subsection we show that some of the items in Assumption 3 can be formulated
equivalently on the cones Dτ

ū or Cτ
ū respectively. This applies to (Bk) or to (Ak)

depending on whether the objective functional explicitly depends on the control or
not. The results in this subsection are important to compare the conditions introduced
in Assumption 3 with other conditions in the literature. We need the next lemma, the
proof of which uses a result from [7].

Lemma 13 Let ū ∈ U satisfy the first order optimality condition (25)-(27) and let
u ∈ U be given. For any positive number τ , we define

v :=
{
0 on [ | ∂ H̄

∂u | > τ ],
u − ū else,

and w := u − ū − v. Let ε > 0 be given. Then there exists a positive constant C such
that

max
{‖zū,w‖L∞(Q), ‖zū,v‖L∞(Q)

}
< C max

{
ε, ε

1
r

}
(43)

for all u ∈ U with ‖u − ū‖L1(Q) < ε. If additionally ε is such that (18) holds. and the
control does not appear explicitly in (1) (that is, m = g = 0 in (4)), then (43) holds
for all u ∈ U such that u − ū ∈ Gτ

ū and ‖zū,u−ū‖L∞(Q) < ε.

Proof We define ũ, û ∈ U by

ũ :=
{

ū on [ | ∂ H̄
∂u | > τ ],

u else.
û :=

{
u on [ | ∂ H̄

∂u | > τ ],
ū else.

Observe that v = ũ − ū, w = û − ū and u − ū = v + w. It is trivial by construction
that

{‖v‖L1(Q), ‖w‖L1(Q)} ≤ ‖u − ū‖L1(Q).
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On the other hand, by (18), ‖zū,u−ū‖L∞(Q) < ε implies ‖yu − yū‖L∞(Q) < 2ε. If
m, g = 0, we can argue as in [7] using u − ū ∈ Gτ

ū and the definition of w, to estimate

τ‖w‖L1(Q) ≤ J ′(ū)(u − ū) ≤ τ‖zū,u−ū‖L1(Q). (44)

Thus by Theorem 1, (16), and with M := Cr (2MU )
r−1

r ,

‖zū,w‖L∞(Q) ≤
⎧⎨
⎩

M‖zū,u−ū‖
1
r
L∞(Q) if m, g = 0, u − ū ∈ Gτ

ū,

M‖u − ū‖
1
r
L1(Q)

else.

For zū,v we estimate with C := 2(M + 1)

‖zū,v‖L∞(Q) ≤ ‖zū,v+w‖L∞(Q) + ‖ − zū,w‖L∞(Q) ≤ C max
{
ε, ε

1
r

}
.

In the second case the estimate holds trivially. ��
Now we continue with the equivalence properties.

Corollary 14 For k ∈ {0, 2}, condition (Bk) is equivalent to the following condition
(B̄k): there exist positive constants αk, γk and τ such that

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 ≥ γk‖zū,u−ū‖k
L2(Q)

‖u − ū‖2−k
L1(Q)

, (45)

for all u ∈ U for which (u − ū) ∈ Dτ
ū and ‖u − ū‖L1(Q) < αk .

Proof Let k ∈ {0, 2}. If (Bk) holds then (B̄k) is obviously also fulfilled. Now let (B̄k)
hold. The numbers α̃k and γ̃k will be chosen later so that assumption (Bk) will hold
with these numbers. For now we only require that 0 < α̃k < αk . Choose an arbitrary
u ∈ U with ‖u − ū‖L1(Q) < α̃k . We only need to prove (37) in the case u − ū /∈ Dτ

ū .
Take v and w as defined in Lemma 13. Clearly by definition v ∈ Dτ

ū . As a direct
consequence of (22)-(23) and Assumption 1 and 2 there exists a positive constant M
such that

|J ′′(ū)(w)2| ≤ M‖zū,w‖L∞(Q)‖w‖L1(Q), (46)

|J ′′(ū)(w, v)| ≤ M‖zū,v‖L∞(Q)‖w‖L1(Q). (47)

Since α̃k < αk and v ∈ Dτ
ū we may apply (45) with v instead of u − ū. Using also

(46) and (47), we estimate

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 = J ′(ū)(v + w) + J ′′(ū)(v + w)2

≥ J ′(ū)(v) + J ′(ū)(w) + J ′′(ū)(v)2 + J ′′(ū)(w)2 + 2J ′′(ū)(w, v)

≥ γk‖zū,v‖k
L2(Q)

‖v‖2−k
L1(Q)

+ τ‖w‖L1(Q)

− 3M(‖zū,w‖L∞(Q) + ‖zū,v‖L∞(Q))‖w‖L1(Q)

≥ γk‖zū,v‖k
L2(Q)

‖v‖2−k
L1(Q)

+ τ

2
‖w‖L1(Q).
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In the last inequality we use that by choosing α̃k > 0 sufficiently small we may ensure
that

τ − 3M(‖zū,w‖L∞(Q) + ‖zū,v‖L∞(Q))

≥ τ − 3MC max
{
α̃, α̃

1
r

}
≥ τ

2
.

This holds because by Lemma 13, there exists a positive constant C such that

max
{‖zū,w‖L∞(Q), ‖zū,v‖L∞(Q)

} ≤ C max

{
α̃2, α̃

1
r
2

}
. (48)

Further, we use that ‖u − ū‖L1(Q) < 2MU for all u ∈ U , (8) and (10) in Lemma 2 for
s = 1, to estimate

‖zū,w‖2L2(Q)
≤ ‖zū,w‖L∞(Q)‖zū,w‖L1(Q) ≤ 2C∞Cr MU |Q| 1r ‖w‖L1(Q) (49)

By this, we find

‖w‖L1(Q) ≥
{ 1

2MU |Q| ‖w‖2
L1(Q)

,
1

2C∞Cr MU |Q| 1r
‖zū,w‖2

L2(Q)
.

(50)

Finally, we make the estimations for the different cases.
For k = 0:

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 ≥ γ0‖v‖2L1(Q)
+ τ

2MU |Q| ‖w‖2L1(Q)

≥ min
{
γ0,

τ

2MU |Q|
}
(‖v‖2L1(Q)

+ ‖w‖2L1(Q)
)

≥ 1

2
min

{
γ0,

τ

2MU |Q|
}
(‖u − ū‖2L1(Q)

.

For k = 2:

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 ≥ γ2‖zū,v‖2L2(Q)
+ τ

2
‖w‖L1(Q)

≥ min
{
γ2,

τ

2C∞Cr MU |Q| 1r
}
(‖zū,v‖2L2(Q)

+ ‖zū,w‖2L2(Q)
)

≥ 1

2
min

{
γ2,

τ

2C∞Cr MU |Q| 1r
}
‖zū,u−ū‖2L2(Q)

.

This proves that (37) is satisfied with an appropriate number γ̃k . ��
If the control does not appear explicitly in the objective functional, we obtain a stronger
result.
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Corollary 15 Let m, g = 0. Then condition (A2) is equivalent to the following condi-
tion (Ā2): there exist positive constants α2, γ2, τ such that

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 ≥ γ2‖zū,u−ū‖2L2(Q)
(51)

for all u ∈ U for which (u − ū) ∈ Cτ
ū and ‖yu − yū‖L∞(Q) < α2.

Proof It is obvious that (A2) implies ( Ā2). For the reverse, if u − ū ∈ Cτ
ū the estimate

holds trivially.We need to consider the cases u − ū /∈ Gτ
ū and u − ū /∈ Dτ

ū with u − ū ∈
Gτ

ū . For the first, we argue as follows. Since u − ū /∈ Gτ
ū it holds

J ′(ū)(u − ū) + J ′′(ū)(u − ū) >
τ

2
‖zū,u−ū‖L1(Q) ≥ τ

4Cr MU |Q| 1r
‖zū,u−ū‖2L2(Q)

.

For the second case u − ū ∈ Gτ
ū and u − ū /∈ Dτ

ū , let α̃ > 0 be smaller than α2, so that
(51) and the prerequisite of Lemma 13 is satisfied. We define w, v as in Lemma 13.
By the choice of α2, Lemma 13 gives the existence of a positive constant C such that
‖zū,u−ū‖L∞ < α2 implies

max
{‖zū,w‖L∞(Q), ‖zū,v‖L∞(Q)

}
< C max

{
α2, α

1
r
2

}
.

Now we can proceed by the same arguments as in Corollary 14

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 = J ′(ū)(v + w) + J ′′(ū)(v + w)2

≥ γ2‖zū,v‖2L2(Q)
+ τ

2
‖w‖L1(Q).

Finally, we use (50) to obtain that

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 ≥ γ2‖zū,v‖2L2(Q)
+ τ

2C∞Cr MU |Q| 1r
‖w‖L1(Q)

≥ min
{
γ2,

τ

2C∞Cr MU |Q| 1r
}
(‖zū,v‖2L2(Q)

+ ‖zū,w‖2L2(Q)
)

≥ min
{
γ2,

τ

2C∞Cr MU |Q| 1r
}
(‖zū,u−ū‖2L2(Q)

,

for all (u − ū) ∈ Cτ
ū with ‖yu − yū‖L∞(Q) < α2. ��

Although we can not prove a similar equivalence property for the condition (A1)

in Assumption 3, below we show that it is implied by the structural assumption (34)
and a second order sufficient condition.

Proposition 16 Let m, g = 0. Then the structural assumption (34) and the second
order sufficient condition (33) (for G = Cτ

ū ) imply condition (A1).
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Proof Let u be an arbitrary element of U . We consider several cases.
1. If u−ū ∈ Cτ

ū we employ the structural assumption (34) that implies the existence
of a positive constant γ1 such that

J ′(ū)(u − ū) ≥ γ1‖u − ū‖2L1(Q)
for all u ∈ U . (52)

Further since u − ū ∈ Cτ
ū , by the second order sufficient optimality condition (33)

there exists a positive constant γ2 such that

J ′′(ū)(u − ū)2 ≥ γ2‖zū,u−ū‖2L2(Q)
. (53)

Altogether, using the inequality a2 + b2 ≥ 2ab we obtain

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 ≥ 2
√

γ1γ2‖zū,u−ū‖L2(Q)‖u − ū‖L1(Q), (54)

which implies (A1) with γ = 2
√

γ1γ2 and any α1 > 0.
2. Now we consider the case where u − ū /∈ Gτ

ū . it holds

J ′(ū)(u − ū) > τ‖zū,u−ū‖L1(Q). (55)

On the other hand by the structural assumption (34) we have (52). Further there exists
a positive constant M such that there exists a u ∈ U

|J ′′(ū)(u − ū)2| ≤ M‖zū,u−ū‖L∞(Q)‖zū,u−ū‖L1(Q). (56)

Splitting the first variation into two parts and applying either (52) or (55) we con-
clude also using (56) and taking ‖yu − yū‖L∞(Q) sufficently small, such that by (18),
‖zū,u−ū‖L∞(Q) is sufficiently small

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 ≥ 1

2
(γ1‖u − ū‖2L1(Q)

+ τ‖zū,u−ū‖L1(Q))

− M‖zū,u−ū‖L∞(Q)‖zū,u−ū‖L1(Q)

≥ 1

2
(γ1‖u − ū‖2L1(Q)

+ τ

2
‖zū,u−ū‖L1(Q)).

Applying the estimate

‖zū,u−ū‖2L2(Q)
≤ ‖zū,u−ū‖L∞(Q)‖zū,u−ū‖L1(Q)

≤ 2Cr MU |Q| 1r ‖zū,u−ū‖L1(Q)

and the inequlity a2 + b2 ≥ 2ab, the claim follows.
3. Finally, we consider the case u − ū ∈ Gτ

ū and u − ū /∈ Dτ
ū . We select v,w as

defined in Lemma 13. By definition v ∈ Cτ
ū . We proceed by splitting the first and
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second variation accordingly and applying (44),(52), (56) and taking ‖zū,u−ū‖L∞(Q)

sufficiently small to estimate

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2

= J ′(ū)(v) + J ′(ū)(w) + J ′′(ū)(v)2 + J ′(ū)(w)2 + 2J ′′(ū)(v,w)

≥ γ1‖v‖2L1(Q)
+ γ1

2
‖w‖2L1(Q)

+ τ

2
‖w‖L1(Q) + γ2‖zū,v‖2L2(Q)

− M max
{‖zū,v‖L∞(Q), ‖zū,w‖L∞(Q)

} ‖zū,w‖L1(Q)

≥ 2

√
γ 2
1

2
‖u − ū‖2L1(Q)

+ γ2‖zū,v‖2L2(Q)
+ τ

4
‖w‖L1(Q).

Then (A1) follows from the second estimation in (50) and the inequalitya2+b2 ≥ 2ab.
��

4 Strongmetric Hölder subregularity and auxiliary results

We study the strong metric Hölder subregularity property (SMHSr) of the optimality
map. This is an extension of the strong metric subregularity property (see, [18, Section
3I] or [15, Section 4]) dealing with Lipschitz stability of set-valued mappings. The
SMHSr property is especially relevant to the parabolic settingwhere Lipschitz stability
may fail.

4.1 The optimality mapping

We begin by defining some mappings used to represent the optimality in a more
convenient way. This is done analogously to [17, Section 2.1]. Given the initial data
y0 in (2), we define the set

D(L) :=
{

y ∈ W (0, T ) ∩ L∞(Q)

∣∣∣ ( d

dt
+ A

)
y ∈ Lr (Q), y(·, 0) = y0

}
. (57)

To shorten notation, we define L : D(L) → Lr (Q) by L := d
dt + A. Additionally,

we define the mapping L∗ : D(L∗) → Lr (Q) by L∗ := (− d
dt + A∗), where

D(L∗) :=
{

p ∈ W (0, T ) ∩ L∞(Q)

∣∣∣(− d

dt
+ A∗)p ∈ Lr (Q), p(·, T ) = 0

}
.

With the mappings L and L∗, we recast the semilinear state Eq. (2) and the linear
adjoint equation (26) in a short way:

Ly = u − f (·, y)

L∗ p = L y(·, yu, u) − p fy(·, yu) = ∂ H

∂ y
(·, yu, p, u).
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The normal cone to the set U at u ∈ L1(Q) is defined in the usual way:

NU (u) :=
{{

ν ∈ L∞(Q)
∣∣ ∫

Q ν(v − u) dx dt ≤ 0 ∀v ∈ U} if u ∈ U ,

∅ if u /∈ U .

The first order necessary optimality condition for problem (1)-(3) in Theorem 7
can be recast as

⎧⎨
⎩
0 = Ly + f (·, y) − u,

0 = L∗ p − ∂ H
∂ y (·, y, p, u),

0 ∈ Hu(·, y, p) + NU (u).

(58)

For (58) to make sense, a solution (y, p, u) must satisfy y ∈ D(L), p ∈ D(L∗)
and u ∈ U . For a local solution ū ∈ U of problem (1)-(3), by Theorem 7, the triple
(yū, pū, ū) is a solution of (58). We define the sets

Y := D(L) × D(L∗) × U and Z := L2(Q) × L2(Q) × L∞(Q), (59)

and consider the set-valued mapping � : Y � Z given by

�

⎛
⎝ y

p
u

⎞
⎠ :=

⎛
⎝ Ly + f (·, y) − u

L∗ p − ∂ H
∂ y (·, y, p, u)

∂ H
∂u (·, y, p, u) + NU (u)

⎞
⎠ . (60)

With the abbreviationψ := (y, p, u), the system (58) can be rewritten as the inclusion
0 ∈ �(ψ). Our goal is to study the stability of system (58), or equivalently, the
stability of the solutions of the inclusion 0 ∈ �(ψ) under perturbations. For elements
ξ, η ∈ Lr (Q) and ρ ∈ L∞(Q) we consider the perturbed system

⎧⎨
⎩

ξ = Ly + f (·, y) − u,

η = L∗ p − ∂ H
∂ y (·, y, p, u),

ρ ∈ ∂ H
∂u (·, y, p) + NU (u),

(61)

which is equivalent to the inclusion ζ := (ξ, η, ρ) ∈ �(ψ).

Definition 2 The mapping� : Y � Z is called the optimality mapping of the optimal
control problem (1)-(3).

Theorem 17 For any perturbation ζ := (ξ, η, ρ) ∈ Lr (Q) × Lr (Q) × L∞(Q) there
exists a triple ψ := (y, p, u) ∈ Y such that ζ ∈ �(ψ).

Proof We consider the optimal control problem

min
u∈U

{
J (u) +

∫
Q

ηy dxdt −
∫

Q
ρu dxdt

}
,
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subject to

{Ly + f (x, t, y) = u + ξ in Q,

y = 0 on �, y(·, 0) = y0 in �.

Under assumptions 1 and 2, we have by standard arguments the existence of a global
solution ũ. Then ũ and the corresponding state yũ and adjoint state pũ satisfy (61). ��

Given a metric space (X , dX ), we denote by BX (c, α) the closed ball of center
c ∈ X and radius α > 0. The spaces Y and Z , introduced in (59), are endowed with
the metrics

dY (ψ1, ψ2) := ‖y1 − y2‖L2(Q) + ‖p1 − p2‖L2(Q) + ‖u1 − u2‖L1(Q),

dZ (ζ1, ζ2) := ‖ξ1 − ξ2‖L2(Q) + ‖η1 − η2‖L2(Q) + ‖ρ1 − ρ2‖L∞(Q), (62)

where ψi = (yi , pi , ui ) and ζi = (ξi , ηi , ρi ), i ∈ {1, 2}. From now on, we denote
ψ̄ := (yū, pū, ū) to simplify notation.

The following extension of the previous theorem can be proved along the lines of
[17, Theorem 4.12].

Theorem 18 Let condition (A0) hold. For each ε > 0 there exists δ > 0 such that for
every ζ ∈ BZ (0; δ) there exists ψ ∈ BY (ψ̄; ε) satisfying the inclusion ζ ∈ �(ψ).

4.2 Strongmetric Hölder subregularity: main result

This subsection contains one of the main results in this paper: estimates of the differ-
ence between the solutions of the perturbed system (61) and a reference solution of
the unperturbed one, (58), by the size of the perturbations. This will be done using the
notion of strong metric Hölder subregularity introduced in the next paragraphs.

Definition 3 Let ψ̄ satisfy 0 ∈ �(ψ̄). We say that the optimality mapping� : Y � Z
is strongly metrically Hölder subregular (SMHSr) at (ψ̄, 0) with exponent θ > 0 if
there exist positive numbers α1, α2 and κ such that

dY (ψ, ψ̄) ≤ κdZ (ζ, 0)θ

for all ψ ∈ BY (ψ̄ ; α1) and ζ ∈ BZ (0;α2) satisfying ζ ∈ �(ψ).

Notice that applying the definition with ζ = 0 we obtain that ψ̄ is the unique
solution of the inclusion 0 ∈ �(ψ) in BY (ψ̄;α1). In particular, ū is a strict local
minimizer for problem (1)-(3).

In the next assumption we introduce a restriction on the set of admissible perturba-
tions, call it �, which is valid for the remaining part of this section.
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Assumption 4 For a fixed positive constant C pe, the admissible perturbation ζ =
(ξ, η, ρ) ∈ � ⊂ Z satisfy the restriction

‖ξ‖Lr (Q), ‖η‖Lr (Q) ≤ C pe. (63)

For any u ∈ U and ζ ∈ � we denote by (yζ
u , pζ

u , u) a solution of the first two
equations in (61). Using (11) in Theorem 3 we obtain the existence of a constant Ky

such that
‖yζ

u ‖L∞(Q) ≤ Ky ∀u ∈ U ∀ζ ∈ �. (64)

Then for every u ∈ U , every admissible disturbance ζ , and the corresponding solution
y of the first equation in (61) it holds that (yζ

u (x, t), u(x, t)) ∈ R := [−Ky, Ky] ×
[ua, ub].
Remark 4 Weapply the local properties inAssumption2 to the interval [−Ky , Ky], and
denote further by C̄ a positive constant that majorates the bounds and the Lipschitz
constants of f and L0 and their first and second derivatives with respect to y ∈
[−Ky, Ky].

By increasing the constant Ky , if necessary, we may also estimate the adjoint state:

‖pζ
u‖L∞(Q) ≤ Ky(1 + ‖η‖Lr (Q)) ∀u ∈ U ∀ζ ∈ �. (65)

This follows from Theorem 1 with α = − ∂ f
∂ y (x, t, yζ

u ) and with ∂L
∂ y (x, t, yζ

u , u) at the
place of u.

We need some technical lemmas before stating our main result.

Lemma 19 Let u ∈ U be given and v, η ∈ Lr (Q), ξ ∈ L∞(Q). Consider solutions
yu, pu, zu,v and yξ

u , pη
u , zξ

u,v of the equations

⎧⎨
⎩

Ly + f (·, y) = u,

L∗ p − ∂ H
∂ y (·, yu, p, u) = 0,

L0z + fy(·, yu)z = v.

⎧⎪⎨
⎪⎩

Ly + f (·, y) = u + ξ,

L∗ p − ∂ H
∂ y (·, yξ

u , p, u) = η,

L0z + fy(·, yξ
u )z = v.

(66)

Here, L0 is defined as L, but on the domain (57) with y0 = 0. There exist positive
constants Ks, K2 and R2, independent of ζ ∈ �, such that the following inequalities
hold

‖yξ
u − yu‖L2(Q) ≤ C2‖ξ‖L2(Q), (67)

‖zξ
u,v − zu,v‖L2(Q) ≤ K2‖ξ‖Lr (Q)‖zu,v‖L2(Q), (68)

‖zξ
u,v − zu,v‖Ls (Q) ≤ Ks‖ξ‖L2(Q)‖zu,v‖L2(Q), (69)

‖pη
u − pu‖2 ≤ R2(‖ξ‖L2(Q) + ‖η‖L2(Q)), (70)

where C2 is the constant given in (7) and s ∈ [1, n+2
n ).
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Proof Subtracting the state equations in (66) and using the mean value theorem we
obtain

d

dt
(yξ

u − yu) + A(yξ
u − yu) + ∂ f

∂ y
(x, t, yθ )(yξ

u − yu) = ξ.

Then, (7) implies (67). To prove (68) we subtract the equations satisfied by zξ
u,v and

zu,v to obtain

d

dt
(zξ

u,v − zu,v) + A(zξ
u,v − zu,v) + ∂ f

∂ y
(x, t, yξ

u )(zξ
u,v − zu,v)

=
[∂ f

∂ y
(x, t, yu) − ∂ f

∂ y
(x, t, yξ

u )
]
zu,v.

Now, using (7), the mean value theorem and (63), (64) with regard to Remark 4 we
obtain that

‖zξ
u,v − zu,v‖L2(Q) ≤ C2

∥∥∥[∂ f

∂ y
(x, t, yu) − ∂ f

∂ y
(x, t, yξ

u )
]
zu,v

∥∥∥
L2(Q)

≤ C2C̄‖(yξ
u − yu)zu,v‖L2(Q) ≤ C2C̄‖yξ

u − yu‖L∞(Q)‖zu,v‖L2(Q)

≤ C2Cr C̄‖ξ‖Lr (Q)‖zu,v‖L2(Q).

Defining K2 := C2Cr C̄ , (68) follows. The proof for estimate (69) follows by the same
argumentation but using (10) and defining the constant Ks accordingly. Finally, we
subtract the adjoint states and employ the mean value theorem to find

− d

dt
(pη

u − pu) + A∗(pη
u − pu) + ∂ f

∂ y
(x, t, yξ

u )(pη
u − pu)

= ∂2L

∂ y2
(x, t, yθ )(yξ

u − yu) + ∂2 f

∂ y2
(x, t, yθ )(yξ

u − yu)pu + η.

The claim follows using (7), (16) and (64), (65) for Remark 4 to estimate

‖pη
u − pu‖L2(Q) ≤ (C2

2 C̄ + MUC2
2 C̄ + C2)(‖ξ‖L2(Q) + ‖η‖L2(Q)).

��

Lemma 20 Let s ∈ [1, n+2
n ) ∩ [1, 2]. Let u ∈ U and let yu, pu be the corresponding

state and adjoint state. Further, let yζ
u and pζ

u be solutions to the perturbed state
and adjoint equation in (61) for the control u. There exist positive constants C, C̃,
independent of ζ ∈ �, such that for v ∈ U , the following estimates hold.
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1. For m = 0 in (4):

∣∣∣
∫

Q

(∂ H

∂u
(x, t, yu, pu) − ∂ H

∂u
(x, t, yζ

u , pζ
u )
)
(v − u) dx dt

∣∣∣
≤ C(‖ξ‖L2(Q) + ‖η‖L2(Q))‖zu,u−v‖L2(Q) (71)

≤ C̃(‖ξ‖L2(Q) + ‖η‖L2(Q))‖v − u‖
3s−2
2s

L1(Q)
. (72)

2. For a general m ∈ R:

∣∣∣
∫

Q

(∂ H

∂u
(x, t, yu, pu) − ∂ H

∂u
(x, t, yζ

u , pζ
u )
)
(v − u) dx dt

∣∣∣
≤ C̃(‖ξ‖Lr (Q) + ‖η‖Lr (Q))‖v − u‖L1(Q). (73)

Proof We consider the first case, m = 0. We begin with integrating by parts

∣∣∣
∫

Q

(∂ H

∂u
(x, t, yu, pu) − ∂ H

∂u
(x, t, yζ

u , pζ
u )
)
(v − u) dx dt

∣∣∣
≤
∣∣∣
∫

Q

[∂L0

∂ y
(x, t, yu)zu,u−v − ∂L0

∂ y
(x, t, yζ

u )zζ
u,u−v

]
dx dt

∣∣∣+
∣∣∣
∫

Q
zζ

u,u−vη dx dt
∣∣∣

≤
∫

Q

∣∣∣∂L0

∂ y
(x, t, yu) − ∂L0

∂ y
(x, t, yζ

u )

∣∣∣
∣∣∣zu,u−v

∣∣∣ dx dt

+
∫

Q

∣∣∣∂L0

∂ y
(x, t, yζ

u ) + η

∣∣∣
∣∣∣zu,u−v − zζ

u,u−v

∣∣∣ dx dt

+
∣∣∣
∫

Q
ηzu,u−v dx dt

∣∣∣ = I1 + I2 + I3.

For the first term we use the Hölder inequality, the mean value theorem, (10), (16),
Remark 4 and (67) to estimate

I1 ≤
∫

Q

∣∣∣∂L0

∂ y
(x, t, yu) − ∂L0

∂ y
(x, t, yζ

u )

∣∣∣|zu,u−v| dx dt

≤ C̄‖yζ
u − yu‖L2(Q)‖zu,u−v‖L2(Q)

≤ C̄C2‖ξ‖L2(Q)‖zu,u−v‖L2(Q)

≤ C̄C2C
1+ 2−s

2
s′ (2MU )

(s′−1)(2−s)
2s′ ‖ξ‖L2(Q)‖u − v‖1+

s−2
2s

L1(Q)
.

Here we used that by Theorem 1 and Lemma 10 it holds

‖zu,u−v‖L2(Q) ≤ ‖zu,u−v‖
2−s
2

L∞(Q)‖zu,u−v‖
s
2
Ls (Q)

≤ C
1+ 2−s

2
s′ (2MU )

(s′−1)(2−s)
2s′ ‖u − v‖

2−s
2s′ + s

2

L1(Q)
,

123



On the solution stability of parabolic optimal control problems

and noticing that 2−s
2s′ + s

2 = 1 − 2−s
2s . The second term is estimated by using (16),

Hölder’s inequality, Remark 4 and (68):

I2 ≤
∫

Q

∣∣∣∂L0

∂ y
(x, t, yζ

u ) + η

∣∣∣
∣∣∣zζ

u,u−v − zu,u−v

∣∣∣ dx dt

≤ 2KsC̄(‖ξ‖L2(Q) + ‖η‖L2(Q))‖zu,u−v‖L2(Q)

≤ K (‖ξ‖L2(Q) + ‖η‖L2(Q))‖u − v‖1+
s−2
2s

L1(Q)
,

where K := 2KsC̄C
1+ 2−s

2
s′ (2MU )

(s′−1)(2−s)
2 s′ . For last term we estimate

I3 ≤
∣∣∣
∫

Q
ηzu,u−v dx dt

∣∣∣ ≤ ‖zu,u−v‖L2(Q)‖η‖L2(Q).

We prove the second case (73). By applying (8) and arguing as in the proof of (67)
and (70) but for r , we infer the existence of a positive constant, denoted by C̃ , such
that:

∣∣∣
∫

Q

(∂ H

∂u
(x, t, yu, pu) − ∂ H

∂u
(x, t, yζ

u , pζ
u )
)
(v − u) dx dt

∣∣∣
=
∣∣∣
∫

Q

[
pu − pζ

u + m(yu − yζ
u )
]
(v − u) dx dt

∣∣∣
≤ ‖pu − pζ

u + m(yu − yζ
u )‖L∞(Q)‖u − ū‖L1(Q)

≤ C̃(‖ξ‖Lr (Q) + ‖η‖Lr (Q))‖v − u‖L1(Q).

��

The main result in the paper follows.

Theorem 21 Let condition (A0) be fulfilled for the reference solution ψ̄ = (yū, pū, ū)

of 0 ∈ �(ψ). Then the mapping � is strongly metrically Hölder subregular at (ψ̄, 0).
More precisely, for every ε ∈ (0, 1/2] there exist positive constants αn and κn (with
α1 and κ1 independent of ε) such that for all ψ ∈ Y with ‖u − ū‖L1(Q) ≤ αn and
ζ ∈ � satisfying ζ ∈ �(ψ), the following inequalities are satisfied.

1, In the case m = 0 in (4):

‖u − ū‖L1(Q) ≤ κn

(
‖ρ‖L∞(Q) + ‖ξ‖L2(Q) + ‖η‖L2(Q)

)θ0
, (74)

‖yζ
u − yū‖L2(Q) + ‖pζ

u − pū‖L2(Q) ≤ κn

(
‖ρ‖L∞(Q) + ‖ξ‖L2(Q) + ‖η‖L2(Q)

)θ

,

(75)
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where

θ0 = θ = 1 if n = 1, (76)

θ0 = θ = 1 − ε if n = 2, (77)

θ0 = 10

11
− ε, θ = 9

11
− ε if n = 3. (78)

2. In the general case m ∈ R:

‖u − ū‖L1(Q) ≤ κn

(
‖ρ‖L∞(Q) + ‖ξ‖Lr (Q) + ‖η‖Lr (Q)

)
, (79)

‖yζ
u − yū‖L2(Q) + ‖pζ

u − pū‖L2(Q) ≤ κn

(
‖ρ‖L∞(Q) + ‖ξ‖Lr (Q) + ‖η‖Lr (Q)

)θ0
.

(80)

Proof We begin with the proof for m = 0. We select α1 < α̃0 according to Lemma
12. Let ζ = (ξ, η, ρ) ∈ Z and ψ = (yζ

u , pζ
u , u) with ‖u − ū‖L1(Q) ≤ α1 such that

ζ ∈ �(ψ), i.e.

⎧⎪⎨
⎪⎩

ξ = Lyζ
u + f (·, ·, yζ

u ) − u,

η = L∗ pζ
u − ∂ H

∂ y (·, yζ
u , pζ

u , u),

ρ ∈ ∂ H
∂u (·, yζ

u , pζ
u ) + NU (u).

Let yu and pu denote the solutions to the unperturbed problem with respect to u, i.e.

0 = Lyu + f (·, ·, yu) − u and 0 = L∗ pu − ∂ H

∂ y
(·, yu, pu, u).

By Lemma 19, there exist positive constants C2, R2 independent of ψ and ζ such that

‖yζ
u − yu‖L2(Q) + ‖pζ

u − pu‖L2(Q) ≤ (C2 + R2)
(
‖ξ‖L2(Q) + ‖η‖L2(Q)

)
. (81)

By the definition of the normal cone, ρ ∈ ∂ H
∂u (·, ·, yζ

u , pζ
u ) + NU (u) is equivalent to

0 ≥
∫

Q
(ρ − ∂ H

∂u
(·, ·, yζ

u , pζ
u ))(w − u) ∀w ∈ U .
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We conclude for w = ū,

0 ≥
∫

Q

∂ H

∂u
(·, ·, yu, pu)(u − ū)

+
∫

Q
(ρ + ∂ H

∂u
(·, ·, yu, pu) − ∂ H

∂u
(·, ·, yζ

u , pζ
u ))(ū − u)

≥ J ′(u)(u − ū) − ‖ρ‖L∞(Q)‖ū − u‖L1(Q)

−
∣∣∣
∫

Q
(
∂ H

∂u
(·, ·, yu, pu) − ∂ H

∂u
(·, ·, yζ

u , pζ
u ))(ū − u) dx dt

∣∣∣. (82)

By Lemma 20, we have an estimate on the third term. Since ‖u − ū‖L1(Q) < α̃0, we
estimate by Lemma 12 and Lemma 20

‖u − ū‖2L1(Q)
γ̃ ≤ J ′(u)(u − ū) ≤ C̃

(
‖ξ‖L2(Q) + ‖η‖L2(Q)

)
‖u − ū‖1+

s−2
2s

L1(Q)

+ ‖ρ‖L∞(Q)‖ū − u‖L1(Q)

and consequently for an adapted constant, denoted in the same way

‖ū − u‖L1(Q) ≤ C̃
(
‖ρ‖L∞(Q) + ‖ξ‖L2(Q) + ‖η‖L2(Q)

) 2s
s+2

.

To estimate the states, we use the estimate for the controls. We notice that (2 −
s)/(2s′) + s/2 = 1 + (s − 2)(2s) and obtain

‖yū − yu‖L2(Q) ≤ ‖yū − yu‖
2−s
2

L∞(Q)‖yū − yu‖
s
2
Ls (Q) ≤ C

2−s
2

r ‖ū − u‖1+
s−2
2s

L1(Q)
. (83)

Thus, for a constant again denoted by C̃ and with

(
1 + s − 2

2s

)
2s

s + 2
= 3s − 2

2 + s
,

‖yū − yu‖L2(Q) ≤ C̃
(
‖ξ‖L2(Q) + ‖η‖L2(Q) + ‖ρ‖L∞(Q)

) 3s−2
2+s

.

Next, we realize that by Lemma 19 and (4.2)

‖yū − yζ
u ‖L2(Q) ≤ ‖yū − yu‖L2(Q) + ‖yu − yζ

u ‖L2(Q)

≤ max
{

C̃, C2

} (
‖ξ‖L2(Q) + ‖η‖L2(Q) + ‖ρ‖L∞(Q)

) 3s−2
2+s

.
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Using ‖pū − pu‖L2(Q) ≤ C2‖yū − yu‖L2(Q) and (70), the same estimate holds for the
adjoint state

‖pū − pζ
u‖L2(Q) ≤ ‖pū − pu‖L2(Q) + ‖pu − pζ

u‖L2(Q)

≤ (C2C̃ + R2)
(
‖ξ‖L2(Q) + ‖η‖L2(Q) + ‖ρ‖L∞(Q)

) 3s−2
2+s

,

subsequently we define κ := max{C̃, C2}. Finally, we consider the case m �= 0. Using
estimate 73 in (82) and arguing from that as for the case m = 0, we infer the existence
of a constant C̃ > 0 such that

‖u − ū‖L1(Q) ≤ C̃
(
‖ρ‖L∞(Q) + ‖ξ‖Lr (Q) + ‖η‖Lr (Q)

)
.

This implies under (83) the estimate for the states and adjoint-states

‖yū − yζ
u ‖L2(Q) + ‖pū − pζ

u‖L2(Q)

≤ max
{

C̃, C2C̃ + R2

} (
‖ξ‖L2(Q) + ‖η‖L2(Q) + ‖ρ‖L∞(Q)

)1+ s−2
2s

.

To determine θ and θ0 we notice that the functions

s → s − 2

2s
and s → 3s − 2

2 + s

are monotone. Inserting the value for (n + 2)/2 for each case n ∈ {1, 2, 3} completes
the proof. ��

To obtain results under Assumption 3 for k ∈ {1, 2}, we need additional restrictions.
We either don’t allow perturbations ρ (appearing in the inclusion in (61)) or they need
to satisfy

ρ ∈ D(L∗). (84)

Theorem 22 Let m = 0 and let some of the conditions (A1), (B1) and (A2), (B2) be
fulfilled for the reference solution ψ̄ = (yū, pū, ū) of 0 ∈ �(ψ). Let, in addition, the
set � of feasible perturbations be restricted to such ζ ∈ � for which the component ρ

is either zero or satisfies (84). The numbers αn, κn and ε are as in Theorem 21. Then
the following statements hold for n ∈ {1, 2, 3}:
1. Under Assumption 3, cases (A1) and (B1), the estimations

‖u − ū‖L1(Q) ≤ κn

(
‖L∗ρ‖L2(Q) + ‖ξ‖L2(Q) + ‖η‖L2(Q)

)
,

‖yζ
u − yū‖L2(Q) + ‖pζ

u − pū‖L2(Q) ≤ κn

(
‖L∗ρ‖L2(Q) + ‖ξ‖L2(Q) + ‖η‖L2(Q)

)θ0
,

with θ0 as in Theorem 21, hold for all u ∈ U with ‖yu − yū‖L∞(Q) < αn, in the
case of (A1), or ‖u − ū‖L1(Q) < αn in the case (B1), and for all ζ ∈ � satisfying
ζ ∈ �(ψ).
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2. Under Assumption 3, cases (A2) and (B2), the estimation

‖yζ
u − yū‖L2(Q) + ‖pζ

u − pū‖L2(Q) ≤ κn

(
‖L∗ρ‖L2(Q) + ‖ξ‖L2(Q) + ‖η‖L2(Q)

)

hold for all u ∈ U with‖yu−yū‖L∞(Q) < αn, in the case of (A2), or‖u−ū‖L1(Q) <

αn in the cases (B2), and for all ζ ∈ � satisfying ζ ∈ �(ψ).

Proof We first notice that if the perturbation ρ satisfies (84), it holds

∫
Q

ρ(u − ū) dx dt =
∫

Q

((
d

dt
+ A

)
zū,u−ū + fy(x, t, yū

)
zū,u−ū)ρ dx dt

=
∫

Q

((
− d

dt
+ A∗

)
ρ + fy(x, t, yū)ρ

)
zū,u−ū dx dt .

Thus

∣∣∣
∫

Q
ρ(u − ū) dx dt

∣∣∣
≤ ‖zū,u−ū‖L2(Q)(‖L∗ρ‖L2(Q) + ‖ fy(x, t, yū)‖L∞(Q)‖ρ‖L2(Q)).

Under Assumption (A1), we can proceed as in the proof of Theorem 21 using
Lemma 12 and (71) in Lemma 20, to infer the existence of positive constants α, κ

such that
‖ū − u‖L1(Q) ≤ κ

(
‖L∗ρ‖L2(Q) + ‖ξ‖L2(Q) + ‖η‖L2(Q)

)
,

and by standard estimates and using (18) the existence of a positive constant C such
that

‖yū − yu‖L2(Q) + ‖pū − pu‖L2(Q) ≤ C‖yū − yu‖L2(Q) ≤ 2C‖zu,u−ū‖L2(Q)

≤ 2Cκ
2s

s+2

(
‖L∗ρ‖L2(Q) + ‖ξ‖L2(Q) + ‖η‖L2(Q)

) 2s
s+2

,

for all u ∈ U with ‖yu − yū‖L∞(Q) < α or ‖u − ū‖L1(Q) < α depending on the
assumption. From here on, one can proceed as in the proof of Theorem 21 and define
the final constant κ > 0 and the exponent θ0 accordingly. Finally, by similar reasoning,
under condition (A2) with Lemma 12 and Lemma 20, one obtains the existence of a
positive constant κ such that

‖yū − yu‖L2(Q) + ‖pū − pu‖L2(Q) ≤ κ
(
‖L∗ρ‖L2(Q) + ‖ξ‖L2(Q) + ‖η‖L2(Q)

)
,

for all u ∈ U with ‖yu − yū‖L∞(Q) < α or ‖u − ū‖L1(Q) < α. Again, proceeding as
in Theorem 21 and increasing the constant κ if needed, proves the claim. ��
Remark 5 Theorems 21 and 22 concern perturbations which are functions of x and t
only. On the other hand, [15, Theorem ] suggests that SMHSr implies a similar stability
property under classes of perturbations that depend (in a non-linear way) on the state
and control. This fact will be used and demonstrated in the next section.
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5 Stability of the optimal solution

In this section we obtain stability results for the optimal solution under non-linear
perturbations in the objective functional. Namely, we consider a disturbed problem

(Pζ ) min
u∈U

Jζ (u) :=
∫

Q
[L(x, t, y(x, t), u(x, t)) + μ(x, t, y(x, t), u(x, t))] dx dt,

(85)
subject to

{ dy
dt + Ay + f (x, t, y) = u + ξ in Q,

y = 0 on �, y(·, 0) = y0 in �,
(86)

where ζ := (ξ, μ) is a perturbation. The corresponding solution will be denoted by
yζ

u . In contrast with the previous section, the perturbation μ may be state and control
dependent. For this reason, here we change the notation of the set of admissible per-
turbations to �̂. However, Assumption 4 will still be valid for the set �̂. The notations
C pe, Ky and R used below have the same meaning as in Sect. 4.2 (see Assumption 4
and the subsequent the paragraph).

In addition to Assumption 4 we require the following that holds through the
reminder of the section.

Assumption 5 For every ζ := (ξ, μ) ∈ �̂, it holds that μ ∈ L1(Q × R). For a.e.
(x, t) ∈ Q the function μ(x, t, ·, ·) is of class C2 and is convex with respect to the

last argument, u. Moreover, the functions ∂μ
∂ y and ∂2μ

∂ y2
are bounded on Q × R, and the

second one is continuous in (y, u) ∈ R, uniformly with respect to (t, x) ∈ Q.

Due to the linearity of (86) and the convexity of the objective functional (85) with
respect to u, the proof of the next theorem is standard.

Theorem 23 For perturbations ζ ∈ �̂ satisfying Assumption 5, the perturbed problem
(Pζ ) has a global solution.

In the next two theorems, we consider sequences of problems {(Pζk
)} with ζk ∈ �̂.

The proofs repeat the arguments in [3, Theorem 4.2, Theorem 4.3].

Theorem 24 Let a sequence {ζk ∈ �̂}k converge to zero in L2(Q) × L2(Q × R) and
let uk be a local solution of problem (Pζk ), k = 1, 2, . . .. Then any control ū that is a
weak* limit in L∞(Q) of this sequence is a weak local minimizer in problem (P), and
for the corresponding solutions it holds that yuk → yū in L2(0, T ; H1

0 (�))∩ L∞(Q).

Theorem 25 Let {ζk}k be as in Theorem 24. Let ū be a strict strong local minimizer of
(P). Then there exists a sequence of strong local minimizers {uk} of problems (Pζk ) such

that uk
∗
⇀ ū in L∞(Q) and yuk converges strongly in L2(0, T ; H1

0 (�)) ∩ L∞(Q).

The next theorem is central in this section.
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Theorem 26 Let condition (A0) be fulfilled for the reference solution ψ̄ = (yū, pū, ū)

of 0 ∈ �(ψ). Then there exist positive numbers C and α for which the following is
fulfilled. For all ψ ∈ Y with ‖u − ū‖L1(Q) ≤ α and ζ ∈ �̂ satisfying ζ ∈ �(ψ) it
holds:

1. If m = 0 in (4):

‖u − ū‖L1(Q) ≤ C
[
‖ξ‖L2(Q) +

∥∥∥ d

dy
μ

∥∥∥
L∞(R;L2(Q))

+
∥∥∥ d

du
μ

∥∥∥
L∞(Q×R)

]θ0
,

‖yζ
u − yū‖L2(Q) ≤ C

[
‖ξ‖L2(Q) +

∥∥∥ d

dy
μ

∥∥∥
L∞(R;L2(Q))

+
∥∥∥ d

du
μ

∥∥∥
L∞(Q×R)

]θ
.

2. For m ∈ R:

‖u − ū‖L1(Q) ≤ C
[
‖ξ‖Lr (Q) +

∥∥∥ d

dy
μ

∥∥∥
L∞(R;Lr (Q))

+
∥∥∥ d

du
μ

∥∥∥
L∞(Q×R)

]
,

‖yζ
u − yū‖L2(Q) ≤ C

[
‖ξ‖Lr (Q) +

∥∥∥ d

dy
μ

∥∥∥
L∞(R;Lr (Q))

+
∥∥∥ d

du
μ

∥∥∥
L∞(Q×R)

]θ0
.

Here θ0 and θ are defined as in Theorem 21.

Proof The reference solution (yū, ū) satisfies, together with the corresponding adjoint
variable, the relations (58). Similarly, (yζ

u , u) satisfies, together with the corresponding
pζ

u the perturbed optimality system (61) with the left-hand side given by the triple

⎛
⎜⎝

ξ(·)
d

dy (μ(·, yζ
u (·), u(·))

d
du (μ(·, yζ

u (·), u(·)).

⎞
⎟⎠ (87)

Since it is assumed that ‖u − ū‖L1(Q) ≤ α wemay apply Theorem 21 (here we choose
the same α as in this theorem) to prove the inequalities in the theorem. ��

The proof of theorems 27 and 28 follows in the same spirit but using Theorem 22
instead of Theorem 21. We make an additional assumption for the perturbation μ in
the objective functional, namely, that ρ := d

du (μ(·, yζ
u (·), u(·)) satisfies (84), i.e.

d

du
(μ(·, yζ

u (·), u(·)) ∈ D(L∗). (88)
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For an explanation of the condition (88), we refer to the proof of Theorem 22.

Theorem 27 Let m = 0 and let condition (A1) be fulfilled for the reference solution
ψ̄ = (yū, pū, ū) of 0 ∈ �(ψ). Then there exist positive numbers α and C for which
the following is fulfilled. For all ψ ∈ Y with ‖yu − yū‖L∞(Q) ≤ α and ζ ∈ �̂ satisfying
ζ ∈ �(ψ) and (88) the following estimates hold:

‖u − ū‖L1(Q)

≤ C
(
‖L∗ d

du
(μ(·, yζ

u (·), u(·))‖L2(Q) + ‖ξ‖L2(Q) +
∥∥∥ d

dy
μ

∥∥∥
L∞(R;L2(Q))

)

and

‖yζ
u − yū‖L2(Q)

≤ C
(
‖L∗ d

du
(μ(·, yζ

u (·), u(·))‖L2(Q) + ‖ξ‖L2(Q) +
∥∥∥ d

dy
μ

∥∥∥
L∞(R;L2(Q))

)θ0
,

where θ0 is defined in Theorem 21.

Theorem 28 Let m = 0 and let condition (A2) be fulfilled for the reference solution
ψ̄ = (yū, pū, ū) of 0 ∈ �(ψ). Then there exist positive numbers C and α for which
the following is fulfilled. For all ψ ∈ Y with ‖yu − yū‖L∞(Q) ≤ α and ζ ∈ �̂ satisfying
ζ ∈ �(ψ) and (88) the following estimate holds.

‖yζ
u − yū‖L2(Q)

≤ C
(
‖L∗ d

du
(μ(·, yζ

u (·), u(·))‖L2(Q) + ‖ξ‖L2(Q) +
∥∥∥ d

dy
μ

∥∥∥
L∞(R;L2(Q))

)
.

Remark 6 The constraint that uζ needs to be close to the reference solution ū in the
theorems above is not a big restriction. This is clear, since Assumption 3 implies that
ū satisfies (38). Hence, ū is a strict strong local minimizer of (P) and, consequently,
Theorem 25 ensures the existence of a family {uζk }, ζk ∈ �̂, of strong local minimizers
of problems (Pζ ) satisfying the conditions of Theorem 21 or 22.

6 Examples

Here, we present three examples that show particular applications in which different
assumptions are involved.

Example 1 (Tikhonov regularization) We consider the optimal control problem

(Pλ) min
u∈U

Jλ(u) :=
∫

Q
L(x, t, y(x, t), u(x, t)) + λ

2

∫
Q

u(x, t)2 dx dt,
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subject to (2) and (3). As before, ū denotes a strict strong solution of problem (P)≡
(P0). We assume that ū satisfies condition (A0). From Theorem 25 we know that for
every sequence λk > 0 converging to zero there exists a sequence of strong local
minimizer {uλk }∞k=1 such that uλk → ū in L1(Q) for k → ∞, thus for a sufficiently
large k0 we have that for all k > k0 and a positive constant C

‖yū − yuλk
‖L2(Q) + ‖pū − puλk

‖L2(Q) ≤ C
(
λk

)θ

,

‖ū − uλk ‖L1(Q) ≤ Cλk,

where θ is defined in Theorem 21.

Example 2 (Negative curvature) We consider an optimal control problem, that has
negative curvature. The parabolic equation has the form

{ dy
dt + Ay + exp(y) = u in Q,

y = 0 on �, y(·, 0) = 0 on �.
(89)

Let 0 < g ∈ L2(Q) be a function satisfying the structural assumption, i.e. g satisfies
(34) in place of ∂ H̄

∂u . We consider the optimal control problem

min
u∈U

{
J (u) :=

∫
Q
(yu + gu) dx dt

}

subject to (89) and with control constraints

U := {u ∈ L∞(Q)| 0 ≤ ua ≤ u ≤ ub for a.a. (x, t) ∈ Q}. (90)

By the weak maximum principle yua − yu ≤ 0 for all u ∈ U and ū := ua constitutes
an optimal solution. Further, by the weak maximum principle, the adjoint-state pū and
the linearized states zū,u−ū for all u ∈ U , are non-negative. Moreover, we have

J ′(ū)(u − ū) =
∫

Q
(pū + g)(u − ū) dx dt ≥ 0,

J ′′(ū)(u − ū)2 =
∫

Q
wū,u−ū dx dt =

∫
Q

−pū exp(ȳ)z2ū,u−ū dx dt < 0,

for all u ∈ U/ū. Since g satisfies the structural assumption, there exists a constant
C > 0 such that

∫
Q

g(u − ū) dx dt ≥ C‖u − ū‖2L1(Q)
∀u ∈ U .

On the other hand, integrating by parts we obtain

∫
Q

pū(u − ū) dx dt =
∫

Q
zū,u−ū dx dt . (91)
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If for u ∈ U , ‖yu − yū‖L∞(Q) is sufficiently small such that

1

2‖pū exp(yū)‖L∞(Q)

> ‖zū,u−ū‖L∞(Q),

we can absorb the term J ′′(ū)(u − ū)2 by estimating

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 =
∫

Q
zū,u−ū(1 − pū exp(yū)zū,u−ū) dx dt (92)

≥ 1

2

∫
Q

zū,u−ū dx dt ≥ K

2
‖zū,u−ū‖2L2(Q)

, (93)

where the last inequality is a consequence of the boundedness of U ⊂ L∞(Q) that
implies the existence of a positive constant K such that

‖zū,u−ū‖L1(Q) ≥ K‖zū,u−ū‖2L2(Q)

for all u ∈ U . Altogether, we find

J ′(ū)(u − ū) + J ′′(ū)(u − ū)2 ≥ C‖u − ū‖2L1(Q)
+ K

2
‖zū,u−ū‖2L2(Q)

≥
√

C K

2
‖u − ū‖L1(Q)‖zū,u−ū‖L2(Q) ∀u ∈ U .

Thus, condition (A1) is fulfilled and we can apply Theorem 22 to obtain a stability
result.

Example 3 (State stability) We will discuss (A2) for an optimal control problem with
tracking type objective functional where the control does not appear explicitly in the
objective functional:

min
u∈U

{
J (u) := 1

2

∫
Q
(yu − yd)2 dx dt

}

subject to (3) and equation (89) and a given function yd ∈ Lr (Q). As perturbations
we consider functions ζ := (ξ, η, ρ) ∈ Lr (Q) × Lr (Q) × D(L∗). Denote by ψ̄ =
(yū, pū, ū) the reference solution of 0 ∈ �(ψ) satisfying (A2) and consider the
perturbed problem

min
u∈U

{
J (u) := 1

2

∫
Q
(y(x, t) − yd(x, t))2 dx dt +

∫
Q

ηy dx dt +
∫

Q
ρu dx dt

}
,

subject to (3) and { dy
dt + Ay + exp(y) = u + ξ in Q,

y = 0 on �, y(·, 0) = 0 on �.

123



On the solution stability of parabolic optimal control problems

Condition (A2) implies that ū is a strong local minimizer of the unperturbed problem
(ζ = 0), thus it holds

J ′(ū)(u − ū) =
∫

Q
(yū(x, t) − yd(x, t))zū,u−ū dxdt ≥ 0 ∀u ∈ U ,

J ′′(ū)(u − ū) =
∫

Q
(yū(x, t) − yd(x, t))wū,u−ū + z2ū,u−ū dxdt

=
∫

Q
(1 − pū exp(yū))z2ū,u−ū dxdt ∀u ∈ U ,

where pū solves

{− dpū
dt + A∗ pū + exp(yū)pū = yū − yd in Q,

pū = 0 on �, pū(·, T ) = 0 on �.

If the optimal state tracks yd such that ‖yū − yd‖Lr (Q) < 1
Cr ‖ exp(yū)‖L∞(Q)

we find that

(A2) holds. From Theorem 27 we obtain the existence of positive constants α and κ

such that

‖yū − yζ
u ‖L2(Q) + ‖pū − pζ

u‖L2(Q) ≤ κ
(
‖ξ‖L2(Q) + ‖η‖L2(Q) + ‖L∗ρ‖L2(Q)

)
,

for all (yζ
u , pζ

u , u) = ψ ∈ � with ‖yu − yū‖L∞(Q) ≤ α and ζ ∈ � satisfying (84) and
ζ ∈ �(ψ).
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Appendix A

Lemma 29 Suppose r > 1 + n
2 and s ∈ [1, n+2

n ) ∩ [1, 2]. The following statement is
fulfilled for all u, ū ∈ U . There exist positive constants Kr , Ms and Nr ,s depending
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on s and r such that

‖yu − yū − zū,u−ū‖L∞(Q) ≤ Kr‖yu − yū‖2L2r (Q)
, (A1)

‖yu − yū − zū,u−ū‖Ls (Q) ≤ Ms‖yu − yū‖2−s
L∞(Q)‖yu − yū‖s

Ls (Q), (A2)

‖yu − yū − zū,u−ū‖L2(Q) ≤ Nr ,s‖yu − yū‖2−
s2
2

L∞(Q)‖yu − yū‖
s2
2

Ls (Q). (A3)

Proof Let us denote φ := yu − yū − zū,u−ū ∈ W (0, T )∩ L∞(Q). From the equations
satisfied by the three functions and by the mean value theorem φ satisfies

dφ

dt
+ Aφ + ∂ f

∂ y
(x, t, yū)φ =

[∂ f

∂ y
(x, t, yū) − ∂ f

∂ y
(x, t, yθ )

]
(yu − yū),

where yθ (x, t) = yū(x, t) + θ(x, t)(yu(x, t) − yū(x, t)) with θ : Q −→ [0, 1]
measurable. Applying again the mean value theorem we obtain

dφ

dt
+ Aφ + ∂ f

∂ y
(x, t, yū)φ = θ

∂2 f

∂ y2
(x, t, yϑ)(yu − yū)2

with yϑ(x, t) = yū(x, t) + ϑ(x, t)(yθ (x, t) − yū(x, t)) and ϑ : Q −→ [0, 1] mea-
surable. By Theorem 1 and Remark 4 we infer the existence of constants Cr , C̄
independent of u, ū ∈ U and ∂ f

∂ y (x, t, yū) such that

‖φ‖L∞(Q) ≤ Cr C̄‖(yu − yū)2‖Lr (Q) = Cr C̄‖yu − yū‖2L2r (Q)
,

which proves (A1) with Kr := Cr C̄ . To prove (A2), we use Lemma 2, Remark 4 and
(16) to obtain that

‖φ‖Ls (Q) ≤ Cs′C̄‖(yu − yū)2‖L1(Q)

≤ Cs′C̄‖yu − yū‖2−s
L∞(Q)‖yu − yū‖s

Ls (Q).

Taking Ms := Cs′C̄ , (A2) follows. The inequality, (A3), follows from (A2) and (A1)
of Lemma 29 by estimating

‖φ‖L2(Q) ≤ ‖φ‖
2−s
2

L∞(Q)‖φ‖
s
2
Ls (Q)

≤ K
2−s
2

r ‖yu − yū‖
2(2−s)

2
L2r (Q)

[
M

s
2

s ‖yu − yū‖
(2−s)s

2
L∞(Q)‖yu − yū‖

s2
2

Ls (Q)

]

≤ K
(2−s)
2

r M
s
2

s |Q| 2−s
2r ‖yu − yū‖2−s+ (2−s)s

2
L∞(Q) ‖yu − yū‖

s2
2

Ls (Q).

Defining Nr ,s := K
(2−s)
2

r M
s
2

s |Q| 2−s
2r and noticing that

2 − s + (2 − s)s

2
= 2 − s2

2
,
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proves the claim. ��
Proof of Lemma 5 We prove (17) by applying Theorem 1 to ψ := zū,v − zuθ ,v , that
solves

dψ

dt
+ Aψ + ∂ f

∂ y
(x, t, yū)ψ =

[∂ f

∂ y
(x, t, yuθ ) − ∂ f

∂ y
(x, t, yū)

]
zuθ ,v

= θ
∂2 f

∂ y2
(x, t, yϑ)(yū − yuθ )zuθ ,v. (A4)

To prove (18), we use (A3) with s = √
2 to estimate

‖yu − yū‖L2(Q) ≤ ‖φ‖L2(Q) + ‖zū,u−ū‖L2(Q)

≤ Nr ,
√
2‖yu − yū‖L∞(Q)‖yu − yū‖L

√
2(Q)

+ ‖zū,u−ū‖L2(Q).

Using fact that by the Hölder inequality ‖yu − yū‖L
√
2(Q)

≤ |Q| 1√
2
− 1

2 ‖yu − yū‖L2(Q),

the claim follows. For the other direction, we select again s = √
2 in (A3) and find

‖zū,u−ū‖L2(Q) ≤ ‖φ‖L2(Q) + ‖yu − yū‖L2(Q)

≤ Nr ,
√
2‖yu − yū‖L∞(Q)‖yu − yū‖L

√
2(Q)

+ ‖yu − yū‖L2(Q)

≤
(

Nr ,
√
2|Q| 1√

2
− 1

2 ‖yu − yū‖L∞(Q) + 1

)
‖yu − yū‖L2(Q).

Finally, for (19) we use (17) and estimate

‖zū,v‖L2(Q) ≤ ‖zū,v − zu,v‖L2(Q) + ‖zu,v‖L2(Q)

≤ K2
2
√|Q|‖yu − yū‖L∞(Q)‖zū,v‖L2(Q) + ‖zu,v‖L2(Q).

Choosing ε = [2K2
2
√|Q|]−1 proves the first part. The second inequality follows in

a similar way. The estimates with respect to the ‖ · ‖L∞(Q)-norm follow by similar
reasoning, using (A1). ��
Proof of Proposition 8 Let us prove first the implication (Ak)⇒(Bk) for any k ∈
{0, 1, 2}. Given u ∈ U , by the mean value theorem

d(yu − yū)

dt
+ A(yu − yū) + ∂ f

∂ y
(x, yū + θ(yu − yū))(yu − yū) = u − ū.

Using (8) in Theorem 1 we obtain that

‖yu − yū‖L∞(Q) ≤ Cr‖u − ū‖Lr (Q) ≤ Cr (2MU )
r−1

r ‖u − ū‖
1
r
L1(Q)

.

Then, by α̃k := αr
k

Cr
r (2MU )r−1 , we obtain that (Ak) implies (Bk) with γk = γ̃k .
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To prove the converse implication, (Bk)⇒(Ak), we assume that (Bk) holds, but
(Ak) fails. Then for every integer l ≥ 1 there exists an element ul ∈ U such that

J ′(ū)(ul − ū) + J ′′(ū)(ul − ū)2

<
1

l
‖ul − ū‖2−k

L1(Q)
‖zū,ul−ū‖k

L2(Q)
and ‖yul − yū‖L∞(Q) <

1

l
.

(A5)
Since {ul}∞l=1 ⊂ U is bounded in L∞(Q), we can extract a subsequence, denoted in

the same way, such that ul
∗
⇀ u in L∞(Q). On one side, (A5) implies that yul →

yū in L∞(Q). On the other side, ul
∗
⇀ u in L∞(Q) implies weak convergence in

Lr (Q). From (13), the convergence yul → yu in L∞(Q) follows. Then, yu = yū and,
consequently, u = ū holds. But condition (B0) implies that ū is bang-bang, and hence

the weak convergence ul
∗
⇀ ū in L∞(Q) yields the strong convergence ul → ū in

L1(Q); see [17, Proposition 4.1 and Lemma 4.2]. Then, for k = 0, (A5) contradicts
(B0). The same argument holds for (B1) and (B2) under the additional condition that
ū is bang-bang and noticing that ‖zū,ul−ū‖L∞(Q) ≤ 3/2‖yul − yū‖L∞(Q) by Lemma
5. ��

A proof of the following lemma can be found in [8, Lemma 3.5].

Lemma 30 Given ū ∈ U with associated state yū . Then, the following estimate holds

‖yū+θ(u−ū) − yū‖L∞(Q) ≤ B‖yu − yū‖L∞(Q) ∀θ ∈ [0, 1] and ∀u ∈ U , (A6)

where B := (2Cr C̄ r
√|Q|MU + 1), Cr is the constant of Lemma 1 and C̄ is the one

from Remark 4.

We proof an analogous statement for the adjoint state. For an elliptic state equation
a similar result is proved in [3, Lemma 3.7].

Lemma 31 Given ū ∈ U with associated state yū and adjoint-state pū , there exists a
positive constant B̃ such that

‖pū+θ(u−ū) − pū‖L∞(Q) ≤ B̃(‖yu − yū‖L∞(Q) + |m|‖u − ū‖
1
r
L1(Q)

), (A7)

for all θ ∈ [0, 1] and u ∈ U .

Proof Let us prove (A7). Given u ∈ U and θ ∈ [0, 1], let us denote uθ = ū +θ(u − ū),
yθ = yuθ , and pθ = puθ . Subtracting the equations satisfied by pθ and pū we get with
the mean value theorem

− d

dt
(pθ − pū) + A∗(pθ − pū) + ∂ f

∂ y
(x, t, ȳ)(pθ − pū)

= ∂L

∂ y
(x, t, yθ , uθ ) − ∂L

∂ y
(x, t, yū, ū) +

[∂ f

∂ y
(x, t, yū) − ∂ f

∂ y
(x, t, yθ )

]
pθ

=
[∂2L

∂ y2
(x, t, yϑ) − pθ

∂2 f

∂ y2
(x, t, yϑ)

]
(yθ − yū) + m(uθ − ū),
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where yϑ = yū + ϑ(yθ − yū) for some measurable function ϑ : Q −→ [0, 1]. Now,
we can apply again Theorem 1 and Remark 4 to conclude from the above equation

‖pθ − pū‖L∞(Q) ≤ Cr (C̄ + MU C̄) r
√|Q|‖yθ − yū‖L∞(Q) + |m|θCr‖u − ū‖Lr (Q)

≤ B̃(‖yu − yū‖L∞(Q) + |m|‖u − ū‖L1(Q))
1
r ,

where B̃ := Cr ((C̄ + MU C̄)|Q| 1r B + (2MU )
r−1

r ), with B being the constant from
Lemma 30. ��
Proof of Lemma 10 The second variation of the objective functional is given by The-
orem 6. Let us denote uθ , yθ , and pθ as in the proof of Lemma 31. From (23) we
obtain

|[J ′′(ū + θ(u − ū)) − J ′′(ū)](u − ū)2|

≤
∫

Q

∣∣∣[∂2L0

∂ y2
(x, t, yθ ) − ∂2L0

∂ y2
(x, t, yū)

]
z2uθ ,u−ū

∣∣∣ dx dt

+
∫

Q

∣∣∣(pū − pθ )
∂2 f

∂ y2
(x, t, yθ )z

2
uθ ,u−ū

∣∣∣ dx dt

+
∫

Q

∣∣∣pū

[∂2 f

∂ y2
(x, t, yū) − ∂2 f

∂ y2
(x, t, yθ )

]
z2uθ ,u−ū

∣∣∣ dx dt

+
∫

Q

∣∣∣[∂2L0

∂ y2
(x, t, yū) − pū

∂2 f

∂ y2
(x, t, yū)

]
(z2uθ ,u−ū − z2ū,u−ū)

∣∣∣ dx dt

+ 2
∣∣∣
∫

Q
(u − ū)m

[
zuθ ,u−ū − zū,u−ū

]
dx dt

∣∣∣
= I1 + I2 + I3 + I4 + I5.

Let us estimate the terms Ii , i ∈ {1, .., 5}. For I1, we deduce from Remark 4, (A6),
(10) and (19) that for every ρ1 > 0 there exists ε1 > 0 such that

I1 ≤ ρ1‖zū,u−ū‖2L2(Q)
if ‖yu − yū‖L∞(Q) < ε1.

We consider I2. Let m = 0, we use Remark 4, (10), (16), (19), and (A7) to obtain for
every ρ2 > 0 the existence of a ε2 > 0 such that

I2 ≤ ρ2‖zū,u−ū‖2L2(Q)
if ‖yu − yū‖L∞(Q) < ε2.

For the general case m ∈ R, we use Remark 4, (10), (16), (19), and (A7), to infer for
any ρ2 > 0 the existence of a ε2 > 0 such that

I2 ≤ C̄ B̃(Cr (2MU )
r−1

r + |m|)‖u − ū‖
1
r
L1(Q)

‖zū,u−ū‖2L2(Q)

≤ ρ2‖zū,u−ū‖2L2(Q)
if ‖u − ū‖L1(Q) < ε2.
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The estimate for I3 follows from (10), (16), (19) and Remark 4. Thus for every ρ3 > 0,
there exists ε3 > 0 with

I3 ≤ ρ3‖zū,u−ū‖2L2(Q)
if ‖yu − yū‖L∞(Q) < ε3.

For I4 we infer by Remark 4, (A3), (10), (16), (17), (19) and (A6) that for every ρ4 > 0
there exists ε4 > 0 such that

I4 ≤ (C̄ + MU C̄)‖zuθ ,u−ū + zū,u−ū‖L2(Q)‖zuθ ,u−ū − zū,u−ū‖L2(Q)

≤ 5C2

2
(C̄ + MU C̄)‖zū,u−ū‖L2(Q)‖yθ − yū‖L∞(Q)‖zū,u−ū‖L2(Q)

≤ ρ4‖zū,u−ū‖2L2(Q)
if ‖yu − yū‖L∞(Q) < ε4.

The term I5 needs only to be considered in the general case m ∈ R. We recall that
in this case, we assume ‖u − ū‖L1(Q) to be sufficiently small. To estimate I5 we use
that zū,v satisfies equation (14) and that ψ := zū,u−ū − zuθ ,u−ū solves (A4). Then, by
Remark 4, applying (10) to (A4), (16), (19), Lemma 2 and (A6) we estimate

2
∣∣∣
∫

Q
(u − ū)m

[
zuθ ,u−ū − zū,u−ū

]
dx dt

∣∣∣ ≤ 2|m|‖u − ū‖Ls′ (Q)
‖zuθ ,u−ū − zū,u−ū‖Ls (Q)

≤ 2|m|(2MU )
s′−1

s′ ‖u − ū‖
1
s′
L1(Q)

‖zuθ ,u−ū − zū,u−ū‖Ls (Q)

≤ 2|m|C̄Cs′ B(2MU )
s′−1

s′ ‖u − ū‖
1
s′
L1(Q)

‖yuθ − yū‖L2(Q)‖zūθ ,u−ū‖L2(Q).

We remark, that to make the last step, we used that (A6) holds also if the ‖ · ‖L∞(Q)-
norm is exchangedwith the ‖·‖L2(Q)-norm. This can be seen in the proof of [3, Lemma
3.5]. Thus we infer that for every ρ5 > 0 there exists a ε5 > 0 such that

I5 ≤ ρ5‖zū,u−ū‖2L2(Q)
if ‖u − ū‖L1(Q) < ε5.

Now if m = 0 the validity of the estimates for Ii for i ∈ {1, ..., 4} holds under the
condition that ‖yu − yū‖L∞(Q) is sufficiently small. For general m ∈ R the validity
of the estimates holds under the condition that ‖u − ū‖L1(Q) is sufficiently small by
the additional arguments given above for the terms I2 and I5 and for the other terms
by the fact that by (8), ‖u − ū‖L1(Q) < εr

Cr
r (2MU )

r−1
2r

, implies ‖yu − yū‖L∞(Q) < ε.

Taking ε := min1≤i≤5 εi , completes the proof. ��

Proof of Lemma 11 Let s ∈ [1, n+2
n ) ∩ [1, 2]. We first consider the case m = 0. Using

that L0 and f satisfy the assumption in Remark 4 and arguing as in the proof of Lemma
10, there exists ε > 0 and a positive constant P such that

|[J ′′(ū + θ(u − ū)) − J ′′(ū)](u − ū)2| ≤ P‖yu − yū‖L∞(Q)‖zū,u−ū‖2L2(Q)
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for all u ∈ U with ‖yu − yū‖L∞(Q) < ε. To prove (40), we select l1, l2 ≥ 0 with
l1 + l2 = 1 and use the estimate

‖zū,u−ū‖L2(Q) ≤ ‖zū,u−ū‖
2−s
2

L∞(Q)‖u − ū‖
s
2
L1(Q)

. (A8)

By (A8), (8), (10), (16) and (18) we find

‖yu − yū‖L∞(Q)‖zū,u−ū‖2L2(Q)

≤ ‖yu − yū‖L∞(Q)‖zū,u−ū‖L2(Q)‖zū,u−ū‖
2−s
2

L∞(Q)‖u − ū‖
s
2
L1(Q)

≤ Cs′ sup
U

‖u − ū‖
s−1
s′

L∞(Q)‖yu − yū‖l1+l2
L∞(Q)‖zū,u−ū‖L2(Q)‖u − ū‖

2−s
2s′ + s

2

L1(Q)

≤ C2
s′ M̃U‖yu − yū‖l1

L∞(Q)‖zū,u−ū‖L2(Q)‖u − ū‖
l2
s′ + s

2

L1(Q)
‖u − ū‖

2−s
2s′

L1(Q)
,

with M̃ := M
s−1
s′ (l2+ 2−s

2 )

U . We select l2 such that

l2
s′ + 2 − s

2s′ + s

2
= 1.

We have that 1/s′ = 1−1/s is equivalent to (1+ l2)(1−1/s)+s/2(1−1+1/s) = 1.
Thus we find

l2 = s′/2 − 1.

Defining ε := 1
C2

s′ M̃
ρ

1
l1 proves the first claim. For the proof of (41) we use (A8), (8),

(10), (16) and (18) to infer

‖yu − yū‖L∞(Q)‖zū,v‖2L2(Q)
≤ Cs′ ‖yu − yū‖L∞(Q)‖zū,v‖(2−s)

L∞(Q)‖u − ū‖s
L1(Q)

≤ C2
s′ M

s′−1
s′

U ‖yu − yū‖l1+l2
L∞(Q)‖u − ū‖

2−s
s′

L1(Q)
‖u − ū‖s

L1(Q)

≤ C3
s′ M̃‖yu − yū‖l1

L∞(Q)‖u − ū‖
l2
s′
L1(Q)

‖u − ū‖
2−s
s′

L1(Q)
‖u − ū‖s

L1(Q)
,

(A9)

with M̃ := M
(s−1)(l2+2−s)

s′
U . Select l2 such that

l2
s′ + 2 − s

s′ + s = 2.

By 1/s′ = 1 − 1/s, this is equivalent to l2 = (2 − s)/(s − 1). Setting ε := 1
C3

s′ M̃
ρ

1
l1

proves the case for m = 0. For m ∈ R, we recall, that the L1(Q)-distance of the
controls is assumed to be sufficiently small. This is used to estimate the terms where
the difference of the controls appears explicitly. For the termswhere the controls do not
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appear explicitly we use the estimations for m = 0 above and apply the estimate (8) to
yu−yū to conclude that the L∞(Q)-distance of the states is close if the L1(Q)-distance
of the controls is close. ��
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