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Abstract

A central question in drug policy is how control efforts should be
divided among enforcement, treatment, and prevention. Of particular
interest is how the mix should vary dynamically over the course of an
epidemic. Recent work considered how various pairs of these inter-
ventions interact. This paper considers all three simultaneously in a
dynamic optimal control framework, yielding some surprising results.
Depending on epidemic parameters, one of three situations pertains.
It may be optimal to eradicate the epidemic, to ”accommodate” it
by letting it grow, or to eradicate if control begins before drug use
passes a DNSS threshold but accommodate if control begins later.
Relatively modest changes in parameters such as the perceived so-
cial cost per unit of drug use can push the model from one regime
to another, perhaps explaining why opinions concerning proper policy
diverge so sharply. If eradication is pursued, then treatment and en-
forcement should be funded very aggressively to reduce use as quickly
as possible. If accomodation is pursued then spending on all three
controls should increase roughly linearly but less than proportionally
with the size of the epidemic. With the current parameterization, op-
timal spending on prevention varies the least among the three types
of control interventions.

∗Corresponding author. Address: Wiedner Hauptstr. 8/105-4, A-1040 Wien, Austria.
Email: gernot.tragler@tuwien.ac.at. Fax: +43-1-58801-910542. Phone: +43-1-58801-
10542.
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1 Introduction

Illicit drugs impose enormous costs on society (Harwood et al. [31], UN-
ODC [58]), and there is considerable debate over how policy makers should
respond. A central question concerns the relative roles of three broad strate-
gies: enforcement, treatment, and prevention.

Drug use varies dramatically over time in ways that can fairly be described
as epidemics even though there is no literal pathogen (Golub and Johnson
[26], Ferrence [24], Caulkins [5],[7]). For example, cocaine initiation in the
US increased roughly four-fold in the 1970s, then the ”infectivity” (number of
new initiates recruited per current user) subsequently fell over time (Caulkins
et al. [8]).

Traditionally drug control effectiveness has been evaluated in a static
framework (e.g., Rydell and Everingham [51]), but intuitively the relative
roles of enforcement, treatment, and prevention should vary over the course
of an epidemic. Indeed, this has been argued for various pairs of interventions
(Behrens et al. [2], Caulkins et al. [9], Tragler et al. [57]). The present paper
yields substantial new insights by simultaneously considering key elements of
all three principal classes of drug control interventions in a dynamic model
parameterized for the most problematic drug (cocaine) for the country with
the most dependent users (the US).

Enforcement, treatment, and prevention are broad classes of interven-
tions, not single programs, so it is important to clarify what specifically is
modeled. Enforcement here refers to actions taken against the drug supply
chain that raise the cost of producing and distributing drugs and thereby
increase retail prices (cf., Reuter and Kleiman [46]). Such actions account
for the majority of US enforcement spending. For enforcement within US
borders the largest cost driver is incarceration. Simply put, prison (at $25-
30,000 per cell-year) costs more than arrest or ajudication (Greenwood et al.
[28]). More people are arrested for possession than sale, but on the order of
90+% of those imprisoned for drug-law violations in the US were involved in
drug distribution (Sevigny and Caulkins [54]).3

3Possesion arrests include ”possession with intent to distribute”, which is essentially
a distribution charge, but offenders arrested for simple possession are less likely to be
incarcerated and when they are, they serve shorter sentences. Note that many of those
involved in distribution also use drugs, but generally it is not the use per se that leads to
their incarceration.
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A smaller share of enforcement dollars are spent outside US borders on
interdiction in source countries and the ”transit zone”. There is debate con-
cerning whether these activities are best thought of as driving up equilibrium
prices or as creating spot shortages (Rydell and Everingham [51], Crane et
al. [17], Manski et al. [39], Caulkins et al. [9]). Modeling price raising en-
forcement is of interest even if enforcement outside the US has no impact
on equilibrium prices, but we suspect that it does have at least some such
effects.

Enforcement has been hypothesized to work through other mechanisms
as well. Moore [42] and Kleiman [36] suggest it might increase non-monetary
”search costs” that users incur to obtain drugs. These costs are non-negligible,
even for experienced users (Rocheleau and Boyum [49]), but since regular
users often have 10-20 alternative suppliers (Riley [48]) enforcement’s ef-
fects through increasing search time are second-order for established markets
(Caulkins [3]) such as those for cocaine in the US today.4 Likewise, en-
forcement against suppliers of mass market drugs does not work primarily
through incapacitation; there are few barriers to entry, so incarcerated sellers
are rapidly replaced (Kleiman [37]).

Prevention is similarly multi-faceted. Unfortuantely there is little scien-
tific evidence concerning the effectivness of most forms of prevention other
than school-based prevention (Cuijpers [18]), so we focus on school-based
programs and adapt parameter estimates from Caulkins et al. [13],[14].

Caulkins et al.’s estimates are based on lifetime projections of results for
”best practice” programs evaluated in randomized control trials run through
the end of high school. This has two implications. First, since data are only
available on impacts through the end of high school, there is unavoidable
uncertainty about prevention’s effectiveness over a lifetime. Second, the es-
timates pertain to model programs. Historically most school districts have
not implemented research-based programs with high fidelity (Hallfors and
Godette [30]). By using Caulkins et al.’s data, were are examining what the
optimal level of spending on school-based prevention would be if the best
currently available prevention technologies were employed.

There are many kinds of treatment, and they are of varying quality (In-
stitute of Medicine [33],[34]). Effectiveness data from randomized-controlled
trials for cocaine treatment is lacking (Manski et al. [40]). Hence, we model
treatment somewhat abstractly as simply increasing the net quit rate and
ignore the possibility that it might reduce the social damange per unit of

4Infrequent or ”light” users may have fewer alternative suppliers, but they account for
a modest share of all consumption because they use so much less, per capita, than do
heavier users.

3



consumption. For consistency we use the same basecase assumptions about
treatment’s average cost and effectiveness as did Rydell and Everingham [51]
and Tragler et al. [57], but in light of Manski et al. we do sensitivity analysis
with respect to those assumptions.

Note that our goal is not to anoint any one of these classes of interventions
as the ”winner” in some cost-effectiveness horse race. Rather, the goal is to
understand better how their relative roles might vary over the course of an
epidemic.

2 The Model

2.1 Clarifying Some Common Misconceptions

Before proceeding it is important to dispel some common misconceptions
about drug markets. First, most new users are introduced to drugs by other
users, typically friends or siblings. This is the sense in which drug use is
”contagious”. Dealers rarely ”push” drugs on unwitting innocents (Kaplan
[35]). Furthermore, drug supply is characterized by intense and atomistic
competition (Reuter [45]), not monopolistic control. Hence, drug suppliers
do not act strategically. There are simply too many of them; well over a
million Americans sold cocaine within only twelve months (Caulkins [6]).5

Hence, one can develop sensible models of drug markets without explicitly
modeling strategic behavior by suppliers. Instead, one can simply abstract
the drug supply sector by what amounts to a supply curve (albeit one whose
position depends on enforcement).

Second, drug initiation and use are affected by prices. There was once
a lore that drug addicts ”had to have their drug” regardless of the price,
but a considerable literature has clearly established that cocaine use re-
sponds to price changes (Grossman and Chaloupka [29], Chaloupka et al.
[15], Chaloupka and Pacula [16], Rhodes et al. [47], DeSimone [21], DeSi-
mone and Farrelly [22], Dave [19]). Gallet [25] provides a nice, new literature
review and synthesis. This should not be surprising. Merely consuming less
when prices rise in no way implies or requires perfect foresight or full ratio-
nality. What is somewhat surprising is the magnitude of the response. Best
estimates for the elasticity of demand for cocaine are in the neighbhorhood

5Market power is most concentrated at the export level in Colombia, and never more
so than in the heyday of the Medellin ”cartel”. Yet this supposed ”cartel” was not able
to stave off a precipitous decline in prices. In reality, the cartel was formed more for
protection against kidnapping than to strategically manipulate prices. Today there are
several hundred operators even at that market level.
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of −1 (Caulkins and Reuter [10]), implying that a one percent increase in
price is associated with a one percent reduction in use. This substantial
responsiveness may stem from the fact that the vast majority of cocaine is
consumed by dependent users who spend a large share of their disposable in-
come on their drug of choice. All other things being equal, price elasticities
tend to be larger for things that are important budget items (e.g., housing)
than for incidentals (e.g., toothpaste).

Unfortunately, there is much less information concerning what proportion
of the overall elasticity stems from reduced per capita consumption by ex-
isting users vs. reduced initiation or increased quitting changing the number
of users. In the absence of better information, we follow Rydell and Ever-
ingham [51] and Tragler et al. [57] in assuming an equal division between
these categories and likewise divide the latter (price elasticity of prevalence)
equally between effects on initiation and quitting.

2.2 Model Structure

The present model extends that of Tragler et al. [57]. It tracks the number of
users (A(t)) over time t. Initiation is modeled as an increasing (but concave)
function of the current number of users that is modified by price, through a
constant price elasticity of initiation, and by prevention.

Primary prevention is typically modeled as reducing initiation by a certain
percentage, where the percentage depends on program intensity. Diminishing
returns are presumed through an exponential decay as in Behrens et al. [2].
As mentioned, effectivenes estimates are based on Caulkins et al.’s [13],[14]
analysis of ”model” or ”best practice” programs. Note: even ”model” pre-
vention is no panacea. As Caulkins et al. observe, prevention tends to be
cost-effective primarily because it is so cheap, not because it is extremely
effective. If kids who were going to initiate drug use in the absence of a
prevention intervention are given cutting edge school-based drug prevention,
most (though not all) would still initiate drug use. That does not necessar-
ily mean prevention programs are poorly designed. It may simply indicate
that there is little one can possibly do in 30 or so school contact-hours to
counteract the influence of many thousands of hours of television, peers, etc.

The background quitting rate is assumed to be a simple constant per
capita rate. (Even such simple modeling can fit historical data surprisingly
well; cf., Caulkins et al. [8].) Like initiation, this flow is affected by price
through a constant elasticity and by an intervention, in this case treatment.
As in Rydell and Everingham [51] and Tragler et al. [57], treatment is as-
sumed to exhibit diminishing returns because some users are more likely to
relapse than others, and the treatment system has some capacity to target

5



interventions first on those for whom the prognosis is most favorable.
Price is a function of enforcement intensity. The underlying theoretical

paradigm is Reuter and Kleiman’s [46] ”risks and prices” model, operational-
ized as in Caulkins et al. [12]. The key insight is that some component of
price (the intercept) is due to the ”structural consequences of product illegal-
ity” (Reuter [45], Caulkins and Reuter [11]) accompanied by some minimal
enforcement. The increment in price above that intercept is driven by the
intensity, not the level, of enforcement because of ”enforcement swamping”
(Kleiman [37]). Sellers do not care per se about the level of enforcement, e.g.,
the number of arrests. They care about their individual arrest risk, which is
essentially the total number of arrests divided by the number of sellers sub-
ject to those arrests. Hence, for any given level of enforcement, the intensity
is inversely related to the number of sellers. Since we do not model sellers
explicitly, we divide by the number of users, implicitly assuming that the
number of sellers is proportional to the number of users.

We assume that the social planner wishes to minimize the discounted
weighted sum of drug use and of drug control spending. The cost coeffi-
cient on consumption is simply the average social cost per unit of cocaine
use. Clearly marginal costs would be more relevant, but we have no way to
estimate them.

The quantity of cocaine consumed is simply the number of users times the
baseline consumption per user, adjusted for the short-term price elasticity of
consumption per capita. Consumption per capita varies across users and
the mix of light and heavy users varies over the course of an epidemic. Our
consumption per capita is calibrated to our base year (1992), a time when
roughly one-third of all users were heavy users (weekly or more often).

2.3 Mathematical Formulation

If we let u(t), v(t), and w(t) denote treatment, enforcement, and preven-
tion spending, respectively, then the discussion above suggests the following
formulation:

min
{u(t),v(t),w(t)}

J =
∫ ∞

0
e−rt

(
κθA(t)p(A(t), v(t))−ω + u(t) + v(t) + w(t)

)
dt

subject to

Ȧ(t) = kA(t)αp(A(t), v(t))−aΨ(w(t))− cβ(A(t), u(t))A(t)−
−µp(A(t), v(t))bA(t)

and the non-negativity constraints

u(t) ≥ 0, v(t) ≥ 0, w(t) ≥ 0,
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where

J = discounted weighted sum of the costs of drug use and control,
r = time discount rate,
κ = social cost per unit of consumption,
θ = per capita rate of consumption at baseline prices,
A(t) = number of users at time t,
p(A(t), v(t)) = retail price,
ω = absolute value of the short-run price elasticity of demand,
k = constant governing the rate of initiation,
α = exponent governing concavity of contagious aspect of initiation,
a = absolute value of the elasticity of initiation with respect to price,
Ψ(w(t)) = proportion of initiation remaining after prevention,
c = treatment efficiency proportionality constant,
β(A(t), u(t)) = outflow rate due to treatment,
µ = baseline per capita rate at which users quit without treatment, and
b = elasticity of desistance with respect to price.

As in Tragler et al. [57], treatment’s increment to the per capita outflow
rate is assumed to be proportional to treatment spending per capita raised
to an exponent (z) that reflects diminishing returns, with a small constant
in the denominator (δ) to prevent division by zero:

β(A(t), u(t)) =

(
u(t)

A(t) + δ

)z
.

We model enforcement’s effect on price as in Caulkins et al. [12] and
Tragler et al. [57]:

p(A(t), v(t)) = d+ e
v(t)

A(t) + ε
,

where d describes the price with minimal enforcement, e is the enforcement
efficiency proportionality constant, and ε is an arbitrarily small constant that
avoids division by zero.

Following Behrens et al. [2], we model prevention as reducing initiation
by a certain proportion. That proportion increases with prevention spending
but at a decreasing rate because of diminishing returns. Specifically, we
model

Ψ(w(t)) = h+ (1− h)e−mw(t)

for positive constants h and m.
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2.4 Parameters

Tragler et al. [56] describe in detail how parameters are derived from the
literature. Briefly, the price elasticity parameters (a, b, and ω) collectively
generate a long term price elasticity of demand of −1 (Caulkins et al. [12],
Caulkins and Reuter [10]), half coming from reduced consumption by current
users (ω) and half from changes in the number of users, with the latter divided
equally between impacts on initiation (a) and quitting (b).

For consistency with Rydell and Everingham [51] and Tragler et al. [57],
we take the baseline price to be $106.73 per pure gram and choose as initiation
parameters α = 0.3 and k = 5, 167 to make initiation 1, 000, 000 per year
when the number of users A = 6, 500, 000 in base conditions. They estimate
total baseline consumption as 291 (pure) metric tons, so we set θ = 14.6259
(since 14.6259×0.10673−0.5 = 291, 000, 000/6, 500, 000 and price is expressed
in thousands of dollars).

Rydell and Everingham [51] (p.38) report cocaine-related health and pro-
ductivity costs of $19.68B for cocaine in 1992, dividing by 291 metric tons
of consumption implies an average social cost per gram of $67.6/gram (in
1992 dollars). These figures do not include crime-related costs, so in light of
Miller et al. [41], we take $100/gram as our base value (κ = 0.1 since dollars
are measured in thousands). In view of Caulkins et al. [13] we also consider
larger values in the sensitivity analysis.

The price function parameters (d = 0.06792 and e = 0.02655) reflect a
price of $106.73 per gram under base case enforcement spending and an elas-
ticity of price with respect to enforcement spending of 0.3636 as in Caulkins
et al. [12].

As in Tragler et al. [57] we assume c = 0.04323 and z = 0.6. These values
reflect Rydell and Everingham’s [51] estimates that spending an average of
$1,700 - $2,000 per admission to treatment provides a 13% chance of ending
heavy use, over and above baseline exit rates.

We adopt Behrens et al.’s [2] value of h = 0.84, but modify their value of
m slightly (1.93× 10−6 vs. 2.37× 10−6) to reflect better the size of the birth
cohorts on whom prevention is targetted.

The outflow parameter µ = 0.18841 was selected to make the outflow
be 700, 000 users per year at base case prices, which reflects the observed
population change (ONDCP [43]) net of initiation and treatment during the
recent years of relative stability. The discount rate is set at r = 0.04 as in
Rydell et al. [50] and Caulkins et al. [12].

These values are summarized in Table 1. Two values are given for param-
eters d, e, k, κ, µ, and θ. The values in brackets are the ones just described.
For analytical convenience, we adjust d, e, k, and µ so that κ = 1 and θ = 1,
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Table 1: Base case parameter values

Parameter Value Description
a 0.25 absolute value of the elasticity of initiation

with respect to price
α 0.3 exponent reflecting contagiousness of initiation
b 0.25 elasticity of desistance with respect to price
c 0.04323 treatment efficiency proportionality constant
d 0.03175 price with minimal enforcement (in thousands of $)

[0.06792]
δ 0.001 constant to avoid division by zero
e 0.01241 enforcement efficiency proportionality constant

[0.02655]
ε 0.001 constant to avoid division by zero
h 0.84 one minus maximum proportion of baseline

initiation prevention can avert with
full implementation

k 4, 272 initiation constant
[5, 167]

κ 1 social cost per gram consumed (in thousands of $)
[0.1]

m 1.93× 10−6 prevention efficiency proportionality constant
µ 0.22786 natural outflow rate from use

[0.18841]
ω 0.5 absolute value of the short run elasticity of demand
θ 1 per capita consumption constant

[14.6259]
r 0.04 annual discount rate (time preference rate)
z 0.6 1− z reflects treatment’s diminishing returns
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yielding the second set of values for those parameters.

3 Base Case Analysis

Note that for simplicity, the time argument t will mostly be omitted from now
on. The model cannot be solved analytically, but the Appendix describes the
derivation of the necessary optimality conditions according to Pontryagin’s
maximum principle (cf. Feichtinger and Hartl [23], Grass et al. [27], Leonard
and Long [38]). Due to the concavity of the Hamiltonian with respect to
all three controls (u, v, w), setting the first-order partial derivatives equal
to zero leads to the unrestricted extremum. These equations allow one to
describe u and w as functions of v and A, so the solutions are described in
terms of phase portraits in the A-v plane.

Steady state values are given by intersections of the isoclines obtained
by setting to zero the derivatives of the state (A) and control (v) variables
(dark gray and black curves, respectively, in Figure 1). With parameter
values from Table 1, there are two intersections, a left-hand (lower A) inter-

section
(
Â(l) = 0.2× 106 , v̂(l) = 1.04× 107

)
that is an unstable focus and a

right-hand (larger A) intersection that is a saddle point
(
Â(h) = 3.24× 106 ,

v̂(h) = 1.14× 107
)
. Every saddle point equilibrium in a two-dimensional

phase portrait has a stable manifold which consists of two branches. Lo-
cally, these branches are determined by the eigenvector associated with the
negative eigenvalue of the Jacobian evaluated at the steady state. This is
used to numerically compute the complete stable manifolds (light gray curves
in Figure 1) which, in optimal control theory, are known to be candidates for
the optimal trajectories.

The stable manifold from the right describes directly what trajectory
one should follow to drive the number of users down to the saddle point
equilibrium if the initial conditions have A(0) > Â(h). The stable manifold
from the left emanates from the unstable focus, so it is not immediately
obvious what the optimal policy should be when starting to the left of that
focus. If control begins when the number of users is below its steady state
value but still above a certain threshold ADNSS to be described shortly, then
the optimal treatment, prevention, and enforcement rates gradually increase
while A(t) converges to the equilibrium Â(h). (The opposite holds for initial
states above the steady state value, but we presume that control begins with
A(0) < Â(h).) Note this means that even if the optimal policy is pursued,
the number of users will increase over time toward the equilibrium (Â(h)).
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Figure 1: Phase portrait with base case parameter values. The intersections
of the isoclines Ȧ = 0 and v̇ = 0 give the two steady-state solutions. The
light gray curves represent the stable manifolds of the saddle point.

Figure 2 shows the optimal amounts of treatment, prevention, and en-
forcement spending as functions of the number of users. When A(0) >
ADNSS, the optimal levels of control spending (u, v, and w) are each ap-
proximately linear in the size of the epidemic (A). The treatment (u) and
enforcement (v) lines are almost parallel, implying that as as time goes by, in-
crements in the treatment and enforcement bugets should be approximately
equal. Since with these parameter values the enforcement spending trajec-
tory has a higher ”intercept”, for A(0) > ADNSS it is always optimal to spend
more on enforcement than on treatment, but enforcement’s share of the total
control budget shrinks as time goes on.

According to Figure 2, spending on prevention should also increase as
the epidemic grows but not by much for the simple reason that prevention
should already be almost ”maximally funded” even when the epidemic is
small. ”Maximally funded” is in quotes because there is no literal bound on
prevention spending, but the least it is ever optimal to spend on prevention
is about $1B per year. A cutting edge junior-high school-based prevention
program costs about $150 per youth, even including ”booster sessions” in the
two subsequent years (Caulkins et al. [13]), so $1B per year would be enough
to give 6 million youth per year an excellent prevention program. Since there
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Figure 2: Treatment (dark gray), enforcement (light gray), and prevention
(black) as functions of A along the optimal paths. The left and right vertical
lines represent the DNSS threshold and the saddle point at Â(h), respectively.

are only about 4 million children in a birth cohort in the US, that $1B would

be enough to cover every 7th grader and also half of all 4th graders with a
curriculum designed for younger children.

The great advantage of prevention is that it is so inexpensive compared
to treatment or incarceration. It is not extremely powerful, at least with
current technology, but it is powerful enough to make it optimal to ”fully
fund” prevention for almost any level of the epidemic. Still, even when
fully funded, prevention does not absorb a large proportion (< 10%) of drug
control spending.

The total optimal level of spending in equilibrium, summing across the
three programs, is about $20B per year. That is probably roughly compa-
rable to what the US has spent historically. More precise statements are
difficult to make because data are not available for national drug control
spending by drug. Figures are published annually for federal spending to
control all drugs. Rydell and Everingham [51] estimated that in the early
1990s, national cocaine control spending was roughly equal to federal spend-
ing on all drugs, and the federal drug control budget was $18.8B for FY2002
(ONDCP [44]), which is quite close to the prescribed $20B per year.6

6National budgets after 2003 have reported in a substantially different and non-
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Figure 3: The DNSS threshold ADNSS. The two gray curves represent the
optimal policy. On the left side of the DNSS threshold, the optimal policy
leads to (A, v), on the right side optimal convergence is towards

(
Â(h), v̂(h)

)
.

Returning to Figure 1, in addition to the ”high volume” saddle point
equilibrium, there is a second ”low volume” equilibrium that is an unstable
focus, so the optimal policy is more complicated when control starts when
the epidemic is still small. For initial numbers of users below some critical
level the solution is qualitatively different than a slow approach to the high
volume saddle point equilibrium.

In particular, for smaller initial numbers of users (A(0)) it is not possible
to jump onto the stable manifold that leads to the saddle point equilibrium.
If we assume there is some lower limit, A, on the number of users (e.g.,
A = 10, 000) below which control efforts cannot drive the problem (e.g., be-
cause these residual users cannot be detected), then the point (A, v) becomes
another equilibrium, where v is given by the intersection of A = A and the
isocline Ȧ = 0. This steady state is approached along a trajectory which
spirals out of the low volume equilibrium.

For low enough initial numbers of users it is only possible to jump on
the stable manifold that approaches the lower limit equilibrium. For high
enough values, it is clear one should approach the high volume equilibrium.

comparable format. Walsh [59] gives a quick, readable account of some of the changes
in budgeting procedures and definitions.
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For intermediate values, there is a so-called Dechert-Nishimura-Sethi-Skiba
(DNSS) point (Dechert and Nishimura [20], Sethi [52],[53], Skiba [55]; cf.
Grass et al. [27]) that defines two basins of attraction according to whether
the optimal policy is to effectively eradicate drug use (push it to the lower
limit equilibrium) or to just moderate its approach to the high volume saddle
point equilibrium, as above. For the base case parameter values, that point
is ADNSS = 344, 339 users.

Figure 2 shows that if the initial number of users is to the left of the DNSS
point, treatment and enforcement spending are very high in absolute terms
and, thus, truly enormous per user. Prevention spending is also higher than
it is immediately to the right of the DNSS point, but less dramatically so. If
it is optimal to eradicate the drug epidemic, then apparently it is optimal to
do so aggressively and quickly (cf. Baveja et al. [1]). By spending enormous
amounts on control in the early years, one avoids getting stuck at the high
volume equilibrium.

Price is approximately a linear function of enforcement spending relative
to market size (i.e., linear in v/A). It turns out to be a decreasing function of
A for all A, with a sharp downward discontinuity at the DNSS point (since
v∗ is much higher just to the left of ADNSS then it is just to the right of
ADNSS). (Figure 2.) Since when one starts to the right of ADNSS one moves
to the right (still assuming A(0) < Â(h)), and when one starts to the left of
ADNSS one moves to the left, that means that the optimal price trajectory
is very different depending on whether the optimal strategy is to eradicate
or accommodate the epidemic. In particular, if the optimal strategy is to
accommodate, then it is optimal to allow the price to decline over time.
Enforcement spending increases, but less than proportionally in A, so v/A
and, hence, p∗ decreases as one approaches the high-volume saddle point
equilibrium. Conversely, if the optimal strategy is to eradicate the market,
then it is optimal to start with a high price and keep driving it higher and
higher until A reaches its lower limit. Even though enforcement spending
declines over time with the eradiction strategy, A declines faster so v/A and,
hence, p∗ increase over time when one opts for eradication.

To summarize, at the strategic level the policy prescription is simple.
When control starts, one must judge whether the current epidemic size (A(0))
is greater or less than the critical DNSS threshold (ADNSS). If it is greater
than the threshold, then the optimal strategy is to grudgingly ”accommo-
date” the epidemic, allowing it to grow to its high-volume equilibrium (Â(h)).
Spending on all controls should increase, but less than proportinately in A so
control levels increase, but control intensity decreases. If, on the other hand,
the intial epidemic size is below that critical threshold, then it is optimal
to ”eradicate” the epidemic in the sense of pursuing all controls extremely
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aggresively, quickly driving the epidemic down to its minimum size (A).
Note: if spending were constrained to be proportional to the current

size of the problem for some sufficiently small proportionality constant, e.g.,
because it is hard for politicians to muster support for massive spending
on a problem that is currently small, then eradication might not be feasible
and approaching the high-volume saddle point equilibrium might be the only
alternative (cf. Tragler et al. [57]).

One final observation. The total discounted cost of the epidemic under
optimal control, counting both the social costs of use and the costs of control,
are monotonically increasing in the initial number of users. That is not
surprising. What is surprising, is that the relationship is almost linear with
a kink at the DNSS threshold. (Figure not shown.) Roughly speaking,
for initial numbers of users below 1, 000, 000, total discounted costs increase
by about $200,000 per person increase in A(0) for A(0) < ADNSS, and by
about $80,000 per person for A(0) > ADNSS. Those are astoundingly large
numbers with a dramtic policy implication. In the absence of controls, for
A near ADNSS, modeled initiation is on the order of 1, 000 people per day,
so the cost of delaying onset of control by even a day is very large. The
actual values per day of delay are not simply 1, 000 times the figures above
because one must account for what happens during the day of waiting. Doing
so, it turns out that when the number of users is near the DNSS threshold
(ADNSS/2 < A(0) < 2ADNSS), a one-day delay (or interruption) in control
costs approximately $240 million per day to the left of the DNSS threshold
and $60 million per day to its right. A corollary is that very significant
investments in data collection systems may be justified if those systems can
help detect future epidemics in their nascent stages.

4 Sensitivity Analysis

4.1 Sensitivity Analysis Concerning the Strength of
Prevention

There is a reasonably strong basis for believing that current, model primary
prevention technologies can reduce initaition by about 1 − h = 16%, but
sensitivity analysis with respect to parameter h is still of interest for three
reasons. First, many programs that are actually being used are not model
programs, so the effectiveness of prevention today may be smaller (higher
h). Second, better prevention technologies may be available in the future.
For example, immunotherapies being developed to treat cocaine addiction
might conceivably be used for primary prevention (Harwood and Myers [32]).
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There are plausible circumstances under which such vaccinations could be
highly cost-ineffective for prophylactic purposes, but the very existence of
such research suggests that prevention technology is not static. Finally, a
fundamental contribution of this paper is adding prevention to the mix of
interventions considered, so sensitivity with respect to its performance is of
particular interest.

It turns out that if more effective types of prevention were available, that
could quite dramatically affect what is the optimal policy and the resulting
magnitude of drug problems. Figure 4 illustrates this with regard to optimal
spending on the three types of control at the lower limit (quantities with an
under-bar) and the right-hand saddle equilibrium (quantities with a hat).

Figure 4: The levels of optimal control spending as functions of h at Â(h)

(continuous) and at A (dashed).

Moving from right to left corresponds to prevention becoming more pow-
erful (reducing h). Not surprisingly, spending on prevention increases as it
becomes more effective (until the far left when it becomes so effective that
slightly reduced levels of spending are sufficient). What is striking is the
extent to which spending on enforcement and treatment decline as preven-
tion becomes more effective. Better prevention substitutes for these costly
interventions. Furthermore, since prevention spending saturates at between
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$1B and and $2B per year, total drug control spending declines as that par-
ticular drug control technology improves. Despite the declines in total con-
trol spending, with more effective prevention the right-hand saddle moves
steadily to the left, roughly linearly in h, indicating fewer users in the steady
state reached when accommodating the epidemic. Reduced control spending
and reduced use both translate into lower social costs. Indeed, the present
value of all social costs declines almost linearly by over 50% as prevention
effectiveness increases enough to reduce h from 1.0 to about 0.6. That po-
tential may justify continued investment in prevention research even though
the progress to date has been more incremental than dramatic. One ini-
tially counter-intuitive result is that as prevention’s effectiveness increases,
the DNSS point shifts to the left, not the right. One might have expected
that as the tools of drug control improved, it would be not only feasible but
also desirable to eradicate epidemics even if the initial number of users were
somewhat larger. However, recall that a given level of prevention spend-
ing reduces initiation by a given percentage, regardless of what that level of
initiation would have been, and that initiation is increasing in the number
of users. Hence, increments in prevention’s effectiveness are relatively more
valuable when the number of users A is large, not when it is small. Hence,
while increased prevention effectiveness reduces the cost of eradicating the
epidemic, it reduces the social cost from accommodating that epidemic even
more, shifting to the left the DNSS point, where one is indifferent between
the strategies of eradication and accommodation.

4.2 Sensitivity Analysis with Respect to Treatment Ef-
fectiveness

As mentioned, a parameter about whose value there is considerable uncer-
tainty is the treatment effectiveness coefficient c. Our basecase value is de-
rived from Rydell and Everingham’s [51] analyis of data from the Treatment
Outcomes Prospective Study, and treatment experts generally believe a 13%
probability of quitting per episode of treatment is conservative. Indeed, at
several points in Rydell and Everingham’s analysis, they erred on the side
of conservativism. Nevertheless, Manski et al. [40] note that selection effects
could have introduced an upward bias and, more generally, there is next to
no definitive data from randomized controlled trials concerning the effective-
ness of cocaine treatment. Hence, this parameter is an appropriate object of
sensitivity analysis.

Varying this parameter affects the saddle-point equilibrium in predictable
ways. The more effective treatment is, the greater its share of control spend-
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ing in steady state, and the fewer users there are in steady state. In particu-
lar, if treatment were 1% more effective, it would be optimal in steady state
to spend about 1% more on treatment and almost 1% less on enforcement
(+0.97% and −0.86%, respectively, to be precise). Even though enforcement
spending declines, enforcement intensity increases because the decline in the
number of users is even greater (−1.65%), inflating the ratio of v over A.
Prevention spending also declines but less dramatically (by 0.22%), which
is consistent with the general finding that the optimal level of prevention
spending is stable in multiple respects. Overall, improved treatment tech-
nology acts as a substitute for enforcement and prevention. Indeed, because
with base case parameter values more is spent on enforcement ($11.4B) than
treatment ($7.8B), the increase in treatment effectiveness actually leads to a
reduction in total steady-state control spending.

4.3 Sensitivity Analysis with Respect to Initiation Ex-
ponent α

It is generally presumed that initiation is an increasing but concave function
of the current number of users, modeled here as initiation being proportional
to the current number of users A raised to an exponent α, with α = 0.3 in
the base case. Sensitivity analysis with respect to α is of interest because
prevention is related to initiation and because it turns out that the location
of the DNSS point is greatly affected by the value of α.

When α is varied, we vary k as well to keep the rate of initiation under
base case conditions constant at 1, 000, 000 per year. That means that as α
is reduced, the leading coefficient k is increased, and rather dramatically. By
definition the reduction in α exactly offsets the increase in k when the number
of users is 6.5 million, but for smaller numbers of users typical of earlier stages
of the epidemic, the increase in k dominates. So in these sensitivity analyses,
reducing α implies increasing rather substantially the force or ”power” of
initiation early in the epidemic.

Predictably, then, reducing α moves the DNSS point to the left, implying
that eradication is the optimal strategy only under narrower circumstances.
That makes sense. The appeal of eradication is that one drives use down to
such a low level that initiation is also modest. When α is smaller, initiation
with small A is much greater, so the benefit from reduced initiation achieved
by driving A down to A is much smaller.

Still, the extent to which this turns out to be the case is striking. If
α drops merely to 0.28, the DNSS point disappears and accommodation is
always optimal. On the other hand, if α increases to 0.3415, the DNSS point
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moves so far to the right that it reaches the high-value saddle equilibrium
(which also has been moving left), implying that eradication is always the
optimal strategy.

4.4 Sensitivity Analysis Concerning the Social Cost
per Gram Consumed

We observed that the optimal total level of spending at the saddle point equi-
librium may be roughly comparable to what the US has spent historically on
cocaine control. However, what level is optimal depends substantially on the
presumed social cost per gram of cocaine consumed, and there is considerable
uncertainty as to whether the base case value (κ = $100/gram) is ”correct”,
both because of data limitations and because there can be genuine disagree-
ment concerning what categories of costs should be included as social costs.7

Generally, the greater the perceived social cost per unit of consumption, the
more it is optimal to spend at the saddle point equilibrium and, hence, the
lower the level of use in that equilibrium. In particular, if the social cost
per gram were believed to be 20% higher, then the optimal level of drug
control spending at the saddle equilibrium would be 11% higher. Likewise,
if κ were 20% lower, the optimal steady state spending would be 17% lower,
with the changes being most dramatic for treatment and least dramatic for
prevention.

In contrast, the level of control spending at the lower limit A is almost
unaffected by κ, presumably because the value of that spending is what-
ever it takes to prevent an epidemic from exploding, not an amount that is
determined by balancing current control costs with current social costs of
use.

Sensitivity of the optimal policy to variation in the assumed social cost
per gram of use is even more pronounced for larger variations from the base
case. In particular, reducing κ affects the DNSS threshold in qualitatively
the same way as reducing α does, as is illustrated in Figure 5, albeit for
quite different reasons. As κ declines, the DNSS threshold shifts to the left,
disappearing when κ drops to 0.7. Similarly, the DNSS threshold shifts to
the right as κ increases, merging with the saddle point equilibrium when
κ = 1.474.

7Notable examples include social costs borne by family members, any benefits of use of
an illicit substance, valuation of a human life beyond that person’s labor market earnings,
and valuation of pain and suffering associated with crime and with addiction itself.
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Figure 5: The influence of κ on the equilibrium values and the DNSS thresh-
old. The relation between κ and the high equilibrium Â(h) is displayed in the
upper gray branch, while the black lower branch shows the relation between
κ and the unstable focus at Â(l). The black curve between κ1 and κ2 bending
upwards represents the level of the DNSS threshold, and the horizontal gray
line at the very bottom stands for the lower limit at A.

Hence, someone who thinks the social costs per gram of cocaine use are
less than $70 per gram ought always to favor accommodation, whereas some-
one who thinks they are over $147 per gram ought always to strive for eradi-
cation, even if the epidemic is already established. That is striking sensitivity
inasmuch as it is easy for two reasonable people to disagree by a factor of 2
or more concerning the social cost per gram of cocaine.

An obvious implication is a plausible explanation for the persistent heated
disagreements between drug policy ”hawks” who favor having the goal be a
”drug-free America” and ”doves” who think the social costs of eradication
exceed its benefits.

A more subtle point emerges from the observation that the social cost per
gram consumed is not an immutable physical constant like π or the speed
of light. There are a whole set of policies not modeled here but popular in
countries such as Australia and the Netherlands that go under the banner of
”harm reduction”. That term is highly controversial and widely misused and
misunderstood. For the moment, let it mean simply and literally programs
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that reduce the social harm per unit of drug used, i.e., that reduce κ. The
paradigmatic harm reduction policy, distributing clean syringes to injection
drug users, is largely irrelevant for cocaine in the US, which is not primarily
injected. Another favorite of harm reduction advocates is increasing treat-
ment availability, which is already included in the model and is not actually
likely to have as its primary outcome reductions in κ. Still, one can imagine
other harm reduction tactics that would be relevant for cocaine in the US,
including offering various forms of social support to the families of cocaine
abusers, particularly their children; developing immunotherapies that treat
cocaine overdose more effectively (Harwood and Myers [32]); and pursuing
different types of law enforcement that push street markets into forms of
distribution that generate less violence per kilogram sold and used, rather
than seeking to reduce use by driving up prices.8 Whatever the specifics, ac-
cording to this model there can be a strong interaction between the presence
of effective harm reduction and whether the optimal policy is eradication or
accommodation. If one can design harm reduction strategies that reduce the
average social cost per gram consumed, then accommodation might be the
better alternative, even if eradication would be preferred in their absence.

4.5 Sensitivity Analysis Concerning the Lower Limit
on the Number of Users

The larger the lower limit, A, below which control cannot drive the number
of users, the smaller the DNSS point. For example, doubling A from 10,000
to 20,000 roughly reduces the DNSS point by two thirds (reduces it from
334,339 to 128,268). This seemingly counter-intuitive result has a simple
explanation. The smaller the lower limit on A, the more appealing that low-
volume steady state is and, hence, the more the decision maker would be
willing to invest in order to drive the epidemic to that lower steady state.
Willingness to invest more means being willing to pursue the ”eradication”
strategy even if the initial number of users is somewhat larger.

If the minimum number of users is interpreted as the number below which
users are essentially invisible, this has an interesting implication. Policy
makers would like to push that lower limit down as far as possible. Doing so
raises the DNSS point and, thus, increases the time it takes an epidemic to
reach the ”point of no return”, beyond which the best that policy can do is

8One partial explanation for why homicides have fallen so dramatically in New York
City may be that much retail drug distribution has shifted from anonymous street markets
where controlling ”turf” produces profits to instances in which seller-user dyads arrange
private meetings in covert locations, often using cell phones.
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moderate expansion to the high volume equilibrium.
As noted above, similar logic explains the otherwise surprising result that

the more effective prevention is (i.e., the lower h is) the lower is the DNSS
threshold.

5 Discussion

The analysis here confirms the observation of Behrens et al. [2] and Tra-
gler et al. [57] that it can be misleading to discuss the merits of different
drug control interventions in static terms (e.g., asserting that prevention is
better than enforcement or vice versa without reference to the stage of the
epidemic). Even this simple model of drug use and drug control can yield
optimal solutions that involve substantially varying the mix of interventions
over time.

Furthermore, the broad outlines of the policy recommendations are simi-
lar to those in Tragler et al. [57]. When a new drug problem emerges, policy
makers must choose whether to essentially eradicate use or to accommodate
the drug by grudgingly allowing it to grow toward a high-volume equilib-
rium. If the decision is to eradicate, then control should be very aggressive,
using truly massive levels of both enforcement and treatment relative to the
number of users to drive prevalence down as quickly as possible. If accommo-
dation is pursued, levels of spending on price-raising enforcement, treatment,
and primary prevention should increase linearly but less than proportionally
with the number of users (i.e., linearly with a positive intercept). So the
total level of drug control spending should grow as the epidemic matures,
but spending per user would decline.

Of all the interventions, optimal spending on primary prevention is least
dependent on the stage of the epidemic. To a first-order approximation, pre-
vention spending should be about the same throughout. With our particular
parameterization, that level is roughly enough to offer a good school-based
program to every child in a birth cohort, but not dramatically more than
that. That relative independence on the state of the epidemic is fortuitous
inasmuch as there are built in lags to primary prevention, at least for school-
based programs. Such programs are usually run with youth in junior high,
but the median age of cocaine initiation in the US is 21 (Caulkins [4]).

However, these observations do not in any way imply that adding preven-
tion to this dynamic model does not alter the results. Prevention is a strong
substitute for price-raising enforcement and treatment. The more effective
prevention is, the less that should be spent on those other interventions.
Furthermore, a truly effective prevention program would be such a strong
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substitute that both the amount of drug use and the combined optimal lev-
els of drug control spending would decline, leading of course to a substantial
reduction in the total social costs associated with the drug epidemic.

The catch is that to date even the better primary prevention programs
seem to be only moderately effective (Caulkins et al. [13],[14]), and the pro-
grams actually implemented are often not the best available (Hallfors and
Godette [30]). Hence, with respect to the wisdom of further investments in
improving the ”technology” of primary prevention, one can see the glass as
half full or half empty. The pessimists would point to limited progress to
date and suggest focusing elsewhere. The optimists would see the tremen-
dous benefits that a truly effective primary prevention program would bring
and redouble their efforts.

The second broad policy contribution of this paper relative to the prior
literature is the sensitivity analysis with respect to the location of the DNSS
threshold and, hence, of when each broad strategy (eradication or accommo-
dation) is preferred. In short, the finding is that the location of the DNSS
threshold is highly sensitive to three quantities that are difficult to pin down
for various reasons: the social cost per gram of cocaine consumed, the expo-
nent in the initiation function governing how contagious the spread of drug
use is, and the lower limit on prevalence below which it is assumed that
control cannot drive the epidemic.

A depressing implication is that it will generally be exceedingly difficult
to make an informed decision concerning the strategic direction for policy
concerning a newly emergent drug. More is known and more data are avail-
able about the current cocaine epidemic in the US than about any other
epidemic of illicit drug use, yet these parameters still cannot be pinned down
even for cocaine in the US. It is hard to imagine that when a new drug
epidemic emerges, we will have better information about it, at least at that
early stage, and one of the results above was a startlingly high increase in
social cost for each day that initiation of control is delayed. So a ”wait and
study” option may not be constructive.

Another depressing implication concerns the result for the lower limit on
prevalence and its interpretation in a world of polydrug use. The model con-
sidered explicitly just one drug, cocaine. If there were just one illicit drug
entering a ”virgin” population, it might be somewhat plausible to drive use
of that drug down to very low levels. However, the US already has several
million dependent drug users who tend to use a wide variety of drugs, in-
cluding new ones that come along. So if the US now faced a new epidemic, it
might be that the only way it could drive use of that drug down to levels such
as the lower limit considered here, would be to also eliminate use of the exist-
ing established drugs such as cocaine, heroin, and methamphetamine. That
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may be impossible or at least, according to this model, likely not optimal.
Inasmuch as higher lower limits on prevalence make eradication strategies
less appealing, accommodation may be the best option for future epidemics,
even if eradication would have been the better course if we could turn back
the clock to 1965.

The one positive observation, though, is that there exist, at least in theory,
another set of drug control interventions, not modeled here, that would target
not drug use but the objective function coefficient associated with that use.
Introducing interventions of that sort into this framework would be one of
many productive avenues for further research.
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Appendix: Optimality Conditions

The current value Hamiltonian H is given by

H = −(κθAp−ω + u+ v + w) + λ(kAαp−aΨ− cβA− µpbA),

where λ describes the current-value costate variable.
Note that it is not necessary to formulate the maximum principle for

the Lagrangean, which incorporates the non-negativity constraints for the
controls, since u, v, and w all turn out to be positive in the analysis described
in this paper.

According to Pontryagin’s maximum principle we have the following three
necessary optimality conditions:

u = arg max
u

H,

v = arg max
v
H,

and

w = arg max
w

H.
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Due to the concavity of the Hamiltonian H with respect to (u, v, w), set-
ting the first order partial derivatives equal to zero leads to the unrestricted
extremum, and we get the following expressions for the costate λ:

Hu = 0⇒ λ = −1
cβuA

, (1)

Hw = 0⇒ λ = 1
kp−aAαΨw

, (2)

Hv = 0⇒ λ = 1−κθωp−ω−1pvA
−akp−a−1pvAαΨ−µbpb−1pvA

, (3)

where subscripts denote derivatives w.r.t. the corresponding variables.
The concavity of the maximized Hamiltonian with respect to the state

variable, however, cannot be guaranteed, so the usual sufficiency conditions
are not satisfied.

With Equations (1)-(3) we can describe u, w, and λ as functions of A and
v as follows:

λ(A, v) :=

pv
p

(
a
m

+ κθωp−ωA
)
− 1

ahkp−a−1pvAα + µbpb−1pvA
, (4)

u(A, v) :=

(
−(A+ δ)z

czAλ(A, v)

) 1
z−1

,

w(A, v) :=
1

m
ln
(
(h− 1)kmp−aAαλ(A, v)

)
.

Due to this simplification we can concentrate on the two variables A and v.
To gain an equation for v̇ we differentiate λ(A, v) with respect to time:

λ̇ = λAȦ+ λvv̇. (5)

Setting (5) equal to the costate equation

λ̇ = rλ−HA,

yields:

v̇ =
rλ−HA − λAȦ

λv
,

where we insert λ(A, v) from (4) and the corresponding derivatives λA and
λv as well as HA given by

HA = −κθp−ω−1(p− ωpAA) + λ[kp−a−1Ψ(αAα−1p− aAαpA)−
−c(βAA+ β)− µpb−1(bpAA+ p)].
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