Forschung

  • Numerik von PDEs
  • Finite Elemente Methoden
  • kontraktive iterative Lösungsverfahren
  • optimale Rechenkosten von adaptiver FEM

  1. M. Brunner, P. Heid, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger: Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs, IMA Journal of Numerical Analysis (2023). [www]  [arXiv:2212.00353]
  2. P. Bringmann, C. Carstensen, J.Streitberger: Local parameter selection in the C0 interior penalty method for the biharmonic equation, Journal of Numerical Mathematics (2023). [www] [arXiv:2209.05221]

  1. M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger: hp-robust multigrid solver on locally refined meshes for FEM discretizations of symmetric elliptic PDEs, [arXiv:2210.10415], 2022

  1. P. Bringmann, M. Brunner, A. Miraçi, D. Praetorius, J. Streitberger: Cost-optimal goal-oriented adaptive FEM for linear elliptic PDEs, ENUMATH 2023, Lisbon, Portugal, 04. September 2023 [Folien]
  2. M. Brunner, P. Heid, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger: Adaptive FEM for linear elliptic PDEs: optimal complexity, 17th Austrian Numerical Analysis Day, Wien, 27.-28. April 2023 [Folien]
  3. M. Brunner, A. Miraçi, D. Praetorius, J. Streitberger: Optimal cost of AFEM for linear elliptic PDEs, 2nd SFB International Workshop 2023 "Taming Complexity in Partial Differential Systems", Wien, 19.-21. April 2023