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ABSTRACT. Hyperbolic polynomials are monic real-rooted polynomials. By
Bronshtein’s theorem, the increasingly ordered roots of a hyperbolic polyno-
mial of degree d with C4~11 coefficients are locally Lipschitz and the solution
map “coefficients-to-roots” is bounded. We prove continuity of this solution
map from hyperbolic polynomials of degree d with C?¢ coefficients to their in-
creasingly ordered roots with respect to the C'% structure on the source space
and the Sobolev W14 structure, for all 1 < ¢ < oo, on the target space. Con-
tinuity fails for ¢ = co. As a consequence, we obtain continuity of the local
surface area of the roots as well as local lower semicontinuity of the area of
the zero sets of hyperbolic polynomials. We also discuss applications for the
eigenvalues of Hermitian matrices and singular values.
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1. INTRODUCTION

Determining the optimal regularity of the roots of polynomials whose coefficients
depend smoothly on parameters is a much studied problem with a long history. It
has important applications in various fields such as partial differential equations
and perturbation theory.

The subject started with Rellich’s work [Rel37] on the analytic perturbation theory
of linear operators. Bronshtein [Bro80] proved Gevrey well-posedness of the hy-
perbolic Cauchy problem with multiple characteristics using his result [Bro79] on
the Lipschitz continuity of the roots of hyperbolic polynomials. Spagnolo [Spa00],
motivated by his analysis of certain systems of pseudo-differential equations, conjec-
tured that the roots of smooth curves of (not necessarily hyperbolic) polynomials
admit absolutely continuous parameterizations. This conjecture was proved and
the optimal Sobolev regularity of the roots was established in a series of papers by
Parusiniski and Rainer [PR16, PR18, PR20a], after the optimal result for radicals
had been obtained by Ghisi and Gobbino [GG13]. For a more comprehensive ac-
count of the history of the problem and its ramifications, e.g., in the perturbation
theory of linear operators, we refer to the recent survey article [PR25].

In this paper, we focus on the class of monic hyperbolic polynomials for which the
regularity problem has a special flavor; the general case of monic complex polynomi-
als is treated in [PR24]. A monic real polynomial of degree d is called hyperbolic if
all its d roots (counted with multiplicities) are real. Hyperbolic polynomials appear
naturally as the characteristic polynomials of Hermitian matrices for instance.

We refer by Bronshtein’s theorem to the statement that any continuous system of
the roots of a C~ 1! family of hyperbolic polynomials of degree d is actually locally
Lipschitz continuous (i.e. C%1). In general, this is optimal. Bronshtein [Bro79)
originally proved a version for C? curves of hyperbolic polynomials of degree d
(under these assumptions the roots can be represented by differentiable functions).
Bronshtein’s rather dense proof is hard to follow. Wakabayashi [Wak86] gave a
complex analytic proof of a more general Holder version of Bronshtein’s theorem,
which had been announced by Ohya and Tarama [OT86]; it was later proved by
Tarama [Tar06] following Bronshtein’s original approach. Kurdyka and P&unescu
[KP08] used resolution of singularities to deduce local Lipschitz continuity of the
roots of hyperbolic polynomials with real analytic coefficients. A simple proof
of Bronshtein’s theorem, based on the splitting principle, which also established
explicit uniform bounds for the Lipschitz constants of the roots in terms of the
C?=11 norms of the coefficients, was given by Parusiriski and Rainer [PR15]. We
will recall this version in Theorem 4.1.

Bronshtein’s theorem gives rise to a bounded solution map that takes hyperbolic
polynomials of degree d with C?~ ! coefficients to C%' systems of their roots. This
will be made precise below.

The purpose of this paper is to investigate the continuity of the solution map and
thus answer a question of Antonio Lerario.
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1.1. Hyperbolic polynomials and the solution map. A monic polynomial of
degree d,

d
P(Z) =2+ a; 277 € R[Z],
j=1
is called hyperbolic if all its d roots are real. In the following, we will identify
the polynomial P, with its coefficient vector a = (ay,...,aq) € R¢. Then the set

of all hyperbolic polynomials of degree d is identified with the image of the map
o= (o1,...,0q4) : R = R where

oj(x1,...,xq) = (—1) Z Ty - Ty
i1 <<ty
is the j-th elementary symmetric function (up to sign). By the Tarski-Seidenberg
theorem, o(R?) is a closed semialgebraic subset of R? which we equip with the
trace topology. We denote this space by Hyp(d) and call it the space of hyperbolic
polynomials of degree d.

For a € Hyp(d), let Al(a) < --- < )\Z(a) denote the increasingly ordered roots of
P,. Then

AT =0, A Hyp(d) — R?
is a continuous map, see [AKLMO98, Lemma 4.1] or, alternatively, [PR24, Lemma
6.4] combined with Lemma 7.1.

Let U C R™ be open. Let C4~11(U, Hyp(d)) denote the space of all C4~1'! maps
a: U — R? such that a(U) C Hyp(d). Thus a € C4~11(U, Hyp(d)) amounts to a
hyperbolic polynomial P, of degree d whose coefficients are C?~ ! functions defined
on U. We equip C4~11(U, Hyp(d)) with the trace topology of the natural Fréchet
topology on C4~11(U, R?). Note that C?~%1(U, Hyp(d)) is a closed nonlinear subset
of C4=LY(U,RY). Then Bronshtein’s theorem (see Theorem 4.1) implies that the
solution map

S:= (", : LU, Hyp(d)) — COHU,RY), ar N oa, (1.1)
is well-defined and bounded (i.e., it maps bounded sets to bounded sets).

1.2. The main results. We will see in Example 1.12 that the solution map S :
C4=1L1(U, Hyp(d)) — C%'(U,R?) is not continuous: the natural topology on the
target C%1(U, R?) is too strong.

However, the solution map S becomes continuous if we restrict it to C%(U, Hyp(d)),
carrying the trace topology of the natural Fréchet topology on C?4(U, R%), and relax
the topology on the target space: for 1 < ¢ < oo, let C’g71(U, R?) denote the set

CY1(U,RY) equipped with the trace topology of the inclusion in Sobolev space
COY(U,RY) — Wli’f(U, R?). See Section 2 for precise definitions of the function
spaces.

The following theorem, which is our main result, solves Open Problem 3.8 in [PR25].
Theorem 1.1. Let U C R™ be open. The solution map
S : C(U, Hyp(d)) = C'(U,R?), ars Aloa,

is continuous, for all 1 < q < oco.
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As a corollary, we find that the solution map on C¢(U, Hyp(d)) is continuous into
the Holder space C%®(U,R), carrying its natural topology, for all 0 < a < 1.
Corollary 1.2. Let U CR™ be open. The solution map

S : CUU,Hyp(d)) — C**(U,RY), aw A oa,

is continuous, for all 0 < a < 1, but not for a = 1.

The essential work for the proof of Theorem 1.1 happens in dimension m = 1 of
the parameter space. The passage from one to several parameters is rather easy.
The following is the main technical result of the paper.

Theorem 1.3. Let I C R be an open interval. Let a,, — a in C4(I,Hyp(d)), i.e.,
for each relatively compact open interval Iy € I,

la—anllca, gay =0 asn—oo. (1.2)

Then {S(a,) : n > 1} is a bounded set in COY(I,RY) (with respect to its natural
topology) and, for each relatively compact open interval Iy € I and each 1 < q < o0,

IS(@) — S(an)llwra(ry,rey = 0 asn — oo. (1.3)
The proof of Theorem 1.3 is based on the dominated convergence theorem. The

domination follows from Bronshtein’s theorem which we recall in Theorem 4.1. We
will show in Theorem 5.1 that, for almost every x € I,

S(an) () — S(@)(x) asn — co.

To this end, we will develop a version of Bronshtein’s theorem at a single point, see
Theorem 4.7.

In Section 8, we prove a refinement of Theorem 1.3 in which the assumption that
a, — ain C% as n — oo can be weakened to convergence in CP, where p is the
(uniform) maximal multiplicity of the roots of P,.

Note that by Egorov’s theorem [Egoll] we may conclude that S(a,) — S(a)’
almost uniformly on I as n — oo, i.e., for each ¢ > 0 there exists a measurable
subset £ C I with |E| < € such that S(a,,)’ — S(a)’ uniformly on I'\ E. In general,
the convergence is not uniform on the whole interval I; see Example 1.12.

For later reference, we state a simple consequence of Theorem 1.3. Here ||z||2
denotes the 2-norm of x € R and || f|| (1, ra) := ||||f||2||Lq(IO), see Section 1.6.

Corollary 1.4. Let I C R be an open interval and Iy € I a relatively compact
open subinterval. If a,, — a in C4(I,Hyp(d)) as n — oo, then

|IS@) |2 — ||S(an)'||2HLq(IO) -0 asn— oo,
and
||S(an>/||L‘1(Ig,Rd) — HS(a)’HLq(IOde) as n — 0o,

forall1 < q < 0.
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Proof. Let us set A := S(a) and A, := S(a,). Then

!

[Vl 2t ) = ¥ lzactonzer | = 1Vl sy = NNl o
< V2 = Izl oy < X = Mol poryy = 1N = Nallzagaozey

so that the assertions follow from (1.3). O

It would be interesting to have quantitative versions of the continuity results.

Question 1.5. Are the continuous solution maps S in Theorem 1.1 and Corol-
lary 1.2 uniformly continuous and, if yes, is there an effective modulus of continu-
ity?

We have the following quantitative result in the case that all roots are simple. The
monic hyperbolic polynomials P, of degree d with d simple roots are in one-to-one
correspondence with the points a in the interior Hyp®(d) of Hyp(d).

Theorem 1.6. Let U C R™ be open and k > 1. The solution map
S°: C*(U,Hyp®(d)) — C*(U,R?), a~ A oa,

is locally Lipschitz continuous: let Uy €U and Vo € Hyp°(d) be relatively compact
open convex sets and B a bounded subset of C*(Uy,Vy). Then, for all ai,as € B,

18°(a1) = S°(@2)lor @, vy < C llar — a2l o @,y ray
where C = C(d, k, B, Vp).

We do not know if the continuity results in Theorem 1.1, Corollary 1.2, Theorem 1.3,
and Corollary 1.4 still hold for the solution map S on C4~11(U, Hyp(d)) (instead
of C*(U, Hyp(d))).

Question 1.7. Is the solution map S : C~11(U, Hyp(d)) — col(U, RY) contin-
uous, for 1 < q < co? Is the solution map S : C4—11(U, Hyp(d)) — CO*(U,R%)
continuous, for 0 < a < 1?

In the proof of Theorem 1.3, we need the convergence of the coefficient vectors in
C? only on the accumulation points of the preimage under a of the discriminant
locus. If this preimage is the union of an open set and a set of measure zero, then
for (1.3) it is enough that a,, — a in C?~11. Thus, for a potential counterexample
a has to meet the discriminant locus in a Cantor-like set with positive measure.

Remark 1.8. If the coefficients are of class C?, as in the setting of Theorem 1.3,
the roots of P, can be chosen as C! functions Al Adnd: I = R, see [COP12]
or [PR15, Theorem 2.4]. This choice is not necessarily unique. Also, such a choice
imposes an order on the roots that may change when the parameter changes. There-
fore, if the parameter space is a circle and not an interval, a consistent choice may
not be possible; see e.g. Remark 7.15. Moreover, in general, the roots A, 1,..., An g
do not converge to a differentiable system of the roots of P, (even just pointwise)
as n — 0o, see Example 1.12.

1.3. Applications. We will give several applications of our continuity results by
highlighting, in particular, several consequences for stability under perturbations.
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1.3.1. Relation to the results for general polynomials. In Section 7.1, we will in-
terpret the results for hyperbolic polynomials as special and stronger versions of
the general theorems of [PR24]. In the general case of a complex polynomial P, of
degree d the coefficient vector a is an arbitrary element of C¢. Then it is natural
to consider the unordered d-tuple of roots because there is no canonical choice of a
parameterization of the roots by continuous functions. If the parameter space has
dimension > 2, then continuous selections of the roots might not even exist. In
contrast to the hyperbolic case, the general theorems of [PR24] are only valid in
Wha for 1 <q<d/(d-1).

1.3.2. Continuity of the area of the solution map. In Section 7.2, we will deduce
from Theorem 1.1 that, if a,, — a in C4(U, Hyp(d)) as n — oo, where U C R™ is
open, then the Jacobian |J(S(a,))| of S(a,) converges to the Jacobian |J(S(a))]
of S(a) in L{ _, for all 1 < ¢ < oo (see Corollary 7.5). Combining this with the
area formula, we conclude that the surface area of the graph of each single root
S(an); = )\; oay, for 1 < j < d, converges locally to the surface area of the graph
of S(a); (see Corollary 7.7).

As a consequence, we find that the area of the zero sets of C¢ families of hyperbolic
polynomials of degree d locally has a lower semicontinuity property:

Corollary 1.9. Let U C R™ be open. Let a, — a in C4(U,Hyp(d)) as n — oc.
For any relatively compact open Uy € U, consider the zero sets

Z={(x.4) €Uy x R: Pypy(y) =0} and ",
Zn ={(z,y) €Ug xR: P, (»(y) =0}, n>1. '

Then

liminf H™(Z,) > H™(Z).

n—oo
Here H™ denotes the m-dimensional Hausdorff measure. Corollary 1.9 will be
restated and proved in Corollary 7.8.

Without hyperbolicity, the area of the real zero set is generally not semicontinuous:
e.g., for the intersections Z; of Whitney’s umbrella {(z,y,2) € R3 : 22 — y?2 = 0}
with the planes {z = t} and the cylinder {z% + y? < 1} we have

0 ift<O,
HY(Z) =42 ift=0,
4 ift>0.

1.3.3. Approximation by hyperbolic polynomials with simple roots. In Section 7.3,
combining our results with a lemma of Wakabayashi [Wak86], we will obtain the
following approximation result (Corollary 7.10): for each hyperbolic polynomial Pj,
where a € C4(U, Hyp(d)), there exists a sequence (a,)n,>1 € C%U, Hyp(d)) such
that

e a, — ain C4U,Hyp(d)) as n — oo;
e all roots of P, (,) are simple for all z € U and all n > 1;

e S(a,) € CUU,R?), for all n > 1, and S(a,) — S(a) in C' (U, R?), for all
1< g<o0,as n— o0
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e for each relatively compact open Uy C U, defining the zero sets Z and Z,
as in (1.4), the limit lim,,_,o H™(Z,) exists and satisfies

lim H™(Z,) > H™(Z).
n—oo

1.3.4. Perturbation theory for Hermitian matrices. In Section 7.4, we will apply
our results to the eigenvalues of Hermitian matrices. Ordering the eigenvalues
increasingly, induces a continuous map

AT Herm(d) — R?
on the real vector space Herm(d) of complex Hermitian d x d matrices. By Weyl’s

perturbation theorem (see Proposition 7.11), we obtain a bounded map

E:= (", : 0¥ (U, Herm(d)) — C*Y(U,RY), A ATo A,

The continuity results for hyperbolic polynomials imply the following result.

Theorem 1.10. Let U C R™ be open. Then the map
£:CY(U,Herm(d)) — CIH(U,R?Y), A Ao A,
is continuous, for all 1 < g < oo, and the map
£ : CYU,Herm(d)) — C**(U,RY), A Ao A,

is continuous, for all 0 < a < 1.

Theorem 1.10 will be proved in Corollary 7.12. The map £ is not continuous with
respect to the C%! topology on the target space, as will be seen in Example 7.13
which is based on Example 1.12.

Given that the map & is defined and bounded on C°!(U, Herm(d)), it is natural to
ask whether in Theorem 1.10 one can replace C¢ by C:

Question 1.11. Is the map € : C'(U,Herm(d)) — CO*(U,R?) continuous, for
1<qg<oo? Is £ : CH(U,Herm(d)) — C%*(U,R?) continuous, for 0 < a <17

We will prove in Proposition 7.14 that the answer to Question 1.11 is affirmative
in the case d = 2.

1.3.5. Singular values. In Section 7.5, we will obtain an analogue of Theorem 1.10
for the singular values (ordered by size) of C2¢ families of general complex D x d
matrices with d < D (see Corollary 7.16). As in Question 1.11, it is natural to ask
whether C2?¢ can actually be replaced by C*.

1.4. On the optimality of the results. The following example shows that the
solution map S : C4(I,Hyp(d)) — C%1(I,R9), where I C R is an open interval, is
not continuous with respect to the C%' topology on the target space.

Example 1.12. Let g(z) := 22 and g, (z) := 22+1/n? n > 1. Then, for all k € N
and each bounded open interval I C R, [lg — gnllcow (1) = 1/n? — 0 as n — oo. Let
f and f,, be the positive square roots of g and g, respectively: f(z) := |z| and
fu(x) := /2% + 1/n?. Then, for each bounded open interval I C R containing 0,

‘ (f(2) = fn(@)) = (f(0) = fn(0))

T

‘f—fn‘co,l(f) > sup
o<zel
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-2+ m+i Lt Rt E+
:sup‘ n nzn nln n:2_\/§’
o<zel T P
for large enough n. Observe that
T
fula) =
2+ L

tends pointwise to f'(x) = sgn(x) for all  # 0 but not uniformly on any neighbor-

hood of 0: .
"D =+ —.
fa(£5) 7

This also violates the first conclusion of Corollary 1.4 for g = oc.

Notice that this example also shows that not every continuous (thus C%1) system of
the roots of g is the limit of a continuous system of the roots of g,: each continuous
system of the roots of g, tends to £|z|, none to £x. See Remark 1.8.

In the example, the hyperbolic polynomial Z? = g(z) with double root at x = 0 is
approximated by the hyperbolic polynomials Z? = g,,(x) with simple roots for all
. We will see in Corollary 7.10 that such an approximation is always possible.

1.5. Structure of the paper. We fix notation and recall facts on function spaces
in Section 2 and provide the necessary background on hyperbolic polynomials in
Section 3. In Section 4, we recall Bronshtein’s theorem in Theorem 4.1 and prove
a version of it at a single point in Theorem 4.7. The latter provides bounds for
the derivatives of the roots that are crucial for the proof of Theorem 1.3 which
is carried out in Section 5. In Section 6, we generalize Theorem 1.3 to several
variables in Theorem 6.1 which allows as to complete the proofs of Theorem 1.1 and
Corollary 1.2; also Theorem 1.6 is proved in Section 6. Section 7 is dedicated to the
applications; in particular, it contains the proofs of Corollary 1.9 and Theorem 1.10.
Finally, Section 8 presents a refinement of Theorem 1.3, namely Theorem 8.2, in
the case that the maximal multiplicity of the roots is smaller than the degree.

1.6. Notation. The m-dimensional Lebesgue measure in R™ is denoted by L£™.
If not stated otherwise, ‘measurable’ means ‘Lebesgue measurable’ and ‘almost
everywhere’ means ‘almost everywhere with respect to Lebesgue measure’. For
measurable £ C R™, we usually write |E| = L™(F). We will also use the k-
dimensional Hausdorff measure H*.

For 1 < p < 00, ||z]|, denotes the p-norm of x € R%. If f : E — R%, for measurable
E C R™, is a measurable map, then we set

1oy = 11l o -

In the following, a set is called countable if it is either finite or has the cardinality
of N.

To avoid confusion, coefficient vectors of hyperbolic polynomials are written in sans
serif type. For example, the coefficient vector a,, = (an,1,an.2,.-.,0n,q), indexed
by n € N, is notationally distinguished from the scalar a,,, which denotes the n-th
component of the coefficient vector a.
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We use the notation C(d,...) to denote a constant that depends only on d, .. .; its
value may change from line to line.

2. FUNCTION SPACES

Let us fix notation and recall background on the function spaces used in this paper.

2.1. Holder—Lipschitz spaces. Let U C R™ be open and k € N. Then C*(U)
is the space of k-times continuously differentiable real valued functions, equipped
with its natural Fréchet topology. If U is bounded, then C*(U) denotes the space
of all f € C*(U) such that each 9*f, 0 < |a| < k, has a continuous extension to
the closure U. Endowed with the norm

f + = max sup |0%f(x
I7llox @ = max sup [0 £ (x)|
it is a Banach space. For 0 < v < 1, we consider the Holder—Lipschitz seminorm
[f (=) — f(y)]
|flcon @ := sup ——————.
o) z,y€U, z#y Hl‘ - yH;

For k € N and 0 < v <1, we have the Banach space
C*1(U) = {f € C*U) : | fllrmm) < oo}
where

Hf“ckw(U) = ||f||ck(U) + lgl‘i’]i |6af|C0w(U)-

We write C*7(U) for the space of C* functions on U that belong to C*7 (V) for
each relatively compact open V € U, and endow C*7(U) with its natural Fréchet
topology.

2.2. Lebesgue spaces. Let U C R™ be open and 1 < p < oo. We denote by LP(U)
the Lebesgue space with respect to the m-dimensional Lebesgue measure £™, and

Nproy is ; : p_ ) 5 us .
| - lr(u) is the corresponding LP-norm. We will also use the space Li, (U) of

measurable functions f : U — R satisfying || f||z»(x) < oo for all compact subsets
K C U. For Lebesgue measurable sets E C R™ we also write |E| = L™(E). We
remark that for continuous functions f : U — R we have (and use interchangeably)

£l @y = fllco@)-
2.3. Sobolev spaces. For k € N and 1 < ¢ < oo, we consider the Sobolev space
Wha(U) == {f € LYU) : 0*f € LY(U) for |a| < k},
where 0% f are distributional derivatives. Endowed with the norm
I llweawy = > 10%fllLew)
la <k

it is a Banach space. We will also use

WEIU) = {f e LL (U):9°f € LL _(U) for |a| < k}

loc loc loc

and endow this space with its natural topology.
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2.4. A result on composition. In the following proposition we use the norm
1fllox @ rey = [, Sup & f ()|, @m ey

on the space C*(U,RY) := (C*(U,R))*, where U C R™ and L;(R™, R?) is the space

of j-linear maps with j arguments in R™ and values in R.

Proposition 2.1. Let U C R™ and V C R be open, bounded, and convex. Let
Y € C*Y(V RP). Then

be: CE(U,V) = CHU,R?), 9oy,
is well-defined and continuous. More precisely, for 1,2 in a bounded subset B of
Ck(U,V),
[« (1) — 7;/1*(902)”@(?,]1@) <cC ||1/)||ck+1(7,nep)||801 - <P2||ck(ﬁ,w)a
where C' = C(k, B).

A short proof of this result can be found in [PR24, Appendix A.2].

3. HYPERBOLIC POLYNOMIALS

In this section, we recall basic facts on hyperbolic polynomials that will be used
below. The exposition follows [PR15] and [PR25]. For the convenience of the reader
and to keep the paper largely self-contained, we include details where this does not
substantially interrupt the flow.

3.1. Tschirnhausen form. We say that a monic polynomial
d
P(Z)=2"+) a2
j=1

is in Tschirnhausen form if a; = 0. Every polynomial P, can be put in Tschirn-
hausen form by the substitution

d
PiZ)=PZ %) =2+ a;27,
j=2

which is called the Tschirnhausen transformation. For clarity, we consistently equip
the coefficients of polynomials in Tschirnhausen form with a ‘tilde’. Note that

J
ij =Y Ciaal™', 2<j<d, (3.1)

i=0
where ay = 1 and the C; are universal constants independent of a. For a polynomial
P; in Tschirnhausen form with coefficient vector a = (0, ag, ..., aq) we have

—2a9 = A\ 4+ A2 (3.2)
where A1, ..., \g is an enumeration of the roots of a. Consequently, for a hyperbolic
polynomial P; in Tschirnhausen form,

as < 0.

Recall that the coefficients (up to their sign) are the elementary symmetric poly-
nomials in the roots, by Vieta’s formulas.
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Lemma 3.1 ([PR25, Lemma 2.4]). The coefficients of a hyperbolic polynomial Pj
in Tschirnhausen form satisfy

la; |7 < V2)ag)?, j=2,...,d.

Proof. This follows easily from the Newton identities
j .
joj =3 (=) oy isi, d>j>1,
i=1

between the Newton polynomials s, = A\¥ +- -+ )\’j and the elementary symmetric
polynomials o, observing that |s|'/* < |sy|'/2, for 2 < k < d, by a well-known
relation between the p-norms. ([

As a consequence, a = (0, ag, as, .. .,aq) = 0 if and only if as = 0.

Definition 3.2 (Spaces of hyperbolic polynomials). Let Hyp,(d) denote the space
of monic hyperbolic polynomials of degree d in Tschirnhausen form and HypJ(d)
the compact subspace of polynomials P; with as = —1, i.e.,

Hypr(d) = {a € Hyp(d) : @, = 0},
Hypr(d) = {3 € Hypr(d) : a2 = —1}.

3.2. Splitting. Let us recall a simple consequence of the inverse function theorem.

Lemma 3.3 (E.g. [PR25, Lemma 2.5]). Let P, = P, P, where B, and P, are monic
real polynomials without common (complex) root. Then we have P = PypyPe(p)
for analytic mappings P+ b(P) € R¥& ™ and P+ c(P) € R¥& < defined for P
near P, in R8P with the given initial values.

Proof. The product P, = P, P. defines on the coefficients a polynomial map ¢ such
that a = ¢(b, c). Its Jacobian determinant equals the resultant of B, and P, which
is nonzero, by assumption. Thus ¢ can be inverted locally, by the inverse function
theorem. O

Let P; € Hypy(d) be such that 3 # 0, equivalently, a; # 0. Then the polynomial

d
Qa(Z) = |ag|~*Pi(|ao|' /2 2) = 2 — 272+ |ao| /%4, 2
=3
belongs to Hypy.(d). By Lemma 3.3, we have a splitting
Qg = QQQQ
on some open neighborhood U C R? of a such that dp := degQy, < d, de =
deg Q. < d, and
b = i(Jaz|~*%as, ... |as|""da), i=1,...,degQy,

where 1); are real analytic functions; likewise for ¢;. If @), is hyperbolic, then also
Qp and Q. are hyperbolic. If \; < --- < )\, are the roots of (),, then we may assume
that, on QﬁHyp%(d), Ay <o <A, are the Toots of Qp and Ay g < -+ <A, are
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the roots of Qc; this follows from continuity of the map AT and the simple topology
of Hyph(d) (induced by the embedding in R); cf. [PR25, Theorem 8.1].

The splitting @, = QpQ. induces a splitting
P; = BP.
on an open neighborhood U of 3, where
bi = ||/ ?i(|as| ™% %as, . . ., |as|~Y%aq), i=1,...,deg P (3.3)

The coefficients b; of P, resulting from B, by the Tschirnhausen transformation,
have an analogous representation, i.e.,

b = |a2|2/2 (|a2| 3/2(13 |d2|_d/2dd)7 1= 1,...,deng. (34)

Shrinking U slightly, we may assume that all partial derivatives of all orders of the
real analytic functions 1; and ; are bounded on U.

Furthermore, since the roots of P; are given by A; := |c~12|1/2 Ay, for 1 <j<d, we
have that, on UﬂHypT(d), A1 <o < Ay, are the roots of By, and g1 < --- < A\g
are the roots of P..

Lemma 3.4 ([PR25, Lemma 3.13]). In this situation, we have |by| < 4|as).

1 /\?)1/2, we find

Proof. Using (3.2) and [by| < 3% |Aj] < Vs (z

2|I~7 = S ) b;l 2 & 2 2b1 %1 2
2|_Z(Aj+db) => XN+ ZA+ (1+2+1) Z/\ < 8lay|.
j=1 Jj=1 Jj=1

O

3.3. Universal splitting. For each d > 2 fix the following data. Choose a finite
cover of Hyp'-(d) by open sets U,,...,U, such that on each U, we have a splitting
Q. = QpQc and, consequently, a splitting Ps = F, F. as above together with analytic
functions v; and ¥;, and we fix this splitting. As seen above, we may assume that
the roots A\ < --- < XAy of P5 are labelled such that A\; <-.. < \g4, are the roots of
By and Ag 41 < -+ < Ay are the roots of ..

By the Lebesgue covering lemma, there exists § > 0 such that each subset
of HypY(d) of diameter less that & is contained in some U,. Choose r €
(0, min{4/2,1}). Then for each p € HypJ(d) there exists 1 < i < s with

B(p,r) N Hypy(d) € U, N Hyp(d). (3.5)

Definition 3.5 (Universal splitting). We refer to this data as a universal splitting
of hyperbolic polynomials of degree d in Tschirnhausen form and to r as the radius
of the splitting.

4. BRONSHTEIN’S THEOREM AND A VARIANT AT A SINGLE POINT

We recall Bronshtein’s theorem in Theorem 4.1. We shall need a version at a single
point with a suitable bound for the derivative of the roots. This version is given in
Theorem 4.7.
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4.1. Bronshtein’s theorem. The following result is a version of Bronshtein’s the-
orem [Bro79] with uniform bounds due to [PR15], see also [PR25, Theorem 3.2].

Theorem 4.1. Let I C R be an open interval and a € C4~ 11 (I, Hyp(d)). Then any
continuous root X € C°(I) of P, is locally Lipschitz and, for any pair of relatively
compact open intervals In € Iy € I,

1/
|>\|CO’1(TO) <C éljagd ”aj”Cd]*l?l(Tl)’ (41)

with C = C(d) max{§~1,1}, where § := dist(Ip, R\ I1).

A multiparameter version follows easily; see [PR15] and [PR25, Theorem 3.4].

Note that Wakabayashi [Wak86] proved a Holder version of Theorem 4.1 (without
uniform bounds of the type (4.1)), see also Tarama [Tar06] for a different proof.

4.2. Reclusive points. The local version of Bronshtein’s theorem, Theorem 4.7,
holds at all points of I except for a countable subset of points, which we call
reclusive points. A point = € I is reclusive if either all the roots of Pj,) are zero
and z is isolated for this property, or it satisfies a similar condition for one of the
local factors of Pj(,), see Definition 4.4 for a precise formulation.

Definition 4.2 (Zero sets). Let a : I — Hypy(d) € RY. We consider the zero set
Zs:={rxel:3(x) =0} ={z € l: all roots of P,(,) coincide}
which coincides with Zz, = {z € T : az(x) = 0}, by Lemma 3.1. (For notational
simplicity, we will generally use Z5.) We write acc(Zz) and iso(Zz) := Z5 \ acc(Z3)
for the sets of accumulation points and isolated points of Z3, respectively.
Lemma 4.3. Leta: I — Hypp(d) CRY. Then
Zs ={x € 1: all roots of Ps(y) vanish}.

Proof. Since Zz = Zz,, this is immediate from (3.2). O

Let I C R be an open interval and a € C4~11(I,Hyps(d)); recall that this means
3 € 04 LI, RY) and a(I) C Hypy(d). Let mp € I be such that as(z) # 0. Then
not all roots of P, coincide and hence P; splits in a neighborhood of z5. We
may assume that it is a full splitting, i.e., if {\1,..., \x} are the distinct roots of
Pj(24) with multiplicities {m,...,my} then

P=hF.F, B,
where deg Py, = my; and Py, (5,)(Z) = (Z — A;)™, for all 1 < j < k. Note that
the full splitting is unique up to the order of the factors. Since the Tschirnhausen

transformation b; ~» b; effects a shift of the roots by b;1/m; = —\;, we have
fots) GZBj, for all 1 Sjgk

in a neighborhood of xq, (4.2)

Definition 4.4 (Reclusive points). Let 3 € C4~11 (I, Hypy(d)). We say that zg € T
is reclusive for a if

e 1o € iso(Z3),

e or xg ¢ Z5 and xg € iso(ZBj) for some j € {1 ..., k}, where we refer to the
full splitting (4.2).
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Note that, by Lemma 4.3, z( is an isolated point of Zgj if and only if z( is an
isolated point of '
By, := {z : all roots of B, (, coincide}.

Lemma 4.5. Let I C R be an open interval anda € C4=11 (I, Hypy(d)). Letxg € 1
be such that as(xo) # 0 and assume that xqy is not reclusive for a. If Ps = By P. is
any splitting near xg, then xq is not reclusive for b and € (which result from b and
¢ by the Tschirnhausen transformation).

Proof. After possibly reordering the factors in (4.2), we may assume that, in a
neighborhood of z,

Pb = Pbl s ij and Pc = Pb . Pb

j+1 k*

The Tschirnhausen transformation b ~» b effects a shift on all roots of P, by
b1/ deg P, and retains the splitting,

P =P "'PBJ"
It follows that E;, = E, for all 1 <4 < j. Suppose for contradiction that z is

reclusive for b. If z( is an isolated point of Z;, then j = 1, by Lemma 4.3, and
hence xq is reclusive for a. If g ¢ Z; and there is i € {1,...,j} such that x( is an
isolated point of Ey, = Eb,, then again x is reclusive for a. Since we assumed that

T¢ is not reclusive for a, we conclude that xy is not reclusive for b.
The proof that x( is not reclusive for ¢ is analogous. (Il

Lemma 4.6. Let [ C R be an open interval and 3 € C¥~ 1Y (I, Hypy(d)). The set
of all xg € I that are reclusive for a is countable.

Proof. Let A := S(3). Then \is a curve in {y € R? : y; < yp < --- < yq}. For

1 <i<d, let 4;(y) := yix1 — yi- If 29 € I is reclusive for &, then there exist

1 <iy <--- <ip < d such that zq is an isolated point of
{zel:li;(Mx))=0forall 1 <j<Ek}

The set of isolated points of the latter set is countable. The statement follows. [

4.3. A version of Bronshtein’s theorem at a single point. For zg € R and
r >0, let I(zg,r) denote the open interval centered at x¢ with radius r,

I(zg,r):={z €R: |z —zo| <7}

Its closure is denoted by I(xq,T).

Theorem 4.7. Let 29 € R and § > 0. Let a € C451(I(2,6), Hypy(d)). Assume
that zo is not reclusive for a. Let A\ € C°(I(xg,d)) be a continuous root of Ps and
assume that N (xg) exists. Then

X (z0)| < C(d) A(6),
where
A(9) := 6max{A1(9), A2(5)}, (4.3)

11~ ~111/2
Al((;) ‘= max {5 1|CL2(5E0)|1/2, |a/2|c/0,1(j(m075))}7
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~(d—1 ~ (d—j)/2 1/d
A3(8) = max {1a5" | conqag.sy - a2l )}

Here afy denotes the first derivative of as and &§d71) the derivative of order d — 1
Of dj

The proof follows the general strategy of the proof of Theorem 4.1 in [PR15] and
[PR25], but some modifications are required. Before we prove Theorem 4.7 let us
recall two important tools.

4.4. Local Glaeser inequality. Glaeser’s inequality [Gla63] gives Bronshtein’s
theorem in the simplest nontrivial case: for nonnegative C! functions f on R with
1" € L>=(R) we have

fa)? <2f@)f lee®, =R
We need a local version.

Lemma 4.8 ([PR25, Lemma 3.14]). Let I C R be an open bounded interval. Let
f e CY(I) satisfy f >0 or f <0 on I. Assume that xg € I satisfies f(xo) # 0
and let M > 0 be such that Iy := I(xg, M~ f(20)|"/?) C I. Then

£ (o)l < (M + M7 f | oz f (o) /2.
Therefore, if additionally |fl|cg71(70) < M?2, then
|/ (xo)| < 2M |f(zo)|"/.

It should be added that, for a function f € C11(I) satisfying f > 0 or f < 0 on
1, we have that f(zg) = 0 implies f/(z¢) = 0, so that the conclusion of the lemma
also holds trivially at zeros zq of f.

Proof. Suppose that f > 0; otherwise consider —f. Thus f(z¢) > 0 and

1
0< f(wo-+ ) = flao) + £ (aolh+ [ f/Gan + o) = f(ao)ds b
0
Setting h := =M~ f(x0)|'/?, implies the lemma. O
4.5. Interpolation. Let us recall an interpolation inequality for intermediate

derivatives.

Lemma 4.9 ([PR25, Lemma 3.16]). Let f € C™(I), where I C R is a bounded
open interval. Then, for 1 < j <m,

FO @) < COm) I (1l + 1o HI™), a e L.

Proof. Fix x € I. Then [z,z + |I|/2) or (x — |I]/2,z] is contained in I. Let y be a
point in the respective interval. By Taylor’s formula,

D

=0

~ 1w - -0 [ EE - ) - £ )
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< ”fHL‘X’(I) =+ |I|m+1‘f(m)|co,1(7)~

This implies the lemma in view of the following fact: if a polynomial T(x) =
ag+ a1z + -+ + apa™ € Clx] satisfies |T'(x)| < A for z € [0, B] C R, then

laj| < C(m)AB™7, 0<j<m.

Indeed, for A = B = 1 this follows easily, by comparison with the interpolation
polynomial for the equidistant points 0 = zg < 21 < --+ < x,,, = 1. In the general
case, consider A~1T(Bx). O

4.6. Proof of Theorem 4.7. The rest of the section is devoted to the proof of
Theorem 4.7. We may assume that d > 2, since Theorem 4.7 is trivially true for
d = 1. The following definition will prove convenient for the inductive proof based
on the splitting.

We will work on intervals centered at 2o whose radius depends on the size of az(xo).
More precisely, assuming that as(xg) # 0 we set, for any constant A > 0,

I(xo, A) := I(xo, A" ag(xo)|*?) (4.4)
and denote by I(xg, A) the closure of I(zg, A).

Definition 4.10 (C¢~1!-admissible data). Let 29 € R and 6 > 0. Let a €
Ca=11(1(z0,0), Hypy(d)) be such that as(zg) # 0. Let A > 0 be a constant.
We say that (3, zg,d, A) is C?~ Y1 -admissible if the following holds:

(1) I(zo, A) C I(xo,9).
(2) For all z € I(xo, A),

(3) Forall 2 <j <d,

~(d—1 ~ i
|a§ )‘Covl(f(zo,A)) = Ad|a2($o)|(j Nz, (4.6)

(4) Forall2<j<d, 1<k<d-1, and x € I(xg, 4),
@ ()] < Az (o) G0/, (4.7)

Lemma 4.11. Let 29 € R and A,6 > 0. Let a € C¥Y1(I(x,0), Hypy(d)) be such
that as(xg) # 0. Assume that

o I(xp, A) C I(xg,9),
e (4.6) holds, and
e (4.7) holds for2 <j<d and k > j.
Then there is a constant C(d) > 1 such that (3, xg, 0, C(d)A) is C4~V1-admissible.

Proof. We first observe that we have |a5|co. g (4, 4)) < A2, Indeed, if d = 2 this is
immediate from (4.6) and if d > 3 then it follows from (4.7) with j = k = 2. By
Lemma 4.8, we conclude that

@ (x0)| < 24 [az(x0)| /2.
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Thus, for x € I(xp,6A4),
|az(2) — a2 (w0)| < lag(wo)llz — xo| + 15|01 (1(ag,ay = — Zol?

1 1 1
<3 |az(xo)| + 3% |Gz (o) < 3 |a2 (o),
implying (4.5) on I(xg,6A).

Finally, we check that (4.7) also holds for k < j, for A replaced by C(d)A, where
C(d) > 1is a suitable constant (note that I(zg, C'(d)A) C I(xg, A)). By Lemma 4.9,
for 1 <k <j—1andz€I(xg64),

a5 ()] < C(d) Lo, 64)| ™ (11| xwo0.4)) + 185 0o 12 649, L0, 64)|7)
< C(d) (34)*[as(wo)|~*/* (27 |aa(wo)|/* + A7 - (3A) ™ [aia (o) ["/?)
< C(d) A" |ag ()T ~M/2,
since |a;(z)] < (V2laa(z)|Y/?) < 27 |as(z0)[’/?, by Lemma 3.1 and (4.5) on
I(x0,64), and a5 V| o gay 6.4y < A7, by (4.6) or (4.7) for k = j. O

Lemma 4.12. Let 19 € R and § > 0. Let a € C4 11 (I(x,6), Hypy(d)) be such
that (o) # 0. Let A(8) be defined by (4.3). Then (a,x0,d,C(d)A(0)) is CI11-
admissible for some constant C(d) > 1.
Proof. (1) By (4.3), A(6) > A1(8) > 6~ aa(z)|*/? and thus

I(xg, A(0)) C I(xg, A1(9)) C I(z0,0). (4.8)

(2) By Lemma 4.8 and the definition of A;(¢),
@ (20)| < 241(6) Jaz(x0)| /2.
Then, for x € I(xg,6A41(5)), we find (as in the proof of Lemma 4.11)

. - 1.

|a2(x) — az(zo)l < laz(o)l,
using (4.8) and the definition of A;(d), which implies (4.5) with A = A(J).
(3) By the definition of A3(d), (4.6) with A = A(0) is clear.

(4) By Lemma 3.1 and (4.5), we have |@;(z)| < 27 |ag(w0)|?/2, for x € I(zq, A(0)).
In conjunction with (4.6), it implies (4.7) with A = C'(d)A(d), by Lemma 4.9. We
clearly may assume that C(d) > 1 so that I(xg, C(d)A(d)) C I(zg, A(J)). O

Lemma 4.13. Let (3,z¢,5,A) be C4V1-admissible. Then the functions a; =

|a2|=7/%a;, 2 < j < d, are well-defined and of class C4~1t on I(zg, A) and they
satisfy

d— ~ _ .
185" con (1o ay) < C(d) A? fas(z0)| =2, 2<j <d, (4.9)
") ()] < C(d) A¥ Jas(wo)| ™2, 2<j<d 1<k<d—1,a€L(zgA). (4.10)

Proof. By (4.5) and (3.2), |az2| > 0 on I(zg, A). Thus the functions a; are well-
defined and of class C4~ 11 on I(xg, A).
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Let 1 <s<d-1andr €R. Then Faa di Bruno’s formula implies

Z Z ot r £~ ('Yl).”agw) (411>

£>1 yeT(4,s)

where T'(¢,s) = {y € N, : || = s} and
s!
Cy ity = e r(r—1)---(r—£+1).

Thus, by (4.5) and (4.7), for z € I(xg, A),

|0° (a3) \<Z ST el lay @)[aS (@) 1as (@)

£>1~el'(4,s)

<SS el 2 (o) A° (o) 2

€>1 €T (4,5)
= A? |C~L2(l‘0)|r_s/2 Z Z |C'y,é,r| or—*¢, (4.12)
£>1 €T (¢,5)
Consequently, by the Leibniz formula, (4.5), and (4.7),

@) < 3 (£)0° a2 @ @)] < Cla) 4 aatan) 2

s=0
for 1 <k <d-1andz € I(xg,A), that is (4.10).

To see (4.9) it suffices to repeat the above argument, using that, for functions
fi,---, fm on an interval I,

m
!Hfz D DILTRS | (LA

J#i

and
| oy < I Hzoo (1 11 Los 1y,
if f is differentiable. O

Proposition 4.14. Let (3,20,6, A) be C4~ %' -admissible. Then there exist 6, > 0
and a constant C(d) > 1 such that the following holds. There is a splitting

Pg = Pch, on I(l‘o, 51),

where Py and P, are monic hyperbolic polynomials of degree < d with coefficients
in C=L1(I(zg,01)). We have, for all 1 < i < deg Py,

d— ~ i—
1 o F(mp.s0y) < CLd)A? [an (o) |72, (4.13)
) ()] < C(d)A¥ |ag(20)| 92, 1<k <d—1, 2 € I(xg,0), (4.14)

If, after Tschirnhausen transformation, Bg(xo) # 0, then (5,10,51,C(d)A) 18
C4=V1_admissible. The analogous statements hold for €.
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Proof. Consider the continuous bounded (cf. Lemma 3.1 and Lemma 4.13) curve
a:=(0,-1,as,...,ay) : I(zxg, A) — Hypy(d) C R%,
where a; 1= |a2|~9/%a;. Then, by (4.10), there exists C; = C1(d) such that
a’(z)]]2 < C1Alag(zo)| "2, = € I(xg, A). (4.15)

We may assume that C; > 1. Let 0 < r < 1 be the radius of the splitting (see
Definition 3.5) and define

|ag (o)|'/? r
0 = ——

CiA
Then I(x9,01) C I(xg, A) and a(I(zg, 1)) € B(a(zg),r), by (4.15). Consequently,
we have a splitting
Ps = BP.,, on I(xg,61),

by (3.5).
Next we check (4.13) and (4.14). By (3.3),
bi = |az|"/? - 0 a. (4.16)
We claim that, for 1 < s <d—1 and z € I(z0,61),
(i 02)¥) (2)] < C(d) A® [as(wo)| /. (4.17)
We have
d

(¢ica) = ' ((054:) 0 a) - af,

<
Il
—

I
M=

(i 0a)® "M (((05¢4) 0 2) - df)

1

<.
Il

s—1

—1 .
(") ) @w o ®ai .
7 0

For s = 1 the claim (4.17) follows from (4.10). For s > 2 the claim follows by
induction and (4.10).

Now (4.14) is a consequence of the Leibniz formula, (4.12), (4.16), and (4.17). To
see (4.13) we proceed analogously, combining (4.9) with the observations at the end
of the proof of Lemma 4.13.

Suppose that by(z9) # 0 and let us show that (b, z,d;,C(d)A), for a suitable
constant C(d) > 1, is C4~11-admissible. Set
2C1 A
B =12

r

Il
,M&

1 k=

By Lemma 3.4, we have }
|b2(z0)| < 4az(xo)] (4.18)

which implies

B 1/2 - a
|ba(wo)[*/= < CA

so that J(zg, B) := I(wO,B_l\I;g(xo)Pm) C I(xp,61). From (4.13) and (4.14), we
easily get the same bounds for b; instead of b; (by means of (3.1)). By (4.18), we
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may replace dz(xg) by ba(20) on the right-hand side of these estimates if k > i
(note that d > i). Now it suffices to invoke Lemma 4.11.

The same arguments yield the analogous statement about c. (Il

Proposition 4.15. Let (3, 70,6, A) be C¥~11-admissible and assume that zq is not
reclusive for a. If A € C°(I(xg,d)) is a root of Ps and N (xq) exists, then

N (0)] < C(d)A. (4.19)

Proof. By assumption, as(zp) # 0 and hence d > 2. By Proposition 4.14, there
exists 07 > 0 such that there is a splitting Ps = P, P. on I(xg,d1). We may assume
that A is a root of B, and hence

~ bi(2)

Alw) = deg B,

+p(z), =z € I(xg,d1), (4.20)

where p is a continuous root of P; and /(o) exists (since we assumed that A’ (x)
exists). By (4.14) for i = k = 1, we have

b} (z0)] < C(d)A. (4.21)
By Lemma 4.5, x( is not reclusive for B, since xq is not reclusive for a.

Let us now prove the proposition by induction on d.

If d = 2, then deg P, = 1 and b = 0. Thus \(z) = —by(x) for z € I(x¢,4;) so that
(4.21) gives (4.19).

Assume that d > 3. If by(xo) # 0, then (b, zg, 81, C(d)A) is C4~11-admissible, by
Proposition 4.14. By the induction hypothesis,

W/ (wo)| < C(d)A.
Thus (4.19) follows from (4.20) and (4.21).

If ba(20) = 0, then z( (being not reclusive for b) is an accumulation point of Z.
Consequently, p/(xg) = 0 and (4.19) again follows from (4.20) and (4.21). O

Proof of Theorem 4.7. Let 9 € R and § > 0. Let a € C"L1(I(xg, ), Hypy(d)).
Assume that g is not reclusive for 3. Let A € C°(I(z0,d)) be a continuous root of
P5 and assume that X (zg) exists.

If @9 (o) # 0, then, by Lemma 4.12, (3, 2o, d, C(d) A(8)) is C?~!-!-admissible, where
A(0) is defined by (4.3) and C(d) > 1. Then Proposition 4.15 yields

[N (z0)| < C(d)A(0).

If az(x0) = 0, then zy (being not reclusive for a) is an accumulation point of Zs.
Hence X' (z0) = 0 and the assertion is trivially true. O
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5. PROOF OF THE MAIN TECHNICAL RESULT
The goal of this section is the proof of Theorem 1.3.

Let I C R be an open interval. Let a,, — a in C%(I, Hyp(d)), i.e., for each relatively
compact open interval I; € I,

Ha_aand(thd) — 0 as n — oQ.

It follows from Theorem 4.1 that the set {S(a,,) : n > 1} is bounded in C%(I,R%).
We must show that, for each relatively compact open interval Iy € I and each
1<g <o,

IS(@) — S(an)llwra(ry,rey — 0 asn — oo. (5.1)

5.1. Strategy of the proof. The proof of (5.1) is subdivided into three steps.
The first two steps are dedicated to the proof of
|S(@) — S(an)/”Lq(IO,Rd) —0 asn— oo, (5.2)

for 1 < ¢ < oo, using the dominated convergence theorem. In the third step, we
show that

S(@) — S(an)llLoe(ryrey =+ 0 asn — oo, (5.3)
Then (5.2) and (5.3) imply (5.1).

Step 1. We claim that the sequence of derivatives S(a,)’ is dominated almost
everywhere on Iy by a positive constant.

To see this, fix Io € I; € I. By the assumption of Theorem 1.3, {a,|r, : n > 1} is a
bounded subset of C?~%1(I;,R?). By Theorem 4.1, the derivative of S(a,) exists
almost everywhere in Iy and satisfies

’ 1/3 _.
1S @n) || Loo (1. re) < C itg) Jnax, ||an7j||cd71&(71) =: B < o0.
This implies the claim.

Step 2. The aim of this step is to prove the following result.

Theorem 5.1. Let I C R be an open interval. Let a, — a in C4(I,Hyp(d)) as
n — 0o. Then, for almost every x € I,

S(an) (z) — S@) () asn — oo.

By Step 1 and 2, the dominated convergence theorem yields that (5.2) holds, for
each relatively compact open interval Iy € I and each 1 < g < co.
Step 3. Now we show (5.3). Fix z¢ € Iy. We have

S(an)(z0) = M(an(z0)) = M(a(z0)) = S(a)(xo) as n — oo, (5.4)
since the map AT : Hyp(d) — R? is continuous (cf. [AKLM98, Lemma 4.1]). For
arbitrary x € I,

IS@)(@) - S @)z = [S@) ) - SGa) ) + [ SE)(E) - S(an)(0)dt]
xo

< [[8@@) (o) — S(an)(xo)ll2 + [15(2)" = S(an) |1 (19, re)-
Thus, (5.2) and (5.4) imply (5.3).
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Remark 5.2. Alternatively, (5.3) is a consequence of [PR24, Corollary 6.5] and
Lemma 7.1; for this argument it is actually enough that a,, — a in C°(I, Hyp(d))
as n — 0o.

Therefore, in order to prove Theorem 1.3 it remains to show Theorem 5.1. The rest
of the section is devoted to the proof of Theorem 5.1.

5.2. On the zero set of a. Recall that acc(Z3) denotes the set of accumulation
points of the zero set Zz of a : I — Hypy(d). By Lemma 3.1, Z5 = Z;,.

Lemma 5.3. Let I C R be a bounded open interval. Let 3, — a in C%(I, Hypy(d))
as n — 0o. Then, for almost every xg € Z3,

S@En) (o) =0 asn — . (5.5)

Proof. We will show that (5.5) holds for all zg € J, where

J :=acc(Z3) N ﬂ {z € I : x is not reclusive for 3, }
n>1

N ﬂ {z € 1:8(3,) (z) exists}.

n>1

The set J has full measure in Z5, by Lemma 4.6 and Rademacher’s theorem.

Fix zg € J C acc(Z3). Then d;k)(xo) =0forall2 <j<dand 0 <k <d, by
Rolle’s theorem. Let € > 0 be fixed. By continuity, there exists § > 0 such that
I(x0,9) € I and

N e :

@)l caF iz, < 50 2<j<d (5.6)
Since 3, — a in C4(I,Hypy(d)) as n — oo, there exists ng > 1 such that, for
n Z no,

. €l ,
a5 = njllcaTian.)) < 50 25Js d, (5.7)
and
|in,2(20)| < 6%€%. (5.8)

By (5.6) and (5.7), for n > ng and 2 < j < d,

anjllcaF o5y < 183l caen.sy + 185 = @nilloadan.sy < € (5.9)

Since z € J is not reclusive for 3,, and S(a,,)"(x) exists, we may apply Theorem 4.7
to 3, and conclude

1§(@0) (zo)ll2 < C(d) A(6),
where A(9) is defined in (4.3) with a replaced by &,. By (5.8) and (5.9),
A(d) <6e.
Since € > 0 was arbitrary, we conclude that
S@n) (o) = 0 asn — .

The proof is complete. O
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5.3. Admissible data. At points x¢ with as(zg) # 0 we have a splitting of P; and
we may use induction on the degree. The following definition is a preparation for
the induction argument.

Let us recall (from (4.4)) that
I(wo, A) = I(wo, A~ |z(x0)["/?).

Definition 5.4 (C?-admissible data). Let I; C R be an open bounded interval
and Iy € I a relatively compact open subinterval. Let a € C%(I;,Hypy(d)).
Let A > 0 be a constant. We say that (3, Iy, I1, A) is C?-admissible if, for every
xo € Io \ {z : az(x) = 0}, the following holds:

(1) I(ZOaA) g Il-

(2) For all z € I(xo, A),

< = <2. (5.10)

(3) Forall 2 < j<d,1<k<d,and z € I(xg, A),
@ ()] < AF [ag(ao) R, (5.11)

Note that if we take I := I(xq, ), let I shrink to the point xq, assume as(zg) # 0,
and use C%~ 1 instead of C'%-regularity, we recover the notion from Definition 4.10.

Lemma 5.5. Let I; € R be a bounded open interval and Iy € I a relatively
compact open subinterval. Let a, — a in C%(I;,Hypy(d)) as n — co. Set

A :=6max{A41, A}, (5.12)

where, using o ; = a; for convenience and ¢ := dist(Ip, R\ I1),

1/2 1/2

A= supmax{(s ||Cln 2||Loc 11)7‘~n 2|Col ]1)}

(d—j /2}1/d

Ay :=sup max {Ha,nJ”Loo ) )

n>0 2<j<d

Then (3, Iy, I,C(d)A) and (3a,,Io, I;,C(d)A), for n > 1, are C%-admissible, for
some constant C(d) > 1.

Proof. Fix n >0 and xg € Iy \ {z : @n2(x) = 0}. By the definition of A;, we have
I(zo, A1) C I;. By Lemma 4.8,

|, o (20)| < 241 |dn,2(x0)] /2

which entails (as in the proof of Lemma 4.11) that (5.10) holds on I(z¢,6A4;). By
the definition of As, (5.11) holds for £k = d. By Lemma 3.1 and (5.10), we have
|a;(x)] < 27 |az(z0)]?/?, for x € I(xg, A). Thus, (5.11) follows from Lemma 4.9. O

In the following, we will use I(xo, A) as well as its counterpart for a,, instead of a,
that is

L, (z0, A) := I (20, A an 2 (x0)|Y/?). (5.13)
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5.4. Towards a simultaneous splitting. Our next goal is to show that, if a,, — a
in C4(I;,Hyps(d)) as n — oo and (a, Iy, I, A) and (3,, Iy, I1,A), for n > 1, are
C?-admissible, then Ps and Pj, , for n large enough, admit a simultaneous splitting;
see Definition 5.6.

Let I C R be a bounded open interval and Iy € I; a relatively compact open
subinterval. Let 3, — a in C4(I;, Hypy(d)), i.e.,
18 —anllca, gey >0 asn— oo (5.14)

Assume that (3, Iy, I, A) and (3,, Iy, I1, A), for n > 1, are C%admissible for some
A>0.

Fix g € Iy \ {z : az(x) = 0}. By (5.14), there is ng > 1 such that
- - 1.
[l (o) /% = [an,2(0)|'/?| < 3 jaa(a0)'/?, n > no,

and hence y
1 |(~ln 2(1‘0)|1 2 3
- < < o, > ng. 5.15
2 |z (z0)[ /2 5 =To ( )
So, for n > ny,

I(xg,2A) C I, (20, A) C I(x0,2A/3), (5.16)
where I, (g, A) is defined in (5.13). Since (3, lo, I1, A), for n > 1, is C?-admissible
and thanks to (5.16) we see that, for n > ny,

I(J}Q, 214) g 117 (517)
1 (Nln 2(:17)

— < —— =<2 I 2A 5.18
9 = an,2(x0) S2, TeE ('/L‘Ov )a ( )

@\ ()] < AP Jana(z0)|U9/2, 2<j<d 1 <k<d xelzg24). (5.19)

Consider the C% curves

a:= (07 _1’Q3’ e 1Qd) : I(an 2A) — Hyp%(d) g Rda

a, = (0,-1La,3,.-.,a,,4) : Wz, 24) — Hyp%(d) CRY n>no,
where a; = |&2|’j/2&j and a, ; = |Ezn72|*j/zdn,j. Then, by the proof of
Lemma 4.13, we conclude that there is a constant
Cy = Cl(d) >1 (520)

such that, for z € I(zg,2A4),
2" ()[l2 < CrAfas(zo)|7/*  and |la},(2)]l2 < C1Alan,2(x0)| /2.
Let 0 < r < 1 be the radius of the splitting (see Definition 3.5) and define
Jy = (wo, 4C1 A1) = I(z0, 30— ldz(x0)['/?).

Then a(J1) € B(a(xo),r/4) and a,,(J1) C B(a,(z0),7/2), using (5.15). By (5.14),
there is n; > ng such that

la(zo) — 2, (z0)ll2 < =, n > mi. (5.21)

Za
Consequently, B(a,, (zo),r/2) is contained in B(a(xo),3r/4), for n > ny.
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In view of (3.5) and Definition 3.5, we have splittings on Ji,
Ps=PFP. and P; =P, P, n>ni, (5.22)
with the following properties:
(1) dp :=deg P, = deg B, for all n > ny, and dp < d.

(2) There exist bounded analytic functions 1, ..., %4, with bounded partial
derivatives of all orders such that, for z € J; and 1 <17 < dp,

bi(x) = |az(z)[? vs(a(x)),
bn,i(x) = |an2(2)|? ¢i(a,(x), n>mn.

The same is true for the second factors P. and F,,.

Definition 5.6 (Simultaneous splitting). We say that the family {Ps} U{P;, }n>n,
has a simultaneous splitting on an interval Jy if (5.22) and the above properties (1)
and (2) are satisfied.

Note that, applying the Tschirnhausen transformation to P, and P, and by (3.1),
we find bounded analytic functions 1, ..., 14, with bounded partial derivatives of
all orders such that, for x € J; and 1 <7 < d,

bi(x) = |az(z)["? Pi(a(x)),
bn,i(7) = lan2 ()| i(a,(2), n>mn.
Lemma 5.7. We have b,, — b and Bn —bin Cd(jl,Rdb) as n — 00.
Proof. By (5.10) and (5.18), |az|/?, |dn2|"/? € C4(J;) and a,a,, € C*(J,,R?), for
n > ng, and the assertion follows from Proposition 2.1. O
Summarizing, we have the following proposition.

Proposition 5.8. Let I1; C R be a bounded open interval and Iy € Iy a relatively
compact open subinterval. Let 3, — a in C¢(I1, Hypy(d)) as n — co. Assume that
(3,1, 11, A) and (a,, Iy, I1, A), for n > 1, are C%-admissible for some A > 0. Let
xo € Io\ {z : az(x) = 0}. Then the following holds:

(1) There exist an interval Jy containing xo and ng > 1 such that the family
{Ps} U{Ps, tn>n, has a simultaneous splitting (5.22) on Jp.

(2) For the factors in the simultaneous splitting (5.22), b, — b and b, — b in
CHJ1,R%) asn — co.

(3) There exist a relatively compact 0pen~subintem}al Jo € J1~containing xo and
a constant C = C(d) > 1 such that (b, Jo, J1,CA) and (by, Jo, J1,CA), for
n > ng, are C?-admissible.

The properties (2) and (3) also hold for b, b, b, by, replaced by c,cy, €, Ep.

Proof. (1) This was proved above.
(2) Lemma 5.7.
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(3) Set Jy := I(z0,8C1A/r) = I(xo,ﬁ|d2(zo)|1/2), where O is the constant
from (5.20). Then clearly Jy € J;.

Fix z; € Jo \ {z : ba(z) = 0}. Then

T ~
801A |a2(x0)‘1/2'

|171 — 170| <
By Lemma 3.4 and (5.10),
|ba(21)[1/2 < 2as(z1) |2 < 2v/2 |as (o) /2.

Setting
B 16v2Ch A
T
we have ~ ,
B! by(x) ]2 < el o (x0)| /2,
and hence

J(@1, B) := (w1, B~ ba(21)['/?) C (w0, glas(z0)['/?) = Ji.

One checks, exactly as in the proof of Proposition 4.14, that
63 ()] < C(d) A* |ag (o) )72,
forall 2 <i<dp, 1 <k <d, and x € J;. If £ > i, we may~rep1ace as (o)

by ba(21) on the right-hand side. Thus, we may conclude that (b, Jo, J;, CA) is
C?-admissible, for a suitable constant C' = C(d) > 1, by the proof of Lemma 4.11.

To see that also (Bn, Jo, J1,CA) is C4-admissible, fix 1 € Jy \ {z : Bng(x) = 0}.
By Lemma 3.4, (5.15), and (5.18),

bn,2(21) "% < 2|an2(21)]? < 2V2 |an,2(20)[V/? < 3v/2a2(x0) /2.

Hence, using

24/2C1 A
B := 7\[01 ,
r
we find
Jo(21, B) = I(x1, B™" |bp2(21)|"?) € I(x0, 58— laa(x0)['/?) = J1.
The rest follows in the same way as described above. ([l

5.5. The induction argument.

Proposition 5.9. Let I; C R be a bounded open interval and Iy € Iy a relatively
compact open subinterval. Let a, — a in C4(I1,Hypy(d)) as n — oco. Assume
that (3, Iy, Iy, A) and (3,, Iy, 11, A), for n > 1, are C%-admissible for some A > 0.
Then, for almost every x € Iy,

S@E,) () > S8@) ()  asn — oo. (5.23)

Proof. We proceed by induction on d. The base case is trivial, since Z is the unique
polynomial in Tschirnhausen form of degree 1. Let us assume that d > 2 and that
the statement is true for monic hyperbolic polynomials of degree < d — 1.

If © € acc(Z;) and S(3)(z) exists, then S(3)'(z) = 0. Thus, by Lemma 5.3, it is
enough to show that (5.23) holds for almost every = € Iy \ {z : az(x) = 0}.
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Fix zg € Ip\{x : az(z) = 0}. By Proposition 5.8, there exist intervals .J;  Jy 3 o,
ng > 1, and C = C(d) > 1 such that the family {P; }U{P;, }n>n, has a simultaneous
splitting (5.22) on Jy, (b, Jo, Ji, CA) and (Bn, Jo, J1,CA), for n > ng, are C-
admissible, and b,, — b and b,, — b in C4(J1,R%) as n — oo.

We may assume that, for x € Jq,
) = (A (3(2)), A3 (E(2)), -, A (B(2)))
is the increasingly ordered root vector of B,,) and, for n > ny,
pn(@) = (A Gn(2)), NG (@), o, A Ba(2)))
is the increasingly ordered root vector of B, (,); see Definition 3.5. Then
w(x) + dib(bl(x), oobi(2))  and  p(x) + dib(bn,l(x), ey bp ()

are the corresponding root vectors for P o) and PBn(m)’ respectively. By induction
hypothesis and since b}, ; (z) — b} (z) as n — oo, we have

wh () = p'(x)  asn — oo,
for almost every = € Jj.

Treating the second factors P, and P, analogously, we conclude that (5.23) holds
for almost every z € Jj.

The set Iy \ {z : az(z) = 0} can be covered by the open intervals Jy and this cover
admits a countable subcover. This ends the proof. [l

5.6. Proof of Theorem 5.1. Let I C R be an open interval. Let a, — a in
C4(I,Hyp(d)) as n — oo. The Tschirnhausen transformation effects a shift of
S(a) by 3(a1,...,a1) and of S(a,) by 2(an1,...,an1). The new coefficients are
polynomials in the old ones, see (3.1). Hence we may assume that the polynomials
are all in Tschirnhausen form (by Proposition 2.1). Then Theorem 5.1 follows from
Lemma 5.5 and Proposition 5.9.

This also completes the proof of Theorem 1.3.

Remark 5.10. We need C? convergence in Lemma 5.3. For all other arguments,
it would be enough to work in the class C4~ 11,

6. PROOFS OF THE MAIN RESULTS

In this section, we will deduce Theorem 1.1 and Corollary 1.2 from Theorem 1.3.
We also prove Theorem 1.6.

6.1. A multiparameter version. The following theorem is a multiparameter ver-
sion of Theorem 1.3.

Theorem 6.1. Let U C R™ be open. Let a, — a in C4(U,Hyp(d)), i.e., for each
relatively compact open subset Uy € U,

la—anllca@, gy >0 asn—oo.

Then {S(an) : n > 1} is a bounded set in COY(U,R?) and, for each relatively
compact open subset Uy € U and each 1 < q < 00,

”S(a) - S(an)”Wl:q(UO’]Rd) —0 as n — oQ.
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Proof. Let us assume that Uy is an open box Uy = I X - - - x I, with sides parallel
to the coordinate axes. Set A := S(a) and A, := S(ay). Let z = (x1,2') and for
¥ € Uj= I x -+ x I, consider

Ap () = 01\ (21, 2") — D1 A (1, 2")||d dy.
1y

Then A,(z') — 0 as n — oo, by Theorem 1.3. The boundedness of {\, : n >
1} in C%Y(U,R%) is a consequence of Bronshtein’s theorem 4.1. It implies that
|01 A — 01 \,| is dominated on Uy by an integrable function. By Fubini’s theorem,

/UU |O1A(z) — D1 n ()2 de :/ A, (2" d'.

Ug
By the dominated convergence theorem, we conclude that
/ |01 A (z) — D1 n(2)||dde — 0  asn — .
Ug
In an analogous way, one sees that [|0;A — 0; A || La(uy,re) — 0 as n — oo, for each
I1<j<m.

We may conclude that [[A — A, || Lo (v, re) — 0 as n — oo from the fact that this is
true component-wise (see Step 3 in Section 5.1).

For general Uy, we observe that there are finitely many open boxes as before that
are relatively compact in U and cover Uy. This ends the proof. (]

6.2. Proof of Theorem 1.1. It is clear that Theorem 6.1 implies Theorem 1.1
because C4(U, Hyp(d)) is first-countable.

6.3. Proof of Corollary 1.2. Corollary 1.2 is an immediate consequence of the
following corollary of Theorem 6.1 and Example 1.12.

Corollary 6.2. Let U C R™ be open. Let a,, — a in C4(U,Hyp(d)) as n — oo.
Then, for each relatively compact open set Uy @ U and each 0 < a < 1,

”S(a) - S(an)||co,a(U07Rd) -0 asn— oo.

Proof. Again we may assume that Up is a box (and hence has Lipschitz boundary).
Then the assertion follows from Theorem 6.1 and Morrey’s inequality,

18(a) = S(@n)llco.e @y ray < C11S(a) = S(an)wra(uy,ra),
where a =1 —m/q, ¢ > m, and C = C(m, q,Up). |
6.4. Proof of Theorem 1.6. The restriction ¢ := >\T|Hypo(d) : Hyp®(d) — R? is

real analytic, by Lemma 3.3. Thus Theorem 1.6 is a consequence of Proposition 2.1,
observing that S° = 1, and that |W||ck+1(Vo gray depends only on d, k, and Vp.
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7. APPLICATIONS

In this section, we give several applications of our results. In Section 7.1, we clarify
their relation to the continuity results for the solution map of general polynomi-
als obtained in [PR24]. In Section 7.2, we deduce that locally the surface area of
the graphs of the roots of hyperbolic polynomials is continuous and conclude local
lower semicontinuity of the area of the zero sets of hyperbolic polynomials. In Sec-
tion 7.3, we prove a theorem on approximation by hyperbolic polynomials with all
roots simple. Finally, we obtain continuity results for the eigenvalues of Hermitian
matrices, in Section 7.4, and for singular values, in Section 7.5.

7.1. Relation to the results for general polynomials. The case of general
complex (not necessarily hyperbolic) polynomials is treated in [PR24] which builds
on the results of [PR16, PR18]. The crucial difference is that in general there is no
canonical choice of a continuous ordered d-tuple of the complex roots. Even worse,
if the parameter space is at least two-dimensional, then a parameterization of the
roots by continuous functions might not exist; but there exist parameterizations
by functions of bounded variation, see [PR20a]. Therefore the continuity results in
[PR24] are formulated in terms of the unordered d-tuple of the roots.

Let us compare the results obtained in this paper with the ones of [PR24]. To this
end, we investigate the metric space A44(R) of unordered d-tuples of real numbers.
It is a simple instance of the space A4(R™) considered in [Alm00] and [DLS11].

For x = (z1,...,24) € R% let [x] = [x1,...,74] be the corresponding unordered
d-tuple, i.e., the equivalence class (or orbit) of & with respect to the action of the
symmetric group Sq on R? by permutation of the coordinates:

ox = (xg(l),mg(g),...,xo(d)), o € Sy, SCERd.

The set A4(R) := {[z] : z € R?} with the distance
1
d([z], [y]) := min — ||z —oyll

oESy \/a

is a complete metric space. If we identify the elements of 4,(R) with formal sums
1 Zgzl[[xi]], where [z;] denotes the Dirac mass of z; € R, then d is induced by the
L? based Wasserstein metric on the space of probability measures on R.

For z € R? let 2T € R? be the representative of the equivalence class [x] with
increasingly ordered coordinates. Clearly, T only depends on [z] and thus we have
an injective map ()T : A4(R) — RY. It is a right-inverse of [ ] : R — A4(R).

Lemma 7.1. We have
d([z], [y]) = %

In particular, ()7 : Ag(R) — R? and [ ] : R? — A4(R) are Lipschitz maps.

HxT_yTHQa xv@/ERd~

Proof. Evidently,

(i) b)) = (. 51D = min —= 2" — oy < =

Vd

2 < —= lla® =yl
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Thus the assertion will follow from the claim that ||zT — yT[| < ||z — y]|2, for all
x,y € R%. For d = 2, the claim is equivalent to

(z1 — 1) + (22 — 92)° < (21 — 12)° + (22 — 1)°

whenever z1 < x5 and y; < yo. By a simple computation, it is further equivalent
to the true statement (ze —x1)(y2 —y1) > 0. The general case follows from the fact
that any permutation is a finite composite of transpositions. ([l

By Lemma 7.1, the map ()" : A4(R) — R? satisfies the conditions of an Alm-
gren embedding (as defined in [PR24] following [Alm00] and [DLS11]). Thus The-
orem 1.3 can be interpreted as a special version of the general theorem [PR24,
Theorem 1.1] with the important difference that S(a,,) — S(a) in Wli‘f as n — 00,
see (1.3), holds for each 1 < ¢ < oo, while in the general result the corresponding
fact is valid only for 1 < ¢ < d/(d —1).

For the next theorem, which is a stronger version of [PR24, Theorem 1.3] in the
hyperbolic case, we need to recall the notions of metric speed and g-energy.

Definition 7.2 (Metric speed and g-energy). Let I C R be an open interval and
a € C4I,Hyp(d)). Consider the Lipschitz curve A(z) := [S(a)(x)], for z € I, in
the metric space A4(R). Then (see [AGSO08]) the limit

exists for almost every x € I and is called the metric speed of A at x. The g-energy
of A on a subinterval Iy C I is defined by

&)= [ (Al@)" de

Theorem 7.3. Let I C R be an open interval. Let a, — a in C*(I,Hyp(d)) as
n — oco. Set A :=[S(a)] and A, := [S(an)]. Then, for each relatively compact open
interval Iy € I,

ld(A, Ap)llLoe(ry) =+ 0 asn — oo, (7.1)
|||A| — ‘A"‘HLQ(Io) -0 asn— oo, (7.2)
|€0.00(A) = Eq1y(An)| = 0 asn — oo, (7.3)

for each 1 < q < 0.

Proof. First, (7.1) is a consequence of (5.3) and Lemma 7.1. By [PR24, Lemma
11.1],

A 1 l A _ L a Y (x
Alz) = 2= 15@ @z and - [An|(z) = = [S(an) (@)ll2

for almost every x € I. Thus, (7.2) and (7.3) follow from Corollary 1.4. O
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7.2. Continuity of the area of the solution map. Let us first expand Corol-
lary 1.4.

Corollary 7.4. Let U C R™ be open. Let a, — a in C4(U,Hyp(d)) as n — .
Let R € R[ X7, ..., Xam] be any real polynomial in the d-m variables X1, ..., Xam.-
Set A= (A1,...,Aq) :=8(a) and A, = (An,1,---, Ana) == S(an), forn > 1. Then,
for each relatively compact open subset Uy € U and each 1 < g < o0,
HR((&-)\j)lgigm> - R((ai)\n,j)lgigm> ’

1<j<d 1<j<d

—0 asn— oo, (7.4)
La(Uo)

and consequently,

HR((&)\n,j)lgigm) ’

1<5<d

- (e

1<5<d

asn —oo.  (7.5)

La(Uo) La(Uo)

Proof. Clearly, (7.5) is a consequence of (7.4).

Let us prove (7.4). It is enough to show the assertion for monomials R. Let us
proceed by induction on the degree ¢ of the monomial R. For ¢ = 1, the assertion
follows from Theorem 6.1 in view of

10:A; — OidnjllLaquo) < 10X — OiAnll Loy r)-
If £ > 2, then, by Holder’s inequality,
103, Njy -+ 0y Njy — Oiy Ay "'6i4)\n,jz”Lq(Uo)
S Os, Ajy - 0i Njy — Oy Ajy -+ O Njo_y - Oy Al La(ue)
195 Mgy 0 Aoy OiAnge — O Anjs -+ O An, | Lau)
<03 Ajy -+ 03y A je Moo o) 103 Aje = 0 An el Lacur)
F 100 Ajy -+ Oip i Njey = Ois Angy + Oy Anjos | La o) 105, Ansje | oo (1)

which tends to zero as n — 0, by the induction hypothesis, because

H o le 1 ]tz 1HL°°(U0) <C and Haitz/\n,jeHL“’(Uo) <C

for a constant C' > 0 independent of n and iy, ji, by Bronshtein’s theorem (see
Theorem 4.1). O

Let f: U — R? be a Lipschitz map, where U C R™ is open. We recall that the
Jacobian |J f| of f is the square root of the sum of the squares of the determinants
of the k x k minors with k& = min{m, d} of the Jacobian matrix

(a f])1<z<m7
1<5<d

which exists almost everywhere, by Rademacher’s theorem.

Corollary 7.5. Let U C R™ be open. Let a, — a in C4(U,Hyp(d)) as n — oc.
Then, for each relatively compact open subset Uy € U and each 1 < q < o0,

H|J a))| — |J(S( |HL«(U0)_>0 as n — 0o,

and consequently,

117(S@N Loy = T S@ Lo,y a8 1 — 0.
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Proof. Let My,...,My, and M, 1, ..., M, , denote the determinants of all the £ x &
minors with & = min{m, d} of the Jacobian matrices of S(a) and S(a,,), respectively.
Fix 1 < ¢ < oo. Then, by Holder’s inequality,

7S @)~ TS @ oy < 0617CO TS @)~ 7S @) 2
and
1/2 1/2
1178 @)1 = I S@Iuery = I ( ZW Z M2 ) e
1/2
< H{ ZMf - ZMn HL2‘1(U0) - H ZMQ Z Lq(U0
Now it suffices to apply Corollary 7.4. O

Next we will combine Corollary 7.5 with the area and the coarea formula (see e.g.
[EG92]) which we recall for the convenience of the reader.

Let f:R™ — R? be Lipschitz and let £ C R™ be Lebesgue measurable. The area
formula states that, if m < d, then

[anae= [ wEa st w)anr o)

The coarea formula posits that, if m > d, then
[1side= [ i w)dy
E Rd

Recall that H* denotes the k-dimensional Hausdorff measure, in particular, #° is
the counting measure.

Corollary 7.6. Let U C R™ be open. Let a,, — a in C4(U,Hyp(d)) as n — oo.
Set X :=8(a) and A, == S(ay), forn > 1.

(1) If m < d, then for each relatively compact open subset Uy € U,

9 H(Uo N AL (y) dH™ (y) — y H(Uo N AT (y)) dH™ (1)

as n — o0.

(2) If m > d, then for each relatively compact open subset Uy € U,

H™ Uy NN y) dy — | H™ YUy N A (y)) dy
R4 Rd

as n — oQ.

Proof. This is an immediate consequence of Corollary 7.5 (for ¢ = 1) and the area
and coarea formula. (]

We can also conclude that the surface area of the graphs of all the single roots
S(an); = /\; oay, for 1 < j <d, is locally convergent as n — oo.
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Corollary 7.7. Let U C R™ be open. Let a,, — a in C4(U,Hyp(d)) as n — oo.
For each 1 < j < d and for each relatively compact open subset Uy € U, the surface
area of the graph of A, ; := S(an); converges to the surface area of the graph of
A= 8(a); as n — oo: if Ay () == (2, \j(2)) and Nj(z) == (x,\j(x)) denote
the corresponding graph mappings, then

/Hm(xn,j(Uo)) — Hm(XJ(Uo)) as n — o0.
Proof. We have
. m 1/2 B m
= (14 30A)2) T and ] = (14 3 @A)?)
1=1 i=1

As in the proof of Corollary 7.5, we have
I3+ ) - (1 L) L,
<[ S - Lo,
i=1
= H i(a,xj) - i(ai)\mj) \
i=1

i=1

1/2

LY (Uo)

So the assertion follows from Corollary 7.4 and the area formula. O

It follows that the area of the zero sets of C% families of hyperbolic polynomials of
degree d locally has a lower semicontinuity property; for the reader’s convenience,
we restate Corollary 1.9:

Corollary 7.8. Let U C R™ be open. Let a, — a in C4(U,Hyp(d)) as n — oc.
For any relatively compact open Uy € U, consider the zero sets
={(z,y) € Up xR : Py;y(y) =0}  and
—{(:v y) €U xR: P, (oy(y) =0}, n>1
Then
liminf H™(Z,) > H™(Z).

n—oo
Proof. Set A :=8(a). Fori=2,...,d,let E; :={x € Up: \i—1(x) = A\i(x)}. Then,
using the notation of Corollary 7.7,
d
H™(Z) =H™(M(Uo) + Y H™(Ni(Uo \ Ey)). (7.6)
=2
Analogously, setting A\, := S(a,) and E,; := {& € Uy : Api—1(z) = A i(z)}, we

have
d

H™(Zn) = H" A1 (U0)) + Y H™ Mi(Uo \ B i) (7.7)

i=2
By the continuity of AT : Hyp(d) — RY, for each i = 2,...,d and each x € Uy,
limsup1g, ,(z) < 1g,(x). (7.8)

n—oo
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By Theorem 5.1 (applied coordinate by coordinate), we have that |J\, ;| — [JA;]
as n — oo almost everywhere in Up. By Bronshtein’s theorem (Theorem 4.1), there
is a constant B > 0 such that H [T A il H < B for all n > 1. Thus, by the area

formula and the reverse Fatou lemma,

lim sup Hm(xn,i(En,i)) = lim sup/ 1g,,
Ug

n—oo n—oo

L= (Uo)

n—oo

§/ lim sup (lEm
Uo '

< / limsup 1g, , - limsup [J\, ;| dz
Ug

n—oo n—oo
E;
where we used (7.8) in the last inequality.

Together with (7.6), (7.7), and Corollary 7.7, this gives

d d
lim inf H™ (Z,) = lim inf (;Hm(An,i(Uo)) -3 H" (i () )
d . B dh B
= ; hnni}gf?-[m(kn,i(Uo)) - ;hﬂsogp H™ (Anyi(Enyi))
d d
2 ZHm(Xi(Uo)) - ZHm(Xi(Ei)) =MN"(Z)
i=1 i=2
which ends the proof. O

7.3. Approximation by hyperbolic polynomials with all roots distinct.

We recall a lemma of Wakabayshi [Wak86] which extends an observation of Nuij

[Nui68].

Lemma 7.9 ([Wak86, Lemma 2.2]). Let P, € Hyp(d) and set
Ps(Z):=(1+s)"'P(Z), seR. (7.9)

Then P, s € Hyp(d) for all s € R and there are positive constants ¢; = ¢;(d),
1 =1,2, such that, if )\I(a7 §) < < )\g(a, s) denote the increasingly ordered roots
of P, s, then

)\;(375) - A;_l(a,s) >cls|, forseRand?2<j<d, (7.10)
and
0< :l:()\}(a) - /\jT-(a,s)) <ecols|, for £s>0andl<j<d. (7.11)
In conjunction with our findings, Lemma 7.9 leads to the following approximation
result.

Corollary 7.10. Let U C R™ be open and a € C%(U,Hyp(d)). There exzists a
sequence (an)n>1 € CH(U,Hyp(d)) with the following properties:

(1) a, — a in C4U,Hyp(d)) as n — oo;
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2) S(an)1(z) < S(an)2(z) < -+ < S(an)a(z) for allz € U and alln > 1;

S
3) S(a,) € CHU,RY) for alln > 1;
S

4) S(an) = S(a) in CP(U, R%), for all 1 < ¢ < oo, as n — 00;

(2)
3)
(4)
(5) for any relatively compact open Uy @ U, consider the zero sets

Z ={(z,y) €Up x R: Pyp)(y) =0}  and
Zy ={(z,y) €Up xR: P, (»(y) =0}, n>1

Then lim, oo H™(Zy,) exists and

lim H™(Z,) > H™(Z).

n—oo

Proof. Let (sp)n>1 be any positive sequence of reals that tends to 0. Consider the
polynomial P, (defined in (7.9)), where x € U, and let a, () be its coefficient
vector. Then, by Lemma 7.9, a, € C%(U, Hyp(d)), for n > 1. We will show that
the sequence (a,)n>1 has the desired properties.

(1) This is clear by the definition (7.9) and since s, — 0 as n — 0.
(2) follows from (7.10) and the fact that s, > 0 for all n > 1.

(3) For fixed z € U, %Pan(x)(Z) does not vanish at any root of P, (5, by (2). So,
by the implicit function theorem, the roots of P, (. are of class C? in a neighbor-
hood of . This implies (3).

(4) is a consequence of (1) and Theorem 1.1.

(5) Using the ‘notation of Corollary 7.7, for each n > 1, the set Z, is the union
of the graphs A, ;(Up) of the single roots A, j|lu, = S(an)jlu,, for 1 < j < d, and
these graphs are pairwise disjoint, by (2). Thus, by (1) and Corollary 7.7,

d d

lim H™(Z,) nlggole (A (Vo)) ZIH (\(U0) > H™(Z).
i= i=

For the inequality at the end, note that the union Z = U?Zl 2 (Up) is not necessarily

disjoint; see also Corollary 7.8. a

7.4. Perturbation theory for Hermitian matrices. Let Herm(d) denote the
real vector space of complex Hermitian d x d matrices. With A € Herm(d) we
associate its increasingly ordered eigenvalues A(A4) < AJ(4) < - < )\E(A) and
thus obtain a continuous map

AT =L, . A)) : Herm(d) — RY. (7.12)

Proposition 7.11 (Weyl’s perturbation theorem [Wey12]; see e.g. [Bha97, II1.2.6]).

Let A, B € Herm(d). Then
IXT(A) = XT(B)lls < |14~ B, (7.13)

where ||A — B|| denotes the operator norm of A — B.
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In [Bha97], the result is stated for eigenvalue vectors with decreasing eigenvalues,
but reversing the order evidently leaves the left-hand side of (7.13) unchanged.
As a consequence of Proposition 7.11, the map (7.12) induces a bounded map

£ := (N, : C"Y(I,Herm(d)) — COY(I,RY), A N0 A, (7.14)

which takes Lipschitz curves of Hermitian matrices to Lipschitz curves of their
increasingly ordered eigenvalues. The Lipschitz constants satisfy

|5(A)|Co,1(T,Rd) < ‘A|CU«1(7,Herm(d))7 (7.15)

if Herm(d) is endowed with the operator norm and R¢ with the maximum norm.
This remains true if we replace the interval I by a bounded open set U C R™.

The following corollary includes Theorem 1.10.
Corollary 7.12. Let U C R™ be open. Then:
(1) The map
£:CY(U, Herm(d)) — CIH(U,R?Y), A Ao A,
s continuous, for all 1 < g < oo.
(2) The map
£ : CYU,Herm(d)) — CO*(U,RY), A~ Ao A,
is continuous, for all 0 < a < 1.

(3) If A, — A in CHU,Herm(d)) as n — oo, then over each relatively compact
open subset Uy € U the surface area of the graph of £(A,); converges to
the surface area of the graph of £(A); as n — oo, for each 1 < j < d.

Proof. (1) We have the commuting diagram

£

C4(U,Herm(d)) CoH(U,R?)
x /
C*(U,Hyp(d))

where P sends A to its characteristic polynomial P4. The coefficients of Py are
given by polynomials in the entries of A. Thus, Proposition 2.1 implies that the
map P is continuous. Consequently, £ =S o P is continuous by Theorem 1.1.

(2) This follows similarly from the continuity of P and Corollary 1.2.

(3) Use Corollary 7.7 and the continuity of P. O
The following example shows that &£ is not continuous with respect to the C%!
topology on the target space.

Example 7.13. The sequence (4,), of curves of symmetric 2 x 2 matrices

1
An(x)—<g _xl>, x € R,
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converges to

A(x):(g ‘S), z € R,

uniformly on every compact interval in all derivatives. We have

E(An)(@) = (- \/:c2 + % 2 + %)
and
E(A)(x) = (==, [2])-
Hence, Example 1.12 shows that the Lipschitz constant of £(A) — £(A,,) on each

bounded open interval containing 0 is bounded below by 2 — v/2 which shows that
E(A,) A E(A) in the C%! topology.

Given that the map & is defined and bounded on C%! (U, Herm(d)) (see (7.14) and
(7.15)), it is natural to ask whether in Corollary 7.12 one can replace C¢ by C*,
see Question 1.11.

If d = 2, this is indeed the case as evidenced in the following proposition.
Proposition 7.14. Let U C R™ be open. Then:
(1) The map
£:C'(U,Herm(2)) — C'(U,R?), A Mo A,
18 continuous, for all 1 < ¢ < oo.
(2) The map
£:CYU,Herm(2)) — C**(U,R?), A Ao A,
is continuous, for all 0 < a < 1.

(3) If A, — A in C*(U,Herm(2)) as n — oo, then over each relatively compact
open subset Uy € U the surface area of the graph of E(A,,); converges to
the surface area of the graph of E(A); as n — oo, for j =1,2.

Proof. Tt suffices to prove (1) in the case m = 1. Then the multiparameter version
of (1) as well as (2) and (3) follow by the arguments given in detail for hyperbolic
polynomials, if one uses Proposition 7.11 instead of Bronshtein’s theorem 4.1.

Let us show (1) for m = 1. We may assume that the trace of A vanishes, by
replacing A by A — 1 tr(A)I. Thus, we have

A:( a. b—i—zc)7
b—ic —a
where a,b,c € R, and

AT(A) = (= Va2 + b2 + 2, Va2 + 12+ ).

Let us assume that a,b,c € C1(I,R), where I C R is an open interval. Then

I3z a(z)?+b(x)2+ c(z)? = p(z)
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is locally Lipschitz, differentiable almost everywhere, and

| (0)| < sup |4 (z)l|2 = V2 sup /o' ()2 + ¥/ (2)? + ¢/ (2)2, (7.16)

xzely xely

for each relatively compact open subinterval I; € I and each xg € I; where p/(zo)
exists, by (7.15).

Suppose that

A, = (b an. bn +ZC”> — A= (b—az'c b—i—zc) in C'(I, Herm(2))

n — 1Cn —Qp —a
as n — oo. It suffices to prove that
| = tnllwrary =0 asn — oo, (7.17)

for each relatively compact open subinterval Iy € I and all 1 < ¢ < oo, where
Un = /a2 + b2 + 2.

y (7.13), we have
1t — pinllLoe(ryy = 0 asn — oo,

for each relatively compact open subinterval I; € I.
We claim that, for almost every x € I,

() = @' (x)  asn — oo.

This is clear on the set Q := {z € I : a(x)? + b(x)? + c(x)? # 0}: for each zg € Q,
the derivative p/(z0) exists, and, by assumption, a(x¢)? + b(x0)? + c(z0)? # 0 if n
is large enough so that also p (x) exists and u!, (z9) = 1/ (zo).

Now consider Z := {zx € I : a(z)? + b(z)? + ¢(x)? = 0} and the set acc(Z) of
accumulation points of Z. Note that o', ¥’, and ¢’ vanish on acc(Z). Fix x¢ € acc(Z)
and € > 0. By continuity, there exists § > 0 such that I(zo,5) € I and

sup o/ (2)2 +V(z d(x)? < <
z€1(z0,0 ) 2
As A,, — Ain C1(I,Herm(2)), there is ng > 1 such that, for all n > ng,
sup  Va (2)2 + b, ()2 + ¢, (x)2 <e.
z€1(x0,0)

If u!, (zo) exists, then we conclude, by (7.16), that
lin (20)| < V2e, n > mnp.

This implies the claim, since the set of accumulation points of Z, where all y,, and
w are differentiable, has full measure in Z and p’ vanishes on this set.

Now the dominated convergence theorem implies that
It = pyllpay =0 asn — oo,

for each relatively compact open subinterval Iy € I and all 1 < ¢ < oo, completing
the proof of (7.17). O
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Remark 7.15. Corollary 7.12 has an evident analogue for skew-Hermitian matrices
which simply follows from the fact that a d x d matrix A is skew-Hermitian if and
only if 1A is Hermitian. The eigenvalues of A and ¢A just differ by multiplication
by 1.

On the other hand, there is no consistent continuous choice of the eigenvalues of
unitary d x d matrices. Consider, for example, the curve of unitary matrices

2mix
A(m)z((l) 60 ), z €R,

with the eigenvalues A1 (x) = £e™@. Even though Ay : R — (S!)? is continuous,
there is no continuous choice of the eigenvalues S! — (S')? of the curve of unitary
matrices induced by 4 on S = R/Z (because A+ (0) = +1 # F1 = A (1)).

In this case, and more generally for normal matrices, the general continuity results
of [PR24] apply. For the perturbation theory of normal matrices, see [Rail3],
[PR20b], and the survey [PR25].

7.5. Singular values. Let us consider the vector space Mp 4(C) of complex D x d
matrices, where d < D. The singular values of A € Mp 4(C) are the nonnega-
tive square roots of the eigenvalues of the Hermitian matrix A* A, usually ordered
decreasingly

01(A) > 09(A) > - > 04(A4) > 0.
This defines a map o = (01,...,04) : Mp 4(C) — R<,

Let us consider the real vector space Mp 4(C) xR and the homogeneous polynomial
of degree 2d,

F(A,r) :=det(r’T— A*A), (A,r)c€ Mp 4(C) x R.

Then f is Garding hyperbolic with respect to the direction (0,1) € Mp 4(C) x R
(see [BGLSO01, Sec. 6]) which means by definition that all roots of the univariate
polynomial

Par(Z) = f((A,7) = Z(0,1)) = det((r — Z)*1— A*A)
are real. Indeed, the roots of P4, (in decreasing order) are
r+o1(A),r+02(A),...,r+04(A),r —oq(A),...,r —o1(A).
Hence, by Theorem 4.1, ¢ induces a bounded map
0. C*LN U, Mp 4(C)) — COY(U,RY), A oo A,

where U C R™ is open. In general, this map is not continuous, which follows from
Example 7.13, but we have the following result.

Corollary 7.16. Let U C R™ be open. Then:
(1) The map
o 1 C*Y(U,Mpq(C)) = CONU,RY), A oo,

is continuous, for all 1 < g < cc.
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(2) The map
0. : C*U, Mp 4(C)) = C¥*(U,R?), Awsco0A,
is continuous, for all0 < a < 1.

(3) If A, — A in C?*(U, Mp 4(C)) as n — oo, then over each relatively com-
pact open subset Uy € U the surface area of the graph of 0;(A,) converges
to the surface area of the graph of o;(A) as n — oo, for each 1 < j < d.

Proof. Similarly as in the proof of Corollary 7.12, we have, for each r € R, a
continuous map C?4(U, Mp 4(C)) — C?4(U, Hyp(d)), A + Pa.., which can be used
to reduce the statements of the corollary to the corresponding one for hyperbolic
polynomials. O

Observing that the Hermitian matrix

0 A
A= -
(& a)
where A is the D x D matrix resulting from A by adding D — d columns consisting
of zeros, has the eigenvalues

Ul(A)a Tt Gd(A)v 07 AR Oa _a'd(A)v AR _Ul(A)7
we conclude from (7.13) that, for A, B € Mp 4(C) and 1 <i <d,
04(A) — 03(B)| < |A — B < |A — B2 = |tr (A — B)*(A — B))["/2

— 2 tr (A= B)"(A— B))[/2 = V2| A - Bl
Consequently, the map

0. : COYU, Mp 4(C)) — C*HU,R?)
is well-defined and bounded. So, in analogy to Question 1.11, it is thus natural to
ask whether in Corollary 7.16 one can replace the assumption C2?¢ by C*.

8. RESTRICTED MULTIPLICITY

In this section we prove a refinement of Theorem 1.3 which accounts for the case
that the maximal multiplicity of the roots is smaller than the degree.

First we recall the following version of Bronshtein’s theorem.

Theorem 8.1 ([PR15, Theorem 2.1]). Let I C R be an open interval and a €
CP~LY(I,Hyp(d)), where p is the mazimal multiplicity of the roots of Py, for
x € I. Then any continuous root A\ € C°(I) of P, is locally Lipschitz.

If p = d, then we have the bound (4.1).

Assume p < d and suppose that P5 is in Tschirnhausen form. Let )\I(x) <... <
)\g(x) be the increasingly ordered roots of Ps(yy, for x € I, and consider

Te) — Mz
[Aa(2) = A1 (@)] and oy :=sup a(zr). (8.1)

ming <i<a—p [, (7) — Al ()] el

az) =
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Then each continuous root A of Py satisfies, for any pair of relatively compact open
intervals In € I; € I,

=P 1~ 1/2 -
Ncosay < Cd) oy max {6~ ol /2 . ||

1/2
Co1(Ty)’

p—i /p
~(p—1) ~ 2
e (o8l Zay)

(p— o p—i\ 1/p
v (18] oy (min aa(e)) =) 7,
z€lo

i>p

where ¢ := dist(Ip,R \ ).

The next theorem generalizes Theorem 1.3.

Theorem 8.2. Let I C R be an open interval. Let a, — a in CP(I,Hyp(d)) as
n — oo, where p is the maximal multiplicity of the roots of Py, for x € I. If
p < d assume that, for each relatively compact open I, € I,

agr, < o0.

Then {S(an) : n > 1} is a bounded set in C%Y(I,R?) and, for each relatively
compact open interval Iy € I and each 1 < q < oo,

1S(@) — S(an)llwra(ry,rey = 0 asn — oo.

Proof. In view of Theorem 1.3, we may assume that p < d. Furthermore, we may
assume that all polynomials are in Tschirnhausen form.

We first observe that, for each relatively compact open I; € I,
|S(a) — S(én)||Loo(1hRd) —0 asn— oo, (8.2)

as a consequence of [PR24, Corollary 6.5] and Lemma 7.1. (For this it is actually
enough that 3,, — a in CY(I1, Hyps(d)) as n — 00.)

Fix relatively compact open subintervals Iy € I; € I. Then there exists ng > 1
such that for all n > ny the maximal multiplicity of the roots of P on I; is at most
p. (If not this is violated on a sequence z,, in I, leading to a contradiction at an
accumulation point of this sequence in I, since AT : Hyp;(d) — R? is continuous.)

Consequently, the functions a;, : I; — R associated to P5, as in (8.1) are well-
defined, for all n > ny. By the assumption ay, < co and (8.2), a, — « uniformly
on I; as n — oo and thus the sequence a, 1, := sup,¢;, @, (x) is bounded.

Hence, by Theorem 8.1, the derivative of S(a,) exists almost everywhere in Iy and
is uniformly bounded on Iy by a constant independent of n.

By Lemma 3.3 and Proposition 2.1, we can split P5 and Pj,, for large n, locally
in factors of degrees at most p in a simultaneous way. This allows us to apply
Theorem 5.1 in the case d = p and conclude that, for almost every x € Iy,

S(an) (z) — S(@)'(z) asn — .

Now it suffice to invoke the dominated convergence theorem to finish the proof. [
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