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Abstract. Hyperbolic polynomials are monic real-rooted polynomials. By
Bronshtein’s theorem, the increasingly ordered roots of a hyperbolic polyno-

mial of degree d with Cd−1,1 coefficients are locally Lipschitz and the solution

map “coefficients-to-roots” is bounded. We prove continuity of this solution
map from hyperbolic polynomials of degree d with Cd coefficients to their in-

creasingly ordered roots with respect to the Cd structure on the source space

and the Sobolev W 1,q structure, for all 1 ≤ q < ∞, on the target space. Con-
tinuity fails for q = ∞. As a consequence, we obtain continuity of the local

surface area of the roots as well as local lower semicontinuity of the area of
the zero sets of hyperbolic polynomials. We also discuss applications for the

eigenvalues of Hermitian matrices and singular values.
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1. Introduction

Determining the optimal regularity of the roots of polynomials whose coefficients
depend smoothly on parameters is a much studied problem with a long history. It
has important applications in various fields such as partial differential equations
and perturbation theory.

The subject started with Rellich’s work [Rel37] on the analytic perturbation theory
of linear operators. Bronshtein [Bro80] proved Gevrey well-posedness of the hy-
perbolic Cauchy problem with multiple characteristics using his result [Bro79] on
the Lipschitz continuity of the roots of hyperbolic polynomials. Spagnolo [Spa00],
motivated by his analysis of certain systems of pseudo-differential equations, conjec-
tured that the roots of smooth curves of (not necessarily hyperbolic) polynomials
admit absolutely continuous parameterizations. This conjecture was proved and
the optimal Sobolev regularity of the roots was established in a series of papers by
Parusiński and Rainer [PR16, PR18, PR20a], after the optimal result for radicals
had been obtained by Ghisi and Gobbino [GG13]. For a more comprehensive ac-
count of the history of the problem and its ramifications, e.g., in the perturbation
theory of linear operators, we refer to the recent survey article [PR25].

In this paper, we focus on the class of monic hyperbolic polynomials for which the
regularity problem has a special flavor; the general case of monic complex polynomi-
als is treated in [PR24]. A monic real polynomial of degree d is called hyperbolic if
all its d roots (counted with multiplicities) are real. Hyperbolic polynomials appear
naturally as the characteristic polynomials of Hermitian matrices for instance.

We refer by Bronshtein’s theorem to the statement that any continuous system of
the roots of a Cd−1,1 family of hyperbolic polynomials of degree d is actually locally
Lipschitz continuous (i.e. C0,1). In general, this is optimal. Bronshtein [Bro79]
originally proved a version for Cd curves of hyperbolic polynomials of degree d
(under these assumptions the roots can be represented by differentiable functions).
Bronshtein’s rather dense proof is hard to follow. Wakabayashi [Wak86] gave a
complex analytic proof of a more general Hölder version of Bronshtein’s theorem,
which had been announced by Ohya and Tarama [OT86]; it was later proved by
Tarama [Tar06] following Bronshtein’s original approach. Kurdyka and Păunescu
[KP08] used resolution of singularities to deduce local Lipschitz continuity of the
roots of hyperbolic polynomials with real analytic coefficients. A simple proof
of Bronshtein’s theorem, based on the splitting principle, which also established
explicit uniform bounds for the Lipschitz constants of the roots in terms of the
Cd−1,1 norms of the coefficients, was given by Parusiński and Rainer [PR15]. We
will recall this version in Theorem 4.1.

Bronshtein’s theorem gives rise to a bounded solution map that takes hyperbolic
polynomials of degree d with Cd−1,1 coefficients to C0,1 systems of their roots. This
will be made precise below.

The purpose of this paper is to investigate the continuity of the solution map and
thus answer a question of Antonio Lerario.



CONTINUITY OF THE SOLUTION MAP FOR HYPERBOLIC POLYNOMIALS 3

1.1. Hyperbolic polynomials and the solution map. A monic polynomial of
degree d,

Pa(Z) = Zd +

d∑
j=1

ajZ
d−j ∈ R[Z],

is called hyperbolic if all its d roots are real. In the following, we will identify
the polynomial Pa with its coefficient vector a = (a1, . . . , ad) ∈ Rd. Then the set
of all hyperbolic polynomials of degree d is identified with the image of the map
σ = (σ1, . . . , σd) : Rd → Rd, where

σj(x1, . . . , xd) = (−1)j
∑

i1<···<ij

xi1 · · ·xij

is the j-th elementary symmetric function (up to sign). By the Tarski–Seidenberg
theorem, σ(Rd) is a closed semialgebraic subset of Rd which we equip with the
trace topology. We denote this space by Hyp(d) and call it the space of hyperbolic
polynomials of degree d.

For a ∈ Hyp(d), let λ↑1(a) ≤ · · · ≤ λ↑d(a) denote the increasingly ordered roots of
Pa. Then

λ↑ = (λ↑1, . . . , λ
↑
d) : Hyp(d) → Rd

is a continuous map, see [AKLM98, Lemma 4.1] or, alternatively, [PR24, Lemma
6.4] combined with Lemma 7.1.

Let U ⊆ Rm be open. Let Cd−1,1(U,Hyp(d)) denote the space of all Cd−1,1 maps
a : U → Rd such that a(U) ⊆ Hyp(d). Thus a ∈ Cd−1,1(U,Hyp(d)) amounts to a
hyperbolic polynomial Pa of degree d whose coefficients are Cd−1,1 functions defined
on U . We equip Cd−1,1(U,Hyp(d)) with the trace topology of the natural Fréchet
topology on Cd−1,1(U,Rd). Note that Cd−1,1(U,Hyp(d)) is a closed nonlinear subset
of Cd−1,1(U,Rd). Then Bronshtein’s theorem (see Theorem 4.1) implies that the
solution map

S := (λ↑)∗ : Cd−1,1(U,Hyp(d)) → C0,1(U,Rd), a 7→ λ↑ ◦ a, (1.1)

is well-defined and bounded (i.e., it maps bounded sets to bounded sets).

1.2. The main results. We will see in Example 1.12 that the solution map S :
Cd−1,1(U,Hyp(d)) → C0,1(U,Rd) is not continuous: the natural topology on the
target C0,1(U,Rd) is too strong.

However, the solution map S becomes continuous if we restrict it to Cd(U,Hyp(d)),
carrying the trace topology of the natural Fréchet topology on Cd(U,Rd), and relax
the topology on the target space: for 1 ≤ q < ∞, let C0,1

q (U,Rd) denote the set

C0,1(U,Rd) equipped with the trace topology of the inclusion in Sobolev space

C0,1(U,Rd) → W 1,q
loc (U,Rd). See Section 2 for precise definitions of the function

spaces.

The following theorem, which is our main result, solves Open Problem 3.8 in [PR25].

Theorem 1.1. Let U ⊆ Rm be open. The solution map

S : Cd(U,Hyp(d)) → C0,1
q (U,Rd), a 7→ λ↑ ◦ a,

is continuous, for all 1 ≤ q <∞.
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As a corollary, we find that the solution map on Cd(U,Hyp(d)) is continuous into
the Hölder space C0,α(U,Rd), carrying its natural topology, for all 0 < α < 1.

Corollary 1.2. Let U ⊆ Rm be open. The solution map

S : Cd(U,Hyp(d)) → C0,α(U,Rd), a 7→ λ↑ ◦ a,

is continuous, for all 0 < α < 1, but not for α = 1.

The essential work for the proof of Theorem 1.1 happens in dimension m = 1 of
the parameter space. The passage from one to several parameters is rather easy.
The following is the main technical result of the paper.

Theorem 1.3. Let I ⊆ R be an open interval. Let an → a in Cd(I,Hyp(d)), i.e.,
for each relatively compact open interval I1 ⋐ I,

∥a− an∥Cd(I1,Rd) → 0 as n→ ∞. (1.2)

Then {S(an) : n ≥ 1} is a bounded set in C0,1(I,Rd) (with respect to its natural
topology) and, for each relatively compact open interval I0 ⋐ I and each 1 ≤ q <∞,

∥S(a)− S(an)∥W 1,q(I0,Rd) → 0 as n→ ∞. (1.3)

The proof of Theorem 1.3 is based on the dominated convergence theorem. The
domination follows from Bronshtein’s theorem which we recall in Theorem 4.1. We
will show in Theorem 5.1 that, for almost every x ∈ I,

S(an)′(x) → S(a)′(x) as n→ ∞.

To this end, we will develop a version of Bronshtein’s theorem at a single point, see
Theorem 4.7.

In Section 8, we prove a refinement of Theorem 1.3 in which the assumption that
an → a in Cd as n → ∞ can be weakened to convergence in Cp, where p is the
(uniform) maximal multiplicity of the roots of Pa.

Note that by Egorov’s theorem [Ego11] we may conclude that S(an)′ → S(a)′
almost uniformly on I as n → ∞, i.e., for each ϵ > 0 there exists a measurable
subset E ⊆ I with |E| < ϵ such that S(an)′ → S(a)′ uniformly on I \E. In general,
the convergence is not uniform on the whole interval I; see Example 1.12.

For later reference, we state a simple consequence of Theorem 1.3. Here ∥x∥2
denotes the 2-norm of x ∈ Rd and ∥f∥Lq(I0,Rd) :=

∥∥∥f∥2∥∥Lq(I0)
, see Section 1.6.

Corollary 1.4. Let I ⊆ R be an open interval and I0 ⋐ I a relatively compact
open subinterval. If an → a in Cd(I,Hyp(d)) as n→ ∞, then∥∥∥S(a)′∥2 − ∥S(an)′∥2

∥∥
Lq(I0)

→ 0 as n→ ∞,

and

∥S(an)′∥Lq(I0,Rd) → ∥S(a)′∥Lq(I0,Rd) as n→ ∞,

for all 1 ≤ q <∞.
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Proof. Let us set λ := S(a) and λn := S(an). Then∣∣∥λ′∥Lq(I0,Rd) − ∥λ′n∥Lq(I0,Rd)

∣∣ = ∣∣∥∥∥λ′∥2∥∥Lq(I0)
−
∥∥∥λ′n∥2∥∥Lq(I0)

∣∣
≤

∥∥∥λ′∥2 − ∥λ′n∥2
∥∥
Lq(I0)

≤
∥∥∥λ′ − λ′n∥2

∥∥
Lq(I0)

= ∥λ′ − λ′n∥Lq(I0,Rd)

so that the assertions follow from (1.3). □

It would be interesting to have quantitative versions of the continuity results.

Question 1.5. Are the continuous solution maps S in Theorem 1.1 and Corol-
lary 1.2 uniformly continuous and, if yes, is there an effective modulus of continu-
ity?

We have the following quantitative result in the case that all roots are simple. The
monic hyperbolic polynomials Pa of degree d with d simple roots are in one-to-one
correspondence with the points a in the interior Hyp◦(d) of Hyp(d).

Theorem 1.6. Let U ⊆ Rm be open and k ≥ 1. The solution map

S◦ : Ck(U,Hyp◦(d)) → Ck(U,Rd), a 7→ λ↑ ◦ a,
is locally Lipschitz continuous: let U0 ⋐ U and V0 ⋐ Hyp◦(d) be relatively compact
open convex sets and B a bounded subset of Ck(U0, V0). Then, for all a1, a2 ∈ B,

∥S◦(a1)− S◦(a2)∥Ck(U0,Rd) ≤ C ∥a1 − a2∥Ck(U0,Rd),

where C = C(d, k,B, V0).

We do not know if the continuity results in Theorem 1.1, Corollary 1.2, Theorem 1.3,
and Corollary 1.4 still hold for the solution map S on Cd−1,1(U,Hyp(d)) (instead
of Cd(U,Hyp(d))).

Question 1.7. Is the solution map S : Cd−1,1(U,Hyp(d)) → C0,1
q (U,Rd) contin-

uous, for 1 ≤ q < ∞? Is the solution map S : Cd−1,1(U,Hyp(d)) → C0,α(U,Rd)
continuous, for 0 ≤ α < 1?

In the proof of Theorem 1.3, we need the convergence of the coefficient vectors in
Cd only on the accumulation points of the preimage under a of the discriminant
locus. If this preimage is the union of an open set and a set of measure zero, then
for (1.3) it is enough that an → a in Cd−1,1. Thus, for a potential counterexample
a has to meet the discriminant locus in a Cantor-like set with positive measure.

Remark 1.8. If the coefficients are of class Cd, as in the setting of Theorem 1.3,
the roots of Pan can be chosen as C1 functions λn,1, . . . , λn,d : I → R, see [COP12]
or [PR15, Theorem 2.4]. This choice is not necessarily unique. Also, such a choice
imposes an order on the roots that may change when the parameter changes. There-
fore, if the parameter space is a circle and not an interval, a consistent choice may
not be possible; see e.g. Remark 7.15. Moreover, in general, the roots λn,1, . . . , λn,d
do not converge to a differentiable system of the roots of Pa (even just pointwise)
as n→ ∞, see Example 1.12.

1.3. Applications. We will give several applications of our continuity results by
highlighting, in particular, several consequences for stability under perturbations.
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1.3.1. Relation to the results for general polynomials. In Section 7.1, we will in-
terpret the results for hyperbolic polynomials as special and stronger versions of
the general theorems of [PR24]. In the general case of a complex polynomial Pa of
degree d the coefficient vector a is an arbitrary element of Cd. Then it is natural
to consider the unordered d-tuple of roots because there is no canonical choice of a
parameterization of the roots by continuous functions. If the parameter space has
dimension ≥ 2, then continuous selections of the roots might not even exist. In
contrast to the hyperbolic case, the general theorems of [PR24] are only valid in
W 1,q, for 1 ≤ q < d/(d− 1).

1.3.2. Continuity of the area of the solution map. In Section 7.2, we will deduce
from Theorem 1.1 that, if an → a in Cd(U,Hyp(d)) as n → ∞, where U ⊆ Rm is
open, then the Jacobian |J(S(an))| of S(an) converges to the Jacobian |J(S(a))|
of S(a) in Lq

loc, for all 1 ≤ q < ∞ (see Corollary 7.5). Combining this with the
area formula, we conclude that the surface area of the graph of each single root

S(an)j = λ↑j ◦ an, for 1 ≤ j ≤ d, converges locally to the surface area of the graph

of S(a)j (see Corollary 7.7).

As a consequence, we find that the area of the zero sets of Cd families of hyperbolic
polynomials of degree d locally has a lower semicontinuity property:

Corollary 1.9. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
For any relatively compact open U0 ⋐ U , consider the zero sets

Z = {(x, y) ∈ U0 × R : Pa(x)(y) = 0} and

Zn = {(x, y) ∈ U0 × R : Pan(x)(y) = 0}, n ≥ 1.
(1.4)

Then

lim inf
n→∞

Hm(Zn) ≥ Hm(Z).

Here Hm denotes the m-dimensional Hausdorff measure. Corollary 1.9 will be
restated and proved in Corollary 7.8.

Without hyperbolicity, the area of the real zero set is generally not semicontinuous:
e.g., for the intersections Zt of Whitney’s umbrella {(x, y, z) ∈ R3 : x2 − y2z = 0}
with the planes {z = t} and the cylinder {x2 + y2 < 1} we have

H1(Zt) =


0 if t < 0,

2 if t = 0,

4 if t > 0.

1.3.3. Approximation by hyperbolic polynomials with simple roots. In Section 7.3,
combining our results with a lemma of Wakabayashi [Wak86], we will obtain the
following approximation result (Corollary 7.10): for each hyperbolic polynomial Pa,
where a ∈ Cd(U,Hyp(d)), there exists a sequence (an)n≥1 ⊆ Cd(U,Hyp(d)) such
that

• an → a in Cd(U,Hyp(d)) as n→ ∞;

• all roots of Pan(x) are simple for all x ∈ U and all n ≥ 1;

• S(an) ∈ Cd(U,Rd), for all n ≥ 1, and S(an) → S(a) in C0,1
q (U,Rd), for all

1 ≤ q <∞, as n→ ∞;
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• for each relatively compact open U0 ⊆ U , defining the zero sets Z and Zn

as in (1.4), the limit limn→∞ Hm(Zn) exists and satisfies

lim
n→∞

Hm(Zn) ≥ Hm(Z).

1.3.4. Perturbation theory for Hermitian matrices. In Section 7.4, we will apply
our results to the eigenvalues of Hermitian matrices. Ordering the eigenvalues
increasingly, induces a continuous map

λ↑ : Herm(d) → Rd

on the real vector space Herm(d) of complex Hermitian d× d matrices. By Weyl’s
perturbation theorem (see Proposition 7.11), we obtain a bounded map

E := (λ↑)∗ : C0,1(U,Herm(d)) → C0,1(U,Rd), A 7→ λ↑ ◦A.

The continuity results for hyperbolic polynomials imply the following result.

Theorem 1.10. Let U ⊆ Rm be open. Then the map

E : Cd(U,Herm(d)) → C0,1
q (U,Rd), A 7→ λ↑ ◦A,

is continuous, for all 1 ≤ q <∞, and the map

E : Cd(U,Herm(d)) → C0,α(U,Rd), A 7→ λ↑ ◦A,
is continuous, for all 0 < α < 1.

Theorem 1.10 will be proved in Corollary 7.12. The map E is not continuous with
respect to the C0,1 topology on the target space, as will be seen in Example 7.13
which is based on Example 1.12.

Given that the map E is defined and bounded on C0,1(U,Herm(d)), it is natural to
ask whether in Theorem 1.10 one can replace Cd by C1:

Question 1.11. Is the map E : C1(U,Herm(d)) → C0,1
q (U,Rd) continuous, for

1 ≤ q <∞? Is E : C1(U,Herm(d)) → C0,α(U,Rd) continuous, for 0 < α < 1?

We will prove in Proposition 7.14 that the answer to Question 1.11 is affirmative
in the case d = 2.

1.3.5. Singular values. In Section 7.5, we will obtain an analogue of Theorem 1.10
for the singular values (ordered by size) of C2d families of general complex D × d
matrices with d ≤ D (see Corollary 7.16). As in Question 1.11, it is natural to ask
whether C2d can actually be replaced by C1.

1.4. On the optimality of the results. The following example shows that the
solution map S : Cd(I,Hyp(d)) → C0,1(I,Rd), where I ⊆ R is an open interval, is
not continuous with respect to the C0,1 topology on the target space.

Example 1.12. Let g(x) := x2 and gn(x) := x2+1/n2, n ≥ 1. Then, for all k ∈ N
and each bounded open interval I ⊆ R, ∥g − gn∥Ck(I) = 1/n2 → 0 as n → ∞. Let

f and fn be the positive square roots of g and gn, respectively: f(x) := |x| and
fn(x) :=

√
x2 + 1/n2. Then, for each bounded open interval I ⊆ R containing 0,

|f − fn|C0,1(I) ≥ sup
0<x∈I

∣∣∣ (f(x)− fn(x))− (f(0)− fn(0))

x

∣∣∣
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= sup
0<x∈I

∣∣∣x−
√
x2 + 1

n2 + 1
n

x

∣∣∣ ≥ ∣∣∣ 1
n −

√
1
n2 + 1

n2 + 1
n

1
n

∣∣∣ = 2−
√
2,

for large enough n. Observe that

f ′n(x) =
x√

x2 + 1
n2

tends pointwise to f ′(x) = sgn(x) for all x ̸= 0 but not uniformly on any neighbor-
hood of 0:

f ′n(± 1
n ) = ± 1√

2
.

This also violates the first conclusion of Corollary 1.4 for q = ∞.

Notice that this example also shows that not every continuous (thus C0,1) system of
the roots of g is the limit of a continuous system of the roots of gn: each continuous
system of the roots of gn tends to ±|x|, none to ±x. See Remark 1.8.

In the example, the hyperbolic polynomial Z2 = g(x) with double root at x = 0 is
approximated by the hyperbolic polynomials Z2 = gn(x) with simple roots for all
x. We will see in Corollary 7.10 that such an approximation is always possible.

1.5. Structure of the paper. We fix notation and recall facts on function spaces
in Section 2 and provide the necessary background on hyperbolic polynomials in
Section 3. In Section 4, we recall Bronshtein’s theorem in Theorem 4.1 and prove
a version of it at a single point in Theorem 4.7. The latter provides bounds for
the derivatives of the roots that are crucial for the proof of Theorem 1.3 which
is carried out in Section 5. In Section 6, we generalize Theorem 1.3 to several
variables in Theorem 6.1 which allows as to complete the proofs of Theorem 1.1 and
Corollary 1.2; also Theorem 1.6 is proved in Section 6. Section 7 is dedicated to the
applications; in particular, it contains the proofs of Corollary 1.9 and Theorem 1.10.
Finally, Section 8 presents a refinement of Theorem 1.3, namely Theorem 8.2, in
the case that the maximal multiplicity of the roots is smaller than the degree.

1.6. Notation. The m-dimensional Lebesgue measure in Rm is denoted by Lm.
If not stated otherwise, ‘measurable’ means ‘Lebesgue measurable’ and ‘almost
everywhere’ means ‘almost everywhere with respect to Lebesgue measure’. For
measurable E ⊆ Rm, we usually write |E| = Lm(E). We will also use the k-
dimensional Hausdorff measure Hk.

For 1 ≤ p ≤ ∞, ∥x∥p denotes the p-norm of x ∈ Rd. If f : E → Rd, for measurable
E ⊆ Rm, is a measurable map, then we set

∥f∥Lp(E,Rd) :=
∥∥∥f∥2∥∥Lp(E)

.

In the following, a set is called countable if it is either finite or has the cardinality
of N.

To avoid confusion, coefficient vectors of hyperbolic polynomials are written in sans
serif type. For example, the coefficient vector an = (an,1, an,2, . . . , an,d), indexed
by n ∈ N, is notationally distinguished from the scalar an, which denotes the n-th
component of the coefficient vector a.
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We use the notation C(d, . . .) to denote a constant that depends only on d, . . .; its
value may change from line to line.

2. Function spaces

Let us fix notation and recall background on the function spaces used in this paper.

2.1. Hölder–Lipschitz spaces. Let U ⊆ Rm be open and k ∈ N. Then Ck(U)
is the space of k-times continuously differentiable real valued functions, equipped
with its natural Fréchet topology. If U is bounded, then Ck(U) denotes the space
of all f ∈ Ck(U) such that each ∂αf , 0 ≤ |α| ≤ k, has a continuous extension to
the closure U . Endowed with the norm

∥f∥Ck(U) := max
|α|≤k

sup
x∈U

|∂αf(x)|

it is a Banach space. For 0 < γ ≤ 1, we consider the Hölder–Lipschitz seminorm

|f |C0,γ(U) := sup
x,y∈U, x̸=y

|f(x)− f(y)|
∥x− y∥γ2

.

For k ∈ N and 0 < γ ≤ 1, we have the Banach space

Ck,γ(U) := {f ∈ Ck(U) : ∥f∥Ck,γ(U) <∞},

where

∥f∥Ck,γ(U) := ∥f∥Ck(U) + max
|α|=k

|∂αf |C0,γ(U).

We write Ck,γ(U) for the space of Ck functions on U that belong to Ck,γ(V ) for
each relatively compact open V ⋐ U , and endow Ck,γ(U) with its natural Fréchet
topology.

2.2. Lebesgue spaces. Let U ⊆ Rm be open and 1 ≤ p ≤ ∞. We denote by Lp(U)
the Lebesgue space with respect to the m-dimensional Lebesgue measure Lm, and
∥ · ∥Lp(U) is the corresponding Lp-norm. We will also use the space Lp

loc(U) of
measurable functions f : U → R satisfying ∥f∥Lp(K) < ∞ for all compact subsets
K ⊆ U . For Lebesgue measurable sets E ⊆ Rm we also write |E| = Lm(E). We
remark that for continuous functions f : U → R we have (and use interchangeably)
∥f∥L∞(U) = ∥f∥C0(U).

2.3. Sobolev spaces. For k ∈ N and 1 ≤ q ≤ ∞, we consider the Sobolev space

W k,q(U) := {f ∈ Lq(U) : ∂αf ∈ Lq(U) for |α| ≤ k},

where ∂αf are distributional derivatives. Endowed with the norm

∥f∥Wk,q(U) :=
∑
|α|≤k

∥∂αf∥Lq(U)

it is a Banach space. We will also use

W k,q
loc (U) := {f ∈ Lq

loc(U) : ∂αf ∈ Lq
loc(U) for |α| ≤ k}

and endow this space with its natural topology.
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2.4. A result on composition. In the following proposition we use the norm

∥f∥Ck(U,Rℓ) := max
0≤j≤k

sup
x∈U

∥djf(x)∥Lj(Rm,Rℓ)

on the space Ck(U,Rℓ) := (Ck(U,R))ℓ, where U ⊆ Rm and Lj(Rm,Rℓ) is the space
of j-linear maps with j arguments in Rm and values in Rℓ.

Proposition 2.1. Let U ⊆ Rm and V ⊆ Rℓ be open, bounded, and convex. Let
ψ ∈ Ck+1(V ,Rp). Then

ψ∗ : Ck(U, V ) → Ck(U,Rp), φ 7→ ψ ◦ φ,
is well-defined and continuous. More precisely, for φ1, φ2 in a bounded subset B of
Ck(U, V ),

∥ψ∗(φ1)− ψ∗(φ2)∥Ck(U,Rp) ≤ C ∥ψ∥Ck+1(V ,Rp)∥φ1 − φ2∥Ck(U,Rℓ),

where C = C(k,B).

A short proof of this result can be found in [PR24, Appendix A.2].

3. Hyperbolic polynomials

In this section, we recall basic facts on hyperbolic polynomials that will be used
below. The exposition follows [PR15] and [PR25]. For the convenience of the reader
and to keep the paper largely self-contained, we include details where this does not
substantially interrupt the flow.

3.1. Tschirnhausen form. We say that a monic polynomial

Pa(Z) = Zd +

d∑
j=1

ajZ
d−j

is in Tschirnhausen form if a1 = 0. Every polynomial Pa can be put in Tschirn-
hausen form by the substitution

Pã(Z) = Pa(Z − a1

d ) = Zd +

d∑
j=2

ãjZ
d−j ,

which is called the Tschirnhausen transformation. For clarity, we consistently equip
the coefficients of polynomials in Tschirnhausen form with a ‘tilde’. Note that

ãj =

j∑
i=0

Ciaia
j−i
1 , 2 ≤ j ≤ d, (3.1)

where a0 = 1 and the Ci are universal constants independent of a. For a polynomial
Pã in Tschirnhausen form with coefficient vector ã = (0, ã2, . . . , ãd) we have

−2ã2 = λ21 + · · ·+ λ2d, (3.2)

where λ1, . . . , λd is an enumeration of the roots of ã. Consequently, for a hyperbolic
polynomial Pã in Tschirnhausen form,

ã2 ≤ 0.

Recall that the coefficients (up to their sign) are the elementary symmetric poly-
nomials in the roots, by Vieta’s formulas.
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Lemma 3.1 ([PR25, Lemma 2.4]). The coefficients of a hyperbolic polynomial Pã

in Tschirnhausen form satisfy

|ãj |1/j ≤
√
2 |ã2|1/2, j = 2, . . . , d.

Proof. This follows easily from the Newton identities

jσj =

j∑
i=1

(−1)i−1σj−isi, d ≥ j ≥ 1,

between the Newton polynomials sk = λk1 + · · ·+λkd and the elementary symmetric

polynomials σk, observing that |sk|1/k ≤ |s2|1/2, for 2 ≤ k ≤ d, by a well-known
relation between the p-norms. □

As a consequence, ã = (0, ã2, ã3, . . . , ãd) = 0 if and only if ã2 = 0.

Definition 3.2 (Spaces of hyperbolic polynomials). Let HypT (d) denote the space
of monic hyperbolic polynomials of degree d in Tschirnhausen form and Hyp0T (d)
the compact subspace of polynomials Pã with ã2 = −1, i.e.,

HypT (d) = {ã ∈ Hyp(d) : ã1 = 0},
Hyp0T (d) = {ã ∈ HypT (d) : ã2 = −1}.

3.2. Splitting. Let us recall a simple consequence of the inverse function theorem.

Lemma 3.3 (E.g. [PR25, Lemma 2.5]). Let Pa = PbPc, where Pb and Pc are monic
real polynomials without common (complex) root. Then we have P = Pb(P )Pc(P )

for analytic mappings P 7→ b(P ) ∈ RdegPb and P 7→ c(P ) ∈ RdegPc , defined for P
near Pa in RdegPa , with the given initial values.

Proof. The product Pa = PbPc defines on the coefficients a polynomial map φ such
that a = φ(b, c). Its Jacobian determinant equals the resultant of Pb and Pc which
is nonzero, by assumption. Thus φ can be inverted locally, by the inverse function
theorem. □

Let Pã ∈ HypT (d) be such that ã ̸= 0, equivalently, ã2 ̸= 0. Then the polynomial

Qa(Z) := |ã2|−d/2Pã(|ã2|1/2Z) = Zd − Zd−2 +

d∑
j=3

|ã2|−j/2ãjZ
d−j

belongs to Hyp0T (d). By Lemma 3.3, we have a splitting

Qa = QbQc,

on some open neighborhood U ⊆ Rd of a such that db := degQb < d, dc :=
degQc < d, and

bi = ψi(|ã2|−3/2ã3, . . . , |ã2|−d/2ãd), i = 1, . . . ,degQb,

where ψi are real analytic functions; likewise for ci. If Qa is hyperbolic, then also
Qb and Qc are hyperbolic. If λ1 ≤ · · · ≤ λd are the roots of Qa, then we may assume

that, on U ∩Hyp0T (d), λ1 ≤ · · · ≤ λdb
are the roots of Qb and λdb+1 ≤ · · · ≤ λd are
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the roots of Qc; this follows from continuity of the map λ↑ and the simple topology

of Hyp0T (d) (induced by the embedding in Rd); cf. [PR25, Theorem 8.1].

The splitting Qa = QbQc induces a splitting

Pã = PbPc

on an open neighborhood Ũ of ã, where

bi = |ã2|i/2ψi(|ã2|−3/2ã3, . . . , |ã2|−d/2ãd), i = 1, . . . ,degPb. (3.3)

The coefficients b̃i of Pb̃, resulting from Pb by the Tschirnhausen transformation,
have an analogous representation, i.e.,

b̃i = |ã2|i/2ψ̃i(|ã2|−3/2ã3, . . . , |ã2|−d/2ãd), i = 1, . . . ,degPb. (3.4)

Shrinking Ũ slightly, we may assume that all partial derivatives of all orders of the
real analytic functions ψi and ψ̃i are bounded on Ũ .

Furthermore, since the roots of Pã are given by λj := |ã2|1/2 · λj , for 1 ≤ j ≤ d, we

have that, on Ũ ∩HypT (d), λ1 ≤ · · · ≤ λdb
are the roots of Pb and λdb+1 ≤ · · · ≤ λd

are the roots of Pc.

Lemma 3.4 ([PR25, Lemma 3.13]). In this situation, we have |b̃2| ≤ 4 |ã2|.

Proof. Using (3.2) and |b1| ≤
∑db

j=1 |λj | ≤
√
db

(∑db

j=1 λ
2
j

)1/2
, we find

2 |b̃2| =
db∑
j=1

(
λj +

b1
db

)2

=

db∑
j=1

λ2j +
2b1
db

db∑
j=1

λj +
b21
db

≤ (1 + 2 + 1)

db∑
j=1

λ2j ≤ 8 |ã2|.

□

3.3. Universal splitting. For each d ≥ 2 fix the following data. Choose a finite
cover of Hyp0T (d) by open sets U1, . . . , Us such that on each U i we have a splitting
Qa = QbQc and, consequently, a splitting Pã = PbPc as above together with analytic

functions ψi and ψ̃i, and we fix this splitting. As seen above, we may assume that
the roots λ1 ≤ · · · ≤ λd of Pã are labelled such that λ1 ≤ · · · ≤ λdb

are the roots of
Pb and λdb+1 ≤ · · · ≤ λd are the roots of Pc.

By the Lebesgue covering lemma, there exists δ > 0 such that each subset
of Hyp0T (d) of diameter less that δ is contained in some U i. Choose r ∈
(0,min{δ/2, 1}). Then for each p ∈ Hyp0T (d) there exists 1 ≤ i ≤ s with

B(p, r) ∩Hyp0T (d) ⊆ U i ∩Hyp0T (d). (3.5)

Definition 3.5 (Universal splitting). We refer to this data as a universal splitting
of hyperbolic polynomials of degree d in Tschirnhausen form and to r as the radius
of the splitting.

4. Bronshtein’s theorem and a variant at a single point

We recall Bronshtein’s theorem in Theorem 4.1. We shall need a version at a single
point with a suitable bound for the derivative of the roots. This version is given in
Theorem 4.7.
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4.1. Bronshtein’s theorem. The following result is a version of Bronshtein’s the-
orem [Bro79] with uniform bounds due to [PR15], see also [PR25, Theorem 3.2].

Theorem 4.1. Let I ⊆ R be an open interval and a ∈ Cd−1,1(I,Hyp(d)). Then any
continuous root λ ∈ C0(I) of Pa is locally Lipschitz and, for any pair of relatively
compact open intervals I0 ⋐ I1 ⋐ I,

|λ|C0,1(I0)
≤ C max

1≤j≤d
∥aj∥1/jCd−1,1(I1)

, (4.1)

with C = C(d) max{δ−1, 1}, where δ := dist(I0,R \ I1).

A multiparameter version follows easily; see [PR15] and [PR25, Theorem 3.4].

Note that Wakabayashi [Wak86] proved a Hölder version of Theorem 4.1 (without
uniform bounds of the type (4.1)), see also Tarama [Tar06] for a different proof.

4.2. Reclusive points. The local version of Bronshtein’s theorem, Theorem 4.7,
holds at all points of I except for a countable subset of points, which we call
reclusive points. A point x ∈ I is reclusive if either all the roots of Pã(x) are zero
and x is isolated for this property, or it satisfies a similar condition for one of the
local factors of Pã(x), see Definition 4.4 for a precise formulation.

Definition 4.2 (Zero sets). Let ã : I → HypT (d) ⊆ Rd. We consider the zero set

Zã := {x ∈ I : ã(x) = 0} = {x ∈ I : all roots of Pa(x) coincide}
which coincides with Zã2

= {x ∈ I : ã2(x) = 0}, by Lemma 3.1. (For notational
simplicity, we will generally use Zã.) We write acc(Zã) and iso(Zã) := Zã \ acc(Zã)
for the sets of accumulation points and isolated points of Zã, respectively.

Lemma 4.3. Let ã : I → HypT (d) ⊆ Rd. Then

Zã = {x ∈ I : all roots of Pã(x) vanish}.

Proof. Since Zã = Zã2
, this is immediate from (3.2). □

Let I ⊆ R be an open interval and ã ∈ Cd−1,1(I,HypT (d)); recall that this means
ã ∈ Cd−1,1(I,Rd) and ã(I) ⊆ HypT (d). Let x0 ∈ I be such that ã2(x0) ̸= 0. Then
not all roots of Pã(x0) coincide and hence Pã splits in a neighborhood of x0. We
may assume that it is a full splitting, i.e., if {λ1, . . . , λk} are the distinct roots of
Pã(x0) with multiplicities {m1, . . . ,mk} then

Pã = Pb1Pb2 · · ·Pbk in a neighborhood of x0, (4.2)

where degPbj = mj and Pbj(x0)(Z) = (Z − λj)
mj , for all 1 ≤ j ≤ k. Note that

the full splitting is unique up to the order of the factors. Since the Tschirnhausen
transformation bj ; b̃j effects a shift of the roots by bj,1/mj = −λj , we have
x0 ∈ Zb̃j

, for all 1 ≤ j ≤ k.

Definition 4.4 (Reclusive points). Let ã ∈ Cd−1,1(I,HypT (d)). We say that x0 ∈ I
is reclusive for ã if

• x0 ∈ iso(Zã),

• or x0 ̸∈ Zã and x0 ∈ iso(Zb̃j
) for some j ∈ {1 . . . , k}, where we refer to the

full splitting (4.2).
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Note that, by Lemma 4.3, x0 is an isolated point of Zb̃j
if and only if x0 is an

isolated point of

Ebj := {x : all roots of Pbj(x) coincide}.

Lemma 4.5. Let I ⊆ R be an open interval and ã ∈ Cd−1,1(I,HypT (d)). Let x0 ∈ I
be such that ã2(x0) ̸= 0 and assume that x0 is not reclusive for ã. If Pã = PbPc is

any splitting near x0, then x0 is not reclusive for b̃ and c̃ (which result from b and
c by the Tschirnhausen transformation).

Proof. After possibly reordering the factors in (4.2), we may assume that, in a
neighborhood of x0,

Pb = Pb1 · · ·Pbj and Pc = Pbj+1 · · ·Pbk .

The Tschirnhausen transformation b ; b̃ effects a shift on all roots of Pb by
b1/ degPb and retains the splitting,

Pb̃ = Pb̂1
· · ·Pb̂j

.

It follows that Eb̂i
= Ebi for all 1 ≤ i ≤ j. Suppose for contradiction that x0 is

reclusive for b̃. If x0 is an isolated point of Zb̃, then j = 1, by Lemma 4.3, and
hence x0 is reclusive for ã. If x0 ̸∈ Zb̃ and there is i ∈ {1, . . . , j} such that x0 is an
isolated point of Eb̂i

= Ebi , then again x0 is reclusive for ã. Since we assumed that

x0 is not reclusive for ã, we conclude that x0 is not reclusive for b̃.

The proof that x0 is not reclusive for c̃ is analogous. □

Lemma 4.6. Let I ⊆ R be an open interval and ã ∈ Cd−1,1(I,HypT (d)). The set
of all x0 ∈ I that are reclusive for ã is countable.

Proof. Let λ := S(ã). Then λ is a curve in {y ∈ Rd : y1 ≤ y2 ≤ · · · ≤ yd}. For
1 ≤ i < d, let ℓi(y) := yi+1 − yi. If x0 ∈ I is reclusive for ã, then there exist
1 ≤ i1 < · · · < ik < d such that x0 is an isolated point of

{x ∈ I : ℓij (λ(x)) = 0 for all 1 ≤ j ≤ k}.
The set of isolated points of the latter set is countable. The statement follows. □

4.3. A version of Bronshtein’s theorem at a single point. For x0 ∈ R and
r > 0, let I(x0, r) denote the open interval centered at x0 with radius r,

I(x0, r) := {x ∈ R : |x− x0| < r}.

Its closure is denoted by I(x0, r).

Theorem 4.7. Let x0 ∈ R and δ > 0. Let ã ∈ Cd−1,1(I(x0, δ),HypT (d)). Assume
that x0 is not reclusive for ã. Let λ ∈ C0(I(x0, δ)) be a continuous root of Pã and
assume that λ′(x0) exists. Then

|λ′(x0)| ≤ C(d)A(δ),

where

A(δ) := 6max{A1(δ), A2(δ)}, (4.3)

A1(δ) := max
{
δ−1|ã2(x0)|1/2, |ã′2|

1/2

C0,1(I(x0,δ))

}
,
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A2(δ) := max
2≤j≤d

{
|ã(d−1)

j |C0,1(I(x0,δ))
· ∥ã2∥(d−j)/2

L∞(I(x0,δ))

}1/d
.

Here ã′2 denotes the first derivative of ã2 and ã
(d−1)
j the derivative of order d − 1

of ãj.

The proof follows the general strategy of the proof of Theorem 4.1 in [PR15] and
[PR25], but some modifications are required. Before we prove Theorem 4.7 let us
recall two important tools.

4.4. Local Glaeser inequality. Glaeser’s inequality [Gla63] gives Bronshtein’s
theorem in the simplest nontrivial case: for nonnegative C1 functions f on R with
f ′′ ∈ L∞(R) we have

f ′(x)2 ≤ 2 f(x)∥f ′′∥L∞(R), x ∈ R.

We need a local version.

Lemma 4.8 ([PR25, Lemma 3.14]). Let I ⊆ R be an open bounded interval. Let
f ∈ C1,1(I) satisfy f ≥ 0 or f ≤ 0 on I. Assume that x0 ∈ I satisfies f(x0) ̸= 0
and let M > 0 be such that I0 := I(x0,M

−1|f(x0)|1/2) ⊆ I. Then

|f ′(x0)| ≤ (M +M−1|f ′|C0,1(I0)
)|f(x0)|1/2.

Therefore, if additionally |f ′|C0,1(I0)
≤M2, then

|f ′(x0)| ≤ 2M |f(x0)|1/2.

It should be added that, for a function f ∈ C1,1(I) satisfying f ≥ 0 or f ≤ 0 on
I, we have that f(x0) = 0 implies f ′(x0) = 0, so that the conclusion of the lemma
also holds trivially at zeros x0 of f .

Proof. Suppose that f ≥ 0; otherwise consider −f . Thus f(x0) > 0 and

0 ≤ f(x0 + h) = f(x0) + f ′(x0)h+

∫ 1

0

f ′(x0 + hs)− f ′(x0) ds · h.

Setting h := ±M−1|f(x0)|1/2, implies the lemma. □

4.5. Interpolation. Let us recall an interpolation inequality for intermediate
derivatives.

Lemma 4.9 ([PR25, Lemma 3.16]). Let f ∈ Cm,1(I), where I ⊆ R is a bounded
open interval. Then, for 1 ≤ j ≤ m,

|f (j)(x)| ≤ C(m) |I|−j
(
∥f∥L∞(I) + |f (m)|C0,1(I)|I|

m+1
)
, x ∈ I.

Proof. Fix x ∈ I. Then [x, x+ |I|/2) or (x− |I|/2, x] is contained in I. Let y be a
point in the respective interval. By Taylor’s formula,∣∣∣ m∑

j=0

f (j)(x)

j!
(y − x)j

∣∣∣
=

∣∣∣f(y)− (y − x)m
∫ 1

0

(1− t)m−1

(m− 1)!
(f (m)(x+ t(y − x))− f (m)(x)) dt

∣∣∣
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≤ ∥f∥L∞(I) + |I|m+1|f (m)|C0,1(I).

This implies the lemma in view of the following fact: if a polynomial T (x) =
a0 + a1x+ · · ·+ amx

m ∈ C[x] satisfies |T (x)| ≤ A for x ∈ [0, B] ⊆ R, then

|aj | ≤ C(m)AB−j , 0 ≤ j ≤ m.

Indeed, for A = B = 1 this follows easily, by comparison with the interpolation
polynomial for the equidistant points 0 = x0 < x1 < · · · < xm = 1. In the general
case, consider A−1T (Bx). □

4.6. Proof of Theorem 4.7. The rest of the section is devoted to the proof of
Theorem 4.7. We may assume that d ≥ 2, since Theorem 4.7 is trivially true for
d = 1. The following definition will prove convenient for the inductive proof based
on the splitting.

We will work on intervals centered at x0 whose radius depends on the size of ã2(x0).
More precisely, assuming that ã2(x0) ̸= 0 we set, for any constant A > 0,

I(x0, A) := I(x0, A
−1|ã2(x0)|1/2) (4.4)

and denote by I(x0, A) the closure of I(x0, A).

Definition 4.10 (Cd−1,1-admissible data). Let x0 ∈ R and δ > 0. Let ã ∈
Cd−1,1(I(x0, δ),HypT (d)) be such that ã2(x0) ̸= 0. Let A > 0 be a constant.
We say that (ã, x0, δ, A) is C

d−1,1-admissible if the following holds:

(1) I(x0, A) ⊆ I(x0, δ).

(2) For all x ∈ I(x0, A),
1

2
≤ ã2(x)

ã2(x0)
≤ 2. (4.5)

(3) For all 2 ≤ j ≤ d,

|ã(d−1)
j |C0,1(I(x0,A)) ≤ Ad |ã2(x0)|(j−d)/2. (4.6)

(4) For all 2 ≤ j ≤ d, 1 ≤ k ≤ d− 1, and x ∈ I(x0, A),

|ã(k)j (x)| ≤ Ak |ã2(x0)|(j−k)/2. (4.7)

Lemma 4.11. Let x0 ∈ R and A, δ > 0. Let ã ∈ Cd−1,1(I(x0, δ),HypT (d)) be such
that ã2(x0) ̸= 0. Assume that

• I(x0, A) ⊆ I(x0, δ),

• (4.6) holds, and

• (4.7) holds for 2 ≤ j ≤ d and k ≥ j.

Then there is a constant C(d) ≥ 1 such that (ã, x0, δ, C(d)A) is C
d−1,1-admissible.

Proof. We first observe that we have |ã′2|C0,1(I(x0,A)) ≤ A2. Indeed, if d = 2 this is

immediate from (4.6) and if d ≥ 3 then it follows from (4.7) with j = k = 2. By
Lemma 4.8, we conclude that

|ã′2(x0)| ≤ 2A |ã2(x0)|1/2.
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Thus, for x ∈ I(x0, 6A),

|ã2(x)− ã2(x0)| ≤ |ã′2(x0)||x− x0|+ |ã′2|C0,1(I(x0,A)) |x− x0|2

≤ 1

3
|ã2(x0)|+

1

36
|ã2(x0)| <

1

2
|ã2(x0)|,

implying (4.5) on I(x0, 6A).

Finally, we check that (4.7) also holds for k < j, for A replaced by C(d)A, where
C(d) ≥ 1 is a suitable constant (note that I(x0, C(d)A) ⊆ I(x0, A)). By Lemma 4.9,
for 1 ≤ k ≤ j − 1 and x ∈ I(x0, 6A),

|ã(k)j (x)| ≤ C(d) |I(x0, 6A)|−k
(
∥ãj∥L∞(I(x0,6A)) + |ã(j−1)

j |C0,1(I(x0,6A)) |I(x0, 6A)|
j
)

≤ C(d) (3A)k|ã2(x0)|−k/2
(
2j |ã2(x0)|j/2 +Aj · (3A)−j |ã2(x0)|j/2

)
≤ C̃(d)Ak |ã2(x0)|(j−k)/2,

since |ãj(x)| ≤ (
√
2 |ã2(x)|1/2)j ≤ 2j |ã2(x0)|j/2, by Lemma 3.1 and (4.5) on

I(x0, 6A), and |ã(j−1)
j |C0,1(I(x0,6A)) ≤ Aj , by (4.6) or (4.7) for k = j. □

Lemma 4.12. Let x0 ∈ R and δ > 0. Let ã ∈ Cd−1,1(I(x0, δ),HypT (d)) be such
that ã2(x0) ̸= 0. Let A(δ) be defined by (4.3). Then (ã, x0, δ, C(d)A(δ)) is Cd−1,1-
admissible for some constant C(d) ≥ 1.

Proof. (1) By (4.3), A(δ) ≥ A1(δ) ≥ δ−1|ã2(x0)|1/2 and thus

I(x0, A(δ)) ⊆ I(x0, A1(δ)) ⊆ I(x0, δ). (4.8)

(2) By Lemma 4.8 and the definition of A1(δ),

|ã′2(x0)| ≤ 2A1(δ) |ã2(x0)|1/2.

Then, for x ∈ I(x0, 6A1(δ)), we find (as in the proof of Lemma 4.11)

|ã2(x)− ã2(x0)| ≤
1

2
|ã2(x0)|,

using (4.8) and the definition of A1(δ), which implies (4.5) with A = A(δ).

(3) By the definition of A2(δ), (4.6) with A = A(δ) is clear.

(4) By Lemma 3.1 and (4.5), we have |ãj(x)| ≤ 2j |ã2(x0)|j/2, for x ∈ I(x0, A(δ)).
In conjunction with (4.6), it implies (4.7) with A = C(d)A(δ), by Lemma 4.9. We
clearly may assume that C(d) ≥ 1 so that I(x0, C(d)A(δ)) ⊆ I(x0, A(δ)). □

Lemma 4.13. Let (ã, x0, δ, A) be Cd−1,1-admissible. Then the functions aj :=

|ã2|−j/2ãj, 2 ≤ j ≤ d, are well-defined and of class Cd−1,1 on I(x0, A) and they
satisfy

|a(d−1)
j |C0,1(I(x0,A)) ≤ C(d)Ad |ã2(x0)|−d/2, 2 ≤ j ≤ d, (4.9)

|a(k)j (x)| ≤ C(d)Ak |ã2(x0)|−k/2, 2 ≤ j ≤ d, 1 ≤ k ≤ d− 1, x ∈ I(x0, A). (4.10)

Proof. By (4.5) and (3.2), |ã2| > 0 on I(x0, A). Thus the functions aj are well-

defined and of class Cd−1,1 on I(x0, A).
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Let 1 ≤ s ≤ d− 1 and r ∈ R. Then Faà di Bruno’s formula implies

∂s
(
ãr2
)
=

s∑
ℓ≥1

∑
γ∈Γ(ℓ,s)

cγ,ℓ,r ã
r−ℓ
2 ã

(γ1)
2 · · · ã(γℓ)

2 (4.11)

where Γ(ℓ, s) = {γ ∈ Nℓ
>0 : |γ| = s} and

cγ,ℓ,r =
s!

ℓ!γ!
r(r − 1) · · · (r − ℓ+ 1).

Thus, by (4.5) and (4.7), for x ∈ I(x0, A),

|∂s
(
ãr2
)
(x)| ≤

s∑
ℓ≥1

∑
γ∈Γ(ℓ,s)

|cγ,ℓ,r| |ãr−ℓ
2 (x)||ã(γ1)

2 (x)| · · · |ã(γℓ)
2 (x)|

≤
s∑

ℓ≥1

∑
γ∈Γ(ℓ,s)

|cγ,ℓ,r| 2r−ℓ|ã2(x0)|r−ℓAs |ã2(x0)|ℓ−s/2

= As |ã2(x0)|r−s/2
s∑

ℓ≥1

∑
γ∈Γ(ℓ,s)

|cγ,ℓ,r| 2r−ℓ. (4.12)

Consequently, by the Leibniz formula, (4.5), and (4.7),

|a(k)j (x)| ≤
k∑

s=0

(
k

s

)
|∂s(|ã2|−j/2)(x)||ã(k−s)

j (x)| ≤ C(d)Ak |ã2(x0)|−k/2,

for 1 ≤ k ≤ d− 1 and x ∈ I(x0, A), that is (4.10).

To see (4.9) it suffices to repeat the above argument, using that, for functions
f1, . . . , fm on an interval I,∣∣∣ m∏

i=1

fi

∣∣∣
C0,1(I)

≤
m∑
i=1

|fi|C0,1(I)

∏
j ̸=i

∥fj∥L∞(I)

and

|fr|C0,1(I) ≤ |r| ∥fr−1∥L∞(I)∥f ′∥L∞(I),

if f is differentiable. □

Proposition 4.14. Let (ã, x0, δ, A) be Cd−1,1-admissible. Then there exist δ1 > 0
and a constant C(d) > 1 such that the following holds. There is a splitting

Pã = PbPc, on I(x0, δ1),

where Pb and Pc are monic hyperbolic polynomials of degree < d with coefficients
in Cd−1,1(I(x0, δ1)). We have, for all 1 ≤ i ≤ degPb,

|b(d−1)
i |C0,1(I(x0,δ1))

≤ C(d)Ad |ã2(x0)|(i−d)/2. (4.13)

|b(k)i (x)| ≤ C(d)Ak |ã2(x0)|(i−k)/2, 1 ≤ k ≤ d− 1, x ∈ I(x0, δ1), (4.14)

If, after Tschirnhausen transformation, b̃2(x0) ̸= 0, then (b̃, x0, δ1, C(d)A) is
Cd−1,1-admissible. The analogous statements hold for c̃.
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Proof. Consider the continuous bounded (cf. Lemma 3.1 and Lemma 4.13) curve

a := (0,−1, a3, . . . , ad) : I(x0, A) → Hyp0T (d) ⊆ Rd,

where aj := |ã2|−j/2ãj . Then, by (4.10), there exists C1 = C1(d) such that

∥a′(x)∥2 ≤ C1A |ã2(x0)|−1/2, x ∈ I(x0, A). (4.15)

We may assume that C1 > 1. Let 0 < r < 1 be the radius of the splitting (see
Definition 3.5) and define

δ1 :=
|ã2(x0)|1/2 r

C1A
.

Then I(x0, δ1) ⊆ I(x0, A) and a(I(x0, δ1)) ⊆ B(a(x0), r), by (4.15). Consequently,
we have a splitting

Pã = PbPc, on I(x0, δ1),

by (3.5).

Next we check (4.13) and (4.14). By (3.3),

bi = |ã2|i/2 · ψi ◦ a. (4.16)

We claim that, for 1 ≤ s ≤ d− 1 and x ∈ I(x0, δ1),

|(ψi ◦ a)(s)(x)| ≤ C(d)As |ã2(x0)|−s/2. (4.17)

We have

(ψi ◦ a)′ =
d∑

j=1

((∂jψi) ◦ a) · a′j ,

(ψi ◦ a)(s) =
d∑

j=1

∂s−1
(
((∂jψi) ◦ a) · a′j

)
=

d∑
j=1

s−1∑
k=0

(
s− 1

k

)
((∂jψi) ◦ a)(k)a(s−k)

j .

For s = 1 the claim (4.17) follows from (4.10). For s ≥ 2 the claim follows by
induction and (4.10).

Now (4.14) is a consequence of the Leibniz formula, (4.12), (4.16), and (4.17). To
see (4.13) we proceed analogously, combining (4.9) with the observations at the end
of the proof of Lemma 4.13.

Suppose that b̃2(x0) ̸= 0 and let us show that (b̃, x0, δ1, C(d)A), for a suitable
constant C(d) > 1, is Cd−1,1-admissible. Set

B :=
2C1A

r
.

By Lemma 3.4, we have

|b̃2(x0)| ≤ 4 |ã2(x0)| (4.18)

which implies

B−1|b̃2(x0)|1/2 ≤ |ã2(x0)|1/2 r
C1A

= δ1,

so that J(x0, B) := I(x0, B
−1|b̃2(x0)|1/2) ⊆ I(x0, δ1). From (4.13) and (4.14), we

easily get the same bounds for b̃i instead of bi (by means of (3.1)). By (4.18), we
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may replace ã2(x0) by b̃2(x0) on the right-hand side of these estimates if k ≥ i
(note that d > i). Now it suffices to invoke Lemma 4.11.

The same arguments yield the analogous statement about c̃. □

Proposition 4.15. Let (ã, x0, δ, A) be C
d−1,1-admissible and assume that x0 is not

reclusive for ã. If λ ∈ C0(I(x0, δ)) is a root of Pã and λ′(x0) exists, then

|λ′(x0)| ≤ C(d)A. (4.19)

Proof. By assumption, ã2(x0) ̸= 0 and hence d ≥ 2. By Proposition 4.14, there
exists δ1 > 0 such that there is a splitting Pã = PbPc on I(x0, δ1). We may assume
that λ is a root of Pb and hence

λ(x) = − b1(x)

degPb
+ µ(x), x ∈ I(x0, δ1), (4.20)

where µ is a continuous root of Pb̃ and µ′(x0) exists (since we assumed that λ′(x0)
exists). By (4.14) for i = k = 1, we have

|b′1(x0)| ≤ C(d)A. (4.21)

By Lemma 4.5, x0 is not reclusive for b̃, since x0 is not reclusive for ã.

Let us now prove the proposition by induction on d.

If d = 2, then degPb = 1 and b̃ ≡ 0. Thus λ(x) = −b1(x) for x ∈ I(x0, δ1) so that
(4.21) gives (4.19).

Assume that d ≥ 3. If b̃2(x0) ̸= 0, then (b̃, x0, δ1, C(d)A) is Cd−1,1-admissible, by
Proposition 4.14. By the induction hypothesis,

|µ′(x0)| ≤ C(d)A.

Thus (4.19) follows from (4.20) and (4.21).

If b̃2(x0) = 0, then x0 (being not reclusive for b̃) is an accumulation point of Zb̃.
Consequently, µ′(x0) = 0 and (4.19) again follows from (4.20) and (4.21). □

Proof of Theorem 4.7. Let x0 ∈ R and δ > 0. Let ã ∈ Cd−1,1(I(x0, δ),HypT (d)).
Assume that x0 is not reclusive for ã. Let λ ∈ C0(I(x0, δ)) be a continuous root of
Pã and assume that λ′(x0) exists.

If ã2(x0) ̸= 0, then, by Lemma 4.12, (ã, x0, δ, C(d)A(δ)) is C
d−1,1-admissible, where

A(δ) is defined by (4.3) and C(d) ≥ 1. Then Proposition 4.15 yields

|λ′(x0)| ≤ C(d)A(δ).

If ã2(x0) = 0, then x0 (being not reclusive for ã) is an accumulation point of Zã.
Hence λ′(x0) = 0 and the assertion is trivially true. □
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5. Proof of the main technical result

The goal of this section is the proof of Theorem 1.3.

Let I ⊆ R be an open interval. Let an → a in Cd(I,Hyp(d)), i.e., for each relatively
compact open interval I1 ⋐ I,

∥a− an∥Cd(I1,Rd) → 0 as n→ ∞.

It follows from Theorem 4.1 that the set {S(an) : n ≥ 1} is bounded in C0,1(I,Rd).
We must show that, for each relatively compact open interval I0 ⋐ I and each
1 ≤ q <∞,

∥S(a)− S(an)∥W 1,q(I0,Rd) → 0 as n→ ∞. (5.1)

5.1. Strategy of the proof. The proof of (5.1) is subdivided into three steps.
The first two steps are dedicated to the proof of

∥S(a)′ − S(an)′∥Lq(I0,Rd) → 0 as n→ ∞, (5.2)

for 1 ≤ q < ∞, using the dominated convergence theorem. In the third step, we
show that

∥S(a)− S(an)∥L∞(I0,Rd) → 0 as n→ ∞. (5.3)

Then (5.2) and (5.3) imply (5.1).

Step 1. We claim that the sequence of derivatives S(an)′ is dominated almost
everywhere on I0 by a positive constant.

To see this, fix I0 ⋐ I1 ⋐ I. By the assumption of Theorem 1.3, {an|I1 : n ≥ 1} is a
bounded subset of Cd−1,1(I1,Rd). By Theorem 4.1, the derivative of S(an) exists
almost everywhere in I0 and satisfies

∥S(an)′∥L∞(I0,Rd) ≤ C sup
n≥1

max
1≤j≤d

∥an,j∥1/jCd−1,1(I1)
=: B <∞.

This implies the claim.

Step 2. The aim of this step is to prove the following result.

Theorem 5.1. Let I ⊆ R be an open interval. Let an → a in Cd(I,Hyp(d)) as
n→ ∞. Then, for almost every x ∈ I,

S(an)′(x) → S(a)′(x) as n→ ∞.

By Step 1 and 2, the dominated convergence theorem yields that (5.2) holds, for
each relatively compact open interval I0 ⋐ I and each 1 ≤ q <∞.

Step 3. Now we show (5.3). Fix x0 ∈ I0. We have

S(an)(x0) = λ↑(an(x0)) → λ↑(a(x0)) = S(a)(x0) as n→ ∞, (5.4)

since the map λ↑ : Hyp(d) → Rd is continuous (cf. [AKLM98, Lemma 4.1]). For
arbitrary x ∈ I0,

∥S(a)(x)− S(an)(x)∥2 =
∥∥∥S(a)(x0)− S(an)(x0) +

∫ x

x0

S(a)′(t)− S(an)′(t) dt
∥∥∥
2

≤ ∥S(a)(x0)− S(an)(x0)∥2 + ∥S(a)′ − S(an)′∥L1(I0,Rd).

Thus, (5.2) and (5.4) imply (5.3).
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Remark 5.2. Alternatively, (5.3) is a consequence of [PR24, Corollary 6.5] and
Lemma 7.1; for this argument it is actually enough that an → a in C0(I0,Hyp(d))
as n→ ∞.

Therefore, in order to prove Theorem 1.3 it remains to show Theorem 5.1. The rest
of the section is devoted to the proof of Theorem 5.1.

5.2. On the zero set of ã. Recall that acc(Zã) denotes the set of accumulation
points of the zero set Zã of ã : I → HypT (d). By Lemma 3.1, Zã = Zã2 .

Lemma 5.3. Let I ⊆ R be a bounded open interval. Let ãn → ã in Cd(I,HypT (d))
as n→ ∞. Then, for almost every x0 ∈ Zã,

S(ãn)′(x0) → 0 as n→ ∞. (5.5)

Proof. We will show that (5.5) holds for all x0 ∈ J , where

J := acc(Zã) ∩
⋂
n≥1

{x ∈ I : x is not reclusive for ãn}

∩
⋂
n≥1

{x ∈ I : S(ãn)′(x) exists}.

The set J has full measure in Zã, by Lemma 4.6 and Rademacher’s theorem.

Fix x0 ∈ J ⊆ acc(Zã). Then ã
(k)
j (x0) = 0 for all 2 ≤ j ≤ d and 0 ≤ k ≤ d, by

Rolle’s theorem. Let ϵ > 0 be fixed. By continuity, there exists δ > 0 such that
I(x0, δ) ⋐ I and

∥ãj∥Cd(I(x0,δ))
≤ ϵj

2
, 2 ≤ j ≤ d. (5.6)

Since ãn → ã in Cd(I,HypT (d)) as n → ∞, there exists n0 ≥ 1 such that, for
n ≥ n0,

∥ãj − ãn,j∥Cd(I(x0,δ))
≤ ϵj

2
, 2 ≤ j ≤ d, (5.7)

and

|ãn,2(x0)| ≤ δ2ϵ2. (5.8)

By (5.6) and (5.7), for n ≥ n0 and 2 ≤ j ≤ d,

∥ãn,j∥Cd(I(x0,δ))
≤ ∥ãj∥Cd(I(x0,δ))

+ ∥ãj − ãn,j∥Cd(I(x0,δ))
≤ ϵj . (5.9)

Since x0 ∈ J is not reclusive for ãn and S(ãn)′(x0) exists, we may apply Theorem 4.7
to ãn and conclude

∥S(ãn)′(x0)∥2 ≤ C(d)A(δ),

where A(δ) is defined in (4.3) with ã replaced by ãn. By (5.8) and (5.9),

A(δ) ≤ 6 ϵ.

Since ϵ > 0 was arbitrary, we conclude that

S(ãn)′(x0) → 0 as n→ ∞.

The proof is complete. □
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5.3. Admissible data. At points x0 with ã2(x0) ̸= 0 we have a splitting of Pã and
we may use induction on the degree. The following definition is a preparation for
the induction argument.

Let us recall (from (4.4)) that

I(x0, A) := I(x0, A
−1|ã2(x0)|1/2).

Definition 5.4 (Cd-admissible data). Let I1 ⊆ R be an open bounded interval
and I0 ⋐ I1 a relatively compact open subinterval. Let ã ∈ Cd(I1,HypT (d)).
Let A > 0 be a constant. We say that (ã, I0, I1, A) is Cd-admissible if, for every
x0 ∈ I0 \ {x : ã2(x) = 0}, the following holds:

(1) I(x0, A) ⊆ I1.

(2) For all x ∈ I(x0, A),

1

2
≤ ã2(x)

ã2(x0)
≤ 2. (5.10)

(3) For all 2 ≤ j ≤ d, 1 ≤ k ≤ d, and x ∈ I(x0, A),

|ã(k)j (x)| ≤ Ak |ã2(x0)|(j−k)/2. (5.11)

Note that if we take I1 := I(x0, δ), let I0 shrink to the point x0, assume ã2(x0) ̸= 0,
and use Cd−1,1- instead of Cd-regularity, we recover the notion from Definition 4.10.

Lemma 5.5. Let I1 ⊆ R be a bounded open interval and I0 ⋐ I1 a relatively
compact open subinterval. Let ãn → ã in Cd(I1,HypT (d)) as n→ ∞. Set

A := 6max{A1, A2}, (5.12)

where, using ã0,j = ãj for convenience and δ := dist(I0,R \ I1),

A1 := sup
n≥0

max
{
δ−1∥ãn,2∥1/2L∞(I1)

, |ã′n,2|
1/2

C0,1(I1)

}
,

A2 := sup
n≥0

max
2≤j≤d

{
∥ã(d)n,j∥L∞(I1) · ∥ãn,2∥

(d−j)/2
L∞(I1)

}1/d
.

Then (ã, I0, I1, C(d)A) and (ãn, I0, I1, C(d)A), for n ≥ 1, are Cd-admissible, for
some constant C(d) ≥ 1.

Proof. Fix n ≥ 0 and x0 ∈ I0 \ {x : ãn,2(x) = 0}. By the definition of A1, we have
I(x0, A1) ⊆ I1. By Lemma 4.8,

|ã′n,2(x0)| ≤ 2A1 |ãn,2(x0)|1/2

which entails (as in the proof of Lemma 4.11) that (5.10) holds on I(x0, 6A1). By
the definition of A2, (5.11) holds for k = d. By Lemma 3.1 and (5.10), we have
|ãj(x)| ≤ 2j |ã2(x0)|j/2, for x ∈ I(x0, A). Thus, (5.11) follows from Lemma 4.9. □

In the following, we will use I(x0, A) as well as its counterpart for an instead of a,
that is

In(x0, A) := I(x0, A
−1|ãn,2(x0)|1/2). (5.13)
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5.4. Towards a simultaneous splitting. Our next goal is to show that, if ãn → ã
in Cd(I1,HypT (d)) as n → ∞ and (ã, I0, I1, A) and (ãn, I0, I1, A), for n ≥ 1, are
Cd-admissible, then Pã and Pãn , for n large enough, admit a simultaneous splitting;
see Definition 5.6.

Let I1 ⊆ R be a bounded open interval and I0 ⋐ I1 a relatively compact open
subinterval. Let ãn → ã in Cd(I1,HypT (d)), i.e.,

∥ã− ãn∥Cd(I1,Rd) → 0 as n→ ∞. (5.14)

Assume that (ã, I0, I1, A) and (ãn, I0, I1, A), for n ≥ 1, are Cd-admissible for some
A > 0.

Fix x0 ∈ I0 \ {x : ã2(x) = 0}. By (5.14), there is n0 ≥ 1 such that

||ã2(x0)|1/2 − |ãn,2(x0)|1/2| <
1

2
|ã2(x0)|1/2, n ≥ n0,

and hence
1

2
<

|ãn,2(x0)|1/2

|ã2(x0)|1/2
<

3

2
, n ≥ n0. (5.15)

So, for n ≥ n0,

I(x0, 2A) ⊆ In(x0, A) ⊆ I(x0, 2A/3), (5.16)

where In(x0, A) is defined in (5.13). Since (ãn, I0, I1, A), for n ≥ 1, is Cd-admissible
and thanks to (5.16) we see that, for n ≥ n0,

I(x0, 2A) ⊆ I1, (5.17)

1

2
≤ ãn,2(x)

ãn,2(x0)
≤ 2, x ∈ I(x0, 2A), (5.18)

|ã(k)n,j(x)| ≤ Ak |ãn,2(x0)|(j−k)/2, 2 ≤ j ≤ d, 1 ≤ k ≤ d, x ∈ I(x0, 2A). (5.19)

Consider the Cd curves

a := (0,−1, a3, . . . , ad) : I(x0, 2A) → Hyp0T (d) ⊆ Rd,

an := (0,−1, an,3, . . . , an,d) : I(x0, 2A) → Hyp0T (d) ⊆ Rd, n ≥ n0,

where aj := |ã2|−j/2ãj and an,j := |ãn,2|−j/2ãn,j . Then, by the proof of
Lemma 4.13, we conclude that there is a constant

C1 = C1(d) > 1 (5.20)

such that, for x ∈ I(x0, 2A),

∥a′(x)∥2 ≤ C1A |ã2(x0)|−1/2 and ∥a′n(x)∥2 ≤ C1A |ãn,2(x0)|−1/2.

Let 0 < r < 1 be the radius of the splitting (see Definition 3.5) and define

J1 := I(x0, 4C1A/r) = I(x0,
r

4C1A
|ã2(x0)|1/2).

Then a(J1) ⊆ B(a(x0), r/4) and an(J1) ⊆ B(an(x0), r/2), using (5.15). By (5.14),
there is n1 ≥ n0 such that

∥a(x0)− an(x0)∥2 <
r

4
, n ≥ n1. (5.21)

Consequently, B(an(x0), r/2) is contained in B(a(x0), 3r/4), for n ≥ n1.



CONTINUITY OF THE SOLUTION MAP FOR HYPERBOLIC POLYNOMIALS 25

In view of (3.5) and Definition 3.5, we have splittings on J1,

Pã = PbPc and Pãn = PbnPcn , n ≥ n1, (5.22)

with the following properties:

(1) db := degPb = degPbn , for all n ≥ n1, and db < d.

(2) There exist bounded analytic functions ψ1, . . . , ψdb
with bounded partial

derivatives of all orders such that, for x ∈ J1 and 1 ≤ i ≤ db,

bi(x) = |ã2(x)|i/2 ψi(a(x)),

bn,i(x) = |ãn,2(x)|i/2 ψi(an(x)), n ≥ n1.

The same is true for the second factors Pc and Pcn .

Definition 5.6 (Simultaneous splitting). We say that the family {Pã}∪{Pãn}n≥n1

has a simultaneous splitting on an interval J1 if (5.22) and the above properties (1)
and (2) are satisfied.

Note that, applying the Tschirnhausen transformation to Pb and Pbn and by (3.1),

we find bounded analytic functions ψ̃1, . . . , ψ̃db
with bounded partial derivatives of

all orders such that, for x ∈ J1 and 1 ≤ i ≤ db,

b̃i(x) = |ã2(x)|i/2 ψ̃i(a(x)),

b̃n,i(x) = |ãn,2(x)|i/2 ψ̃i(an(x)), n ≥ n1.

Lemma 5.7. We have bn → b and b̃n → b̃ in Cd(J1,Rdb) as n→ ∞.

Proof. By (5.10) and (5.18), |ã2|1/2, |ãn,2|1/2 ∈ Cd(J1) and a, an ∈ Cd(J1,Rd), for
n ≥ n0, and the assertion follows from Proposition 2.1. □

Summarizing, we have the following proposition.

Proposition 5.8. Let I1 ⊆ R be a bounded open interval and I0 ⋐ I1 a relatively
compact open subinterval. Let ãn → ã in Cd(I1,HypT (d)) as n→ ∞. Assume that
(ã, I0, I1, A) and (ãn, I0, I1, A), for n ≥ 1, are Cd-admissible for some A > 0. Let
x0 ∈ I0 \ {x : ã2(x) = 0}. Then the following holds:

(1) There exist an interval J1 containing x0 and n0 ≥ 1 such that the family
{Pã} ∪ {Pãn}n≥n0

has a simultaneous splitting (5.22) on J1.

(2) For the factors in the simultaneous splitting (5.22), bn → b and b̃n → b̃ in
Cd(J1,Rdb) as n→ ∞.

(3) There exist a relatively compact open subinterval J0 ⋐ J1 containing x0 and

a constant C = C(d) > 1 such that (b̃, J0, J1, CA) and (b̃n, J0, J1, CA), for
n ≥ n0, are C

d-admissible.

The properties (2) and (3) also hold for b, bn, b̃, b̃n replaced by c, cn, c̃, c̃n.

Proof. (1) This was proved above.

(2) Lemma 5.7.
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(3) Set J0 := I(x0, 8C1A/r) = I(x0,
r

8C1A
|ã2(x0)|1/2), where C1 is the constant

from (5.20). Then clearly J0 ⋐ J1.

Fix x1 ∈ J0 \ {x : b̃2(x) = 0}. Then

|x1 − x0| <
r

8C1A
|ã2(x0)|1/2.

By Lemma 3.4 and (5.10),

|b̃2(x1)|1/2 ≤ 2 |ã2(x1)|1/2 ≤ 2
√
2 |ã2(x0)|1/2.

Setting

B :=
16

√
2C1A

r
we have

B−1 |b̃2(x1)|1/2 ≤ r

8C1A
|ã2(x0)|1/2,

and hence

J(x1, B) := I(x1, B
−1 |b̃2(x1)|1/2) ⊆ I(x0,

r
4C1A

|ã2(x0)|1/2) = J1.

One checks, exactly as in the proof of Proposition 4.14, that

|b̃(k)i (x)| ≤ C(d)Ak |ã2(x0)|(i−k)/2,

for all 2 ≤ i ≤ db, 1 ≤ k ≤ d, and x ∈ J1. If k ≥ i, we may replace ã2(x0)

by b̃2(x1) on the right-hand side. Thus, we may conclude that (b̃, J0, J1, CA) is
Cd-admissible, for a suitable constant C = C(d) > 1, by the proof of Lemma 4.11.

To see that also (b̃n, J0, J1, CA) is Cd-admissible, fix x1 ∈ J0 \ {x : b̃n,2(x) = 0}.
By Lemma 3.4, (5.15), and (5.18),

|b̃n,2(x1)|1/2 ≤ 2 |ãn,2(x1)|1/2 ≤ 2
√
2 |ãn,2(x0)|1/2 ≤ 3

√
2 |ã2(x0)|1/2.

Hence, using

B :=
24
√
2C1A

r
,

we find

Jn(x1, B) := I(x1, B
−1 |b̃n,2(x1)|1/2) ⊆ I(x0,

r
4C1A

|ã2(x0)|1/2) = J1.

The rest follows in the same way as described above. □

5.5. The induction argument.

Proposition 5.9. Let I1 ⊆ R be a bounded open interval and I0 ⋐ I1 a relatively
compact open subinterval. Let ãn → ã in Cd(I1,HypT (d)) as n → ∞. Assume
that (ã, I0, I1, A) and (ãn, I0, I1, A), for n ≥ 1, are Cd-admissible for some A > 0.
Then, for almost every x ∈ I0,

S(ãn)′(x) → S(ã)′(x) as n→ ∞. (5.23)

Proof. We proceed by induction on d. The base case is trivial, since Z is the unique
polynomial in Tschirnhausen form of degree 1. Let us assume that d ≥ 2 and that
the statement is true for monic hyperbolic polynomials of degree ≤ d− 1.

If x ∈ acc(Zã) and S(ã)′(x) exists, then S(ã)′(x) = 0. Thus, by Lemma 5.3, it is
enough to show that (5.23) holds for almost every x ∈ I0 \ {x : ã2(x) = 0}.
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Fix x0 ∈ I0\{x : ã2(x) = 0}. By Proposition 5.8, there exist intervals J1 ⋑ J0 ∋ x0,
n0 ≥ 1, and C = C(d) > 1 such that the family {Pã}∪{Pãn}n≥n0 has a simultaneous

splitting (5.22) on J1, (b̃, J0, J1, CA) and (b̃n, J0, J1, CA), for n ≥ n0, are Cd-

admissible, and bn → b and b̃n → b̃ in Cd(J1,Rdb) as n→ ∞.

We may assume that, for x ∈ J1,

µ(x) := (λ↑1(ã(x)), λ
↑
2(ã(x)), . . . , λ

↑
db
(ã(x)))

is the increasingly ordered root vector of Pb(x) and, for n ≥ n0,

µn(x) := (λ↑1(ãn(x)), λ
↑
2(ãn(x)), . . . , λ

↑
db
(ãn(x)))

is the increasingly ordered root vector of Pbn(x); see Definition 3.5. Then

µ(x) + 1
db
(b1(x), . . . , b1(x)) and µn(x) +

1
db
(bn,1(x), . . . , bn,1(x))

are the corresponding root vectors for Pb̃(x) and Pb̃n(x)
, respectively. By induction

hypothesis and since b′n,1(x) → b′1(x) as n→ ∞, we have

µ′
n(x) → µ′(x) as n→ ∞,

for almost every x ∈ J0.

Treating the second factors Pc and Pcn analogously, we conclude that (5.23) holds
for almost every x ∈ J0.

The set I0 \ {x : ã2(x) = 0} can be covered by the open intervals J0 and this cover
admits a countable subcover. This ends the proof. □

5.6. Proof of Theorem 5.1. Let I ⊆ R be an open interval. Let an → a in
Cd(I,Hyp(d)) as n → ∞. The Tschirnhausen transformation effects a shift of
S(a) by 1

d (a1, . . . , a1) and of S(an) by 1
d (an,1, . . . , an,1). The new coefficients are

polynomials in the old ones, see (3.1). Hence we may assume that the polynomials
are all in Tschirnhausen form (by Proposition 2.1). Then Theorem 5.1 follows from
Lemma 5.5 and Proposition 5.9.

This also completes the proof of Theorem 1.3.

Remark 5.10. We need Cd convergence in Lemma 5.3. For all other arguments,
it would be enough to work in the class Cd−1,1.

6. Proofs of the main results

In this section, we will deduce Theorem 1.1 and Corollary 1.2 from Theorem 1.3.
We also prove Theorem 1.6.

6.1. A multiparameter version. The following theorem is a multiparameter ver-
sion of Theorem 1.3.

Theorem 6.1. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)), i.e., for each
relatively compact open subset U1 ⋐ U ,

∥a− an∥Cd(U1,Rd) → 0 as n→ ∞.

Then {S(an) : n ≥ 1} is a bounded set in C0,1(U,Rd) and, for each relatively
compact open subset U0 ⋐ U and each 1 ≤ q <∞,

∥S(a)− S(an)∥W 1,q(U0,Rd) → 0 as n→ ∞.
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Proof. Let us assume that U0 is an open box U0 = I1 × · · · × Im with sides parallel
to the coordinate axes. Set λ := S(a) and λn := S(an). Let x = (x1, x

′) and for
x′ ∈ U ′

0 = I2 × · · · × Im consider

An(x
′) :=

∫
I1

∥∂1λ(x1, x′)− ∂1λn(x1, x
′)∥q2 dx1.

Then An(x
′) → 0 as n → ∞, by Theorem 1.3. The boundedness of {λn : n ≥

1} in C0,1(U,Rd) is a consequence of Bronshtein’s theorem 4.1. It implies that
|∂1λ− ∂1λn| is dominated on U0 by an integrable function. By Fubini’s theorem,∫

U0

∥∂1λ(x)− ∂1λn(x)∥q2 dx =

∫
U ′

0

An(x
′) dx′.

By the dominated convergence theorem, we conclude that∫
U0

∥∂1λ(x)− ∂1λn(x)∥q2 dx→ 0 as n→ ∞.

In an analogous way, one sees that ∥∂jλ− ∂jλn∥Lq(U0,Rd) → 0 as n → ∞, for each
1 ≤ j ≤ m.

We may conclude that ∥λ− λn∥L∞(U0,Rd) → 0 as n→ ∞ from the fact that this is
true component-wise (see Step 3 in Section 5.1).

For general U0, we observe that there are finitely many open boxes as before that
are relatively compact in U and cover U0. This ends the proof. □

6.2. Proof of Theorem 1.1. It is clear that Theorem 6.1 implies Theorem 1.1
because Cd(U,Hyp(d)) is first-countable.

6.3. Proof of Corollary 1.2. Corollary 1.2 is an immediate consequence of the
following corollary of Theorem 6.1 and Example 1.12.

Corollary 6.2. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
Then, for each relatively compact open set U0 ⋐ U and each 0 < α < 1,

∥S(a)− S(an)∥C0,α(U0,Rd) → 0 as n→ ∞.

Proof. Again we may assume that U0 is a box (and hence has Lipschitz boundary).
Then the assertion follows from Theorem 6.1 and Morrey’s inequality,

∥S(a)− S(an)∥C0,α(U0,Rd) ≤ C ∥S(a)− S(an)∥W 1,q(U0,Rd),

where α = 1−m/q, q > m, and C = C(m, q, U0). □

6.4. Proof of Theorem 1.6. The restriction ψ := λ↑|Hyp◦(d) : Hyp◦(d) → Rd is
real analytic, by Lemma 3.3. Thus Theorem 1.6 is a consequence of Proposition 2.1,
observing that S◦ = ψ∗ and that ∥ψ∥Ck+1(V 0,Rd) depends only on d, k, and V0.
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7. Applications

In this section, we give several applications of our results. In Section 7.1, we clarify
their relation to the continuity results for the solution map of general polynomi-
als obtained in [PR24]. In Section 7.2, we deduce that locally the surface area of
the graphs of the roots of hyperbolic polynomials is continuous and conclude local
lower semicontinuity of the area of the zero sets of hyperbolic polynomials. In Sec-
tion 7.3, we prove a theorem on approximation by hyperbolic polynomials with all
roots simple. Finally, we obtain continuity results for the eigenvalues of Hermitian
matrices, in Section 7.4, and for singular values, in Section 7.5.

7.1. Relation to the results for general polynomials. The case of general
complex (not necessarily hyperbolic) polynomials is treated in [PR24] which builds
on the results of [PR16, PR18]. The crucial difference is that in general there is no
canonical choice of a continuous ordered d-tuple of the complex roots. Even worse,
if the parameter space is at least two-dimensional, then a parameterization of the
roots by continuous functions might not exist; but there exist parameterizations
by functions of bounded variation, see [PR20a]. Therefore the continuity results in
[PR24] are formulated in terms of the unordered d-tuple of the roots.

Let us compare the results obtained in this paper with the ones of [PR24]. To this
end, we investigate the metric space Ad(R) of unordered d-tuples of real numbers.
It is a simple instance of the space Ad(Rm) considered in [Alm00] and [DLS11].

For x = (x1, . . . , xd) ∈ Rd, let [x] = [x1, . . . , xd] be the corresponding unordered
d-tuple, i.e., the equivalence class (or orbit) of x with respect to the action of the
symmetric group Sd on Rd by permutation of the coordinates:

σx := (xσ(1), xσ(2), . . . , xσ(d)), σ ∈ Sd, x ∈ Rd.

The set Ad(R) := {[x] : x ∈ Rd} with the distance

d([x], [y]) := min
σ∈Sd

1√
d
∥x− σy∥2

is a complete metric space. If we identify the elements of Ad(R) with formal sums
1
d

∑d
i=1JxiK, where JxiK denotes the Dirac mass of xi ∈ R, then d is induced by the

L2 based Wasserstein metric on the space of probability measures on R.

For x ∈ Rd, let x↑ ∈ Rd be the representative of the equivalence class [x] with
increasingly ordered coordinates. Clearly, x↑ only depends on [x] and thus we have
an injective map ( )↑ : Ad(R) → Rd. It is a right-inverse of [ ] : Rd → Ad(R).

Lemma 7.1. We have

d([x], [y]) =
1√
d
∥x↑ − y↑∥2, x, y ∈ Rd.

In particular, ( )↑ : Ad(R) → Rd and [ ] : Rd → Ad(R) are Lipschitz maps.

Proof. Evidently,

d([x], [y]) = d([x↑], [y↑]) = min
σ∈Sd

1√
d
∥x↑ − σy↑∥2 ≤ 1√

d
∥x↑ − y↑∥2.



30 ADAM PARUSIŃSKI AND ARMIN RAINER

Thus the assertion will follow from the claim that ∥x↑ − y↑∥2 ≤ ∥x↑ − y∥2, for all
x, y ∈ Rd. For d = 2, the claim is equivalent to

(x1 − y1)
2 + (x2 − y2)

2 ≤ (x1 − y2)
2 + (x2 − y1)

2

whenever x1 ≤ x2 and y1 ≤ y2. By a simple computation, it is further equivalent
to the true statement (x2−x1)(y2−y1) ≥ 0. The general case follows from the fact
that any permutation is a finite composite of transpositions. □

By Lemma 7.1, the map ( )↑ : Ad(R) → Rd satisfies the conditions of an Alm-
gren embedding (as defined in [PR24] following [Alm00] and [DLS11]). Thus The-
orem 1.3 can be interpreted as a special version of the general theorem [PR24,

Theorem 1.1] with the important difference that S(an) → S(a) in W 1,q
loc as n→ ∞,

see (1.3), holds for each 1 ≤ q < ∞, while in the general result the corresponding
fact is valid only for 1 ≤ q < d/(d− 1).

For the next theorem, which is a stronger version of [PR24, Theorem 1.3] in the
hyperbolic case, we need to recall the notions of metric speed and q-energy.

Definition 7.2 (Metric speed and q-energy). Let I ⊆ R be an open interval and
a ∈ Cd(I,Hyp(d)). Consider the Lipschitz curve Λ(x) := [S(a)(x)], for x ∈ I, in
the metric space Ad(R). Then (see [AGS08]) the limit

|Λ̇|(x) := lim
h→0

d(Λ(x+ h),Λ(x))

|h|

exists for almost every x ∈ I and is called the metric speed of Λ at x. The q-energy
of Λ on a subinterval I0 ⊆ I is defined by

Eq,I0(Λ) :=
∫
I0

(
|Λ̇|(x)

)q
dx.

Theorem 7.3. Let I ⊆ R be an open interval. Let an → a in Cd(I,Hyp(d)) as
n→ ∞. Set Λ := [S(a)] and Λn := [S(an)]. Then, for each relatively compact open
interval I0 ⋐ I,

∥d(Λ,Λn)∥L∞(I0) → 0 as n→ ∞, (7.1)∥∥|Λ̇| − |Λ̇n|
∥∥
Lq(I0)

→ 0 as n→ ∞, (7.2)∣∣Eq,I0(Λ)− Eq,I0(Λn)
∣∣ → 0 as n→ ∞, (7.3)

for each 1 ≤ q <∞.

Proof. First, (7.1) is a consequence of (5.3) and Lemma 7.1. By [PR24, Lemma
11.1],

|Λ̇|(x) = 1√
d
∥S(a)′(x)∥2 and |Λ̇n|(x) =

1√
d
∥S(an)′(x)∥2

for almost every x ∈ I. Thus, (7.2) and (7.3) follow from Corollary 1.4. □
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7.2. Continuity of the area of the solution map. Let us first expand Corol-
lary 1.4.

Corollary 7.4. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
Let R ∈ R[X1, . . . , Xdm] be any real polynomial in the d ·m variables X1, . . . , Xdm.
Set λ = (λ1, . . . , λd) := S(a) and λn = (λn,1, . . . , λn,d) := S(an), for n ≥ 1. Then,
for each relatively compact open subset U0 ⋐ U and each 1 ≤ q <∞,∥∥∥R((∂iλj)1≤i≤m

1≤j≤d

)
−R

(
(∂iλn,j)1≤i≤m

1≤j≤d

)∥∥∥
Lq(U0)

→ 0 as n→ ∞, (7.4)

and consequently,∥∥∥R((∂iλn,j)1≤i≤m
1≤j≤d

)∥∥∥
Lq(U0)

→
∥∥∥R((∂iλj)1≤i≤m

1≤j≤d

)∥∥∥
Lq(U0)

as n→ ∞. (7.5)

Proof. Clearly, (7.5) is a consequence of (7.4).

Let us prove (7.4). It is enough to show the assertion for monomials R. Let us
proceed by induction on the degree ℓ of the monomial R. For ℓ = 1, the assertion
follows from Theorem 6.1 in view of

∥∂iλj − ∂iλn,j∥Lq(U0) ≤ ∥∂iλ− ∂iλn∥Lq(U0,Rd).

If ℓ ≥ 2, then, by Hölder’s inequality,

∥∂i1λj1 · · · ∂iℓλjℓ − ∂i1λn,j1 · · · ∂iℓλn,jℓ∥Lq(U0)

≤ ∥∂i1λj1 · · · ∂iℓλjℓ − ∂i1λj1 · · · ∂iℓ−1
λjℓ−1

· ∂iℓλn,jℓ∥Lq(U0)

+ ∥∂i1λj1 · · · ∂iℓ−1
λjℓ−1

· ∂iℓλn,jℓ − ∂i1λn,j1 · · · ∂iℓλn,jℓ∥Lq(U0)

≤ ∥∂i1λj1 · · · ∂iℓ−1
λjℓ−1

∥L∞(U0)∥∂iℓλjℓ − ∂iℓλn,jℓ∥Lq(U0)

+ ∥∂i1λj1 · · · ∂iℓ−1
λjℓ−1

− ∂i1λn,j1 · · · ∂iℓ−1
λn,jℓ−1

∥Lq(U0)∥∂iℓλn,jℓ∥L∞(U0)

which tends to zero as n→ 0, by the induction hypothesis, because

∥∂i1λj1 · · · ∂iℓ−1
λjℓ−1

∥L∞(U0) ≤ C and ∥∂iℓλn,jℓ∥L∞(U0) ≤ C

for a constant C > 0 independent of n and ik, jk, by Bronshtein’s theorem (see
Theorem 4.1). □

Let f : U → Rd be a Lipschitz map, where U ⊆ Rm is open. We recall that the
Jacobian |Jf | of f is the square root of the sum of the squares of the determinants
of the k × k minors with k = min{m, d} of the Jacobian matrix

(∂ifj)1≤i≤m
1≤j≤d

,

which exists almost everywhere, by Rademacher’s theorem.

Corollary 7.5. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
Then, for each relatively compact open subset U0 ⋐ U and each 1 ≤ q <∞,∥∥|J(S(a))| − |J(S(an))|

∥∥
Lq(U0)

→ 0 as n→ ∞,

and consequently,∥∥|J(S(an))|∥∥Lq(U0)
→

∥∥|J(S(a))|∥∥
Lq(U0)

as n→ ∞.



32 ADAM PARUSIŃSKI AND ARMIN RAINER

Proof. LetM1, . . . ,Mp andMn,1, . . . ,Mn,p denote the determinants of all the k×k
minors with k = min{m, d} of the Jacobian matrices of S(a) and S(an), respectively.
Fix 1 ≤ q <∞. Then, by Hölder’s inequality,∥∥|J(S(a))| − |J(S(an))|

∥∥
Lq(U0)

≤ |U0|1/(2q)
∥∥|J(S(a))| − |J(S(an))|

∥∥
L2q(U0)

and ∥∥|J(S(a))| − |J(S(an))|
∥∥2q
L2q(U0)

=
∥∥(∑

i

M2
i

)1/2 − (∑
i

M2
n,i

)1/2∥∥2q
L2q(U0)

≤
∥∥∣∣∑

i

M2
i −

∑
i

M2
n,i

∣∣1/2∥∥2q
L2q(U0)

=
∥∥∑

i

M2
i −

∑
i

M2
n,i

∥∥q
Lq(U0)

.

Now it suffices to apply Corollary 7.4. □

Next we will combine Corollary 7.5 with the area and the coarea formula (see e.g.
[EG92]) which we recall for the convenience of the reader.

Let f : Rm → Rd be Lipschitz and let E ⊆ Rm be Lebesgue measurable. The area
formula states that, if m ≤ d, then∫

E

|Jf | dx =

∫
Rd

H0(E ∩ f−1(y)) dHm(y).

The coarea formula posits that, if m ≥ d, then∫
E

|Jf | dx =

∫
Rd

Hm−d(E ∩ f−1(y)) dy.

Recall that Hk denotes the k-dimensional Hausdorff measure, in particular, H0 is
the counting measure.

Corollary 7.6. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
Set λ := S(a) and λn := S(an), for n ≥ 1.

(1) If m ≤ d, then for each relatively compact open subset U0 ⋐ U ,∫
Rd

H0(U0 ∩ λ−1
n (y)) dHm(y) →

∫
Rd

H0(U0 ∩ λ−1(y)) dHm(y)

as n→ ∞.

(2) If m > d, then for each relatively compact open subset U0 ⋐ U ,∫
Rd

Hm−d(U0 ∩ λ−1
n (y)) dy →

∫
Rd

Hm−d(U0 ∩ λ−1(y)) dy

as n→ ∞.

Proof. This is an immediate consequence of Corollary 7.5 (for q = 1) and the area
and coarea formula. □

We can also conclude that the surface area of the graphs of all the single roots

S(an)j = λ↑j ◦ an, for 1 ≤ j ≤ d, is locally convergent as n→ ∞.
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Corollary 7.7. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
For each 1 ≤ j ≤ d and for each relatively compact open subset U0 ⋐ U , the surface
area of the graph of λn,j := S(an)j converges to the surface area of the graph of

λj := S(a)j as n → ∞: if λn,j(x) := (x, λn,j(x)) and λj(x) := (x, λj(x)) denote
the corresponding graph mappings, then

Hm(λn,j(U0)) → Hm(λj(U0)) as n→ ∞.

Proof. We have

|Jλj | =
(
1 +

m∑
i=1

(∂iλj)
2
)1/2

and |Jλn,j | =
(
1 +

m∑
i=1

(∂iλn,j)
2
)1/2

.

As in the proof of Corollary 7.5, we have∥∥∥(1 + m∑
i=1

(∂iλj)
2
)1/2

−
(
1 +

m∑
i=1

(∂iλn,j)
2
)1/2∥∥∥2

L2(U0)

≤
∥∥∥∣∣∣ m∑

i=1

(∂iλj)
2 −

m∑
i=1

(∂iλn,j)
2
∣∣∣1/2∥∥∥2

L2(U0)

=
∥∥∥ m∑

i=1

(∂iλj)
2 −

m∑
i=1

(∂iλn,j)
2
∥∥∥
L1(U0)

.

So the assertion follows from Corollary 7.4 and the area formula. □

It follows that the area of the zero sets of Cd families of hyperbolic polynomials of
degree d locally has a lower semicontinuity property; for the reader’s convenience,
we restate Corollary 1.9:

Corollary 7.8. Let U ⊆ Rm be open. Let an → a in Cd(U,Hyp(d)) as n → ∞.
For any relatively compact open U0 ⋐ U , consider the zero sets

Z = {(x, y) ∈ U0 × R : Pa(x)(y) = 0} and

Zn = {(x, y) ∈ U0 × R : Pan(x)(y) = 0}, n ≥ 1.

Then

lim inf
n→∞

Hm(Zn) ≥ Hm(Z).

Proof. Set λ := S(a). For i = 2, . . . , d, let Ei := {x ∈ U0 : λi−1(x) = λi(x)}. Then,
using the notation of Corollary 7.7,

Hm(Z) = Hm(λ1(U0)) +

d∑
i=2

Hm(λi(U0 \ Ei)). (7.6)

Analogously, setting λn := S(an) and En,i := {x ∈ U0 : λn,i−1(x) = λn,i(x)}, we
have

Hm(Zn) = Hm(λn,1(U0)) +

d∑
i=2

Hm(λn,i(U0 \ En,i)). (7.7)

By the continuity of λ↑ : Hyp(d) → Rd, for each i = 2, . . . , d and each x ∈ U0,

lim sup
n→∞

1En,i
(x) ≤ 1Ei

(x). (7.8)
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By Theorem 5.1 (applied coordinate by coordinate), we have that |Jλn,i| → |Jλi|
as n→ ∞ almost everywhere in U0. By Bronshtein’s theorem (Theorem 4.1), there
is a constant B > 0 such that

∥∥|Jλn,i|∥∥L∞(U0)
≤ B for all n ≥ 1. Thus, by the area

formula and the reverse Fatou lemma,

lim sup
n→∞

Hm(λn,i(En,i)) = lim sup
n→∞

∫
U0

1En,i |Jλn,i| dx

≤
∫
U0

lim sup
n→∞

(
1En,i |Jλn,i|

)
dx

≤
∫
U0

lim sup
n→∞

1En,i
· lim sup

n→∞
|Jλn,i| dx

≤
∫
Ei

|Jλi| dx = Hm(λi(Ei)),

where we used (7.8) in the last inequality.

Together with (7.6), (7.7), and Corollary 7.7, this gives

lim inf
n→∞

Hm(Zn) = lim inf
n→∞

( d∑
i=1

Hm(λn,i(U0))−
d∑

i=2

Hm(λn,i(En,i))
)

=

d∑
i=1

lim inf
n→∞

Hm(λn,i(U0))−
d∑

i=2

lim sup
n→∞

Hm(λn,i(En,i))

≥
d∑

i=1

Hm(λi(U0))−
d∑

i=2

Hm(λi(Ei)) = Hm(Z)

which ends the proof. □

7.3. Approximation by hyperbolic polynomials with all roots distinct.
We recall a lemma of Wakabayshi [Wak86] which extends an observation of Nuij
[Nui68].

Lemma 7.9 ([Wak86, Lemma 2.2]). Let Pa ∈ Hyp(d) and set

Pa,s(Z) := (1 + s ∂
∂Z )d−1Pa(Z), s ∈ R. (7.9)

Then Pa,s ∈ Hyp(d) for all s ∈ R and there are positive constants ci = ci(d),

i = 1, 2, such that, if λ↑1(a, s) ≤ · · · ≤ λ↑d(a, s) denote the increasingly ordered roots
of Pa,s, then

λ↑j (a, s)− λ↑j−1(a, s) ≥ c1|s|, for s ∈ R and 2 ≤ j ≤ d, (7.10)

and

0 < ±(λ↑j (a)− λ↑j (a, s)) ≤ c2|s|, for ± s > 0 and 1 ≤ j ≤ d. (7.11)

In conjunction with our findings, Lemma 7.9 leads to the following approximation
result.

Corollary 7.10. Let U ⊆ Rm be open and a ∈ Cd(U,Hyp(d)). There exists a
sequence (an)n≥1 ⊆ Cd(U,Hyp(d)) with the following properties:

(1) an → a in Cd(U,Hyp(d)) as n→ ∞;



CONTINUITY OF THE SOLUTION MAP FOR HYPERBOLIC POLYNOMIALS 35

(2) S(an)1(x) < S(an)2(x) < · · · < S(an)d(x) for all x ∈ U and all n ≥ 1;

(3) S(an) ∈ Cd(U,Rd) for all n ≥ 1;

(4) S(an) → S(a) in C0,1
q (U,Rd), for all 1 ≤ q <∞, as n→ ∞;

(5) for any relatively compact open U0 ⋐ U , consider the zero sets

Z = {(x, y) ∈ U0 × R : Pa(x)(y) = 0} and

Zn = {(x, y) ∈ U0 × R : Pan(x)(y) = 0}, n ≥ 1.

Then limn→∞ Hm(Zn) exists and

lim
n→∞

Hm(Zn) ≥ Hm(Z).

Proof. Let (sn)n≥1 be any positive sequence of reals that tends to 0. Consider the
polynomial Pa(x),sn (defined in (7.9)), where x ∈ U , and let an(x) be its coefficient

vector. Then, by Lemma 7.9, an ∈ Cd(U,Hyp(d)), for n ≥ 1. We will show that
the sequence (an)n≥1 has the desired properties.

(1) This is clear by the definition (7.9) and since sn → 0 as n→ ∞.

(2) follows from (7.10) and the fact that sn > 0 for all n ≥ 1.

(3) For fixed x ∈ U , ∂
∂ZPan(x)(Z) does not vanish at any root of Pan(x), by (2). So,

by the implicit function theorem, the roots of Pan(x) are of class Cd in a neighbor-
hood of x. This implies (3).

(4) is a consequence of (1) and Theorem 1.1.

(5) Using the notation of Corollary 7.7, for each n ≥ 1, the set Zn is the union
of the graphs λn,j(U0) of the single roots λn,j |U0 = S(an)j |U0 , for 1 ≤ j ≤ d, and
these graphs are pairwise disjoint, by (2). Thus, by (1) and Corollary 7.7,

lim
n→∞

Hm(Zn) = lim
n→∞

d∑
j=1

Hm(λn,j(U0)) =

d∑
j=1

Hm(λj(U0)) ≥ Hm(Z).

For the inequality at the end, note that the union Z =
⋃d

j=1 λj(U0) is not necessarily
disjoint; see also Corollary 7.8. □

7.4. Perturbation theory for Hermitian matrices. Let Herm(d) denote the
real vector space of complex Hermitian d × d matrices. With A ∈ Herm(d) we

associate its increasingly ordered eigenvalues λ↑1(A) ≤ λ↑2(A) ≤ · · · ≤ λ↑d(A) and
thus obtain a continuous map

λ↑ = (λ↑1, . . . , λ
↑
d) : Herm(d) → Rd. (7.12)

Proposition 7.11 (Weyl’s perturbation theorem [Wey12]; see e.g. [Bha97, III.2.6]).
Let A,B ∈ Herm(d). Then

∥λ↑(A)− λ↑(B)∥∞ ≤ ∥A−B∥, (7.13)

where ∥A−B∥ denotes the operator norm of A−B.
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In [Bha97], the result is stated for eigenvalue vectors with decreasing eigenvalues,
but reversing the order evidently leaves the left-hand side of (7.13) unchanged.

As a consequence of Proposition 7.11, the map (7.12) induces a bounded map

E := (λ↑)∗ : C0,1(I,Herm(d)) → C0,1(I,Rd), A 7→ λ↑ ◦A, (7.14)

which takes Lipschitz curves of Hermitian matrices to Lipschitz curves of their
increasingly ordered eigenvalues. The Lipschitz constants satisfy

|E(A)|C0,1(I,Rd) ≤ |A|C0,1(I,Herm(d)), (7.15)

if Herm(d) is endowed with the operator norm and Rd with the maximum norm.
This remains true if we replace the interval I by a bounded open set U ⊆ Rm.

The following corollary includes Theorem 1.10.

Corollary 7.12. Let U ⊆ Rm be open. Then:

(1) The map

E : Cd(U,Herm(d)) → C0,1
q (U,Rd), A 7→ λ↑ ◦A,

is continuous, for all 1 ≤ q <∞.

(2) The map

E : Cd(U,Herm(d)) → C0,α(U,Rd), A 7→ λ↑ ◦A,

is continuous, for all 0 < α < 1.

(3) If An → A in Cd(U,Herm(d)) as n→ ∞, then over each relatively compact
open subset U0 ⋐ U the surface area of the graph of E(An)j converges to
the surface area of the graph of E(A)j as n→ ∞, for each 1 ≤ j ≤ d.

Proof. (1) We have the commuting diagram

Cd(U,Herm(d))

P ((

E // C0,1
q (U,Rd)

Cd(U,Hyp(d))

S

77

where P sends A to its characteristic polynomial PA. The coefficients of PA are
given by polynomials in the entries of A. Thus, Proposition 2.1 implies that the
map P is continuous. Consequently, E = S ◦ P is continuous by Theorem 1.1.

(2) This follows similarly from the continuity of P and Corollary 1.2.

(3) Use Corollary 7.7 and the continuity of P. □

The following example shows that E is not continuous with respect to the C0,1

topology on the target space.

Example 7.13. The sequence (An)n of curves of symmetric 2× 2 matrices

An(x) =

(
1
n x
x − 1

n

)
, x ∈ R,
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converges to

A(x) =

(
0 x
x 0

)
, x ∈ R,

uniformly on every compact interval in all derivatives. We have

E(An)(x) =
(
−

√
x2 +

1

n2
,

√
x2 +

1

n2

)
and

E(A)(x) = (−|x|, |x|).
Hence, Example 1.12 shows that the Lipschitz constant of E(A) − E(An) on each

bounded open interval containing 0 is bounded below by 2−
√
2 which shows that

E(An) ̸→ E(A) in the C0,1 topology.

Given that the map E is defined and bounded on C0,1(U,Herm(d)) (see (7.14) and
(7.15)), it is natural to ask whether in Corollary 7.12 one can replace Cd by C1,
see Question 1.11.

If d = 2, this is indeed the case as evidenced in the following proposition.

Proposition 7.14. Let U ⊆ Rm be open. Then:

(1) The map

E : C1(U,Herm(2)) → C0,1
q (U,R2), A 7→ λ↑ ◦A,

is continuous, for all 1 ≤ q <∞.

(2) The map

E : C1(U,Herm(2)) → C0,α(U,R2), A 7→ λ↑ ◦A,

is continuous, for all 0 < α < 1.

(3) If An → A in C1(U,Herm(2)) as n→ ∞, then over each relatively compact
open subset U0 ⋐ U the surface area of the graph of E(An)j converges to
the surface area of the graph of E(A)j as n→ ∞, for j = 1, 2.

Proof. It suffices to prove (1) in the case m = 1. Then the multiparameter version
of (1) as well as (2) and (3) follow by the arguments given in detail for hyperbolic
polynomials, if one uses Proposition 7.11 instead of Bronshtein’s theorem 4.1.

Let us show (1) for m = 1. We may assume that the trace of A vanishes, by
replacing A by A− 1

2 tr(A)I. Thus, we have

A =

(
a b+ ic

b− ic −a

)
,

where a, b, c ∈ R, and

λ↑(A) =
(
−

√
a2 + b2 + c2,

√
a2 + b2 + c2

)
.

Let us assume that a, b, c ∈ C1(I,R), where I ⊆ R is an open interval. Then

I ∋ x 7→
√
a(x)2 + b(x)2 + c(x)2 =: µ(x)
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is locally Lipschitz, differentiable almost everywhere, and

|µ′(x0)| ≤ sup
x∈I1

∥A′(x)∥2 =
√
2 sup

x∈I1

√
a′(x)2 + b′(x)2 + c′(x)2, (7.16)

for each relatively compact open subinterval I1 ⋐ I and each x0 ∈ I1 where µ′(x0)
exists, by (7.15).

Suppose that

An =

(
an bn + icn

bn − icn −an

)
−→ A =

(
a b+ ic

b− ic −a

)
in C1(I,Herm(2))

as n→ ∞. It suffices to prove that

∥µ− µn∥W 1,q(I1) → 0 as n→ ∞, (7.17)

for each relatively compact open subinterval I1 ⋐ I and all 1 ≤ q <∞, where

µn :=
√
a2n + b2n + c2n.

By (7.13), we have

∥µ− µn∥L∞(I1) → 0 as n→ ∞,

for each relatively compact open subinterval I1 ⋐ I.

We claim that, for almost every x ∈ I,

µ′
n(x) → µ′(x) as n→ ∞.

This is clear on the set Ω := {x ∈ I : a(x)2 + b(x)2 + c(x)2 ̸= 0}: for each x0 ∈ Ω,
the derivative µ′(x0) exists, and, by assumption, a(x0)

2 + b(x0)
2 + c(x0)

2 ̸= 0 if n
is large enough so that also µ′

n(x0) exists and µ
′
n(x0) → µ′(x0).

Now consider Z := {x ∈ I : a(x)2 + b(x)2 + c(x)2 = 0} and the set acc(Z) of
accumulation points of Z. Note that a′, b′, and c′ vanish on acc(Z). Fix x0 ∈ acc(Z)
and ϵ > 0. By continuity, there exists δ > 0 such that I(x0, δ) ⋐ I and

sup
x∈I(x0,δ)

√
a′(x)2 + b′(x)2 + c′(x)2 ≤ ϵ

2
.

As An → A in C1(I,Herm(2)), there is n0 ≥ 1 such that, for all n ≥ n0,

sup
x∈I(x0,δ)

√
a′n(x)

2 + b′n(x)
2 + c′n(x)

2 ≤ ϵ.

If µ′
n(x0) exists, then we conclude, by (7.16), that

|µ′
n(x0)| ≤

√
2 ϵ, n ≥ n0.

This implies the claim, since the set of accumulation points of Z, where all µn and
µ are differentiable, has full measure in Z and µ′ vanishes on this set.

Now the dominated convergence theorem implies that

∥µ′ − µ′
n∥Lq(I1) → 0 as n→ ∞,

for each relatively compact open subinterval I1 ⋐ I and all 1 ≤ q <∞, completing
the proof of (7.17). □
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Remark 7.15. Corollary 7.12 has an evident analogue for skew-Hermitian matrices
which simply follows from the fact that a d× d matrix A is skew-Hermitian if and
only if iA is Hermitian. The eigenvalues of A and iA just differ by multiplication
by i.

On the other hand, there is no consistent continuous choice of the eigenvalues of
unitary d× d matrices. Consider, for example, the curve of unitary matrices

A(x) =

(
0 e2πix

1 0

)
, x ∈ R,

with the eigenvalues λ±(x) = ±eπix. Even though λ± : R → (S1)2 is continuous,
there is no continuous choice of the eigenvalues S1 → (S1)2 of the curve of unitary
matrices induced by A on S1 = R/Z (because λ±(0) = ±1 ̸= ∓1 = λ±(1)).

In this case, and more generally for normal matrices, the general continuity results
of [PR24] apply. For the perturbation theory of normal matrices, see [Rai13],
[PR20b], and the survey [PR25].

7.5. Singular values. Let us consider the vector spaceMD,d(C) of complex D×d
matrices, where d ≤ D. The singular values of A ∈ MD,d(C) are the nonnega-
tive square roots of the eigenvalues of the Hermitian matrix A∗A, usually ordered
decreasingly

σ1(A) ≥ σ2(A) ≥ · · · ≥ σd(A) ≥ 0.

This defines a map σ = (σ1, . . . , σd) :MD,d(C) → Rd.

Let us consider the real vector spaceMD,d(C)×R and the homogeneous polynomial
of degree 2d,

f(A, r) := det(r2 I−A∗A), (A, r) ∈MD,d(C)× R.

Then f is G̊arding hyperbolic with respect to the direction (0, 1) ∈ MD,d(C) × R
(see [BGLS01, Sec. 6]) which means by definition that all roots of the univariate
polynomial

PA,r(Z) := f((A, r)− Z (0, 1)) = det((r − Z)2 I−A∗A)

are real. Indeed, the roots of PA,r (in decreasing order) are

r + σ1(A), r + σ2(A), . . . , r + σd(A), r − σd(A), . . . , r − σ1(A).

Hence, by Theorem 4.1, σ induces a bounded map

σ∗ : C2d−1,1(U,MD,d(C)) → C0,1(U,Rd), A 7→ σ ◦A,

where U ⊂ Rm is open. In general, this map is not continuous, which follows from
Example 7.13, but we have the following result.

Corollary 7.16. Let U ⊆ Rm be open. Then:

(1) The map

σ∗ : C2d(U,MD,d(C)) → C0,1
q (U,Rd), A 7→ σ ◦A,

is continuous, for all 1 ≤ q <∞.
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(2) The map

σ∗ : C2d(U,MD,d(C)) → C0,α(U,Rd), A 7→ σ ◦A,

is continuous, for all 0 < α < 1.

(3) If An → A in C2d(U,MD,d(C)) as n → ∞, then over each relatively com-
pact open subset U0 ⋐ U the surface area of the graph of σj(An) converges
to the surface area of the graph of σj(A) as n→ ∞, for each 1 ≤ j ≤ d.

Proof. Similarly as in the proof of Corollary 7.12, we have, for each r ∈ R, a
continuous map C2d(U,MD,d(C)) → C2d(U,Hyp(d)), A 7→ PA,r, which can be used
to reduce the statements of the corollary to the corresponding one for hyperbolic
polynomials. □

Observing that the Hermitian matrix

A :=

(
0 Ã

Ã∗ 0

)
,

where Ã is the D×D matrix resulting from A by adding D− d columns consisting
of zeros, has the eigenvalues

σ1(A), . . . , σd(A), 0, . . . , 0,−σd(A), . . . ,−σ1(A),

we conclude from (7.13) that, for A,B ∈MD,d(C) and 1 ≤ i ≤ d,

|σi(A)− σi(B)| ≤ ∥A−B∥ ≤ ∥A−B∥2 = | tr
(
(A−B)∗(A−B)

)
|1/2

= |2 tr
(
(Ã− B̃)∗(Ã− B̃)

)
|1/2 =

√
2 ∥A−B∥2.

Consequently, the map

σ∗ : C0,1(U,MD,d(C)) → C0,1(U,Rd)

is well-defined and bounded. So, in analogy to Question 1.11, it is thus natural to
ask whether in Corollary 7.16 one can replace the assumption C2d by C1.

8. Restricted multiplicity

In this section we prove a refinement of Theorem 1.3 which accounts for the case
that the maximal multiplicity of the roots is smaller than the degree.

First we recall the following version of Bronshtein’s theorem.

Theorem 8.1 ([PR15, Theorem 2.1]). Let I ⊆ R be an open interval and a ∈
Cp−1,1(I,Hyp(d)), where p is the maximal multiplicity of the roots of Pa(x), for

x ∈ I. Then any continuous root λ ∈ C0(I) of Pa is locally Lipschitz.

If p = d, then we have the bound (4.1).

Assume p < d and suppose that Pã is in Tschirnhausen form. Let λ↑1(x) ≤ · · · ≤
λ↑d(x) be the increasingly ordered roots of Pã(x), for x ∈ I, and consider

α(x) :=
|λ↑d(x)− λ↑1(x)|

min1≤i≤d−p |λ↑i+p(x)− λ↑i (x)|
and αI := sup

x∈I
α(x). (8.1)
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Then each continuous root λ of Pã satisfies, for any pair of relatively compact open
intervals I0 ⋐ I1 ⋐ I,

|λ|C0,1(I0)
≤ C(d)α

d−p
p

I1
max

{
δ−1∥ã2∥1/2L∞(I1)

, |ã′2|
1/2

C0,1(I1)
,

max
i≤p

(
|ã(p−1)

i |C0,1(I1)
∥ã2∥

p−i
2

L∞(I1)

)1/p

,

max
i>p

(
|ã(p−1)

i |C0,1(I1)

(
min
x∈I0

|ã2(x)|
) p−i

2

)1/p}
,

where δ := dist(I0,R \ I1).

The next theorem generalizes Theorem 1.3.

Theorem 8.2. Let I ⊆ R be an open interval. Let an → a in Cp(I,Hyp(d)) as
n → ∞, where p is the maximal multiplicity of the roots of Pa(x), for x ∈ I. If
p < d assume that, for each relatively compact open I1 ⋐ I,

αI1 <∞.

Then {S(an) : n ≥ 1} is a bounded set in C0,1(I,Rd) and, for each relatively
compact open interval I0 ⋐ I and each 1 ≤ q <∞,

∥S(a)− S(an)∥W 1,q(I0,Rd) → 0 as n→ ∞.

Proof. In view of Theorem 1.3, we may assume that p < d. Furthermore, we may
assume that all polynomials are in Tschirnhausen form.

We first observe that, for each relatively compact open I1 ⋐ I,

∥S(ã)− S(ãn)∥L∞(I1,Rd) → 0 as n→ ∞, (8.2)

as a consequence of [PR24, Corollary 6.5] and Lemma 7.1. (For this it is actually
enough that ãn → ã in C0(I1,HypT (d)) as n→ ∞.)

Fix relatively compact open subintervals I0 ⋐ I1 ⋐ I. Then there exists n0 ≥ 1
such that for all n ≥ n0 the maximal multiplicity of the roots of Pãn on I1 is at most
p. (If not this is violated on a sequence xnk

in I1, leading to a contradiction at an
accumulation point of this sequence in I1, since λ

↑ : HypT (d) → Rd is continuous.)

Consequently, the functions αn : I1 → R associated to Pãn as in (8.1) are well-
defined, for all n ≥ n0. By the assumption αI1 < ∞ and (8.2), αn → α uniformly
on I1 as n→ ∞ and thus the sequence αn,I1 := supx∈I1 αn(x) is bounded.

Hence, by Theorem 8.1, the derivative of S(an) exists almost everywhere in I0 and
is uniformly bounded on I0 by a constant independent of n.

By Lemma 3.3 and Proposition 2.1, we can split Pã and Pãn , for large n, locally
in factors of degrees at most p in a simultaneous way. This allows us to apply
Theorem 5.1 in the case d = p and conclude that, for almost every x ∈ I0,

S(an)′(x) → S(a)′(x) as n→ ∞.

Now it suffice to invoke the dominated convergence theorem to finish the proof. □
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[COP12] F. Colombini, N. Orrù, and L. Pernazza, On the regularity of the roots of hyperbolic
polynomials, Israel J. Math. 191 (2012), 923–944.

[DLS11] C. De Lellis and E. N. Spadaro, Q-valued functions revisited, Mem. Amer. Math. Soc.
211 (2011), no. 991, vi+79.

[EG92] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions,

Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
[Ego11] D. Th. Egoroff, Sur les suites de fonctions mesurables., C. R. Acad. Sci., Paris 152

(1911), 244–246 (French).

[GG13] M. Ghisi and M. Gobbino, Higher order Glaeser inequalities and optimal regularity
of roots of real functions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 12 (2013), no. 4,

1001–1021.

[Gla63] G. Glaeser, Racine carrée d’une fonction différentiable, Ann. Inst. Fourier (Grenoble)
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