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Abstract. Whitney’s extension problem, i.e., how one can tell whether a

function f : X → R, X ⊆ Rn, is the restriction of a Cm-function on Rn,
was solved in full generality by Charles Fefferman in 2006. In this paper,

we settle the C1,ω-case of a related conjecture: given that f is semialgebraic

and ω is a semialgebraic modulus of continuity, if f is the restriction of a
C1,ω-function then it is the restriction of a semialgebraic C1,ω-function. We

work in the more general setting of sets that are definable in an o-minimial

expansion of the real field. An ingenious argument of Brudnyi and Shvartsman
relates the existence of C1,ω-extensions to the existence of Lipschitz selections

of certain affine-set valued maps. We show that if a definable affine-set valued

map has Lipschitz selections then it also has definable Lipschitz selections. In
particular, we obtain a Lipschitz solution (more generally, ω-Hölder solution,

for any definable modulus of continuity ω) of the definable Brenner–Epstein–
Hochster–Kollár problem. In most of our results we have control over the

respective (semi)norms.

1. Introduction

In this paper, we settle the C1,ω-case of an open problem raised by Bierstone
and Milman (cf. [21]): Given a compact semialgebraic subset X ⊆ Rn and a semi-
algebraic function f : X → R which is the restriction of a Cm-function on Rn, does
there exist a semialgebraic Cm-extension of f to Rn?

For general m, the answer to this question is known to be affirmative in dimension
n ≤ 2, due to Fefferman and Luli [10]. In arbitrary dimension, Aschenbrenner and
Thamrongthanyalak [2] proved the C1-version of the statement. A solution with
loss of regularity is due to Bierstone, Campesato, and Milman [5].

The philosophy of our approach is related to Aschenbrenner and Thamrongth-
anyalak’s who prove and use a definable version of Michael’s selection theorem.
“Definable” means that the sets and maps belong to a fixed o-minimal expansion
of the real field (of which semialgebraic sets are a basic example). Michael’s the-
orem concerns the existence of continuous selections of set-valued maps. Already
the existence of definable Lipschitz selections is in general not known, since the
classical results are based on transcendental methods (e.g. the Steiner point).

Nevertheless, for certain affine-set valued maps, that are relevant for the C1,ω-
Whitney extension problem, Lipschitz selections can be constructed in a way that
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preserves definability in the given o-minimal structure. This construction is due to
Brudnyi and Shvartsman [7]; see also the references therein for precursors.

Let us now describe our results in more detail.

1.1. Main results. Let an o-minimal expansion of the real field be fixed. Through-
out the paper, a set X ⊆ Rn is called definable if it is definable in this fixed o-
minimal structure. A map φ : X → Rm is definable if its graph {(x, φ(x)) : x ∈ X}
is a definable subset of Rn × Rm. Cf. Section 2.1.

By a modulus of continuity we always mean a positive, continuous, increasing,
and concave function ω : (0,∞) → (0,∞) such that ω(t) → 0 as t → 0. A modulus
of continuity ω is called definable if the function ω is definable.

By definition, C1,ω(Rn) is the space of all C1-functions f : Rn → R that are
globally bounded on Rn and whose partial derivatives of first order are globally
bounded and globally ω-Hölder on Rn. Equipped with its natural norm, this space
is a Banach space. We write C1,ω

def (Rn) for the subspace of definable functions
in C1,ω(Rn). Given a definable subset X ⊆ Rn, we denote by C1,ω(Rn)|X and

C1,ω
def (Rn)|X the respective trace spaces on X. Let RX

def be the set of all definable
functions f : X → R. For precise definitions we refer to Section 2.2.

We will prove the following theorem.

Theorem A. Let ω be a definable modulus of continuity. Let X ⊆ Rn be a closed
definable set and f : X → R a definable function. Then the following conditions
are equivalent.

(1) f is the restriction of a C1,ω-function on Rn.
(2) f is the restriction of a definable C1,ω-function on Rn.

That means

(1.1) RX
def ∩ C1,ω(Rn)|X = C1,ω

def (Rn)|X .

Moreover, a subset of the set (1.1) is bounded in C1,ω(Rn)|X if and only if it is

bounded in C1,ω
def (Rn)|X .

In the Lipschitz case ω(t) = t, for compact definable X we even have

(1.2) ∥f∥C1,1
def (Rn)|X ≈ ∥f∥C1,1(Rn)|X .

In particular, (1.1) holds for all classical Hölder classes with rational Hölder
exponent, since ω(t) = tα with rational α ∈ (0, 1] is semialgebraic. We conjecture
that

(1.3) ∥f∥C1,ω
def (Rn)|X ≈ ∥f∥C1,ω(Rn)|X

for any definable modulus of continuity ω.
The meaning of “≈” in (1.2) and (1.3) is that either quotient of the two sides

lies in the interval [C−1, C] for some constant C ≥ 1 depending only on n.
The proof of Theorem A is based on an ingenious argument of Brudnyi and

Shvartsman [7] that relates the existence of C1,ω-extensions to the existence of
Lipschitz selections for certain maps which take affine subspaces of Rn as values.

The next result, Theorem B, states that, if these maps happen to be definable
and admit a Lipschitz selection, then they have a definable Lipschitz selection.

We denote by Ak(Rn) the set of all affine subspaces of Rn of dimension at most
k. A pseudometric space (M, ρ) is said to be definable if M is a definable subset
of some RN and the pseudometric ρ : M × M → [0,∞) is a definable function.
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A map F : M → Ak(Rn) is called definable if its graph
⋃

m∈M({m} × F (m)) is

a definable subset of RN × Rn. A selection of F is a map f : M → Rn such that
f(m) ∈ F (m) for all m ∈ M. Cf. Section 2.3 and Section 2.4.

Theorem B. Let (M, ρ) be a definable pseudometric space and F : M → Ak(Rn)
a definable map. Then the following conditions are equivalent.

(1) F has a Lipschitz selection.
(2) F has a definable Lipschitz selection.

Moreover, if there is a Lipschitz selection f of F with Lipschitz seminorm
|f |Lip(M,Rn), then there is a definable Lipschitz selection g of F with

(1.4) |g|Lip(M,Rn) ≤ C(k, n) |f |Lip(M,Rn),

where C(k, n) > 0 is a constant that only depends on k and n.

To deduce Theorem A from Theorem B we actually need a slightly stronger
version of the latter which is stated in Theorem 3.3.

Another application of Theorem B is an ω-Hölder (in particular, Lipschitz) so-
lution of the definable Brenner–Epstein–Hochster–Kollár problem.

Theorem C. Let ω be a definable modulus of continuity. Let Aij , bi : X → R, for
i = 1, . . . , N and j = 1, . . . ,M , be definable functions defined on a definable subset
X ⊆ Rn. Consider the linear system of equations

(1.5)

M∑
j=1

Aijfj = bi, i = 1, . . . , N,

in the unkowns fj, j = 1, . . . ,M . Then the following conditions are equivalent.

(1) The system (1.5) admits an ω-Hölder solution.
(2) The system (1.5) admits a definable ω-Hölder solution.

Moreover, if there is an ω-Hölder solution f = (f1, . . . , fM ) of (1.5) with ω-
Hölder seminorm |f |C0,ω(X,RM ), then there is a definable ω-Hölder solution g =
(g1, . . . , gM ) of (1.5) such that

(1.6) |g|C0,ω(X,RM ) ≤ C(M) |f |C0,ω(X,RM ).

A C0-version of this theorem is due to Aschenbrenner and Thamrongthanyalak
[2]; for the semialgebraic setting see also Fefferman and Kollár [9].

Let us emphasize that, due to [7], the respective first conditions in Theorem A
and Theorem B are characterized by finiteness principles:

• An arbitrary function f : X → R, X ⊆ Rn, belongs to C1,ω(Rn)|X if
and only if for each subset Y ⊆ X of cardinality #Y ≤ 3 · 2n−1 there is
FY ∈ C1,ω(Rn) such that FY = f on Y and supY ∥FY ∥C1,ω(Rn) < ∞.

• An arbitrary map F : M → Ak(Rn), where M is any pseudometric space,
admits a Lipschitz selection if and only if for each subset N ⊆ M of car-
dinality #N ≤ 2k+1 the restriction F |N has a Lipschitz selection fN such
that supN |fN |Lip(N ,Rn) < ∞.

As shown in [7], the cardinalities of the finite test sets cannot be reduced. Obviously,
we immediately get a corresponding finiteness principle for Theorem C.

The proofs of the main results, Theorem A and Theorem B, are essentially a
careful verification that the constructions of [7] are done in a definable way. We
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first prove Theorem B in Section 3 and then deduce Theorem A from it in Section 4.
Theorem C is a simple consequence of Theorem B; see Section 3.4.

For the transition from a definable Whitney jet of class C1,ω on X to a definable
C1,ω-function on Rn, we use our recent paper [14] on the uniform extension of
definable Whitney jets of class Cm,ω (which is a variation of the definable Cm

Whitney extension theorem [11, 12, 18]). At this stage, we cannot control the
norms in this extension and thus are not able to prove (1.3), but we prove that
the extension can be done in a bounded way; see also Section 4.4. Alternatively,
in the C1,1-case one can use the explicit formula due to Azaga, Le Gruyer, and
Mudarra [3] which is visibly definable and admits a control of the norms which
leads to (1.2). The explicit formula also yields an immediate proof of the definable
Kirszbraun theorem; see Section 4.3.

Notation. We equip Rn with the maximum-norm ∥x∥ := max1≤i≤n |xi|. If a

different norm is used, e.g., the Euclidean norm ∥x∥2 := (
∑

1≤i≤n x
2
i )1/2, then it

will be explicitly stated. Note that ∥x∥ ≤ ∥x∥2 ≤
√
n ∥x∥. The closed ∥ · ∥-balls

Q(x, r) := {y ∈ Rn : ∥x − y∥ ≤ r} are cubes with sides parallel to the coordinate
axes. We also write Q(r) := Q(0, r) so that Q(x, r) = x + Q(r). If λ > 0 then
λQ(x, r) denotes the cube x+Q(λr). The standard scalar product in Rn is denoted
by ⟨x, y⟩ :=

∑n
i=1 xiyi.

2. Preliminaries

In this section, we recall definitions and fix notation.

2.1. O-minimal expansions of the real field. An o-minimal expansion of the
ordered field of real numbers is a family S = (Sn)n≥1, where Sn is a collection of
subsets of Rn such that

• Sn is a boolean algebra with respect to the usual set-theoretic operations,
• Sn contains all semialgebraic subsets of Rn,
• S is stable by cartesian products and linear projections,
• each S ∈ S1 has only finitely many connected components.

A set S that belongs to S is said to be definable (in S ). A map f : S → Rm,
S ⊆ Rn, is called definable if its graph {(x, f(x)) : x ∈ S} is a definable subset of
Rn × Rm.

The basic example of an o-minimal expansion of the real field is the family of
semialgebraic sets. Another important example is the family of globally subanalytic
sets. Many more interesting o-minimal structures have been identified in recent
decades. We refer to [19] and [20] for the fundamentals of the theory.

From now on, the attribute “definable” will refer to a fixed o-minimal expansion
of the real field.

2.2. Spaces of differentiable functions. Let ω be a modulus of continuity, i.e.,
a positive, continuous, increasing, and concave function ω : (0,∞) → (0,∞) such
that ω(t) → 0 as t → 0. Let C0,ω(Rn) be the set of all continuous bounded functions
f : Rn → R such that

|f |C0,ω(Rn) := inf{C > 0 : |f(x) − f(y)| ≤ C ω(∥x− y∥) for all x, y ∈ Rn} < ∞.

For m a nonnegative integer, Cm,ω(Rn) consists of all Cm-functions such that ∂αf
is globally bounded on Rn, for all |α| ≤ m, and ∂αf ∈ C0,ω(Rn), for all |α| = m.
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Then Cm,ω(Rn) is a Banach space with the norm

(2.1) ∥f∥Cm,ω(Rn) := sup
x∈Rn

sup
|α|≤m

|∂αf(x)| + sup
|α|=m

|∂αf |C0,ω(Rn).

Let Cm,ω
def (Rn) be the subspace consisting of the functions in Cm,ω(Rn) that are

definable.
Let X ⊆ Rn be a subset. The trace space Cm,ω(Rn)|X is the set of all f : X → R

such that there exists F ∈ Cm,ω(Rn) with F |X = f . It carries the norm

∥f∥Cm,ω(Rn)|X := inf{∥F∥Cm,ω(Rn) : F ∈ Cm,ω(Rn), F |X = f}.

Similarly, we consider the space Cm,ω
def (Rn)|X of restrictions to X of functions in

Cm,ω
def (Rn) with the norm

∥f∥Cm,ω
def (Rn)|X := inf{∥F∥Cm,ω(Rn) : F ∈ Cm,ω

def (Rn), F |X = f}.

If X is definable, then each element of Cm,ω
def (Rn)|X is a definable function on X.

2.3. Pseudometric spaces. By a pseudometric space (M, ρ) we mean a non-
empty set M together with a nonnegative real valued function ρ : M×M → [0,∞)
such that ρ(x, x) = 0, ρ(x, y) = ρ(y, x), and ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all
x, y, z ∈ M. The function ρ is called a pseudometric; if additionally ρ(x, y) = 0
implies x = y, it is called a metric. We say that (M, ρ) is an extended pseudometric
space if the pseudometric ρ may also take the value +∞.

A pseudometric space (M, ρ) is called definable if M is a definable subset of RN ,
for some N , and ρ : M×M → [0,∞) is a definable function.

A map f : M → Rn is Lipschitz if

|f |Lip(M,Rn) := inf{C > 0 : ∥f(x) − f(y)∥ ≤ C ρ(x, y) for all x, y ∈ M} < ∞.

Let ω be a modulus of continuity. A map f : X → Rn with X ⊆ RN is ω-Hölder if

|f |C0,ω(X,Rn) := |f |Lip(Xω,Rn) < ∞,

where Xω is the space X endowed with the metric ρ(x, y) := ω(∥x− y∥).

2.4. Set-valued mappings. A set-valued mapping is a map F : X → 2Y . The
graph of F is the subset

⋃
x∈X({x} × F (x)) of X × Y . A selection of F is a map

f : X → Y such that f(x) ∈ F (x) for all x ∈ X.
If X ⊆ RN is definable and Y = Rn, then we say that a set-valued map F : X →

2R
n

is definable if its graph is a definable subset of RN × Rn.

3. Definable Lipschitz selections

The purpose of this section is to formulate and prove Theorem 3.3 from which
Theorem B and Theorem C will follow easily.

3.1. Definable Lipschitz selections for cube-valued maps. Let Q(Rn) be the
family of all closed cubes Q(x, r) := {y ∈ Rn : ∥x − y∥ ≤ r}, where r ∈ [0,∞];
thus Q(x, 0) = {x} and Q(r,∞) = Rn count as cubes and belong to Q(Rn). Cubes
centered at the origin will be denoted by Q(r) := Q(0, r).

Lemma 3.1. Let (M, ρ) be a definable pseudometric space. Let F : M → Q(Rn)
be a definable map. Assume that for every 2-point subset N ⊆ M there exists a
Lipschitz selection fN : N → Rn of F |N with |fN |Lip(N ,Rn) ≤ 1. Then there exists
a definable Lipschitz selection f : M → Rn of F with |f |Lip(M,Rn) ≤ 1.
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Proof. Cf. [6, Proposition 1.24 and Corollary 1.25]. By projection to the coordinate
axes of Rn it is enough to consider the case n = 1. Then F (m) is a closed interval
[a(m), b(m)] (either bounded, possibly a point, or R).

Let us first show that we may assume that all F (m) are bounded. Consider the
definable set M0 := {m ∈ M : F (m) is bounded} = b−1(R) and the definable map
F0 := F |M0

. We may assume that M0 is non-empty, since otherwise F (m) = R
for all m ∈ M and f := 0 is the required Lipschitz selection. If we prove that F0 :
M0 → Q(R) has a definable Lipschitz selection f0 : M0 → R with |f0|Lip(M0,R) ≤ 1,
then f0 admits a definable Lipschitz extension f : M → R with |f |Lip(M,R) ≤ 1
defined by

(3.1) f(m) := inf
m′∈M0

(f0(m′) + ρ(m,m′)), m ∈ M,

which clearly is the required selection of F (since F (m) = R if m ̸∈ M0). Let us
check that f in (3.1) has the desired properties. It is finite, because

f0(m0) − ρ(m,m0) ≤ f(m) ≤ f0(m0) + ρ(m,m0)

for any m0 ∈ M0, where the first inequality holds, since |f0|Lip(M0,R) ≤ 1 entails

f0(x) + ρ(x,m) ≥ f0(m0) − ρ(x,m0) + ρ(x,m) ≥ f0(m0) − ρ(m,m0),

for all x ∈ M0. We have f |M0
= f0, since if m ∈ M0 then

f(m) ≤ f0(m) ≤ f0(m′) + ρ(m,m′)

for all m′ ∈ M0, whence f(m) = f0(m). To see |f |Lip(M,R) ≤ 1 let m1,m2 ∈ M.
Then

f(m1) ≤ inf
m′∈M0

(f0(m′) + ρ(m2,m
′) + ρ(m1,m2)) = f(m2) + ρ(m1,m2),

and we are done.
Hence, it suffices to prove the lemma under the assumption that F (m) is bounded

for all m ∈ M. We will show that

f(m) := inf
m′∈M

(b(m′) + ρ(m,m′)) = inf
m′∈M

(supF (m′) + ρ(m,m′)), m ∈ M,

is a definable Lipschitz selection of F with |f |Lip(M,R) ≤ 1; in particular, f is finite.
It is immediate from the definition that f is definable and satisfies f(m) ≤ b(m) for
every m ∈ M. To see a(m) ≤ f(m) let m′ ∈ M be arbitrary. By assumption, there
exists g := f{m,m′} : {m,m′} → R with a(m) ≤ g(m) ≤ b(m), a(m′) ≤ g(m′) ≤
b(m′), and |g(m) − g(m′)| ≤ ρ(m,m′), so that a(m) ≤ b(m′) + ρ(m,m′).

Finally, for any m1,m2 ∈ M,

f(m1) ≤ inf
m′∈M

(b(m′) + ρ(m2,m
′) + ρ(m1,m2)) = f(m2) + ρ(m1,m2),

and we conclude that |f |Lip(M,R) ≤ 1. □

3.2. Definable Lipschitz selections for affine-set valued maps. Let V ⊆ RN

be a definable set. Let Γ = (V,E) be a graph with set of vertices V and set of
edges E ⊆ {(v, v′) ∈ V × V : v ̸= v′}. We assume that E is symmetric in the sense
that (v, v′) ∈ E implies (v′, v) ∈ E. In other words, the graph is undirected and,
strictly speaking, the set of edges actually is E/∼, where (v, v′) ∼ (v′, v), but this
inaccuracy in notation will cause no troubles. Furthermore, we assume that E is
definable. Let us write v ↔ v′ if v, v′ ∈ V are joined by an edge, i.e., (v, v′) ∈ E.
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We say that a subset W ⊆ V is admissible if (W,EW ) regarded as a subgraph
of Γ = (V,E), where (v, v′) ∈ EW if and only if (v, v′) ∈ E and v, v′ ∈ W , has
no isolated vertices. This means that each vertex is joined by an edge to another
vertex unless the graph consists of but one vertex.

Let us endow the graph Γ = (V,E) with a weight, i.e., a symmetric function
w : E → [0,∞]. This induces an extended pseudometric space (V, σ), where σ :
V × V → [0,∞] is defined by

(3.2) σ(v, v′) := inf

k∑
i=0

w(ei), v ̸= v′,

where the infimum is taken over all finite paths {ei}ki=0, k ∈ N, of edges in Γ joining
v and v′. Moreover, σ(v, v) := 0 and σ(v, v′) := +∞ if there is no path of edges
joining v ̸= v′.

We say that Γ = (V,E,w) is a definable weighted graph if the sets V and E are
definable as specified above and, additionally, there exist a definable pseudometric
ρ : V × V → [0,∞) on V and an absolute constant A ≥ 1 such that

(3.3)
1

A
ρ ≤ σ ≤ Aρ.

So (V, σ) is a pseudometric space, while (V, ρ) is even a definable pseudometric
space. In particular, in a definable weighted graph any two vertices are joined by a
path of edges and V is an admissible subset of V .

Remark 3.2. Let (M, ρ) be a definable pseudometric space. The full graph with
set of vertices M, set of edges {(m,m′) ∈ M × M : m ̸= m′}, and weight ρ
is a definable weighted graph (where σ = ρ). Furthermore, any subset of M is
admissible.

Recall that Ak(Rn) is the family of affine subspaces of Rn of dimension at most
k and that a map F : V → Ak(Rn) is called definable if its graph is a definable
subset of RN × Rn. For a map f : W → Rn, W ⊆ V , we set

|f |Lip(W,Rn) := inf{C > 0 : ∥f(v) − f(v′)∥ ≤ C ρ(v, v′) for all v, v′ ∈ W};

i.e., the Lipschitz seminorm is computed in terms of ρ (not σ).

Theorem 3.3. Let Γ = (V,E,w) be a definable weighted graph. Let F : V →
Ak(Rn) be a definable map. Assume that for each admissible subset W ⊆ V of
cardinality #W ≤ 2k+1 there exists a Lipschitz selection fW : W → Rn of F |W
with |fW |Lip(W,Rn) ≤ 1. Then there exists a definable Lipschitz selection f : V → Rn

of F with |f |Lip(V,Rn) ≤ C, where C ≥ 1 is a constant depending only on k, n, and
A from (3.3).

Note that Theorem 3.3 implies Theorem B in view of Theorem 3.2. It is a
definable version of [7, Theorem 2.3]. We closely follow its proof making sure that
all steps are definable.
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Let us give a rough outline of the general strategy of the proof.

(V, ρ)
F−→ Ak+1(Rn)

(1)

��

(V̂ , ρ̂)
F̂−→ Q(Rn)

(3)

22

(V , ρ)
F−→ Ak(Rn)

(2)
mm

It is by induction on k. The induction step (k → k + 1) is divided into the
following three stages (which correspond to the bent arrows in the diagram).

(1) From F : V → Ak+1(Rn) one constructs a “doubling” (V , ρ) of the space
(V, ρ) and a map F : V → Ak(Rn) in such a way that the induction
hypothesis yields a Lipschitz selection f of F .

(2) The Lipschitz selection f of F is used to define a new space (V̂ = V , ρ̂)

and a cube-valued map F̂ : V̂ → Q(Rn); the center of the cube F̂ (v) is

f(v). Thanks to Theorem 3.1, there is a Lipschitz selection f̂ of F̂ which
moreover can be interpreted as a Lipschitz map defined on (V, ρ).

(3) The desired Lipschitz selection f of F is finally found by defining f(v) to

be the orthogonal projection of f̂(v) to the affine subspace F (v) of Rn.

3.3. Proof of Theorem 3.3. We prove Theorem 3.3 by induction on k.
The base case k = 0 is trivial: A0(Rn) ∼= Rn so that f = F : V → Rn is

the desired definable Lipschitz selection. Indeed, let v, v′ ∈ V be any two distinct
vertices. Then there is a path of edges v =: v0 ↔ v1 ↔ · · · ↔ vℓ := v′ joining v and
v′ so that, by assumption (as {vi, vi+1} is admissible) and (3.3),

(3.4) ∥f(v) − f(v′)∥ ≤
ℓ−1∑
i=0

ρ(vi, vi+1) ≤ A

ℓ−1∑
i=0

w(vi, vi+1).

Taking the infimum over all paths joining v and v′ and using again (3.3), we conclude
that |f |Lip(V,Rn) ≤ A2.

Let us assume that the result holds for some k < n and prove it for k + 1. Let
F : V → Ak+1(Rn) be a definable map and assume that for each admissible subset
W ⊆ V of cardinality #W ≤ 2k+2 there exists a Lipschitz selection fW : W → Rn

of F |W with |fW |Lip(W,Rn) ≤ 1.
Let v1, v2 ∈ V be such that v1 ↔ v2. Then {v1, v2} is an admissible subset of

V and the assumption implies that there exist points x1 ∈ F (v1), x2 ∈ F (v2) such
that

(3.5) ∥x1 − x2∥ ≤ ρ(v1, v2).

It follows that the set

{(x1, x2) ∈ F (v1) × F (v2) : ∥x1 − x2∥ ≤ ρ(v1, v2)}
is non-empty and definable, since F and ρ are definable. Therefore, by definable
choice, we may assume that xi = xi(v1, v2), i = 1, 2, depend in a definable way on
v1 and v2. We may conclude that

(3.6) P (v1, v2) := F (v1) ∩
(
F (v2) + Q(2ρ(v1, v2)) + x1(v1, v2) − x2(v1, v2)

)
is a non-empty convex definable set that is symmetric with respect to the point x1.
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Let us understand better the geometry of P (v1, v2). For ease of notation let
U1 := F (v1) and U2 := F (v2) +x1−x2. Then U1 and U2 are affine subspaces of Rn

through x1 of dimension at most k + 1. Set di := dimUi, i = 1, 2. Moreover, the
“slab” S2 := U2 + Q(2ρ(v1, v2)) is the thickening of U2 by the cube Q(2ρ(v1, v2)).

If d1 = 0, then

P (v1, v2) = U1 ∩ S2 = {x1} = U1 ∩
(
{x1} + Q(0)

)
.

Now assume that d1 > 0. If U1 ∩ U2 = {x1}, then P (v1, v2) is a polytope in U1

centered at x1 with pairwise parallel faces. In fact, the pairs of parallel faces result
as the intersections with U1 of opposite parallel faces of the slab S2. Let p be the
number of pairs of parallel faces of P (v1, v2). Thus p ≤ n. (Note that p = n may
occur if d2 = 0 so that S2 is a cube.) Let L1, . . . , Lp be the affine subspaces of U1

of dimension d1 − 1 through x1 that are equidistant to the respective affine hulls
of opposite parallel faces of P (v1, v2), the distance being computed with respect to
∥ · ∥ and having the respective values r1, . . . , rp. Then

(3.7) P (v1, v2) =

p⋂
i=1

(
U1 ∩ (Li + Q(ri))

)
.

Now suppose that U1∩U2 ̸= {x1}. If U1∩U2 ̸= U1, then P (v1, v2) is a polytope in
U1 centered at x1 with pairwise parallel faces and infinite extension in the directions
of U1 ∩ U2. The number of pairs of parallel faces p again satisfies p ≤ n. Let
L1, . . . , Lp be the affine subspaces of U1 of dimension d1 − 1 through x1 that are
equidistant to the respective affine hulls of finite opposite parallel faces of P (v1, v2).
As before the distance is computed with respect to ∥ · ∥ and let r1, . . . , rp be the
respective values. Then we again have the representation (3.7).

It remains to consider the case U1 ∩ U2 = U1. Then P (v1, v2) = U1. If d1 ≤ k,
we set L1 := U1 and r1 := 0 so that (3.7) remains valid with p = 1. If d1 = k + 1,
we define L1 := {x1} and r1 := ∞. Again (3.7) holds true with p = 1. Note that
this is the only case, where we allow an infinite radius. This case occurs if and only
if F (v1) and F (v2) are parallel and both have dimension k + 1.

Thus we proved that in any case

(3.8) P (v1, v2) =
⋂

i∈I(v1,v2)

(
F (v1) ∩ (Li + Q(ri))

)
,

where the index set I(v1, v2) has cardinality at least 1 and at most n and where
each Li is an affine subspace of F (v1) through x1 of dimension at most k. The radii
ri are finite unless F (v1)∥F (v2) and dimF (v1) = dimF (v2) = k + 1.

Let us consider the definable sets

V ∥ := {(v1, v2) : v1 ↔ v2, F (v1)∥F (v2), dimF (v1) = dimF (v2) = k + 1}.
and

V 0 := {v = (v1, v2, i) : v1 ↔ v2, (v1, v2) ̸∈ V ∥, i ∈ I(v1, v2)}.
We get a new definable pseudometric space (V 0, ρ), where, for v = (v1, v2, i) ̸= v′ =
(v′1, v

′
2, i

′),
ρ(v, v′) := ρ(v1, v

′
1) + ri + ri′ .

We extend this data to an extended pseudometric space (V , ρ) by defining

V := {v = (v1, v2, i) : v1 ↔ v2, i ∈ I(v1, v2)}
and putting ρ(v, v′) := +∞ if at least one of v ̸= v′ does not belong to V 0.
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Define F : V → Ak(Rn) by setting F (v1, v2, i) := Li. By the above discussion,
F is definable.

Claim 1. There exists a definable Lipschitz selection f : V → Rn of F with
|f |Lip(V ,Rn) ≤ C(k, n).

We will first consider the restriction F 0 := F |V 0
. By Theorem 3.2, we may view

(V 0, ρ) as a definable weighted graph, where each subset of vertices is admissible
(and A = 1). Thus, by the induction hypothesis, it suffices to show that for
every subset W ⊆ V 0 of cardinality #W ≤ 2k+1 there is a Lipschitz selection
fW : W → Rn of F |W with |fW |Lip(W,Rn) ≤ 1.

For v = (v1, v2, i) we write

pr1(v) = v1(v) = v1, pr2(v) = v2(v) = v2, pr3(v) = i(v) = i.

Set W := pr1 W ∪ pr2 W . Then W is an admissible subset of V of cardinality
#W ≤ 2W ≤ 2k+2, since for each v ∈ W there is v′ ∈ W such that v ↔ v′. Thus,
by the assumption on F , there exists a Lipschitz selection fW : W → Rn of F |W
with |fW |Lip(W,Rn) ≤ 1.

Let v1, v2 ∈ W . Then fW (v1) ∈ F (v1) and, by (3.5),

∥fW (v1) − fW (v2) − x1(v1, v2) + x2(v1, v2)∥
≤ ∥fW (v1) − fW (v2)∥ + ∥x1(v1, v2) − x2(v1, v2)∥
≤ 2 ρ(v1, v2).

Consequently, fW (v1) ∈ P (v1, v2); cf. (3.6).
Now define fW : W → Rn by letting fW (v) be a point in F (v) = Li(v) which

minimizes the ∥ · ∥-distance to fW (v1(v)). Since fW (v1(v)) ∈ P (v1(v), v2(v)), (3.8)
implies that fW (v1(v)) ∈ Li(v) + Q(ri(v)). Then (by the minimality property of

fW (v)) we have

∥fW (v) − fW (v1(v))∥ ≤ ri(v),

and consequently

∥fW (v) − fW (v′)∥ ≤ ∥fW (v1(v)) − fW (v1(v′))∥ + ri(v) + ri(v′)

≤ ρ(v1(v)), v1(v′)) + ri(v) + ri(v′)

= ρ(v, v′).

Thus, |fW |Lip(W,Rn) ≤ 1.

By the induction hypothesis, we may infer that there is a definable Lipschitz
selection f0 : V 0 → Rn of F 0 with |f0|Lip(V 0,Rn) ≤ C(k, n).

Let us extend f0 to a map f : V → Rn by setting

f(v) :=

{
f0(v) if v ∈ V 0,

x1(v) if v ̸∈ V 0.

Then f is obviously a definable selection of F . Evidently, |f |Lip(V ,Rn) ≤ C(k, n),

since ρ(v, v′) = ∞ whenever at least one of v ̸= v′ does not belong to V 0.
Thus Claim 1 is proved.

Claim 2. There is a definable Lipschitz map f̂ : V → Rn such that

(i) f̂(v) depends only on v1(v); thus we may regard f̂ as a map defined on V ,
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(ii) |f̂ |Lip(V,Rn) ≤ C,

(iii) ∥f̂(v) − f(v)∥ ≤ C ri(v) for all v ∈ V ,

where C = C(k, n) is the constant from Claim 1.

In order to define f̂ , we consider the definable pseudometric space (V̂ , ρ̂), where

V̂ := V and

ρ̂(v, v′) := C ρ(v1(v), v1(v′)).

Let F̂ : V̂ → Q(Rn) be defined by F̂ (v) := Q(f(v), Cri(v)). Then F̂ is definable.

We will show that F̂ has a definable Lipschitz selection f̂ : V̂ → Rn such that

|f̂ |Lip(V̂ ,Rn) ≤ 1. Then Claim 2 follows easily: we have

∥f̂(v) − f̂(v′)∥ ≤ ρ̂(v, v′) = C ρ(v1(v), v1(v′))

so that f̂(v) = f̂(v′) if v1(v) = v1(v′) which implies (i) and (ii). Since f̂ is a

selection of F̂ , (iii) is clear.

Let v, v′ ∈ V̂ = V be any two distinct points. By Claim 1,

∥f(v) − f(v′)∥ ≤ C ρ(v, v′) = C ri(v) + C ri(v′) + C ρ(v1(v), v1(v′)).

This means that the cubes F̂ (v) and F̂ (v′) have ∥ · ∥-distance at most

C ρ(v1(v), v1(v′)). So there exist points y ∈ F̂ (v) and y′ ∈ F̂ (v′) such that

∥y − y′∥ ≤ C ρ(v1(v), v1(v′)) = ρ̂(v, v′).

In other words, for every 2-point subset {v, v′} of V̂ the restriction F̂ |{v,v′} has a

Lipschitz selection f̂{v,v′} with |f̂{v,v′}|Lip({v,v′},Rn) ≤ 1. By Theorem 3.1, there is

a definable Lipschitz selection f̂ : V̂ → Rn of F̂ with |f̂ |Lip(V̂ ,Rn) ≤ 1. This ends

the proof of Claim 2.

Claim 3. The desired definable Lipschitz selection f : V → Rn of F with
|f |Lip(V,Rn) ≤ C1(k, n,A) is given by

f(v) := prF (v) f̂(v),

i.e., f(v) is the orthogonal projection of f̂(v) to the affine subspace F (v) of Rn.

It is clear that f is a definable selection of F . To check the Lipschitz property
we show that

(3.9) ∥f(v) − f(v′)∥ ≤ C1 ρ(v, v′), whenever v ↔ v′,

where C1 = C1(k, n). This suffices in view of (3.2) and (3.3) (and a computation
similar to (3.4) after which C1 will also depend on A).

In order to prove (3.9), we need some technical facts. First of all, we may assume
that dimF (v) ≥ dimF (v′); if not we just interchange the roles of v and v′.

Claim 4. The cube Kv :=
⋂
{Q(f(v), ri(v)) : v ∈ V , pr1(v) = v} satisfies

f̂(v) ∈ λKv,

where λ := (1 +
√
n)C and C is the constant from Claim 1, and

Kv ∩ F (v) ⊆ F (v′) + Q(2λρ(v, v′)) + x1(v, v′) − x2(v, v′)

whenever v ↔ v′. (Recall that λKv denotes the cube with the same center as Kv

and λ times its radius.)
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Since v := (v, v′, i) ∈ V , for i ∈ I(v, v′), we have, by Claim 2(iii),

∥f̂(v) − f(v)∥ ≤ C ri(v).

As f(v) ∈ F (v) = Li(v) ⊆ F (v), the definition of f(v) implies

∥f(v) − f(v)∥ ≤ ∥f(v) − f(v)∥2
≤ ∥f̂(v) − f(v)∥2 ≤

√
n ∥f̂(v) − f(v)∥ ≤

√
nC ri(v).

These inequalities easily yield f̂(v) ∈ λKv.
If x ∈ Kv, then

∥x− f(v)∥ ≤ ri(v), for all v ∈ V such that pr1(v) = v,

whence

∥x− f(v)∥ ≤ λri(v).

Thus, and by the fact that I(v, v′) = {i(v) : v ∈ V , pr1(v) = v, pr2(v) = v′},

Kv ⊆
⋂

i∈I(v,v′)

Q(f(v), λri) ⊆
⋂

i∈I(v,v′)

(
Li + Q(λri)

)
.

Intersecting both sides with F (v) and using (3.6) and (3.8) (modulo a dilation with
center x1(v, v′) by the factor λ), also the second assertion in Claim 4 follows.

Let us continue with the proof of Claim 3. By Claim 4, there exists y(v, v′) ∈
F (v′) + x1(v, v′) − x2(v, v′) with

(3.10) ∥f(v) − y(v, v′)∥ ≤ 2λ ρ(v, v′).

We consider the translate F (v, v′) of F (v′) through f(v) defined by

F (v, v′) := F (v′) + x1(v, v′) − x2(v, v′) − y(v, v′) + f(v).

Let us prove (3.9). For v ↔ v′, we have

∥f(v) − f(v′)∥ ≤ ∥prF (v) f̂(v) − prF (v,v′) f̂(v)∥

+ ∥ prF (v,v′) f̂(v) − prF (v,v′) f̂(v′)∥

+ ∥ prF (v,v′) f̂(v′) − prF (v′) f̂(v′)∥.

The second term on the right-hand side is bounded by

∥f̂(v) − f̂(v′)∥2 ≤
√
n ∥f̂(v) − f̂(v′)∥ ≤ C

√
nρ(v, v′),

thanks to Claim 2. The third term is bounded by

∥x1(v, v′) − x2(v, v′) − y(v, v′) + f(v)∥2 ≤
√
n(1 + 2λ) ρ(v, v′),

in view of (3.5) and (3.10).
It remains to estimate the first term. By Claim 4 and (3.10),

Kv ∩ F (v) ⊆ F (v, v′) + Q(4λ ρ(v, v′)),

and, by a dilation with center f(v) and factor
√
nλ, we find(√

nλKv

)
∩ F (v) ⊆ F (v, v′) + Q(4

√
nλ2ρ(v, v′)).

Let B be the biggest Euclidean ball with center f(v) that is contained in
√
nλKv.

Then

λKv ⊆ B ⊆
√
nλKv.
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Let B(r) be the Euclidean ball with center 0 and radius r := 4nλ2ρ(v, v′). Then

B ∩ F (v) ⊆ F (v, v′) + B(r),

and since the orthogonal projection of a point in B ∩ F (v) on F (v, v′) is contained
in B ∩ F (v, v′), we have

B ∩ F (v) ⊆ B ∩ F (v, v′) + B(r).

Recall that we assumed that dimF (v) ≥ dimF (v′) = dimF (v, v′) (see the para-
graph before Claim 4). Since both these affine spaces pass through the center f(v)
of B, we thus also have

B ∩ F (v, v′) ⊆ B ∩ F (v) + B(r).

That means that for the Hausdorff distance of B ∩ F (v) and B ∩ F (v, v′) we have

dH(B ∩ F (v), B ∩ F (v, v′)) ≤ r = 4nλ2ρ(v, v′).

Now it suffices to invoke [7, Lemma 2.9] (note that is uses f̂(v) ∈ λKv shown in
Claim 4) which gives that

∥ prF (v) f̂(v) − prF (v,v′) f̂(v)∥ ≤ dH(B ∩ F (v), B ∩ F (v, v′)).

This completes the proof of Claim 3 and thus the proof of Theorem 3.3.

3.4. Proof of Theorem C. Let us define

F (x) :=
{

(f1, . . . , fM ) ∈ RM :

M∑
j=1

Aij(x)fj = bi(x), i = 1, . . . , N
}
, x ∈ X.

We assume that the system (1.5) has a solution that is ω-Hölder. In particular,
F (x) is a non-empty affine subspace of RM for each x ∈ X. Since the functions Aij

and bi are assumed definable on X, we see that F : X → AM (RM ) is a definable
map. Now Theorem B (applied to M = X with the metric ρ(x, y) = ω(∥x − y∥))
shows that the system (1.5) has a definable ω-Hölder solution. Also the statement
(1.6) on the ω-Hölder seminorms is immediate from Theorem B.

4. Definable C1,ω extension of functions

We will now work towards the proof of Theorem A. First, we will establish a
correspondence between definable Whitney jets of class C1,ω and definable Lipschitz
selections of a special affine-set valued map. It will allow us to bring to bear
Theorem 3.3.

4.1. Definable Whitney jets vs. definable Lipschitz selections. Let ω be a
modulus of continuity. We will henceforth assume that

(4.1) ω ≤ 1.

This is no restriction regarding Theorem A, since replacing ω by ω := min{1, ω} in
(2.1) gives equivalent norms:

∥f∥Cm,ω(Rn) ≤ ∥f∥Cm,ω(Rn) ≤ 3 ∥f∥Cm,ω(Rn).

The first inequality is immediate from ω ≤ ω. For the second inequality, it is
enough to consider m = 0 and show that |f |C0,ω(Rn) ≤ 2 ∥f∥C0,ω(Rn). To this end
let t0 := inf{t > 0 : ω(t) ≥ 1}. If ∥x− y∥ < t0, then

|f(x) − f(y)| ≤ |f |C0,ω(Rn) ω(∥x− y∥) = |f |C0,ω(Rn) ω(∥x− y∥),
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and, if ∥x− y∥ ≥ t0,

|f(x) − f(y)|
ω(∥x− y∥)

= |f(x) − f(y)| ≤ 2 sup
x∈Rn

|f(x)|,

which implies the assertion.
Let X be a closed definable subset of Rn. Set

MX := {(x, y) ∈ X ×X : x ̸= y}

and endow it with the metric ρω defined by

ρω((x, y), (x′, y′)) := ω(∥x− y∥) + ω(∥x′ − y′∥) + ω(∥x− x′∥),

if (x, y) ̸= (x′, y′), and 0 otherwise. (At this stage, we do not assume that ω is
definable, but eventually we will.)

Let f : X → R be a definable function. Consider the definable map Lf : MX →
An−1(Rn) defined by

Lf (x, y) := {z ∈ Rn : ⟨z, x− y⟩ = f(x) − f(y)}.

Let us show that f can be completed to a definable Whitney jet of class C1,ω on
X if and only if Lf has a definable Lipschitz selection.

Recall that (f, g) is a definable Whitney jet of class C1,ω on X if f : X → R and
g : X → Rn are definable maps and

∥(f, g)∥X,1,ω := sup
x∈X

|f(x)| + sup
x∈X

∥g(x)∥ + |(f, g)|X,1,ω < ∞,

where

|(f, g)|X,1,ω := sup
x,y∈X
x̸=y

|f(x) − f(y) − ⟨g(y), x− y⟩|
∥x− y∥ω(∥x− y∥)

+ sup
x,y∈X
x̸=y

∥g(x) − g(y)∥
ω(∥x− y∥)

.

Proposition 4.1. Let X ⊆ Rn be a closed definable set and let f : X → R be a
bounded definable function. Then the following conditions are equivalent:

(1) There exists a bounded definable function g : X → Rn such that (f, g) is a
definable Whitney jet of class C1,ω on X.

(2) There exists a bounded definable Lipschitz selection ℓ : MX → Rn of Lf .

If the equivalent conditions (1) and (2) hold, then

(4.2) inf
g
∥(f, g)∥X,1,ω ≈ sup

x∈X
|f(x)| + inf

ℓ

{
sup

(x,y)∈MX

∥ℓ(x, y)∥ + |ℓ|Lip(MX ,Rn)

}
,

where the infimum on the left-hand side is taken over all g satisfying (1) and the
infimum on the right-hand side over all ℓ satisfying (2).

Note that “≈” in (4.2) means that any of the two sides is bounded by the other
side up to a multiplicative factor which depends only on n.

Proof. (1) ⇒ (2) Let g be as in (1) so that (f, g) is a definable Whitney jet of class
C1,ω on X. For (x, y) ∈ MX let ℓ(x, y) be the point in Lf (x, y) closest to g(x)
(with respect to the Euclidean metric), i.e.,

(4.3) ∥g(x) − ℓ(x, y)∥2 = dist2(g(x), Lf (x, y)).
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Then ℓ : MX → Rn is a definable selection of Lf . Let us check that it is bounded
and Lipschitz. We have

∥g(x) − ℓ(x, y)∥2 =
|f(x) − f(y) − ⟨g(x), x− y⟩|

∥x− y∥2
which is bounded by

∥(f, g)∥X,1,ω
∥x− y∥ω(∥x− y∥)

∥x− y∥2
≤ ∥(f, g)∥X,1,ω,

in view of ω ≤ 1 (cf. (4.1)). Thus

∥ℓ(x, y)∥ ≤ ∥g(x)∥ + ∥g(x) − ℓ(x, y)∥ ≤ 2 ∥(f, g)∥X,1,ω,

i.e., ℓ is bounded with sup(x,y)∈MX
∥ℓ(x, y)∥ ≤ 2 ∥(f, g)∥X,1,ω.

For (x, y), (x′, y′) ∈ MX , we have

∥ℓ(x, y) − ℓ(x′, y′)∥ ≤ ∥ℓ(x, y) − g(x)∥ + ∥g(x) − g(x′)∥ + ∥g(x′) − ℓ(x′, y′)∥
≤ ∥(f, g)∥X,1,ω

(
ω(∥x− y∥) + ω(∥x− x′∥) + ω(∥x′ − y′∥)

)
= ∥(f, g)∥X,1,ω ρω((x, y), (x′, y′)),

consequently, |ℓ|Lip(MX ,Rn) ≤ ∥(f, g)∥X,1,ω.
(2) ⇒ (1) Assume that Lf has a bounded definable Lipschitz selection ℓ : MX →

Rn. For ease of notation, set

Cℓ := sup
(x,y)∈MX

∥ℓ(x, y)∥ + |ℓ|Lip(MX ,Rn).

If x ∈ X is an isolated point of X, let x̂ be a closest point in X \ {x} (with respect
to ∥ · ∥). Otherwise, let x̂ := x. The point x̂ can be assigned to x in a definable
way. Define g : X → Rn by

g(x) :=

{
ℓ(x, x̂) if x is an isolated point of X,

limX∋y→x ℓ(x, y) otherwise.

Then g is definable and ∥g(x)∥ ≤ Cℓ for all x ∈ X. The limit exists, since

∥ℓ(x, y) − ℓ(x, y′)∥ ≤ Cℓ ρω((x, y), (x, y′)) = Cℓ

(
ω(∥x− y∥) + ω(∥x− y′∥)

)
.

Let us check that (f, g) is a Whitney jet of class C1,ω on X. For each x ∈ X
let (xi) be a sequence in X \ {x} (possibly stationary) such that xi → x̂ and
ℓ(x, xi) → g(x). Then

∥g(x) − g(x′)∥ = lim
i→∞

∥ℓ(x, xi) − ℓ(x′, x′
i)∥

≤ Cℓ lim
i→∞

ρω((x, xi), (x
′, x′

i))

≤ Cℓ

(
ω(∥x− x̂∥) + ω(∥x′ − x̂′∥) + ω(∥x− x′∥)

)
≤ 3Cℓ ω(∥x− x′∥).

Since ℓ(x, y) ∈ Lf (x, y), we have

|f(x) − f(y) − ⟨g(x), x− y⟩| = |⟨ℓ(x, y) − g(x), x− y⟩|
= lim

i→∞
|⟨ℓ(x, y) − ℓ(x, xi), x− y⟩|

≤ n ∥x− y∥ lim sup
i→∞

∥ℓ(x, y) − ℓ(x, xi)∥

≤ nCℓ ∥x− y∥ lim sup
i→∞

ρω((x, y), (x, xi))

≤ nCℓ ∥x− y∥
(
ω(∥x− y∥) + ω(∥x− x̂∥)

)
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≤ 2nCℓ ∥x− y∥ω(∥x− y∥).

Thus |(f, g)|X,1,ω ≤ 2nCℓ. □

By a little trick, the boundedness condition for ℓ in Theorem 4.1 may be absorbed
by the Lipschitz condition. To this end, we add a point ∗ to MX . We define

M̃X := MX ∪{∗} and extend the metric to M̃X by setting ρ̃ω|MX×MX
:= ρω and

ρ̃ω((x, y), ∗) = ρ̃ω(∗, (x, y)) := 2 for all (x, y) ∈ MX as well as ρ̃ω(∗, ∗) := 0. (Since
ω ≤ 1, the triangle inequality holds: for m,m′ ∈ MX we have ρω(m,m′) ≤ 3 ≤
2 + 2 = ρω(m, ∗) + ρω(∗,m′).)

The map Lf is extended to L̃f : M̃X → An−1(Rn) by setting L̃f |MX
= Lf and

L̃f (∗) := {0}.

Proposition 4.2. Under the assumptions of Theorem 4.1, items (1) and (2) in
that proposition are further equivalent to

(3) There exists a definable Lipschitz selection ℓ̃ : M̃X → Rn of L̃f .

If the equivalent conditions (1), (2), and (3) hold, then we also have

(4.4) inf
g
∥(f, g)∥X,1,ω ≈ sup

x∈X
|f(x)| + inf

ℓ̃
|ℓ̃|

Lip(M̃X ,Rn)
,

where the infimum on the left-hand side is taken over all g satisfying (1) and the

infimum on the right-hand side over all ℓ̃ satisfying (3).

Proof. To see that (3) implies (2), note that

∥ℓ̃(x, y)∥
2

=
∥ℓ̃(x, y) − ℓ̃(∗)∥
ρ̃ω((x, y), ∗)

≤ |ℓ̃|
Lip(M̃X ,Rn)

for all (x, y) ∈ MX , if ℓ̃ is a Lipschitz selection of L̃f .
Conversely, if ℓ is a bounded definable Lipschitz selection of Lf , then the unique

extension ℓ̃|MX
:= ℓ and ℓ̃(∗) := 0 is a definable Lipschitz selection of L̃f . Indeed,

for (x, y) ∈ MX ,

∥ℓ̃(x, y) − ℓ̃(∗)∥ = ∥ℓ(x, y)∥ ≤ C =
C

2
ρ̃ω((x, y), ∗),

where C = sup(x,y)∈MX
∥ℓ(x, y)∥. □

Next we endow M̃X with a weighted graph structure. Let M̃X be the set of
vertices of this graph. Two vertices (x, y), (x′, y′) ∈ MX are joined by an edge
if {x, y} ∩ {x′, y′} ̸= ∅, and ∗ is joined by an edge to every (x, y) ∈ MX . If

m,m′ ∈ M̃X are joined by an edge, then we assign the weight

w(m,m′) :=

{
ω(∥x− y∥) + ω(∥x′ − y′∥) if m = (x, y), m′ = (x′, y′) ∈ MX ,

2 otherwise.

Let σ be the associated (extended) pseudometric; cf. (3.2). By [7, Proposition 3.3]
(and thanks to our general assumption ω ≤ 1; cf. (4.1)), we have

(4.5)
1

2
ρ̃ω ≤ σ ≤ 2ρ̃ω.

Corollary 4.3. If ω is definable, then (M̃X , ρ̃ω) is a definable metric space and,
equipped with the above weighted graph structure, it is a definable weighted graph.

Proof. This follows from the definitions and (4.5). □
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We recall a consequence of [7, Proposition 3.2 and Corollary 3.4] (which is an
analogue of Theorem 4.2, where sets and maps are not necessarily definable).

Proposition 4.4 ([7, Proposition 3.5]). Let m ≥ 1 be an integer. Let X ⊆ Rn and
f : X → R be given (not necessarily definable). Assume that the restriction f |Y to
every subset Y ⊆ X of cardinality #Y ≤ m has an extension FY ∈ C1,ω(Rn) with

∥FY ∥C1,ω(Rn) ≤ 1. If N is an admissible subset of M̃X of cardinality #N ≤ 2
3m,

then L̃f |N has a Lipschitz selection ℓ̃N : N → Rn with |ℓ̃N |Lip(N ,Rn) ≤ C(n).

We are ready for the goal of this section:

Theorem 4.5. Let ω be a definable modulus of continuity. Let X ⊆ Rn be a closed
definable set and f : X → R a definable function. Assume that the restriction
f |Y to every subset Y ⊆ X of cardinality #Y ≤ 3 · 2n−1 has an extension FY ∈
C1,ω(Rn) with ∥FY ∥C1,ω(Rn) ≤ 1. Then there exists a bounded definable function

g : X → Rn such that (f, g) is a definable Whitney jet of class C1,ω on X with
∥(f, g)∥X,1,ω ≤ C(n).

Proof. Applying the assumption to 1-point sets Y ⊆ X, we may conclude that
supx∈X |f(x)| ≤ 1. The assumption and Theorem 4.4 give that for every admissible

subset N ⊆ M̃X of cardinality #N ≤ 2
3 · 3 · 2n−1 = 2n there exists a Lipschitz

selection ℓ̃N : N → Rn of L̃f |N with |ℓ̃N |Lip(N ,Rn) ≤ C(n). By Theorem 3.3 and

Theorem 4.3, there exists a definable Lipschitz selection ℓ̃ : M̃X → Rn of L̃f with

|ℓ̃|
Lip(M̃X ,Rn)

≤ C1(n); note that k = n − 1 and A = 2 in this case. Now the

assertion follows from Theorem 4.2. □

4.2. Proof of Theorem A. We shall see that the identity (1.1) and the statement
about the bounded subsets follow from Theorem 4.5 and the uniform definable Cm,ω

Whitney extension theorem:

Theorem 4.6 ([14]). Let 0 ≤ m ≤ p be integers. Let ω be a modulus of continuity.
Let X ⊆ Rn be a definable closed set. Any definable bounded family of Whitney jets
of class Cm,ω on X extends to a definable bounded family of Cm,ω-functions on Rn

which are of class Cp outside X.

Clearly, boundedness is understood with respect to the natural norms. The main
theorem of [14] is actually more general.

Let us prove (1.1) and the statement about the bounded subsets. It is obvious

that C1,ω
def (Rn)|X ⊆ RX

def ∩ C1,ω(Rn)|X and

∥f∥C1,ω(Rn)|X ≤ ∥f∥C1,ω
def (Rn)|X , f ∈ C1,ω

def (Rn)|X .

Conversely, suppose that f ∈ RX
def ∩ C1,ω(Rn)|X . Then Theorem 4.5 implies that

there is a bounded definable function g : X → Rn such that (f, g) is a definable
Whitney jet of class C1,ω on X with

∥(f, g)∥X,1,ω ≤ C(n) ∥f∥C1,ω(Rn)|X .

By Theorem 4.6, we conclude that f ∈ C1,ω
def (Rn)|X and that a subset of RX

def ∩
C1,ω(Rn)|X which is bounded in C1,ω(Rn)|X is also bounded in C1,ω

def (Rn)|X .
Let us now specialize to the case ω(t) = t (we write ∥ · ∥X,1,1 := ∥ · ∥X,1,ω and

| · |X,1,1 := | · |X,1,ω in this case) and prove (1.2). To this end, consider:
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Proposition 4.7. Let X ⊆ Rn be a definable compact set and let f : X → R be a
bounded definable function. Assume that MX carries the metric ρω with ω(t) = t.
Then the following conditions are equivalent:

(1) f is the restriction of a definable function F ∈ C1,1(Rn).
(2) There exists a definable function g : X → Rn such that (f, g) is a Whitney

jet of class C1,1 on X.

Moreover, if g is as in (2), then there exists an extension F of f such that

∥F∥C1,1(Rn) ≤ C(n) ∥(f, g)∥X,1,1.(4.6)

Proof. Let us recall a result of Azagra, Le Gruyer, and Mudarra [3]:
Let (f, g) be a Whitney jet of class C1,1 on a set X ⊆ Rn and let M > 0 be

such that |(f, g)|X,1,1 ≤ M . Then

F := conv(h) −
√
nM

2
∥ · ∥22, where

h(x) := inf
y∈X

(
f(y) + ⟨g(y), x− y⟩ +

√
nM

2
∥x− y∥22

)
+

√
nM

2
∥x∥22, x ∈ Rn,

and where conv(h) is the convex envelope of h, defines a C1-function F : Rn → R
such that F |X = f , ∇F |X = g, and |∇F |Lip(Rn,Rn) ≤ nM .

Note that the factor
√
n appears, since we change from Euclidean to maximum

norm. The extension F is optimal; cf. [3, Theorem 3.4]. The convex envelope
conv(h) (i.e., the supremum of all convex, proper, l.s.c. functions φ ≤ h) can be
expressed as

conv(h)(x) = inf
{ n+1∑

j=1

λjh(xj) : x =

n+1∑
j=1

λjxj ,

n+1∑
j=1

λj = 1, λj ≥ 0
}
.

or as conv(h) = (h∗)∗, where h∗(x) := supy∈Rn

(
⟨y, x⟩ − h(y)

)
is the convex con-

jugate. Now, if X and (f, g) are definable, we see that also the extension F is
definable (because it is given by definable formulas). After multiplication with a
suitable definable C2-cutoff function that equals 1 in a small neighborhood of X
and vanishes outside the 1-neighborhood of X (here we use that X is compact),
we get that F belongs to C1,1(Rn). This shows that (2) implies (1). The opposite
direction is clear.

Now it is not hard to check (4.6). □

Theorem 4.8. Let X ⊆ Rn be a definable compact set and f : X → R a definable
function. Assume that the restriction f |Y to every subset Y ⊆ X of cardinality
#Y ≤ 3 ·2n−1 has an extension FY ∈ C1,1(Rn) with ∥FY ∥C1,1(Rn) ≤ 1. Then f has

a definable extension F ∈ C1,1(Rn) such that ∥F∥C1,1(Rn) ≤ C(n).

Proof. Combine Theorem 4.5 with Theorem 4.7. □

Now we may prove (1.2). Let F ∈ C1,1(Rn) be an extension of f . Then The-
orem 4.8 implies that there is a definable extension G ∈ C1,1(Rn) of f satisfying
∥G∥C1,1(Rn) ≤ C(n) ∥F∥C1,1(Rn). Then (1.2) follows easily.



DEFINABLE LIPSCHITZ SELECTIONS 19

4.3. Definable Kirszbraun theorem. As a consequence of the result of [3] used
in the proof of Theorem 4.7, a version of Kirszbraun’s theorem on the extension of
Lipschitz functions by an explicit formula is given in [4, Theorem 1.2]:

Let X ⊆ Rn be any set and f : X → Rm a Lipschitz map with Lipschitz constant
M , where Rn and Rm carry the standard inner product (i.e., the Lipschitz constant
M is computed with respect to the Euclidean norms, whence no factor

√
n). Then

F (x) := ∇Rm conv(g)(x, 0), x ∈ Rn, where

g(x, y) := inf
z∈X

(
⟨f(z), y⟩ +

M

2
∥x− z∥22

)
+

M

2
∥x∥22 + M∥y∥22, (x, y) ∈ Rn × Rm,

defines a Lipschitz extension F : Rn → Rm of f with the same Lipschitz constant
M .

This follows easily by applying the mentioned theorem of [3] to the 1-jet (0, (0, f))
on X×{0} ⊆ Rn×Rm. Actually, the result is valid for maps between Hilbert spaces.

As a corollary we get a definable Kirszbraun theorem (since all formulas are
definable):

Theorem 4.9. If f : X → Rm, X ⊆ Rn, is a definable Lipschitz map, then the
map F : Rn → Rm defined above is a definable Lipschitz extension of f preserving
the Lipschitz constant.

The definable Kirszbraun theorem was first proved by Aschenbrenner and Fischer
[1], but the explicit formula gives it immediately.

Remark 4.10. Actually, the definable Kirszbraun theorem [1, Theorem A] holds in
any expansion R = (R, 0, 1,+, ·, <, . . .) of a real closed ordered field that is definably
complete (i.e., each non-empty definable subset of R which is bounded from above
has a least upper bound in R). Definable completeness (which follows from o-
minimality) is a necessary condition for the validity of the definable Kirszbraun
theorem; see [1, Proposition 5.2]. A careful inspection of the proofs of [3, Theorem
3.4] and [4, Theorem 1.2] shows that the explicit extension formula given above still
holds and thus gives a short alternative proof in this general setting.

4.4. Remarks on (1.3). The obstacle for obtaining (1.3) for all definable moduli
of continuity ω is that we do not know if a bound of the type (4.6) generally holds.
But, by a result of Paw lucki [15, Theorem 1.2], Whitney jets of class Cm,ω (not
necessarily definable) on a definable closed set X ⊆ Rn extend to Cm,ω-functions
and the extension is by a continuous linear operator which is a finite composite of
operators that either preserve definability or are defined by integration with respect
to a parameter.

Integration may lead out of the o-minimal structure one started with. For in-
stance, if one starts with globally subanalytic sets and maps, due to a result of Lion
and Rolin [13], one lands in the algebra of real functions generated by globally sub-
analytic functions and their logarithms. For a class containing globally subanalytic
functions and their complex exponentials (thus oscillatory functions) that is stable
under parameterized integration, see [8]. Generally, for every o-minimal expansion

S of the real field there is an o-minimal expansion S̃ in which the solutions of

Pfaffian equations with S -definable C1-coefficients are S̃ -definable, by Speissegger
[17]. We conjecture that (1.3) at least holds if the trace norm on the left-hand side

is computed with respect to the functions definable in S̃ instead of those definable
in the structure S we started with.
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In [15], integration with respect to a parameter is used for smoothing operators
that are linear, continuous, and preserve moduli of continuity. In the proof of the
definable Whitney extension theorem of class Cm [11, 12, 18] as well as of class
Cm,ω [14], smooth cell decomposition and subtle inequalities for the derivatives of
definable functions are used instead of smoothing operators.
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