
ASC Report No. 31/2019

Implementation of a pathfollowing strategy
with an automatic step-length control: New
MATLAB package bvpsuite2.0

W. Auzinger, M. Fallahpour, O. Koch, E.B. Weinmüller

Institute for Analysis and Scientific Computing

Vienna University of Technology — TU Wien

www.asc.tuwien.ac.at ISBN 978-3-902627-00-1

Most recent ASC Reports

30/2019 W. Auzinger, O. Koch, E.B. Weinmüller, S. Wurm
Modular version bvpsuite1.2 of the collocation MATLAB package bvpsuite1.1

29/2019 S. Kurz, D. Pauly, D. Praetorius, S. Repin, and D. Sebastian
Functional a posteriori error estimates for boundary element methods

28/2019 P.-E. Druet and A. Jüngel
Analysis of cross-diffusion systems for fluid mixtures driven by a pressure gradient

27/2019 G. Dhariwal, F. Huber, A. Jüngel, C. Kuehn, and A. Neamtu
Global martingale solutions for quasilinear SPDEs via the boundedness-by-
entropy method

26/2019 G. Di Fratta, M. Innerberger, and D. Praetorius
Weak-strong uniqueness for the Landau-Lifshitz-Gilbert equation in microma-
gnetics

25/2019 G. Gantner and D. Praetorius
Adaptive IGAFEM with optimal convergence rates: T-splines

24/2019 F. Alouges, G. Di Fratta
Parking 3-sphere swimmer
II. The long arm asymptotic regime

23/2019 P. Holzinger and A. Jüngel
Large-time asymptotics for a matrix spin drift-diffusion model

22/2019 X. Chen and A. Jüngel
When do cross-diffusion systems have an entropy structure ?

21/2019 M. Innerberger and D. Praetorius
Instance-optimal goal-oriented adaptivity

Institute for Analysis and Scientific Computing
Vienna University of Technology
Wiedner Hauptstraße 8–10
1040 Wien, Austria

E-Mail: admin@asc.tuwien.ac.at

WWW: http://www.asc.tuwien.ac.at

FAX: +43-1-58801-10196

ISBN 978-3-902627-00-1

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

Abstract

The main objective of this work was the implementation of a pathfollowing module to
complete the Matlab package bvpsuite2.0. In preparation for the implementation, the
tangent continuation method was studied, as presented in [7] and [4]. This method was
adapted for the already existing code bvpsuite2.0. Also the package was adapted where
needed for the new function to fit in. Moreover, some features were implemented in the
function, that would allow to tackle a broad range of problems. The implementation is
tested on various examples.
A secondary objective was the preparation of a manual, which would help first time
users and more experienced users of bvpsuite2.0, to use the package as intended.
Finally, reports on simulations with bvpsuite2.0 that were carried out in collaboration
with various researchers are given.

Zusammenfassung

In dieser Arbeit war die primäre Zielsetzung ein pathfollowing Modul zu implementieren,
um das Matlab Software Paket bvpsuite2.0 abzurunden. Aufbauend auf der vorhan-
denen Theorie der “tangent continuation method” aus [7] und [4], wurde diese angepasst,
um der bereits bestehenden Code-Basis von bvpsuite2.0 zu entsprechen. Der Code
wurde auch angepasst, sodass die neue Funktion hineinpasst. Einige zusätzliche Funk-
tionalitäten wurden hinzugefügt, die es ermöglichen sollen, ein breites Spektrum von
Problemen anzugehen. Die Implementierung wurde an mehreren Beispielen getestet.
Ein weiteres Ziel der Arbeit war die Erstellung eines Manuals, das Benutzern ermöglichen
würde, den Code so zu benutzen wie er konzipiert wurde.
Zuletzt werden die Ergebnisse von Simulationen gezeigt, die im Zuge der Erstellung
dieser Arbeit in Zusammenarbeit mit internationalen Kooperationspartnern durchgeführt
wurden.

Contents

1 Pathfollowing module 2
1.1 Theoretical framework . 2

1.1.1 General problem setting and requirements 2
1.1.2 Tangent continuation method . 3
1.1.3 About the simplified Newton method 6
1.1.4 Adaptive step-length control strategy 11

1.2 Implementation in bvpsuite2.0 . 13
1.2.1 Solution approximation in bvpsuite2.0 13
1.2.2 Details of the implementation . 22
1.2.3 Features of the pathfollowing module 31

1.3 Test examples . 34

2 bvpsuite2.0 54
2.1 Functions of bvpsuite2.0 . 54
2.2 Modules of bvpsuite2.0 . 70

3 Further simulations 83
3.1 Variable coefficient Helmholtz Equation 83

3.1.1 Preparation . 83
3.1.2 Numerical simulation . 85
3.1.3 An analytical solution . 87

Conclusion 89

A Pathfollowing code 91

1

Chapter 1

Pathfollowing module

In the beginning of this chapter, the existing theoretical framework for pathfollowing
along a variable parameter in an algebraic equation with automatic step-length control
is presented. Afterwards, the details of the implementation of the pathfollowing module
in bvpsuite2.0 are discussed. Finally, at the end of the chapter, the performance of the
implementation is demonstrated on various test examples.
A pathfollowing module was already present in bvpsuite1.1, in the form published in
[4]. This version was improved by introducing an automatic step-length strategy as
described in [6] and [7].

1.1 Theoretical framework

In this section, the general problem setting is introduced. Then, the tangent continuation
method, which is used in this work to find approximate homotopy paths numerically, is
presented. Some theorems on convergence results of this algorithm are discussed. These
results then lead to a theoretically justified step-length control procedure.

1.1.1 General problem setting and requirements

The general problem type considered in this section is

F (x, λ∗) = 0, with x ∈ D ⊂ Rη, λ∗ ∈ R, (1.1)

where η ∈ N and F : Rη+1 → Rη is a differentiable function. The aim is to follow the
evolution of the solution vector x of the implicit equation in (1.1), when the value of
λ∗ is varied. When following the solutions x of equation (1.1) along a direction, the
resulting path is also called the homotopy path. The existence of the homotopy path is
given by the implicit function theorem.
Define a := (x, λ∗) ∈ Rη+1. Then, we require to have

� an isolated homotopy path A of (1.1), i.e. for all a ∈ A we have that F (a) = 0,
where the Jacobian F ′(a) := [F x(x, λ∗),F λ∗(x, λ

∗)] ∈ Rη×(η+1) has full rank η, and

� an initial solution point a0 on the isolated solution path A.

2

CHAPTER 1. PATHFOLLOWING MODULE 3

With these requirements at hand, the tangent continuation method is introduced.

1.1.2 Tangent continuation method

Continuation methods in general consist in moving along the homotopy path, starting
from a given solution a0 = (x0, λ

∗
0) and then finding another solution a1 = (x1, λ

∗
1) on

the path. The movement along the path is performed in two steps:

1. in the prediction step, a predictor point â0 ∈ Rη+1, which is expected to be suffi-
ciently close to the homotopy path, is found and

2. in the correction step, starting from â0, the corrected point a1 is iteratively approx-
imated.

In the classical continuation method, the prediction step is performed by changing
slightly the value of λ∗0, but keeping x fixed. The tangent continuation method on the
other hand follows the tangent to the homotopy path in the point a0. In this way,
it is hoped that the predictor point â0 lies closer to the homotopy path than with
the classical continuation method. Two steps of the tangent continuation method are
displayed schematically in Figure 1.1.

a0

a1

a2

a0+s0t0

a1+s1t1

Figure 1.1: Schematic tangent continuation method.

In order to compute the tangent t0 ∈ Rη+1 to the homotopy path in the point a0, we
augment the function F to F 1 by the row λ∗ − λ∗0. This line fixes the value of the
variable λ∗, when trying to solve the equation F 1(a) = 0, to λ∗0 ∈ R fixed.
The derivative of λ∗−λ∗0 with respect to x is 0 and with respect to λ∗ it is 1. Therefore
the Jacobian of F 1 is then equal to the Jacobian F ′ augmented with the row (0, ..., 0, 1)
and it is an (η + 1) × (η + 1) square matrix with full rank. Although the kernel of
this matrix is trivial, it can be used to compute the tangent t0 of a solution along the
homotopy path. The formula used for this task is

F ′1(a0)t0 = (0, δ)T , (1.2)

CHAPTER 1. PATHFOLLOWING MODULE 4

where δ ∈ R. Due to the shape of the last row of F 1, the last entry of t0 is δ. Thus,
there exists a t̂ such that t0 = (t̂, δ)T . The above formula (1.2) is then equivalent to(

F x(a0) F λ∗(a0)
0 1

)(
t̂
δ

)
=

(
0
δ

)

⇔

(
F x(a0) F λ∗(a0)

0 1

)(
t̂
0

)
+

(
F x(a0) F λ∗(a0)

0 1

)(
0
δ

)
=

(
0
δ

)

⇔

(
F x(a0) F λ∗(a0)

0 1

)(
t̂
0

)
+ δ

(
F λ∗(a0)

1

)
=

(
0
δ

)
⇔ F x(a0) t̂+ F λ∗(a0) δ = 0.

This is then an overdetermined system of equations, the same system as the one used in
[4] to compute the tangent. When λ is set to 1, then this system has a unique solution
t̂, provided F x(a0) is a regular matrix.
After computing the tangent t0 by the formula (1.2), the tangent is normalized, i.e.
‖t0‖2 = 1 in the Euclidean norm. Due to these requirements, t0 is uniquely determined
up to orientation and the choice of setting δ to 1 does not affect the outcome.
Next, a step-length s ∈ R+ is chosen and the predictor point is computed as â0 :=
a0 + s · t0. This then completes the prediction step of the tangent continuation method.
Regarding the choice of the step-length, the details are mentioned in Section 1.1.4.

The correction step consists of an iterative scheme, for instance the Newton iteration
or a variant of it. The correction step starts at the predictor point â0, when chosen well,
the scheme converges towards the corrected point a1, a point on the homotopy path.
Similarly to the computation of the tangent in the prediction step, in the correction
step, the function F is augmented by a row to F 2, where the last row of F 2 ensures
that every solution â of F (â) = 0 is orthogonal to the tangent and passing through â0.
Thus F 2 has the form

F 2(â) :=

(
F (a)

(â− a0) · t0 − s

)
.

The Jacobian of this matrix is

F ′2(â) :=

(
F x(â) F λ∗(â)

t0

)
.

The form of the function F 2 marks the main difference between the pathfollowing al-
gorithm presented by Deuflhard et al. in [6] and [7] and the algorithm implemented in
bvpsuite1.1 and published in [4]. While Deuflhard works with non-quadratic matri-
ces and a Gauss-Newton method to follow the homotopy path beyond turning points,
Kitzhofer et al. use the approach of square matrices and the Fast Frozen Newton method.

CHAPTER 1. PATHFOLLOWING MODULE 5

In this work also, the method of interest is the Fast Frozen Newton method, as it is im-
plemented as a solver routine for nonlinear problems in bvpsuite2.0 ([2]). This method
is a refined version of the simplified Newton iteration, which in turn is a simplification of
the classical Newton method. Therefore all three methods are briefly introduced here.
The Newton iteration starts at an initial point â0 ∈ Rη+1 and produces a sequence
{âk}k∈N0 , such that âk → a1, which is a root of the function F 2. In this procedure, for
each k ∈ N0, the Newton increment ∆âk is computed as the solution of the equation

F ′2(âk)∆âk = −F 2(âk).

and the next approximation is computed as âk+1 = âk + ∆âk. A convergence result for
such a method can be found in Theorem 2.2 in [7, pp. 49–50].
In the simplified Newton method, as presented in [7], the increment is once computed
as above and in the subsequent steps the simplified increment ∆âk+1 is computed from
the equation

F ′2(â0)∆âk = −F 2(âk+1).

This means that the simplified increment is computed by evaluating the inverse of the
Jacobian at the first iterate â0 instead of at the updated approximation âk+1. This
measure saves computation time, because in this case the computation of the increment
reduces to a matrix-vector multiplication of F ′2(a0)

−1 and F 2(ak)
1. The convergence

properties of the simplified Newton method are discussed in Section 1.1.3.
The fast frozen Newton method can be considered a mixture of these two methods, the
Jacobian is updated, but not in every step. In fact, it is only updated, when

‖∆âk+1‖ > ξ‖∆âk‖, (1.3)

where ξ < 1 – by default ξ = 0.5 in bvpsuite2.0. Hence, the fast frozen Newton
method only updates the Jacobian whenever the convergence is slow. Otherwise it keeps
the Jacobian “frozen” for a number of steps until the inequality above is satisfied.
As mentioned above, the choice of the step-length is crucial for the convergence of the
Newton methods, due to their restricted domain of convergence. This is the reason why
the step-length adaptation procedure detailed in Section 1.1.4 is needed.

The tangent continuation method as presented above is theoretically able to follow
paths beyond turning points, but not bifurcation points. As presented, the method does
not account for cases in which the Jacobian F ′ is non-singular, which is the case whenever
passing a bifurcation point. This is a weakness of this method presented here, but in
some examples containing bifurcation points this does not pose any problem, as can be
seen in Section 1.3. This may be due to the implementation of the backslash operator in
Matlab, which through its least squares approach sometimes finds a satisfactory tangent
regardless of the rank of the Jacobian. Possibly in the examples the bifurcation points

1Note, that in bvpsuite2.0 the inverse of the Jacobian is never explicitly computed, instead the LU -
decomposition of F ′2(a0) is saved and reused in the non-linear solver.

CHAPTER 1. PATHFOLLOWING MODULE 6

are overlooked, because the step-length was long enough to pass by such a singularity.
The convergence properties of the simplified Newton method as introduced above will
be the next subject of discussion. The results are needed to formulate the mentioned
adaptive step-length control strategy.

1.1.3 About the simplified Newton method

The theorems in this section were taken from [6, pp. 52–54 and 253–257]. These theorems
are slightly adapted to fit the case of square matrix problems, as these are the tools used
in this work.
We concentrate in the convergence analysis in this chapter on the simplified Newton
method as introduced above, for a function G : Rn → Rn with n ∈ N,

G′(a0)∆ak = −G(ak), ak+1 = ak + ∆ak, for {ak}k∈N0 ⊂ Rn. (1.4)

The simplified Newton method will approach iteratively a solution a∗ of the implicit
equation G(a) = 0 if the starting point of the iteration is chosen sufficiently close to a∗.

Theorem 1. Let G : D ⊂ Rn → Rn denote some C1-mapping with D open and convex.
Let a0 ∈ D denote a given starting point so that G′(a0) is invertible. Assume the
Lipschitz condition

‖G′(a0)−1(G′(a)−G′(a0))‖ ≤ ω0‖a− a0‖ (1.5)

to hold, for all a ∈ D. Let

h0 := ω0‖∆a0‖ ≤
1

2

and define

t∗ := t−
√

1− 2h0 and ρ :=
t∗

ω0
.

Moreover, assume that the closed ball B(a0, ρ) with center a0 and radius ρ is in D. Then
the iterates ak of the simplified Newton method (1.4) remain in B(a0, ρ) and converge
to some a∗ with G(a∗) = 0.
The sequence {ak}k∈N converges linearly, i.e.

lim
k→∞

‖ak+1 − a∗‖
‖ak − a∗‖

= c < 1.

Proof. With the Lipschitz condition (1.5) we have

‖ak+1 − ak‖ = ‖∆ak‖ = ‖G′(a0)−1G(ak)‖
= ‖G′(a0)−1

[
G(ak) +G(ak−1)−G(ak−1)

]
‖

= ‖G′(a0)−1
[
G(ak−1 + ∆ak−1)−G′(ak−1)∆ak−1 −G(ak−1) + 0

]
‖

CHAPTER 1. PATHFOLLOWING MODULE 7

= ‖G′(a0)−1
∫ 1

0

[
G′(ak−1 + γ∆ak−1)−G′(ak−1)

]
∆ak−1 dγ ‖

≤ ‖
∫ 1

0
ω0γ(∆ak−1)

2 dγ ‖ =
1

2
ω0‖∆ak−1‖2 =

1

2
ω0‖ak − ak−1‖2

≤ 1

2
ω0‖ak − ak−1‖

(
‖ak−1 − a0‖+ ‖ak − a0‖

)
. (1.6)

The upper bound sequences {hk}k∈N0 and {tk}k∈N0 are introduced with the respective
properties

ω0‖ak+1 − ak‖ ≤ hk, ω0‖ak − a0‖ ≤ tk

and with initial values t0 = 0 and h0 = ω0‖∆a0‖ ≤ 1
2 . Then, we choose

tk+1 := tk + hk, hk :=
1

2
hk−1(tk + tk−1),

because with the inequality (1.6) above

ω0‖ak+1 − ak‖ ≤
1

2
hk−1(tk + tk−1)

and with the triangle inequality

ω0‖ak+1 − a0‖ ≤ ω0‖ak − a0‖+ ω0‖ak+1 − ak‖ ≤ tk + hk.

Then the equation

tk+1 − tk = hk =
1

2
hk−1(tk + tk−1) =

1

2
(t2k + t2k−1)

follows. This leads to

tk+1 −
1

2
t2k = tk −

1

2
t2k−1 ⇒ tk+1 −

1

2
t2k = ... = t1 −

1

2
t20 = h0.

This can be rewritten as the simplified scalar Newton iteration

tk+1 − tk = − g(tk)

g′(t0)
= g(tk) for the equation g(t) := h0 − t+

1

2
t2 = 0.

g(t) = 0 has the solutions t = 1±
√

1− 2h0. Here the condition h0 <
1
2 is used.

Consider the sequence tk+1 = tk + g(tk) = h0 + 1
2 t

2
k for k ∈ N0 and t0 = 0. By

induction, tk+1 > tk and because the derivative g′(t) = t − 1 is negative for t < 1,
g(tk+1) < g(tk) also holds, which is equivalent to hk+1 < hk. Also, t2k+1 > t2k and thus

g(tk+1) = −1
2 t

2
k + 1

2(h0 + 1
2 t

2
k)

2 > 0. This leads to the property

tk ≤ t∗ = 1−
√

1− 2h0.

CHAPTER 1. PATHFOLLOWING MODULE 8

Therefore, the iteration tk starting at t0 = 0 converges towards the root 1 −
√

1− 2h0.
This implies ak ∈ S(a0, ρ) ⊂ D. The property hk+1 < hk implies {ak}k∈N0 to be a
Cauchy sequence. Thus there exists a∗ ∈ S(a0, ρ) with ak → a∗ for k → ∞. Since
‖∆ak‖ = ‖ak+1 − ak‖ → 0 and G′(a0)∆ak = −G(ak), G(a∗) = 0 holds.
For the convergence rate, note that with the use of the triangle inequality

tk =
k∑
i=0

hi ⇒ ω0‖ak − a∗‖ ≤
∞∑
i=k

hi = t∗ − tk.

Furthermore, with the use of (1.5) and G(a∗) = 0, it holds

‖ak+1 − a∗‖ = ‖ak + ∆ak − a∗‖ = ‖ak − a∗ −G′(ak)−1(G(ak)−G(a∗))‖
= ‖G′(ak)−1

[
(G(a∗)−G(ak)) +G′(ak)(ak − a∗)

]
‖

= ‖G′(ak)−1
∫ 1

0
(G′(ak + γ(ak − a∗))−G′(a∗))(ak − a∗) dγ‖

≤ ω0‖ak − a∗‖2 ≤ (t∗ − tk)‖ak − a∗‖.

Since t∗ − tk < 1, the sequence {ak}k∈N converges linearly.

Having established the convergence of the simplified Newton method to an element which
satisfies the implicit equation given by G, this result will be used to prove convergence
starting from a point given by the tangent continuation method.

For the tangent continuation method, a starting point a0 ∈ Rn on the homotopy
path, a step-length s ∈ R and the normalized tangent vector t0 ∈ Rn to the homotopy
path at a0 are needed. The correction method starts at the prediction point

â0 := a0 + s · t0.

The theorem below implies a restriction on s, for which the simplified Newton method
converges to the homotopy path.
In order to relate these theoretical results to the implementation in bvpsuite2.0, some
details are adjusted. The function G : D ⊂ Rn → Rn denotes some C1-mapping with D
open, convex, and sufficiently large. Note that with this function G, any 0 6= a ∈ Rn is
considered to be on the homotopy path if and only if G(a) = (0, ..., 0, r) for r ∈ R. The
n-th row of G(a) is (a− a0) · t0 − s, which implies the n-th row of the Jacobian G′(a)
to be simply t0. Thus

G(a0) = (0, ..., 0,−s)T and G′(a0)t0 = (0, ..., 0, 1)T . (1.7)

Finally, let

H := {a ∈ Rn | (a− a0) · t0 − s = 0} = {a ∈ Rn |a = a0 + s · t0 + r with r ⊥ t0}.

Then the following theorem can be stated.

CHAPTER 1. PATHFOLLOWING MODULE 9

Theorem 2. Let a0, s, t0, â0, G, D and H be as above. Then, under the assumption
of the Lipschitz conditions∥∥∥G′(a0)−1 (G′(a)−G′(a0)

)∥∥∥ ≤ ω0‖a− a0‖, for a,a0 ∈ H (1.8)

and ∥∥∥G′(a)−1
(
G′(u+ δ2s · t(u))−G′(u)

)
t(u)

∥∥∥ ≤ δ2ωt‖t(u)‖22, (1.9)

with the normalized tangential vector t(u) to the homotopy path at u and a, u+δ2s ·t(u)
∈ D, with 0 ≤ δ2 ≤ 1. Then the simplified Newton iteration converges for all

s ≤ smax :=
1

√
ω0ωt

. (1.10)

Proof. For the simplified Newton iteration in H we may apply Theorem 1, which here
requires the verification of the sufficient condition

‖∆â0‖ω0 ≤ α0(s)ω0 ≤
1

2
.

Then the derivation of an appropriate α0(s) may proceed with (1.7) and (1.9) as

‖∆â0‖ = ‖G′(â0)−1G(â0)‖ = ‖G′(â0)−1
[
G(â0)−G(a0)− (0, ..., 0, s)T + 0

]
‖

= ‖G′(â0)−1
∫ s

δ=0

[
G′(a0 + δt0)t0 − (0, ..., 0, 2)T

]
dδ ‖

≤
∫ s

δ=0
‖G′(â0)−1

[
G′(a0 + δt0)t0 − (0, ..., 0, 1)T

]
‖ dδ

=

∫ s

δ=0
‖G′(â0)−1

[
G′(a0 + δt0)−G′(a0)

]
t0‖ dδ ≤ 1

2
ωts

2.

Hence

α0(s) :=
1

2
ωts

2, (1.11)

which inserted above directly leads to the maximum feasible stepsize smax.

Having an upper bound for the step-length for the convergence of the simplified Newton
method starting from the prediction point â, the focus turns now to the prediction of a
new step-length.

Let t(a) denote the tangent to the path in each point a ∈ Y of the homotopy path
and again a0 be a point on the homotopy path with t0 := t(a0). Let â : R+

0 → Rn, s 7→
a0+s·t0 be a function. Then the point a(s) is defined as the intersection of the homotopy
path and the hyperplane orthogonal to t0, passing through â(s). Finally, define

cs := tT0 t(a(s)). (1.12)

CHAPTER 1. PATHFOLLOWING MODULE 10

Consider

z(s) := a(s)− â(s)

⇒ ż(s) = ȧ(s)− t0,
⇒ z̈(s) = ä(s).

Similarly to above, for a fixed s ∈ Rn, G : Rn → Rn is a C2-function in a with last row
entry (a− a(0)) · t0 − s. For s ∈ R+

0 , a(s) = a0 + s · t0 + r with r ⊥ t0. Thus

G(a(s)) ≡ (0, ..., 0, s− s)T ,
⇒ G′(a(s))ȧ(s) ≡ (0, ..., 0, 1)T , (1.13)

⇒ G′′(a(s))
[
ȧ(s)

]2
+G′(a(s))ä(s) ≡ 0. (1.14)

From (1.13) it follows

ȧ(s) =
1

cs
t(a(s)),

since G′(a(s))t(a(s)) = (0, ...0, cs)
T . Thus ȧ(0) = t0. Consider now

‖z(s)‖ = ‖a(s)− â(s)‖ = ‖a(s)− a(0)− s · ȧ(0)‖ =

∥∥∥∥∥
∫ 1

0
ȧ(γs)s dγ − s · ȧ(0)

∥∥∥∥∥ (1.15)

= s‖ max
γ∈[0,s]

ȧ(γ)︸ ︷︷ ︸
=:ȧ(γ∗)

−ȧ(0)‖ = s

∥∥∥∥∥
∫ γ∗

0
ä(γs)s dγ

∥∥∥∥∥ = s2 max
γ∈[0,s]

‖ä(s)‖. (1.16)

The following theorem gives an upper bound for ‖ä(s)‖, s ∈ R+
0 .

Theorem 3. Let t(·), t0, â(·), a(·), cs, s and G be as above. The inequalities (1.8) and
(1.9) are satisfied as in the preceding theorem. Then, for cs 6= 0, one has

‖ä(s)‖2 ≤
ωt
c2s
. (1.17)

Proof. From (1.14) it follows

ä(s) =
1

c2s
G′(a(s))−1G′′(a(s))

[
t(a(s))

]2
.

With the relation

lim
δ2→0

1

δ2

(
G′(a(s) + δ2t(a(s)))−G′(a(s))

)
= G′′(a(s))t(a(s))

and by application of (1.9), it follows

‖ä(s)‖ =
1

c2s

∥∥∥∥G′(a(s))−1 lim
δ2→0

1

δ2

(
G′(a(s) + δ2t(a(s)))−G′(a(s))

)
t(a(s))

∥∥∥∥

CHAPTER 1. PATHFOLLOWING MODULE 11

=
1

c2s
lim
δ2→0

1

δ2
‖G′(a(s))−1

(
G′(a(s) + δ2t(a(s)))−G′(a(s))

)
t(a(s))‖

≤ 1

c2s
lim
δ2→0

1

δ2
δ2ωt‖t(a(s))‖ ≤ ωt

c2s
.

This completes the proof.

With these results in hand, it is now possible to proceed to formalize an adaptive step-
length control strategy.

1.1.4 Adaptive step-length control strategy

The work of Deuflhard et al. from [7], [6], and also [5], is the original source of the
strategy explained below.

The way the theoretical results from the previous section are used, is to replace
the unavailable Lipschitz-constants ω0 and ωt by available local estimates [ω0] and [ωt],
which on the basis of the theoretical maximal step-length smax from Theorem 2 leads to

[smax] :=
1√

[ω0][ωt]
. (1.18)

Since [ω0] and [ωt] are lower-bounds of ω0 and ωt respectively, it follows that [smax] ≥
smax. Therefore in the automatic step-length procedure, a prediction strategy, where a
suitable step-length is suggested, and a correction strategy, where this step-length might
get adjusted, are needed.

The correction strategy will be applied whenever for a point a0 on the homotopy
path with tangent t0 to the path in this point a step-length s0 is chosen and thus a
prediction point â0 := a0 + s · t0 is found. The correction strategy will reduce the size of
the step-length, if specific criteria are not met. Also, the step-length may be elongated
if the criteria are too amply satisfied. The aim is to have an efficient process.
The first criterion consists in the first contraction factor θ0, which gives some knowledge
about the convergence of the simplified Newton method in the first step. From (1.6) in
the proof of Theorem 1, it follows

‖xk+1 − xk‖ ≤
1

2
‖xk − xk−1‖ (tk + tk−1)⇒

‖∆xk+1‖
‖∆xk‖

≤ 1

2
(tk + tk−1) .

As in the proof, t0 = 0 and t1 = h0 = ω0‖∆x0‖ ≤ 1
2 . Thus, the first condition that needs

to be satisfied to achieve convergence of the correction method is

θ0 :=
‖∆x1‖
‖∆x0‖

≤ 1

4
=: θmax. (1.19)

Therefore, starting the iteration from the predictor point â0, from the inequalities above

CHAPTER 1. PATHFOLLOWING MODULE 12

there follows the estimate

ω0 ≥
2‖∆â0,1‖
‖∆â0‖

=
2Θ0

‖∆â0‖
=: [ω0] (1.20)

and in the same way from (1.11)

ωt =
2α0(s0)

s20
≥ 2‖∆â0‖

s20
=: [ωt]. (1.21)

Inserting these two local estimates into (1.18) gives

s′0 :=

√
θmax

θ0
s0. (1.22)

This is the step-length suggestion which is applied, whenever the condition θ0 ≤ θmax is
not satisfied.
As mentioned above, it is also possible to elongate the step-length, for instance whenever
θ0 is smaller than a predetermined θmin <

1
4 . The formula (1.22) can then be applied

until

θmin ≤ θ0 ≤ θmax (1.23)

is satisfied. The elongation of the step-length is not activated per default in the imple-
mentation, since caution is favoured over efficiency in the pathfollowing module.

Once the iteration converged from â0 to a new point a1 on the homotopy path with
tangent t1 to the path in this point, then the prediction strategy suggests a new step-
length s1 for the computation of a prediction point â1 := a1 + s1 · t1, from where the
simplified Newton method will start and is expected to converge. In case the step-length
does not fully satisfy the requirements of the correction strategy, then it is adjusted
further as is explained above.
In the correction strategy, a step-length s0 is already known in the beginning of the
process. This step-length then gets adapted, in potentially a few steps, to a new step-
length s′0. Here in the correction strategy, the starting guess for the prediction is the
step-length s′0. Combining the inequalities (1.15) and from Theorem 3 (1.17), then

‖â0 − a1‖ ≤ s′20
ωt
c2
s′0

.

This leads to the estimate

[ωt] :=
c2s′0
‖â0 − a1‖
s′20

≤ ωt. (1.24)

Then, inserting the two estimates [ω0] as in (1.20) and [ωt] as in (1.24) into the equation

CHAPTER 1. PATHFOLLOWING MODULE 13

(1.18) results in the step-length prediction formula

s1 :=

 2

c2
s′0

θmax

θ0

‖∆â0‖
‖â0 − a1‖

 1
2

s′0. (1.25)

The application of this formula completes the prediction strategy.

This procedure is expected to give good step-lengths for the pathfollowing of a prob-
lem. This is backed by the theoretical results presented in the previous sections. In the
following sections, the focus will be shifted from the theory to the implementation of
this whole algorithm. The tangent continuation method with the adaptive step-length
control is implemented as a module in the Matlab package bvpsuite2.0.

1.2 Implementation in bvpsuite2.0

The main aim is the implementation of a pathfollowing module with an adaptive step-
length control strategy in bvpsuite2.0. In this section, this implementation of the
module is presented in detail.
During the implementation, the new functions functionFDF and pathfollowing were
added to the package bvpsuite2.0. These will be presented in the form of pseudo-code
and discussed in the following pages.
bvpsuite2.0 is a numerical solver for boundary value problems (BVPs) in ordinary
differential equations (ODEs). Thus, in the beginning of this section, the collocation
method used in bvpsuite2.0 is discussed. This will then be related to the results of
the first section of this chapter. Afterwards, some intricacies of the implementation of
the new pathfollowing module are discussed. Finally, some of its features, which may be
relevant to the user, are elaborated.

1.2.1 Solution approximation in bvpsuite2.0

The explanations for bvpsuite2.0 are combining parts of the work of [1] and [3]. They
are revisited in this section since these play an important role in the explanations of the
function functionFDF and thus the pathfollowing module.
First, the general type of problem bvpsuite2.0 handles is presented. Let therefore
I = [a, b] ⊂ R be given, as well as a vector c ∈ Rq with ci ∈ I and ci 6= cj for i 6= j.
Then, we try to find a vector function z(t) : I → Rn and a vector of parameters p ∈ Rs,
such that for all t ∈ I and for λ∗ ∈ R the ODE system

f(t,p, z1(t), z
′
1(t), ..., z

(l1)
1 (t), ..., zi(t), ..., z

(lk)
k (t), ..., zn(t), ..., z(ln)n (t), λ∗) = 0, (1.26)

and the boundary conditions

g(p, z1(c1), ..., z
(l1−1)
1 (c1), ..., zn(c1), ..., z

(ln−1)
n (c1), ...

CHAPTER 1. PATHFOLLOWING MODULE 14

..., z1(cq), ..., z
(l1−1)
1 (cq), ..., zn(cq), ..., z

(ln−1)
n (cq), λ

∗) = 0, (1.27)

are satisfied. Here,

f : I × Rs × R
∑

(lk+1) × R→ Rn, g : Rs × Rq
∑
li × R→ Rs+

∑
lk

and we assume that zk ∈ C lk−1(I) and z
(lk)
k exist. The variable λ∗ solely appears in the

case of a pathfollowing problem. In any other case, it can simply be omitted entirely
in the implicit equations above and also in the discussion below. As is shown below,
the difference between the two cases is that in the case of pathfollowing, during the
computation a scalar equation is added to the vector-valued function f , which fixes the
value of λ∗. The shape of this scalar equation is mentioned below and in more detail in
Section 1.1.2.
In general, bvpsuite2.0 employs a collocation method to solve the BVP (1.26)–(1.27)
numerically. Therefore,

� the interval I is discretized by introducing the mesh {a = τ0 < τ1 < ... < τN = b}
with interval lengths hi := τi − τi−1 for i = 1, ..., N , and

� with a choice of a vector of inner collocation points ρ = (ρ1, ..., ρj , ..., ρm), where
ρj ∈ (0, 1) and ρi 6= ρj for i 6= j, the grid points in the subinterval (τi−1, τi) are

Tij := τi−1 + ρj hi, i = 1, ..., N, j = 1, ...,m.

Each component of a solution z is approximated by a piecewise polynomial continuous
function, i.e. for a component zk on the subinterval (τi−1, τi)

zk
∣∣
(τi−1,τi)

≈ Pik ∈ Pm+lk−1.

The polynomials Pik are represented with the a-priori unknown lk coefficients Yikj and
the m coefficients Zikj in the Runge-Kutta basis as

Pik(t) =

lk∑
j=1

YikjΦij(t) + hlki

m∑
j=1

ZikjΨ
lk
ij

(
t− τi−1
hi

)
, (1.28)

where for t ∈ [τi−1, τi],

Φij(t) :=
(t− τi−1)j−1

(j − 1)!

and

Ψ0
ij(t) =

m∏
ν=1
ν 6=j

t− ρν
ρj − ρν

, and Ψk
ij(t) =

∫ t

τi−1

Ψk−1
ij (s)ds, for k > 0.

CHAPTER 1. PATHFOLLOWING MODULE 15

Then Pik satisfies the relations

P
(d−1)
ik (τi−1) = Yikd for d = 1, ..., lk and

P
(lk)
ik (Tij) = Zikj for j = 1, ...,m.

(1.29)

The value of λ∗ is fixed by a scalar equation – which will be specified below – in the case
of a pathfollowing problem, or in any other case it can be omitted. Then, the unknown
coefficients in (1.28) are defined by requiring the following three conditions:

1. the ODE system (1.26) of n equations is satisfied in all grid points, i.e. for i = 1, ..., N ,
j = 1, ...,m

f(Tij ,p, Pi1(Tij), ..., P
(l1)
i1 (Tij), ..., Pin(Tij), ..., P

(ln)
in (Tij), λ0) = 0, (1.30)

2. the boundary conditions (1.27) hold, i.e.

g(p, Pc̃1,1(c1), ..., P
(l1−1)
c̃1,1

(c1), ..., Pc̃1,n(c1), ..., P
(ln−1)
c̃1,n

(c1), ...,

..., Pc̃q ,1(cq), ..., P
(l1−1)
c̃q ,1

(cq), ..., Pc̃q ,n(cq), ..., P
(ln−1)
c̃q ,n

(cq), λ0) = 0. (1.31)

In the index of the polynomials Pc̃l,k, l = 1, ..., q, k = 1, ..., n, the tilde on top of cl
indicates that depending on the location of cl the corresponding polynomial Pc̃l,k is
chosen in such a way that cl ∈

[
τc̃l−1, τc̃l

)
, and

3. the piecewise polynomial function is globally continuous together with its derivatives
up to the order lk − 1 (for zk), i.e. for i = 1, ..., N − 1, k = 1, ..., n,

P
(d−1)
i,k (τi) = P

(d−1)
i+1,k (τi), d = 1, ..., lk. (1.32)

Note that by (1.29) this is equivalent to P
(d−1)
i,k (τi) = Yi+1,k,d.

The three systems of equations, namely

1. the nNm equations from (1.30),

2. the s+
∑n

k=1 lk equations from (1.31), and

3. the (N − 1)
∑n

k=1 lk equations from (1.32),

define uniquely the N
∑n

k=1 lk unknown coefficients Yikj , the nNm unknown coefficients
Zikj and the s unknown parameter values in the vector p, provided that the mesh is fine
enough.

These can be considered the building blocks of the bvpsuite2.0 solver routine. The
system of equations (1.30)–(1.32) and an equation fixing the value of λ∗ is saved in a col-
umn vector F (·) ∈ RN(

∑n
k=1 lk+nm)+s+1. Also its Jacobian DF (·) is needed in the compu-

tation to find an approximation to z := (z1, ..., zn) by P := (P11, ..., P1N , ..., Pn1, ..., PnN).
We explain the construction of the function F (·), the function DF (·), and their input
variable X ∈ RN(

∑n
k=1 lk+nm)+s+1 below.

CHAPTER 1. PATHFOLLOWING MODULE 16

The input variable X

Define l̂ = max(lk) and set for all k = 1, ..., n and i = 1, ..., N , Yikj = 0 when lk < j ≤ l̂.
Then for the i-th subinterval (τi−1, τi), i = 1, ..., N , the coefficients of the polynomials
Pik, k = 1, ..., n, are saved in the row vectors ŷid := (Yi1d, ..., Yind) for d = 1, ..., l̂ and
ẑij := (Zi1j , ..., Zinj) for j = 1, ...,m. Furthermore, the parameter input variables are
saved in the row vector p̃ = (p1, ..., ps).
Now, define for i = 1, ..., N

xi := (ŷi1, ..., ŷil̂, ẑi1, ..., ẑim), and xN+1 := p̃.

The concatenation of these N + 1 row vectors and the scalar value λ0 of the variable λ∗

is now denoted with

X := (x1, ...,xN ,xN+1, λ0). (1.33)

Thus, in xi all the coefficients of the polynomials Pik, k = 1, ..., n, approximating the be-
haviour of the solution zk in the i-th subinterval, are saved. In xN+1 the s approximate
parameter values are saved. And X, the vector at which F (·) is evaluated, contains all
these values and the value λ0 of the pathfollwoing parameter in case of pathfollowing
problems.

CHAPTER 1. PATHFOLLOWING MODULE 17

The function F (·)

For a t in the i-th subinterval, the column vectors

P
(d)
i (t) := (P

(d)
i1 (t), ..., P

(d)
in (t))T , for d = 0, ..., l̂,

are defined. The index number d represents the order of the derivative. Thus, in P
(d)
i (t)

the values of the d-th order derivatives of the polynomials Pik, k = 1, ..., n, evaluated at
t is saved.
In the following definition of the function F (·), the vectors P

(d)
i are used as function

arguments of the BVP f and its boundary conditions g. Note, that this notation is
merely a rearrangement of the functions’ arguments in (1.26) and (1.27).
With these definitions, we can write F (·) evaluated at X as

F (X) :=



g(p̃,P
(0)
c̃1

(c1), ...,P
(l̂)
c̃1

(c1), ...,P
(0)
c̃q

(cq), ...,P
(l̂)
c̃q

(cq), λ0)

f(T11, p̃,P
(0)
1 (T11), ...,P

(l̂)
1 (T11), λ0)

...

f(T1m, p̃,P
(0)
1 (T1m), ...,P

(l̂)
1 (T1m), λ0)

P
(0)
1 (τ1)− ŷT21

P
(1)
1 (τ1)− ŷT22

...

P
(l̂−1)
1 (τ1)− ŷT2,l̂

f(T21, p̃,P
(0)
2 (T21), ...,P

(l̂)
2 (T21), λ0)

...

f(T2m, p̃,P
(0)
2 (T2m), ...,P

(l̂)
2 (T2m), λ0)

P
(0)
2 (τ2)− ŷT31

P
(1)
2 (τ2)− ŷT32

...

P
(l̂−1)
2 (τ2)− ŷT3,l̂

...

f(TNm, p̃,P
(0)
N (TNm), ...,P

(l̂)
N (TNm), λ0)

t∗(X)



. (1.34)

As previously mentioned, the vector F contains the conditions (1.30)–(1.32) in its defi-
nition and an equation t∗(X) fixing the value of λ∗. The equation has one of two shapes,
i.e.

1. when computing the tangent to the homotopy path in a point y0 := (x1, ...,xN+1, λ0)
during the prediction step

t∗(X) := λ∗ − λ0; (1.35)

CHAPTER 1. PATHFOLLOWING MODULE 18

2. when computing the function F (·) and DF (·) for the Newton iteration in the cor-
rection step, first the equation

DF (X)t = (0, ..., 0, 1)T

is solved for t. For this equation, DF (X) is computed as described in the case
above when computing the tangent. After computing the tangent t, it is normalized
to t0, thus ‖t0‖ := 1. Finally, for a previously computed solution vector y0 and the
step-length s, the equation fixing the value of the variable λ∗ is

t∗(X) := (X − (y0 + s · t0))− s. (1.36)

The function DF (·)

The Jacobian of F (·), DF (·), evaluated at X has the block-structure

DF (X) =



1 G 1 P T

1 J1 1 1

P T1 1 C1 1 1 1

1 1 J2 M 1

1
. . . 1

1 1 JN 1 P T

1 T ∗ 1


. (1.37)

The blocks of the Jacobian matrix DF are

� the block G, which contains the derivatives of the s+
∑n

k=1 lk first rows of F (·) with
respect to xi, i = 1, ..., N , evaluated at X. Then, Gu, the u-th row of G, can be
written as

Gu :=

(
∂gu
∂ŷ11

, ...,
∂gu
∂ŷ1,l̂

,
∂gu
∂ẑ11

, ...,
∂gu
∂ẑ1m

,
∂gu
∂ŷ21

, ...,
∂gu
∂ẑNm

)
,

where gu is the u-th row of g. We now define for k = 1, ..., n, α = 1, ..., q, r = 1, ..., l̂,

Dkαrgu :=
∂gu

∂z
(r)
k

∣∣∣∣∣
t=cα,p̃=p,z=P ,λ∗=λ0

, (1.38)

where Dkαrgu := 0 for r ≥ lk. Then, with the chain rule, we have

∂gu
∂Yikj

=
∑

{α|c̃α=i}

j−1∑
r=0

∂gu

∂z
(r)
k

∣∣∣∣∣
t=cα,p̃=p,z=P ,λ∗=λ0

·
∂P

(r)
ik

∂Yikj
(cα)

CHAPTER 1. PATHFOLLOWING MODULE 19

=
∑

{α|c̃α=i}

j−1∑
r=0

Dkαrgu ·
(cα − τi−1)(j−1−r)

(j − 1− r)
,

∂gu
∂Zikj

=
∑

{α|c̃α=i}

lk∑
r=0

∂gu

∂z
(r)
k

∣∣∣∣∣
t=cα,p̃=p,z=P ,λ∗=λ0

·
∂P

(r)
ik

∂Zikj
(cα)

=
∑

{α|c̃α=i}

lk∑
r=0

Dkαrgu ·Ψ
lk−r
ij (cα),

since

∂P
(r)
ik

∂Yikj
(t) = Φ

(r)
ij (t) = Φi,(j−r)(t), and

∂P
(r)
ik

∂Zikj
(t) = (Ψlk

ij)
(r)(t) = Ψlk−r

ij (t).

� the blocks Ji, where for i = 1, ..., N and j = 1, ...,m

fij := f(Tij , p̃,P
(0)
1 (Tij), ...,P

(l̂)
1 (Tij))

is defined. Then, the block Ji, with i ∈ {1, ..., N}, contains the m rows of derivatives
of the n-rows vector fij , j = 1, ...,m, with respect to xi, i.e.

Ji :=



∂fi1
∂ŷi1

... ∂fi1
∂ŷi,l̂

∂fi1
∂ẑi1

... ∂fi1
∂ẑim

∂fi2
∂ŷi1

... ∂fi2
∂ŷi,l̂

∂fi2
∂ẑi1

... ∂fi2
∂ẑim

...
...

...
...

∂fim
∂ŷi1

... ∂fim
∂ŷi,l̂

∂fim
∂ẑi1

... ∂fim
∂ẑim

 .

Analogously as for the block G, for the u-th row of fij , we define for i = 1, ..., N ,

j = 1, ...,m, k = 1, ..., n, r = 1, ..., l̂,

Dkrfij;u :=
∂fu

∂z
(r)
k

∣∣∣∣∣
t=Tij ,p̃=p,z(t)=P (Tij),λ∗=λ0

, (1.39)

where Dkαrgu := 0 for r ≥ lk and fu is the u-th row of f . Then again, with the chain
rule, we have

∂fij;u
∂Yikj

=

j−1∑
r=0

∂fu

∂z
(r)
k

∣∣∣∣∣
t=Tij ,p̃=p,z(t)=P (Tij),λ∗=λ0

·
∂P

(r)
ik

∂Yikj
(Tij)

=

j−1∑
r=0

Dkrfij;u ·
(Tij − τi−1)(j−1−r)

(j − 1− r)
,

CHAPTER 1. PATHFOLLOWING MODULE 20

∂fij;u
∂Zikj

=

lk∑
r=0

∂fu

∂z
(r)
k

∣∣∣∣∣
t=Tij ,p̃=p,z(t)=P (Tij),λ∗=λ0

·
∂P

(r)
ik

∂Zikj
(Tij)

=

lk∑
r=0

Dkrfij;u ·Ψlk−r
ij (Tij).

� the blocks Ci, where i ∈ {1, ..., N − 1}, which contains the derivatives of the vectors

P
(r)
i − ŷ(i+1),r+1, r = 0, ..., l̂− 1, with respect to xi and (ŷ(i+1),1, ..., ŷ(i+1),l̂), evaluated

at τi, i.e.

Ci :=


∂P i
∂ŷi1

(τi) ... ∂P i
∂ŷi,l̂

(τi)
∂P i
∂ẑi1

(τi) ... ∂P i
∂ẑim

(τi) −
∂ŷT

(i+1),1

∂ŷ(i+1),1

...
. . .

∂P
(l̂)
i

∂ŷi1
(τi) ...

∂P
(l̂)
i

∂ŷi,l̂
(τi)

∂P
(l̂)
i

∂ẑi1
(τi) ...

∂P
(l̂)
i

∂ẑim
(τi) −

∂ŷT
(i+1),1

∂ŷ(i+1),l̂


The entries of the blocks Ci are computed in the same way as presented above for the
entries of the blocks G and Ji.

� the block P , which contains the derivatives of all entries of F (·) with respect to p̃, i.e.

P :=


∂F 1
∂p1

... ∂F 1
∂ps

...
. . .

...
∂FN(nm+

∑
li)+s

∂p1
...

∂FN(nm+
∑
li)+s

∂ps

 , (1.40)

where F u with u = 1, ..., N(nm+
∑
li) + s denotes the u-th row of F (·).

� the block T , which contains the derivatives of all entries of F (·) with respect to λ∗,
i.e.

T :=

(
∂F 1

∂λ∗
, ...,

∂FN(nm+
∑
li)+s

∂λ∗

)T
, (1.41)

where F u with u = 1, ..., N(nm+
∑
li) + s denotes the u-th row of F (·).

� the block T ∗, which contains the derivatives of t∗(·) with respect to X, i.e.

T ∗ :=

(
∂t∗

∂ŷ11
, ...,

∂t∗

∂ẑNm
,
∂t∗

∂p1
, ...,

∂t∗

∂ps
,
∂t∗

∂λ∗

)
. (1.42)

In the two forms of t∗(·) described above, the result is

1. when computing the Jacobian for the solution of the tangent equation in the
prediction step

T ∗ = (0, ..., 0, 1)T ;

CHAPTER 1. PATHFOLLOWING MODULE 21

2. when computing the Jacobian for the Newton iteration in the correction step

T ∗ = t0.

In order for bvpsuite2.0 to be able to run its computations, the derivatives presented
in (1.38), (1.39), (1.40), (1.41) and (1.42) need to be provided by the user in the problem
definition. These definitions are then called in the routine of bvpsuite2.0.

If the implicit problem f = 0 with boundary conditions g = 0, given as in (1.26) and
(1.27), is linear, then the system of linear equations DF (0)x = F (0) has to be solved
for x, where F is as in (1.34), DF is as in (1.37) and x is the solution vector in the
same format as in (1.33).

If the implicit problem f = 0 with boundary conditions g = 0 is non-linear, then an
initial guess x0 to approximate the solution is taken and the fast frozen Newton method
is applied to it. The idea behind the Fast Frozen Newton method is briefly mentioned
in Section 1.1.2 and in more detail in [2].

Depending on the argument of the function call, the function functionFDF returns
the vector F (X0) or the square matrix DF (X0) for a given X0, which is also an
argument of the function call. In Algorithm 1, the basic structure of the function
functionFDF is presented.

CHAPTER 1. PATHFOLLOWING MODULE 22

Algorithm 1: functionFDF.m: Computation of F (X0) and DF (X0).

Input: Request and input vector X0

Output: The vector F (X0) or the square matrix DF (X0)
// In functionFDF.m at line

1 switch Request do // 003

2 case F (X0) do // 004

3 Extract polynomial coefficients and parameters from X0 ; // 033

4 Initialize output vector, same size as X0 ; // 053

5 Boundary conditions are evaluated ; // 055

6 Problem equations are evaluated ; // 092

7 if Pathfollowing then t∗(X0) as in (1.35) or (1.36) is evaluated,
depending on whether tangent or Newton method is needed; // 124

8 case DF (X0) do // 128

9 Extract polynomial coefficients and parameters from X0 ; // 163

10 Initialize sparse, square output matrix with N(nm+
∑
li) + s+ 1

rows ; // 053

11 Block G and upper part of P are computed ; // 198

12 Blocks Ji and Ci and lower part of P are computed ; // 418

13 if Pathfollowing then // 563

14 Block T is computed ; // 565

15 Block T ∗ is computed ; // 641

16 end

17 end

18 end

This concludes the discussion of the core functionality of bvpsuite2.0. Having
explained the auxiliary function functionFDF, it is now time to present the main function
of the pathfollowing module.

1.2.2 Details of the implementation

In this subsection, some details of the implementation of the function pathfollowing.m

are presented. A flowchart map is provided in Figure 1.2. Clearly, if the problem
specification is associated with a pathfollowing problem, the code enters the function
pathfollowing. Only once the user chooses to save the results and exit the program,
the code will return to the main function bvpsuite2. There the computed data is saved
and the program terminated.
This means that the computations begin in the problem definition file, where the user
specifies the problem for the code to process. Before the code can be started, the solver
settings need to be adjusted. Once this is completed, the pathfollowing can start. The
explanations in the following pages will proceed in this chronological order.

CHAPTER 1. PATHFOLLOWING MODULE 23

Input:
-	Problem	definition
-	Solver	settings

Load	the	previously
computed	data	and	last	used

point

Steplength:
Last	used	in	procedure

Predict	new	steplength

Compute	tangent	to	point

Starting	from	prediction	point,	the	non-linear
solver	computes	a	solution	on	the	homotopy	path

within	the	given	solver	tolerances

Correction	strategy	if
needed

Compute	initial	point	on
path	using	the	bvpsuite2

solver

Steplength:
From	problem	definition

Pathfollowing	problem
Call	the	pathfollowing	function

Initial
value		λ*	given

by	user

Previouly
computed	point

Start	the
procedure	

at

Output:	Last	solution	on	the	path

Pseudo-arclength	continuation	method

Pathfollowing	function

Save	all	computed	data

bvpsuite2

Halve	the	steplength,
recompute	prediction	point

Halve
steplength?

Continue?

Solution
accepted

Figure 1.2: Flowchart of the pathfollowing function.

Changes to the problem definition file

The problems the pathfollowing module is suited to deal with are BVP equations of the
same form as in (1.26)–(1.27) with a parameter λ∗, which is varied along a path. To pass
some key values of the pathfollowing procedure to bvpsuite2.0, a specific case was added
in the switch-block in the problem definition file. This is the case 'pathfollowing'

which will return a Matlab-structure variable, containing the fields

� activate: boolean, if 1 then the problem is a pathfollowing problem, otherwise 0;

� pathdata: handle to the function PathCharData, computing the functional of the
solution function that is being followed;

� startat: either 'start' or the name of a file contained in the folder specified under
dir;

� start: first value of the pathfollowing parameter taken during the run, this is only
considered if startat is set to 'start';

� steplength: first value of the step-length taken during the run, this is only considered
if startat is set to 'start';

CHAPTER 1. PATHFOLLOWING MODULE 24

� max_pred_length: (can be omitted) maximal length of the predictor step;

� pit_stop: (can be omitted) a row vector containing 2 entries, a first value when
reached by the pathfollowing parameter, the user will be prompted how to proceed,
and a second value when reached by the value of the function PathCharData during
the run, the user will be also prompted how to proceed;

� require_exact: (can be omitted) a row vector of values when reached by the pathfol-
lowing variable, the solution of the BVP at this specific pathfollowing parameter value
shall be computed and saved in the Matlab-cell variable speicher_exact, which is
one of the 3 outputs of the function pathfollowing;

� dir: the folder in which the data is saved or from where it may be loaded, and

� name: the name under which the path data consisting of speicher, speicher_exact
and tur_pts, is saved;

� counter: (can be omitted) the number of pathfollowing steps that are executed before
the user is prompted how to proceed. This can also be set to Inf or a very high
number, then the code will run until a value from pit_stop is reached. This option
is only recommended for already tested problems, since some undesired issues may
occur along the way otherwise;

� only_counter: (can be omitted) this is a boolean value used with counter. If it is
set to 1, then the number of steps given in counter will be performed and then the
path automatically saved without any further user input. If it is set to 0, nothing will
happen;

� only_exact: (can be omitted) this is used with require_exact and startat. Starting
at a previously computed path, a single step is performed and afterwards all the
approximations to the solutions of the equations with the pathfollowing parameter
being equal to the values in the vector require_exact, are computed.

The aim of the whole procedure is to follow a characteristic value of the solution of the
problem along the variation of the pathfollowing parameter. The function PathCharData

responsible for computing this characteristic value needs to be given by the user in the
problem definition file. It requires the inputs

1. x1: contains the current mesh,

2. coeff: a vector, in the shape of (1.33), composed of

� the coefficients of the polynomials in the Runge-Kutta basis approximating the
solutions at the current point,

� the parameters in case of a parameter-dependent problem,
� the approximation to the eigenvalue in case of an eigenvalue problem, and
� the current pathfollowing parameters value,

which all fit the current mesh,

3. ordnung: the orders of the unknown functions of the problem, and

4. rho: a vector of the collocation points.

In summary, the whole input data is chosen to fit the input data into the coeffToValues

CHAPTER 1. PATHFOLLOWING MODULE 25

function, which returns from a given vector of coefficients in the Runge-Kutta basis (1.28)
the approximated values of the function or one of its derivatives at the requested points.
See Section 2.1 for details on the function. The column vector ret is returned as output
by the function PathCharData.
With PathCharData it is possible to

� evaluate a solution function or its derivative at a specific point. The lines of code for
evaluating z1(0) for instance are

help=coeffToValues(coeff, x1,ordnung,rho,0, 0);

ret = help(1);

and the lines of code for evaluating z′′7 (15) are

help=coeffToValues(coeff, x1,ordnung,rho,15, 2);

ret = help(7);

In case of a problem which is posed on [0,∞), the problem is transformed to a problem
on [0, 1], as briefly explained in Section 2.1, or in more detail in [1, Chap. 3]. The
number of unknown functions n is doubled to 2n during the transformation. Thus
coeffToValues when evaluated at 0.5 for instance, returns a vector or matrix with
2n rows, the first n rows corresponding to the values of the n solution functions at
0.25 and the second n rows corresponding to the values of the n solution functions
at 1

0.25 = 4. Therefore, in order to evaluate, as above, z′′7 (15) for a problem with 18
unknown functions, posed on a semi-infinite interval, the lines of code are

help=coeffToValues(coeff, x1,ordnung,rho, 1/15, 2);

ret = help(18+7);

This is due to the fact, that the transformation t 7→ 1
t for t > 1 is used to transform

the problem on [0,∞) to a problem on [0, 1], thus augmenting the original equations
in [0, 1].

� return the value of the parameter at the given point. For an example with 15 parame-
ters in the problem, where the evolution of the fifth parameter is to be followed, then
this is realized by the line

ret = coeff(end-1-15+5);

This is due to the fact, that at the end of the coeff vector, the pathfollowing parameter
value is stored last and before that the 15 approximate values of the parameters at
this stage of the process. For an other example with three parameters in the problem,
where the evolution of the first parameter is to be followed, then this is realized by
the line

ret = coeff(end-1-3+1);

When dealing with an eigenvalue problem, then the evolution of the eigenvalue can
be followed by defining the return value of the function PathCharData as

CHAPTER 1. PATHFOLLOWING MODULE 26

ret = coeff(end-1);

The approximation to the eigenvalue is saved in the penultimate step of the coeff

vector. Actually the eigenvalue is treated as the p+ 1-th parameter, more details on
the treatment of eigenvalue problems in bvpsuite2.0 can be found in [1, Chap. 4].

� apply a user-defined norm to the solution function or one of its derivatives. For
instance, for a problem defined on the interval [−2, 3] with three unknown functions,
when using the L∞-norm on the solution function z2, this can be done by computing

help=coeffToValues(coeff, x1,ordnung,rho,-2:1/1000:3, 0);

ret = max(abs(help(2,:));

For another problem, defined on the interval [−6,−5] with 8 unknown functions, when
using the Euclidean norm on the third derivative of the solution function z5, this can
be done by computing

help=coeffToValues(coeff, x1,ordnung,rho,-6:1/1000:-5, 3);

ret = sqrt(help(5,:)'*help(5,:));

These are some of commonly followed characteristic values in pathfollowing problems.
It is also possible to follow more than one of these values at once in the code, namely
by defining the ret output variable as a column vector instead of a scalar value.
In the problem definition file, the two cases 'path_jac', which covers the derivative of
the problem equations with respect to the pathfollowing variable λ∗, and 'path_dBV',
which covers the derivative of the boundary conditions with respect to λ∗, were added,
in order to compute the Jacobian as described in Section 1.2.1.

Changes to the solver settings file

The user can choose to solve the problem without any error estimation or mesh adap-
tation performed by bvpsuite2.0, with only error estimation or with mesh adaptation
enabled until the error tolerances are met by the approximations. These are all set in the
solver settings and performed during the pathfollowing. The differences in the treatment
of these cases is explained within the explanations of the main function pathfollowing.
The correction and prediction strategy are as presented in Section 1.1.4. The choice of
θmax ≤ 1

4 is left for the user to be set in the solver settings under 'thetaMax', since this
choice heavily influences the evolution of the step-length. As can be seen in (1.25), when
θmax is chosen close to 1

4 , the step-length might grow more quickly and only little adjust-
ment around critical points may be observed. On the other hand, when θmax is chosen to
be a few powers of 10 smaller, then a more distinctive step-length adaptation behaviour
may be observed around turning points. The growth of the predicted step-length com-
pared to the one used in the previous step is limited by the value prescribed by the user
in the solver settings under 'maxSteplengthGrowth'. The prediction and correction
strategies for the step-length are both performed in the local function PredCorrStrat.
Alongside the step-length control strategy, a few other cautionary measures were imple-
mented in the code. These will always lead to halving the step-length after a step was

CHAPTER 1. PATHFOLLOWING MODULE 27

computed and the conditions are not satisfied, and the step is then recomputed. These
cautionary measures are halving the step-length to recompute the current step, when

1. the trust region method is activated. This method is turned off during the pathfol-
lowing procedure;

2. the cosine of the angle between the current step and the tangent in the next step is
lower than the value the user prescribed in the solver settings under 'angleMin';
this setting can be turned off by choosing the value -1;

3. the suggested number of new mesh points is higher than the number of mesh points
at the beginning of the step multiplied with the value the user prescribed in the
solver settings under 'meshFactorMax';

4. the distance between the predictor point and the corrected point on the homotopy
path is – compared to the distance between the starting point and the predictor
point – too long, according to the value the user prescribed in the solver settings
under 'PredLengthFactor'; this setting can be turned off by choosing the value 0;

5. the distance between the predictor point and the corrected point on the homotopy
path is – compared to this distance in the previous step – too long, according to
the value the user prescribed in the solver settings under 'CorrLengthGrowth'; this
setting can be turned off by choosing the value Inf.

These measures proved to be useful when following along the homotopy path for certain
examples. If the step-length is halved for any of those 5 reasons, then for the prediction
of the step-length, which is used in the next step, the number in 'maxSteplengthGrowth

' is divided either by
√

2 to the power the number of times the step-length was halved
in the previous step, or if this number is smaller than 1, the step-length is retained.
Furthermore, at the beginning of each loop iteration, if the step-length gets smaller than
the value min_sl, which is defined at line 64, either through step-halving or during the
prediction-correction procedure, then the step-length is augmented to the value min_sl

and the iteration stops to wait for user-input on how to continue, as it is described in
Section 1.2.3.
The distances between the points mentioned above and also the angle, are computed by
means of the values of λ∗ and the values returned by PathCharData at the predictor and
corrector points. Distances are simply computed by the Euclidean metric in the two-
dimensional space (λ∗, x), where x is the return value of PathCharData, and the angles
with the Euclidean dot product and norm. The vectors of points consist then of the
value of the parameter in one dimension and the value of the characteristic value of the
solution that is being followed in the second dimension. This leads to straightforward
computations, when the function responsible for the computation of the characteristic
values is set correctly, as shown in the examples for PathCharData above. On the other
hand, relying so much on the data that is being plotted for a single characteristic value
of the solution of a boundary value problem, may lead to some unexpected difficulties,
for which the option remains for the user to turn these safety measures off, by choosing
the values mentioned in the list above in the solver settings file.
Altogether, in the solver settings the following cases were added to the switch-block:

CHAPTER 1. PATHFOLLOWING MODULE 28

case 'thetaMax' % Controls first Newton contraction factor, must be smaller

than 0.25

ret=0.1;

case 'maxCorrSteps' % Maximal # of times the predicted step-length gets

corrected (multiplied by (1/2)^(1/2)), if the first Newton contraction

factor is not smaller than theta_max

ret=5; % Setting to disable: ret=Inf;

case 'maxSteplengthGrowth' % Maximal growth of the step-length when

predicting it for the next step

ret=2; % Setting to disable: ret=Inf;

case 'angleMin' % Minimally allowed value of cosine of angle between

current step and tangent in the next step

ret=0.75; % Setting to disable: ret=-1;

case 'meshFactorMax' % # of mesh points can be augmented to maximally ret-

times the # of mesh points at the beginning of step during a single

pathfollowing step

ret=2; % Setting to disable: ret=Inf;

case 'PredLengthFactor' % Corrector step is maximally allowed to be (1/ret)

-times as long as the predictor step

ret=2; % Setting to disable: ret=0;

case 'CorrLengthGrowth' % Corrector step is maximally allowed to be ret-

times as long as the previous corrector step

ret=8; % Setting to disable: ret=Inf;

The values above are chosen more or less at random. The values were slightly adjusted in
most of the problems presented in Section 1.3. Also, the values to make the restrictions
void are specified.

The main function pathfollowing

The pseudo-code for the function pathfollowing is presented in Algorithm 2.
The cases with or without error estimation do not need any specific intermediate steps,
the code loops over one point on the homotopy path to the next point as described
in Section 1.1.2. On the other hand, the case with enabled mesh adaptation, requires
special precautions. The tangent continuation procedure starts from a point a0 on the
homotopy path, approximated by X0 on a discrete mesh M0, and returns X1, which
approximates another point a1 on the homotopy path, on a discrete mesh M1. When
the mesh M1 is different from M0, there may be more points in one mesh than the
other or the points were displaced in one of the meshes, thus the vectors X0 and X1

are not defined on the same mesh. This also means that the tangent vector t0 in X0

is not defined on the same mesh as t1, the tangent vector in X1. This is a problem in
the application of the formula (1.25) to predict the next step-length or when the angle
between the current and the next tangent is computed. This problem is circumvented
by transforming the tangent t0 from the meshM0 to its equivalent t1 on the meshM1.

CHAPTER 1. PATHFOLLOWING MODULE 29

This is done using the following lines of code:

initP.initialMesh=x1; % x1 is the new mesh

initP.parameters = sol.parameters; % if the problem is parameter dependent

initP.initialValues = coeffToValues(tangent_new, predictor.x1,ordnung,rho,

x1); % evaluate the polynomials with the coefficients from tangent_new

defined on the old mesh predictor.x1 at the new mesh points x1

initP = initial_coefficients(problem,x1,initP,rho,0); % adds a field

containing the coefficients on the new mesh x1 to the struct initP

tangent_new = [initP.initialCoeff ; tangent_new(end)] ; % the tangent

vector is updated

The same scheme is also used in the same way to transform the initial point of the
current step a0, approximated by X0, which is the vector containing all coefficients,
parameter values and pathfollowing parameter value, to fit the new mesh. This method
is also used in the functions errorestimate and meshadaptation, where the meshes are
adapted. The workings of the functions initial_coefficients and coeffToValues are
explained in Section 2.1 and there it is also shown at which point this scheme was applied.

CHAPTER 1. PATHFOLLOWING MODULE 30

Algorithm 2: pathfollowing.m: pathfollowing with automatic step-length con-
trol strategy

Input: Problem definition, solver settings, pathfollowing data
Output: speicher, speicher_exact and tur_pts

// In pathfollowing.m at line

1 Set and prepare options ; // 0004

2 Initialize ; // 0016

3 if start procedure at starting value then // 0258

4 Initialize the needed variables;
5 else if start procedure at previously computed path then // 0304

6 Load data ;
7 Prepare predictor point for the next step ; // 0387

8 end
9 while 1 do // 0417

10 Reduce step-length to minimal allowed step-length if needed ; // 0421

11 bvpsuite2.0 routine for non-linear problems ; // 0475

12 if Initial solution was computed in this step then go to the end of the
while loop ; // 0524

13 Compute everything needed for the cautionary measures ; // 0524

14 if Step-length needs halving then // 0601

15 Halve step-length and go to the end of the while loop ;
16 else // 0615

17 Save computed path data to speicher ; // 0630

18 Compute solution at given point if passed and save to
speicher_exact ; // 0641

19 Step itnum is completed ; // 0886

20 end
21 if jj== #steps in one go then // 0951

22 Plot if enabled ; // 0954

23 Prompt user to go back to previous checkpoint if enabled ; // 1041

24 Prompt user to continue or save the data & return ; // 1131

25 jj= 0 ;

26 end
27 Call local function PredCorrStrat to prepare next step ; // 1225

28 jj=jj+1 ; // 1232

29 end

The output of the pathfollowing function are all passed to the main function bvpsuite2

. There they are saved in the folder with the name, as requested by the user. This output
consists of

� the Matlab-cell variable speicher, containing all computed path data,

� the Matlab-cell variable speicher_exact, containing data corresponding to the user-

CHAPTER 1. PATHFOLLOWING MODULE 31

given values, and

� the 3-rows matrix tur_pts, containing, for each turning point, the value of λ∗ in the
step before the turning point, in the step at the turning point and in the step after
the turning point. This means that for each column the value in the second row is
either smaller than the values in the first and third row, or it is greater than the values
in the first and third row. If turning points were not encountered in the run, then
tur_pts is an empty matrix.

These saved values can be loaded to be examined by the user. The cell-variables
speicher and speicher_exact both have the same structure, that is, in the first cell
line, they contain the solution struct of the point on the path, for λ∗ as specified in the
second cell line. Then in the third and final cell line, the values of the characteristic
values which were followed along the path, computed by PathCharData, at the point λ∗

as given in the second cell line, is saved.

Some further features were built in to the module for the convenience of the user.
These are presented in the following pages.

1.2.3 Features of the pathfollowing module

In this section some details are given of a few features of the implementation.

Before the computations start, the user can choose a maximal length of the predictor
step. If the predictor step is longer than this chosen value, then it is reduced to the upper
bound. This maximal length can always be changed during the execution of the code as
is explained below. If the user does not give any maximally allowed predictor length in
the problem definition, then the upper bound is set to +∞. The idea behind defining
a maximal predictor length is to possibly improve the resolution of a path. Some steps
may be bigger than the user may wish to have, therefore an upper bound is given here.

During the code execution, the most effective control feature of the implementation
is the user prompt, which after counter-number of completed pathfollowing steps, will
ask the user how to proceed. The user can then choose to either

1. enter n: then the user will be prompted to enter a natural number, which will
change the default number of pathfollowing steps executed at a time, to this number.
From now on, the number of pathfollowing steps being executed before the user is
prompted for the next action, is this number chosen by the user, until the user may
choose to change it again;

2. enter p: the user is prompted to enter the desired real number which bounds the
length of the predictor step from this point onwards;

3. enter f: the user is prompted to enter a row-vector of steps, i.e. [0 7 15 178], or
simply a number, i.e. 23, which refers to an already computed step. For each of
the chosen steps, the computed approximation will be displayed in a new figure.
Afterwards, the user can again choose any of the 5 options enumerated here;

CHAPTER 1. PATHFOLLOWING MODULE 32

4. enter s: this will save the run in the folder and with the name that were given in the
problem definition file. Before halting the run, the code will display the name and
location at which the file has been saved. Then, it will give a brief summary of the
run, consisting of the value of λ∗, at which the run started, the values of λ∗, at the
turning points, if some were encountered, the value of λ∗ at which the run ended,
the number of steps that were performed and finally whether mesh adaptation was
used and how it was used;

5. or simply press enter: the code will compute the number of steps being executed
at a time, which is either 1 or the number to which the user changed it, and then
prompt the user again what to do next.

Another important feature, which can be turned on or off before the code is executed,
is the possibility the code gives to move any number of steps backwards along the path.
The way this feature works is that in each step, after the corrected point is computed on
the path, some key values of the just computed step are saved, which allow to later come
back to this step. The computation continues then as usual, for the chosen number of
steps counter, and then after the plots of the newly computed results are displayed but
just before prompting the user what to do next, the user is prompted to choose whether
to continue or to move back a number of steps. This feature may be convenient, when a
problem is computed for the first time. The automatically chosen step-length could turn
up to be too optimistic, which may lead to undesired results or possibly strong mesh
modification and thus large computational effort from this point forward. This may be
overcome by going back a few steps, saving the results up to this point and then continue
with adjusted solver settings along the path. If this feature is not needed, the variable
save_ws in line 5 of the file pathfollowing.m can be set to 0, which will suppress the
user prompt to be displayed.
After each completion of the set number of pathfollowing steps, a number of plots are
displayed, if these are enabled in the lines 6 to 11 of the file pathfollowing.m. These
plots are

1. the plot of the evolution of the characteristic value of the solution, which is fol-
lowed along the variation of the pathfollowing parameter, and the three dimensional
solution evolution plot, along the variation of the pathfollowing parameter,

2. the evolution of the mesh in each step and the three dimensional evolution plot of
the mesh density in each step over the problem interval,

3. the log plot, which contains the plots of all the values that are logged during each
step of the pathfollowing. These plots show the evolution of

� the CPU time to compute a single step and a marker for each step in which
the trust-region method was called, and thus the step-length halved and the step
recomputed,

� the step-length which was used in each step, the predicted step-length, before the
prediction-correction procedure, and a marker for each step in which the length
of the predictor step was bounded by the value of max_pred_length,

� θ0 and a fixed line for θmax, as both defined in (1.19),

CHAPTER 1. PATHFOLLOWING MODULE 33

� θmax/θ0,
� the number of mesh points at the beginning and at the end of each step, and also

a marker for each step in which the condition set in 'meshFactorMax' was not
satisfied, and thus the step-length halved and the step recomputed,

� the norms of F evaluated at the predictor point and at the corrected point,
� the absolute value of the last entry in the vectors F evaluated at the predictor

point and at the corrected point,
� the norm of the first Newton increment, the norm of the second simplified Newton

increment and the norm of the distance between the predictor and the corrected
point, and also a marker for each step in which the condition set in the solver
settings file in'PredLengthFactor' was not satisfied, a marker for each step in
which the condition set in 'CorrLengthFactor' was not satisfied, in which cases
the step-length was halved and the step recomputed,

� the value cs as defined in (1.12), the value of the cosine of the angle between a
step and the tangent in the following step, and a marker for each step in which
the condition set in 'anglemin' was not satisfied, and thus the step-length halved
and the step recomputed, and finally

� the maximal value of the error estimate for each corrected step.

Another important feature is to plot the solution at any specific value of the pathfollow-
ing parameter during the run, as specified in require_exact in the problem definition
file. Whenever one of these values is passed, the program will compute the solution for
the specific pathfollowing parameter value and then afterwards continue from the last
computed point.

Once a computation of a path is completed and saved, the user may want to restart
from the last point in the path by simply changing in the problem definition file startat
to the name of the file, which must be located in the folder which is given under dir.
This file is then loaded and the pathfollowing resumes as usual from this state. This
feature can be used to change some pathfollowing related parameters in the problem
definition and in the solver settings. Even the function PathCharData can be set to
follow a different characteristic value of the solution to the problem. The evolution of
the newly set characteristic values is computed for the known path and from then on
the values returned by this new function are saved. This feature is demonstrated for a
pathfollowing problem in Section 2.2. Changing settings as for instance the number of
collocation points which are used during the solution approximation, may lead to errors
and is not recommended.
Furthermore, with an already computed path, by setting the option only_exact to 1,
the approximations to the solution of the BVP at the requested values for λ∗, saved in
require_exact, are computed. Once this is done, the path, which was not altered, is
saved and also the solution data at the requested values, in p_save and p_exact re-
spectively. In other words, this feature allows to find approximations to solutions of the
BVP along the already computed path, even for values that were not computed during
the pathfollowing run.

CHAPTER 1. PATHFOLLOWING MODULE 34

During the development of the code, it was also discussed to reduce the number of
mesh points during the pathfollowing procedure, when mesh adaptation is enabled and
the current number of mesh points is not needed anymore to achieve satisfactory results.
This feature is present in the code, in the lines 916-934 of the file pathfollowing.m,
but was never used in a convincing manner. The reason for that was that the error
tolerances for the solutions to problems were usually always harder to achieve the more
pathfollowing steps would be computed. Thus a refinement of the mesh was observed
over time, and making the mesh coarser again would not prove useful in the studied
cases. Surprisingly the mesh adaptation would not happen, as could be expected, around
turning points, but sometimes at other instances of the run. Although seemingly in
some cases mesh adaptation is needed anyway, often controlling the step-length more
cautiously seems to address the issue of the mesh getting too fine reasonably well for the
tested examples. This feature is disabled but remains present in the code for possible
future use for a fitting problem.

1.3 Test examples

In this section the examples on which the implementation was tested are presented.
The problems that are presented here are:

Bratu equation . 35
Equation of a catalytic reaction in a flat particle 38
Shell buckling problem . 40
Complex Ginzburg-Landau equation . 45
Hydrodynamics model . 50
Forced non-linear oscillator model . 52

The main aim of these test example was to reproduce previously published results with
or newly implemented adaptive algorithm. The Complex Ginzburg-Landau equation is
a parameter dependent problem and the hydrodynamics model is a problem posed on
[0,∞). Thus, these examples also served to test the pathfollowing for different types of
problems which bvpsuite2.0 is equipped to handle.

The computation of these examples will mark the end of the presentation of the
newly implemented pathfollowing module. In the next chapter, the changes in the code
and also some tests addressing these changes are discussed.

CHAPTER 1. PATHFOLLOWING MODULE 35

Bratu equation

The first example is a relatively simple problem which was taken from [9]. Consider the
BVP

z′′(t) + λ∗ez(t) = 0 for t ∈ [0, 1] ,

z(0) = 0, z(1) = 0.

Due to its simplicity it may serve as a first test example. The aim was to reproduce the
path shown in Figure 1 from [9].
The absolute and relative tolerances of the Newton iteration are set to 10−6, the absolute
and relative tolerances of the mesh adaptation to 10−4. The computations are started
with a mesh of 51 equidistant points on the interval [0, 1] and 3 Gaussian collocation
points are used to approximate the problem’s solution. The characteristic value of the
solution which is followed along the path is z′(0). This is achieved by the function

function ret = PathCharData(x1,coeff,ordnung,rho)

ret = coeffToValues(coeff,x1,ordnung,rho,0,1);

end

In order to illustrate how θmax influences the pathfollowing behaviour, this example
is computed for the values θmax = 10−2 and θmax = 10−3. The aim was to follow
the characteristic solution value up to z′(0) = 50, which was set with the optional
settings pit_stop in the problem definition file. The starting value for λ∗ is 0 and the
starting step-length 1, meaning that λ∗ will grow in positive direction. The target was
reached after 72 steps for the run with θmax = 10−2 and after 187 steps for the run with
θmax = 10−3. The results are displayed in Figure 1.3 and Figure 1.4, respectively.
In both cases, mesh adaptation is enabled and the mesh was adapted at approximately
the same value of the pathfollowing parameter along the path. In the run with θmax =
10−2, the mesh adaptation took place at step 37 and λ∗ ≈ 5.97 × 10−3. The mesh was
adapted to 97 points. In the run with θmax = 10−3, the mesh adaptation took place at
step 82 and λ∗ ≈ 8.11 × 10−3. The mesh was adapted to 95 points. Points are getting
added to the mesh, but they remain equidistributed over the interval, as is shown in
Figure 1.5.
The smaller θmax is chosen, the finer the resolution gets. Along the run in both cases, an
adaptation of the step-length around the turning point and beyond is visible. The mesh
adaptation interestingly takes place for approximately the same value and the smaller
step sizes from the run with θmax = 10−3 do not seem to have any effect on it.

CHAPTER 1. PATHFOLLOWING MODULE 36

0 1 2 3 4

6$

0

10

20

30

40

50

z0
(0

)

Figure 1.3: Bratu equation: Evolution of z′(0) under variation of λ∗ with θmax = 10−2,
until z′(0) = 50.

0 1 2 3 4

6$

0

10

20

30

40

50

z0
(0

)

Figure 1.4: Bratu equation: Evolution of z′(0) under variation of λ∗ with θmax = 10−3,
until z′(0) = 50.

CHAPTER 1. PATHFOLLOWING MODULE 37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Initial mesh for both cases

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Adapted mesh for 3max = 10!2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Adapted mesh for 3max = 10!3

Figure 1.5: Bratu equation: Distribution of the mesh points over the interval in both
cases before and after mesh adaptation.

CHAPTER 1. PATHFOLLOWING MODULE 38

Equation of a catalytic reaction in a flat particle

This example from [4] is quite similar to the first example, the Bratu equation. Consider
the BVP

z′′(t) = λ∗ exp

(
8(1− z(t))

1 + 0.4(1− z(t))

)
for t ∈ [0, 1] ,

z′(0) = 0, z(1) = 1.

The aim was to reproduce the path shown in Figure 3 from [4].
As in the first example, the absolute and relative tolerances of the Newton iteration
are set to 10−6, the absolute and relative tolerances of the mesh adaptation to 10−4.
The computations are started with a mesh of 51 equidistant points on the interval [0, 1]
and 3 Gaussian collocation points are used to approximate the problem’s solution. The
characteristic value of the solution which is followed along the path is z(0). This is
achieved by defining in the problem definition the local function

function ret = PathCharData(x1,coeff,ordnung,rho)

ret = coeffToValues(coeff,x1,ordnung,rho,0,0);

end

The starting value for λ∗ is 0 and the starting step-length 10−2. θmax is set to 10−2.
In order to reproduce the results from Figure 3 from [4], the aim was to follow the
pathfollowing parameter up to the value λ∗ = 0.3, which was set with the optional
settings pit_stop in the problem definition file. The value was reached after 26 steps,
without any mesh adaptation. The resulting path is displayed in Figure 1.6.
This example is quite similar to the first one. It having two turning points was another
test which the code dealt well with.

CHAPTER 1. PATHFOLLOWING MODULE 39

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

6$

0

0.2

0.4

0.6

0.8

1

z(
0)

Figure 1.6: Catalytic reaction: Evolution of z(0) under variation of λ∗ with θmax = 10−2,
until λ∗ = 0.3.

CHAPTER 1. PATHFOLLOWING MODULE 40

Shell buckling problem

This example was computed in [4], the results from this computation, which are aimed
to be reproduced, can be found in Figure 5 from [4].
It is a singular BVP and also a more challenging problem than the previous ones. Con-
sider the BVP

δ

(
z′′1 (t) + z′1(t) cot(t) + cot(t)2

cos(t− z1(t))
cos(t)

sin(t− z1(t))− sin(t)

cos(t)

−0.3
cos(t− z1(t))− cos(t)

sin(t)

)
= −z2(t)

sin(t− z1(t))
sin(t)

− 4λ∗
cos(t− z1(t))

sin(t)
z3(t), (1.43a)

δ

z′′2 (t) + z′2(t) cot(t)− z2(t)

(
cot(t)2

cos(t− z1(t))2

cos(t)2
− 0.3(1− z′1(t))

sin(t− z1(t))
sin(t)

)
=

cos(t− z1(t))− cos(t)

sin(t)
+ δ

(
− 4λ∗ cot(t)z3(t)

·
(

sin(2(t− z1(t)))
sin(2t)

+ 0.3(1− z′1(t))
cos(t− z1(t))

cos(t)

)
+ 4λ∗

(sin(t)2(1− z′1(t)) cos(t− z1(t)) + 2 sin(t) cos(t) sin(t− z1(t))
sin(t)

)
, (1.43b)

z′3(t) = cos(t− z1(t)) sin(t), for t ∈ [0, π] (1.43c)

z1(0) = z1(π) = 0, z2(0) = z2(π) = 0, z3(0) = 0, (1.43d)

where δ = 0.00369.
This problem has two very close solution paths around the parameter value λ∗ = 1, i.e.
a bifurcation point. Close to λ∗ = 1, whenever the step is too big, one path is left and
the other followed from then on. The automatic adaptive step-length control takes care
of staying on one path throughout, when the right solver settings are chosen.
Here, the absolute and relative tolerances of the Newton iteration are set to 10−6, the
absolute and relative tolerances of the mesh adaptation to 10−4. The computations
are started with a mesh of 51 equidistant points on the interval [0, π] and 3 Gaussian
collocation points are used to approximate the problem’s solution. The characteristic
value of the solution which is followed along the path is ‖z1‖∞. This is achieved by
defining in the problem definition file the local function

function ret = PathCharData(x1,coeff,ordnung,rho)

help = coeffToValues(coeff, x1,ordnung,rho,x1,0);

ret = max(help(1,:));

end

The starting value for λ∗ is 0 and the starting step-length 1. Also, θmax is set to
5 × 10−2, 'maxSteplengthGrowth' to 4, 'meshFactorMax' to 2, 'PredLengthFactor'

CHAPTER 1. PATHFOLLOWING MODULE 41

and 'CorrLengthGrowth' to 4. The other settings are kept to their defaults. The results
are displayed in Figure 1.7. Here some mesh adaptation has taken place.

0 0.2 0.4 0.6 0.8 1

6$

0

0.5

1

1.5

2

2.5

3

kz
1
k 1

Figure 1.7: Shell buckling problem: Evolution of ‖z1‖∞ under variation of λ∗ with
θmax = 5× 10−2, until λ∗ = 0. This is the path of the double dimple solution

As mentioned above, the difficulty of this example lies in the turning point near 1. Until
the values are quite close to 1, ‖z1‖∞ remains on the order of magnitude on the scale
of 10−10. At λ∗ = 0.95, ‖z1‖∞ is still about 3 ∗ 10−9 and even for λ∗ = 0.98 it is about
5 ∗ 10−7. The turning point is reached at about λ∗ = 0.99 and ‖z1‖∞ = 4 ∗ 10−5. After
reaching the turning point, the step-lengths increases again, but there is still some mesh
adaptation required to control the error distribution of the approximation, in accordance
with the required absolute and relative tolerances of 10−4.
In this example the implementation on the restrictions on the length of the corrector
step compared to the length of the corrector step in the previous step was of crucial
importance for the autonomous progress along the path. This restriction withheld the
algorithm from taking leaps that would cause a change of paths. In this example, until
the turning point was reached, the length of the predictor steps was always much larger
than the length of the corrector step, since ‖z1‖∞ was almost zero until then. So this
restriction, on the other hand, did not help in this example.
All in all, the adjustments in the solver settings made the adaptive step-length control
strategy compute this problem, without any intervention of the user after providing the
problem definition and solver settings. Therefore the implemented features may also be
valuable for future challenging examples.
Note, that the results from Figure 5 from [4] and from Figure 1.7 are not similar beyond
‖z1‖∞ = 2.5 approximately. The reason is that in [4] the so-called single dimple solution

CHAPTER 1. PATHFOLLOWING MODULE 42

was found, and here the double dimple solution was found. By trying different solver
settings, this seems to be in strong correlation with the chosen tolerances, which would
lead in our computations to find the path of the double dimple solution. By considering
an eigenvalue problem, which is found from (1.43), some starting profiles are found.
Through [19], the starting profiles displayed in Figure 1.8 were obtained. These then led
to the path of the single dimple solution, displayed in Figure 1.9.

Figure 1.8: Shell buckling problem: Starting profiles for z1, z2 and z3 for the single
dimple solution.

For the two paths in Figure 1.7 and Figure 1.9, the shape of the resulting ball was
computed through the BVP

x′(t) = cos(t− z1(t)), y′(t) = sin(t− z1(t)), for t ∈ [0, π] , (1.44a)

x(0) = 0, y

(
π

2

)
= 0. (1.44b)

The solutions x and y are then the coordinates of the right half of the ball. Computing
these coordinates for each step on the path, i.e. inserting z1 from each step into the BVP
(1.44), animations were created showing the deformation of the ball in case of the double
dimple solution, in Figure 1.10, and in case of the single dimple solution, in Figure 1.11.

CHAPTER 1. PATHFOLLOWING MODULE 43

0 0.2 0.4 0.6 0.8 1

6$

0

0.5

1

1.5

2

2.5

3

3.5

4

kz
1
k 1

Figure 1.9: Shell buckling problem: Evolution of ‖z1‖∞ under variation of λ∗ with
θmax = 5× 10−2, until ‖z1‖∞ = 4. This is the path of the single dimple solution.

Figure 1.10: Shell buckling problem: Animation of the ball along the path of the double
dimple solution.

CHAPTER 1. PATHFOLLOWING MODULE 44

Figure 1.11: Shell buckling problem: Animation of the ball along the path of the single
dimple solution.

CHAPTER 1. PATHFOLLOWING MODULE 45

Complex Ginzburg-Landau equation

This, also taken from [4], is the complex Ginzburg-Landau equation. The non-linear
ODE for t > 0 and the boundary conditions are

(1− iλ∗1)
(
z′′(t) +

2

t
z′(t)

)
− z(t) + ip(tz′(t) + z(t)) + (1 + iλ∗2)|z(t)|2z(t) = 0, (1.45a)

z′(0) = 0, =(z(0)) = 0, lim
t→∞

tz′(t) = 0. (1.45b)

The solution function z(·) is complex-valued. In addition to the function z(·), the un-
known parameter p needs to be determined from this system. The system contains two
pathfollowing parameters, λ∗1 and λ∗2, which can be varied independently. The notation
|x+ iy| :=

√
x2 + y2 for x, y ∈ R denotes the modulus of a complex number, also called

the complex norm. In order to rewrite this system in terms of real functions, denote

z(t) =: z1(t) + iz2(t) with z1, z2 :
[
0,∞)

)
→ R.

Then the equation above is written as the mixed order system

tz′′1 (t) + 2z′1(t) + λ∗1(tz
′′
2 (t) + 2z′2(t))− tz1(t)− tp(tz′2(t) + z2(t))

+ t(z1(t)
2 + z2(t)

2)(z1(t)− λ∗2z2(t)) = 0, (1.46a)

tz′′2 (t) + 2z′2(t)− λ∗1(tz′′1 (t) + 2z′1(t))− tz2(t) + tp(tz′1(t) + z1(t))

+ t(z1(t)
2 + z2(t)

2)(λ∗2z1(t) + z2(t)) = 0, for t ∈ [0,∞) , (1.46b)

with the boundary conditions

z′1(0) = 0, z′2(0) = 0, z2(0) = 0, (1.47)

lim
t→∞

tz′1(t) = 0, and lim
t→∞

tz′2(t) = 0. (1.48)

Due to the boundary conditions set for t → ∞, in order to be able to compute an
approximate solution with bvpsuite2.0, the problem is redefined on the interval [0, 1].
This is done by keeping the system (1.46) for t ∈ [0, 1] and for t ∈ [1,∞) defining

τ :=
1

t
.

Then, τ assumes values in (0, 1]. For a function z̃ : [0,∞)→ R the equations

dτ

dt
= − 1

τ2
, z̃(t) = z̃(1τ),

dz̃(1τ)

dτ
= −dz̃(t)

dt

1

τ2
⇒ dz̃(t)

dt
= −τ2

dz̃(1τ)

dτ
,

d2z̃(1τ)

dτ2
=

d

dτ

(
−dz̃(t)

dt

1

τ2

)
=

1

τ4
d2z̃(t)

dt2
− 2

τ

dz̃(1τ)

dτ

⇒ d2z̃(t)

dt2
= τ4

d2z̃(1τ)

dτ2
+ 2τ3

dz̃(1τ)

dτ
.

CHAPTER 1. PATHFOLLOWING MODULE 46

hold. Thus, for τ ∈ (0, 1], (1.46) can be written as

τ4z′′1 (1τ) + λ∗1τ
4z′′2 (1τ)− z1(1τ) + p(τz′2(

1
τ)− z2(1τ))

+ τ(z1(
1
τ)2 + z2(

1
τ)2)(z1(

1
τ)− λ∗2z2(1τ)) = 0, (1.49a)

τ4z′′2 (1τ)− λ∗1τ4z′′1 (1τ)− z2(1τ)− p(τz′1(1τ)− z1(1τ))

+ τ(z1(
1
τ)2 + z2(

1
τ)2)(λ∗2z1(

1
τ) + z2(

1
τ)) = 0. (1.49b)

Now, define z3(τ) := z1(
1
τ) and z4(τ) := z2(

1
τ) and the continuity conditions

z3(1) = z1(1), z′3(1) = −z′1(1), z4(1) = z2(1) and z′4(1) = −z′2(1), (1.50)

are imposed.
The boundary conditions (1.48) in the limit to infinity cannot be properly expressed in
bvpsuite2.0, therefore the functions z5(τ) and z6(τ) governed by the equations

z5(τ) = τz′3(τ), and z6(τ) = τz′4(τ) for τ ∈ [0, 1] (1.51)

are added to the system, with the boundary conditions

z5(0) = 0 and z6(0) = 0. (1.52)

With z5, z6 and the relations

z′′3 (τ) =
1

τ

(
z′5(τ)− z′3(τ)

)
and z′′4 (τ) =

1

τ

(
z′6(τ)− z′4(τ)

)
,

(1.49) can be rewritten as

τ3z′5(τ)− τ2z5(τ) + λ∗1

(
τ3z′6(τ)− τ2z6(τ)

)
− z3(τ) + p(τz′4(τ)− z4(τ))

+ (z3(τ)2 + z4(τ)2)(z3(τ)− λ∗2z4(τ)) = 0, (1.53a)

τ3z′6(τ)− τ2z6(τ)− λ∗1
(
τ3z′5(τ)− τ2z5(τ)

)
− z4(τ)− p(τz′3(τ)− z3(τ))

+ (z3(τ)2 + z4(τ)2)(λ∗2z3(τ) + z4(τ)) = 0. (1.53b)

Combining all of these considerations, the six equations from (1.46) for t ∈ [0, 1] and
(1.51) and (1.53) for τ ∈ (0, 1] with the nine boundary conditions from (1.47), (1.50)
and (1.52) are equivalent to the BVP (1.45). Furthermore, in this form solutions can be
computed by bvpsuite2.0.
When λ∗1 = 0 and λ∗2 = 0, then (1.45) is the nonlinear Schrödinger equation and there
exist more than one solution. The aim in this example was originally to reproduce a
part of the work in Georg Kitzhofers Doctoral thesis [3], where λ∗2 = 0 is fixed and
λ∗1 is varied, but some obstacles had to be avoided. In the thesis, Kitzhofer starts the
pathfollowing procedure at the unstable bumpy solutions (0, 1) and (1, 3) – written in
the notation introduced in [12]. The initial solution (0, 1) was reported to start from
relatively simple initial solutions. Trying this approach was not successful. The initial

CHAPTER 1. PATHFOLLOWING MODULE 47

solution (1, 3) was found using a shooting method. This was not implemented in the
present work. A solution which was found with bvpsuite2.0 and the equations above
is the (1, 1) solution, which is stable and monotone, meaning |z(t)| → 0 as t→∞. This
is the solution on which the focus lies in the following pages.
The aim was thus shifted to reproducing a similar behaviour for the pathfollowing pro-
cedure starting at the (1, 1)-solution as in the graph presented in Figure 3.6 from [13],
where the paths of other solutions of the equation (1.45) are also displayed. λ∗2 = 0 is
fixed and λ∗1 is varied.
The characteristic value of the solution that is followed is the evolution of the parameter
p. This is achieved by defining in the problem definition file the local function

function ret = PathCharData(~,coeff,~,~)

ret = coeff(end-1);

end

The starting value for λ∗1 is 0 and the starting step-length 1. Here, the absolute and
relative tolerances of the Newton iteration are set to 10−8. Mesh adaptation is not
activated for this example. The computations start with a mesh with 281 points, which
are placed at a distance of 10−4 between 0 and 0.001, 10−3 between 0.001 and 0.01 and
10−2 between 0.01 and 1. 2 Gaussian collocation points are used to approximate the
problem’s solution. θmax was set to 0.1. The absolute value of the initial solution of
the run is displayed in Figure 1.12, which corresponds to figure 5.5 in [3, p. 85]. The
error estimation is turned on, in order to keep track of the error’s evolution. The other
values are all kept to their defaults. The resulting path is computed in 72 steps and is
displayed in Figure 1.13.

0 1 2 3 4 5 6 7 8 9 10

6$

0

0.5

1

1.5

2

jz
(t

)j

Figure 1.12: Complex Ginzburg-Landau equation: Absolute value of the initial solution
(1, 1).

CHAPTER 1. PATHFOLLOWING MODULE 48

0 0.05 0.1 0.15 0.2 0.25 0.3

6$

-0.2

0

0.2

0.4

0.6

0.8

1

p

Figure 1.13: Complex Ginzburg-Landau equation: Evolution of the parameter p.

The pathfollowing parameter starts at the value λ∗ = 0, where the parameter value is
approximately p ≈ 9.63795893×10−1. This value is not entirely the same as in the table
in [3, p. 102], it differs by approximately 0.05. The value of λ∗ is varied, and the value
of p goes to 0. In λ∗ = p = 0, the solution to the equation has imaginary part 0. The
solution is then real valued. This can be seen in Figure 1.14.

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6
Real part of the solution at p = 0, 6$ = 0

0 1 2 3 4 5 6 7 8 9 10
-5

0

5
#10!18 Imaginary part of the solution at p = 0, 6$ = 0

Figure 1.14: Complex Ginzburg-Landau equation: Solution for p = 0, λ∗ = 0.

CHAPTER 1. PATHFOLLOWING MODULE 49

In this example, the main difficulty was the search for a good initial solution from where
the path could start. This difficulty was not overcome within the scope of this work.

CHAPTER 1. PATHFOLLOWING MODULE 50

Hydrodynamics model

The pathfollowing problem reported in [8], is

z′′(t) +
2

t
z′(t) = 4(z(t) + 1)z(t)(z(t)− λ∗),

z′(0) = 0, z(∞) = λ∗.

The boundary condition at infinity is a Dirichlet boundary conditions, thus it does not
pose any problem to bvpsuite2.0. The aim in this example was to reproduce the
solution profiles as shown in Figure 1 from [8].
The absolute and relative tolerances of the Newton iteration are set to 10−6, the absolute
and relative tolerances of the mesh adaptation to 10−4. The computations are started
with a mesh of 101 equidistant points on the interval [0, 1] and 3 Gaussian collocation
points are used to approximate the problem’s solution. The characteristic value of the
solution which is followed along the path is z(0). The initial solution that was found
was the solution for the parameter value λ∗ = 0.5. Therefore, the starting step-length
was once set to −0.01 and in a second run to 0.01, meaning that the pathfollowing was
once computed in the direction towards 0 and once in the direction towards 1. Towards
0 the pathfollowing parameter was followed up to the value λ∗ = 0.005 and towards 1
up to the value λ∗ = 0.9, which was both set with the optional setting pit_stop in
the problem definition file. In both cases, θmax was set to 10−2. The value towards 0
was reached after 40 steps, without any mesh adaptation, and towards 1 after 125 steps,
where the mesh was adapted as displayed in Figure 1.15. The results are displayed in
Figure 1.16 and in Figure 1.17, respectively.

0 0.2 0.4 0.6 0.8 1

1

27

53

67

81

91

107

122

Figure 1.15: Hydrodynamics model: Distribution of the mesh points along the path from
start (at the bottom) to finish (at the top).

The profiles from Figure 1.17 were computed with the help of the field require_exact

set to [0.005 0.1:0.1:0.9]. Then the profiles could be easily accessed through the
saved variable p_exact.
This test example posed on [0,∞) was helpful to rectify the code where it was needed
for problems posed on semi-infinite intervals requiring mesh adaptation. The mesh
adaptation also exhibited a special behaviour for this text example.

CHAPTER 1. PATHFOLLOWING MODULE 51

0 0.2 0.4 0.6 0.8 1

6$

-1

-0.8

-0.6

-0.4

-0.2

0

z(
0)

Figure 1.16: Hydrodynamics model: Evolution of z(0) under variation of λ∗.

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1

Figure 1.17: Hydrodynamics model: Solution profiles for λ∗ = 0.005, 0.1, ..., 0.9.

CHAPTER 1. PATHFOLLOWING MODULE 52

Forced non-linear oscillator model

From [9], consider the forced non-linear oscillator modelled by the BVP(
λ∗

2π

)2

z′′(t) +
1

25

(
λ∗

2π

)
z′(t)− 1

5
z(t) +

8

15
z(t)3 =

2

5
cos(2πt) for t ∈ [0, 1] ,

z(0) = z(1), z′(0) = z′(1).

The aim was here to reproduce Figure 2 from [9, p. 85]. This plot is quite entangled,
which makes the pathfollowing difficult for this example.
The absolute and relative tolerances of the Newton iteration are set to 10−6, the absolute
and relative tolerances of the mesh adaptation to 10−4. The computations are started
with a mesh of 51 equidistant points on the interval [0, 1] and 2 Gaussian collocation
points are used to approximate the problem’s solution. The characteristic value of the
solution which is followed along the path is z(0). For the pathfollowing specific settings,
θmax was set to 5×10−2, 'maxCorrSteps' to 10, in order to allow more corrections of the
prediction for the next step-length, and 'PredLengthFactor' to 1, which allowed the
corrector step to be of the same length as the predictor step in the current step. During
the pathfollowing, the solution would exhibit more and more oscillatory behaviour. This
will eventually lead to mesh adaptation, where the mesh ended up with 499 points. Alto-
gether, 410 pathfollowing steps were executed. The results are displayed in Figure 1.18.

0 5 10 15 20

1=6$

-3

-2

-1

0

1

2

3

z(
0)

Figure 1.18: Forced non-linear oscillator: Evolution of z(0) under variation of λ∗.

In this example, many bifurcation points are encountered. Interestingly enough, this
did not seem to cause too much problems to the code. On the other hand, around

CHAPTER 1. PATHFOLLOWING MODULE 53

the turning points, it was important for the step-length to not get too small, where
seemingly it sufficed to relax the condition in 'PredLengthFactor' to 1. Apparently,
the bifurcation points along the path in this example seem to exhibit a behaviour that
makes the pathfollowing code of bvpsuite2.0 able to move along the path nicely.

Chapter 2

bvpsuite2.0

The aim of this chapter is to present the current state of the code at the release of the
new package bvpsuite2.0.
In the first section, all the functions, which are included in the package, and their
functionalities shall be detailed. In the second section, the functionality of each of the
seven modules from bvpsuite2.0 will be demonstrated through an example. These
example runs can also be found in the manual explaining the use and functionality
of bvpsuite2.0 [16]. The manual was created over the course of the year by Merlin
Fallahpour and Aron Sass, under supervision of Dr. Othmar Koch and Prof. Ewa B.
Weinmüller.
The essential steps of the approximation of a solution to a BVP by bvpsuite2.0 is
shown in the flowchart diagram in Figure 2.1.

2.1 Functions of bvpsuite2.0

The aim of this section is to present the current code of bvpsuite2.0 along with the
changes it underwent during the implementation of the pathfollowing module. A brief
summary of the special features of all functions from the bvpsuite2.0 package, includ-
ing pseudo-code of the lengthy functions, are provided in this section. This summary is
meant for users of the code wanting to get a quick overview of all the functions within
the code and also for developers to facilitate further improvements.
The functions presented in this section were developed in their original form at the In-
stitute of Analysis and Scientific Computing of the University of Technology in Vienna
by Dr. Georg Kitzhofer. His work named bvpsuite1.1 built on the previously released
collocation code sbvp, which was jointly developed by Prof. Winfried Auzinger, Dr.
Othmar Koch and Prof. Ewa B. Weinmüller. sbvp was meant to handle singular prob-
lems, whereas bvpsuite1.1 was meant for boundary value problems in a more general
sense. Later on, Stefan Wurm and Markus Schöbinger rewrote the code bvpsuite1.1 in
its current modular form to improve readability of the code and its usability. Finally, in
this work, the module for pathfollowing was implemented with an automatic step-length
control strategy in order to round up and release the new version bvpsuite2.0.

54

CHAPTER 2. BVPSUITE2.0 55

Input:
-	Problem	definition
-	Solver	settings

Tolerances	not	satisfied:
-	add	points	to	the	mesh	or
-	move	points	from	the	mesh

Refine	mesh:	Add	mesh	point
inbetween	each	two	mesh	points

Linear	solver:	solve	closed
system	of	equations

Nonlinear	solver:	runs	until
Newton	increment	satisfies
the	required	tolerances

Preprocess	problem	data
If	pathfollowing	is	activated,	then	call	the

pathfollowing	function

If	mesh
adaptation
enabled

If	error
estimate	or	mesh

adaptation
enabled

Compute	error
estimate

1st	pass

2nd	pass

If	error	
estimate	
satifies

tolerances

Linear
problem

Nonlinear
problem

Problem
type

Output:
-	approximate

solution

Output:
-	approximate

solution	and	error
estimate

Output:
-	approximate

solution	satisfying
the	tolerances	and
error	estimate

Without	mesh	adaptation,	nor	error	estimate

Error	estimate,	without	mesh	adaptation

Mesh	adaptation

Postprocess	data

bvpsuite2

Figure 2.1: Flowchart of bvpsuite2.0.

The functions of bvpsuite2.0 are enumerated chronologically in the order in which
these are called when computing an approximation of the solution to a given problem.
The following functions are provided in the package:

bvpsuite2 . 56
feval_problem . 57
coeffToValues . 59
initial_coefficients . 59
solveLinearProblem . 60
solveNonLinearProblem . 61
solve_nonlinear_sys . 62
errorestimate . 64

CHAPTER 2. BVPSUITE2.0 56

meshadaptation . 66
computeResidual . 68
computeEVPStart . 69
Remaining functions . 69

This list comprises all 19 functions provided in the bvpsuite2.0 package, the lengthier
ones with pseudo code. The description of the workings and the pseudo code of the
two functions implemented for the pathfollowing module, pathfollowing.m and func-

tionFDF.m, which were discussed exhaustively in the previous chapter, are not reiterated
here.

bvpsuite2

The function bvpsuite2 is the main function of bvpsuite2.0. It is called by the user
and returns the approximation of the solution function. The mandatory arguments
passed to the function are the problem definition and the solver settings, for which the
templates template_bvp and default_settings respectively, are provided. These two
files and their usage are described in detail in the manual [16]. The function bvpsuite2

operates in the following way:

Algorithm 3: bvpsuite2.m: Main function of bvpsuite2.0

Input: problem definition, solver settings; optional: initial profile,
pathfollowing settings

Output: final mesh, values on this mesh of the approximate solution,
further solution information

// In bvpsuite2.m at line

1 Initialize ; // 039

2 Define the initial profile either from the function call, the problem definition
or else, take the constant solution 1 ; // 056

3 if problem EVP then Adjust the initial profile ; // 081

4 if pathfollowing active then // 101

5 Call pathfollowing ; // 112

6 return last solution on path ;

7 end
8 if problem is linear then // 140

9 Call meshadaptation, solveLinearProblem or errorestimate,
depending on solver settings, to compute an approximate solution;

10 else // 155

11 Call meshadaptation, solveNonLinearProblem or errorestimate,
depending on solver settings, to compute an approximate solution;

12 end

An initial profile is only needed for the non-linear solver. The required adjustments in

CHAPTER 2. BVPSUITE2.0 57

the cases of a BVP posed on a semi-infinite interval or in the case of an EVP are detailed
in the discussion of the function feval_problem below.
An initial profile can also be passed as a function argument. Then the initial profile
defined in the problem definition file will be ignored and the initial profile from the
function argument will be used. This works similarly for the pathfollowing settings,
which can be passed through the function argument. The settings, which are passed
through the function argument, will replace the pathfollowing settings which are given
in the problem definition under 'pathfollowing', as well as the seven settings which
are set in the solver settings. For examples which show the usage of this functionality,
see in Section 1.3 the first example of the Bratu equation, or the manual [16, Sec. 3.7].
This functionality was added to allow changes to the settings within scripts.
Changelog for bvpsuite2:

� For pathfollowing problems, the function calls the function pathfollowing, right
after collecting all the required data about the initial mesh and profile. After the
pathfollowing function returns a path, inside the function bvpsuite2, the path will
be saved to the folder specified in the problem definition file.

� The function argument ValuesAt was removed, since it is not used anywhere now.

� The function argument pathfoll was added, to transmit pathfollowing specific data
more easily.

� For eigenvalue problems that are not parameter-dependent, it is no longer needed to
transmit an empty vector [], as “initial value” for the parameters within the function
call of bvpsuite2.

feval_problem

The function feval_problem is called in order to interpret the problem definition ac-
cording to some specificities relevant to the execution of the solver routine. Two problem
cases are handled in a special way, namely the case where the problem is

� an eigenvalue problem: the eigenvalue λ is treated as an unknown parameter. The
normalization condition with respect to the L2-norm, which fixes the values of the
eigenfunction, is also introduced by adding a new function zn+1(t) to the problem,
satisfying the equation

z′n+1(t) =
n∑
i=1

zi(t)
2.

Two boundary conditions are also added, to fix these unknowns, namely the naturally
resulting conditions

zn+1(a) = 0 and zn+1(b) = 1.

� posed on a semi-infinite interval: here the interval is transformed from [a,∞) to [0, a],
when a ∈ R+, by the function ξ : [a,∞)→ [0, a] , t 7→ 1

t . If a = 0, then the interval is
partitioned into [0, 1] and [1,∞). The left interval [0, 1] stays the same and the right

CHAPTER 2. BVPSUITE2.0 58

interval [1,∞) is handled just like the case above when a ∈ R+. The problem equations
are computed then on both intervals, which means that the number of unknown
solution components is doubled. So the double amount of boundary conditions is also
needed, which is given by continuity conditions imposed on the approximations and
their derivatives.

These cases can also occur at the same time. For both cases, more details on their
workings can be found in [1]. The function feval_problem ensures to insert the the
correct values into the vector F , as in (1.34), and the matrix DF , as in (1.37). It
operates in the following way:

Algorithm 4: feval_problem.m: Return the requested characteristic entities of
the problem.

Input: problem definition, requested entity, further input
Output: requested entity of the problem

// In feval_problem.m at line

1 Initialize ; // 003

2 if interval is finite then // 053

3 if problem is an EVP then // 054

4 Compute requested entity ;
5 else // 107

6 Compute requested entity ;
7 end

8 else // 114

9 if problem is an EVP then // 115

10 Compute requested entity ;
11 else // 302

12 Compute requested entity ;
13 end

14 end

Note that in the case, when the problem is not an EVP and the interval is finite, then the
requests can be evaluated straight away from the problem definition file. As discussed
above, for semi-infinite intervals there is also always the distinction between the case
where a = 0 and where a > 0.
Changelog for feval_problem:

� For eigenvalue problems, where the boundary values are imposed somewhere within
the interval, the case 'c' is used in the problem definition. In order to impose the
boundary conditions at a and b, as explained above, in feval_problem the vector 'c'
is augmented by the right and left interval limits. This was not taken into account
when requesting 'dBV'. This was changed and tested successfully.

� The pathfollowing variable λ∗ was added where needed.

CHAPTER 2. BVPSUITE2.0 59

coeffToValues

The function coeffToValues returns the values of the polynomial, as in (1.28), ap-
proximating the solution function at any points of the interval. It is used in different
places in the bvpsuite2.0 routine, for instance in the errorestimate function, when
the polynomial on the coarse mesh needs to be evaluated on the fine mesh, in order to
compute the error estimate. Also it can be used by the user as a function to evaluate
the solution at any point in the interval. In pathfollowing problems, this function is very
useful to define the function PathCharData, as is shown in Section 1.2.2. It operates in
a straightforward fashion in the following way:

Algorithm 5: coeffToValues.m: Returns function values for given function co-
efficients.
Input: polynomial coefficients, mesh on which the solution was computed,

points on which to evaluate, which derivative
Output: function, or one of its derivatives, values at the requested points

// In coeffToValues.m at line

1 Initialize ; // 015

2 foreach requested point do // 040

3 Evaluate and sum the Φij multiplied by the coefficients ; // 043

4 Evaluate and sum the Ψlk
ij multiplied by the coefficients ; // 050

5 end

In the function coeffToValues the formula (1.28) is evaluated.
Changelog for coffToValues:

� Some unused lines, such as the locally defined but unused function gauss, were re-
moved.

initial_coefficients

The function initial_coefficients was implemented to find the coefficients of a poly-
nomial in the Runge-Kutta basis of the initial profile provided by the user. Additionally,
in the pathfollowing routine, it is used, when the mesh was adapted, to adjust the coef-
ficients vector of the approximating polynomial to the new mesh. The function operates
in the following way:

CHAPTER 2. BVPSUITE2.0 60

Algorithm 6: initial_coefficients.m: Returns the polynomial coefficients of
a given function.

Input: problem definition, discrete mesh, function values at mesh points
Output: corresponding coefficients to the function

// In inital_coefficients.m at line

1 Initialize ; // 005

2 foreach solution function do // 079

3 Interpolate the values of the function profile, given at the mesh points, at
all collocation points ;

4 foreach interval in-between two mesh points do // 191

5 Compute the polynomials coefficients ;
6 end

7 end
8 Transform the coefficients to the form (1.33) ; // 225

Changelog for initial_coefficients:

� In line 20 the condition interval(1)==0 was added, for only in that case the semi-
infinite interval would need splitting.

solveLinearProblem

The function solveLinearProblem is the solver routine for linear problems. When
dealing with a linear problem, all the coefficients can be computed from the Jacobian
DF evaluated at 0 and the function F evaluated at 0 gives the inhomogeneity of the
system. Then, this is a closed system of equations with as many unknown coefficients
in the polynomials in the Runge-Kutta basis as conditions in the problem equations,
boundary conditions and continuity conditions. The function solveLinearProblem thus
operates in the following way:

Algorithm 7: solveLinearProblem.m: Solver for linear problems.

Input: problem definition, mesh
Output: approximate solution

// In solveLinearProblem.m at line

1 Initialize ; // 003

2 Compute residual F (0) with functionFDF ; // 070

3 Compute system matrix DF (0) with functionFDF ; // 075

4 c = DF (0)−1F (0) ; // 080

5 Transcribe the coefficients c into the vectors Y and Z as in (1.33) and p for
the parameters; // 082

6 Evaluate the polynomials at the mesh points ; // 097

To this function the solver settings are not passed. This is due to the fact that here a

CHAPTER 2. BVPSUITE2.0 61

closed system of equations is solved once, in contrast to the case of non-linear problems,
where an iterative solver is employed. Here the errors can only be improved upon by
changing the mesh. The error for linear problems not only consist of rounding errors
in the floating point arithmetic, but also errors due to the continuity condition imposed
on the approximate solution and its derivatives, that needs to be satisfied as well as the
problem equations and the boundary conditions. For linear problems with rapid solution
changes, this may cause errors, that may be handled by adapting the mesh used in the
approximation of the solution, see for example the linear problem in Section 2.2.
Changelog for solveLinearProblem:

� The vector F (0) and the matrix DF (0) are computed with the function functionFDF

instead of, as before, directly in the function itself. The main advantage is that it
makes the function a lot shorter.

solveNonLinearProblem

The function solveNonLinearProblem prepares the problem data to be passed to the
function solve_nonlinear_sys, which comprises the main solver routine of bvpsuite2.0.
The function solveNonLinearProblem operates in the following way:

Algorithm 8: solveNonLinearProblem.m: Prepares data for the approximation
iteration.
Input: problem definition, solver settings
Output: approximate solution s

// In solveNonLinearProblem.m at line

1 Initialize ; // 003

2 c = solve_nonlinear_sys ; // 061

3 Transcribe the coefficients c into the vectors Y and Z as in (1.33) ; // 070

4 Evaluate the polynomials at the mesh points ; // 087

This function helps to separate all the preparation and processing of the data from the
function solve_nonlinear_sys, which contains the main solver routine.
Changelog for solveNonLinearProblem:

� The local functions F and DF have been moved to the function functionFDF. They were
not kept as local functions. They are no longer transmitted to solve_nonlinear_sys

either.

� The predictor variable, containing the required values to compute the last line of
DF in case of pathfollowing, was added to the function.

� Some unused lines were removed, as for instance the computation of the collocation
points is handled by the function getStandardCollocationPoints now, instead of
the local functions gauss and lobatto, which were removed.

CHAPTER 2. BVPSUITE2.0 62

solve_nonlinear_sys

The function solve_nonlinear_sys is the function performing the main solver iter-
ation, in order to get an approximate solution starting from a given initial guess.
Before trying to reach the required tolerances by the user, inside the local function
determine_position2 a step of the fast frozen Newton method, starting at the initial
profile that was transmitted to the function, is performed. Depending on the conver-
gence exhibited in this first step, one of the three implemented algorithms, the fast frozen
Newon method, the predictor-corrector line search or the trust-region method, is cho-
sen. This algorithm is then performed in order to satisfy the tolerances, whereby if the
convergence in later steps improves or deteriorates, an other one of the three algorithms
may be chosen in order to proceed. The function thus operates in the following way:

CHAPTER 2. BVPSUITE2.0 63

Algorithm 9: solve_nonlinear_sys.m: Iteration scheme to approximate solu-
tion.
Input: initial profile, problem definition, solver settings
Output: approximate solution

// In solve_nonlinear_sys.m at line

1 Initialize ; // 008

2 Call determine_position2 to choose iterative algorithm ; // 062

3 while 1 do // 092

4 switch iterative algorithm do // 108

5 case Fast Frozen Newton do // 112

6 Compute boolean Up_Jac to update Jacobian ; // 117

7 if Up_Jac== 1 then Update the Jacobian ; // 126

8 Perform a step of the fast frozen Newton method ;
9 if Approximation improved then // 180

10 if Tolerances are satisfied then return; // 191

11 Keep trying with the fast frozen Newton method ;

12 else if Up_Jac== 0 then // 216

13 Keep trying with the fast frozen Newton method ;
14 else // 226

15 Change to Predictor-Corrector Line Search ;
16 end

17 case Predictor-Corrector Line Search do // 250

18 Introduce and improve on a damping parameter λ in the fast
frozen Newton method ;

19 if λ < λmin then Switch to trust region method; // 304

20 if Approximation improved then // 339

21 Try the fast frozen Newton method next ;
22 else // 341

23 Keep trying with the predictor-corrector line search ;
24 end
25 if Tolerances are satisfied then return; // 363

26 case Trust Region Method do // 463

27 if Pathfollowing problem then return; // 466

28 One of the two built-in Matlab functions lsqnonlin or fsolve is
used ;

29 Call determine_position2 to choose the algorithm with which to
proceed ; // 547

30 if Tolerances are satisfied then return; // 550

31 end

32 end

The details concerning the fast frozen Newton method and also the predictor-corrector

CHAPTER 2. BVPSUITE2.0 64

line search can be found in [2].
The domain of converge increases from the fast frozen Newton method to the predictor-
corrector line search to the trust region method, but just as well the computational effort
does.
The tolerances are satisfied, whenever the norm of the Newton increment gets small
enough. More precisely, the Newton step is performed through the formula

xnew := xold + ∆xold,

where xold is the current vector of coefficients of polynomials in the Runge-Kutta basis
as in (1.28) and ∆xold is the Newton increment which is a solution of the equation

DF (xold)∆xold = −F (xold).

Then, the tolerances are satisfied when

Tol :=
max(∆xold)

aTol + rTol maxj∈{1,...,length(xold)}
∣∣xnew,j∣∣ < 1,

where aTol is the absolute tolerance and rTol is the relative tolerance, both prescribed
by the user.
Changelog for solve_nonlinear_sys:

� The predictor variable was added where needed.

� In line 277, at the beginning of the predictor-corrector line search algorithm part, a
missing square was added, which is present in the corresponding formula in [2].

errorestimate

The function errorestimate is called either from bvpsuite2 or meshadaptation, when
in the solver settings the error estimate or the mesh adaptation – which uses the infor-
mation from the error estimate to adapt the mesh – are activated. It operates in the
following way:

CHAPTER 2. BVPSUITE2.0 65

Algorithm 10: errorestimate.m: Compute an estimate for the error in the
approximation.

Input: approximation, problem definition, solver settings
Output: approximation with error estimate, approximation on fine mesh

with error estimate
// In errorestimate.m at line

1 Initialize ; // 003

2 Add a point in-between each two mesh points of the original mesh ; // 036

3 if problem is linear then // 039

4 Call solveLinearProblem and compute an approximation on the fine
mesh;

5 else // 041

6 if Pathfollowing problem then // 042

7 Adjust the coefficients vector to the refined mesh ;
8 Set the flag in predictor to keep λ∗ fixed ; // 070

9 end
10 Call solveNonLinearProblem, with the available approximation as initial

profile, to compute an approximation on the fine mesh ;

11 end
12 Compute the estimates for the error with the two approximations on

different meshes and the formulas (2.1) and (2.2) ; // 084

Let m be the number of collocation points used to approximate the solution. The
approximation p(t) to the problem is computed on the discrete mesh M with mesh
intervals hi and the approximation p2(t) on the finer mesh M2 with mesh intervals
hi
2 . Assume that a function e(t) exists such that for the errors δ(t) := p(t) − z(t) and
δ2(t) := p2(t)− z(t) it holds

δ(t) = e(t)hmi +O(hm+1
i) and

δ2(t) = e(t)
hmi
2m

+O(hm+1
i).

Then, δ(t)− 2mδ2(t) = O(hm+1
i) and when adding 2m(p(t)− p(t)) we obtain

p(t)− z(t) + 2m(p(t)− p(t))− 2m(p2(t)− z(t)) = O(hm+1
i)

⇔ (1− 2m)(p(t)− z(t))− 2m(p2(t)− p(t)) = O(hm+1
i).

This leads to the definition of the asymptotically correct estimate of the error δ(t)

ε(t) :=
2m

1− 2m
(p2(t)− p(t)). (2.1)

When instead p2(t) − p2(t) is added above, then an asymptotically correct estimate of
the error δ2(t) can be defined as

ε2(t) :=
1

1− 2m
(p2(t)− p(t)). (2.2)

CHAPTER 2. BVPSUITE2.0 66

These formulas are used to compute an estimate of the error, which may be quite accurate
if the mesh is fine enough.
In the case of pathfollowing, before computing the approximation on the fine mesh,
the vector of coefficients of the polynomials in the Runge-Kutta Basis, as in (1.28),
is adjusted to the fine mesh. Starting at the approximation on the coarse mesh, the
approximation on the fine mesh is computed. In this computation, the value of λ∗ is
kept fixed. The reason behind that is because by changing the coefficients to the fine
mesh, the coefficients of the tangent and the initial point from where the pathfollowing
step is started, would need to be adjusted too, in order to compute (1.36). There was
no satisfactory way found to adjust these vectors to the fine mesh and to still have the
orthogonality condition satisfied to the same extent as before the adjustment. Therefore,
the value λ∗ is kept fixed, by setting the flag in the predictor to 1. This setting will
make the last row of DF be all zeros except for the entry in the downright corner, which
is 1. In this way the matrix is still non-singular. Also the last entry of the vector F
is set to 0. These two settings ensure that there is always a 0-entry at the position of
the pathfollowing parameter λ∗ in the Newton increment. Thus, the value of λ∗ is kept
fixed.
Changelog for errorestimate:

� A try-catch statement was added before starting the computations on the fine grid,
in order to adjust the coefficients of the approximation on the coarse mesh to the
fine mesh, if the problem is a pathfollowing problem. In the pseudo-code above, it is
written as an if statement, in order to keep the pseudo-code simple.

meshadaptation

The function meshadaptation is called by bvpsuite or in the case of a pathfollowing
problem by pathfollowing, when searching for an approximation of the solution of a
BVP. The function adapts the mesh in two ways, namely by

� moving mesh points: depending on the residual given by the computeResidual func-
tion, which is discussed below, the mesh density ρ will be updated by the formula

ρnew(t) = ρ(t) ·M(resn(t))
1
k ,

where M is the number of intervals, resn(t) is the norm of the residual of all equations
at the time t and k := 2.75 ·m is defined at the beginning of the function, where m
is the number of collocation points. The new mesh density is then smoothed out and
normalized, then applied to the old mesh Mold to form a new mesh Mnew.

� adding mesh points: the new number of mesh points is computed by the formula

Nnew =

(1 + sN) ·N · max
i∈{1,...,n}

merr,i

(sσ · aTol)
1

m+1

 , (2.3)

where n is the number of solution components, m is the number of collocation points
used, aTol is the absolute required error tolerance, sN and sσ are two constants set

CHAPTER 2. BVPSUITE2.0 67

at the beginning of the function to 0 and 0.9 respectively, and merr,i is the maximal
value of the error estimate obtained for each solution component i ∈ {1, ..., n}. The
new points are added in accordance with the mesh density, which is smoothed out
and normalized again before applying it to the old mesh Mold with N mesh points,
to form a new mesh Mnew with Nnew mesh points.

The adaptation process continues until the error estimates satisfy the tolerances pre-
scribed by the user in the solver settings file under 'absTolMeshAdaptation' and
'relTolMeshAdaptation'.
The function meshadaptation thus operates in the following way:

Algorithm 11: meshadaptation.m: Adapt the mesh until termination condition
is met.
Input: problem definition, solver settings
Output: approximation satisfying the tolerance requirements

// In meshadaptation.m at line

1 Initialize ; // 022

2 Initialize the update-mode u_m = 1 ; // 070

3 Ncompare = 108 ; // 075

4 foreach iteration, until maximal iteration number is reached do // 105

5 Compute a solution on mesh with linear or non-linear solver ; // 114

6 Compute the error estimate ; // 147

7 if tolerances are satisfied then break; // 189

8 if u_m == 2 then // 219

9 if mesh density has not been updated more than twice then // 220

10 u_m = 1 ;
11 else // 223

12 Update the number of mesh points with formula (2.3) ;
13 end

14 else if u_m == 1 then // 229

15 Ncompare = Ncompare_old ;
16 Compute Ncompare with formula (2.3) ;
17 if Ncompare > (1−minimprove) Ncompare_old then // 237

18 u_m = 2 ;

19 end
20 if u_m == 1 then Compute residual with computeResidual ; // 270

21 if u_m == 1 then Compute new mesh density with LPFilter ; // 351

22 Smoothen the new mesh density with bcTDFlogV4, normalize it and then
apply it to the mesh and its new mesh points ; // 360

23 In case of pathfollowing, update the coefficients vector to the new mesh
and set the flag to keep λ∗ fixed ; // 371

24 end

CHAPTER 2. BVPSUITE2.0 68

The functions LPFilter and bcTDFlogV4 are short local functions, that are solely used
here.
The tolerances are satisfied in the mesh adaptation procedure, when

Tol := max
i∈{1,...,n}

max erresti

aTol + rTol maxj∈{1,...,length(yi)}

∣∣∣yi,j∣∣∣ < 1,

where n is the number of solution components, erresti the maximal value of the error
estimate for the i-th component, aTol the absolute tolerances and rTol the relative
tolerance, both set by the user in the solver settings, and yi are the approximate values
of the i-th solution component.
Similarly to the errorestimate function, when the mesh is adapted, the coefficient
vector for the initial solution of the next iteration process is adjusted to the new mesh.
Here, after the approximation on the initial mesh, the value of λ∗ is kept fixed.
Changelog for meshadaptation:

� At the very end of the mesh adaptation loop, the coefficients of the approximation
on the previous mesh are adjusted to the new mesh, if the problem is a pathfollowing
problem.

� Some minor adjustments were made, to improve readability of the code, i.e. the ob-
solete transformation of the approximation for problems on semi-infinite intervals,
which is now performed in the function bvpsuite2, was removed. Also in the if-

else statement after the computation of the error estimate, the if-else statement
checking whether or not the tolerances are satisfied, was put right after the error
estimation, in order to avoid repeating it in both cases of update-mode.

computeResidual

The function computeResidual is used during the mesh adaptation procedure, in order
to evaluate the implicit problem equations, as given in (1.26), at specific points in the
interval. It will return the residual of the evaluation of the equations whose profile is
used in the mesh adaptation procedure.

Algorithm 12: computeResidual.m: Evaluate the problem equations at the ap-
proximate solution.

Input: problem definition, coefficients, points on which to evaluate
Output: residual of the problem equations

// In computeResidual.m at line

1 Initialize ; // 006

2 Compute all the approximate solutions and its derivatives, using
coeffToValues, at the requested points ; // 010

3 foreach requested point do // 015

4 Compute residual using feval_problem ;
5 end

CHAPTER 2. BVPSUITE2.0 69

Changelog for computeResidual:

� The pathfollowing variable λ∗ was added to the function.

computeEVPStart

The function computeEVPStart.m can be called before calling bvpsuite2, in order to
compute good initial guesses for a linear eigenvalue problem of the form

f(t, z(1)(t), ...,z(l̂)(t),p) = λz(t), (2.4)

with linear boundary conditions. The way this function works, is that it produces the
matrix DF (0), as in (1.37), for the left hand side of the equation and for the right hand
side on a discrete mesh containing only a few points. The results can then be used as
input for the built-in Matlab function eig. More explanations to this function can be
found in [1]. The function operates in the following way:

Algorithm 13: computeEVPStart.m: Returns initial guesses for an eigenvalue
problem.

Input: problem definition, solution profile
Output: initial guesses

// In computeEVPStart.m at line

1 Initialize ; // 003

2 Compute the collocation matrices L and R, which represent the LHS and the
RHS of (2.4), respectively ; // 072

3 The function eig is used to compute the initial eigenvalues and coefficients of
the eigenfunctions of the problem ; // 226

4 The initial profile struct-variables are prepared ; // 238

An example run of this function is found in the following Section 2.2.
Changelog for computeEVPStart:

� The pathfollowing variable λ∗ was added where needed.

Remaining functions

The remaining functions, which are shorter and uncomplicated in comparison to the
ones mentioned above, are

� template_bvp: template for the problem definition, see Section 1.2.2 for changes to
that file;

� default_settings: template for the solver settings, see Section 1.2.2 for changes to
that file;

� dispDebug: tool for debugging purposes;

� getStandardCollocationPoints: will return the required collocation points in [0, 1];

� trafo: provides the standard transformation when dealing with a semi-infinite inter-

CHAPTER 2. BVPSUITE2.0 70

val;

� higherchainrule: is used in trafo to compute the required derivatives of the trans-
formation.

The functions which were already discussed in the previous chapter about pathfollowing
are

� pathfollowing: main function of the pathfollowing module, and

� functionFDF: function to compute F , as in (1.34), and DF , as in (1.37), which were
local functions in the function solveNonLinearProblem, but were taken out since
they are needed in the pathfollowing module.

Finally, functions that are still at the stage of being developed are

� trafo_expmt: this function comprises a template for a user-defined transformation
for problems posed on semi-infinite intervals;

� feval_problem_2: this function is built in the same way as feval_problem, with the
difference that it handles a user-defined transformation, given in trafo_expmt, for
problems posed on semi-infinite intervals. For this function some special cases have
not been worked out yet.

This concludes the discussion of the functions that are implemented and present in the
bvpsuite2.0 package.
In the next section, the focus will lie on demonstrating the capabilities of the package
by computing an example per module.

2.2 Modules of bvpsuite2.0

The seven modules of bvpsuite2.0 shall be presented in this section. Each module can
handle a special type of problems.
The only two cases that are mutually exclusive are when the problem is linear and thus
the solution can be approximated with the linear solver, or else the nonlinear solver is
chosen and then the solution is iteratively approximated by the nonlinear solver. All
the other cases can occur at the same time, with some restrictions concerning mainly
boundary conditions in the case of problems posed on semi-infinite intervals.
One example will be presented for each problem case. These examples can also be found
in the manual for bvpsuite2.0 ([16]) with the corresponding lines of code to execute
these runs. The examples were chosen and implemented in collaboration with Aron Sass,
and built upon the prerequisite work of Stefan Wurm.
The seven modules of bvpsuite2.0 are

Linear problems . 71
Nonlinear problems . 72
Parameter dependent problems . 73
Eigenvalue problems . 74
Index-1 differential algebraic equations . 77
Problems posed on a semi-infinite interval . 78

CHAPTER 2. BVPSUITE2.0 71

Pathfollowing problems . 79

These are the current problem types bvpsuite2.0 is programmed to handle.
In this work, these examples played a crucial role in testing all bvpsuite2.0 modules
after some changes were made during the implementation of the pathfollowing module.

Linear problems

The following example was taken from [1, Sec. 2.3].
Consider the linear, singularly perturbed BVP, with ε = 10−4,

εz′′(t) + z′(t)− (1 + ε)z(t) = 0, t ∈ [−1, 1] ,

z(−1) = 1 + e−2, z(1) = 1 + e
−2(1+ε)

ε .
(2.5)

For the approximation of the solution to this BVP a starting mesh with 201 equidistant
mesh points and Gauss collocation with 4 collocation points in-between each two mesh
points was chosen. Two runs were carried out. In the first run the relative and absolute
tolerances for the mesh adaptation were set to 10−9. The tolerances on the non-linear
solver do not need to be set, since this is a linear problem. The mesh is adapted, but
the number of mesh points is kept at 201 in the final mesh. The results are displayed in
Figure 2.2.

-1 -0.5 0 0.5 1
0

0.5

1

1.5
Approximate solution

-1 -0.5 0 0.5 1

Mesh points

-1 0 1
10!17

10!16

10!15
Error estimate

Figure 2.2: Linear Problem: Approximated solution, mesh points distribution and error
estimate computed with mesh adaptation.

In the second run, the mesh adaptation was turned off. The result of this run are
displayed in Figure 2.3.
The error in the second around t = −1 is more then 1010 times as high as the error in
the first run, although the number of mesh points in the final mesh in the two runs is

CHAPTER 2. BVPSUITE2.0 72

-1 -0.5 0 0.5 1
0

0.5

1

1.5
Approximate solution

-1 -0.5 0 0.5 1

Mesh points

-1 0 1
10!20

10!15

10!10

10!5

100
Error estimate

Figure 2.3: Linear Problem: Approximate solution, mesh points distribution and error
estimate computed without mesh adaptation.

the same. This goes to show that, the mesh adaptation can be a very useful tool for
some problems.

Nonlinear problems

The following example was taken from [15].
Consider the nonlinear singular BVP, where ν = 1

3 , µ = 9 and γ = 1000,

z′′1 (t) +
3

t
z′1(t) = −µ2z2(t)− 2γ + z1(t)z2(t),

z′′2 (t) +
3

t
z′2(t) = µ2z1(t)−

1

2
z21(t), t ∈ (0, 1] ,

z′1(0) = 0, z′2(0) = 0,

z1(1) = 0, z′2(1) + (1− ν)z2(1) = 0.

The division by 0 can lead to NaN values in Matlab. This will not happen during the
solver iteration for this problem, since in the above equations the singularity occurs at
one of the two interval boundaries. The equations are only evaluated at the collocation
points in-between the points of the discrete mesh, which would start at 0 and end at 1.
Thus, the problem can be entered as written above in the problem definition file. If the
singularity in a problem is of a higher order α, this is still not a problem, but sometimes
for convergence purposes, it might be advantageous to multiply the equation by tα.
The approximation to this BVP was found using a starting mesh with 101 equidistant
mesh points and Gauss collocation with 3 collocation points in-between each two mesh
points. The relative and absolute tolerances for the non-linear solver were set to 10−12

CHAPTER 2. BVPSUITE2.0 73

and to 10−9 for the absolute and relative tolerance of the mesh adaptation. The ini-
tial approximation was chosen to be the constant function 1 for both approximations.
The final mesh still contains 101 mesh points and the points were not displaced. The
approximate solution and error estimate are calculated and displayed in Figure 2.4.

0 0.2 0.4 0.6 0.8 1
-30

-20

-10

0

10
Approximate solution

0 0.2 0.4 0.6 0.8 1

Mesh points

0 0.5 1
10!20

10!10

100
Error estimate

0 0.5 1
10!15

10!10

10!5

Figure 2.4: Non-linear Problem: Approximate solution, mesh points distribution and
error estimate.

Parameter dependent problems

The following example was taken from [1, Sec. 2.4].
Consider the BVP

z′1(t) = − p

1− p

√
t− z1(t)
t− z1(t)

,

z′2(t) = z1(t), t ∈ [0, 1] ,

z1(0) = 0, z2(0) = 0, z2(1) = p.

We chose to compute the problem with a starting mesh with 101 equidistant mesh points
and Gauss collocation with 3 collocation points in-between each two mesh points. The
tolerances were set to 10−6 for the absolute and relative tolerance of the non-linear solver
and to 10−4 for the absolute and relative tolerance of the mesh adaptation. As initial
profile the constant 1 function was chosen and the value 1 for the parameter.
Note that in this example, if p is initialized with 1 or whenever it reaches the value 1,
a division by 0 would occur and the code would eventually throw an error. Since the
initial value 1 was chosen for the parameter, this problem is remedied by multiplying
the first equation by (1− p) in the problem definition and thus there would not be any
division by 0 occurring during the procedure.

CHAPTER 2. BVPSUITE2.0 74

The computation finishes after some mesh adaptation with a final mesh with 201 points.
The approximate solution, error estimate and the mesh points distribution plots are
displayed in Figure 2.5.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
Approximate solution

0 0.2 0.4 0.6 0.8 1

Mesh points

0 0.5 1
10!25

10!20

10!15

10!10

10!5
Error estimate

Figure 2.5: Parameter-dependent Problem: Approximated solution, mesh points distri-
bution and error estimate.

Eigenvalue problems

The following problem was taken from [1, Sec. 4.2].
Consider the EVP

−z′′(t) +
c

t2
z(t) = λz(t), t ∈ (0, π) , c > 0,

z(0) = z(π) = 0.

The soluton to this EVP was approximated using a starting mesh with 51 equidistant
mesh points and Gauss collocation with 3 collocation points in-between each two mesh
points. The tolerances are set to 10−12 for the absolute and relative tolerance of the non-
linear solver and to 10−9 for the absolute and relative tolerance of the mesh adaptation.
The mesh is then adapted to a final mesh containing 227 points. The result of this
computation is displayed in Figure 2.6.
Since there is an indefinite number of solutions which solve the EVP, the function
computeEVPStart was implemented in bvpsuite2.0 to find good initial approxima-
tions, as explained in Section 2.1. With this function, seven initial profiles were found
and starting from there, approximations were computed. The tolerances were once kept
at 10−12 for the absolute and relative tolerances of the non-linear solver and 10−9 for the
absolute and relative tolerances of the mesh adaptation and in an other run adjusted to
10−9 and 10−6. The results of the first run are displayed in Figure 2.7.

CHAPTER 2. BVPSUITE2.0 75

0 0.5 1 1.5 2 2.5 3
0

0.5

1
Approximate solution

0 0.5 1 1.5 2 2.5 3

Mesh points

0 1 2 3
10!40

10!30

10!20

10!10
Error estimate

Figure 2.6: Eigenvalue Problem: Approximated solution, mesh points distribution and
error estimate, initial mesh with 51 points, final mesh with 227 points.

0 0.5 1 1.5 2 2.5 3
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Approximate solutions

61 = 2:4
62 = 6:7
63 = 13:0
64 = 21:3
65 = 31:6
66 = 43:9
67 = 58:2

Figure 2.7: Eigenvalue Problem: Approximated solutions, computed by starting at the
intial profiles given by computeEVPStart.

CHAPTER 2. BVPSUITE2.0 76

The values of the initially provided eigenvalues by computeEVPStart were accurate for
smaller eigenvalues, but less for bigger ones, as can be seen in the table below.

Inital EV Final EV Initial - final EV

λ1 2.417106 2.417106 5.9977e-08
λ2 6.723654 6.723653 6.4377e-07
λ3 13.027504 13.027501 3.5746e-06
λ4 21.330745 21.330728 1.7108e-05
λ5 31.633815 31.633736 7.8923e-05
λ6 43.936988 43.936647 3.4136e-04
λ7 58.240947 58.239508 1.4392e-03

The results in both runs were very similar, the main difference was in the computation
time and the number of mesh points.

λ1 λ2 λ3 λ4 λ5 λ6 λ7

Tolerances Time (in s) 87 161 133 232 262 279 371
10−12 and 10−9 # mesh points 227 417 333 455 561 664 791

Tolerances Time (in s) 10 9 16 24 40 47 41
10−9 and 10−6 # mesh points 51 51 51 66 74 84 93

The error estimate of the first run is displayed in Figure 2.8 and the error estimate of
the second run in Figure 2.9.

0 0.5 1 1.5 2 2.5 3
0

5
#10!11

0

5
#10!11

0

5
#10!11

0

5
#10!11

0

5
#10!11

0

5
#10!11

0

5
#10!11 Error estimate

Figure 2.8: Eigenvalue Problem: Error estimate for the run with tolerances 10−12 for
the non-linear solver and 10−9 for the mesh adaptation.

Only the second run with the less strict tolerances was put into the manual [16], mainly
because the computation time for the stricter tolerances was higher, as can be seen in
the table above.

CHAPTER 2. BVPSUITE2.0 77

0 0.5 1 1.5 2 2.5 3
0

5
#10!8

0

5
#10!8

0

5
#10!8

0

5
#10!8

0

5
#10!8

0

5
#10!8

0

5
#10!8 Error estimate

Figure 2.9: Eigenvalue Problem: Error estimate for the run with tolerances 10−9 for the
non-linear solver and 10−6 for the mesh adaptation.

Index-1 differential algebraic equations

The following example was taken from [1, Sec. 6.1].
Consider the DAE, where J = 1

2 and ρ = 3,

z′1(t)− z2(t)z3(t) = 0,

z′2(t)− z3(t) + 1 = 0,

z1(t)−
J2

z3(t)
− z2(t) = 0, for t ∈ [0, 10.3] ,

z1(0)− J2

ρ
− ρ = 0, and z1(10.3)− J2

ρ
− ρ = 0,

As initial guess for the non-linear solver, the constant functions z̃1 = 1.25, z̃2 = 0 and
z̃3 = 1 are chosen. These satisfy the equations, but not the boundary conditions.
The solution to this BVP was approximated using a starting mesh with 51 equidistant
mesh points, a uniform collocation method with 3 collocation points in-between each two
mesh points, and with mesh adaptation enabled. The tolerances were set to 10−9 for
the absolute and relative tolerance of the non-linear solver and to 10−6 for the absolute
and relative tolerance of the mesh adaptation. The mesh is then adapted to a final mesh
containing 154 points. The result of this computation is displayed in Figure 2.10.

CHAPTER 2. BVPSUITE2.0 78

0 2 4 6 8 10
-2

0

2

4
Approximate solution

0 2 4 6 8 10

Mesh points

0 5 10
10!10

10!8

10!6
Error estimate

0 5 10
10!10

10!8

10!6

0 5 10
10!10

10!5

Figure 2.10: Eigenvalue Problem: Approximated solution, mesh points distribution and
error estimate, initial mesh with 51 points, final mesh with 154 points.

Problems posed on a semi-infinite interval

The following example was taken from [1, Sec. 3.4].
Consider the singular BVP

z′′(t) +
2

t
z′(t)− 4(z(t) + 1)z(t)(z(t)− 0.1) = 0, t ∈ (0,∞),

z′(0) = 0, z(∞) = 0.1.
(2.6)

Following what has been done in Stefan Wurms work, the initial approximation that was
used is

ret.initialMesh = [0.0225 0.1000 0.1775 0.2000 0.2225

0.3000 0.3775 0.4000 0.4225 0.5000 0.5775 0.6000

0.6225 0.7000 0.7775 0.8000 0.8225 0.9000 0.9775

1.0000 1.0231 1.1111 1.2157 1.2500 1.2862 1.4286

1.6063 1.6667 1.7317 2.0000 2.3666 2.5000 2.6493

3.3333 4.4936 5.0000 5.6351 10.0000 45];

ret.initialValues = [-0.3042 -0.3037 -0.3024 -0.3020 -0.3014

-0.2991 -0.2962 -0.2952 -0.2942 -0.2902 -0.2857 -0.2842

-0.2828 -0.2773 -0.2713 -0.2694 -0.2675 -0.2607 -0.2535

-0.2513 -0.2490 -0.2400 -0.2286 -0.2248 -0.2207 -0.2041

-0.1825 -0.1750 -0.1669 -0.1336 -0.0899 -0.0751 -0.0592

0.0007 0.0593 0.0729 0.0834 0.0994 0.1];

The approximation of the solution to this BVP was found using a starting mesh with
51 equidistant mesh points and Gauss collocation using 5 collocation points in-between

CHAPTER 2. BVPSUITE2.0 79

each two mesh points. The tolerances were set to 10−10 for the absolute and relative
tolerance of the non-linear solver and to 10−9 for the absolute and relative tolerance of
the mesh adaptation. The tolerances are satisfied without any mesh adaptation. The
results are displayed in Figure 2.11.

0 5 10 15 20 25
-0.4

-0.2

0

0.2
Approximate solution

0 0.2 0.4 0.6 0.8 1

Mesh points

0 0.5 1
10!14

10!13
Error estimate

0 0.5 1
10!15

10!10

Figure 2.11: Problem posed on a semi-infinite interval: Approximated solution, mesh
points distribution and error estimate.

Pathfollowing problems

The problem used as an example here is taken from [14].
Consider the BVP

t2z(3)(t)− tz′′(t) + z′(t)− t3p− λ∗
(
tz′(t)2 − tz(t)z′′(t) + z(t)z′(t)

)
= 0,

z(0) = z′(0) = 0, z(1) = 0 and z′(1) = 1.

As an initial profile, the constant function equal to 1 is chosen and for the parameter
p the initial value 8 is chosen. The parameter λ∗ is varied starting from 0 and with
a starting step-length of 1, meaning the pathfollowing parameter will grow in positive
direction with step-length 1 in the first step. During the pathfollowing, the evolution of
the parameter p is observed. This is assured by the local function

function ret = PathCharData(x1,coeff,ordnung,rho)

ret= coeff(end-1);

end

in the problem definition file. The evolution is followed until the value −40 is reached,
in order to reproduce the reference figure, as published in [14, fig. 7]. To achieve
this, the field pit_stop under 'pathfollowing' in the problem definition file, is set

CHAPTER 2. BVPSUITE2.0 80

to [100,-40], where 100 is just a dummy variable for the pathfollowing parameter λ∗,
which will not be reached during the run. counter is set to Inf, assuring that the run
will continue until −40 is reached by p and then will stop and save the path.
In the solver settings, a starting mesh with 101 equidistant mesh points, 3 Gaussian
collocation points in-between each two of these mesh points and the relative and absolute
tolerances for the non-linear solver set to 10−6 and the relative and absolute tolerances
for the mesh adaptation set to 10−4. θmax was set to 10−2 and the other pathfollowing
specific parameters were all kept at the values presented in Section 1.2.2. The run
finishes after 13 tangent continuation steps, without any mesh adaptation. The result is
displayed in Figure 2.12.

0 2 4 6 8 10 12

6$

-50

-40

-30

-20

-10

0

10

p

Figure 2.12: 1-dim. Navier-Stokes equation: Evolution of p with θmax = 10−2 until
p = −40.

Building on that first run, the pit_stop option is set to [100,-60] and startat to the
name of the file, containing the data of the previously saved run in the field startat.
This is computed in 2 steps, again without any mesh adaptation. The result of this run
is displayed in Figure 2.13.
Finally, wanting to see the solution of the problem with λ∗ being exactly equal to 0, 5
and 10, the field require_exact is set to [0,5,10] and the field only_exact to 1. In
p_exact the results as shown in Figure 2.14, are saved.
Finally, changing the monitored values of the solution from simply the evolution of p to
observing the evolution of the characteristic values of the solution z1(

1
2), p and ‖z1‖∞.

This is undertaken by creating a new function

function ret = PathCharData2(x1,coeff,ordnung,rho)

help = coeffToValues(coeff , x1 , ordnung , rho , 0:1/1000:1 , 0);

CHAPTER 2. BVPSUITE2.0 81

0 2 4 6 8 10 12

6$

-100

-80

-60

-40

-20

0

20

p

Figure 2.13: 1-dim. Navier-Stokes equation: Evolution of p with θmax = 10−2 until
p = −60.

0 0.5 1
-0.4

-0.3

-0.2

-0.1

0
6p = 0

0 0.5 1
-0.4

-0.3

-0.2

-0.1

0
6p = 5

0 0.5 1
-0.4

-0.3

-0.2

-0.1

0
6p = 10

0 0.5 1
-0.4

-0.3

-0.2

-0.1

0
6p = 10

0 0.5 1
-0.4

-0.3

-0.2

-0.1

0
6p = 5

Figure 2.14: 1-dim. Navier-Stokes equation: Approximations to the solutions for λ∗ =
0, 5, 10 along the path from Figure 2.13.

ret= [help(501); coeff(end-1); max(abs(help))];

end

This can be transmitted to the program as a function handle through the 4th argument
of the function bvpsuite2, as is explained in the manual of bvpsuite2.0 [16]. The three

CHAPTER 2. BVPSUITE2.0 82

resulting paths from this computation are displayed in Figure 2.15.

0 5 10 15

6$

-1

-0.8

-0.6

-0.4

-0.2

0

z 1
(1 2

)

0 5 10 15

6$

-150

-100

-50

0

50

p

0 5 10 15

6$

0

0.2

0.4

0.6

0.8

1

kz
1
k 1

Figure 2.15: 1-dim. Navier-Stokes equation: Evolution of the characteristic values z1(
1
2),

p and ‖z1‖∞ respectively under variation of λ∗.

Chapter 3

Further simulations

The simulations in the previous chapters were carried out in an effort to reproduce
results, that were already computed in the context of pathfollowing. In this chapter,
the focus is set on simulations, which were not computed yet. These problems were
considered throughout the length of the creation of this work.

3.1 Variable coefficient Helmholtz Equation

This section will serve as a report on the work which has been done in collaboration
with Sukjung Hwang and Sungjin Lee, from the group of Professor Seick Kim of the
department of Mathematics at Yonsei University in South Korea. An object of their
research was the variable coefficient Helmholtz partial differential equation written as

∇
(
a(x)∇u(x)

)
+ k2u(x) = 0, (3.1)

where k ∈ R is a constant and the scalar function a differentiates this equation from the
standard Helmholtz equation. The declared goal of their research was the discovery of
a fundamental solution for any scalar function a in the equation (3.1). In order to get
a sense of what shape this fundamental solution may have, we were asked to provide
some simulations. The contact with the research group was established at a time well
before the implementation of the pathfollowing module was under way. In the following
pages, the results, which were sent to South Korea, are reiterated and some more. In
this work, the results were computed with the pathfollowing module, which allowed for
a much simpler computation.

3.1.1 Preparation

First, the partial differential equation (3.1) was transformed to an ODE, in order to be
able to use bvpsuite2.0 on it. Under the assumption of radial symmetry in all involved
functions, the variable t := |x| ∈ R+

0 is introduced and the corresponding ordinary

83

CHAPTER 3. FURTHER SIMULATIONS 84

differential equation to (3.1) is

a(t)z′′(t) +

(
2

t
a(t) + a′(t)

)
z′(t) + k2z(t) = 0, for t ∈ [0,∞) , (3.2)

where z(t) := u(x)
∣∣∣
|x|=t

.

As a model equation, it was first suggested to study

a(t) := 1 + λ∗e−t
2
, (3.3)

which tends to 1 as either t tends to ∞ or λ∗ tends to 0. Thus equation (3.2) becomes(
1 + λ∗e−t

2
)
z′′(t) +

(
2

t

(
1 + λ∗e−t

2
)
− 2λ∗te−t

2

)
z′(t) + k2z(t) = 0. (3.4)

In order to solve this equation for different values of λ∗, some boundary conditions
are needed. This differential equation has a singularity at the point t = 0. Therefore
the boundary conditions need to be chosen with care, i.e. corresponding to the well
established theory on ODEs with a singularity in [17] and [18].
Consider the equation (3.4) in an environment of the point t = 0, where the singularities
blow up and the other terms do not exhibit any special behaviour, then the equation
has the following form

v′′(s) +
2

s
v′(s) +

k2

1 + λ∗
v(s) = 0.

This is rewritten with the definition of f1(t) := 2 and f2(t) = k2t2

1+λ∗ as

v′′(s) +
f1(0)

s
v′(s) +

f2(0)

s2
v(s) = 0.

Since f2(0) = 0, this results in

v′′(s) +
2

s
v′(s) = 0. (3.5)

The solution ansatz used for this equation is

v(t) := tβ, where v′(t) = βtβ−1 and v′′(t) = β(β − 1)tβ−2.

When inputting this into the equation (3.5), the resulting equation for β reads

β(β − 1)tβ−2 + 2βtβ−2 = 0 ⇒ β(β + 1) = 0 ⇒

{
β = 0 or
β = −1.

Then the solution to the equation (3.5) is of the form

v(t) := c1 + c2
1

t
with v′(t) = c2

(
− 1

t2

)
.

CHAPTER 3. FURTHER SIMULATIONS 85

In order to obtain a solution v ∈ C2([0,∞)), c2 must be zero and thus the boundary
conditions

v(0) = c1 and v′(0) = 0

are imposed. This will guarantee a twice continuously differentiable solution. These
results for v and its equation (3.5) are then also valid for z and its equation (3.4).
The condition z′(0) = 0 is fixed. To find a fitting initial condition for z(0), the equation
is simplified by choosing

a(t) ≡ a(0) = 1 + λ∗e0 = 1 + λ∗

and thus equation (3.2) becomes(
1 + λ∗

)
z̃′′(t) +

2

t
(1 + λ∗)z̃′(t) + k2z̃(t) = 0. (3.6)

The solution in R for the case λ∗ = 0, i.e. the solution to the Helmhotz equation, is

zH(t) :=
sin(kz)

kz
, (3.7)

for the standard initial conditions z(0) = 1 and z′(0) = 0. These can be verified using
the L’Hôpital rule. For an arbitrary λ∗, the equation (3.6) is solved by

z̃H(t) :=
1√

1 + λ∗

sin
(

k√
1+λ∗

t
)

t
, (3.8)

which is obtained by scaling the solution (3.7) accordingly. The initial conditions satisfied
by z̃H are

z̃H(0) =
k

1 + λ∗
and z̃′H(0) = 0. (3.9)

These shall be the boundary conditions used in the computation of approximation to
the solution of (3.4) under variation of λ∗.

3.1.2 Numerical simulation

For initial value problems posed on a semi-infinite interval, the standard method imple-
mented in bvpsuite2.0, which is explained in Section 2.1, is not well suited to approx-
imate a solution. Therefore instead of computing on the whole interval [0,∞), a finite
interval [0, T], T ∈ R, is chosen.
With the pathfollowing module, the solution of (3.4), with boundary conditions (3.9),
is approximated for λ∗ ∈ [0, 20]. This computation is started with a mesh of 101 points,
the relative and absolute tolerances of the non-linear solver are set to 10−6 and the rela-
tive and absolute tolerances of the mesh adaptation are set to 10−4. The results of this
computation are displayed in a surface plot in Figure 3.1.

CHAPTER 3. FURTHER SIMULATIONS 86

0 5 10 15 20 25 30
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Approximate solutions

6$ = 1:0e! 05
6$ = 1:0e! 04
6$ = 1:0e! 03
6$ = 1:0e! 02
6$ = 1:0e! 01
6$ = 1:0e + 00
6$ = 1:0e + 01
6$ = 1:0e + 02
6$ = 1:0e + 03
6$ = 1:0e + 04

Figure 3.1: Approximations to solutions of (3.4), where λ∗ = 10−5, ..., 104.

10!5 100 105
3

3.5

4

4.5
First zero

10!5 100 105
6.2

6.4

6.6

6.8

7

7.2
Second zero

10!5 100 105
4

4.5

5

5.5
First peak

10!5 100 105
4

4.5

5

5.5
Second peak

Figure 3.2: Key values of the approximations from Figure 3.1. Position of the 1st zero
(upper right), of the 2nd zero (upper left), of the 1st peak (lower right) and of the 2nd

peak (lower left), with λ∗ = 10−5, ..., 104 in the vertical axis.

CHAPTER 3. FURTHER SIMULATIONS 87

The evolution of some characteristic values was also of interest, namely of the position
of the first and second zero and the position of the first and second peak. The evolution
of these values is displayed in Figure 3.2. In these plots, a shift of these values towards
the right is observable, which may hint towards less oscillatory behaviour as λ∗ grows.
For this problem, the pathfollowing module made it possible to get the results above
much faster than it was possible until now. The features which were implemented in the
module helped a lot in this quest.
In the following pages, the efforts to find an analytical solution to the equation (3.2) are
iterated.

3.1.3 An analytical solution

To search for an analytical solution of (3.2) the Ansatz

zA(t) :=
sin
(
ktf(t)

)
kt

g(t)

is used, where f and g are unknown scalar functions. When evaluating the equation
(3.2) with zA, then the equation becomes{

a(t)
[(

2f ′(t) + tf ′′(t)
)
g(t)−

2
(
f(t) + tf ′(t)

)
g(t)

t
+ 2
(
f(t) + tf ′(t)

)
g′(t)

]
+
(2a(t)

t
+ a′(t)

)(
f(t) + tf ′(t)

)
g(t)

}
cos
(
ktf(t)

)
t

+

{
a(t)

[
− k2

(
f(t) + tf ′(t)

)2
g(t) +

2g(t)

t2
− 2g′(t)

t
+ g′′(t)

]
+
(2a(t)

t
+ a′(t)

)(
− g(t)

t
+ g′(t)

)
+ k2g(t)

}
sin
(
ktf(t)

)
kt

= 0

where the expression has already been ordered in terms with a cosine factor and terms
with a sine factor in front. The functions f and g are searched for such that the terms
in front of the cosine and the sine respectively are equal to 0.
For the term in front of the cosine, the equation reads[

2a(t)
(
f(t) + tf ′(t)

)]
g′(t) +

[d

dt

(
a(t)

(
f(t) + tf ′(t)

))]
g(t) = 0.

Then the solution g of this equation in dependence of f is

g(t) :=
1√

a(t)
(
f(t) + tf ′(t)

) .
For the term in front of the sine, the equation reads

a(t)
[
− k2

(
f(t) + tf ′(t)

)2
g(t) + g′′(t)

]
+ a′(t)

(
− g(t)

t
+ g′(t)

)
+ k2g(t) = 0

CHAPTER 3. FURTHER SIMULATIONS 88

⇔ a(t)
g′′(t)

g(t)
+ a′(t)

(
− 1

t
+
g′(t)

g(t)

)
= k2

(
a(t)

(
f(t) + tf ′(t)

)2 − 1
)
.

By defining h(t) := a(t)
(
f(t) + tf ′(t)

)
, the equation reads

h′′(t)

2h(t)
− 3

4

h′(t)2

h(t)2
+
a′(t)

a(t)

(1

t
+
h′(t)

2h(t)

)
=

k2

a(t)

(
1− h(t)2

a(t)

)
.

A solution was found to this equation, when a is chosen as well. With the pathfollowing
parameter λ∗, this is

h(t) :=
1

λ∗t2
with a(t) :=

1

(λ∗)2t4
and k ∈ R ⇒ f(t) :=

λ∗

3
t3 and g(t) := t

⇒ z̃1(t) :=
1

k
sin
(λ∗

3
kt3
)
⇒ z1(t) :=

1

k
cos
(λ∗

3
kt3
)

(3.10)

The functions z̃1(t) and z1(t) then solve the equation

z′′(t)− 2

t
z′(t) + (λ∗k)2t4z(t) = 0, for t ∈ [0,∞) . (3.11)

The function z1 from (3.10) exhibits a highly oscillatory behaviour, as is shown in Fig-
ure 3.3. This makes it very hard to compute this example with bvpsuite2.0.

0 1 2 3 4 5 6 7 8 9 10
-1

-0.5

0

0.5

1
Exact solution

Figure 3.3: Analytical solution (3.10) of (3.11), for t = [0, 10].

This marks the end of the discussion of this problem. The declared goal of finding a
fundamental solution to the problem (3.1) was not achieved yet.

Conclusion

At the end of this work, the objective is to reflect on the worth of the results.
The development of the pathfollowing code went through a few stages, where in the
first implementation it was based on a Gauss-Newton method, as described in [7]. Soon
after, the next implementation was in the form as described in Section 1.2, to fit the
already existing code base of bvpsuite2.0, especially the non-linear solver routine from
solve_nonlinear_sys. From then on, the efforts were mainly concentrated on tweaking
the code, such that it would compute the problem classes, which is was implemented to
deal with, well, and also provide a good user experience. In this process, Katrina Bur-
deos, visiting student from the University of the Philippines Diliman, was of great help,
reporting about and discussing encountered issues and also providing many examples on
which to test the code. Many thanks to her for the pleasant and fruitful collaboration.
The aim of the task at hand was clear, but of course not all problems can be solved easily
with the implementation at its current state. During the computations for Chapter 3
especially, many obstacles surfaced, to the point that the computations could not be car-
ried out as wished. On the one hand, it was due to the lack of time and computational
capacity, which, if more was available, maybe would have helped. On the other hand, for
some problems unfortunately it does not seem to be possible to resolve them with the
implemented methods, i.e. when the solution components exhibit oscillatory behaviour
and a slow decay for problems posed on a semi-infinite interval, as can be seen in Sec-
tion 3.1.3. Fortunately, the implementation can return some satisfactory results as well,
as for the test examples in Section 1.3.
Also, the aim was to make the code as accessible as possible to any user of bvpsuite2.0,
namely not an expert system. Quite a lot of features have been implemented, which made
the code grow quite long. Through comments and shifting recurrent code lines in locally
defined functions, it was tried to keep the code in pathfollowing.m readable and pos-
sibly adaptable for future use. In order to make an easy first use possible to any new
user, in the manual [16], a comprehensible usage guide for the pathfollowing example
from Section 2.2 was drafted. The jury is still out on whether an accessible code was
implemented or not and will probably show itself over time.
For the features that were discussed during the briefing sessions with the supervisors,
almost all were added to the code and tested. An idea during development of the code,
was that when mesh points were added to the mesh and then a certain condition was trig-
gered, then the number of mesh points would be reduced again for the subsequent steps.

89

CHAPTER 3. FURTHER SIMULATIONS 90

This feature was not tested, since an example, where the solution would get simpler to
compute along the path, was not found, therefore neither a reasonable trigger condition.
Nevertheless, the corresponding code lines were left in the function pathfollowing at
the lines 916-934, just in case such an example would come up and this feature could
be properly developed. This goes to show, that there may be more features that would
improve the code, but were not considered until now, since they may only be useful in
certain special cases.
Finally, it may also be possible to find a more reliable step-length prediction method.
In this work, the purpose was to implement the step-length control proposed by Deu-
flhard et al. ([5], [7] and [9]). The step-length prediction method was then adapted to
the case fitting bvpsuite2.0 of quadratic matrices. In the process, some changes were
made to the prediction formula from [5, p. 76, (2.13)], which led to the formula (1.25).
During the pathfollowing runs, a lot of times the correction mechanism were triggered,
which led to the halving of the step-length and the computation in this step was started
over. This correction conditions which are implemented, may be chosen quite strictly
by the user, which may lead to more corrections than may be needed to simply follow
the path without further requirements. On the other hand, these correction measures
revealed themselves to be of importance when computing paths near bifurcation points
for instance, as in the shell buckling problem from Section 1.3. If a better step-length
control would be needed, the empirical evidence shows the step-length prediction to not
work optimally. Refining the prediction formula could lead to better results and less
computational effort.

Appendix A

Pathfollowing code

The code that was written for the pathfollowing routine that is described in Chapter 1,
is attached in the following pages. It is the file pathfollowing.m, which is now part of
the Matlab-package bvpsuite2.0.

Listing A.1: pathfollowing.m: Pathfollowing routine

function [speicher,speicher_exact,tur_pts]=pathfollowing(problem,settings,pathfoll

,x1,rho)

% Pathfollowing routine

%% Set options

eval_exact = 1; % evaluate at the given parameter values

save_ws = 1; % enable taking step(s) back if desired

dispexact = 1; % plot at the given parameter values

dispres = 1; % display the solution and parameter evolution plots

disppredcor = 1; % display with predictor and corrector step

10 log = 1; % log some values

displog = 1; % plot the logged values

dispmdep = 1; % plot mesh density evolution

display = 1; % display messages

% For secondary options, press Ctrl+F and search for 'Secondary'

%% Initializing

m = length(rho);

xfin = x1;

counter_mc = 0; % Counter for mesh correction - DISABLED FOR NOW

20 ordnung = feval_problem(problem,'orders');

n = length(ordnung);

interval = feval(problem,'interval');

infsplit = 0;

se_nn = 40;

% In case the right hand side of the interval is infinite, then x1 is splitted in

[0,1] and [1,infty) when using splitting interval transformation

selim = 0;

if interval(2) == Inf

91

APPENDIX A. PATHFOLLOWING CODE 92

if interval(1) == 0 && trafo('splitting')

infsplit = 1;

30 n = n/2;

end

se_nn = 40;

% Secondary option

% The solution evolution variable 'selim' sets up to which value on the x-axis

the solutions evolution should be drawn when the solution is computed for a

problem posed on a semi-infinite interval

selim = 10;

end

AbsTol = feval(settings,'absTolSolver');

RelTol = feval(settings,'relTolSolver');

minmeshpts = max(feval(settings,'minInitialMesh'),length(feval(settings,'mesh')));

% DISABLED for now

40
% Set the variables from user input or solver settings

tmp_fn = {'thetaMax','maxCorrSteps','maxSteplengthGrowth','angleMin','

PredLengthFactor','CorrLengthGrowth','meshFactorMax'};

tmp_val = cell(1,numel(tmp_fn));

for ii=1:numel(tmp_fn)

if isfield(pathfoll,tmp_fn{ii})

tmp_val{ii}=pathfoll.(tmp_fn{ii});

else

tmp_val{ii}=feval(settings,tmp_fn{ii});

end

50 end

[theta_max,maxCorrSteps,maxSteplengthGrowth,cos_min,pred_lf,corr_lf,meshFactorMax]

= deal(tmp_val{:});

try

data = pathfoll.pathdata;

catch

msg = 'There is no ret.pathdata defined in the problem definition. Please refer

to the manual of bvpsuite2.0 for some examples.';

error(msg)

end

halve = 0;

60 halve_nb = 0; % times the step-length has been halved

corr_old = Inf;

min_sl = 1e-8; % Secondary option: minimal steplength

min_sl_flag = 0; % flag for minimal steplength

psi=zeros(m,max(ordnung)+m,max(ordnung));

for ord=1:max(ordnung)

for ii=1:m

psi(ii,1+max(ordnung)-ord:m+max(ordnung),ord)=Psi(ii,rho,ord);

end

70 end

APPENDIX A. PATHFOLLOWING CODE 93

psival=zeros(max(ordnung),m,m+2);

for ord=1:max(ordnung)

for ii=1:m

%evaluation of psi

psival(ord,ii,1:m)=polyval(psi(ii,:,ord),rho(1:m));

psival(ord,ii,m+1)=polyval(psi(ii,:,ord),1);

psival(ord,ii,m+2)=polyval(psi(ii,:,ord),0);

end

end

80
itnum = 0; % Number of completed steps

skip = 0; % Marker in case tagents angle is too steep

% Current number of steps until prompt

cter_flag = 0;

if isfield(pathfoll,'counter')

counter = pathfoll.counter;

if counter==Inf || (isfield(pathfoll,'only_counter') && pathfoll.only_counter)

cter_flag = 1;

end

90 else

counter = 1;

end

prompt='\nType enter to carry out the chosen number of steps (ret

.counter/1 when not modified),\np and enter

to change the maximal length of the predictor step,\nn and <

strong>enter to change this chosen number,\nf and <

strong>enter to plot&display solutions of computed steps, and \n<

strong>s and enter to stop&save the computations\n';

subprompt1='Choose a number of steps: ';

subprompt2='Choose a maximal predictor step length: ';

subprompt3='Choose number of steps to go back: ';

subprompt4='Input a row vector [. . .] of steps: ';

subprompt5='Enter one of the options above to proceed: ';

100 f_size=8; % font size for the plots

% keep the previous interpreter settings and set all to latex

dtiii=get(0, 'DefaultTextInterpreter');

dliii=get(0, 'DefaultLegendInterpreter');

datliii=get(groot, 'DefaultAxesTickLabelInterpreter');

set(0, 'DefaultTextInterpreter', 'latex')

set(0, 'DefaultLegendInterpreter', 'latex')

set(groot, 'DefaultAxesTickLabelInterpreter', 'latex')

110 %% Prepare what is needed for the options

% load the exact values of the parameter that shall be computed

if isfield(pathfoll,'require_exact')

exact_val = sort(unique(pathfoll.require_exact));

if strcmp(pathfoll.startat,'start')

APPENDIX A. PATHFOLLOWING CODE 94

speicher_exact = {};

end

else

exact_val = [];

speicher_exact = [];

120 end

if isfield(pathfoll,'max_pred_length')

max_pred = pathfoll.max_pred_length;

adapt=0;

else

max_pred = [];

adapt=0;

end

if isfield(pathfoll,'pit_stop')

pit_stop = pathfoll.pit_stop;

130 else

pit_stop = [];

end

% If only_exact is activated, then only speicher_exact is computed

if isfield(pathfoll,'only_exact') && ~isempty(exact_val)

only_exact=pathfoll.only_exact;

if only_exact

eval_exact=1;

end

else

140 only_exact=0;

end

% to save the workspace in order to go back 'counter'-number of steps in the

iteration

if save_ws

prompt_ws='\nDo you want to go back some steps?\nIf yes, press b

and enter.\nIf no just enter.\n';

jump_cell = {};

end

% Which plots should be drawn?

if ~eval_exact

dispexact = 0;

150 end

if isempty(data) % data should actually never be empty...

dispres = 0;

end

if ~dispres

disppredcor = 0;

end

if ~log && displog

displog = 0;

end

160 if~(feval(settings,'meshAdaptation'))

dispmdep = 0;

APPENDIX A. PATHFOLLOWING CODE 95

end

if dispmdep || dispres || displog

pathfollplot=figure('units','normalized','outerposition',[0.2 0.2 0.6 0.6],'

PaperUnits','normalized');

ax = gca;

ax.FontSize=f_size;

clf ;

pathfollplot.Color = 'White' ;

end

170 if dispmdep

% Mesh density evolution plot

mdep_nn = 50;

X_mdep = linspace(0,1,mdep_nn);

Y_mdep = [];

Z_mdep = [];

% Mesh evolution plot

pts_nb = 20;

if length(x1)<=pts_nb

180 filler = interval(2)*ones(1,length(x1)-pts_nb);

Pts_Mat=[x1 filler];

else

pts_step = ceil(length(x1)/pts_nb);

filler = interval(2)*ones(1,pts_nb-length(x1(1:pts_step:end-1)));

Pts_Mat = [x1(1:pts_step:end-1) filler];

end

% Call the figures

if dispres

190 path_pos = [0 0.5 1 0.5];

mdep_pos = [0 0 1 0.5];

else

mdep_pos = [0 0 1 1];

end

elseif dispres

path_pos = [0 0 1 1];

end

if dispres

figure(pathfollplot);

200 end

if log

logstruct.theta_0 = [] ;

logstruct.theta_max = [] ;

logstruct.steplength = [] ;

logstruct.steplength_pred = [pathfoll.steplength] ;

logstruct.sl_adapt = [];

logstruct.norm_F = [];

logstruct.cpt = [] ;

APPENDIX A. PATHFOLLOWING CODE 96

210 logstruct.orthogonal = [] ;

logstruct.max_error = [];

logstruct.mesh_length = [] ;

logstruct.c_s = Inf ;

logstruct.cos_ab = Inf;

logstruct.corr_dist = Inf ;

logstruct.norm_delta_0 = [] ;

logstruct.norm_delta_1 = [] ;

220 logstruct.mesha_halved = [];

logstruct.angle_halved = [];

logstruct.trm_halved = [];

logstruct.pdist_halved = [];

logstruct.cdist_halved = [];

% logstruct fields that are marks in the plot whenever steplength got halved for

one of the reasons

% 1. mesh adaptation was too long

% 2. angle between consecutive steps was too big

% 3. trust region method was activated

230 % 4. corrector step was too long compared to predictor step

% 5. corrector step was too long compared to previous corrector step

fn_halve = fieldnames(logstruct);

fn_halve = fn_halve(end-4:end);

val_halve = [0 1 0 1 10];

if displog

if dispres && dispmdep

path_pos = [0.5 0.5 0.5 0.5];

mdep_pos = [0.5 0 0.5 0.5];

240 log_pos = [0 0 0.5 1];

elseif dispres

path_pos = [0.5 0 0.5 1];

log_pos = [0 0 0.5 1];

elseif dispmdep

mdep_pos = [0.5 0 0.5 1];

log_pos = [0 0 0.5 1];

else

log_pos = [0 0 1 1];

end

250 end

else

logstruct = [];

end

exact_lp = Inf;

%% Preprocess the two cases: Start from initial point or loaded data

% Start at the given initial point on the solution path

APPENDIX A. PATHFOLLOWING CODE 97

if strcmp(pathfoll.startat,'start')

% Set the starting value for lambda_p

260 lambda_p=pathfoll.start;

% Before computing a predictor corrector step, the initial solution needs to be

computed first

itnum=itnum-1;

% If the predictor and corrector steps should be drawn

if disppredcor

val = {};

else

val = [];

270 end

% Inital steplength and initalize struct for predictor, used to carry over

information from the pathfollowing routine into the bvpsuite2.0 routine

steplength = pathfoll.steplength;

predictor = struct;

% Save the important values in predictor, that matter for the computation

predictor.steplength = steplength;

predictor.infsplit = infsplit;

predictor.lpfix = 0;

280 predictor.x1 = x1;

predictor.lambda_p_0 = lambda_p;

predictor.skip = 0;

% Also some solver settings (needed in PredCorrStrat and meshadaptation.m) and

display setting

predictor.maxCorrSteps = maxCorrSteps;

predictor.maxSteplengthGrowth = maxSteplengthGrowth;

predictor.meshFactorMax = meshFactorMax;

predictor.display = display;

290 % Starting point data for the Newton iteration in case of nonlinear problem

a_p=pathfoll.initProfile;

% Search for the next given parameter value, for which the value should be

computed, if required

if ~isempty(exact_val)

if steplength >0

exact_lp = find(exact_val>=lambda_p,1);

else

exact_lp = find(exact_val<=lambda_p,1,'last');

end

300 end

APPENDIX A. PATHFOLLOWING CODE 98

% Define some values needing to exist for the function call of Postprocess later,

they do not have any specific values as of now

tangent_new=0; theta_0=0; delta_0=0;

else

try

filename=strcat(pathfoll.dir,pathfoll.startat);

load(filename);

catch MException

error(MException.message);

310 end

if ~only_exact

speicher_exact = p_exact;

else

speicher_exact = {};

end

speicher = p_save(:,1:end-1); % savestruct column is not needed

% Define x1 and a_p

sol = speicher{1,end-1}; % sol is the penultimate solution

320 x1 = sol.x1;

a_0 = [sol.coeff ; sol.parameters ; sol.lambda_p] ;

% Define sol, predictor, xfin and a_c

sol = speicher{1,end}; % sol is the last computed solution

predictor = sol.predictor;

a_p = a_0 + predictor.steplength.*predictor.tangent';

xfin = sol.x1;

a_c = [sol.coeff ; sol.parameters ; sol.lambda_p] ;

savestruct = p_save{1,end};

330 if log

logstruct = p_save{2,end};

end

jump_cell = p_save{3,end};

% Reassign all the variables from savestruct

delta_0 = savestruct.delta_0;

theta_0 = savestruct.theta_0;

itnum = savestruct.itnum;

340 val = savestruct.val;

exact_lp = savestruct.exact_lp;

pred_tmp = savestruct.pred_tmp;

corr_old = savestruct.corr_old;

if isfield(savestruct,'halve_nb')

halve_nb = savestruct.halve_nb;

else

halve_nb = 5;

end

if ~exist('pit_stop','var')

APPENDIX A. PATHFOLLOWING CODE 99

350 pit_stop = savestruct.pit_stop;

end

if dispmdep

try

Pts_Mat = savestruct.Pts_Mat;

Y_mdep = savestruct.y_mdep;

Z_mdep = savestruct.z_mdep;

catch

Y_mdep = [];

end

360 end

% If data has been changed, then recompute for the new data

if max(data(xfin,a_c,ordnung,rho)~=speicher{3,end})

[speicher,speicher_exact,val,corr_old] = correct_data(speicher,speicher_exact,

val,data,ordnung,rho);

end

steplength = predictor.steplength;

tangent_new = predictor.tangent';

% Compute eval_exact if necessary

370 if ~isempty(exact_val) && ~only_exact

eval_exact = 1;

% if sol.lambda_p<exact_val(1) and step-length<0 or

tmp_bool1 = sol.lambda_p<exact_val(1) && steplength<0;

% if sol.lambda_p>exact_val(end) and step-length>0

tmp_bool2 = exact_val(end)<sol.lambda_p && steplength>0;

% then for now, eval_exact is set to 0

if tmp_bool1 || tmp_bool2

eval_exact=0;

end

380 end

% Update solver settings in case it was changed by user when reloading the run

predictor.maxCorrSteps = maxCorrSteps;

predictor.maxSteplengthGrowth = maxSteplengthGrowth;

predictor.meshFactorMax = meshFactorMax;

if ~only_exact

% Prepare for the next step

[a_0,a_p,tangent_new,steplength,predictor,delta_0,nda,nsd,theta_0,logstruct,

eval_exact,exact_lp] = PredCorrStrat(problem,settings,predictor,a_c,a_p,x1,xfin

,sol,tangent_new,ordnung,rho,psival,psi,steplength,exact_val,exact_lp,delta_0,

theta_0,theta_max,log,logstruct,eval_exact,itnum,halve_nb,min_sl);

390 else

eval_exact = 1;

exact_lp = Inf;

end

APPENDIX A. PATHFOLLOWING CODE 100

% Accept the new mesh for the next step

x1 = xfin;

lambda_p = speicher{2,1};

400 itnum=itnum+1;

end

%% Pathfollowing routine

if itnum==-1 % Initial solution is computed first

jj = 0;

else % Initial solution was already computed

jj = 1;

end

% Secondary option:

410 % After jj_max steps, the routine will stop & save. This number may be changed.

This is a safety measure for the case where 'counter' is set to Inf.

jj_max = 1e4;

if counter==Inf

counter=jj_max;

end

% Main loop: is only exited as soon as jj==counter and then 's' is chosen in the

user prompt, either by the user or automatically.

while 1

% Prechecks of the step-length

if itnum~=-1 && ~only_exact

420 % Check whether the step-length is shorter than the minimal steplength

if abs(steplength)<min_sl

min_sl_flag=1; % Set flag to stop later

steplength=sign(steplength)*min_sl;

predictor.steplength=steplength;

a_p = a_0 + steplength.*tangent_new;

predictor.lambda_p_p=a_p(end);

if display

fprintf('\n The steplength was shorter than the minimal steplength %1.1e!\n

It has been augmented to the minimal steplength.\n',min_sl)

end

430 end

% Check whether the user-defined maximal step-length is overreached, if it is,

adapt the predictor to a closer step

data_tmp=data(x1,a_p,ordnung,rho);

pred_tmp=sqrt((a_p(end)-speicher{2,end})^2+(max(abs(speicher{3,end}-data_tmp)))

^2);

if ~isempty(max_pred) && pred_tmp>max_pred % pred_tmp~=max_pred

div_tmp=max_pred/pred_tmp;

steplength=steplength*div_tmp;

predictor.steplength=steplength;

a_p = a_0 + steplength.*tangent_new;

APPENDIX A. PATHFOLLOWING CODE 101

predictor.lambda_p_p=a_p(end);

440
pred_tmp = max_pred;

if display

fprintf('\n Predictor step was too long. Steplength was reduced to %f.\n',

steplength)

end

if log

% save whether the step-length was dimished or not

adapt = 1;

450 end

end

end

if only_exact

fprintf('\nComputing the approximate solutions for lambda_p=[require_exact]:\n

')

elseif itnum~=-1 && display

fprintf('\n Starting at predictor value %f:\n\n',a_p(end))

elseif display

fprintf('\n Starting at predictor value %f:\n\n',lambda_p)

460 end

% Corrector Step

if halve==0

cpt = cputime;

end

if log && itnum~=-1 && ~only_exact

if skip==0

for ii=1:length(fn_halve)

logstruct.(fn_halve{ii}) = [logstruct.(fn_halve{ii}) val_halve(ii)/(halve==

ii)];

470 end

else

logstruct.(fn_halve{halve})(end) = val_halve(halve);

end

end

if only_exact

itnum = itnum-1;

elseif (feval(settings,'meshAdaptation'))

[sol,~,halve] = meshadaptation(problem,settings,x1,rho,a_p,predictor);

% If points have been added in the mesh, then reset the counter, otherwise wait

for ? number of iterations in which the mesh does not change, to halve the mesh

length if needed

480 % DISABLED FOR NOW

if length(x1)>length(xfin)

counter_mc = 0;

APPENDIX A. PATHFOLLOWING CODE 102

else

counter_mc = counter_mc + 1;

end

elseif(feval(settings,'errorEstimate'))

if ~isfield(predictor,'tangent') && feval(problem,'linear')

[~,~,sol]=solveLinearProblem(problem,x1,rho);

else

490 [~,~,sol,halve] = solveNonLinearProblem(problem,settings,x1,rho,a_p,1,predictor

);

end

if itnum==-1

sol.lambda_p = lambda_p;

end

if halve==0

initCoeff = [sol.coeff', sol.parameters, sol.lambda_p]';

sol.initCoeff = initCoeff;

[sol,~,halve] = errorestimate(sol,problem,settings,predictor);

end

500 else

if ~isfield(predictor,'tangent_new') && feval(problem,'linear')

[~,~,sol]=solveLinearProblem(problem,x1,rho);

else

[~,~,sol,halve] = solveNonLinearProblem(problem,settings,x1,rho,a_p,1,predictor

);

end

if log

sol.errest = Inf;

end

end

510 if itnum==-1 && ~only_exact && isstruct(sol)

sol.lambda_p = lambda_p;

end

% If the number of mesh points does not need halving, then compute the angle

between the tangents and the lengths of the predictor and corrector steps

if halve==0 && ~only_exact

% Save the predictor for possible future use

sol.predictor=predictor;

% Save the result of the corrector step on the solution path and the new mesh

xfin

520 a_c = [sol.coeff ; sol.parameters ; sol.lambda_p];

predictor.lambda_p_0 = a_c(end);

xfin = sol.x1;

while itnum~=-1

% Check whether the corrector step is short enough compared to the predictor

step

speicher_tmp=speicher;

APPENDIX A. PATHFOLLOWING CODE 103

speicher_tmp{1,end+1}=sol;

speicher_tmp{2,end}=a_c(end);

speicher_tmp{3,end}=data(xfin,a_c,ordnung,rho);

530 corr_tmp=sqrt((a_c(end)-a_p(end))^2+(max(abs(speicher_tmp{3,end}-data_tmp)))^2)

;

factor1_tmp=corr_tmp/pred_tmp;

factor2_tmp=corr_tmp/corr_old;

if display

fprintf('\n Corrector step is %f-times as long as predictor step.\n',

factor1_tmp)

end

if itnum~=0

if display

fprintf(' Corrector step is %f-times as long as the previous corrector step

.\n',factor2_tmp)

end

540 end

if factor1_tmp>1/pred_lf

halve=4;

if display

fprintf('\n Corrector step is at most allowed to be %f-times as long as

predictor step!\n',1/pred_lf)

end

if ~min_sl_flag

break

end

end

550 if factor2_tmp>corr_lf

halve=5;

if display

fprintf('\n Corrector step is at most allowed to be %f-times as long as

previous corrector step!\n',corr_lf)

end

if ~min_sl_flag

break

end

end

560 if itnum~=0

% Compute the cosine between the last computed step and the next tangent

if (feval(settings,'meshAdaptation')) && (length(x1)~=length(xfin) || max(abs

(x1-xfin))>1e-12)

initP.initialMesh=xfin;

initP.parameters = sol.parameters;

initP.initialValues = coeffToValues(tangent_new, x1,ordnung,rho,xfin);

initP = initial_coefficients(problem,xfin,initP,rho,0);

tang_a = [initP.initialCoeff ; tangent_new(end)] ;

else

APPENDIX A. PATHFOLLOWING CODE 104

570 tang_a = tangent_new;

end

jac_F = functionFDF('DF', problem ,a_c,xfin,psival,psi,rho,[]);

tang_b = tangente_berechnen(jac_F);

a_p_b = a_c + sign(steplength)*sign(tang_a.'*tang_b)*tang_b;

data_tang=data(xfin,a_p_b,ordnung,rho);

nn_data = length(data_tang);

a=[(speicher_tmp{2,end}-speicher_tmp{2,end-1})*ones(nn_data,1) speicher_tmp

{3,end}-speicher_tmp{3,end-1}];

b=[(a_p_b(end)-speicher_tmp{2,end})*ones(nn_data,1) data_tang-speicher_tmp{3,

end}];

tmp_ab=zeros(1,nn_data);

580 for ii=1:nn_data

n_a=a(ii,:)*a(ii,:)';

n_b=b(ii,:)*b(ii,:)';

tmp_ab(ii)=a(ii,:)*b(ii,:)'/sqrt(n_a*n_b);

end

cos_ab=min(tmp_ab);

if display

fprintf(' Cosine of the angle between current step and next tangent: %1.1e\

n',cos_ab)

end

% If the cosine smaller than the user set cosine, then the steplength is halved

590 if cos_ab<cos_min

halve=2;

if display

fprintf('\n The cosine is smaller than the minimal allowed cosine %1.1e\n'

,cos_min)

end

end

end

break

end

end

600
if itnum~=-1 && halve~=0 && ~min_sl_flag

steplength = steplength/2;

predictor.steplength=steplength;

a_p = a_0 + steplength.*tangent_new;

predictor.lambda_p_p=a_p(end);

if display

fprintf(' Steplength was halved from %f to %f!\n',2*steplength,steplength)

end

610
itnum=itnum-1; % itnum is augmented by 1 at the end of each loop

skip = skip+1;

predictor.skip = skip;

APPENDIX A. PATHFOLLOWING CODE 105

counter = counter + 1;

else % Proceed to finishing the step

if ~only_exact

halve_nb = skip;

halve = 0;

counter = counter-skip;

620 jj = jj-skip;

skip=0;

predictor.skip = 0;

if min_sl_flag && ~isstruct(sol) % pathfollowing is stuck

msg1='The steplength is reduced too much! The pathfollowing routine has

trouble following the path with the current solver settings! The current

mininmal steplength (min_sl) is ';

msg2='. To change this value look for min_sl at the beginning of the file

pathfollowing.m in the bvpsuite2.0 package. Otherwise adapting the solver

settings, especially using mesh adaptation (MA) and choosing the MA tolerances

only slightly looser than the solver tolerances (i.e. solver tol: 10^-6, MA tol

: 10^-4), may help.';

msg=[msg1 num2str(min_sl) msg2];

error(msg)

end

630 % Save the pathdata of interest in the variable speicher

if itnum==-1

speicher{1,1}=sol;

speicher{2,end}=a_c(end);

speicher{3,end}=data(xfin,a_c,ordnung,rho);

else

speicher=speicher_tmp;

corr_old=corr_tmp;

end

end

640
% Check if one of the required values of lambda_p has been passed if yes,

compute the solution in this point and save the solution in speicher_exact

if itnum~=-1 && only_exact==1 % only speicher_exact is computed in this run

% Restart at the beginning & find the next exact value to compute

lp_a0 = cell2mat(speicher(2,:));

% Find the value exact_val(exact_lp) that is closest to the starting value of

the parameter lambda_p

for ii=2:length(lp_a0)

tmp_sign = sign(lp_a0(ii)-lp_a0(ii-1));

if tmp_sign==1

tmp_line = 1:length(exact_val);

650 else

tmp_line = length(exact_val):-1:1;

end

for kk = tmp_line

APPENDIX A. PATHFOLLOWING CODE 106

tmp_bool1=tmp_sign*lp_a0(ii-1)<=tmp_sign*exact_val(kk) && tmp_sign*exact_val

(kk)<tmp_sign*lp_a0(ii);

% If the required exact value is in-between two values of the path, then

save ii and kk and break

if tmp_bool1

exact_lp=kk; % is the entry number in exact_val

cter_a0=ii-1; % is the step number in the path leading to a_0

sol = speicher{1,cter_a0+1}; % is the solution in the path leading to a_c

exact_val(exact_lp) is in-between a_0(end) and a_c(end)

660 break

end

end

if exact_lp~=Inf

break

end

end

% If the for-loop did not break

if exact_lp==Inf

msg='None of the required values in ret.require_exact is within the range of

the computed path!';

670 error(msg)

end

elseif itnum~=-1 && ~isempty(exact_val) % Compute lp_a0 and cter_a0 to check

whether a required value has been passed or not

lp_a0 = a_0(end);

cter_a0 = 1;

end

% Check whether or not one of the values that should be computed at exactly, was

already passed, if yes, compute at the value(s) that have been passed and are

required

if itnum~=-1 && ~isempty(exact_val) && eval_exact && abs(lp_a0(cter_a0)-sol.

lambda_p)> abs(lp_a0(cter_a0)-exact_val(exact_lp))

% More than one value can be in the interval that was computed, thus a while

statement here

while eval_exact && abs(lp_a0(cter_a0)-sol.lambda_p)> abs(lp_a0(cter_a0)-

exact_val(exact_lp))

680 if display

fprintf('\nExact solution at %f computation:\n\n',exact_val

(exact_lp))

end

% If by chance the value of lambda in the last computation was exactly the

required point, then no computaiton is needed, otherwise it is

if abs(lp_a0(cter_a0)-exact_val(exact_lp)) > 0

% Define sol_tmp and a_0_tmp whether only_exact is 1 or 0

if only_exact

sol_tmp = speicher{1,cter_a0};

a_0_tmp = [sol_tmp.coeff ; sol_tmp.parameters ; sol_tmp.lambda_p] ;

690 else

APPENDIX A. PATHFOLLOWING CODE 107

sol_tmp = sol;

a_0_tmp = a_0;

end

predictor = sol_tmp.predictor;

tangent = predictor.tangent';

sl_tmp = predictor.steplength;

predictor.lpfix = 1;

predictor.lambda_p_0 = exact_val(exact_lp);

a_p_exact = a_0_tmp + (exact_val(exact_lp)-lp_a0(cter_a0))/tangent(end)*

tangent;

700 if(feval(settings,'meshAdaptation'))

[sol_exact] = meshadaptation(problem,settings,x1,rho,a_p_exact,predictor);

elseif(feval(settings,'errorEstimate'))

[~,~,sol_exact] = solveNonLinearProblem(problem,settings,x1,rho,a_p_exact

,1,predictor);

initCoeff = [sol_exact.coeff', sol_exact.parameters, sol_exact.lambda_p]';

sol_exact.initCoeff = initCoeff;

sol_exact = errorestimate(sol_exact,problem,settings,predictor);

else

[~,~,sol_exact] = solveNonLinearProblem(problem,settings,x1,rho,a_p_exact

,1,predictor);

end

710 predictor.lpfix = 0;

else % Solution was already computed

if ~only_exact

sol_exact = speicher{1,end-1};

else

sol_exact = speicher{1,cter_a0};

end

% Load the steplength of the last computed step

predictor = sol.predictor;

sl_tmp = predictor.steplength;

720 end

speicher_exact{1,end+1} = sol_exact;

tmp_vct = [sol_exact.coeff ; sol_exact.parameters ; sol_exact.lambda_p] ;

speicher_exact{2,end} = tmp_vct(end);

speicher_exact{3,end} = data(sol_exact.x1,tmp_vct,ordnung,rho);

if display

fprintf('\nExact solution computed.\n')

end

predictor.lambda_p_0 = a_c(end); % In case it was changed

730
if dispexact

plot_step(sol_exact,f_size,infsplit,n,selim)

end

% take the next value of the required values for next time

if ~only_exact

APPENDIX A. PATHFOLLOWING CODE 108

exact_lp = exact_lp + sign(sl_tmp);

if exact_lp==0 || exact_lp>length(exact_val)

exact_lp = exact_lp - sign(sl_tmp);

740 eval_exact=0;

end

else

% exact_lp = exact_lp+1?

tmp_bool1= sl_tmp>0 && exact_lp<length(exact_val) && (abs(lp_a0(cter_a0)-sol

.lambda_p) > abs(lp_a0(cter_a0)-exact_val(exact_lp+1)));

if tmp_bool1

exact_lp = exact_lp+1;

end

% or exact_lp = exact_lp-1?

tmp_bool2= sl_tmp<0 && exact_lp>1 && (abs(lp_a0(cter_a0)-sol.lambda_p) > abs

(lp_a0(cter_a0)-exact_val(exact_lp-1)));

750 if tmp_bool2

exact_lp = exact_lp-1;

end

% if neither one, then search for the next exact_val(exact_lp) along the path

if ~(tmp_bool1 || tmp_bool2)

exact_lp = Inf;

for ii=cter_a0+2:length(lp_a0)

for kk=1:length(exact_val)

tmp_bool1=exact_val(kk)<lp_a0(ii) && exact_val(kk)>lp_a0(ii-1);

tmp_bool2=exact_val(kk)>lp_a0(ii) && exact_val(kk)<lp_a0(ii-1);

760 % If the required exact value is in-between two values of the path, then

save ii and kk and break

if tmp_bool1 || tmp_bool2

exact_lp=kk;

cter_a0=ii-1;

sol = speicher{1,cter_a0+1};

break

end

end

if exact_lp~=Inf

break

770 end

end

if exact_lp==Inf

if display

fprintf('\nAll the required exact solutions were computed and saved in

p_exact.\n')

end

% Compute the next required value from here, which is not used in this run

, since only_exact would lead straight to save&return

if speicher{1,end}.predictor.steplength >0

exact_lp = find(exact_val>=sol.lambda_p,1);

if isempty(exact_lp)

APPENDIX A. PATHFOLLOWING CODE 109

780 exact_val=0;

exact_lp=length(exact_val);

end

else

exact_lp = find(exact_val<=sol.lambda_p,1,'last');

if isempty(exact_lp)

exact_val=0;

exact_lp=1;

end

end

790 break

end

end

end

end

end

% When only_exact is activated, then stop here

if only_exact==1

jj=counter;

800 else

% Compute the predictor and corrector steps, if they are to be plotted

if itnum~=-1 && isa(val,'cell')

val{1,end+1} = a_p(end);

val{2,end} = data(x1,a_p,ordnung,rho);

end

if log

err = max(max(abs(sol.errest)));

logstruct.max_error = [logstruct.max_error err];

810 logstruct.mesh_length = [logstruct.mesh_length [length(x1) ; length(xfin)]];

logstruct.cpt = [logstruct.cpt cputime-cpt] ;

if itnum~=-1

logstruct.theta_0 = [logstruct.theta_0 theta_0] ;

logstruct.theta_max = [logstruct.theta_max theta_max];

logstruct.steplength = [logstruct.steplength steplength] ;

logstruct.norm_delta_0 = [logstruct.norm_delta_0 nda] ;

logstruct.norm_delta_1 = [logstruct.norm_delta_1 nsd] ;

820
if adapt

logstruct.sl_adapt = [logstruct.sl_adapt 0];

else

logstruct.sl_adapt = [logstruct.sl_adapt Inf];

end

if length(a_p)~=length(a_c) || max(abs(xfin-x1))>1e-12 % mesh got adapted

p_ma.lpfix = 1;

APPENDIX A. PATHFOLLOWING CODE 110

F_tmp1 = functionFDF('F', problem ,a_p ,x1,psival,psi,rho,p_ma) ;

830 F_tmp2 = functionFDF('F', problem ,a_c ,xfin,psival,psi,rho,p_ma) ;

else

F_tmp1 = functionFDF('F', problem ,a_p ,x1,psival,psi,rho,predictor) ;

F_tmp2 = functionFDF('F', problem ,a_c ,xfin,psival,psi,rho,predictor) ;

end

logstruct.norm_F = [logstruct.norm_F [norm(F_tmp1) ; norm(F_tmp2)]] ;

logstruct.orthogonal = [logstruct.orthogonal [abs(F_tmp1(end)) ; abs(F_tmp2(

end))]] ;

if itnum~=0

logstruct.cos_ab = [logstruct.cos_ab cos_ab];

840 end

end

end

% Compute the data for the plot of the mesh density evolution plot

if dispmdep && itnum~=-1

x_scaled = (xfin-xfin(1))/(xfin(end)-xfin(1)); % Scaling

dens =1./(diff(x_scaled)*(length(x_scaled)-1)); % Mesh density

x_int = x_scaled(1:end-1)+diff(x_scaled)/2;

new_dens = pchip(x_int,dens,X_mdep);

850 Y_mdep = [Y_mdep, itnum+1];

Z_mdep = [Z_mdep; new_dens];

% Mesh evolution

if length(xfin)<=pts_nb

filler = interval(2)*ones(1,length(xfin)-pts_nb);

Pts_Mat=[Pts_Mat; xfin filler];

else

pts_step = ceil(length(xfin)/pts_nb);

filler = interval(2)*ones(1,pts_nb-length(xfin(1:pts_step:end-1)));

860 Pts_Mat = [Pts_Mat; xfin(1:pts_step:end-1) filler];

end

end

% If the number of mesh points has been changed from the original number, then

divide the number of mesh points by 2 if possible, otherwise reduce or keep the

number of mesh points to minmeshpts

% DISABLED FOR NOW

if counter_mc == 10^10 % Secondary option: Set a lower number

if length(xfin)/2 > minmeshpts && mod(length(xfin),2)==1

xfin = xfin(1:2:end);

elseif length(xfin)/2 > minmeshpts && mod(length(xfin),2)==0

870 xfin = [xfin(1:2:end),xfin(end)];

elseif length(xfin)>minmeshpts

help = xfin(1:floor(length(xfin)/minmeshpts):end);

if help(end) == xfin(end)

xfin = help;

APPENDIX A. PATHFOLLOWING CODE 111

else

xfin = [help xfin(end)];

end

end

counter_mc = 0;

880 end

if halve_nb~=0

fprintf('\nThe step-length was halved %i times in this step.', halve_nb)

end

if itnum==-1

fprintf('\nInitial solution computed for value %f.\n', a_c(

end))

elseif isempty(max_pred)

fprintf('\nStep %i complete for value %f. (Step %i/%i)\n',

itnum+1, a_c(end), jj, counter)

890 else

fprintf('\nStep %i complete for value %f with pl=%1.3f and

max_pl=%1.3f. (Step %i/%i)\n', itnum+1, a_c(end), pred_tmp, max_pred, jj,

counter)

end

% If min_sl was reached, then the user can choose whether to continue or not

if min_sl_flag

min_sl_flag = 0;

halve = 0;

jj=counter;

if display

900 fprintf('\nThe minimal steplength %1.1e was reached!\nChoose whether to

continue or stop here.\n',min_sl)

end

end

% Check whether the pit_stop values have been reached

if itnum~=-1 && ~isempty(pit_stop)

tmp_bool1= a_0(end)<pit_stop(1) & pit_stop(1)<=a_c(end);

tmp_bool2= a_0(end)>pit_stop(1) & pit_stop(1)>=a_c(end);

if tmp_bool1 || tmp_bool2

jj=counter;

910 if display

fprintf('\nParameter value %f reached!!\nTime for a pit stop</

strong>.\n',pit_stop(1))

end

pit_stop(1)=Inf;

end

tmp_bool1= speicher{3,end-1}<pit_stop(2) & pit_stop(2)<=speicher{3,end};

tmp_bool2= speicher{3,end-1}>pit_stop(2) & pit_stop(2)>=speicher{3,end};

if max(tmp_bool1) || max(tmp_bool2)

APPENDIX A. PATHFOLLOWING CODE 112

jj=counter;

if display

920 fprintf('\nData value %f reached!!\nTime for a pit stop.\n

',pit_stop(2))

end

pit_stop(2)=Inf;

end

end

% Save the values to jump back to this state from a later step

if itnum>0

savestruct = struct;

930 savestruct.delta_0 = delta_0;

savestruct.theta_0 = theta_0;

savestruct.itnum = itnum;

savestruct.val = val;

savestruct.exact_lp = exact_lp;

savestruct.pred_tmp = pred_tmp;

savestruct.corr_old = corr_old;

savestruct.pit_stop = pit_stop;

savestruct.halve_nb = halve_nb;

if dispmdep

940 savestruct.Pts_Mat = Pts_Mat;

savestruct.y_mdep = Y_mdep;

savestruct.z_mdep = Z_mdep;

end

jump_cell{end+1}=savestruct;

end

end

end

950 % when the number of steps has been carried out

if jj==counter

jj=0;

% Call the plot

clf(pathfollplot) ;

pathfollplot.Color = 'White' ;

% Draw the path

if dispres

960 % Values of lambda_p

X_se = cell2mat(speicher(2,:));

% Mesh points

if infsplit % Mesh was transformed from [0,infty) to [0,1]

% In [0,1], only plot every 'DD'th value. This number is a divisor of se_nn.

APPENDIX A. PATHFOLLOWING CODE 113

KK = 1:30;

DD = KK(rem(se_nn,KK)==0);

DD = min(DD(DD>2));

Y_se = [linspace(0,1,se_nn/DD+1), fliplr(1./linspace(1/se_nn,1-1/se_nn,se_nn

-1))];

970 selimpt = find(Y_se >= selim,1);

Y_se = Y_se(1:selimpt);

else

Y_se = linspace(interval(1),interval(2),se_nn);

end

% Function values at X_se and Y_se

Z_se = cell(1,n);

for tt=1:n

Z_se{tt} = zeros(length(X_se),length(Y_se));

980 if infsplit

for kk=1:itnum+2

x1tmp = speicher{1,kk}.x1;

coefftmp = speicher{1,kk}.coeff;

help = coeffToValues(coefftmp, x1tmp,ordnung,rho,linspace(0,1,se_nn+1));

help1 = help(tt,1:DD:end); % values on [0,1]

help2 = help(n+tt,end-1:-1:size(help,2)+se_nn/DD+1-selimpt); % values on

(1,selim]

Z_se{tt}(kk,:)=[help1,help2];

end

else

990 for kk=1:itnum+2

help = coeffToValues(speicher{1,kk}.coeff, speicher{1,kk}.x1,ordnung,rho,

Y_se);

Z_se{tt}(kk,:) = help(tt,:);

end

end

end

% Draw the plots

if disppredcor && itnum~=-1

1000
figdataplot(itnum+2,speicher,X_se,Y_se,Z_se,pathfollplot,path_pos,val,problem)

elseif dispres && itnum~=-1

figdataplot(itnum+2,speicher,X_se,Y_se,Z_se,pathfollplot,path_pos,zeros(

length(speicher{3,1}),1),problem)

end

end

if log && itnum~=-1 && displog % Draw log plot

if only_exact

p_ma.lpfix = 1;

F_tmp2 = functionFDF('F', problem ,a_c ,xfin,psival,psi,rho,p_ma) ;

APPENDIX A. PATHFOLLOWING CODE 114

1010 end

figlogdataplot(itnum+1,logstruct,pathfollplot,log_pos,AbsTol+max(F_tmp2)*RelTol

)

end

if dispmdep && size(Z_mdep,1)>1 % Draw mesh and mesh density evolution plot

figure(pathfollplot);

% Mesh density evolution plot

axes('Position', [mdep_pos(1)+mdep_pos(3)/10, mdep_pos(2)+mdep_pos(4)/10, 5*

mdep_pos(3)/10, 7*mdep_pos(4)/10]) ;

surf(X_mdep,Y_mdep,Z_mdep)

1020 zl = zlim;

zlim([0 zl(2)])

title('mesh density')

ax = gca;

ax.FontSize=f_size;

ax.Title.FontWeight='normal';

% Mesh evolution plot

axes('Position', [mdep_pos(1)+7*mdep_pos(3)/10, mdep_pos(2)+mdep_pos(4)/10,

2*mdep_pos(3)/10, 7*mdep_pos(4)/10]) ;

hold on

1030 for ii = Y_mdep(1)-1:itnum+1

% Rescale in case meshadaptation was not used from the start but just from a

loaded point

oo=ii-Y_mdep(1)+1;

plot(Pts_Mat(oo+1,:),ii,'k.','LineWidth',1.5);

end

title('mesh evolution')

ax = gca;

ax.FontSize=f_size;

ax.Title.FontWeight='normal';

end

1040
% If enabled, go back a step if wished

if itnum>1 && save_ws && ~cter_flag && ~only_exact

x_inp = input(prompt_ws,'s');

switch x_inp

case 'b' % Go back a number of steps

% Let the user input a number of steps to go back

while 1

y_inp=input(subprompt3);

if y_inp>=0 && y_inp>=0 && y_inp<=length(jump_cell)-2 && rem(y_inp,floor(

y_inp))==0

1050 back_cter=y_inp;

break

end

APPENDIX A. PATHFOLLOWING CODE 115

fprintf('Input should be a natural number between 0 and %i.\n',length(

jump_cell)-2)

end

% Adjust jump_cell and define savestruct

jump_cell = jump_cell(1:end-back_cter);

savestruct = jump_cell{end};

1060 % Load from savestruct

delta_0 = savestruct.delta_0;

theta_0 = savestruct.theta_0;

itnum = savestruct.itnum;

val = savestruct.val;

exact_lp = savestruct.exact_lp;

pred_tmp = savestruct.pred_tmp;

corr_old = savestruct.corr_old;

pit_stop = savestruct.pit_stop;

if isfield(savestruct,'halve_nb')

1070 halve_nb = savestruct.halve_nb;

else

halve_nb = 5;

end

if dispmdep

try

Pts_Mat = savestruct.Pts_Mat;

Y_mdep = savestruct.y_mdep;

Z_mdep = savestruct.z_mdep;

catch

1080 Y_mdep = [];

end

end

% Adjust speicher

speicher = speicher(:,1:end-back_cter);

% Define x1 and a_p

sol = speicher{1,end-1}; % sol is the penultimate solution

x1 = sol.x1;

1090 a_0 = [sol.coeff ; sol.parameters ; sol.lambda_p] ;

% Define sol, predictor, xfin and a_c

sol = speicher{1,end}; % sol is the last computed solution

predictor = sol.predictor;

a_p = a_0 + predictor.steplength.*predictor.tangent';

xfin = sol.x1;

a_c = [sol.coeff ; sol.parameters ; sol.lambda_p] ;

% Readjust all the fields in logstruct

if log && back_cter~=0

1100 tmp_fn = fieldnames(logstruct);

APPENDIX A. PATHFOLLOWING CODE 116

for kk=1:numel(tmp_fn)

logstruct.(tmp_fn{kk})=logstruct.(tmp_fn{kk})(:,1:end-back_cter);

end

end

predictor.maxCorrSteps = maxCorrSteps;

predictor.maxSteplengthGrowth = maxSteplengthGrowth;

predictor.meshFactorMax = meshFactorMax;

1110 % Load steplength and tangent_new from predictor

steplength = predictor.steplength;

tangent_new = predictor.tangent';

% Compute eval_exact if necessary

if ~isempty(exact_val)

tmp_bool1= exact_lp==1 && exact_val(exact_lp)<sol.lambda_p && steplength>0;

tmp_bool2= exact_lp==length(exact_val) && exact_val(exact_lp)>sol.lambda_p

&& steplength<0;

if tmp_bool1 || tmp_bool2

eval_exact=1;

else

1120 eval_exact=0;

end

end

end

end

% If only_exact is activated or the counter was set to Inf, then speicher and

speicher_exact are saved, otherwise it depends on the user input

if only_exact || cter_flag

x_inp = 's';

else

1130 x_inp = input(prompt,'s');

while x_inp == 'f'

while 1

y_inp=input(subprompt4);

if ~isempty(y_inp) && min(y_inp>=0) && min(y_inp<=itnum+1) && max(rem(y_inp

+1,floor(y_inp+1)))==0

break

end

fprintf('Inputs must be natural numbers between 0 and %i!\n',itnum+1)

end

for ii=y_inp

1140 plot_step(speicher{1,ii+1},f_size,infsplit,n,selim)

end

x_inp=input(subprompt5,'s');

end

end

switch x_inp

case 'p' % Change maximal steplength

APPENDIX A. PATHFOLLOWING CODE 117

while 1

y_inp=input(subprompt2);

if ~isempty(y_inp) && y_inp>0

1150 break

end

fprintf('Input must be a positive number!\n')

end

max_pred=y_inp;

case 'n' % Change number of steps to carry out at once

while 1

y_inp=input(subprompt1);

if ~isempty(y_inp) && y_inp>0 && rem(y_inp,floor(y_inp))==0

break

1160 end

fprintf('Input must be a positive natural number!\n')

end

counter=y_inp;

case 's' % Save & stop

if ~only_exact

% Save

savestruct = struct;

savestruct.delta_0 = delta_0;

1170 savestruct.theta_0 = theta_0;

savestruct.itnum = itnum;

savestruct.val = val;

savestruct.exact_lp = exact_lp;

savestruct.pred_tmp = pred_tmp;

savestruct.corr_old = corr_old;

savestruct.pit_stop = pit_stop;

savestruct.halve_nb = halve_nb;

if dispmdep

savestruct.Pts_Mat = Pts_Mat;

1180 savestruct.y_mdep = Y_mdep;

savestruct.z_mdep = Z_mdep;

end

end

% savestruct is saved at the end of speicher, when the program is started

from this point, it will access the last available data in this way

speicher{1,end+1} = savestruct;

if log

speicher{2,end} = logstruct;

end

1190 if save_ws

speicher{3,end} = jump_cell;

end

lp_a0 = cell2mat(speicher(2,1:end-1));

APPENDIX A. PATHFOLLOWING CODE 118

% Find the turning points in lp_a0

tmp1 = find(lp_a0(1:end-1)>lp_a0(2:end));

tmp2 = find(lp_a0(1:end-1)<lp_a0(2:end));

if isempty(tmp1) || isempty(tmp2)

tur_pts=[];

1200 else

tur_pts=zeros(3,length(lp_a0));

kk=0;

for ii=2:length(lp_a0)

if (max(tmp1==ii) && max(tmp2==ii-1)) || (max(tmp2==ii) && max(tmp1==ii-1))

kk=kk+1;

tur_pts(1,kk)=lp_a0(ii-1);

tur_pts(2,kk)=lp_a0(ii);

tur_pts(3,kk)=lp_a0(ii+1);

end

1210 end

tur_pts=tur_pts(:,1:kk);

end

% Reinstate the previous interpreter settings

set(0, 'DefaultTextInterpreter', dtiii)

set(0, 'DefaultLegendInterpreter', dliii)

set(groot, 'DefaultAxesTickLabelInterpreter', datliii)

return

1220 end

end

if skip==0 % If the step-length needs to be predicted

% Prepare for the next step

[a_0,a_p,tangent_new,steplength,predictor,delta_0,nda,nsd,theta_0,logstruct,

eval_exact,exact_lp] = PredCorrStrat(problem,settings,predictor,a_c,a_p,x1,xfin

,sol,tangent_new,ordnung,rho,psival,psi,steplength,exact_val,exact_lp,delta_0,

theta_0,theta_max,log,logstruct,eval_exact,itnum,halve_nb,min_sl);

% Accept the new mesh for the next step

x1 = xfin;

end

1230
itnum = itnum+1;

jj = jj+1;

end

end

%% Local functions

function [tangente]=tangente_berechnen(DF)

APPENDIX A. PATHFOLLOWING CODE 119

1240
help1=zeros(length(DF(:,1)),1);

help1(end)=1;

tangente=DF\help1;

tangente=tangente/sqrt(sum(tangente.*tangente));

end

1250 function Psireturn=Psi(n,rho,nr)

i=length(rho);

prod=1;

for s=1:i

if (s~=n)

prod=conv(prod,[1 -rho(s)])/(rho(n)-rho(s));

end

end

for s=1:(nr)

prod=polyint(prod);

1260 end

Psireturn=prod;

%tabulars for collocation points

end

function [] = figdataplot(ii,speicher,X_se,Y_se,Z_se,pathfollplot,path_pos,val,

problem)

blue_rgb = [0 0.4470 0.7410];

red_rgb = [0.8500 0.3250 0.0980];

green_rgb = [0.4660 0.6740 0.1880];

1270
figure(pathfollplot);

if isa(val,'cell')

val1=cell2mat(val(1,:));

val2=cell2mat(val(2,:));

else

val2=val;

end

nn=size(val2,1);

n=length(Z_se);

1280
f_size=8; % font size for plot

% data evolution plots

for jj=1:nn

axes('Position', [path_pos(1)+2*path_pos(3)/20, path_pos(2)+(1+(nn-jj)*10)*

path_pos(4)/(nn*10), 7*path_pos(3)/20, 8*path_pos(4)/(nn*10)]) ;

hold on

APPENDIX A. PATHFOLLOWING CODE 120

if ~isempty(val)

for kk=1:ii-1

if strcmp(problem,'testK_8')

1290 plot(1./[speicher{2,kk},val1(kk)],[speicher{jj+2,kk},val2(jj,kk)],'Color',

green_rgb,'LineStyle','--') ;

plot(1./[val1(kk),speicher{2,kk+1},],[val2(jj,kk),speicher{jj+2,kk+1}],'Color

',red_rgb,'LineStyle',':','Marker','o','MarkerSize',6) ;

else

plot([speicher{2,kk},val1(kk)],[speicher{3,kk}(jj),val2(jj,kk)],'Color',

green_rgb,'LineStyle','--') ;

plot([val1(kk),speicher{2,kk+1},],[val2(jj,kk),speicher{3,kk+1}(jj)],'Color',

red_rgb,'LineStyle',':','Marker','o','MarkerSize',6) ;

end

end

end

if strcmp(problem,'testK_8')

a=speicher(2,1:ii);c=1./cell2mat(a);

1300 else

a=speicher(2,1:ii);c=cell2mat(a);

end

b=speicher(3,1:ii);d=cell2mat(b);e=d(jj,:);

plot(c,e,'Color',blue_rgb,'LineStyle','-','Marker','o','MarkerFaceColor',blue_rgb

,'MarkerSize',3,'LineWidth',1.5)

xlabel('pathfollowing parameter')

if ii>50

plot(c(50:50:ii),e(50:50:ii),'xw','MarkerSize',5)

end

ax = gca;

1310 ax.FontSize=f_size;

end

% solution evolution plot

if strcmp(problem,'testM_7')

xstop=8;

axes('Position', [path_pos(1)+12*path_pos(3)/20, path_pos(2)+11*log_pos(4)/20,

7*path_pos(3)/20, 8*path_pos(4)/20]) ;

subplot(n*nn,2,2:2:2*3*nn)

surf([Y_se fliplr(1./Y_se(xstop:end-1))] ,X_se, [Z_se{1} fliplr(Z_se{3}(:,xstop:

end-1))])

title('real part of the solution')

1320 xlabel('interval on mesh')

ylabel('pathfollowing parameter')

zlabel('function value')

ax = gca;

ax.FontSize=f_size;

axes('Position', [path_pos(1)+12*path_pos(3)/20, path_pos(2)+1*log_pos(4)/20,

7*path_pos(3)/20, 8*path_pos(4)/20]) ;

subplot(n*nn,2,2*3*nn+2:2:2*6*nn)

APPENDIX A. PATHFOLLOWING CODE 121

surf([Y_se fliplr(1./Y_se(xstop:end-1))] ,X_se, [Z_se{2} fliplr(Z_se{4}(:,xstop:

end-1))])

title('real part of the solution')

1330 xlabel('interval on mesh')

ylabel('pathfollowing parameter')

zlabel('function value')

ax = gca;

ax.FontSize=f_size;

else

for kk=1:n

axes('Position', [path_pos(1)+12*path_pos(3)/20, path_pos(2)+(1+(n-kk)*10)*

path_pos(4)/(n*10), 7*path_pos(3)/20, 8*path_pos(4)/(n*10)]) ;

if strcmp(problem,'testK_8')

surf(Y_se,1./X_se,Z_se{kk})

1340 else

surf(Y_se,X_se,Z_se{kk})

end

name = strcat('solution function',num2str(kk));

title(name)

xlabel('interval on mesh')

ylabel('pathfollowing parameter')

zlabel('function value')

ax = gca;

ax.FontSize=f_size;

1350 end

end

end

function [] = figlogdataplot(ii,logstruct,pathfollplot,log_pos,tol)

nrow = 5;

ncol = 2;

f_size=8;

figure(pathfollplot);

1360
axes('Position', [log_pos(1)+2*log_pos(3)/20, log_pos(2)+42*log_pos(4)/50, 7*

log_pos(3)/20, 7*log_pos(4)/50]) ;

plot(0:ii,logstruct.cpt)

hold on ;

plot(1:ii,logstruct.trm_halved(1:ii),'*r')

limsy=get(gca,'YLim');

set(gca,'Ylim',[0 limsy(2)+1]) ;

title('cputime')

sp(1) = gca;

sp(1).FontSize=f_size;

1370 sp(1).Title.FontWeight='normal';

axes('Position', [log_pos(1)+12*log_pos(3)/20, log_pos(2)+42*log_pos(4)/50, 7*

log_pos(3)/20, 7*log_pos(4)/50]) ;

APPENDIX A. PATHFOLLOWING CODE 122

plot(1:ii,logstruct.steplength)

hold on ;

plot(1:ii,logstruct.steplength_pred,'k')

plot(1:ii,zeros(1,ii),'k:')

plot(1:ii,logstruct.sl_adapt(1:ii),'*g')

set(gca,'Ylim',[-5/4*max(abs(logstruct.steplength)) 5/4*max(abs(logstruct.

steplength))]) ;

legend('s','predicted s')

1380 title('steplength s')

sp(2) = gca;

sp(2).FontSize=f_size;

sp(2).Title.FontWeight='normal';

axes('Position', [log_pos(1)+2*log_pos(3)/20, log_pos(2)+32*log_pos(4)/50, 7*

log_pos(3)/20, 7*log_pos(4)/50]) ;

plot(1:ii,logstruct.theta_0)

hold on

plot(1:ii,ones(1,ii),'k--')

plot(1:ii,logstruct.theta_max,'r--')

1390 %limsy=get(gca,'YLim');

set(gca,'Ylim',[0 3/2*max(abs(logstruct.theta_0))]);%max(1.1,limsy(2))]) ;

title('θ_0')

sp(3) = gca;

sp(3).FontSize=f_size;

sp(3).Title.FontWeight='normal';

axes('Position', [log_pos(1)+12*log_pos(3)/20, log_pos(2)+32*log_pos(4)/50, 7*

log_pos(3)/20, 7*log_pos(4)/50]) ;

semilogy(1:ii,logstruct.theta_max./logstruct.theta_0)

title('Θ_m / Θ_0')

1400 sp(4) = gca;

sp(4).FontSize=f_size;

sp(4).Title.FontWeight='normal';

axes('Position', [log_pos(1)+2*log_pos(3)/20, log_pos(2)+22*log_pos(4)/50, 7*

log_pos(3)/20, 7*log_pos(4)/50]) ;

plot(0:ii,logstruct.mesh_length(1,:))

hold on

plot(0:ii,logstruct.mesh_length(2,:),'k')

plot(1:ii,logstruct.mesha_halved(1:ii),'*r')

legend('at beginning','at end')

1410 set(gca,'Ylim',[0 3/2*max(abs(logstruct.mesh_length(2,:)))]);

title('\# mesh points in step')

sp(5) = gca;

sp(5).FontSize=f_size;

sp(5).Title.FontWeight='normal';

axes('Position', [log_pos(1)+12*log_pos(3)/20, log_pos(2)+22*log_pos(4)/50, 7*

log_pos(3)/20, 7*log_pos(4)/50]) ;

APPENDIX A. PATHFOLLOWING CODE 123

semilogy(1:ii,logstruct.norm_F(1,:))

hold on

semilogy(1:ii,logstruct.norm_F(2,:))

1420 semilogy(1:ii,tol.*ones(1,ii),'k--')

legend('$||F(a_p)||$','$||F(a_c)||$')

title('$||F||$')

sp(6) = gca;

sp(6).FontSize=f_size;

sp(6).Title.FontWeight='normal';

axes('Position', [log_pos(1)+2*log_pos(3)/20, log_pos(2)+12*log_pos(4)/50, 7*

log_pos(3)/20, 7*log_pos(4)/50]) ;

semilogy(1:ii,logstruct.orthogonal(1,:))

hold on

1430 semilogy(1:ii,logstruct.orthogonal(2,:))

legend('$|F(a_p)(end)|$','$|F(a_c)(end)|$')

title('$|F(end)|$')

sp(7) = gca;

sp(7).FontSize=f_size;

sp(7).Title.FontWeight='normal';

axes('Position', [log_pos(1)+12*log_pos(3)/20, log_pos(2)+12*log_pos(4)/50, 7*

log_pos(3)/20, 7*log_pos(4)/50]) ;

semilogy(1:ii,logstruct.norm_delta_0,'--')

hold on

1440 semilogy(1:ii,logstruct.norm_delta_1,'--')

semilogy(1:ii,logstruct.corr_dist,'--')

semilogy(1:ii,logstruct.pdist_halved(1:ii),'*r')

semilogy(1:ii,logstruct.cdist_halved(1:ii),'*g')

legend('$||\Delta y_0||$','$||\Delta y_1||$','$||a_p-a_c||$')

title('$||...||$')

sp(8) = gca;

sp(8).FontSize=f_size;

sp(8).Title.FontWeight='normal';

1450 axes('Position', [log_pos(1)+2*log_pos(3)/20, log_pos(2)+2*log_pos(4)/50, 7*

log_pos(3)/20, 7*log_pos(4)/50]) ;

plot(1:ii,logstruct.c_s)

hold on

plot(1:ii,logstruct.cos_ab,'k')

plot(1:ii,logstruct.angle_halved(1:ii),'*r')

legend('c_s','cos(ab)')

title('c_s and cos(ab)')

sp(9) = gca;

sp(9).FontSize=f_size;

sp(9).Title.FontWeight='normal';

1460
axes('Position', [log_pos(1)+12*log_pos(3)/20, log_pos(2)+2*log_pos(4)/50, 7*

log_pos(3)/20, 7*log_pos(4)/50]) ;

APPENDIX A. PATHFOLLOWING CODE 124

plot(0:ii,logstruct.max_error)

title('Maximal Error')

sp(10) = gca;

sp(10).FontSize=f_size;

sp(10).Title.FontWeight='normal';

for jj=1:nrow*ncol

xlim(sp(jj),[0 ii+1])

1470 end

end

function [a_0,a_p,tangent_new,steplength,predictor,delta_0,nda,nsd,theta_0,

logstruct,eval_exact,exact_lp] = PredCorrStrat(problem,settings,predictor,a_c,

a_p,x1,xfin,sol,tangent_new,ordnung,rho,psival,psi,steplength,exact_val,

exact_lp,delta_0,theta_0,theta_max,log,logstruct,eval_exact,itnum,halve_nb,

min_sl)

% In the case of mesh adaptation enabled, take special care to set the new

starting point of the predictor step

if itnum~=-1 && (feval(settings,'meshAdaptation'))

% If the mesh was adapted, then compute the tangent and a_0 for the new number of

mesh points

if length(x1)~=length(xfin) || max(abs(x1-xfin))>1e-12

1480 initP.initialMesh=xfin;

initP.parameters = sol.parameters;

initP.initialValues = coeffToValues(tangent_new, x1,ordnung,rho,xfin);

initP = initial_coefficients(problem,xfin,initP,rho,0);

tangent_new = [initP.initialCoeff ; tangent_new(end)] ;

tangent_new(1:end-1) = tangent_new(1:end-1)/sqrt(sum(tangent_new.'*tangent_new))

;

initP.initialValues = coeffToValues(a_p, x1,ordnung,rho,xfin);

initP = initial_coefficients(problem,xfin,initP,rho,0);

1490 a_p = [initP.initialCoeff ; a_p(end)] ;

a_0 = [sol.coeff ; sol.parameters ; a_c(end)] ;

predictor.x1 = xfin;

else

a_0 = a_c;

end

else

a_0 = a_c;

1500 end

if itnum~=-1

tangent_old = tangent_new;

APPENDIX A. PATHFOLLOWING CODE 125

end

% Compute the tangent at the new point

jac_F = functionFDF('DF', problem ,a_0,xfin,psival,psi,rho,[]);

tangent_new = tangente_berechnen(jac_F);

1510 % Check for turning point

if itnum~=-1 && sign(tangent_old.'*tangent_new)<0

fprintf('\n\n *** Found TURNING POINT near

%f! *** \n\n',a_0(end));

steplength=-steplength;

% take the next value of the required values for next time

if ~isempty(exact_val) && eval_exact==1

if (exact_lp>1 && steplength<0) || (exact_lp<length(exact_val) && steplength>0)

exact_lp = exact_lp + sign(steplength);

else

eval_exact=0;

1520 end

elseif ~isempty(exact_val)

eval_exact = 1;

end

end

if itnum~=-1

% Compute the new steplength

c_s = abs(tangent_new.'*tangent_old) ;

corr_dist = norm(a_p-a_0) ;

1530 tmp=2*norm(delta_0)/(c_s^2*corr_dist) ;

beta = sqrt((theta_max/theta_0)*tmp);

beta_max = max(min(1,predictor.maxSteplengthGrowth),predictor.maxSteplengthGrowth

/(2^(0.5*halve_nb)));

beta=min(beta,beta_max);

steplength = beta*steplength;

if predictor.display

fprintf('\n Steplength was %3.1e and is predicted to be %3.1e!\n',predictor.

steplength,steplength);

end

else

1540 c_s = 1;

end

if log && itnum~=-1

logstruct.c_s = [logstruct.c_s c_s] ;

logstruct.corr_dist = [logstruct.corr_dist corr_dist] ;

logstruct.steplength_pred = [logstruct.steplength_pred steplength];

end

APPENDIX A. PATHFOLLOWING CODE 126

1550
% Update predictor

predictor.a_0 = a_0.';

predictor.tangent = tangent_new.';

predictor.steplength = steplength;

predictor.lambda_p_0 = a_0(end);

correct=0;

countercorr=0;

ncorrsteps=predictor.maxCorrSteps;

1560 theta_0_min=Inf; steplength_min=steplength;

while correct~=1

if abs(countercorr)==ncorrsteps

steplength=steplength_min;

predictor.steplength = steplength;

end

% Carry out predictor step

a_p = a_0 + steplength.*tangent_new;

1570 % Update the value of the pathfollowing variable

predictor.lambda_p_p = a_p(end);

% Compute what will be needed to compute the new steplength after the corrector

step

F_a = functionFDF('F', problem ,a_p,xfin,psival,psi,rho,predictor);

jac_F_a = functionFDF('DF', problem ,a_p,xfin,psival,psi,rho,predictor);

delta_a = - jac_F_a\F_a ;

new_a = a_p + delta_a ;

F_new = functionFDF('F', problem ,new_a ,xfin,psival,psi,rho,predictor);

simplified_delta = - jac_F_a\F_new ;

1580
nda = norm(delta_a);

nsd = norm(simplified_delta);

theta_0 = nsd / nda ;

if theta_0<theta_0_min

steplength_min=steplength;

end

delta_0=delta_a;

1590 beta = sqrt(1/2);%sqrt(theta_max/theta_0)

predictor.steplength = steplength;

% No Prediction-correction is needed if steplength is smaller than the minimally

allowed step-length

if abs(steplength)<min_sl

break

end

APPENDIX A. PATHFOLLOWING CODE 127

% Prediction-correction is needed if theta_0 is too big

if theta_0>theta_max*c_s^2 && abs(countercorr)~=ncorrsteps

1600 sl_tmp=steplength;

steplength=beta*steplength;

if predictor.display && countercorr==0

fprintf(' Prediction correction:\n Steplength is decreased

from %1.1e to %1.1e',sl_tmp,steplength);

elseif predictor.display

fprintf(' to %1.1e',steplength)

end

countercorr=countercorr-1;

% Procedure to increase steplength if needed -- disabled for now

% elseif theta_0<theta_max*c0^2/4 && abs(countercorr)~=ncorrsteps

1610 % sl_tmp=steplength;

% steplength=steplength/beta*0.99;

% countercorr=countercorr+1;

% fprintf('\n Steplength is increased from %f to %f!\n',sl_tmp,steplength);

else

if predictor.display && abs(countercorr)~=ncorrsteps

fprintf('\n Correction procedure should converge with steplength %3.1e!...\n',

steplength);

elseif predictor.display

fprintf('\n The steplength %f is used!...\n',steplength);

end

1620 correct=1;

end

end

end

function [speicher,speicher_exact,val,corr_old] = correct_data(speicher,

speicher_exact,val,data,ordnung,rho)

sol = speicher{1,1};

a_0 = [sol.coeff ; sol.parameters ; sol.lambda_p] ;

x1 = sol.x1;

1630 speicher{3,1} = data(x1,a_0,ordnung,rho);

for ii=2:size(speicher,2)

predictor = speicher{1,ii}.predictor;

a_p = a_0 + predictor.steplength.*predictor.tangent';

if iscell(val)

val{2,ii-1} = data(x1,a_p,ordnung,rho);

end

sol = speicher{1,ii};

a_0 = [sol.coeff ; sol.parameters ; sol.lambda_p] ;

x1 = sol.x1;

1640 speicher{3,ii} = data(x1,a_0,ordnung,rho);

end

APPENDIX A. PATHFOLLOWING CODE 128

data_tmp = data(speicher{1,end-1}.x1,a_p,ordnung,rho);

corr_old = sqrt((a_0(end)-a_p(end))^2+(max(abs(speicher{3,end}-data_tmp)))^2);

for ii=1:size(speicher_exact,2)

sol = speicher_exact{1,ii};

a_0 = [sol.coeff ; sol.parameters ; sol.lambda_p] ;

x1 = sol.x1;

1650 speicher_exact{3,ii} = data(x1,a_0,ordnung,rho);

end

end

function [] = plot_step(sol,f_size,infsplit,n,selim)

exact_plot=figure('units','normalized','outerposition',[0.3 0.2 0.4 0.6],'

PaperUnits','normalized');

ax = gca;

ax.FontSize=f_size;

clf ;

1660 exact_plot.Color = 'White' ;

if infsplit

selimpt = find((1./sol.x1)>=selim,1,'last');

end

for ii = 1:n

axes('Position', [1/10, (1+(n-ii)*10)/(n*10), 8/10, 8/(n*10)]) ;

if infsplit

plot([sol.x1 fliplr(1./sol.x1(selimpt:end-1))],[sol.valx1(ii,:) fliplr(sol.valx1

(n+ii,selimpt:end-1))],'LineWidth',1.5)

else

plot(sol.x1,sol.valx1(ii,:),'LineWidth',1.5)

1670 end

plottitle=['solution ',num2str(ii),' for $\lambda_p=$',num2str(sol.lambda_p)];

title(plottitle)

ax = gca;

ax.FontSize=f_size;

ax.Title.FontWeight='normal';

end

end

Bibliography

[1] S. Wurm, bvpsuite2.0 – A new version of a collocation code for singular BVPs,
EVPs and DAEs, Master Thesis, Vienna Univ. of Technology, Vienna, Austria (2016)

[2] M. Schöbinger, A new version of a collocation code for singular BVPs : nonlinear
solver and its application to m-Laplacians, Master Thesis, Vienna Univ. of Technology,
Vienna, Austria (2015)

[3] G. Kitzhofer, Numerical treatment of implicit singular BVPs, Doctoral Thesis, Vi-
enna Univ. of Technology, Vienna, Austria (2009)

[4] G.Kitzhofer, O. Koch and E. B. Weinmüller, Pathfollowing for essentially singular
boundary value problems with application to the complex Ginzburg-Landau equation
BIT Numerical Mathematics 49, Springer Netherlands, pp. 141–160 (2009)

[5] P. Deuflhard, B. Fiedler, P. Kunkel, Efficient numerical pathfollowing beyond critical
points, SIAM Journal on Numerical Analysis, Vol. 24, No. 4, pp. 912–927 (1987)

[6] P. Deuflhard, Numerical analysis in modern scientific computing – An introduction,
2nd Ed., Springer-Verlag, New York, USA (2003)

[7] P. Deuflhard, Newton methods for nonlinear problems – Affine invariance and adap-
tive algorithms, Springer Series in Computational 35, Springer-Verlag Berlin Heidel-
berg (2004)

[8] G. Kitzhofer, O. Koch, P. Lima and E. B. Weinmüller, Efficient numerical solution
of the density profile equation in hydrodynamics, Journal of Scientific Computing 32,
Springer US, pp. 411–424 (2007)

[9] G. Bader and P. Kunkel, Continuation and collocation for parameter dependent
boundary value problems, SIAM J. Sci. Stat. Comput. 10, pp. 72–88 (1989)

[10] M. Fallahpour, S. McKee and E.B. Weinmüller, Numerical simulation of flow in
liquid crystals using MATLAB software, Technical Report ASC 24 (2017)

[11] M. Fallahpour, S. McKee and E. B. Weinmüller, Numerical Simulation of Flow in
Smectic Liquid Crystals, Appl. Numer. Math. 132, pp. 154–162 (2018)

129

BIBLIOGRAPHY 130

[12] C. J. Budd, S. Chen and R. D. Russell, New self-similar solutions of the nonlin-
ear Schrödinger equation with moving mesh computations, Journal of Computational
Physics 152, pp. 756–789 (1999)

[13] P. Plechac and V. Sverak, On self-similar singular solutions of the complex
Ginzburg-Landau equation, Communications on Pure and Applied Mathematics 54,
pp. 1215–1242 (2001)

[14] B. Higgins and B. Housam, A simple method for tracking turning points in parameter
space, Journal of Chemical Engineering of Japan 43, pp. 1035–1042 (2010)

[15] R. März, O. Koch, D. Praetorius and E. B. Weinmüller, Collocation methods for
index-1 DAEs with a critical point, Oberwolfach Report No. 18, ID 06016, of the
Workshop on Differential-Algebraic Equations, Germany, pp. 81–84 (2006)

[16] M. Fallahpour, O. Koch, A. Sass and E. B. Weinmüller, Manual for bvpsuite2.0

– a Matlab solver for singular BVPs in ODEs, EVPs and DAEs, in preparation
(2019)

[17] F. D. Hoog and R. Weiss, Collocation methods for singular boundary value problems,
SIAM J. Numer. Anal. 15, pp. 198–217 (1978)

[18] E. B. Weinmüller, Collocation for singular boundary value problems of second order,
SIAM J. Numer. Anal. 23, pp. 1062–1095 (1986)

[19] A. Steindl, Private communication, Oct. and Nov. (2019)

	titelseite31
	pathfollowing
	Pathfollowing module
	Theoretical framework
	General problem setting and requirements
	Tangent continuation method
	About the simplified Newton method
	Adaptive step-length control strategy

	Implementation in bvpsuite2.0
	Solution approximation in bvpsuite2.0
	Details of the implementation
	Features of the pathfollowing module

	Test examples

	bvpsuite2.0
	Functions of bvpsuite2.0
	Modules of bvpsuite2.0

	Further simulations
	Variable coefficient Helmholtz Equation
	Preparation
	Numerical simulation
	An analytical solution

	Conclusion
	Pathfollowing code

	0:
	0:
	1:
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	13:
	14:
	15:
	16:
	17:
	18:
	19:
	20:
	21:
	22:
	23:
	24:
	25:
	26:
	27:
	28:
	29:
	30:
	31:
	32:
	33:
	34:
	35:
	36:
	37:
	38:
	39:
	40:
	41:
	42:
	43:
	44:
	45:
	46:
	47:
	48:
	49:
	50:
	51:
	52:
	53:
	54:
	55:
	56:
	57:
	58:
	59:
	60:
	61:
	62:
	63:
	64:
	65:
	66:
	67:
	68:
	69:
	70:
	71:
	72:
	73:
	74:
	75:
	76:
	77:
	78:
	79:
	80:
	81:
	82:
	83:
	84:
	85:
	86:
	87:
	88:
	89:
	90:
	91:
	92:
	93:
	94:
	95:
	96:
	97:
	98:
	99:
	100:
	101:
	102:
	103:
	104:
	105:
	106:
	107:
	108:
	109:
	110:
	111:
	112:
	113:
	114:
	115:
	116:
	117:
	118:
	119:
	EndLeft:
	StepLeft:
	PauseLeft:
	PlayLeft:
	PlayPauseLeft:
	PauseRight:
	PlayRight:
	PlayPauseRight:
	StepRight:
	EndRight:
	Minus:
	Reset:
	Plus:

	anm0:
	1:
	0:
	1:
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	13:
	14:
	15:
	16:
	17:
	18:
	19:
	20:
	21:
	22:
	23:
	24:
	25:
	26:
	27:
	28:
	29:
	30:
	31:
	32:
	33:
	34:
	35:
	36:
	37:
	38:
	39:
	40:
	41:
	42:
	43:
	44:
	45:
	46:
	47:
	48:
	49:
	50:
	51:
	52:
	53:
	54:
	55:
	56:
	57:
	58:
	59:
	60:
	61:
	62:
	63:
	64:
	65:
	66:
	67:
	68:
	69:
	70:
	71:
	72:
	73:
	74:
	75:
	76:
	77:
	78:
	79:
	80:
	81:
	82:
	83:
	84:
	85:
	86:
	87:
	88:
	89:
	90:
	91:
	92:
	93:
	94:
	95:
	EndLeft:
	StepLeft:
	PauseLeft:
	PlayLeft:
	PlayPauseLeft:
	PauseRight:
	PlayRight:
	PlayPauseRight:
	StepRight:
	EndRight:
	Minus:
	Reset:
	Plus:

	anm1:

