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1 Introduction

In this paper, we consider parameter-dependent singular boundary value prob-
lems for ordinary differential equations of the form

z′(t) =
1

tα
f(t, z(t); λ), t ∈ (0, 1], (1)

b(z(0), z(1)) = 0, (2)

where the case α > 1 in (1) represents an essential singularity. Motivated by
applications, we will also incorporate problems with a singularity of the first
kind, where α = 1, into our treatment. We are interested in computing sets of
solutions in dependence of the known (real) parameter λ. The problems in our
focus typically arise from the transformation of problems on an unbounded
domain to the interval [0, 1]. In applications, these problems are often encoun-
tered in the computation of self-similar blow-up solutions of nonlinear partial
differential equations. A collection of typical problems can be found in [1] to-
gether with a discussion of numerical solution methods for fixed parameter
values. In contrast, here we consider a pathfollowing method which can serve
to compute branches of solutions in dependence of the parameter. The algo-
rithm is based on pseudo-arclength parametrization and is thus even suitable
for solution branches with turning points. To solve the boundary value prob-
lems occurring in the course of the pathfollowing algorithm, we use polynomial
collocation on grids that are chosen according to an adaptive mesh selection
strategy based on the equidistribution of the global error [2].

The paper is organized as follows: In §2 we recapitulate the analytical proper-
ties of (1), (2) which are necessary to formulate conditions ensuring that our
pathfollowing strategy is well-defined. Proofs for these preliminary considera-
tions can be found in [3], [4]. In §3, we describe our pathfollowing strategy and
formulate the conditions for the problem (1), (2) which — according to gen-
eral results given in [5] for parameter-dependent problems in Banach spaces —
ensure the well-posedness of our solution method, see also [6]. In §4, we give a
numerical example illustrating the performance of a Matlab implementation
of our procedure. Finally, in §5 we demonstrate the success of the strategy
for a practically relevant problem: Blow-up solution profiles of the complex
Ginzburg-Landau equation (CGL), which is a perturbation of the celebrated
nonlinear Schrödinger equation (NLS), can be computed from an ODE prob-
lem on an unbounded domain after performing a similarity reduction [7]. The
resulting problem can be transformed to our present problem class. We show
that the transformed problem is a well-posed boundary value problem with an
essential singularity, and the boundary conditions are admissible according to
the analytical results given in [3]. Thus, our adaptive collocation solver can be
used reliably to perform our pathfollowing algorithm. We demonstrate that
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solution branches starting from (unstable) multi-bump solutions of the NLS
[8] can be computed across turning points, yielding a set of stable solutions of
the CGL. The branches finally terminate at real solutions of the NLS.

2 Analytical Properties of Problems with an Essential Singularity

In this section, we provide the analytical prerequisites for the discussion of
pathfollowing in §3. To give a general framework encompassing the majority
of practically relevant problems, cf. §§4–5, we consider nonlinear systems of
the form

T (t)z′(t) = f(t, z(t)), t ∈ (0, 1], (3)

z ∈ C[0, 1] ∩ C1(0, 1], (4)

b(z(0), z(1)) = 0, (5)

where z is a vector-valued function of dimension n, b : R
n × R

n → R
p,

T (t) := diag(tα1I1, t
α2I2, . . . , t

αrIr), (6)

and the Ik are unit matrices with either αk ≥ 1 for 1 ≤ k ≤ r, or αk ≥ 1 for
1 ≤ k ≤ r − 1 and αr = 0. It will turn out that (4) is equivalent to n − p
linearly independent constraints on z(0), and (5) should provide p additional
conditions to ensure local uniqueness of the solution.

As a first step in the analysis of (3)–(5) we will examine the solution structure
of linear systems

T (t)z′(t) = (M + A(t))z(t) + g(t), t ∈ (0, 1], (7)

z ∈ C[0, 1] ∩ C1(0, 1], (8)

B0z(0) + B1z(1) = γ, (9)

where the matrix M ∈ R
n×n is a block upper triangular matrix,

M :=





















M11 M12 . . . M1r

0 M22 . . . M2r

...
... . . .

...

0 0 . . . Mrr





















, (10)
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and A, g ∈ C[0, 1]. Each matrix Mkk is a square matrix of the same size as Ik

which is assumed to be nonsingular when αk 6= 0 and has no eigenvalues that
are purely imaginary. When αr = 0 then Mrr = 0. Moreover, B0, B1 ∈ R

p×n

are constant matrices and γ ∈ R
p is a constant vector. In general, p ≤ n.

The analytical properties of (3)–(5) and (7)–(9) have been discussed in full
detail in [3], [4]. The analysis when a singularity of the first kind is present,
which is incorporated into the treatment in [3], has initially been established
in [9]. In these papers the Fredholm theory for linear systems has been es-
tablished and existence and smoothness results for nonlinear problems have
been provided. In this section we recapitulate the most important of these
fundamental results.

2.1 Linear systems

Initially, we examine the system

T (t)z′(t) = Mz(t) + g(t), 0 < t ≤ 1, (11)

with matrices T (t) and M defined in (6) and (10), respectively. Let

M = D + U, D = diag(M11,M22, . . . ,Mrr),

Z(t) = diag(Z1(t), . . . , Zr(t)),

P = diag(P1, . . . , Pr),

Q = diag(Q1, . . . , Qr),

with

Zk(t) =











exp [Mkk(δ
1−αk − t1−αk)/(αk − 1)], αk 6= 1,

exp [log(t/δ)Mkk], αk = 1.
(12)

Note that Zk(t) is the fundamental solution matrix satisfying

tαkZ ′

k(t) − MkkZk(t) = 0, 0 < t ≤ 1, Zk(δ) = Ik,

for 0 < δ ≤ 1. If αk 6= 0, Pk, Qk are defined by

Qk :=
1

2πi

∫

Γ−

k

(λIk − Mkk)
−1 dλ,
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(13)

P :=
1

2πi

∫

Γ+

k

(λIk − Mkk)
−1 dλ,

where Γ−

k and Γ+
k denote closed contours (oriented canonically) in the left

and right complex halfplane, respectively, such that each eigenvalue of M is
enclosed by either Γ−

k or Γ+
k . The matrices Qk and Pk are projections onto the

invariant subspaces of Mkk associated with the eigenvalues having negative and
positive real parts, respectively. We set Pk = Qk = 0 if αk = 0. Furthermore,
define

R := I − P − Q =











diag(0, . . . , 0, Ir), αr = 0,

0, αr 6= 0.

Finally, define for 0 < δ ≤ 1

(B g)(t) := Z(t)

t
∫

0

QZ−1(s)T−1(s)g(s) ds

+ Z(t)

t
∫

δ

PZ−1(s)T−1(s)g(s) ds + R

t
∫

δ

g(s) ds. (14)

Lemma 1 Let g ∈ C[0, 1]. Then any continuous solution of (11) must satisfy

z(t) = Z(t)[Pz(δ) + Rz(δ)] + (B[Uz + g])(t). (15)

The most general linear equation that we consider is (7), (8), where A, g ∈
C[0, 1] and

(I − R)A(0) = 0. (16)

In order to discuss the existence and uniqueness of the solution of (7), (8), a
contraction argument for the operator defined in (14) is used. Consequently,
the following result holds: Let p = rank[P + R], W be an n × p matrix which
consists of linearly independent columns of (P + R), and define

X(t) := Y (t)W,

where Y (t) is the unique solution of

T (t)Y ′(t) = (M + A(t))Y (t), 0 < t ≤ 1,

Y (t) ∈ C[0, 1] ∩ C1(0, 1],

RY (δ) = R, PY (δ) = P.
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In addition, let ỹ be the unique particular solution of (7), (8) subject to the
boundary conditions

Rỹ(δ) = P ỹ(δ) = 0.

Then we have

Theorem 2 Any solution of (7), (8) has the form

z(t) = X(t)β + ỹ(t) (17)

with a unique β ∈ R
p.

We now answer the question under which circumstances the solution of (7),
(8) given by (17) satisfies the boundary conditions (9). Our aim is to establish
conditions on B0 and B1 which lead to a Fredholm alternative for (7)–(9). To
do this it is convenient to introduce the differential expression

l(z) = Tz′ − (M + A)z (18)

and associate with it the operator defined by

Lz = l(z)

for
z ∈ D = {z ∈ C[0, 1] : Tz′ ∈ C[0, 1], B0z(0) + B1z(1) = 0}.

Then, D together with the norm

‖z‖L := ‖z‖∞ + ‖Lz‖∞ (19)

is a Banach space, and we can prove:

Theorem 3 If

rank[B0, B1] = k, (20)

then L is Fredholm 1 with index p−k. Furthermore, if L−1 exists, it is bounded.

In applications we are primarily interested in the case when L is Fredholm
with index 0. We therefore assume that B0, B1 are p × n matrices, γ ∈ R

p,
and that (20) holds with k = p. On substitution of (17) into (9) we find

1 A linear operator L is said to be Fredholm with index q if it is a bounded operator
mapping a Banach space Y into a Banach space Z, the image of L is closed, and
the nullspace of L has finite dimension q.
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Theorem 4 The problem (7)–(9) has a unique solution for all g ∈ C[0, 1] and
γ ∈ R

p if and only if the p × p matrix [B0X(0) + B1X(1)] is nonsingular.

Remark 5 Clearly, the restriction that the solution be continuous at t = 0 is
not useful when constructing numerical schemes. It turns out that the relation

Qz(0) = Q(M + R)−1((R − I)g(0) + Rz(0)) (21)

is more satisfactory. Equations (9) and (21) are the n linearly independent
boundary conditions which must be employed when the equation (7) is solved
in practice. This and other related questions are also discussed in [4].

2.2 Nonlinear case

We now formulate smoothness results for nonlinear problems (3)–(5). We first
make a number of assumptions.

(N1) Problem (3)–(5) has a solution z(t). With this solution and some ρ > 0
we associate the spheres

Sρ(z(t)) := {y ∈ R
n : |z(t) − y| ≤ ρ}

and the tube

Tρ(z) := {(t, y) : t ∈ [0, 1], y ∈ Sρ(z(t))}.

(N2) For some ρ > 0, f(t, z(t)) is continuously differentiable with respect to
z, and ∂f

∂z
(t, z) is continuous on Tρ(z).

(N3) For all y ∈ Sρ(z(0)), the matrix

M(y) :=
∂f

∂z
(0, y)

has the fixed block upper triangular structure introduced in (10). In addi-
tion, the matrix

M := M(z(0))

satisfies all the conditions concerning the matrix M introduced earlier.
(N4) b(v, w) is a vector-valued function of dimension

p := rank[P + R]

which is continuously differentiable on Sρ(z(0)) × Sρ(z(1)).
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(N5) The solution z(t) is isolated. This means that the linearized problem

T (t)u′(t) − G(t)u(t) = 0, (22)

u ∈ C[0, 1] ∩ C1(0, 1], (23)

B0u(0) + B1u(1) = 0 (24)

with

G(t) =
∂f

∂z
(t, z(t)), B0 =

∂b

∂v
(z(0), z(1)), B1 =

∂b

∂w
(z(0), z(1)) (25)

has only the trivial solution.

The requirement that the solution of (3) be continuous at t = 0 obviously
implies the following restriction on the solution:

(I − R)f(0, z(0)) = 0. (26)

This immediately yields

Lemma 6 Let z satisfy (3) and (4). Then Tz′ ∈ C[0, 1] and

lim
t→0+

T (t)z′(t) = Rz′(0).

This lemma says that any component zi of z in a block associated with αk ≥ 1
satisfies limt→0+ tαkz′i(t) = 0, while the components (if any) associated with
αr = 0 are in C1[0, 1]. This smoothness result can be extended if further
restrictions are imposed on the problem.

Lemma 7 Assume that

(1) (N1)–(N5) hold.
(2) All αk are integers.
(3) The real parts of the eigenvalues of the matrix Mkk are negative whenever

αk = 1.
(4) f ∈ Cm(Tρ(z)).

Then, z ∈ Cm[0, 1] ∩ Cm+1(0, 1].

3 Pathfollowing

With the prerequisites from §2 we are in a position to describe our pathfollow-
ing strategy for (1), (2) and formulate sufficient conditions for the procedure
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to be well-defined. We will first discuss our problem in a general framework
and subsequently specialize the results to singular boundary value problems.
Hence, consider (1), (2) as a parameter-dependent operator equation

F (y; λ) = 0, (27)

where F : Ŷ := Y × R → Z, and Y, Z are Banach spaces (of possibly infinite
dimension). If ‖ · ‖ denotes the norm on Y , then ‖(y, λ)‖2

Ŷ
:= ‖y‖2 + λ2 is a

norm on Ŷ . The norm on Z is denoted by ‖ · ‖Z .

Pathfollowing in this general setting has been discussed in detail in [5]. The
following presentation is mainly based on these results. For proofs of our propo-
sitions we refer the reader to [5].

We require henceforth that the problem satisfies the following assumptions:

(A1) Problem (27) has a smooth solution branch Γ which can be parametrized
by a parameter 2 s,

Γ := {(y(s), λ(s)) : s ∈ [a, b]}, where
d

ds
(y(s), λ(s)) 6= 0 ∀s ∈ [a, b].

(A2) F is continuously differentiable in a neighborhood

Tρ(Γ) := {(y(s), λ(s)) + (v, η) : s ∈ [a, b], ‖(v, η)‖Ŷ ≤ ρ}.

Moreover, the total derivative F ′ is bounded and Lipschitz-continuous on
Tρ(Γ).

(A3) The partial derivative with respect to y, Fy(y; λ), is a Fredholm operator
with index 0 for all (y, λ) ∈ Γ.

(A4) For all (y, λ) ∈ Γ, the nullspace of F ′(y; λ) has dimension 1, or equiv-
alenly, the range of F ′(y; λ) is equal to the whole space Z.

We are particularly interested in computing solution branches with turning
points. By definition, in a turning point the solution of (27) constitutes a local
maximum (or minimum) of λ, and consequently is not locally unique as a
function of the parameter λ. The situation is illustrated in Figure 1. There,
we plot some functional of the solution in dependence of the parameter λ.
The arrows indicate the turning points. Thus, in a turning point we cannot
parametrize Γ as a function of λ. However, it is sufficient for our procedure
that a tangent is uniquely determined at all points of Γ. This is guaranteed by
our assumptions (A1)–(A4). Moreover, from (A1)–(A4) we may conclude that
every turning point is a weak singularity of the solution branch. At a weak

2 Typically, the arclength of the solution branch could be used in the situations we
have in mind.
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singularity (y∗, λ∗), the dimension of the nullspace of Fy(y
∗; λ∗) is equal to 1

and the partial derivative Fλ(y
∗; λ∗) does not lie in the range of Fy(y

∗; λ∗).
Thus, the weak singularities comprise turning points and points where the
solution is locally unique as a function of λ, but no other types of bifurcation
points. Subsequently, we will consider solution branches Γ which contain at
most weak singularities.

λ

φ(
y)

Fig. 1. A solution branch with two turning points.

In the definition and the analysis of our pathfollowing strategy, we require a
continuous imbedding of the Banach space Y into a Hilbert space H. Thus,
we assume

(A5) Let H be a Hilbert space with inner product 〈 · | · 〉 and induced norm
‖ · ‖H , and for the Banach space Y with norm ‖ · ‖ let Y ⊆ H and
‖y‖H ≤ C‖y‖ ∀y ∈ Y .

Note that this also induces a continuous imbedding of the Banach space Ŷ
into Ĥ := H×R. Here, 〈(y, λ)|(v, η)〉Ĥ := 〈y|v〉+λη defines the inner product

of Ĥ with induced norm ‖ · ‖Ĥ . Moreover, the estimate

‖(y, λ)‖Ĥ ≤ max{1, C}‖(y, λ)‖Ŷ (28)

holds.

Now, we proceed by describing our pathfollowing strategy. As explained above,
our assumptions ensure that at a point (y0, λ0) ∈ Γ, a tangent (δy, δλ) can be
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determined from

Fy(y0; λ0)δy + Fλ(y0; λ0)δλ = 0. (29)

In Theorem 8 below we are going to show that if we require

‖(δy, δλ)‖2
Ĥ

= 1, (30)

the tangent vector is uniquely determined up to the sign. We will explain how
to choose the direction below. On the tangent just determined, we now choose
a predictor for the computation of the next point on Γ,

(yP , λP ) := (y0, λ0) + h(δy, δλ), (31)

with a suitable step-size h > 0. Now, to compute the next point (yC , λC) on
Γ, we define a linear functional

ℓ(y, λ) := 〈(δy, δλ)|(y, λ)〉Ĥ , (32)

and subsequently solve the corrector equation

G(yC , λC) :=







F (yC ; λC)

ℓ(yC , λC) − ℓ(y0, λ0) − h





 = 0, (33)

where the predictor (yP , λP ) serves as an initial approximation for the solution
of this nonlinear system. Note that (33) is equivalent to the requirement that
(yC , λC) ∈ Γ and the correction (yC , λC)−(yP , λP ) is orthogonal to the tangent
vector (δy, δλ). One step of our procedure starting at (y0, λ0) is illustrated in
Figure 2.

To ensure that our pathfollowing procedure advances in the right direction,
and does not turn back at some point during our computation, we have to
define a criterion for the choice of the direction of the tangent vector. It turns
out that the requirement

ℓ(δy0, δλ0) = 〈(δy, δλ)|(δy0, δλ0)〉Ĥ > 0 (34)

serves this purpose, where (δy0, δλ0) is the tangent vector used in the previous
step of the pathfollowing procedure.

Note that with assumption (A5) and the definition (32) we may conclude that

‖ℓ‖Ŷ ′ ≤ C1, (35)
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λ

φ(
y)

(y
0
,λ

0
)(y

0
,λ

0
)(y

0
,λ

0
)

(y
C

,λ
C

)

(y
P
,λ

P
)

Fig. 2. One step of the pathfollowing procedure.

where ‖ · ‖Ŷ ′ denotes the norm on the dual space of Ŷ .

Next, we will demonstrate that the equations (29), (30) and (33) defining our
pathfollowing procedure are isolatedly solvable and well-posed. To this end,
we quote the following results proven in [5], see also [6]:

Theorem 8 Assume that (A1)–(A5) hold. Then there exist positive constants
ρ, ε, h0, such that the following assertions hold for all s ∈ [a, b], (y, λ) ∈
Tρ(Γ), h ≤ h0 and (v, η) ∈ Z × R with ‖v‖Z + η2 ≤ ε:

(1) The equation







Fy(y, λ)δy + Fλ(y, λ)δλ

‖(δy, δλ)‖2
Ĥ
− 1





 = 0 (36)

has a solution which is unique except for the sign and depends Lipschitz-
continuously on (y, λ).

(2) The equation

G(yC , λC) =







F (yC , λC)

ℓ(yC , λC) − ℓ(y0, λ0) − h





 =







v

η





 (37)

has an isolated solution if the functional ℓ satisfies

|ℓ(δy, δλ)| ≥ c1‖(δy, δλ)‖Ŷ (38)
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with a constant 0 < c1 ≤ C1, cf. (35). The inverse of the linearization of
G at (yC , λC) is uniformly bounded.

(3) If ‖(y, λ)− (y(s), λ(s))‖Ŷ ≤ ρ for some a < s < b, then (yC , λC) ∈ Tρ(Γ).

Now, we reformulate the assumptions necessary for the last theorem to hold
in terms of our singular boundary value problem (1), (2).

For simplicity, assume here that our problem has the form

T (t)z′(t) = f(t, z(t); λ) := (M + A(t))z(t) + T (t)f̂(t, z(t); λ), (39)

b(z(0), z(1)) = 0, (40)

with T (t), M defined in (6) and (10), respectively, and the continuity require-
ment incorporated into b in the form (21). In this case, for all (z, λ) ∈ Γ we
can define the operator L analogously as in §2.1 using the differential expres-
sion l from (18). Now, Y is the Banach space of all z ∈ C[0, 1] for which
Tz′ ∈ C[0, 1], and Z = C[0, 1] × R

n. Assumption (A5) holds, since Y can be
continuously imbedded into the Hilbert space L2(0, 1), and

〈y|y〉 =

1
∫

0

|y(t)|2 dt ≤ ‖y‖2
∞

≤ ‖y‖2
L
.

We assume that the parameter-dependent problem (39), (40) satisfies (A1).

(A2) holds if the right-hand side f of (39) is continuously differentiable w. r. t.
z, λ on

{(t, z(t; s), λ(s)) + (0, v, η) : s ∈ [a, b], t ∈ [0, 1], |v| ≤ ρ0, |λ| ≤ ρ0},

and b from (40) is continuously differentiable w. r. t. both variables on

{(z(0; s), z(1; s)) + (v1, v2) : s ∈ [a, b], |v1| ≤ ρ0, |v2| ≤ ρ0},

and these partial derivatives of f, b are bounded and Lipschitz-continuous for
some ρ0 > 0.

(A3) holds if the linearization of the problem (39), (40) w. r. t. z (see (22)–
(24)) at (z, λ) ∈ Γ is Fredholm with index 0. Sufficient conditions for a singular
boundary value problem to have this property have been given in Theorem 3
and Theorem 4.

Finally, (A4) is satisfied if for all (z, λ) ∈ Γ and all (g, γ) ∈ Z the linear
problem

T (t)v′(t) − G(t)v(t) − c(t)η = g(t),
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B0v(0) + B1v(1) = γ,

with G, B0, B1 defined in (25) and c(t) := fλ(t, z(t); λ), has a solution (v, η) ∈
Ŷ . If we rewrite this problem by letting η = η(t) and add the trivial equation
η′(t) = 0, this equation can be analyzed within the framework given in §2.1.

3.1 Numerical Solution

Here, we briefly discuss the numerical realization of the pathfollowing strategy
described above. As the basic solution method, we use polynomial collocation.
It has been demonstrated in [10] that this method is well suited for the so-
lution of boundary value problems with an essential singularity and rapidly
convergent for this problem class, see also [1], [11], [12]. Our Matlab imple-
mentation is designed for the solution of boundary value problems of mixed
order (also enabling the treatment of purely algebraic equations and solution
for unknown parameters) in an implicit formulation. To enhance the efficiency
of the solver, we have added an adaptive mesh selection strategy aiming at
the equidistribution of the global error, which is approximated by an asymp-
totically correct error estimate. For a description of the collocation code and
a large number of numerical examples, see [2]. The basic principles of our col-
location solver, error estimate and mesh adaptation are described for example
in [10], [13], [14], and [15]. We do not go into details of our numerical solution
routines here.

Now, assume that we have already computed a point (y∆, λ∆) ≈ (y(s), λ(s))
on a mesh ∆, which is sufficiently close to Γ for our desired accuracy (as
guaranteed by our a posteriori error estimation procedure and adaptive mesh
selection). Then, due to Theorem 8 the linear equation (36) has a unique so-
lution. If we discretize (36) on the mesh ∆, this represents a set of collocation
equations with an additional algebraic constraint, which can be treated by
our solver, thus yielding an approximation (δy∆, δλ∆) to the tangent. Subse-
quently, we can solve (33) on the same mesh ∆. Since the solution of (33) is
isolated, this can again be computed numerically if the initial approximation
is good enough. This is the case if the tangent direction is sufficiently accu-
rate and the step-size h used to define the predictor (31) is small enough. In
the solution of (33), we have to ensure sufficient accuracy by adapting the
mesh according to our tolerances. Note that whenever the mesh is refined,
the tangent direction should be recomputed on the new mesh. This poses no
problem, since the data (y∆, λ∆) used to define (36) can be evaluated at ar-
bitrary points. To recapitulate, due to the results given in Theorem 8 it is
possible to implement our pathfollowing procedure based on our collocation
solver, where the computational problems are well-defined if the computations
are performed with sufficient accuracy and the step-size used for the predictor
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points (yP , λP ) is small enough. Moreover, the computational problems are
well-posed due to Theorem 8.

4 Numerical Results

As a first example to demonstrate that our pathfollowing procedure works
reliably in conjunction with the integrated mesh-adaptation, we compute a
solution branch for a well-known, regular problem from chemistry which de-
scribes the catalytic reaction in a flat particle [16],

z′′(t) = λz(t) exp

(

8(1 − z(t))

1 + 0.4(1 − z(t))

)

, t ∈ [0, 1], (41)

z′(0) = 0, z(1) = 1. (42)

We start for λ = 0 at a solution computed on a grid containing 11 equidistant
mesh points and three Gaussian collocation points in each subinterval. Our
goal is to compute a solution branch Γ with two turning points, see Figure 3.
At each point of Γ, we prescribe a mixed error tolerance with absolute and
relative tolerance 1e−6. The mesh is adapted automatically in each step, where
both an increase and a decrease in the number of points is possible according
to the difficulty of meeting the tolerance requirement. In Figure 3 we show the
value of z(0) in dependence of the parameter λ. At the points marked with a
cross in Figure 3, we plot the solution profile z(t) and the mesh automatically
generated by our adaptive procedure in Figure 4. We observe that the meshes
seem to be reasonably adapted to the difficulty of the solution, which features
an increasingly steep layer as the computation proceeds.

To demonstrate that indeed our pathfollowing strategy also works for singular
boundary value problems and generates meshes adapted to the solution profile,
we consider an example from [17],

δ

(

β′′(t) + β′(t) cot(t) + cot2 t
cos(t − β(t))

cos t

sin(t − β(t)) − sin t

cos t

− 0.3
cos(t − β(t)) − cos t

sin t

)

= −Ψ(t)
sin(t − β(t))

sin t
− 4λ

cos(t − β(t))

sin t

t
∫

0

cos(η − β(η)) sin η dη, (43)

δ

(

Ψ′′(t) + Ψ′(t) cot t − Ψ(t)

(

cot2(t)
cos2(t − β(t))

cos2 t
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Fig. 3. Values of z(0) along a solution branch of (41), (42).
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Fig. 4. Solution profiles and automatically selected meshes at the points marked in
Figure 3 along the solution branch of (41), (42).

− 0.3(1 − β′(t))
sin(t − β(t))

sin t

))

=
cos(t − β(t)) − cos t

sin t
+ δ



−4λ cot t

t
∫

0

cos(η − β(η)) sin η dη
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·

(

sin(2(t − β(t)))

sin(2t)
+ 0.3(1 − β′(t))

cos(t − β(t))

cos t

)

+4λ
(sin2 t sin(t − β(t)))′

sin t

)

, (44)

where δ = 0.00369. The boundary conditions are

β(0) = β(π) = 0, Ψ(0) = Ψ(π) = 0. (45)

To treat the integral occurring in (43) and (44) in a form suitable for our code,
we introduce the auxiliary variable

i(t) =

t
∫

0

cos(η − β(η)) sin η dη

and augment our system with the equations

i′(t) = cos(t − β(t)) sin t, (46)

i(0) = 0. (47)

We follow the path Γ shown in Figure 5, starting at λ = 0. For numerical
reasons it was necessary to choose a fixed, uniform mesh (stepsize=0.01, 5
Gaussian points) to pass the first turning point, because the desired solution
branch is very easy to miss in that regime. At λ ≈ 0.6 the strategy is changed
and an absolute and relative tolerance of 1e−8 is prescribed, whence the adap-
tive mesh refinement can be used satisfactorily to produce meshes adapted to
the solution behavior. Figure 5 shows the maximum norm of the first solution
component, ‖β‖∞ along the path Γ. The crosses indicate points of Γ where the
solution profiles of β and Ψ are plotted in Figure 6, together with the meshes
generated by our adaptive mesh selection procedure. A comparison with [17,
Figure 10] shows that the solution is computed reliably and obviously the
meshes are denser where the solution varies more strongly.

5 The Complex Ginzburg-Landau Equation

As a further numerical example to demonstrate that our pathfollowing strat-
egy can be successfully applied to practically relevant problems, we consider
the complex Ginzburg-Landau equation (CGL)
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i
∂u

∂t
+ (1 − iε)∆u + (1 + iδ)|u|2u = 0, t > 0, (48)

u(x, 0) = u0(x), x ∈ R
d, (49)

which arises as a model in a variety of problems from physics, biology and
chemistry. These include nonlinear optics, models of turbulence, Rayleigh-
Benard convection, superconductivity, superfluidity, Taylor-Couette flow and
reaction-diffusion systems, see for example [18]. Henceforth, we will consider
the case d = 3 and restrict ourselves to radially symmetric solutions.

Equation (48) is a perturbed version of the nonlinear Schrödinger equation
(NLS) which takes the same form with ε = δ = 0. It has been conjectured
that both equations have blow-up solutions which become singular in finite
time and obey the same scaling laws as the differential equation, see [7], [8],
[19], [20]. After a similarity reduction (see for example [1], [7], [11]), the self-
similar solution profile can be computed from the nonlinear ODE for τ > 0,

(1 − iε)
(

y′′(τ) +
2

τ
y′(τ)

)

− y(τ) + ia(τy(τ))′ + (1 + iδ)|y(τ)|2y(τ) = 0, (50)

with the boundary conditions

y′(0) = 0, ℑy(0) = 0, lim
τ→∞

τy′(τ) = 0. (51)

In addition to the solution function y, the unknown (non-negative) parameter
a is also to be determined from this system. It was demonstrated in [8], [19]
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Fig. 6. Solution profiles and automatically selected meshes at the points marked in
Figure 5 along the solution branch of (43)–(47).

that the problem (50), (51) corresponding to the NLS has a stable, monotone
solution and a plethora of unstable non-monotone (“multi-bump”) solutions.
It was found that the CGL has corresponding solution branches when the per-
turbation parameters ε, δ are varied, see [7]. In addition, stable non-monotone
solutions exist which can be obtained by pathfollowing past a turning point,
see [7] and [20]. We will demonstrate that a transformation of (50) to a bound-
ary value problem with an essential singularity on the interval [0, 1] and solu-
tion by our Matlab implementation of the pathfollowing strategy described in
§3 can serve to successfully compute the solution branches across the turning
points.

In [2], we use transformations similarly as in [1], [11] to derive the singular
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boundary value problem 3

z′(τ) =







M(τ)
τ

0

0 A(τ)
τ3





 z(τ) +







f(τ, z1(τ), z2(τ))

g(τ, z3(τ), z4(τ))





 , (52)

where

M(τ) =







0 τ

τ 1+εa+i(ε−a)
1+ε2 −2 + τ εa−ia

1+ε2





 ,

f(τ, z) =







0

εδ−1−i(ε+δ)
1+ε2 z1|z1|

2





 ,

A(τ) =







0 −τ 2

−1+εa+i(ε−a)
1+ε2

ia−εa
1+ε2 + τ 2





 ,

g(τ, z3, z4) =







0

− 1
τ3

εδ−1−i(ε+δ)
1+ε2 z3|z3|

2





 .

Additionally, we prescribe the boundary conditions

z2(0) = 0, ℑz1(0) = 0, z1(1) = z3(1), z2(1) = z4(1), z4(0) = 0. (53)

In order to discuss the well-posedness of the resulting singular boundary value
problem, we have to consider the spectrum of the matrices M(0) and A(0), see
[3], [9]. The same type of analysis was performed for the NLS in [1] and [11].
There, it was found that (53) constitute necessary and sufficient conditions for
the existence of an isolated, continuous solution of the problem. For ε 6= 0, the
analysis proceeds similarly: The eigenvalues of M(0) are λ1 = 0 and λ2 = −2.
Thus, the condition z2(0) = 0 is necessary and sufficient for a continuous
solution to exist. The eigenvalues of A(0) are λ3 = 0 and λ4 = ia−εa

1+ε2 . Since the
latter has a negative real part for ε 6= 0, z4(0) = 0 is an admissible boundary
condition. Altogether, we conclude that the boundary conditions (53) yield a
well-posed boundary value problem for (52).

Now, we give some numerical results computed by our pathfollowing strategy
described in §3. A full account of our experiments is given in [2]. Due to the

3 In [1], [11] a slightly different transformation was used which resulted in a dif-
ferent matrix M(τ). Since the eigenstructure of M(0) remains unaltered by our
modification, all conclusions remain valid.
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difficulty of the problem, we restricted ourselves to fixed meshes adapted to the
solution profile in order to obtain satisfactory results. First, we consider the
case where δ = 0 and ε is varied. This case is also treated in [7], so a comparison
can serve to validate our results. Figure 7 shows the values of the unknown
parameter a and of y(0) = z1(0) along a solution branch in dependence of
ε. The branch bifurcates from a ‘multi-bump’ solution of the NLS, which is
also computed in [8] and referred to as the ‘(0,1) solution branch’ there. The
results correspond well with [7, Figure 1.1]. The turning point was numerically
found to be located at approximately ε = 0.24359, which also agrees with the
results from [7].
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Fig. 7. Values of a (left) and y(0) (right) along a branch bifurcating from the ‘(0,1)
solution branch’ of the NLS.

More interestingly, our method could also serve to compute solution branches
not discussed in the literature. Figure 8 shows the results obtained when start-
ing from the ‘(1,3)’ solution of the NLS. This branch has a more intricate pro-
file, the value of a apparently features three turning points when considered
as a function of ε and is non-monotonous along the branch. This is no contra-
diction, however, since the profile of y(0) shows that the intersections in the
graph for a do not actually represent bifurcation points. Here, we encounter
an intriguing phenomenon: By following the present solution branch back to
the value ε = 0, we obtain a real-valued solution of the NLS, where a = 0.
This solution profile is given in Figure 9.
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Fig. 8. Values of a (left) and y(0) (right) along a branch bifurcating from the ‘(1,3)
solution branch’ of the NLS.

To conclude the discussion of the complex Ginzburg-Landau equation, we
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Fig. 9. Real solution of the NLS computed by pathfollowing starting from the ‘(1,3)
solution branch’.

show that our solution method is also useful in determining solution behavior
in situations which to our knowledge have not yet been treated in the litera-
ture. We set δ = ε and compute solution branches in dependence of this new
parameter. The results obtained when starting from the ‘(0,1)’ solution of the
NLS are given in Figure 10. The qualitative behavior is similar as in the case
δ = 0. However, the turning point is encountered for smaller values of ε, cf.
Figure 7.
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Fig. 10. Values of a (left) and y(0) (right) along a branch bifurcating from the ‘(0,1)
solution branch’ of the NLS, δ = ε.

Conclusions

In this paper, we have discussed the application of a pathfollowing strat-
egy based on pseudo-arclength parametrization to the solution of parameter-
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dependent singular boundary value problems. We could formulate necessary
conditions for the well-posedness of the procedure when a singularity is present,
and demonstrated that an implementation of the method based on polynomial
collocation with adaptive mesh refinement could serve to solve practically rel-
evant problems. Particularly, the computation of self-similar blow-up solutions
of the complex Ginzburg-Landau equation was successful. This was illustrated
by comparisons with results given in the literature, but also by computing so-
lution branches in hitherto disregarded situations.

The advantages of our solution approach are manifold: The transformation to a
finite interval enables to use efficient mesh selection strategies which automat-
ically adapt the mesh according to an a posteriori error estimate. The solution
routines used for the treatment of the singular boundary value problems are
justified theoretically and experimentally. Our collocation solver can also be
applied directly to problems of mixed order in an implicit formulation, which
yields a favorable conditioning of the collocation equations [21]. Consequently,
equations with an unknown parameter can also be solved effectively.
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