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Abstract

Our aim is to provide an open domain Matlab code bvpsuite for the efficient numerical solution of

boundary value problems (BVPs) in ordinary differential equations (ODEs). Motivated by applica-

tions, we are especially interested in designing a code whose scope is appropriately wide, including fully

implicit problems of mixed orders, parameter dependent problems, problems with unknown parame-

ters, problems posed on semi-infinite intervals, eigenvalue problems (EVPs) and differential algebraic

equations (DAEs) of index 1. Our main focus is on singular BVPs in which singularities in the dif-

ferential operator arise. We first shortly recapitulate the analytical properties of singular systems and

the convergence behavior of polynomial collocation used as a basic solver in the code for both singular

and regular ODEs and DAEs. We also discuss the posteriori error estimate and the grid adaptation

strategy implemented in our code. Finally, we describe the code structure, input/output parameters,

and present the performance of the code. We provide numerical examples to help using our software

package, especially the graphical user interface (GUI).
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1 Introduction

In the introduction, we concentrate on the theoretical results available for problems with singularities.

Let us consider the numerical solution of singular BVPs of the form

z′(t) =
M(t)

tα
z(t) + f(t, z(t)), t ∈ (0, 1], (1a)

B0z(0) + B1z(1) = β, (1b)

where α ≥ 1, z is an n-dimensional real function, M is a smooth n× n matrix and f is an n-dimensional

smooth function on a suitable domain. B0 and B1 are constant matrices which are subject to certain

restrictions for a well-posed problem. (1a) is said to feature a singularity of the first kind for α = 1,

while for α > 1 the problem has a singularity of the second kind, also commonly referred to as essential

singularity. The analytical properties of problem (1) have been discussed in [12], [14] with a special focus

on the most general boundary conditions which guarantee well-posedness of the problem. When analyzing

singular problems, we first note that their direction field is very unsmooth, especially close to the singu-

lar point. Consequently, depending on the spectrum of the matrix M(0), we can encounter unbounded

contributions to the solution manifold, such that z ∈ C(0, 1]. However, irrespective of the eigenvalues of

M(0), by posing proper homogeneous initial conditions, we can extend the above solution to z ∈ C[0, 1].

It also turns out that in such a case the condition M(0)z(0) = 0 must hold. For singular problems the

solution’s smoothness depends not only on the smoothness of the inhomogeneity f but also on the size

of real parts of the eigenvalues of M(0). To compute the numerical solution of (1) we use polynomial

collocation. Our decision to use polynomial collocation was motivated by its advantageous convergence

properties for (1), while in the presence of a singularity other high order methods show order reductions

and become inefficient. In [6], [13], and [21] convergence results for collocation applied to problems with

a singularity of the first kind, α = 1, were shown. The usual high-order superconvergence at the mesh

points does not hold in general for singular problems, however, the uniform superconvergence is preserved

(up to logarithmic factors), see [21] for details.

Motivated by these observations, we have implemented the present Matlab code. We stress, that for

bvpsuite one singular point at either endpoint or two singular points at both endpoints of the interval

of integration are admissible. The program can by applied directly to such singular BVPs and no pre-

handling is necessary. Otherwise a reformulation of the problem may be necessary, cf. (25) and (26). For

higher efficiency, we provide an estimate of the global error and adaptive mesh selection. Transformation

of problems posed on semi-infinite intervals to a finite domain makes the solution of such problems also

accessible to our methods. All these algorithmic components have been integrated into the code. While the

first version of the code, sbvp, solves explicit first order ODEs [4], the present version, bvpsuite1.1, can

be applied to arbitrary order problems also in implicit formulation. Consequently, differential algebraic

equations [19] are also in the scope of the code. We have also implemented a module for EVPs in which we

recast the EVP as an appropriately defined BVP. Moreover, a pathfollowing strategy extends the scope

of the code to parameter dependent problems. For special problem classes, such as singularly perturbed

models, systems of DAEs, parameter dependent problems and EVPs very good and efficient software

already exists. We have not performed comparisons with those codes. However, we assess the properties
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of bvpsuite when the code is applied to singular BVPs by comparing it with other, well-established

software for BVPs in ODEs. Numerical simulation of relevant applications illustrates the scope and the

performance of the implementation.

2 Basic Solver in the Matlab Code bvpsuite

The code is designed to solve systems of differential equations of arbitrary mixed order including zero1,

subject to initial or boundary conditions,

F
(
t, p1, . . . , ps, z1(t), z

′

1(t), . . . , z
(l1)
1 (t), . . . , zn(t), z′n(t), . . . , z(ln)

n (t)
)

= 0, (2a)

B
(
p1, . . . , ps, z1(c1), . . . , z

(l1−1)
1 (c1), . . . , zn(c1), . . . , z

(ln−1)
n (c1), . . . , (2b)

z1(cq), . . . , z
(l1−1)
1 (cq), . . . , zn(cq), . . . , z

(ln−1)
n (cq)

)
= 0, (2c)

where the solution z(t) = (z1(t), z2(t), . . . , zn(t))T , and the parameters pi, i = 1, . . . , s, are unknown. In

general, t ∈ [a, b] or t ∈ [a,∞)2. Moreover, F : [a, b] × R
s × R

l1 × · · · × R
ln → R

n and B : R
s × R

ql1 ×

· · · × R
qln → R

l+s, where l :=
∑n

i=1 li. Note that boundary conditions can be posed on any subset of

distinct points ci ∈ [a, b], with a ≤ c1 < c2 < · · · < cq ≤ b. For the numerical treatment, we assume that

the boundary value problem (2) is well-posed and has a locally unique solution z.

τ0 . . . τi

. . . ti,j . . .

τi+1 . . . τN︸ ︷︷ ︸

h
Figure 1: The computational grid

In order to find a numerical solution of (2) we consider meshes

∆ := (τ0, τ1, . . . , τN ), (3)

with

hi := τi+1 − τi, Ji := [τi, τi+1], i = 0, . . . , N − 1, τ0 = a, τN = b. (4)

partitioning the interval [a, b]. Every subinterval Ji contains m collocation points ti,j , j = 1, . . . , m such

that ti,j = τi + ρjh, j = 1, . . . , m, with

0 < ρ1 < ρ2 · · · < ρm < 1, (5)

see Figure 1. To avoid a special treatment of the possible singular points t = a and t = b, cf. [10], grids

with ρ1 > 0 and ρm < 1, e.g. Gaussian points, inner equidistant points, are used. Let Pm be the space of

piecewise polynomial functions of degree ≤ m, which are globally continuous in [a, b]. In every subinterval

Ji we make an ansatz Pi,k ∈ Pm+lk−1 for the k-th solution component zk, k = 1, . . . , n, of the problem

(2). In order to compute the coefficients in the ansatz functions we require that (2) is satisfied exactly

1This means that differential-algebraic equations are also in the scope of the code.
2For the extension to unbounded domains, see Section 6.1.
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at the collocation points. Moreover we require that the collocation polynomial p(t) := Pi(t), t ∈ Ji, is a

globally continuous function on [a, b] with components in C li−1[a, b], i = 1, . . . , n, and that the boundary

conditions hold. All these conditions imply a nonlinear system of equations for the unknown coefficients

in the ansatz function. For more details see [16].

For the representation of the collocation polynomial p we use the Runge-Kutta basis, see [2], and solve the

resulting nonlinear system for the coefficients in this representation by a Newton iteration implemented

in the subroutine ‘solve_nonlinear_sys.m’ from the Matlab code sbvp, cf. [4], which is based on the

‘fast frozen’ Newton method.

3 Error Estimate for the Global Error of the Collocation

Our estimate for the global error of the collocation solution is a classical error estimate based on mesh

halving. In this approach, we compute the collocation solution at N points on a grid ∆ with step sizes

hi and denote this approximation by p∆(t). Subsequently, we choose a second mesh ∆2 where in every

interval Ji of ∆ we insert two subintervals of length hi/2. On this mesh, we compute the numerical

solution based on the same collocation scheme to obtain the collocating function p∆2(t). Using these two

quantities, we define

E(t) :=
2m

1 − 2m
(p∆2(t) − p∆(t)) (6)

as an error estimate for the approximation p∆(t). Assume that the global error δ(t) := p∆(t)− z(t) of the

collocation solution can be expressed in terms of the principal error function e(t),

δ(t) = e(t)hm
i + O(hm+1

i ), t ∈ Ji, (7)

where e(t) is independent of ∆. Then obviously the quantity E(t) satisfies E(t) − δ(t) = O(hm+1). This

holds for problems with a singularity of the first kind and for regular problems. However, numerical

results reported in [5] indicate that in case of an essential singularity (7) reads

δ(t) = e(t)hm
i + O(hm+γ

i ), t ∈ Ji, (8)

with γ < 1. Generally, estimates of the global error based on mesh halving work well for both problems

with a singularity of the first kind and for essentially singular problems [5]. Since they are also applicable

to higher-order problems and problems in implicit form (as for example DAEs) without the need for

modifications, we have implemented this strategy in our code bvpsuite.

4 Adaptive Mesh Selection

The mesh selection strategy implemented in bvpsuite was proposed and investigated in [23]. Most modern

mesh generation techniques in two-point BVPs generate a smooth function mapping a uniform auxiliary

mesh to the desired nonuniform mesh. In [23] a new system of control algorithms for constructing a mesh

density function φ(t) is described. The local mesh width hi = τi+1 − τi is computed as hi = ǫN/ϕi+1/2,

where ǫN = 1/N is the accuracy control parameter corresponding to N − 1 interior points, and the

positive sequence Φ = {ϕi+1/2}
N−1
i=0 is a discrete approximation to the continuous density function φ(t),
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representing the mesh width variation. Using an error estimate, a feedback control law generates a new

density from the previous one. Digital filters are employed to process the error estimate as well as the

density.

For BVPs, an adaptive algorithm must determine the sequence Φ[ν] in terms of problem or solution

properties. True adaptive approaches equidistribute some monitor function, a measure of the residual

or error estimate, over the interval. As Φ[ν] will depend on the error estimates, which in turn depend

on the distribution of the mesh points, the process of finding the density becomes iterative. In order to

be able to generate the mesh density function, we decided to use the residual r(t) to define the monitor

function. The values of r(t) are available from the substitution of the collocation solution p(t) into the

analytical problem (2). In the mesh adaptation routine implemented in the code, finding the optimal

density function, is separated from finding the proper number of mesh points. We first try to provide a

good density function Φ on a rather coarse mesh with a fixed number of points. For each density profile

in the above iteration, we then estimate the number of mesh points necessary to reach the tolerance.

When the decrease in this number is appropriately small, the density function is considered satisfactory.

Using this density functions the problem is solved with the necessary number of mesh points to reach the

tolerance.

5 Eigenvalue Problems for Ordinary Differential Equations

Eigenvalue problems for ODEs may have different formulations. We consider linear problems (9a), where

the linear differential operator is denoted by L, subject to homogeneous boundary conditions (9b),

(Lz)(t) = λz(t), t ∈ [a, b], (9a)

B0z(a) + B1z(b) = 0. (9b)

Problems (9) can also be posed on semi-infinite intervals [a,∞). The aim is to determine values for the

eigenparameter λ for which the BVP (9) has non-trivial solutions, so-called eigenfunctions.

In [3] it has been demonstrated how a code designed to solve BVPs in ODEs can be used to treat eigenvalue

problems. The method can be applied in the case that for each eigenvalue the corresponding eigenspace

is of dimension one. This requirement is not very restrictive, since it is most commonly satisfied in

applications. To illustrate the approach proposed in [3] we consider a singular first order system of the

form

z′(t) −
M(t)

tα
z(t) = λz(t), t ∈ (0, 1], (10a)

B0z(0) + B1z(1) = 0. (10b)

where the matrix M(t) is assumed to be sufficiently smooth and α ≥ 1. In case that for a given eigenvalue

the corresponding eigenspace is of dimension one, the normalization condition,

x(t) :=

∫ t

0
|z(τ)|2dτ, x(1) = 1,

ensures the uniqueness of the eigenfunction. We now augment problem (10) by the trivial ODE

λ′(t) = 0, (11)
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the additional equation derived from the normalization condition

x′(t) = |z(t)|2, (12)

and two new boundary conditions

x(0) = 0, x(1) = 1, (13)

which yields a ‘standard’ BVP with the unknowns (λ, z(t), x(t)). Here, |z(t)|2 :=
∑n

k=1 |zk(t)|
2. For

further theoretical results on the properties of the solution of (10)–(13), see [3]. After the described

reformulation of the problem any suitable numerical method for singular BVPs in ODEs can be used. The

problem is now treated as a standard BVP. As mentioned before the method applied here is polynomial

collocation which has proven to be a robust technique for solving BVPs with singularities (cf. [2]). While

in [3] theoretical results supporting the described solution approach are only provided for linear first

order problems, extensive test runs (cf. [28]) show that this method provides reliable results also for more

general situations. Using bvpsuite we can solve eigenvalue problems (9) of arbitrary order.

6 Pathfollowing and Problems on Semi-Infinite Intervals

In this section, we discuss two further features of bvpsuite which allow to cover additional types of

difficulties important for a wide range of applications.

6.1 Pathfollowing Strategy

Our code realizes a pathfollowing strategy to follow solution branches in dependence of a known parameter.

To describe the strategy in general terms, we consider (1) as a parameter-dependent operator equation

F (y; λ) = 0, (14)

where F : Y ×R → Z, and Y, Z are Banach spaces (of possibly infinite dimension). Pathfollowing in this

general setting has been discussed in detail in [31].

We are particularly interested in computing solution branches Γ with turning points. By definition, in a

turning point the solution of (14) constitutes a local maximum (or minimum) of λ, and consequently is not

locally unique as a function of the parameter λ. The situation is illustrated in Figure 2. There, we plot

some functional of the solution against the parameter λ. The arrows indicate the turning points. Thus,

in a turning point we cannot parametrize Γ as a function of λ. However, it is sufficient for our procedure

that a tangent is uniquely determined at all points of Γ. This is guaranteed by realistic assumptions

formulated for our problem in [20].

Now, we proceed by describing our pathfollowing strategy. As explained in [20], our assumptions on

the problem ensure that at a point (y0, λ0) ∈ Γ, a tangent can be uniquely determined up to the sign.

Additional criteria determine how to choose the direction. On the tangent just computed, a predictor

(yP , λP ) is chosen for the computation of the next point on Γ, and finally a corrector equation is solved

yielding (yC , λC). One step of our procedure starting at (y0, λ0) is illustrated in Figure 2.

To demonstrate that our pathfollowing strategy indeed works for singular BVPs and generates meshes

adapted to the solution profile, in [20] we considered an example from [11], describing the buckling of a
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Figure 2: A solution branch with two turning points (left), one step of the pathfollowing procedure (right).

spherical shell. We followed the solution path Γ shown in Figure 3, starting at λ = 0. Figure 3 shows the

maximum norm of the first solution component, ‖β‖∞ along the path Γ. The crosses indicate points of

Γ where the solution profiles of β and the second solution component Ψ are plotted in Figure 4, together

with the meshes generated by our adaptive mesh selection procedure. A comparison with [11, Figure 10]

shows that the solution is computed reliably and obviously the meshes are denser where the solution varies

more rapidly.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

4

λ

||β
|| ∞

0.98 1 1.02 1.04

0

0.05

0.1

Figure 3: Values of ‖β‖∞ along a solution branch.

6.2 Boundary Value Problems Posed on a Semi-Infinite Interval

Problems posed on semi-infinite intervals, t ∈ [a,∞), a ≥ 0, are also in scope of bvpsuite. We always

try to work on a finite domain, in order to exploit our efficient and robust mesh selection strategy. As a
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Figure 4: Solution profiles and automatically selected meshes at the points marked in Figure 3 along the solution

branch.

possible special case, let us consider the differential equation

x′(τ) = τβf(τ, x(τ)), τ ∈ [a,∞), β ∈ R.

For a > 0, we use the transformation t := a
τ , z(t) := x

(
1
τ

)
to obtain

z′(t) = −
1

tβ+2
f(1/t, z(t)), t ∈ (0, 1].

For a = 0, the interval [0,∞) is split into [0, 1] and [1,∞) and then the above transformation is applied

to the semi-infinite interval [1,∞). Moreover, additional matching conditions are imposed to ensure

the smoothness of the solution at the splitting point t = 1. Note that for β > −1 it follows β +

2 > 1 and therefore, an essential singularity arises in general, which however can be handled by the

collocation method, error estimation procedure and adaptive mesh refinement. Using this approach

we avoid mesh grading on long intervals and introducing additional perturbations due to the fact that

boundary conditions at infinity are posed at some point L < ∞, L large. The above strategy has been

successfully applied in a variety of relevant applications, cf. [8], [9], and [17].

The automatic interval reduction is now implemented in bvpsuite. The transformation can be applied to

equations of arbitrarily high order. However, the boundary conditions at infinity have to be of Dirichlet
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type when the transformation is carried out automatically. Otherwise, a manual transformation to a finite

interval is recommended before running bvpsuite. In this case, further analysis of the solution and its

derivatives near infinity is often necessary, cf. [28].

7 The Package

The current version of the package is bvpsuite1.1 (Release June 2010).

7.1 Installation

Create an empty folder and copy the files of bvpsuite1.1.zip into it. Execute Matlab as a user with

rw-permission on that folder. The code has been tested for the Matlab versions 7.1–7.2 (R2006a),

R2007b (under Windows), R2008b (under Windows) R2009b (under Unix). The code should also work

for later versions of Matlab.

7.2 Files in this Package

The package bvpsuite contains the following m-files

• bvpsuite.m – main routine to start the GUI.

• equations.m – contains the most important parts of the code, e.g. setting up the nonlinear system

of equations for the Newton solver.

• solve_nonlinear_sys.m – contains the Newton solver.

• run.m – manages routine calls.

• errorestimate.m – provides error estimates.

• meshadaptation.m – runs the automatic grid control.

• initialmesh.m – provides the initial data for the Newton solver.

• pathfollowing.m – realizes the pathfollowing routine.

• settings.m – opens a window to set parameters.

• sbvpset.m – sets the options for the Newton solver.

• EVPmodule.m – carries out the reformulation of an EVP to a BVP.

• trafomodule.m – automatically transforms a problem posed on a semi-infinite interval [a,∞), a ≥ 0

to a finite domain [0, 1].

• backtransf.m – back-transforms the solution to the interval [a, L] ⊂ [a,∞), L large.

• plot_results.m – provides graphical solution output.

• plotrange.m – defines settings for a solution plot on a subinterval [a, L] ⊂ [a,∞), L large.

• err.m – contains error messages.
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7.3 Test Examples

In order to demonstrate the basic features of the GUI, we consider the following examples. Our main

focus is on singular problems 7.2, 7.5, and 7.6.

Example 7.1 We solve a singularly perturbed BVP on the interval −1 ≤ t ≤ 1,

εz′′(t) + z′(t) − (1 + ε)z(t) = 0, (15a)

z(−1) = 1 + e−2, z(1) = 1 + e
−2(1+ε)

ε , (15b)

where ε = 10−4.

Example 7.2 We solve a system of two singular differential equations posed on the interval 0 < t ≤ 1,

z′′1 (t) +
3

t
z′1(t) = −µ2z2(t) − 2γ + z1(t)z2(t), (16a)

z′′2 (t) +
3

t
z′2(t) = µ2z1(t) −

1

2
z2
1(t), (16b)

subject to the boundary conditions

z′1(0) = 0, z′2(0) = 0, z1(1) = 0, z′2(1) + (1 − ν)z2(1) = 0,

where ν = 1
3 , µ2 = 81 and γ = 1000.

Example 7.3 We demonstrate how to run the pathfollowing strategy by means of the following parameter

dependent second order problem,

z′′(t) = λz(t) exp

(

8(1 − z(t))

1 + 2
5(1 − z(t))

)

(17)

with the boundary conditions

z′(0) = 0, z(1) = 1,

where 0 ≤ t ≤ 2. Here, λ is not an eigenvalue but a parameter. Moreover, the second boundary condition

is posed within the interval of integration.

Example 7.4 Here, we treat an important special case of a mixed order system, a linear index-1 system

of DAEs,

t

(

z′1(t)

z′2(t)

)

+ B11

(

z1(t)

z2(t)

)

+ B12

(

z3(t)

z4(t)

)

=

(

g1(t)

g2(t)

)

, (18a)

B21

(

z1(t)

z2(t)

)

+ B22

(

z3(t)

z4(t)

)

=

(

g3(t)

g4(t)

)

, (18b)

posed on the interval 0 < t ≤ 1, where B11, B12, B21, B22 ∈ R
2×2, g1(t), g2(t) ∈ C[0, 1] and the matrix B22

is nonsingular. The matrices are given as

B11 =

(

−11 −18

12 19

)

, B12 =

(

3 −1

−2 1

)

, B21 =

(

1 1

2 3

)

, B22 =

(

1 0

0 1
5

)

,
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and the right-hand side reads

(

g1(t)

g2(t)

)

=

(

temt(m sin(t) + cos(t)) − 12emt sin(t) − 15 cos(mt) + 13.5

−mt sin(mt) + 13emt sin(t) + 17 cos(mt) − 16

)

,

(

g3(t)

g4(t)

)

=

(

emt sin(t) + 2 cos(mt) − 2.5

2.2emt sin(t) + 3 cos(mt) − 3

)

.

The system (18) is subject to the following initial conditions,

2z1(0) + 3z2(0) = 0, z1(0) + z2(0) = 0.

Examples 7.2 – 7.4 have been discussed in detail in [16].

Example 7.5 In order to demonstrate how to use the GUI for the solution of an eigenvalue problem we

consider a model describing the hydrogen atom which has been discussed in [28]. The problem is posed on

the semi-infinite interval and reads,

−z′′(t) −

(
l(l + 1)

t2
+

γ

t

)

z(t) = λz(t), t ∈ (0,∞), (19a)

z(0) = 0, z(∞) = 0. (19b)

For the test run we set l = 0 and γ = 2. The code embeds (19) into a BVP and automatically transforms

it to a finite domain.

Example 7.6 Finally, we consider the singular BVP posed on a semi-infinite interval which originates

from hydrodynamics, cf. [17], [18],

z′′(t) +
2

t
z(t) = 4(z(t) + 1)z(t)(z(t) − 0.1), t ∈ (0,∞), (20a)

z′(0) = 0, z(∞) = 0.1. (20b)

7.4 Graphical User Interface – Tutorial

Getting Started

To run bvpsuite, start Matlab, change to the folder where bvpsuite is installed, and type bvpsuite in

the command line.

Figure 5: Start bvpsuite.

The GUI window shown in Figure 6 opens. All fields in this window will be described in detail in Section

7.5. Additionally, the question mark buttons can be pressed for detailed explanations of the input fields.
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Figure 6: GUI window.

Example 7.1 This test example demonstrates how to find a numerical solution of problem (15) using

the mesh adaptation procedure.

• Start choosing a path, e.g. C:\MyFiles\Matlab\bvpsuite_files\examples_paper\

and the name of the file to be created, e.g. ex1.m.

• Define the orders of the solution components. Since there is only one component of second order,

[2] has to be typed into the field ‘Orders’. In the fields ‘Parameters’ and ‘c’ type 0 and []. They

can also stay empty.

• Leave the default settings for ‘Collocation Points’ – Gaussian, and ‘Number / Partition rho_i’ –

8 unchanged. Since ‘Automatic’ is ticked, the number of collocation points is set automatically,

depending on the absolute tolerance parameter, see below and Example 7.2.

• Define ‘Mesh’ using a Matlab row vector, for example of the form a:h:b, here -1:0.02:1, where

a and b are the left and the right endpoint of the interval of integration, respectively, and h is the

stepsize. In our case, the problem is solved on the interval [a, b] = [−1, 1], and the initial mesh

consisting of 101 points, i.e. 100 subintervals of length h = 0.02.

• In ‘String replacement’ type eps=1e-4. This defines the constant ε. Only strings that represent

valid Matlab variable names (see Matlab reference docs) should be used for string replacement,

with the following being reserved for direct use in the ODEs: zi (z1, z2, . . .), zidj (z1d3, z4d2. . . .),

lambda, pi (p1, p2, . . .), a, b, t. See further remarks in the manual.

• In ‘Equations’, the differential equation has to be specified as follows. Use only zi for the solution

components, eps*z1’’+z1’-(1+eps)*z1=0.
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• Finally, specify the boundary conditions using a for the left and b for the right endpoint of the

interval of integration, z1(a)=1+exp(-2);z1(b)=1+exp(-2*(1+eps)/eps).

• The respective GUI is shown in Figure 7. Press ‘Save’ to store the data in ex1.m. Note that ‘Mesh

adaptation’ is ticked as a default computational mode and therefore parameter values stored in

‘Settings’, in this case the default values, were used, cf. Figure 9.

• Press ’Solve’. When the computation is finished, an information window will appear. Accept it by

pressing ‘OK’.

• In the Matlab window the output shown in Figure 8 can be found. The last line of this output

indicates that the numerical solution has been found on the initial mesh with 101 points. Also, a

few lines above, the output shows 99 points which is the number of the interior mesh points.

Figure 7: Example 7.1: The input data.

Figure 8: Example 7.1: Matlab output of the mesh adaptation.
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Figure 9: Example 7.1: Standard settings.

• Switch back to the GUI and press ‘Error’. Close window ‘Figure 2’. The window ‘Figure 1’ shows

the estimate of the absolute error of the numerical solution found on the mesh with 101 points

using the mesh adaptation procedure, see Figure 10. The maximal absolute error is approximately

1.5 · 10−5.

Figure 10: Example 7.1: Plot of the error estimate.
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Figure 11: Example 7.1: Final adapted mesh.

• To plot the final grid, export the values of the numerical solution to the workspace by clicking ‘Show

results’ and typing plot(x1,1,’k.’) into the command line.

• To show the advantage of the mesh adaptation strategy, we compare the above run to the one on

an equidistant mesh with the same number of mesh points. Remove the check mark for ‘Mesh

adaptation’ by clicking on it and press ‘Solve’. Now the problem is solved on the mesh specified in

the field ‘Mesh’, i.e. with 101 equidistantly spaced mesh points.

• After the calculation was successfully completed, click ‘OK’ in the ‘SUCCESS’ window and change

to the Matlab command line. The numerical simulation produced the output shown in Figure 12.

Figure 12: Example 7.1: Matlab output of the computation on the equidistant mesh.

• Close all windows with Matlab figures and change back to the GUI. Press ‘Error’ and close window

‘Figure 2’. The window ‘Figure 1’ shows the error on an equidistant mesh with 101 points, cf. Figure

13. Compare Figures 10 and 13. The errors related to the adapted and to the equidistant mesh

with the same number of mesh points differ by 6 (!) orders of magnitude.
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Figure 13: Example 7.1: Plot of the error estimate from the run using the equidistant mesh.

Remark: Choose among other options to display your results. ‘Show results’ imports the values of

the solution on the grid, consisting of mesh points and collocation points, to the Matlab workspace.

(Internally, the mesh ∆, cf. (3), is denoted by x1, the collocation points by tau. Alternatively you can

choose ‘Selected Points’ using a Matlab row vector to display the solution at points of your choice. All

results are stored in the file ‘last.mat’. Using ‘Plot’ a graphical overview of all solution components on

the grid is provided, cf. Figure 14.

Figure 14: Example 7.1: Plots of the numerical solutions obtained with mesh adaptation (left) and on the

equidistant mesh with the same number of points (right).

Example 7.2 This example demonstrates how to find a numerical solution of a problem (16), involving

a system of two singular differential equations. This time we do not use the default values provided in

‘Settings’ but change them according to our needs.
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• Start choosing a path, e.g. C:\MyFiles\Matlab\bvpsuite_files\examples_paper\

and the name of the file, e.g. ex2.m.

• Press ‘Settings’ to choose the parameters. Type 0.0001 in the fields ‘Absolute tolerance’ and

‘Relative tolerance’, and 0 in the field ‘N0’. This means that the program is run with the smallest

number of grid points in the initial mesh, see below. Note that you have to change the value ‘N0’

back to the default value 50 to run another example under the standard settings. Press ‘Save and

quit’ to exit the settings window, see Figure 15.

Figure 15: Example 7.2: Settings for the mesh adaptation.

• Define the orders of the solution components. Since both are of second order, [2 2] has to be typed

into the field ‘Orders’. In the fields ‘Parameters’ and ‘c’ type 0 and []. They can also stay empty.

• For the collocation points take the default choice Gaussian. In the field ‘Number’ type 2.

• Define the mesh in the field ‘Mesh’ using a Matlab row vector, here 0:0.5:1. This means that the

number of points in the uniform initial mesh use for the calculations is max{N, N0, 8} = 8, where

N = 3 was specified by the user.

• In ‘Equations’, the differential equations have to be specified as follows, separated by semicolons.

Use zi for the solution components,

z1’’+3/t*z1’=-musquare*z2-2*gamma+z1*z2;

z2’’+3/t*z2’=musquare*z1-(1/2)*z1^2.

You can use any ASCII editor to type the equations and export them by ‘copy and paste’.

• The given constants ‘musquare’ and ‘gamma’ are specified separately in ‘String replacement’:

musquare=81;gamma=1000;.
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• To define the boundary conditions type

z1’(a)=0;z2’(a)=0;z1(b)=0;z2’(b)+(2/3)*z2(b)=0,

where a and b are the endpoints of the interval.

• Make sure that the box ‘Mesh adaptation’ is ticked.

• Finally, press ‘Save’ to save the input data, cf. Figure 16, and ‘SOLVE’ to start the computations.

Figure 16: Example 7.2: The input data.

• To plot the results on the final grid export the values to the workspace by clicking ‘Show results’.

Press ‘Plot’ for the graph of the numerical solution. Type plot(x1,1,’.’,’color’,’black’) in

the command line to plot the mesh.
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Figure 17: Example 7.2: Results for the run with mesh adaptation.

Remark: The code allows to specify an alternative mesh and the last solution as an initial profile. Input

any mesh in ‘Alternative mesh’ and choose ‘As profile: last’. After pressing ‘SOLVE’ you see that the

Newton procedure needs less iterations than before to find the solution. You could use this realization

also for stricter tolerance requirements.

Another option would be to use the ‘Execute’ button. After choosing the option ‘Use last solution as

initial profile’ and pressing ‘Execute’, the initial profile fields will be filled in. The advantage is that now

the user can modify the inputs. Use the ‘Plot initial profile in the fields above’ option of ‘Execute’ to see

a graphical presentation of your inputs. An initial profile may be set manually, for details refer to Section

7.5. In this case, check ‘Profile in the fields above’ before pressing ‘SOLVE’.

Example 7.3 This test example demonstrates how to solve a parameter dependent problem using the

pathfollowing strategy implemented in bvpsuite and how to input boundary conditions posed at interior

points of the interval.

• Since the differential equation is of second order, type [2] in the field ‘Orders’.

• The parameter λ shall be denoted by p1 in the specifications. The number of parameters, here 1,

has to be defined in the field ‘Parameters’, 1.

• The boundary conditions for this example are posed within the interval [0, 2]. Therefore their

respective positions, denoted by ‘c’, have to be specified as a Matlab row vector [0 1].

Instead of using a and b to describe the positions of the boundary conditions use c1 and c2, because

c2 is not identical to b.

• Use 5 Gaussian points and choose the initial mesh 0:0.1:2.

• The equation has to be typed as in Example 7.2 with λ denoted by p1.
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• Since the parameter λ is a new variable, we need three boundary conditions for the first run (sum

of orders plus number of parameters). In this case start with λ = 0, and in ‘Boundary/Additional

conditions’ type z1’(c1)=0;z1(c2)=1;p1=0.

• Save the inputs (see Figure 18) and solve the problem by pressing the buttons ‘Save’. Make sure

that the box ‘Mesh adaptation’ is ticked and press ‘SOLVE’.

• Create an empty directory to store all the information that the pathfollowing routine provides.

• Press the button ‘Pathfollowing’, and the pathfollowing window will open, cf. Figure 19. Use the

last solution to start the pathfollowing routine.

• Press the lower ‘Find’ button and choose the directory you have created to save the path information.

• For this run, 110 steps are made along the solution/parameter path, each with stepsize 0.02. Start

from the first point in the path, which means ‘Initial index’ 1.

• To plot z(0) against λ type [1;0] in the ‘Pathdata matrix’. The data for the graph will be read

from the pathdata matrix. For the detailed explanation of the pathdata matrix cf. Section 7.5.

• Press ‘SOLVE’. When the computation has been finished use the button ‘Show path’ to show the

graph.

Figure 18: Example 7.3: Input data.
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Figure 19: Example 7.3: GUI for the pathfollowing.

• To plot the solution of the i-th step load the mat-file with number i into the Matlab workspace and

type plot(x1tau,valx1tau). For the corresponding value of λ load the file ex3.mat to the workspace

and type coeff(end). The evolution of the value of λ is saved in the variable parametervalue.
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Figure 20: Example 7.3: Solution on the interval [0, 2], λ = 0.1495341.

Example 7.4 This simulation deals with the solution of a system of DAEs.

• The solution of a system of DAEs does not require any special options, as DAEs are a special case

of mixed order systems. In ‘Orders’ type [1 1 0 0].

Zeros indicate that the derivatives of z3 and z4 do not occur in the system of DAEs.

• Choose 5 collocation points, and then press ‘Save’. Make sure that the box ‘Mesh adaptation’ is

ticked and press ‘SOLVE’. The input and results of the simulation are displayed in Figure 21.
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Figure 21: Example 7.4: Input data and results.

Example 7.5 The present example shows how the GUI can be used to solve an EVP posed on [0,∞).

The inputs are shown in Figure 22. For problems posed on semi-infinite intervals the code performs an

automatic transformation to a finite interval. Consequently, bvpsuite solves the problem on the finite

domain first and provides the user with a back-transformation of the numerical solution to a truncated

interval of arbitrary length.

• Tick the check box ‘Semi-infinite interval’.

• Insert the left endpoint of the semi-infinite interval, which is 0, in the edit field next to it.

• Tick the check box ‘Eigenvalue problem’.

• Since the given differential equation is of order 2, insert the row vector [2] in the field ‘Orders’.

• Choose 5 Gaussian ‘Collocation points’.

• In the field ‘Mesh’ insert 20, which corresponds to an equidistant initial mesh with 20 mesh points.

• Write the differential equation (19a) in the field ‘Equations’ and denote the eigenvalue λ by lambda

z1’’ - 2/t*z1 = lambda*z1. The solution has to be denoted by z1.

• For the ‘Boundary conditions’ write z1(a)=0, z1(b)=0. Note that you must not use the endpoints

0 and ∞ in the boundary conditions but write instead a and b for the endpoints of the interval.
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Figure 22: Example 7.5: Input data.

• No starting guess for the eigenfunction is provided, therefore leave the fields ‘Initial mesh’ and

‘Initial values’ empty.

• Insert the guess -0.11 for the eigenvalue in the field called ‘lambda’.

• Press the ‘Settings’ button to change the relative tolerance. Set the ‘Relative tolerance’ (cf. Figure

23) to 10−6 and ‘N0’ to 0. This means that the number of points in the initial uniform mesh for the

calculations is max{N, N0, 8} = 20. Press ‘Save and quit’.

• Before pressing the ‘Save’ button, the fields ‘Path’ and ‘Name’ have to be filled in to specify the

location and the name for the automatically generated bvpfile. Press ‘Save’.

• Make sure that the box ‘Mesh adaptation’ is ticked.

• Finally, press the ‘SOLVE’ button to start the computation. After the computation has finished

several options to display the results are available.

• Press ‘Plot’ to obtain a plot of the solution. Since the problem is posed on a semi-infinite interval

specify the plot range, see Figure 24.

Alternatively, press ‘Show results’ to import the values of the solution on predefined points to the

Matlab workspace. The variable ‘lambda’ contains the computed eigenvalue and ‘eigenfunction’

is the numerical approximation for the eigenfunction.

Moreover, selected points in form of a Matlab row vector may be typed into the field under ‘Solution

at selected points’. Then, after pressing ‘Show’, the code provides the corresponding values of the

numerical solution. All results are stored in ‘last.mat’.
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The mesh adaptation algorithm provided a final mesh with 39 points, cf. Figure 25. Note that the

algorithm successfully placed most of the mesh points near the origin in order to efficiently satisfy the

tolerance requirements. This corresponds to the solution behavior in this region very well. Figure 25

shows the approximation of the eigenfunction on the interval [0, 1] in the uppermost graph. The central

graph indicates the solution behavior on the interval [1,∞) transformed to [0, 1]. The approximation of

the eigenfunction on the interval [0, 80] and the back-transformed mesh are shown in Figure 26.

Figure 23: Example 7.5: Settings for the mesh adaptation.

Figure 24: Example 7.5: Plot of the solution.
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Figure 25: Example 7.5: Approximations of the solution z on [0, 1] (uppermost graph) and z on [1,∞) transformed

to [0, 1] (central graph). The computations were carried out with 5 Gaussian points and tola = tolr = 10−6. The

automatically selected mesh contains 39 points (lower graph).

Figure 26: Example 7.5: Approximation of the eigenfunction and the back-transformed automatically selected

mesh on a truncated interval [0, 80].

Example 7.6 Here, the BVP is posed on a semi-infinite interval. As already mentioned in Example 7.5

the code offers a module that automatically transforms the problem to a finite domain for the numerical

27



treatment. It is important to know that at infinity only Dirichlet boundary conditions are admissible for

a successful automatic transformation, see Figure 27 for input.

• Tick the check box ‘Semi-infinite interval’.

• Insert the left endpoint of the semi-infinite interval, which is 0, in the edit field next to it.

• Since the given differential equation is of order 2, insert the row vector [2] in the field ‘Orders’.

• In this example the ‘Collocation points’ are chosen to be Gaussian.

• For the ‘Number’ of collocation points choose 3.

• In the field ‘Mesh’ insert 50 for the number of equidistantly spaced mesh points in the interval [0, 1].

• Write the differential equation (20a), z1’’+2/t*z1’ = 4*(z1+1)*z1*(z1-0.1) in the field ‘Equa-

tions’. The solution has to be denoted by z1, no other variable name is admissible.

• For the ‘Boundary conditions’ write z1’(a)=0, z1(b)=0.1.

Figure 27: Example 7.6: Input data.

• For the ‘Initial mesh’ insert,

[ 0.0225 0.1000 0.1775 0.2000 0.2225 0.3000 0.3775

0.4000 0.4225 0.5000 0.5775 0.6000 0.6225 0.7000

0.7775 0.8000 0.8225 0.9000 0.9775 1.0000 1.0231

1.1111 1.2157 1.2500 1.2862 1.4286 1.6063 1.6667

1.7317 2.0000 2.3666 2.5000 2.6493 3.3333 4.4936

5.0000 5.6351 10.0000 45].
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• The corresponding ‘Initial values’ read,

[-0.3042 -0.3037 -0.3024 -0.3020 -0.3014 -0.2991 -0.2962

-0.2952 -0.2942 -0.2902 -0.2857 -0.2842 -0.2828 -0.2773

-0.2713 -0.2694 -0.2675 -0.2607 -0.2535 -0.2513 -0.2490

-0.2400 -0.2286 -0.2248 -0.2207 -0.2041 -0.1825 -0.1750

-0.1669 -0.1336 -0.0899 -0.0751 -0.0592 0.0007 0.0593

0.0729 0.0834 0.0994 0.1].

• Before pressing the ‘Save’ button, fill in the fields ‘Path’ and ‘Name’ in order to specify the location

and the name for the automatically generated bvpfile. Press ‘Save’. Here, the default parameter

values in ‘Settings’ are used and the mesh adaptation is utilized.

• Make sure that the box ‘Mesh adaptation’ is ticked.

• Press the ‘SOLVE’ button to start the computations, see Figure 28. Again there are several options

to display the results. ‘Show results’ imports the numerical solution to the Matlab workspace.

The code automatically applies a back-transformation and provides the user with a solution ap-

proximation on a truncated interval of required length.

• Press ‘Show results’ in order to load the solution values into the workspace, cf. Figure 28. The

solution values are stored in ‘sol_infinite’, ‘tau_infinite’ comprises the corresponding grid points,

cf. Figure 29. Additionally, type ‘load last.mat’ in Matlab’s workspace to see the computed solution

on the finite interval.

Figure 28: Example 7.6: ‘Solve’ and ‘Show results’.
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Figure 29: Example 7.6: Results.

7.5 Graphical User Interface – Controls

In this section all options for the GUI fields (some of which were already used in the examples) are now

described in detail.

Field Description

Path / Name Choose the path and input the name of the m-file (input:

*.m), which you would like to edit or last.log if you would

like to see your last input. Use ‘File → Open example’ to

find your file.

Semi-infinite interval Tick this check box in case that your problem is posed on a

semi-infinite interval [a,∞), a ≥ 0 and type the left endpoint

of the interval in the edit field to the right. A transforma-

tion of the problem is carried out in order to transform it to

a finite interval. As a result, the code computes a solution

on this finite domain. A graphical back-transformation allo-

cates the solution on a truncated interval [a, L]. The right

point L has to be specified by the user, cf. ‘Plot’ .

Eigenvalue problem Tick this check box to declare that your example constitutes

an eigenvalue problem.

30



Orders / Parameters / c Choose the orders of the solution components in the form of

a Matlab row vector. (Be careful to choose the correct or-

der!) E.g.: [3 4 2], if you have 3 equations and therefore

3 solution components with the highest derivative(z1)=3,

derivative(z2)=4 and derivative(z3)=2, respectively3. Spec-

ify the number of unknown parameters, denote them by

p1,p2,..., in the equations. When solving a BVP posed on

the interval [a, b] with two-point boundary conditions speci-

fied at a and b, leave the field ‘c’ empty. Note that bvpsuite

is also capable of solving systems where the boundary con-

ditions are posed in the interior of the finite interval [a, b]. If

you solve such a problem, specify a Matlab row vector with

the positions of the interior points. In the field ‘Boundary /

Additional conditions’ specify z2(c1)=...,z1(c3)=..., in-

stead of z2(a)=.... The variables a and b for the endpoints

of the interval may no longer be used!

Collocation points Choose the predefined collocation points, ‘Gaussian’, ‘Lo-

batto’ or ‘Uniform’ (equidistant), or choose ‘User’ to specify

your own collocation points. In the latter case uncheck the

check box ‘Automatic’.

Number / Partition rho_i The number of predefined collocation points (Gaussian, Lo-

batto, or Uniform) has to be specified in ‘Number’. When

the button ‘User’ is ticked, the user can specify the number

and his own distribution of collocation points. When the

number of collocation points is m, then one has to describe

their distribution in the field ‘Partition rho_i’. There, m

values 0 ≤ ρi ≤ 1, i = 1, . . . , m in the form of a Matlab

row vector have to be specified. They describe the positions

of the collocation points in the interval [0, 1].

Automatic When the GUI window opens this check box is ticked. In

such a case, the code automatically determines the number of

collocation points to be used for the computations depending

on the prescribed ‘Absolute tolerance’ in ‘Settings’.

3Note that ‘Orders’ are not always identical to the orders of the differential equations.
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Mesh Specify the position of the mesh points, e.g. [0 1.7 2.5 3].

Note that a and b, the left and right endpoints of the interval

have to be in the list. In this case a=0 and b=3. You can

also specify the mesh in the form a:h:b, where h is the step-

size. In case that your problem is posed on a semi-infinite

interval only insert the number of mesh points, e.g. 50. This

defines an equidistant mesh on the finite domain. Later, a

graphical back-transformation of the solution is carried out

by the code.

String replacement You can define string replacements for parameters frequently

occurring in the equations and boundary conditions. Syn-

tax: string_to_be_replaced_1 = replacing_string_1;

string_to_be_replaced_2 = replacing_string_2; ...

E.g.: m = 5*z1’’-8;j=3;. Be careful with string re-

placements: The strings t,z,z1,z2,...,z1d2,z3d4,...,

p1,p2,...,c1,c2,...,lambda, and a, b must not be

replaced. See also Example 7.1.

Equations Specify the differential equations using variables

z1(t), ..., zn(t), z′1(t), ..., z
′

n(t), z′′1 (t), ..., z′′n(t), written in the

following form: z1,...,zn,z1’,...,zn’,z1’’,...,zn’’.

Higher derivatives (≥ 3), e.g. z(3), have to be written

as z1d3. The equations can be specified in the form

left side 1=right side 1; left side 2=right side 2.

E.g.: z1’’=z2;z2’’=-z1. If you want to solve an eigenvalue

problem always denote the eigenvalue by lambda.

Boundary / Additional condi-

tions

Specify the boundary and additional conditions separated

by semicolons. The number of necessary conditions is

equal to the sum of orders and parameters. Write

zi(a) =: zi(a), z′i(a) =: zi’(a), zi(b) =: zi(b),

z′i(b) =: zi’(b). For derivatives k ≥ 3 type zidk(a).

E.g.: z1(a) = 3;z2(a) = 0;z1(b) = 0;z3d4(b)=7... In

case of a finite interval [a, b], specify the boundary

conditions at the interior points in the following way:

z2(c1)=...;z1(c3)=... Attention: Here, a and b must not

be used!

Initial mesh Specify the mesh points for the initial solution values in the

form of a Matlab row vector, e.g. [3 4.5 7].
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Initial values Choose the values of the initial profile in the form of a Mat-

lab matrix. The rows in this matrix contain the guess for the

solution values at the mesh points, e.g. for 3 mesh points and

two solution components, [1 4 2;3 6 8]. If you leave the

field ‘Initial values’ empty, the initial profile will be set to the

constant function equal to 1. In this case ‘Initial mesh’ also

has to be left empty. Additionally, for unknown parameters

you can also specify their initial values in the corresponding

field. For the solution of EVPs you can provide a guess for

the eigenvalue (‘lambda’) and for the eigenfunction (‘Initial

values’). Alternatively, you can insert a value for ‘lambda’

only. Then the initial profile for the eigenfunction is set to

the constant function equal to 1.

Alternative mesh This mesh replaces the ‘Mesh’ on the left hand side of the

GUI window if the option ‘Profile in the fields above’ or the

option ‘As profile’ is ticked.

Execute Executes the selected action in the drop down menu. ‘Plot

initial profile above’ shows a graphical output of the profile

that was defined in the fields above. ‘Plot saved initial pro-

file’ shows the initial profile which was saved together with

the file. ‘Use last solution as initial profile’ replaces the val-

ues above by the solution computed in the last run.

Settings Opens the window for special settings. For details see ‘De-

scription of Settings’.

Radio button menu ‘Saved Profile’: Solve the problem using the saved initial

profile. ‘Profile in the fields above’: Use the initial profile

displayed in the fields above for the next run. ‘As profile’:

Use solution values stored in ‘last’ (or in another *.mat file

from the current directory) on the alternative mesh as initial

guess for the next run. Attention: Do not change the number

of collocation points when using the third option!

Solve / Mesh adaptation Starts the computations. Mesh adaptation is the default

computational mode and therefore the check box ‘Mesh

adaptation’ is checked when the GUI window opens. The

mesh adaptation algorithm is based on the residual and

global error control.
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Error Plots a graphical output of the global discretization error

and copies the values to the Matlab workspace. The out-

put variables are ‘x1tau’, ‘x1tau2’, and ‘valerror’, ‘valerror2’.

There are two error plots. In the Figure 1, the values in

‘x1tau’ and ‘valerror’ are associated with the coarse mesh

and show the error estimate of the absolute error of the so-

lution computed on the coarse mesh. In the Figure 2, the

values ‘x1tau2’ and ‘valerror2’ are associated with the fine

mesh (with twice as many points) and show the estimate of

the absolute error of the solution computed on the fine mesh.

These two meshes are used during the error estimation proce-

dure. In case of a problem posed on the semi-infinite interval

the output variables are ‘tau_infinite’, ‘error_infinite’, and

‘tau_infinite_2’, ‘error_infinite_2’.

Pathfollowing Opens the GUI window for pathfollowing. See ‘Description

of Pathfollowing’ for details.

Show results The results of the last calculation (stored in ‘last.mat’) are

exported to the Matlab workspace (overwriting existing

variables with the same names). ‘coeff’: The coefficients

with respect to the Runge-Kutta basis for the collocation

polynomials and numerical values of the unknown parame-

ters. ‘parameter’: Numerical values of the unknown param-

eters. ‘x1’: The mesh points. ‘x1tau’: The mesh points and

the collocation points. ‘valx1tau’: The values of the numeri-

cal solution in the mesh and collocation points. ‘parameters’:

Numerical approximation for the parameters.

Show results In the context of problems posed on semi-infinite inter-

vals, ’tau_infinite’ is ‘x1tau’ transformed to a truncated in-

terval. For an EVP posed on a semi-infinite domain the

‘eigenfunction’ is an approximation of the eigenfunction on

’tau_infinite’, or otherwise, on ‘x1tau’. For a BVP posed on

a semi-infinite interval ‘sol_infinite’ is an approximation of

its solution on ’tau_infinite’.

Plot Plots the results stored in ‘last.mat’ on ‘x1tau’ or

’tau_infinite’.

Solution at selected points Input for a Matlab row vector containing additional, user

selected points, for the values of the numerical approxima-

tion at those points.
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Description of Settings

Figure 30: Settings for the Newton solver and the mesh adaptation.

Settings for the Newton solver Set absolute and relative tolerance of the Newton solver. De-

cide if the norm of the residual, ||F (x)||, of the nonlinear al-

gebraic system F (x) = 0, for the current approximation shall

be displayed: 0 . . . nothing will be displayed, 1 . . . display

only on Matlab prompt, 2 . . . display on Matlab prompt

and in GUI. All other values of the settings window refer to

the internal process of the Newton solver and we recommend

not to change those values.
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Settings for mesh adaptation Choose the absolute and relative tolerance for the mesh

adaptation algorithm. For different solution components dif-

ferent absolute and relative tolerance requirements can be

specified, e.g. 1e-6 1e-3 in the field ‘Absolute tolerance’

means that for the first solution component we require the

absolute tolerance 10−6 and for the second solution com-

ponent 10−3 to be satisfied. For the default values of the

tolerance parameters, equal for all solution components, see

Figure 9. Use relative tolerance 0 if you want to control only

absolute errors and vice versa. Choose the maximal num-

ber of iterations for the mesh adaptation algorithm, default

value 15. K is the maximal allowed ratio between the largest

and the smallest stepsize in the mesh, default value 10000.

N0 is the total number of mesh points in the initial mesh,

default 50. For the first run an equidistant mesh with the

number of points equal to max{N, N0, 8} is taken, where N

is the number specified by the user via ‘Mesh’. If N0 has

been changed manually, it has to be set back to 50 by hand

for the next run. Choosing the option ‘Fine mesh’ allows to

slightly change the realization of the mesh adaptation algo-

rithm. In this case tolerances will also be controlled on the

fine mesh when they are not satisfied on the coarse mesh.

According to our error estimation the fine mesh has twice as

many mesh points as the coarse mesh.

Description of Pathfollowing, see Figure 19

General information This routine solves a parameter dependent problem, i.e. the

solver provides a solution for each value of the parameter,

following a path in the solution/parameter space.

General information Therefore, the routine should be called from an already cal-

culated solution/parameter pair (sol0, p10), being a starting

point in the path. In each following step the routine modi-

fies both, the solution and the parameter. The value of the

parameter p10 has to be specified at the very end of the field

‘Boundary / Additional conditions’, for example in the form

p1=7.

Initial solution: Path / Name Specify the *.mat file of your initial solution/parameter pair.
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Saving path / Saving name Specify the folder where the data, solutions and the corre-

sponding values of parameters should be stored. Provide a

name for a file containing a solution/parameter pair, for ex-

ample solpar.mat. You will then find numbered solpari.mat

files containing the name you have chosen. The solpar.mat

file (without a number i) contains your path data specified

below, see ‘Pathdata matrix’.

Number of steps / Stepsize In order to follow the path in the solution/parameter space,

specify the number of steps and the constant stepsize for

each step. It may be necessary, when going around turning

points, to manually change the stepsize (decrease it). When

the run prematurely terminates, because the stepsize was too

large, you can return to any successfully computed previous

point in the solution/parameter path.

Initial index Input here the number of the solution/parameter pair you

want to go back to and rerun. All following data points will

be replaced by your new results.

Pathdata matrix Input an n × 2 matrix, with n being the number of paths

you want to show, to save significant data from your path-

following strategy. To graphically show the results, input

a Matlab matrix in the field ‘Pathdata matrix’. Specify

the number of the solution component in the first column

(0 represents the parameters). In the second column spec-

ify at which point the solution component has to be eval-

uated (it is not necessary to choose exactly a mesh point,

it can be any point in the interval of integration). For ex-

ample: [3,0.4;0,2;1,0] saves 3 paths, the first one shows

z3(0.4) against the pathfollowing parameter p1, the second

one shows another parameter denoted by p2 against p1, and

the third z1(0) against p1.

Pathdata matrix If you wish to express the maximum norm of a solution com-

ponent against p1, use a column vector [2;1]. This vector

means that the maximum norm, 1, of the second solution

component, 2, will be plotted against p1.

7.6 Matlab Command Line Syntax

In this section the command line calling syntax of the package is described in detail. We suggest to use

the GUI instead of the command line, if you are just beginning to work with bvpsuite. Only advanced

users with the need for extensive testing will benefit from the command line functions.
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Overview and Function Calls

Two m-files constitute the basis for the command line functionality of bvpsuite. The file bvpsuite_cl

is the main routine which manages which module of bvpsuite is used,. The file options_cl initializes

input parameters which may be adjusted by the user. Make sure that your current bvpfile and the file

bvpsuite_cl.m are in the same directory. To use bvpsuite via the command line, simply type

[outlog,optionsstruct]=bvpsuite_cl(bvpfile,optionsstruct)

where bvpfile is the name of the file containing the problem to be solved and optionsstruct is a Matlab

struct with input parameters for the call of the requested routine. The struct outlog is a Matlab struct

with the output data.

To set the default values of the input parameters in optionsstruct, type

options=options_cl(’routine name’)

The following table shows which settings for ’routine name’ are possible:

Field Description

'run' Starts the routine run.m. This routine calculates a numerical

solution of the given problem.

'initialmesh' Starts the routine initialmesh.m. This routine provides

the coefficients with respect to the Runge-Kutta basis for

the initial profile on the initial mesh. The discrete values of

the initial guess provided by the user are first interpolated by

a cubic spline4. Then the coefficients of this representation

are recalculated to a Runge-Kutta basis. In the context of

semi-infinite intervals, linear interpolation is used.

'meshadaptation' Starts the routine meshadaptation.m. This routine calcu-

lates the numerical solution of the given problem up to the

prescribed tolerance. To find such a solution, mesh adapta-

tion is used.

'errorestimate' Starts the routine errorestimate.m. This routine calculates

the estimate for the global error of the collocation scheme

using the mesh-halving technique.

'equations' Starts the routine equations.m. The description of its out-

put can be found in options for 'equations' below.

Input/output arguments for the above routines are now specified.

4When the values at the interval endpoints are not specified by the user, extrapolation is automatically carried out.
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Options for 'run'

One of the most important routines of the bvpsuite package is run.m. It manages the solution process.

The entries of the optionsstruct with mode 'run' are given in the following table. The default settings

are shown in [ ]-brackets.

Input parameters Description

plot Possible settings: [0], 1. If set to 1, the solution will be

plotted in an extra window.

x1 The initial mesh on which the problem has to be solved. If

no mesh is provided, the default mesh will be read from the

bvpfile. For the semi-infinite interval the number of equidis-

tant points for the initial mesh.

start Coefficients with respect to the Runge-Kutta basis for the

initial profile on the initial mesh, cf. ‘initialmesh’. If no ini-

tial profile is provided, the default values for the coefficients

are zero.

bvpopt The options for the Newton solver. If not provided, the

options will be read from the bvpfile.

visible Possible settings: [0], 1. If set to 1, information about the

size of the residual in all iteration steps of the Newton pro-

cedure will be provided on the command line.

plotrange Left and right endpoint of the plot interval in case of a prob-

lem posed on a semi-infinite interval.

To set one of the options above, type

optionsstruct.name_of_option=desired_setting

After calling bvpsuite_cl, the output of the routine run.m is saved into the Matlab struct outlog. It

provides the following information.

Output data Description

coeff The coefficients of the collocation polynomial (numerical so-

lution) with respect to the Runge-Kutta basis.

x1 The mesh on which the numerical solution was computed.

valx1 The values of the solution at the mesh points of x1.

x1tau The grid on which the solution was computed.

valx1tau The values of the solution on the grid x1tau.

tau_infinite The grid x1tau transformed to a truncated interval.
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sol_infinite The problem is posed on a semi-infinite interval. The solu-

tion is first computed on the grid x1tau of a finite domain

and then back-transformed to a large truncated interval. Its

values are stored in sol_infinite.

lambda The numerical approximation for an eigenvalue.

eigenfunction The numerical approximation for an eigenfunction on the

grid tau_infinite.

It is important to note that the above output data can be used to start the numerical solution of another

(related) problem or even for the same problem. It makes sense to use x1 and coeff from outlog as

initial parameters in optionsstruct for another call of the same problem, but with stricter tolerance

requirement.

Options for 'initialmesh'

In initialmesh the following assignment is realized. Given an initial solution profile on a starting mesh,

the routine provides the coefficients for the representation of this initial profile with respect to the Runge-

Kutta basis for an arbitrary mesh.

Input parameters Description

x0 The mesh on which the values of the initial profile are pro-

vided.

valx0 The values of the profile on the mesh x0.

x1 The mesh that shall be used for the numerical computations.

It is also allowed to use the same mesh x0.

par Starting guesses for the unknown parameters.

lambda Initial guess for the eigenvalue.

The output of the initialmesh routine is quite simple. It consists only of the mesh x1 and the corre-

sponding coefficients coeff.

Output data Description

x1 The mesh on which the coefficients are given.

coeff The coefficients corresponding to the initial profile on x1, cf.

‘initialmesh’.

Options for 'meshadaptation'

In meshadaptation.m we try to calculate a numerical solution satisfying the prescribed tolerance require-

ments. This is done by adjusting the mesh until the error estimate indicates that the desired accuracy

has been reached. The final mesh and the numerical solution are then returned to the user. The options

for the routine are listed below.
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Input parameters Description

aTOL The prescribed absolute tolerance; [10−6].

rTOL The prescribed relative tolerance; [10−3].

K The maximal ratio between the largest and the smallest step-

size in the mesh; [100].

plot Possible settings: [0], 1. If set to 1, the solution will be

plotted in an extra window.

x1 The initial mesh on which the problem has to be solved. If

no mesh is provided, the default mesh will be read from the

bvpfile.

start The coefficients of the initial solution profile with respect to

the Runge-Kutta basis, cf. ‘initialmesh’. If no initial profile

is provided, the default values for the coefficients are zero.

bvpopt The options for the Newton solver. If not provided, the

options will be read from the bvpfile.

visible Possible settings: [0], 1. If set to 1, information about the

size of the residual in all iteration steps of the Newton pro-

cedure will be provided on the command line.

maxiter Maximal number of iterations in the mesh adaptation strat-

egy (correcting the mesh density and the number of mesh

points) before the routine terminates with an error message;

[10].

finemesh Possible settings: [0], 1. If set to 1, the realization of the

mesh adaptation algorithm is slightly changed. In this case

tolerances will also be controlled on the fine mesh. According

to our error estimation strategy, the fine mesh has twice as

many mesh points as the coarse mesh.

The results of the meshadaptation.m routine can be accessed using the outlog containing the following

data.

Output data Description

coeff The coefficients of the collocation polynomial (numerical so-

lution) with respect to the Runge-Kutta basis.

x1 The mesh on which the numerical solution was found.

valx1 The values of the solution in the mesh points of x1.

x1tau The grid, mesh points and collocation points on which the

solution was computed.

valx1tau The values of the solution on the grid x1tau.

error1 The error estimate on the mesh x1.
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fine Boolean; Indicates if finemesh was used to satisfy the toler-

ance requirements.

tau_infinite The grid x1tau transformed to a large interval.

sol_infinite The problem is posed on a semi-infinite interval. The solu-

tion is first computed on the grid x1tau of a finite domain

and then back-transformed to a large truncated interval. Its

values are stored in sol_infinite.

lambda The numerical approximation for an eigenvalue.

eigenfunction The numerical approximation for an eigenfunction on the

grid tau_infinite in case that the EVP is posed on a semi-

infinite interval, otherwise on the grid x1tau.

Options for 'errorestimate'

The routine errorestimate.m is used to estimate the global error of the collocation solution after it has

been computed by run.m.

Input parameters Description

coeff The coefficients of the collocation polynomial (numerical so-

lution) with respect to the Runge-Kutta basis.

plot Possible settings: [0], 1. If set to 1, the error estimate will

be plotted in an extra window.

bvpopt The options for the Newton solver. If not provided, the

options will be read from the bvpfile.

x1 The initial mesh on which the problem has to be solved. If

no mesh is provided, the default mesh will be read from the

bvpfile.

visible Possible settings: [0], 1. If set to 1, information about the

size of the residual in all iteration steps of the Newton pro-

cedure will be provided.

The output arguments from errorestimate.m provide the error estimate on the coarse mesh as well as

on the fine mesh. The full list of the output data can be found below.

Output data Description

x1tau The coarse grid, mesh and collocation points.

valerror The error of the solution on the coarse grid x1tau.

maxerrorvalx0 Maximum norm of valerror.

x1tau_2 The fine grid, mesh and collocation points.

coeff_2 The coefficients of the collocation polynomial with respect

to the Runge-Kutta basis for the grid x1tau_2.

42



val_2x1tau The values on the coarse grid of the numerical solution com-

puted on the fine grid.

val_2x1_2 The values at the mesh points in the fine mesh of the nu-

merical solution computed on the fine grid.

valerror2 The error of the solution computed on the fine grid given on

the coarse grid.

tau_infinite The grid x1tau transformed to a truncated interval. Applies

for BVPs posed on semi-infinite intervals.

tau_infinite_2 The grid x1tau_2 transformed to a truncated interval. Ap-

plies for BVPs posed on semi-infinite intervals.

error_infinite valerror transformed to the large, truncated interval. Applies

for BVPs posed on semi-infinite intervals.

error_infinite_2 valerror2 transformed to the large, truncated interval. Ap-

plies for BVPs posed on semi-infinite intervals.

sol_infinite The problem is posed on a semi-infinite interval. The solu-

tion is first computed on the grid x1tau of a finite domain

and then back-transformed to a large truncated interval. Its

values are stored in sol_infinite.

lambda The numerical approximation for an eigenvalue.

eigenfunction The numerical approximation for an eigenfunction. For

EVPs posed on semi-infinite intervals, ‘eigenfunction’ is

given on tau_infinite, otherwise, for EVPs posed on a finite

domain, the ‘eigenfunction’ is given on x1tau.

Options for 'equations'

The routine equations.m is used to set up the equations for the Newton Solver.

Input parameter Description

module Compulsory; Determines what you would like to do with this

routine. ‘F’ is the nonlinear algebraic system to be solved

by the Newton iteration. ‘DF’ is the Jacobian of ‘F’.
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module ‘residual’ is obtained by substituting the collocation polyno-

mial into the system of ODEs. It is called by meshadapta-

tion.m, see Section 4. On return the values of the residual

are available. ‘polynomial’ transforms the polynomial coef-

ficients with respect to the Runge-Kutta basis to the ones

with respect to the monomial basis. ‘valx1’ calculates the

solution values in the mesh points x1 (without collocation

points). ‘valx1tau’ computes the solution values on the grid

x1tau (mesh points and collocation points). ‘basispolynomi-

als0’ is the output of the Runge-Kutta basis coefficients for

an algebraic constraint, order 0. ‘rho’ on output specifies

the position of the collocation points on the interval [0, 1].

‘value’ returns values of the solution on a user-specified vec-

tor of points. ‘diffvalue’ is the same for the first derivative.

‘tau’ returns the positions of all collocation points.

coeff Compulsory; The coefficients with respect to the Runge-

Kutta basis for the collocation polynomials and numerical

values of the unknown parameters.

x1 Compulsory; The mesh points.

outputpoints Optional; The vector of arbitrary output points for the ‘mod-

ule’ options ‘outputpoints’ and ‘residual’.

linear Optional, Boolean; Determines if the problem is solved by

the linear or nonlinear solver.

Use of the Package bvpsuite via the Command Line

Here we indicate how the command line tool can be used. We calculate a solution for the bvpfile ex1.m

and then provide the error estimate using only two command line functions. Note that the bvpfile and

the command line routines have either to be in the same directory or a relative path has to be used instead.

• options=options_cl('run'); % saves all necessary input parameters for run into options;

• options.visible=1 % changes the setting for visible from default 0 to 1;

• [sol,optsol]=bvpsuite_cl(’ex1’,options) % calls the routine run for ex1.m with optionsstruct

options, the output is saved in sol, the options are saved in optsol;

• options=options_cl('errorestimate'); % saves all necessary input parameters for errorestimate

into options;

• options.x1=sol.x1; % replaces the mesh stored in options.x1 by the mesh stored in sol.x1;
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• options.coeff=sol.coeff; % replaces the solution coefficients stored in options.coeff by the coef-

ficients stored in sol.coeff;

• [err,opterr]=bvpsuite_cl(’ex1’,options) % calls the routine errorestimate for ex1.m with the

solution provided by run;

The code example above illustrates how simple it is to control the whole package bvpsuite using only two

major functions. Note that the options for the solution process are saved in optsol and the options for

the error estimation are saved in opterr. Therefore, they could be easily reused. It is also not necessary

to use options_cl. Only the mode-option has to be set and the routine bvpsuite_cl will take care of

the rest. We stress that this tool is of use for advanced and experienced users who know how to handle

possible difficulties arising when not all input parameters are set in a correct way.

7.7 The bvpfile

This section describes the general form of the bvpfiles. Those files are generated automatically by the

GUI. It is not recommended to write a bvpfile without using the GUI, but experienced users can modify

the bvpfiles. In general, the inputs correspond to the inputs of the GUI.

Example 7.2

% Function call and internal input parameters for the code

function [ret]=ex1(nr,D,R,t,z,za,zb,D1,D2,p,Dpgl,Dppar,DpRgl,DpRpar,zc)

% Check the number of input parameters

if (nargin<15) zc=[]; if (nargin<14) DpRpar=[]; if (nargin<13) DpRgl=[];

if (nargin<12) Dppar=[]; if (nargin<11) Dpgl=[]; if (nargin<10) p=[];

if (nargin<9) D2=[]; if (nargin<8) D1=[]; if (nargin<7) zb=[]; if (nargin<6)

za=[]; if (nargin<5) z=[]; if (nargin<4) t=[]; if (nargin<3) R=[];

if (nargin<2) D=[];end;end;end;end;end;end;end;end;end;end;end;end;end;end;

ret=intern(nr,D,R,t,z,za,zb,D1,D2,p,Dpgl,Dppar,DpRgl,DpRpar,zc);

% Internal function call

function ret=intern(nr,D,R,t,z,za,zb,D1,D2,p,Dpgl,Dppar,DpRgl,DpRpar,zc)

switch nr

case ’x0’

% Define length of solution vector of the system

for j=1:(length(intern(’x1’))-1)*(intern(’n’)*intern(’m’)

+sum(intern(’ordnung’)))+intern(’parameter’)

u(j,1)=1;

end

ret=u;

% Define order of differential equations

case ’ordnung’
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ret=[2 2];

% Define number of parameters

case ’parameter’

ret=0;

% Define positions for boundary conditions posed in the interior of the interval

case ’c’

ret=[];

% Define the number of equations

case ’n’

ret=2;

% Define whether the problem is defined on an infinite domain

case ’Infinite’

ret=false;

% Define whether the problem is an EVP

case ’EVP’

ret=false;

% Left endpoint of the semi-infinite interval, [a,∞), a ≥ 0

case ’Endpoint’

ret=[];

% Standard collocation points (Gaussian, Lobatto)

case ’standard’

ret=true;

% Vector of collocation points (in this case standard), 1 means Gaussian (2 means Lobatto), 5 specifies

% the number of collocation points

case ’rho’

ret=[1 5];

% Mesh vector without collocation points

case ’x1’

ret=0:0.1:1;

% Equations (z(1,3)=z1”, z(1,2)=z1’, z(1,1)=z1)

case ’g’

ret=[z(1,3)+3/t*z(1,2)-(-(81)*z(2,1)-2*(1000)+z(1,1)*z(2,1));

z(2,3)+3/t*z(2,2)-((81)*z(1,1)-(1/2)*z(1,1)^2)];

% Derivatives of the above nonlinear equations with respect to ...

case ’Dg’

switch D

case 1

% ... [z(1,1) z(2,1); z(1,1) z(2,1)]

ret=[-z(2,1) 81-z(1,1) ;-81+z(1,1) 0 ;];

case 2
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% ... [z(1,2) z(2,2); z(1,2) z(2,2)]

ret=[3/t 0 ;0 3/t ;];

case 3

% ... [z(1,3) z(2,3); z(1,3) z(2,3)]

ret=[1 0 ;0 1 ;];

end

% Derivatives with respect to the parameters

case ’Dpg’

ret=[0;0;];

% Additional conditions

% za(component,derivative)

% zb(component,derivative)

% Boundary conditions

case ’R’

ret=[za(1,2)-(0);za(2,2)-(0);zb(1,1)-(0);

zb(2,2)+(1-1/3)*zb(2,1)-(0)];

% Derivatives of the boundary conditions

case ’DR’

switch R

% First boundary condition with respect to ...

case 1

switch D

% [za(1,1),za(2,1)]

case ’a1’

ret=[0 0 ;];

% [za(1,2),za(2,2)]

case ’a2’

ret=[1 0 ;];

% [zb(1,1),zb(2,1)]

case ’b1’

ret=[0 0 ;];

% [zb(1,2),zb(2,2)]

case ’b2’

ret=[0 0 ;];

end

% Second boundary condition with respect to ...

case 2

switch D

case ’a1’

ret=[0 0 ;];
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case ’a2’

% [za(1,2),za(2,2)]

ret=[0 1 ;];

case ’b1’

ret=[0 0 ;];

case ’b2’

ret=[0 0 ;];

end

case 3

switch D

case ’a1’

ret=[0 0 ;];

case ’a2’

ret=[0 0 ;];

case ’b1’

ret=[1 0 ;];

case ’b2’

ret=[0 0 ;];

end

case 4

switch D

case ’a1’

ret=[0 0 ;];

case ’a2’

ret=[0 0 ;];

case ’b1’

ret=[0 2/3 ;];

case ’b2’

ret=[0 1 ;];

end

end

% Derivatives with respect to the parameters

case ’DpR’

ret=[0;0;0;0;];

% Number of collocation points

case ’m’

if (intern(’standard’))

help=intern(’rho’);

ret=help(2);

else
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ret=length(intern(’rho’));

end

% Initialize linear solver

case ’linear’

ret=0;

end

%Values read by bvpsuite GUI:

%Endpoint

%%#Endpoint

%startwert

%1%#startwert

%dim

%[2 2]%#dim

%parameter

%0%#parameter

%c

%[]%#c

%variablen

%musquare=81;gamma=1000;%#variablen

%standard

%true%#standard

%Infinite

%false%#Infinite

%EVP

%false%#EVP

%rho

%[1 5]%#rho

%x1

%0:0.1:1%#x1

%abstol

%1e-014%#abstol

%reltol

%1e-014%#reltol

%auto

%false%#auto

%g

%z1’’+3/t*z1’=-musquare*z2-2*gamma+z1*z2;

z2’’+3/t*z2’=musquare*z1-(1/2)*z1^2%#g

%r1

%z1’(a)=0;z2’(a)=0;z1(b)=0;z2’(b)+(1-1/3)*z2(b)=0%#r1
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8 Code Performance

In this section, we comment on the performance of our code bvpsuite when compared to other available

software for the numerical solution of BVPs in ODEs. Since our focus is on singular BVPs, we have

chosen those codes which explicitly claim that singular problems are in their scope. Therefore, we take

into considerations the standard Matlab code bvp4c and its higher order versions bvp5c, bvp6c, cf. [15],

[26], and two FORTRAN codes, BVP_Solver [27] and the COLNEW solver described in [1].

Our main intention while designing bvpsuite was to provide a Matlab code which can cope with a wide

range of applications and works dependably and efficiently for a large range of tolerances with an em-

phasis on high accuracy. Therefore, we have chosen the fully implicit formulation of the nonlinear system

of equations and nonlinear boundary conditions, see Section 2. The order of the differential equations in

the components of the system can be arbitrary and different for different components. Thus, there is no

need to transform a higher order system to its first order form. The code can cope with free unknown

parameters for which the appropriate number of additional boundary conditions need to be specified at

the borders or within the interval of integration. In its scope are nonlinear singular BVPs with a singu-

larity of the first or of the second kind5. Over the years, we have been able to give a good theoretical

justification for all components of the code, also in the context of singular problems, see for instance the

list of publications at http://www.math.tuwien.ac.at/˜ewa.

The code can solve index-1 differential-algebraic equations, a coupled system of differential equations and

algebraic constraints. Also, it is equipped with a pathfollowing strategy in case of known parameter values

such that the turning points in the solution/parameter path do not constitute a difficulty. Recently, we

have equipped the code with modules for the solution of eigenvalue problems of arbitrary order, see the

references below. Moreover, for a problem posed on a semi-infinite interval [0,∞) the code automatically

reduces the problem to the interval [0, 1] and after numerical computations it provides the approximate

solution on an arbitrary interval [0, b], b < ∞.

The order of the collocation solver is chosen automatically in dependence of the tolerance specified by the

user and varies between two and eight. We stress that since in our code Gaussian points (or equidistant

interior collocation points) are used, we avoid the evaluation at the singular point and therefore also in

the case of singular problems only one numerical method on the whole interval is used and no pre-handling

is necessary. In other words, there is no distinction between the solution of singular or regular problems

with bvpsuite. The error estimate and the grid adaptation routine have been described in Sections 3

and 4, respectively

The code bvp4c6 [25] can solve explicit nonlinear systems of order one with nonlinear boundary conditions

5and clearly, problems with no singularity
6In the following, we refer to bvp4c only, even when all three variants of the code are addressed.
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and unknown parameters. However, the singular problems have to show a special structure,

z′(t) =
S

t
z(t) + f(t, z(t)), t ∈ (0, T ], (21)

with a constant matrix S. This means that only a singularity of the first kind in this particular form is

in the scope of the code. The basic solution method is polynomial collocation at four, five or six Lobatto

points, respectively. Within one routine the order of the method is fixed to four, five or six. The quantity

to be estimated and controlled is the residual, and residual and error in case of bvp5c [15].

The BVP_Solver [27] covers the same class of problems, regular and singular, as bvp4c. The methods

used here are implicit Runge-Kutta schemes (MIRKDC) of orders two, four, and six. The code controls

the defect in the differential equations and boundary conditions and also provides an estimate for the

global error using the extrapolation technique.

Finally, COLNEW [1] can solve explicit nonlinear systems of ODEs of varying order up to four. The

basic solver is collocation at Gaussian points whose number ranges from one to seven. The code controls

the global error estimated from the mesh halving principle which in case of Gaussian points is strongly

related to the residual. In this code a pathfollowing strategy is also available and the code can cope with

free parameters.

We compare the performance of the codes by solving the following boundary value problem:

z′(t) =
1

t

(

0 1

2 6

)

z(t)+

(

0

4k2t5 sin(k2t2) + 10t sin(k2t2)

)

, (22a)

(

0 1

0 0

)

z(0) +

(

0 0

1 0

)

z(1) =

(

0

sin(k2)

)

, (22b)

where the analytical solution is known,

z(t) = (t2 sin(k2t2) , 2k2t4 cos(k2t2) + 2t2 sin(k2t2))T .
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Figure 31: Problem (22), k = 5: The exact solution (left) and the number of grid points in the final mesh (right).

For the simulation the order of the methods implemented in the codes was set to four. Additionally, we

also used the possibility of our code to adapt the order of the method to the prescribed tolerance, see
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Figure 32: Problem (22), k = 5: The number of function evaluations (left) and the tolerance versus accuracy

graph (right).

curve ‘bvpsuite vo’ in Figures 31 and 32. The results show that this approach provides the most efficient

solution method. Therefore the flexibility of our code also constitutes a significant improvement of the

performance. The model problem (22) discussed here, gives a typical picture observed in all tests. The

results of the simulation can be found in Figures 31 and 32. When the order is fixed to four for comparison,

the number of grid points required by bvpsuite and COLNEW is comparable and smaller throughout

than for bvp4c and the BVP_Solver. Especially, for strict tolerances, the gap between bvpsuite and

COLNEW and the other two codes is significant. The strictest tolerance succssesfully reached by the

BVP_Solver was 10−10, and by bvp4c 10−11, while bvpsuite and COLNEW reached an accuracy of

10−13. It is worth mentioning that for this example bvp4c and BVP_Solver work better at target than

bvpsuite and COLNEW.

9 Applications

As already mentioned, eigenvalue problems, see [3], [28], and differential algebraic equations, cf. [7], [22],

are within the scope of our code, but it can also be applied in case of non-standard singularities. In [24],

we investigated the following singular equation which originates from the theory of shallow membrane

caps,

(t3u′(t))′ + t3
( 1

8u2(t)
−

a0

u(t)
− b0t

2γ−4
)

= 0, t ∈ (0, 1], (23)

subject to boundary conditions

lim
t→0+

t3u′(t) = 0, u(1) = 0,

where a0, b0, and γ are given constants. Note that this problem has a more challenging structure than

(1). After rewriting (23), we obtain the explicit version of the equation,

u′′(t) +
3

t
u′(t) +

( 1

8u2(t)
−

a0

u(t)
− b0t

2γ−4
)

= 0, u(1) = 0. (24)

Here, a singularity of the first kind occurs at t = 0, but at the same time due to the boundary condition

at t = 1 the problem has a so-called phase singularity at the other end of the interval. For such more
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involved problems existence and uniqueness of solutions is shown by means of generalized lower and upper

functions, involving limiting processes, cf. [24] and references therein. Our code bvpsuite could be used to

approximate solutions7 of the membrane problem. However, a theoretical justification for the collocation

method in view of the problem structure is still an open question.

Another source of challenging problems with an interesting solution structure are reaction-diffusion equa-

tions, see [29], [30]. In [29], the simple looking, parameter dependent problem of the form

u′′(t) =
λ

√

u(t)
, t ∈ (0, 1], u(0) = u(1) = 1, (25)

where λ is a given parameter, turns out to have a very challenging structure. Depending on the value

of λ there exist the so-called positive solutions, u(t) > 0 for all t ∈ [0, 1], pseudo dead core, and dead

core solutions, such that u(t) = 0 for a certain point t ∈ (0, 1), or u(t) = 0 for a certain subinterval

t ∈ [α, β], 0 < α < β < 1, respectively. In order to find the latter two solutions, we simulated the problem

numerically using bvpsuite. Here, we utilized the fact that the above equation can be treated in its fully

implicit form,

u′′(t)
√

u(t)u(t) = λu(t), t ∈ (0, 1], u(0) = u(1) = 1. (26)

Clearly, in the case that the analytical problem is especially involved, the numerical approach may some-

times constitute the only source of information about the solution structure. We faced this type of

difficulty in [30]. Since the problem is again parameter dependent, we have applied the pathfollowing

strategy implemented in bvpsuite to solve

((u′(t))3)′ +
u′(t)

t2
= λ

(

1
√

u(t)
+ (u′(t))2

)

, t ∈ (0, 1), (27a)

u′(0) = 0, 0.1u(1) + u′(1) = 1. (27b)

The results of this simulation are shown in Figure 35. We can see that for a certain range of λ the positive

solution is unique, and for the other part of the path, we could find two different positive solutions, see

Figures 33 and 34. According to Figure 35, we have moved around a turning point at λ ≈ 1.8442.

0 0.2 0.4 0.6 0.8 1

4.9

4.92

4.94

4.96

4.98

5

5.02

5.04

5.06

t

u(
t)

Solution

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

x 10
−14

t

e(
t)

Error Estimate

0 0.2 0.4 0.6 0.8 1

10
−15

10
−14

10
−13

10
−12

t

r(
t)

Residual

Figure 33: Problem (27): The numerical solution, the error estimate and the residual for λ = 1.42604644036221.

Finally, in the last step of the procedure, we obtained a solution which nearly reaches a pseudo dead core

solution with the collocation solution p(0) ≈ u(0) ≈ 0.

7even though u
′(0) may become unbounded

53



0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

t

u(
t)

Solution

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

x 10
−13

t

e(
t)

Error Estimate

0 0.2 0.4 0.6 0.8 1

10
−14

10
−12

10
−10

t

r(
t)

Residual

Figure 34: Problem (27): The numerical solution, the error estimate and the residual for λ = 1.42139222684689.
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Figure 35: Graph of the ‖p‖−λ path obtained in 76 steps of the pathfollowing procedure, where ‖p‖ = max
t∈[0,1]

|p(t)|.

The turning point has been found at λ ≈ 1.8442.
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