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Chapter 1

Eigenvalue problems

Motivation: many problems in natural science and engineering lead to problems of finding eigenvalues,
e.g. in structural mechanics (eigenfrequencies of elastic bodies) or in quantum mechanics, . . .

Goal: numerical approximation of eigenvalues and eigenfunctions.
model problem: Given a domain Ω ⊂ Rd, find a function u and λ ∈ R, such that

−∆u = λu on Ω, u|∂Ω = 0. (1.1)

Remark 1.1 The eigenvalue problem (EVP) (1.1) has physical meaning: The eigenvalues in λ in (1.1)
are indeed positive, and the values

√
λ correspond to the eigenfrequencies of a clamped membrane.

We consider problem (1.1) in a weak, variational sense

Find (u, λ) ∈ H1
0 (Ω) \ {0} × R s.t.

∫
Ω

∇u · ∇v = λ

∫
Ω

uv ∀v ∈ H1
0 (Ω). (1.2)

Example 1.2 Let Ω = (0, π) and consider

−u′′ = λu on Ω, u(0) = u(π) = 0.

The general solution to the differential equation −u′′ − λu = 0 is u(x) = C1 sin(
√
λx) +C2 cos(

√
λx). In

order to obtain non-trivial solutions, there must hold
√
λ = n, n ∈ N. Consequently, we obtained the

eigenpairs (un, λn)

un(x) = sin(
√
λnx), λn = n2, n = 1, 2, . . . .

Observation: the eigenfunctions satisfy two orthogonalities

(un, um)L2(Ω) = 0 n ̸= m,

(un, um)H1
0 (Ω) :=

∫
Ω

u′nu
′
m = 0 n ̸= m.

Moreover, (un)n∈N is an orthogonal basis of L2(Ω) (and, as we will see later on, also in H1
0 (Ω)).

1.1 Solvability of the abstract eigenvalue problem

In the present chapter, we consider a more general setting:

� V , H Hilbert spaces (over R)

� V ⊂ H dense with continuous, compact embedding

� a : V × V → R symmetric, continuous, bilinear, coercive

� (·, ·)H . . . scalar product on H
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� a(·, ·) induces an inner product on V , which is equivalent to the inner product on V .

The abstract eigenvalue problem is then given as

Find (u, λ) ∈ V \ {0} × R s.t. a(u, v) = λ(u, v)H ∀v ∈ V. (1.3)

To obtain solvability of the problem, we use the theory of compact operators. Let T : H → V be the
solution operator for the problem

Find u ∈ V s.t. a(u, v) = (f, v)H ∀v ∈ V, (1.4)

meaning that Tf ∈ V is characterized by

a(Tf, v) = (f, v)H ∀v ∈ V. (1.5)

As V ⊂ H, we can restrict T to V and consider it as an operator in V . We have:

Theorem 1.3 (i) T : V → V is compact.

(ii) T : V → V is self-adjoint w.r.t. a(·, ·).

(iii) T is positive on V in the sense a(Tf, f) > 0 for all f ∈ V \ {0}.

Proof: ad (i): The operator T : V → V is a composition of the compact embedding V ⊂ H and the
continuous operator T : H → V (Lax-Milgram!):

T : V ↪→ H → V

Therefore, T : V → V is compact as composition of a continuous and compact operator.
ad (ii): Let f , v ∈ V . Then,

a(Tf, v) = (f, v)H = (v, f)H = a(Tv, f)
a sym.
= a(f, Tv).

ad (iii):

� For f ∈ V \ {0}, there holds a(Tf, f) = (f, f)H ≥ 0.

� As the embedding V ⊂ H is injective, ∥f∥H = 0 would imply that f = 0 (as element in V ).

□

The variational eigenvalue problem (1.3) is equivalent to an EVP for T :

Lemma 1.4 (u, λ) ∈ V \ {0} × R \ {0} solves (1.3) ⇐⇒ (u, λ) ∈ V \ {0} × R \ {0} solves

Tu =
1

λ
u. (1.6)

Proof: “=⇒”: Let (u, λ) be a solution to (1.3). Then,

a(u, v) = λ(u, v)H = λa(Tu, v) = a(λTu, v) ∀v ∈ V.

As a(·, ·) is an inner product, we have
u = λTu.

“⇐=”: Let (1.6) hold. Then, for all v ∈ V

a(λ−1u, v) = a(Tu, v) = (u, v)H ,

which is (1.3). □

Lemma 1.4 provides that the sought eigenpairs (u, λ) of (1.3) are given as eigenpairs (u, 1/λ) of T . As
T is compact and self-adjoint (w.r.t. a(·, ·)), we can apply spectral theory for compact operators.
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Theorem 1.5 (Spectral theorem for compact, self-adjoint operators) Let X be a Hilbert space
over C and A : X → X be compact and self-adjoint. Then, there holds:

(i) The spectrum σ(A) = {µ ∈ C |µ−A : X → X is not continuously invertible} is a countable set with
the only possible accumulation point being 0. The elements µ ∈ σ(A) \ {0} are called eigenvalues.

(ii) σ(A) ⊂ R. If A is non-negative, i.e. (Ax, x)X ≥ 0 for all x, then σ(A) ⊂ [0, ∥A∥X ] ⊂ [0,∞).

(iii) For all µ ∈ σ(A) \ {0} the dimension of Ker(µ− A) is finite. The number dimKer(µ− A) ∈ N is
called multiplicity1 of the eigenvalue µ. The space Ker(µ−A) is called eigenspace to the eigenvalue
µ.

(iv) For µ1, µ2 ∈ σ(A) \ {0} with µ1 ̸= µ2 and u1 ∈ Ker(µ1 − A) and u2 ∈ Ker(µ2 − A) there holds
(u1, u2)X = 0.

(v) X has an ONB consisting of eigenvectors of A. More precisely: Let the countable set σ(A) \ {0} be
written as sequence µ1, µ2, . . . ,, where every eigenvalue is written possibly multiple times according
to its multiplicity. Then, there exists a sequence (en)n ⊂ X with

(en, em)X = δn,m

and X = KerA⊕X span{e1} ⊕X span{e2} ⊕X · · · .

(vi) Every x ∈ X can be written as Fourier series

x = a+

∞∑
n=1

(x, en)Xen,

where a ∈ KerA. Moreover,

Ax =

∞∑
n=1

µn(x, en)Xen.

Proof: A real version of this theorem will be shown in the exercise. □

Corollary 1.6 There exists a sequence (un, λn)n∈N ⊂ V \ {0} × R with the following properties:

(i) a(un, v) = λn(un, v)H ∀v ∈ V .

(ii) The sequence (λn)n∈N satisfies 0 < λ1 ≤ λ2 ≤ · · · and limn→∞ λn = ∞. Moreover, every eigenval-
ues of (1.3) has finite multiplicity.

(iii) (un)n∈N is an ONB in H. In particular, every u ∈ H can be written as

u =

∞∑
n=1

(u, un)Hun.

(iv) (λ
−1/2
n un)n∈N is an ONB in (V, a(·, ·)) In particular, every u ∈ V can be written as

u =

∞∑
n=1

a(u, λ−1/2
n un)λ

−1/2
n un.

1more precisely: rg := dimKer(µ−A) is the geometric multiplicity of µ. The smallest number α ∈ N with Ker(µ−A)α =
Ker(µ−A)α+1 is called the ascent of µ. The algebraic multiplicity of the eigenvalue µ is then defined as ra := dimKer(µ−
A)α. Obviously, ra ≥ rg . In the case of self-adjoint operators, there holds α = 1, such that ra = rg . This follows from: If
α ≥ 2, then there exists x ̸= 0 with x ∈ Ker(µ − A)α and x ̸∈ Ker(µ − A)α−1. As α ≥ 2, we can consider (µ − A)α−2x
and using the self-adjointness of µ − A, there holds 0 = ((µ − A)αx, (µ − A)α−2x)X = ((µ − A)α−1x, (µ − A)α−1x)X =
∥(µ−A)α−1x∥2X > 0, a contradiction.
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Proof: We apply Theorem 1.5 for the compact operator T and X = (V, a(·, ·)).
Step 1: We show KerT = {0}. To see this, let u ∈ KerT . Then,

0 = a(0, v) = a(Tu, v) = (u, v)H ∀v ∈ V.

As V is dense in H, there follows u = 0 (as element of H and due to the injectivity of the embedding
V ⊂ H also as element of V ).
Step 2: Let (en, µn)n∈N be the (normalized) eigenpairs of the operator T provided by Theorem 1.5, i.e.,

a) Ten = µnen for all n ∈ N.

b) (en)n∈N is an ONB of (V, a(·, ·)).

With λn := 1/µn, there holds (compare Lemma 1.4):

a(en, v) = λn(en, v)H ∀v ∈ V.

Step 3: We claim that the (en)n∈N are also pairwise orthogonal w.r.t. (·, ·)H :

(en, em)H = λn(en, λ
−1
n em)H = a(en, λ

−1
n em) = λ−1

n δn,m.

Step 4: Now, we define the functions un in the statement of the theorem as

un :=
√
λnen.

Then,

� (un, um)H = δn,m.

� a(un, um) = λnδn,m.

� (λ
−1/2
n un)n∈N is an ONB of (V, a(·, ·)).

It remains to show that the span of (un)n∈N is dense in H. Let ΠN : H → span{u1, . . . , uN} be the
orthogonal projection (in H). We claim

lim
N→∞

∥u−ΠNu∥H = 0.

For every u ∈ V there holds

u =

∞∑
n=1

a(u, λ−1/2
n un)λ

−1/2
n un =

∞∑
n=1

(u, un)Hun

ΠNu =

N∑
n=1

(u, un)Hun =

N∑
n=1

a(u, λ−1/2
n un)λ

−1/2
n un.

This means that the projection ΠNu coincides with the truncated (orthogonal-)basis expansion of u in
the space (V, a(·, ·))! This directly implies

lim
N→∞

∥u−ΠNu∥V = 0 ∀u ∈ V.

A density argument now also gives the result for u ∈ H: Let u ∈ H and ε > 0. Choose uε ∈ V with
∥u− uε∥H ≤ ε. Then,

∥u−ΠNu∥H ≤ ∥u− uε∥H︸ ︷︷ ︸
≤ε

+ ∥ΠN (u− uε)∥H︸ ︷︷ ︸
≤∥(u−uε)∥H≤ε

+ ∥uε −ΠNuε∥H︸ ︷︷ ︸
≤C∥uε−ΠNuε∥V →0 For N → ∞

where the constant C > 0 comes from the continuous embedding V ⊂ H. □
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1.1.1 Characterization of eigenvalues

For self-adjoint, compact operators A, the Rayleigh-quotient

RA(x) :=
(Ax, x)X
(x, x)X

, x ∈ X \ {0}

is an important tool to characterize eigenvalues2.

Lemma 1.7 Let A be self-adjoint on the Hilbert space X. Let RA be the Rayleigh-quotient.
Then,

∥A∥X = sup
x

|RA(x)| .

For compact operators A the supremum is indeed attained and the maximizer is an eigenvector. Moreover,
∥A∥X is then an eigenvalue.

Proof: The last statement is shown in the exercises.
The statement

s := sup
x

|RA(x)| ≤ ∥A∥X

is easily directly shown. To prove ∥A∥X ≤ s we use the self-adjointness of A. Let x, y ∈ X be arbitrary.
Then,

2 |(Ax, y)X + (Ay, x)X | = |(A(x+ y), (x+ y))X − (A(x− y), (x− y))X | (1.7)

≤ s
(
∥x+ y∥2X + ∥x− y∥2X

)
= 2s

(
∥x∥2X + ∥y∥2X

)
.

We now set y = tAx with t > 0 to be chosen later. Then, by self-adjointness of A, we have

4t∥Ax∥2X ≤ 2s
(
∥x∥2X + t2∥Ax∥2X

)
i.e., (

2t− st2
)
∥Ax∥2X ≤ s∥x∥2X .

In order to obtain a sharp estimate, we now choose t > 0 s.t. the left-hand side is as large as possible.
This is achieved by the choice t = 1/s > 0. Consequently, we obtain

1

s
∥Ax∥2X ≤ s∥x∥2X .

As x is arbitrary, we have obtained ∥A∥X ≤ s.
Strictly speaking, we have assumed s > 0 in the proof. In the case s = 0 we can use the same argument
by replacing s by s+ ε with arbitrary ε > 0 in (1.7). Then, we obtain ∥A∥X ≤ s+ ε for arbitrary ε > 0.
□

For A = T and X = (V, a(·, ·)), the Rayleigh-quotient RA reads as

RA(x) =
(x, x)H
a(x, x)

.

We consider the reciprocal

R(x) :=
a(x, x)

(x, x)H
x ∈ V \ {0}. (1.8)

There holds:

2For self-adjoint operators, the Rayleigh-quotient is also important in numerical methods such as the Ritz method.
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Theorem 1.8 (Minimum principle) Let the eigenvalues λn be sorted by size: λ1 ≤ λ2 ≤ · · · (also
according for their multiplicity). Let un be the corresponding eigenfunctions. Then,

(i) R(un) = λn for all n.

(ii) λ1 = minu∈V R(u).

(iii) With

Vm := span{u1, . . . , um}, (1.9)

V ⊥
m := {v ∈ V | a(v, w) = 0 ∀w ∈ Vm} = {v ∈ V | (v, w)H = 0 ∀w ∈ Vm} (1.10)

there holds
λm = min

v∈V ⊥
m−1

R(v), m = 2, 3, . . . . (1.11)

Proof: ad (i): is clear.
ad (ii): Let v ∈ V . Then, due to a(un, v) = λn(un, v)H and the orthogonalities satisfied by the functions
un, there holds

v =

∞∑
n=1

(v, un)Hun =

∞∑
n=1

a(v, λ−1/2
n un)λ

−1/2
n un

∥v∥2H =

∞∑
n=1

|(v, un)H |2

a(v, v) =

∞∑
n=1

|a(v, λ−1/2
n un)|2 =

∞∑
n=1

λn|(v, un)H |2

This gives

R(v) =
a(v, v)

∥v∥2H
=

∑∞
n=1 λn|(v, un)H |2∑∞
n=1 |(v, un)H |2

.

As the λn are sorted ascending, there follows

min
v∈V

R(v) = λ1.

ad (iii): Let v ∈ V ⊥
m−1. Then, v has the representation

v =

∞∑
n=1

(v, un)Hun =

∞∑
n=m

(v, un)Hun.

This implies

R(v) =
a(v, v)

∥v∥2H
=

∑∞
n=m λn|(v, un)H |2∑∞
n=m |(v, un)H |2

and by the monotonicity of λn ↑, there follows

min
v∈V ⊥

m−1

R(v) = λm.

□

The explicit use of the eigenvectors un to describe the eigenvalues λm, m ≥ 2 in Theorem 1.8 is oftentimes
cumbersome, as the eigenvectors may not be explicitly known. The following theorem avoids that.

Theorem 1.9 (Minimax-principle) There holds

λm = min
Em⊂V

dimEm=m

max
v∈Em

R(v), m = 1, 2, . . . .
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Proof: “≥”: Let Em := Vm = span{u1, . . . , um}. Then, every v ∈ Vm has the representation v =∑m
n=1 αnun with αn = (v, un)H and

R(v) =

∑m
n=1 λnα

2
n∑m

n=1 α
2
n

.

Maximizing over all (αn)
m
n=1 ∈ Rm gives, using the monotonicity of the λn ↑, that

max
v∈Vm

R(v) = λm. (1.12)

“≤”: Let Em ⊂ V with dimEm = m. We show λm ≤ maxv∈Em
R(v). Choose v ∈ Em \ {0} such that

(v, un)H = 0, n = 1, . . . ,m− 1.

(this is possible due to the dimension theorem of linear algebra as only m−1 linear conditions are posed).
Then, 0 ̸= v ∈ V ⊥

m−1 ∩ Em and by Theorem 1.8

λm = min
w∈V ⊥

m−1

R(w) ≤ R(v) ≤ max
w∈Em

R(w).

□

1.2 FEM discretization

In order to discretize the variational eigenvalue problem (1.3), we choose a finite dimensional subspace
Vh ⊂ V and consider the problem

Find (uh, λh) ∈ Vh \ {0} × R s.t. a(uh, v) = λh(uh, v)H ∀v ∈ Vh. (1.13)

Choosing a basis {φ1, . . . , φN} of Vh, the discrete eigenvalue problem (1.13) is then equivalent to an
algebraic (generalized) eigenvalue problem given by

Find (uh, λh) ∈ RN \ {0} × R s.t. Auh = λhMuh, Aij = a(φj , φi), Mij = (φj , φi)H .
(1.14)

Remark 1.10 For moderate problem sizes N , one can solve the matrix eigenvalue problem (1.14) with
standard methods of numerical linear algebra, e.g. the QR-algorithm (if M = Id or if you use M−1A) or
variants such as the QZ algorithm (For general M). This returns all eigenvalues and eigenvectors with
effort O(N3). For large N , iterative methods are used that only return a small part of the spectrum.
This is for two reasons: 1) the costs are prohibitive and QR-type algorithms can make very poor use
of the occupation structure of A, M (typically these are sparsely populated matrices); 2) one is only
interested in a small part of the spectrum anyway, because the numerical approximations of a large part
of the spectrum are very poor (more on that later).

Exercise 1.11 Show that the minimax-principle also holds for the discretized problem (1.13), i.e., there
holds

λh,m = min
Em⊂Vh

dimEm=m

max
v∈Em

R(v). (1.15)

With the help of Exercise 1.11, we can show that the the discrete eigenvalues converge from above.

Theorem 1.12 There holds
λm ≤ λh,m, m = 1, . . . , N.

7



Proof: Using both the discrete minimax-principle (1.15) and the continuous minimax-principle, we
obtain due to Vh ⊂ V :

λh,m = min
Em⊂Vh

dimEm=m

max
v∈Em

R(v) ≥ min
Em⊂V

dimEm=m

max
v∈Em

R(v) = λm.

□

Exercise 1.13 If the approximation spaces Vh are nested, then the convergence is even monotone: Let
Vh ⊂ Vh′ ⊂ V , then

λm ≤ λh′,m ≤ λh,m, m = 1, . . . , N.

1.2.1 Convergence of the eigenvalues

We define the Ritz-projector Ph : V → Vh as the orthogonal projection onto Vh in the a(·, ·)-inner product,
i.e., Phu ∈ Vh is characterized by

a(u− Phu, v) = 0 ∀v ∈ Vh. (1.16)

The Ritz-projector satisfies (see FEM lecture)

� Ph is linear.

� Best-approximation property: ∥u− Phu∥V ≤ C infv∈Vh
∥u− v∥V .

� Orthogonal projection in a(·, ·): There holds ∥Ph∥E ≤ 1, where ∥ · ∥E := a(·, ·)1/2 denotes the so
called energy norm.

Now, the key question for the convergence of eigenvalues and eigenfunctions is how the space Vm ⊂ V
(spanned by the first m eigenfunctions) and its projection PhVm ⊂ Vh are connected.
For that we define the quantity

σh,m := inf
v∈Vm

∥Phv∥H
∥v∥H

, 1 ≤ m ≤ N. (1.17)

Lemma 1.14 If, for some m ∈ {1, . . . , N}, we have σh,m > 0, then, for this m, there holds

λm ≤ λh,m ≤ σ−2
h,mλm. (1.18)

Proof: (Note: 1/σh,m is the norm of the inverse of the operator Ph : Vm → PhVm (exercise!). If
Vm = PhVm, then Ph|Vm = Id, which follows from the projection property of Ph: We have Phv = v for
v ∈ Vh and the assumption PhVm = Vm leads to Vm ⊂ Vh, so that Phv = v for v ∈ Vm. Therefore, in the
case PhVm = Vm, we have σ−1

h,m = 1 and thus we expect that 1 − σ−1
h,m is a (rough) measure, how close

the spaces Vm and PhVm are.)
We use the minimax-principle, this time with the space Em = PhVm. For that, we need to show that
the assumption σh,m > 0 leads to dimEm = m: provided dimEm = dim(PhVm) < m, then there exists
v ∈ Vm \ {0} with Phv = 0, which is a contradiction to σh,m > 0.
The discrete minimax-principle (1.15) now gives with Em = PhVm

λh,m ≤ max
v∈Em

R(v) = max
v∈Em

a(v, v)

∥v∥2H
= max
v∈Vm

a(Phv, Phv)

∥Phv∥2H
≤ max
v∈Vm

a(v, v)

∥Phv∥2H

= max
v∈Vm

a(v, v)

∥v∥2H
∥v∥2H

∥Phv∥2H
≤ λmσ

−2
h,m,

where, in the last step, we used (1.12). □
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Lemma 1.14 indicates that, for fixed m, we want to show:3

lim
h→0

σh,m = 1.

The following lemma shows that this is possible.

Lemma 1.15 There holds

σ2
h,m ≥ 1− 2∥a∥

√
m

λ1
sup
v∈Vm

∥v − Phv∥2V
∥v∥2H

.

Proof: Let v ∈ Vm with ∥v∥H = 1 being written as

v =

m∑
n=1

αnun,

m∑
n=1

|αn|2 = 1.

Due to ∥v∥H = 1, there holds

1− ∥Phv∥2H = (v, v)H − (Phv, Phv)H = (v − Phv, v + Phv)H = (v − Phv, 2v + Phv − v)H

= −∥v − Phv∥2H + 2(v − Phv, v)H

and consequently

∥Phv∥2H = 1− 2(v − Phv, v)H + ∥v − Phv∥2H ≥ 1− 2(v − Phv, v)H .

With a(z, un) = λn(z, un)H for all z ∈ V and a(v − Phv, w) = 0 for all w ∈ Vh, we calculate

(v − Phv, v)H =

m∑
n=1

αn(v − Phv, un)H

=

m∑
n=1

αn
λn
a(v − Phv, un)

=

m∑
n=1

αn
λn
a(v − Phv, un − Phun)

≤
m∑
n=1

|αn|
λn

∥a∥∥v − Phv∥V ∥un − Phun∥V

≤ ∥v − Phv∥V
∥a∥
λ1

√√√√ m∑
n=1

|αn|2︸ ︷︷ ︸
=1

√√√√ m∑
n=1

∥un − Phun∥2V︸ ︷︷ ︸
≤

√
m sup

w∈Vm

∥w∥H=1

∥w − Phw∥V

≤ ∥a∥
λ1

√
m sup

w∈Vm

∥w∥H=1

∥w − Phw∥2V .

This implies

∥Phv∥2H ≥ 1− 2
∥a∥
λ1

√
m sup

w∈Vm

∥w∥H=1

∥w − Phw∥2V .

From ∥v∥H = 1 the claim follows. □

Lemma 1.15 shows that we obtain error estimates, if the family of discrete space (Vh)h>0 has approxi-
mation properties. We thus assume that

∀v ∈ V : lim
h→0

inf
w∈Vh

∥v − w∥V = 0. (1.19)

3until now the spaces Vh ⊂ V were arbitrary, as we want to apply FEM, we think about them as piecewise polynomial
spaces, e.g. Sp,1(Th), on a mesh with maximal mesh-size h.
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Theorem 1.16 Assume that there holds (1.19). Then, for every m ∈ N, there exists a h0 > 0 and a
constant Cm > 0, such that, for every h < h0, we have

0 ≤ λh,m − λm ≤ Cm sup
v∈Vm

inf
w∈Vh

∥v − w∥2V
∥v∥2H

.

Proof: Again, we consider a v ∈ Vm with ∥v∥H = 1, written as v =
∑m
n=1 αnun with

∑m
n=1 |αn|2 = 1.

Then, there holds

∥v − Phv∥V ≤
m∑
n=1

|αn|∥un − Phun∥V ≤

√√√√ m∑
n=1

|αn|2︸ ︷︷ ︸
=1

√√√√ m∑
n=1

∥un − Phun∥2V .

By assumption (1.19), we can approximate each of the m functions un, n = 1, . . . ,m, arbitrarily well, if
h is small enough, i.e., we have

∀ε > 0 ∃h0 > 0 ∀h < h0 : sup
v∈Vm

∥v∥H=1

∥v − Phv∥V ≤ ε.

Employing the elementary inequality

1

1− ε
≤ 1 + 2ε for ε > 0 sufficiently small

together with Lemma 1.15, for sufficiently small h, there follows

σ−2
h,m ≤ 1 + C sup

v∈Vm

∥v∥H=1

∥v − Phv∥2V .

Due to the best-approximation property of the Ritz-projector, we obtain (with a different constant C > 0
as above)

σ−2
h,m ≤ 1 + C sup

v∈Vm

∥v∥H=1

inf
w∈Vh

∥v − w∥2V .

Employing Lemma 1.14 this shows the theorem. □

Remark 1.17 � Theorem 1.16 shows that the convergence of the eigenvalues is double as fast as
one can expect for the convergence of the eigenfunctions.

� Theorem 1.16 shows that, for fixed m, one can expect convergence λm = limh→0 λh,m, if one works
with FEM spaces with maximal mesh-width h.

Example 1.18 We consider our 1D model problem

−u′′ = λu in (0, π)

u(0) = u(π) = 0.

Then, the continuous eigenpairs are given by (um, λm) = (sin(mx),m2), m ∈ N. Discretizing the model
problem with lowest order finite elements on a uniform mesh on [0, π] with mesh size h leads to the
discrete eigenvalues (programming exercise!)

λh,m =
6

h2
1− cos(mh)

2 + cos(mh)

and the discrete eigenfunctions are the piecewise linear interpolants of the continuous eigenfunctions
sin(m·) in the grid points. By Taylor expansion, we observe

λh,m = m2 +
m4

12
h2 +O(m6h4).

Consequently, we see that the error satisfies |λm − λh,m| = O(h2). However, one should note that the
hidden constant depends on m. This is expected: Larger m lead to more oscillating eigenfunction and
thus a more fine mesh is needed to maintain the same accuracy of the approximation.
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1.2.2 Convergence of eigenfunctions

We mainly consider the case of a simple eigenvalue λm. Convergence theory for eigenvalues with higher
multiplicity k ≥ 2 is possible but more tedious.

We have already defined the eigenfunctions (un)n∈N in Corollary 1.6. In the same way, one can define
the discrete eigenfunctions (uh,n)

N
n=1. They form an ONB of the discrete space (Vh, (·, ·)H) and the

functions (λ
−1/2
h,n un)

N
n=1 form an ONB of (Vh, a(·, ·)).

An important question in the convergence theory of eigenvalue problems is how well the eigenvalue λm is
separated from the rest of the spectrum: min{|λm − λi| | i ∈ N \ {m}} > 0 (note: λm is required to be a
simple eigenvalue). Correspondingly, we need a quantity that measures the extent to which the discrete
spectrum {λh,i | 1 ≤ i ≤ N} is separated from λm. More precisely: The number

ρh,m := max
1≤i≤N
i ̸=m

λm
|λm − λh,i|

(1.20)

is a measure of how far the discrete eigenvalues that not converge to λm, are separated from λm.

Exercise 1.19 Show that: Under the conditions of Theorem 1.16 and the assumption that λm is a
simple eigenvalue, there is an h0 > 0 and a cm > 0 such that for all h < h0 there holds ρh,m ≤ cm.

The following lemma shows that (except for scaling) the discrete eigenfunction uh,m is actually closely
related to the eigenfunction um:

Lemma 1.20 Let λm be a simple eigenvalue and let the approximation property (1.19) hold. Then, there
exists h0 > 0 such that for all h < h0 there holds: There is a sign σ ∈ {±1} such that

∥um − σuh,m∥H ≤ 2(1 + ρh,m)∥um − Phum∥H . (1.21)

Proof: The continuous eigenfunctions (un)n∈N and the discrete eigenfunctions (uh,n)
N
n=1 are unique

except for the sign as we assumed that they are ONBs. We now choose the sign σ of uh,m by the
normalization condition

(Phum, uh,m)H ≥ 0. (1.22)

With this choice, we now want to show (1.21) with σ = +1.
The functions (uh,n)

N
n=1 form an ONB of (Vh, (·, ·)H). Let vh,m ∈ span{uh,m} be the H-orthogonal

projection of Phum, i.e.
vh,m := (Phum, uh,m)Huh,m.

We note

Phum − vh,m =

N∑
n=1
n ̸=m

(Phum, uh,n)Huh,n

∥Phum − vh,m∥2H =

N∑
n=1
n ̸=m

|(Phum, uh,n)H |2.

Using the triangle inequality, we obtain

∥um − uh,m∥H ≤ ∥um − Phum∥H + ∥Phum − vh,m∥H + ∥vh,m − uh,m∥H (1.23)

and consequently, we have to estimate these three terms separately.
Using the property that the functions (un)n∈N and (uh,n)

N
n=1 are eigenfunctions, we can transfer the

(·, ·)H -inner product in an a(·, ·)-inner product, in order to use the Galerkin-orthogonality of the Ritz-
projector:

(Phum, uh,n)H = λ−1
h,na(Phum, uh,n) = λ−1

h,na(um, uh,n) =
λm
λh,n

(um, uh,n)H .
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This implies that

(λh,n − λm)(Phum, uh,n)H = λm(um − Phum, uh,n)H

=⇒ ∥Phum − vh,m∥2H =

N∑
n=1
n̸=m

|(Phum, uh,n)H |2

≤ ρ2h,m

N∑
n=1
n ̸=m

|(um − Phum, uh,n)H |2

≤ ρ2h,m

N∑
n=1

|(um − Phum, uh,n)H |2 ≤ ρ2h,m∥um − Phum∥2H , (1.24)

where the last estimate follows from Bessel’s inequality. We have thus bounded the second term in (1.23)
in the desired way. It remains to estimate vh,m − uh,m. There holds

vh,m − uh,m = ((Phum, uh,m)H − 1)uh,m

=⇒∥vh,m − uh,m∥H = |1− (Phum, uh,m)H | .

The reverse triangle inequality together with the normalization assumption (Phum, uh,m)H ≥ 0 implies

∥um∥H︸ ︷︷ ︸
=1

−∥um − vh,m∥H ≤ ∥vh,m∥H︸ ︷︷ ︸
|(Phum,uh,m)H |=(Phum,uh,m)H

≤ ∥um∥H︸ ︷︷ ︸
=1

+∥um − vh,m∥H . (1.25)

Consequently, we obtain
|1− (Phum, uh,m)H | ≤ ∥um − vh,m∥H

and further
∥vh,m − uh,m∥H = |1− (Phum, uh,m)H | ≤ ∥um − vh,m∥H . (1.26)

Applying the triangle inequality in (1.26) together with (1.24) leads to

∥vh,m − uh,m∥H ≤ ∥um − vh,m∥H ≤ ∥um − Phum∥H + ∥Phum − vh,m∥H
≤ ∥um − Phum∥H + ρh,m∥um − Phum∥H .

This gives together with (1.24)

∥um − uh,m∥H ≤ ∥um − Phum∥H + ∥Phum − vh,m∥H + ∥vh,m − uh,m∥H
≤ ∥um − Phum∥H + ρh,m∥um − Phum∥H + (1 + ρh,m)∥um − Phum∥H ,

which is the claimed statement. □

Lemma 1.25 provides the convergence of the eigenvalues in the (rather weak) ∥·∥H -norm. For statements
in the ∥ · ∥V -norm, the following result can be used, which also applies to error estimators for eigenvalue
problems (see exercise).

Lemma 1.21 Let (u, λ) ∈ V \ {0} × R be an eigenpair. Then, for all v ∈ V \ {0} there holds

a(v, v)− λ∥v∥2H = a(u− v, u− v)− λ(u− v, u− v)H .

Proof: Follows from direct calculation and using a(u, z) = λ(u, z)H for all z ∈ V . □

If we insert u = um and v = uh,m into Lemma 1.21, we obtain a convergence statement for um − uh,m
from Lemma 1.20 and Theorem 1.16.
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Theorem 1.22 Let λm be a simple eigenvalue and let (1.19) hold. Then, there exists an h0 > 0 and
a C > 0 such that for all h < h0, there holds (here the sign of uh,m is always like in the proof of
Lemma 1.20)

∥um − uh,m∥V ≤ C sup
v∈Vm

∥v∥H=1

inf
vh∈Vh

∥v − vh∥V

∥um − uh,m∥H ≤ C∥um − Phum∥H .

Proof: Lemma 1.21 applied with u = um and v = uh,m and the normalizations ∥um∥H = 1 = ∥uh,m∥H
provides

λh,m − λm = λh,m∥uh,m∥2H − λm∥uh,m∥2H = a(uh,m, uh,m)− λm∥uh,m∥2H
= a(um − uh,m, um − uh,m)− λm∥um − uh,m∥2H .

This gives
a(um − uh,m, um − uh,m) = λh,m − λm + λm∥um − uh,m∥2H ,

which, together with Lemma 1.20 and Theorem 1.16 gives the claimed estimate. □

1.2.3 Remarks

� The convergence statement in Theorem 1.16 requires the approximability of Vm = span{u1, . . . , um}
and not simply span{um} (in the case of simple eigenvalues). In fact, the statements can also be
sharpened in such a way that for simple eigenvalues there holds

λh,m − λm ≤ C inf
v∈Vh

∥um − v∥2V . (1.27)

� We have only considered the symmetric case here, where the operator T is self-adjoint. The
convergence theory for non-symmetric bilinear forms a(·, ·) is possible. However, not all convergence
statements from the symmetric case are transferable, mainly because geometric and algebraic
multiplicities of eigenvalues no longer coincide. For example, the doubling of the convergence rate
as in (1.27) is no longer guaranteed.

1.2.4 A more general approach using operator theory

Goal: Illustration of a more general approach using functional analytical techniques, which can also be
generalized to non-symmetric problems and can also provide quantifiable convergence statements.

A basic assumption will be the approximation property (1.19), which we formulate slightly differently
here as

lim
h→0

Phu = u ∀u ∈ V. (1.28)

Theorem 1.23 (i) Let (uh, λh)h>0 be a bounded sequence of discrete eigenpairs (i.e. ∥uh∥V ≤ 1 and
λh ≤ C with a constant C > 0 independent of h). Then, there exists a subsequence (uh′ , λh′)h′>0

and an eigenpair (u, λ) ∈ V \ {0} × R of (1.2) with uh′ → u (in V ) and λh′ → λ.

(ii) Let λ be an eigenvalue of (1.2). Then, there exists a sequence (uh, λh)h>0 of discrete eigenpairs
with λh → λ.

For the proof we need an operator representation of the discrete eigenvalue problem:

Lemma 1.24 (i) Let (uh, λh) be a discrete eigenpair. Then,

λhPhTuh = uh (1.29)

λhPhTPhuh = Phuh = uh. (1.30)
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(ii) Every eigenpair (u, λ) ∈ V \ {0} × R \ {0} of

PhTPhu =
1

λ
u (1.31)

is a discrete eigenpair, i.e., u = Phu ∈ Vh and (u, λ) ∈ Vh × R solves (1.13).

Proof: ad (i): We employ the self-adjointness of T and Ph w.r.t. a(·, ·): Let (uh, λh) ∈ Vh × R. Then,

a(uh, v) = λh(uh, v)H ∀v ∈ Vh

⇐⇒ a(uh, Phv)︸ ︷︷ ︸
=a(Phuh,v)=a(uh,v)

= λh (uh, Phv)H︸ ︷︷ ︸
a(TPhv,uh)=a(Phv,Tuh)=a(v,PhTuh)

∀v ∈ V

⇐⇒ uh = λhPhTuh.

This shows (1.29). (1.30) follows from (1.29) by applying Ph.
ad (ii): Let (u, λ) satisfy (1.31). Then, u = λPhTPhu ∈ Vh. In particular, all calculations in the proof
of (i) can be done as well and show that (u, λ) is a discrete eigenpair. □

Proof of Theorem 1.23: The key tool is the norm convergence PhT → T , which follows from

PhT − T = (Ph − I)︸ ︷︷ ︸
→0 pointwise

T︸︷︷︸
compact

.

ad (i): Let (uh, λh)h>0 be a bounded sequence of discrete eigenpairs with

∥uh∥E = 1 and |λh| ≤ C ∀h > 0.

After taking a subsequence (which we again denote by (uh, λh)h>0) we can assume that (as the embedding
V ⊂ H is compact)

uh
V
⇀ u ∈ V, (1.32)

uh
H→ u, (1.33)

Tuh
V→ Tu, (1.34)

λh → λ ∈ R. (1.35)

Now, we may argue that

uh︸︷︷︸
⇀u

= λhPhTuh = λh︸︷︷︸
→λ

(PhT − T )︸ ︷︷ ︸
→0 in norm

uh︸︷︷︸
bounded

+ T (uh − u)︸ ︷︷ ︸
→0 T compact

+Tu

 .

This means that the right-hand side converges in the norm (i.e. strongly) against λTu. This also implies
weak convergence to λTu. As the right-hand side converges to u weakly and weak limits are unique, we
have

u = λTu

as well as strong convergence uh → u.
It remains to show that u ̸= 0 and λ ̸= 0. This follows from

1 = ∥uh∥2E = a(uh, uh) = λh(uh, uh)H = λh∥uh∥2H
(1.33),(1.35)→ λ∥u∥2H .

This implies λ ̸= 0 and ∥u∥H ̸= 0.
ad (ii): We argue by means of a perturbation argument (compare, e.g. the proof of the Bauer-Fike
theorem). We write

T = PhTPh + δh,

where ∥δh∥V → 0, since
δh = T − PhTPh = (I − Ph)T + PhT (I − Ph)
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can be written as composition of compact operators and operators converging pointwise to zero. The
operator PhTPh is compact and self-adjoint (w.r.t. a(·, ·)) and therefore has an ONB (en, µh,n) of
(V, a(·, ·)) consisting of eigenvectors

PhTPhen = µh,nen, n = 1, . . . .

By the spectral theorem, the eigenvalues µh,n = 0 span KerPhTPh. According to Lemma 1.24, (ii), the
pairs (en, 1/µh,n) with µh,n ̸= 0 are discrete eigenpairs. With the discrete eigenvalues with λh,i > 0,
i = 1, . . . , N , we thus have

µh,n = λ−1
h,n, n = 1, . . . , N, µh,n = 0, n = N + 1, . . . .

Now, let λ be an eigenvalue of the continuous problem. Set µ := λ−1. We claim:

inf{|µ− µh,n| : n = 1, . . . , N} → 0 for h→ 0. (1.36)

It is sufficient to consider inf{|µ − µh,n| : n = 1, . . . , N} > 0. Then, λ is not a discrete eigenvalue and
µ− PhTPh is invertible:

(µ− PhTPh)v =

∞∑
n=1

(µ− µh,n)a(v, en)en and (µ− PhTPh)
−1v =

∞∑
n=1

1

µ− µh,n
a(v, en)en.

In particular, we obtain

∥(µ− PhTPh)
−1∥E = max

n

1

|µ− µh,n|
=

1

minn |µ− µh,n|
.

Now, let 0 ̸= u be an eigenvector corresponding to the eigenvalue λ. Then, µu = Tu = PhTPhu + δhu
and consequently

u = (µ− PhTPh)
−1δhu =⇒ ∥u∥E ≤ ∥(µ− PhTPh)

−1∥E∥δh∥E∥u∥E
=⇒ 1 ≤ ∥(µ− PhTPh)

−1∥E∥δh∥E =⇒ min
n

|µ− µh,n| ≤ ∥δh∥E → 0.

We have thus obtained that the discrete eigenvalues approximate the continuous ones. □

1.3 Numerical solution of the algebraic eigenvalue problem

Goal: given symmetric, positive definite matrices A, M, obtain a good approximation to one eigenvalue
λ of Ax = λMx.

1.3.1 Classical techniques

1. Inverse iteration

Given starting vector x(0), loop over (until accurate enough):

� compute x(n+1) := A−1Mx(n)

� normalize x(n+1) := x(n+1)/∥x(n+1)∥ (∥ · ∥ suitable norm)

� λ(n+1) := R(x(n+1))

The method converges (asymptotically) linear with a rate of convergence depending on the separa-
tion of the smallest eigenvalue λ1 and second smallest eigenvalue λ2. In the considered symmetric
case, the error in the m-th step is of order O((λ1/λ2)

2m). In particular, the convergence does not
depend on the whole spectrum or the ratio of the largest and smallest eigenvalue (→ condition
number).
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As the first step of the algorithm is a solution of a linear system, it is (for not too large problem
sizes) advisable to compute an LU -factorization (or rather Cholesky factorization) of A once, which
can be reused for forward-/backward-substitution in each step of the interation.

Modification: inverse iteration with shift : For given µ ∈ R compute x(n+1) := (A− µM)−1Mx(n)

in the first step.

Converges to eigenvalue closest to µ (denoted by λ1) with rate O((|λ1 − µ|/|λ2 − µ|)2m) with λ2
being the second closest eigenvalue to µ.

2. Rayleigh-quotient iteration

Given starting vector x(0) (normalized), λ(0) := R(x(0)) loop over (until accurate enough):

� compute x(n+1) := (A− λ(n)M)−1Mx(n)

� normalize x(n+1) := x(n+1)/∥x(n+1)∥
� λ(n+1) := R(x(n+1))

In the considered symmetric case, the method has cubic convergence to the eigenvalue closest to
the initial guess. However, in each step of the method a linear system with a different system
matrix has to be solved, therefore a computed LU -factorization can not be reused.

Remark 1.25 Block variants exist to compute more than one eigenvalues. Krylov methods (such as
the Lanczos method) can be employed as well to compute extremal eigenvalues. However, these methods
may converge slowly for large FEM matrices as the convergence depends on λmax − λmin.

0 2 4 6 8 10 12
10−13

10−8

10−3

102

number of iterations m

er
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r

inverse iteration vs. Rayleigh quotient method

Inv.iter.

Rayleigh

O((λ1/λ2)2m)

Figure 1.1: Convergence of inverse iteration and Rayleigh-quotient iteration for A =
diag(1, 3, 5, . . . , 315), M = Id. Thereby, λ1 = 1, λ2 = 3 and the initial guess for the Rayleigh-quotient
iteration is chosen such that λ(0) := 1.5.

Note that these classical algorithms assume that a linear system with matrix A or (A − µM) can be
solved with reasonable effort and exactness.

1.3.2 Preconditioned gradient method

Question: what to do, if exact solution of the linear systems (i.e. application of A−1 or (A− λ(n)M)−1)
is not possible?
Idea: smallest eigenvalue is minimizer of Rayleigh-quotient =⇒ minimize R using a gradient descent
method. This gives the iteration

x(n+1) := x(n) − ω(n)∇R(x(n)),

∇R(x) = 2
Ax−R(x)Mx

(x,Mx)2
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with descent direction ∇R(x(n)) and step length ω(n) to be chosen accordingly (below!).

Problem: The iteration is very slow, if the condition number cond(A) is large.

Solution: Use a preconditioner T (T SPD) and employ the preconditioned iteration

x(n+1) := x(n) − ω(n)T∇R(x(n)). (1.37)

The method (1.37) is called preconditioned inverse iteration (PINVIT), see also the exercises below.
The step size ω(n) is chosen such that R(x(n+1)) is minimal, i.e., one solves the optimization problem

min
{
R(x) |x ∈ span{x(n),T∇R(x(n))}

}
. (1.38)

By construction, this gives R(x(n+1)) ≤ R(x(n)).

Exercise 1.26 Show that the minimization problem (1.38) is equivalent to a 2× 2-EVP.

Exercise 1.27 Show that, if the step size ω(n) is chosen by (1.38), then the scaling of T is irrelevant,
i.e., one obtains the same iterate employing T or αT for arbitrary α > 0. Consequently, the iteration
process is oftentimes written as

x(n+1) = x(n) − ω̃(n)T(Ax(n) −R(x(n))Mx(n))

and ω̃(n) is computed from (1.38).

Remark 1.28 One can improve the algorithm dscribed above by minimizing over large spaces. The
LO(B)PCG method (locally optimal (block) preconditioned conjugate gradient method) actually solves
the 3× 3-EVP

min
{
R(x) |x ∈ span{x(n), x(n−1),T∇R(x(n))}

}
. (1.39)

Note that this iteration can be very cheaply realized, if the application of T, A and M is cheap.

The choice of preconditioner T is crucial for the performance of the algorithm. The optimal choice
T = A−1, however, might be to expensive to employ. Thus, we are considering preconditioners which
are related to A (or actually A−1) by parameters γ1, γ0 such that

γ1(x,T
−1x) ≤ (x,Ax) ≤ γ2(x,T

−1x) ∀x. (1.40)

In literature, this is also called spectral equivalency and implies that the condition number of TA is
bounded by γ2/γ1.

Exercise 1.29 Consider the optimal preconditioner, i.e., T = A−1. Show that the step size ω(n) in
(1.37) can be chosen such that one effectively does one step of inverse iteration.

Concerning convergence of PINVIT with step size choice (1.38) (and therefore also of LOPCG) we have
the following theorem.

Theorem 1.30 With γ1, γ2 > 0 from (1.40) define γ := (γ2 − γ1)/(γ1 + γ2). Assume λi < R(x(n)) <
λi+1.
Then, for x(n+1) there holds: Either R(x(n+1)) ≤ λi or λi < R(x(n+1)) < λi+1 with

0 <
R(x(n+1))− λi
λi+1 −R(x(n+1))

≤ σ2 R(x(n))− λi
λi+1 −R(x(n))

, σ = γ + (1− γ)
λi
λi+1

< 1

Proof: See literature, [1, 10, 14]. □

Remark 1.31 Typically, PINVIT converges (asymptotically) linearly to the smallest eigenvalue. Note
that the quality of the preconditioner T can be explicitly seen in the error bounds in the previous theorem
as γ and in consequence the constraction factor σ depends on the parameters γ1, γ2, which are directly
related to T. In particular, choosing an optimal preconditioner, the convergence does not depend on
condA, but only how far the two smallest eigenvalues are separated.
However, the task of finding a good preconditioner is not easy, as we have the conflicting goals: we aim
for (1.40) with moderate constants γ1, γ2, but the application y 7→ Ty should be cheap (much cheaper
than computing A−1!).
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1.3.3 Numerical example

Example 1.18 shows the expected convergence of order h2 for the 1d eigenvalue problem −u′′ = λu. Note
that in the 1d case, the discrete eigenvalues are known explicitly, thus no eigenvalue solver needs to be
employed.
We therefore focus on the 2d case.

Example 1.32 Let Ω = [0, π]2 be a square. Then, by separation of variables, the eigenvalues and
eigenfunctions are given by

λm,n = m2 + n2, m, n ∈ N
um,n = sin(mx) sin(ny), m, n ∈ N

In the following, we employ PINVIT (using a multigrid preconditioner as approximate inverse) in NgSolve
(see jupyter-notebook on TUWEL) to approximate the 4 smallest eigenvalues using lowest order FEM.
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Figure 1.2: Errors |λm,n − λh,m,n| for m,n = 1, 2 on the square.

As one can see, all eigenvalues are approximated with rate O(h2) (note: dimVh = N ∼ h−2). Moreover,
we have a double eigenvalue at λ = 5. While the error curves are close, they are not identical, thus, we
have two distinct discrete eigenvalues approximating λ with one-dimensional eigenspaces! An approxi-
mation to an eigenfunction (which lies in a two dimensional eigenspace) for λ can thus only be good, if
it is given by a linear combination in the one dimensional discrete eigenspaces. For more details on the
treatement of multiple eigenvalues, we refer to literature, e.g., [4].

1.4 Weyl’s asymptotic formula

Goal: Show how eigenvalues of the Laplacian (with Dirichlet boundary conditions) on a given domain
Ω ⊂ R2 are behaving asymptotically. More precisely, we define the counting function

NΩ,D(λ) := card{n |λn ≤ λ} (1.41)

and aim to show the asymptotic behaviour

NΩ,D(λ) ∼
|Ω|
4π

λ, λ→ ∞. (1.42)

Remark 1.33 Similar formulas also exists for Ω ⊂ Rd, d > 2 and other types of boundary conditions.
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1.4.1 Example: Rectangles

Lemma 1.34 Let R = (0, a) × (0, b). Then, the eigenvalues of the Dirichlet model problem on R are
given by

λℓ,m =
π2ℓ2

a2
+
π2m2

b2
, ℓ,m = 1, 2, . . . , (1.43)

NR,D(λ) := card{(ℓ,m) ∈ N2 |λℓ,m ≤ λ} = λ
ab

4π
+O(

√
λ), λ→ ∞. (1.44)

Proof: Proof of (1.43): Using a separation of variables, one directly obtains the eigenfunctions and
eigenvalues as uℓ,m(x, y) := sin(πℓx/a) sin(πmy/b) and λℓ,m = π2ℓ2/a2 + π2m2/b2.

Proof of (1.44): NR,D(λ) represents the number of grid points in Z+ ×Z+ that lie in the (closed) ellipse

E = {(x, y) ∈ R2 | (x/A)2 + (y/B)2 ≤ 1} with semi-axis A =
√
λa/π and B =

√
λb/π. We note that

the number of points inside the ellipse is bounded by the area of the first quarter of the ellipse. Thus,
NR,D(λ) ≤ 1

4area(E). For a lower bound, one may subtract one layer of grid points around the boundary
of the ellipse, which gives NR,D(λ) ≥ 1

4area(E)−O(boundarylength(E)). For large λ, we therefore have

NR,D(λ) =
1

4
area(E) +O(boundarylength(E)) = λab

4π
+O(

√
λ).

□

In the same way, one otains a formula for the Neumann Problem (boundary condition ∂nu = 0).

Lemma 1.35 Let R = (0, a) × (0, b). Then, the eigenvalues of the Neumann model problem on R are
given by

λℓ,m =
π2ℓ2

a2
+
π2m2

b2
, ℓ,m = 0, 1, 2, . . . , (1.45)

NR,N (λ) := card{(ℓ,m) |λℓ,m ≤ λ} = λ
ab

4π
+O(

√
λ), λ→ ∞. (1.46)

Proof: Here, the eigenfunctions are given by uℓ,m(x, y) = cos(πℓx/a) cos(πmy/b) and the second state-
ment follows as in the Dirichlet case. □

1.4.2 Monotonicity properties

We denote by λn,D(Ω) (Dirichlet) and λn,N (Ω) (Neumann) the (sorted) eigenvalues of

−∆u = λu in Ω, u = 0 on ∂Ω,

−∆u = λu in Ω, ∂nu = 0 on ∂Ω.

By the minimax- and maximum-minimum principle (exercise), we obtain with the Rayleigh-quotient
R(v) = ∥∇v∥2L2(Ω)/∥v∥

2
L2(Ω) that

λn,D(Ω) = min
En⊂H1

0 (Ω)
dimEn=n

max
v∈En

R(v) = max
z1,...,zn−1∈L2(Ω)

min
v∈H1

0 (Ω)
(v,zi)L2(Ω)=0,

i=1,...,n−1

R(v), (1.47)

λn,N (Ω) = min
En⊂H1(Ω)
dimEn=n

max
v∈En

R(v) = max
z1,...,zn−1∈L2(Ω)

min
v∈H1(Ω)

(v,zi)L2(Ω)=0,

i=1,...,n−1

R(v). (1.48)

The Dirichlet eigenvalues satsify a simple monotonicity principle.

Lemma 1.36 Let domains Ω ⊂ Ω′ be given. Then,

λn,D(Ω) ≥ λn,D(Ω
′) ∀n ∈ N. (1.49)
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Proof: Exercise, use that H1
0 (Ω) ⊂ H1

0 (Ω
′). note: an analogous principle does not hold for the Neumann

eigenvalues. □

The Dirichlet eigenvalues λn,D(Ω) and the Neumann eigenvalues λn,N (Ω) satisfy the following relation.

Lemma 1.37 There holds
λn,D(Ω) ≥ λn,N (Ω) ∀n ∈ N.

Proof: Follows from the minimax-principle and H1
0 (Ω) ⊂ H1(Ω). □

Exercise 1.38 Let 0 < λ1 ≤ λ2 ≤ · · · and 0 ≤ λ̃1 ≤ λ̃2 ≤ · · · with λ̃n ≤ λn for all n ∈ N. Then,

card{n |λn ≤ λ} =: N(λ) ≤ Ñ(λ) := card{n | λ̃n ≤ λ} ∀λ ≥ 0. (1.50)

We now consider the relationship between the eigenvalues of subdomains and the eigenvalues on the
entire domain.

Lemma 1.39 Let Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm, with pairwise disjoint subdomains Ωi, i = 1, . . . ,m. Let
λ̃1 ≤ λ̃2 ≤ · · · be the sorted (accounting for the multiplicity) eigenvalues in {λn,D(Ωi) |n ∈ N, i ∈
{1, . . . ,m}}. Then,

λ̃n = max
z1,...,zn−1∈L2(Ω)

min
v∈L2(Ω)

v|Ωi
∈H1

0 (Ωi),i=1,...,m

(v,zj)L2(Ω)=0,j=1,...,n−1

R(v). (1.51)

Note that here the Rayleigh quotient is understood as

R(v) =

∑m
i=1 ∥∇v∥2L2(Ωi)∑m
i=1 ∥v∥2L2(Ωi)

. (1.52)

Proof: Exercise. The essential observation is that the right-hand side of (1.51) is the characterization
of an eigenvalue problem that can be decomposed into the independent eigenvalue problems of the m
subdomains Ωi. □

A similar result does also hold for the Neumann problem.

Lemma 1.40 Let Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm, with pairwise disjoint subdomains Ωi, i = 1, . . . ,m. Let
λ̃1 ≤ λ̃2 ≤ · · · be the sorted (accounting for the multiplicity) eigenvalues in {λn,N (Ωi) |n ∈ N, i ∈
{1, . . . ,m}}. Then,

λ̃n = max
z1,...,zn−1∈L2(Ω)

min
v∈L2(Ω)

v|Ωi
∈H1(Ωi),i=1,...,m

(v,zj)L2(Ω)=0,j=1,...,n−1

R(v). (1.53)

Again, R is to be understood as in (1.52).

1.4.3 Proof of Weyl’s formula

Theorem 1.41 (Weyl’s asymptotic formula) Let Ω ⊂ R2 be a bounded Lipschitz domain with piece-
wise smooth boundary. Then, the eigenvalues of the Laplace Dirichlet problem satisfy

lim
λ→∞

NΩ,D(λ)

λ
=

|Ω|
4π

. (1.54)

Proof: For h > 0, define the (infinite) regular, rectangular meshes

Th = {(ih, (i+ 1)h)× (jh, (j + 1)h) | i, j ∈ Z}.
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We consider the union of rectangles Rh and R̃h that approximate Ω from inside and outside: Let
R1, . . . , Rm be pairwise disjoint rectangles from Th that lie entirely in Ω and R̃1, . . . , R̃m̃ be rectangles
from Th that have non-empty intersections with Ω. Define

Rh :=

m⋃
i=1

Ri ⊆ Ω, R̃h :=

m̃⋃
i=1

R̃i ⊇ Ω.

Step 1: Lemma 1.36 shows
λn,D(Ω) ≤ λn,D(Rh) ∀n ∈ N.

With Exercise 1.38, we obtain
NΩ,D(λ) ≥ NRh,D(λ) ∀λ > 0.

As Rh is a union of rectangles, we can estimate λn,D(Rh) with explicit formulas

λn,D(Rh)
(1.47)
= max

z1,...,zn−1∈L2(Rh)
min

v∈H1
0 (Rh)

(v,zi)L2(Rh)=0,i=1,...,n−1

R(v)

≤ max
z1,...,zn−1∈L2(Rh)

min
v∈H1

0 (Rj),j=1,...,m
(v,zi)L2(Rh)=0,i=1,...,n−1

R(v)

Lemma 1.39
= λ̃n,D,

where λ̃1,D ≤ λ̃2,D ≤ · · · denotes the sorted sequence of eigenvalues {λℓ,D(Rj) | j = 1, . . . ,m, ℓ ∈ N}.
For every j ∈ {1, . . . ,m}, Lemma 1.34 implies

NRj ,D(λ) =
λ|Rj |
4π

+O(
√
λ).

As the spectra are the same for all Rj and the Rj are pairwise disjoint, we obtain

card{n | λ̃n,D ≤ λ} =

m∑
j=1

NRj ,D(λ) =
λ|Rh|
4π

+O(
√
λ).

(Note: the hidden constant in the O(·)-notation does not depend on λ, but does depend on h and m.)
This gives

NΩ,D(λ) ≥ NRh,D(λ) ≥
λ|Rh|
4π

+O(
√
λ).

Step 2: From

λn,D(Ω)
Lemma 1.36

≥ λn,D(R̃h)
Lemma 1.37

≥ λn,N (R̃h),

we obtain together with Exercise 1.38

NΩ,D(λ) ≤ NR̃h,N
(λ).

In order to estimate NR̃h,N
(λ), we use

λn,N (R̃h)
(1.48)
= max

z1,...,zn−1∈L2(R̃h)
min

v∈H1(R̃h)
R(v)

≥ max
z1,...,zn−1∈L2(R̃h)

min
v∈L2(R̃h)

v|R̃j
∈H1(R̃j)

R(v)

Lemma 1.40
= λ̃n,N ,
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where λ̃1,N ≤ λ̃2,N ≤ · · · denotes the sorted sequence of elements in {λℓ,N (R̃j) | j = 1, . . . , m̃, ℓ ∈ N}.
For every j, there holds by Lemma 1.35

NR̃j ,N
(λ) = λ

|R̃j |
4π

+O(
√
λ).

As the spectra of all rectangles R̃j are the same, we arrive at

card{n | λ̃n,N ≤ λ} =

m̃∑
j=1

NR̃j ,N
(λ) = λ

|R̃h|
4π

+O(
√
λ),

which is

NΩ,D(λ) ≤ NR̃h,N
(λ) ≤ λ

|R̃h|
4π

+O(
√
λ).

Step 3: Steps 1 and 2 provide

|Rh|
4π

+O(λ−1/2) ≤ NΩ,D(λ)

λ
≤ |R̃h|

4π
+O(λ−1/2).

This implies

|R̃h|
4π

≥ lim sup
λ→∞

NΩ,D(λ)

λ
≥ lim inf

λ→∞

NΩ,D(λ)

λ
≥ |Rh|

4π
.

Taking the limit h→ 0, there holds limh→ |Rh| = limh→ |R̃h| = |Ω| and consequently

lim
λ→∞

NΩ,D(λ)

λ
=

|Ω|
4π

.

□

We finish this section with a statement on the multiplicity of the smallest eigenvalue of the Laplace
Dirichlet problem.

Lemma 1.42 The smallest eigenvalue λ1 of the Laplace Dirichlet problem is simple, i.e., we have
0 < λ1 < λ2.

Proof: Literature. □

1.4.4 Can you hear the shape of a drum?

The eigenvalues of the Laplace Dirichlet problem are completely determined by the domain Ω. This gives
rise to the question, whether the converse statement holds as well: Can one, knowing all eigenvalues
λn,D(Ω), n ∈ N, uniquely (up to trivial congruence transformations) reconstruct the domain Ω?

The answer to this question posed in [9] under the titel ”can you hear the shape of a drum?” was answered
in [6] as negative as there two non-congruent domains were constructed that have the same spectrum.

We verify this observation numerically using NgSolve (see Jupyter Notebook on TUWEL). Discretizing
the eigenvalue problem in a FEM space Sp,1(Th) on meshes Th) with maximal mesh sizes h = 1

4 and
different polynomial degrees p = 1, 2, 3 produces for both in Figure 1.3 depicted domains the eigenvalues
in the following table. Hereby, 10 steps of PINVIT were employed to solve the matrix eigenvalue problem.

hen arrow
h = 1

4 , p : 1 2 3 1 2 3
λ1 10.93 10.20 10.17 10.87 10.20 10.17
λ2 15.92 14.68 14.64 15.87 14.69 14.64
λ3 23.43 20.83 20.74 23.26 20.83 20.74

h = 1
8 , p : 1 2 3 1 2 3
λ1 10.36 10.17 10.16 10.36 10.17 10.16
λ2 14.95 14.64 14.63 14.93 14.66 14.63
λ3 21.39 20.74 20.72 21.34 20.74 20.72
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Figure 1.3: two non-congruent, isospectral domains

As theoretically expected, we also observe numerically that the domains produce the same eigenvalues.
Figure 1.4 plots the discrete eigenfunctions, which, however, are different.

Figure 1.4: first eigenfunction on the domains

23



Chapter 2

Parabolic problems

A popular class of second order time dependent problems are parabolic equations, which are first order in time
and second order in space. Prime examples are

� the heat equation ut −∆u = f ,

� the (incompressible) Navier-Stokes equations

ut − µ∆u+ (u · ∇)u+∇p = f ,

divu = 0.

Let Ω ⊂ Rd, T > 0. As a model problem, we consider the heat equation on the space-time cylinder
ΩT := Ω× (0, T ), i.e., with given data f , u0, we want to solve

ut −∆u = f in ΩT , (2.1a)

u = 0 on ΓT := ∂Ω× (0, T ), ”parabolic boundary” (2.1b)

u(·, 0) = u0 in Ω. (2.1c)

Remark 2.1 Problem (2.1) describes the physical model of a temperature distribution in an object Ω
at time t. Hereby, u0 is the initial temperature distribution and f describes an external heat source.
The parabolic boundary condition means that there is isolation on the boundary, i.e., the temperature
is fixed there.

Some possible numerical methods

1. Method of lines: this is classical and probably the most common method. One fixes a discretization
in space and then solves a resulting ODE system with a numerical method for ODEs (Euler, Runge-
Kutta, . . . ).

Advantages:

� “time marching” is memory efficient, no restrictions on end time T .

� Combination of classical discretizations both in space and time =⇒ well-understood tools
for analysis and implementations available.

Disadvantage: fixed discretization in space → adaptivity not possible!

2. Rothe-method: fix the time discretization and solve a space problem only in each time step (allows
adaptivity in space, but not in time).

3. Space-time method: Do not treat space and time differently, discretize problem (2.1) in Rd+1.

Advantage: adaptivity in space and time possible.

Disadvantage: more expensive than method of lines.
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The roadmap for this chapter is as follows:

� We at first only provide a weak formulation for the heat equation in space to provide a framework
for the method of lines, treating the time derivatives in a classical way.

� Then, we introduce the method of lines (semi-discretization) and provide error bounds for the
semi-discretization. This is then combined with an implicit time stepping method to obtain a fully
discrete scheme.

� Afterwards, we weaken the requirements made for the time derivative by deriving a variational
formulation in certain Bochner spaces.

� For the fully discrete method we present an error analysis.

� Rather than doing a finite difference method in time, one could also do a Galerkin method in time,
which leads to a DG method in Section 2.6.

� Then, we consider full space-time discretizations, at first discussing inf-sup stability of the con-
tinuous formulation and then present a different formulation based on least squares FEM that is
actually coercive.

� Finally, we introduce numerical methods for the Navier-Stokes equations.

2.1 Variational formulation in space

Goal: framework for method of lines using FEM in space.

Notation: for Ω ⊂ Rd, we consider the Hilbert space L2(Ω) and denote by ⟨·, ·⟩L2 the L2(Ω)-inner product.
Moreover, we consider the bilinear form a(u, v) :=

∫
Ω
∇u · ∇v.

Multiplying (2.1) with a test-function v = v(x) (not depending on t!) and integration over Ω leads to
the variational formulation for any classical solution u to (2.1)

⟨ut(·, t), v⟩L2 + a(u(·, t), v) = ⟨f(·, t), v⟩L2 ∀v ∈ H1
0 (Ω). (2.2)

This is well-defined, provided for any fixed t there holds u(·, t) ∈ H1
0 (Ω).

Concerning the derivative in time, different formulations can be chosen. Let X be a Banach space.

� Classical derivative as function u : (0, T ) → X defined in the sense: an element u′(t) ∈ X is called
derivative of u at t ∈ (0, T ), if

lim
h→0

∣∣∣∣∣∣∣∣u(t+ h)− u(t)

h
− u′(t)

∣∣∣∣∣∣∣∣
X

= 0. (2.3)

� Weak derivative: multiplying (2.2) with a test function (depending only on t), integration over
(0, T ) and integration by parts in time (more on that later).

At first, we consider the case of classical derivatives in time, i.e., we consider function spaces

C1((0, T );X) := {u : (0, T ) → X : u is continuously differentiable},

where the derivative is understood as in (2.3). Inductively, we can define in the same way the spaces
Cm((0, T );X) for m ∈ N ∪ {∞}.

We now consider the problem: Find u ∈ C1((0, T );H1
0 (Ω))∩C([0, T ];H1

0 (Ω)) such that for all t ∈ (0, T )

⟨u′(t), v⟩L2 + a(u(t), v) = ⟨f(t), v⟩L2 ∀v ∈ H1
0 (Ω) (2.4a)

u(0) = u0 (as functions in H1
0 (Ω)). (2.4b)

For the data, this formulation requires
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� f ∈ C([0, T ];L2(Ω)),

� u0 ∈ H1
0 (Ω).

Remark 2.2 We note that formulation (2.4) is not a weak formulation in the idea of the FEM, as time
derivatives are not treated in a weak sense1. However, this formulation is convenient to employ ODE
theory. Other notions of solution can, e.g., be found in lectures on PDE theory.
In particular, we note that the notion of solution can be weakened to also consider initial functions
u0 ∈ L2(Ω).

Exercise 2.3 For u ∈ C1((0, T );H1
0 (Ω)), there holds

� t 7→ ∥u(t)∥2L2(Ω) is continuously differentiable,

�
d
dt∥u(t)∥

2
L2(Ω) = 2⟨u′(t), u(t)⟩L2 ,

� u ∈ C1((0, T );L2(Ω)).

Theorem 2.4 (Energy inequality) Let γ > 0 be the coercivity constant of a(·, ·), i.e. γ∥v∥2H1(Ω) ≤
a(v, v) ∀v ∈ H1

0 (Ω) and let u solve (2.4). Then, there holds

∥u∥L2(Ω) ≤ e−γt∥u0∥L2(Ω) +

t∫
0

e−γ(t−s)∥f(s)∥L2(Ω)ds.

Proof: Step 1: We at first assume that ∥u(s)∥L2(Ω) > 0 for all 0 < s < t. Then, there holds

d

dt
∥u(t)∥L2(Ω) =

⟨u′(t), u(t)⟩L2

∥u(t)∥L2(Ω)
.

Using, for fixed s, the test function v = u(s) in (2.4) gives

⟨f(s), u(s)⟩L2

(2.4)
= ⟨u′(s), u(s)⟩L2 + a(u(s), u(s)) = ∥u(s)∥L2(Ω)

d

dt
∥u(t)∥L2(Ω)

∣∣∣
t=s

+ a(u(s), u(s))

and by Cauchy-Schwarz this implies

a(u(s), u(s)) + ∥u(s)∥L2(Ω)
d

dt
∥u(t)∥L2(Ω)

∣∣∣
t=s

≤ ∥f(s)∥L2(Ω)∥u(s)∥L2(Ω). (2.5)

Since a(u(s), u(s)) ≥ γ∥u(s)∥2H1(Ω) ≥ γ∥u(s)∥2L2(Ω), we obtain

γ∥u(s)∥L2(Ω) +
d

dt
∥u(t)∥L2(Ω)

∣∣∣
t=s

≤ ∥f(s)∥L2(Ω) ∀ 0 ≤ s ≤ t.

An integrating factor for the left-hand side of this differential inequality is given by eγt, which leads to

d

dt

(
eγt∥u(t)∥L2(Ω)

) ∣∣∣
t=s

= eγs
(
γ∥u(s)∥L2(Ω) +

d

dt
∥u(t)∥L2(Ω)

∣∣∣
t=s

)
≤ eγs∥f(s)∥L2(Ω).

Now, integration over (0, t) provides

eγt∥u(t)∥L2(Ω) − eγ0∥u(0)∥L2(Ω) ≤
t∫

0

eγs∥f(s)∥L2(Ω)ds

or

∥u(t)∥L2(Ω) ≤ e−γt∥u0∥L2(Ω) +

t∫
0

e−γ(t−s)∥f(s)∥L2(Ω)ds.

1it is also possible to differentiate u ∈ L1
loc(0, T ;H1

0 (Ω)) in a distributional sense.
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Step 2: For the general case ∥u(s)∥L2(Ω) ≥ 0 on [0, T ], (2.5) still holds, but we can not divide by

∥u(s)∥L2(Ω) any more. However, using this inequality with
√
∥u(t)∥2L2 + ε2, essentially the same argu-

ments can be employed and the statement follows from sending ε→ 0 in the last step. □

Exercise 2.5 Theorem 2.4 gives uniqueness of solutions to (2.4).

Remark 2.6 For f ≡ 0, the heat equation is dissipative (in L2(Ω)), i.e.,

∥u(t)∥L2(Ω) ≤ e−γt∥u(0)∥L2(Ω).

Then, for two different initial conditions u0, ũ0, there holds for the corresponding solutions u(t), ũ(t)
that ∥u(t) − ũ(t)∥L2(Ω) ≤ e−γt∥u0 − ũ0∥L2(Ω). Reasonable numerical methods should also produce this
qualitative behaviour.

Definition 2.7 (Evolution operator) Let f = 0. We define the evolution operator

E(t) : H1
0 (Ω) → H1

0 (Ω), u0 7→ u(t),

where u(t) denotes the solution of (2.4) with initial data u0.

By uniqueness of the solutions to the heat equation, the evolution operator has the semi-group property:

� E(t+ s) = E(t) ◦ E(s), t, s ≥ 0,

� E(0) = Id.

Using the eigenvalues (λn)n∈N and eigenfunctions (φn)n∈N of the Dirichlet Laplacian, which form an
ONB of L2(Ω) and an orthogonal basis of H1

0 (Ω), we can explicitly express the evolution operator E(t)
as

E(t)u0 =

∞∑
n=1

e−λnt⟨u0, φn⟩L2φn. (2.6)

This formula actually suggests that the evolution operator can also be well defined for functions u0 ∈
L2(Ω) (more on that later).

Remark 2.8 (Duhamel-principle) Let f be sufficiently smooth. Then, the solution u to (2.4) can be
written as

u(t) = E(t)u0 +

∫ t

0

E(t− s)f(s) ds. (2.7)

2.2 Semi-discretization (method of lines)

Goal: approximation of (2.4) by a (finite) system of ODEs.

Let Vh ⊂ H1
0 (Ω) with dim(Vh) = N < ∞ and take a basis {φi | i = 1, . . . , N}. Let u0,h ∈ Vh be an

approximation to u0. Then, the semi-discrete approximation uh to the solution u of (2.4) is given by the
problem:
Find uh ∈ C1((0, T );Vh) ∩ C([0, T ];Vh) such that

⟨u′h(t), vh⟩L2 + a(uh(t), vh) = ⟨f(t), vh⟩L2 ∀ vh ∈ Vh (2.8a)

uh(0) = u0,h (2.8b)
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Now, we write uh(t) w.r.t. the given basis as uh(t) =
N∑
i=1

ui(t)φi and analogously u0,h =
N∑
i=1

u0,i φi.

Inserting this into (2.8) leads to the equivalent2 system of ODEs

Mu′(t) +Au(t) = F(t) t > 0 (2.9a)

u(0) = u0, (2.9b)

where the stiffness matrix A ∈ RN×N and the mass matrix M ∈ RN×N are given by

Aij = a(φj , φi), Mij = ⟨φj , φi⟩L2 , i, j = 1, . . . , N (2.10)

and the right-hand side F(t) is defined as

Fi(t) = ⟨f(t), φi⟩L2 . (2.11)

Exercise 2.9 Show: The matrices A and M are SPD. Moreover, for all v,w ∈ RN with v =
N∑
i=1

viφi,

w =
N∑
i=1

wiφi, there holds vTMw = ⟨w, v⟩L2 and vTAw = a(w, v).

Remark 2.10 Exercise 2.9 implies that (2.9) is equivalent to

u′ = M−1F(t)−M−1Au(t),

u(0) = u0.

In particular, the existence and uniqueness of solutions to (2.8) holds.

For the semi-discrete case there also holds an energy inequality.

Lemma 2.11 Let r ∈ C([0, T ];L2(Ω)) and wh ∈ C1((0, T );Vh) ∩ C([0, T ];Vh) satisfy

⟨w′
h(t), v⟩L2 + a(wh(t), vh) = ⟨r(t), vh⟩L2 for all vh ∈ Vh,

and let γ > 0 denote the coercivity constant of a(·, ·). Then,

∥wh(t)∥L2(Ω) ≤ e−γt∥wh(0)∥L2(Ω) +

t∫
0

e−γ(t−s)∥r(s)∥L2(Ω)ds.

Proof: Analogous to Theorem 2.4. □

Remark 2.12 In the same way as for the continuous problem, we can define a semi-discrete evolution
operator Eh that maps, for fixed t,

Eh(t) : Vh → Vh, u0,h 7→ uh(t)

2The equivalence follows from the calculation

uh solves (2.8a)

⇔
〈

N∑
j=1

u′
j(t)φj ,

N∑
i=1

viφi

〉
L2

+ a

(
N∑

j=1
uj(t)φj ,

N∑
i=1

viφi

)
=

〈
f(t),

N∑
i=1

viφi

〉
L2

∀ v ∈ RN

⇔
N∑

i,j=1
u′
j(t)vi⟨φj , φi⟩L2 +

N∑
i,j=1

uj(t)vi a(φj , φi) =
N∑
i=1

vi⟨f(t), φi⟩L2 ∀ v ∈ RN

⇔ vTMu′(t) + vTAu(t) = vTF(t) ∀ v ∈ RN

⇔ Mu′(t) +Au(t) = F(t)
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with uh denoting the solution to (2.9) with initial data u0,h and f ≡ 0. Lemma 2.11 shows that this is
a bounded operator in L2(Ω).
Using the discrete eigenfunctions and eigenvalue, an expansion like (2.6) holds (exercise). Moreover, the
discrete Duhamel principle holds:

uh(t) = Eh(t)u0,h +

∫ t

0

Eh(t− s)ΠL
2

f(s) ds

with the L2-orthogonal projection ΠL
2

: L2(Ω) → Vh.

In order to obtain a bound for the semi-discretization, we employ the Ritz projection Ph : H1
0 (Ω) → Vh

from (1.16).

Theorem 2.13 Let u solve (2.4) and uh solve (2.8). Then,

∥u(t)− uh(t)∥L2(Ω) ≤ ∥u(t)− Phu(t)∥L2(Ω) + e−γt∥uh(0)− Phu(0)∥L2(Ω)

+

t∫
0

e−γ(t−s)∥u′(s)− Phu
′(s)∥L2(Ω)ds.

Proof: We decompose uh(t)− u(t) = uh(t)− Phu(t)︸ ︷︷ ︸
=:ψ(t)

+Phu(t)− u(t)︸ ︷︷ ︸
=:ϱ(t)

and employ the triangle inequality

to obtain
∥uh(t)− u(t)∥L2(Ω) ≤ ∥ψ(t)∥L2(Ω) + ∥ϱ(t)∥L2(Ω).

Step 1: Linearity and boundedness of Ph together with u ∈ C1((0, T );H1
0 (Ω)) imply (Phu)

′ = Phu
′,

since

lim
k→0

∣∣∣∣∣∣∣∣1k (Phu(t+ k)− Phu(t))− Phu
′(t)

∣∣∣∣∣∣∣∣
H1(Ω)

= lim
k→0

∣∣∣∣∣∣∣∣Ph(u(t+ k)− u(t)

k
− u′(t)

)∣∣∣∣∣∣∣∣
H1(Ω)

≤ lim
k→0

∥Ph∥
∣∣∣∣∣∣∣∣u(t+ k)− u(t)

k
− u′(t)

∣∣∣∣∣∣∣∣
H1(Ω)

= 0.

Step 2: Step 1 implies ψ ∈ C1((0, T );Vh) ∩ C([0, T ];Vh). Moreover, for any v ∈ Vh, there holds

⟨ψ′(t), v⟩L2 + a(ψ(t), v) = ⟨u′h, v⟩L2 + a(uh, v)− ⟨Phu′, v⟩L2 − a(Phu, v)

(2.8)
= ⟨f(t), v⟩L2 − ⟨Phu′, v⟩L2 − a(Phu, v)

= ⟨f(t), v⟩L2 − ⟨Phu′, v⟩L2 − a(u, v)

(2.4)
= ⟨u′, v⟩L2 − ⟨Phu′, v⟩L2 = ⟨u′ − Phu

′(t), v⟩L2 .

Step 3: Lemma 2.11 applied to ψ gives

∥ψ(t)∥L2(Ω) ≤ e−γt ∥ψ(0)∥L2(Ω)︸ ︷︷ ︸
=∥uh(0)−Phu(0)∥L2(Ω)

+

t∫
0

e−γ(t−s)∥u′(s)− Phu
′(s)∥L2(Ω)ds,

which shows the claimed estimate. □

Remark 2.14 Theorem 2.13 shows that the semi-discretization error ∥u(t) − uh(t)∥L2(Ω) can be esti-
mated by an approximation error ∥u(t)− Phu(t)∥L2(Ω) and two additional terms that describe the error
accumulation for times 0 ≤ s < t. This is also referred to as ”memory” of parabolic equations.

As is typical in FEM theory, assuming regularity for u, one can derive explicit error estimates in terms
of h.
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Corollary 2.15 Let Vh = S1,1
0 (T ), with T being a shape-regular, regular triangulation. Assume u ∈

C3(Ω̄ × [0, T ]) for the solution u to (2.4). Let u0,h ∈ Vh be either u0,h = Phu0 or the piecewise linear
interpolation u0,h = Iu0. Then,

∥u(t)− uh(t)∥L2(Ω) ≤ Ch max
0≤s≤t

(
|u(s)|H2(Ω) + |ut(s)|H2(Ω)

)
.

If Ω is convex, then

∥u(t)− uh(t)∥L2(Ω) ≤ Ch2 max
0≤s≤t

(
|u(s)|H2(Ω) + |ut(s)|H2(Ω)

)
.

Proof: For all v ∈ H2(Ω), there holds using the nodal interpolant Iv

� ∥v − Phv∥L2(Ω) ≤ ∥v − Phv∥H1(Ω) ≤ C∥v − Iv∥H1(Ω) ≤ Ch|v|H2(Ω).

� If Ω is convex, the Aubin-Nitsche duality argument gives ∥v − Phv∥L2(Ω) ≤ Ch2|v|H2(Ω).

Then, the statement follows from Theorem 2.13. □

Remark 2.16 Note that the regularity requirement u ∈ C3(Ω̄× [0, T ]) is very generous. A more careful

look at Theorem 2.13 shows that one only needs u(t) ∈ H2(Ω) as well as
∫ t
0
∥u′(s)∥2H2(Ω)ds <∞.

2.3 Fully discrete methods

2.3.1 Time discretization

The semi-discretization approach in the previous section leads to the system of ODEs

Mu′ +Au = F, u(0) = u0 (2.12)

with M and A SPD.

Question: how to discretize this ODE in time?

Answer: employ methods for stiff ODEs, i.e., A-stable or even L-stable methods.

In order to motivate this choice, we need to understand the qualitative behaviour of solutions to (2.12).
Therefore, we transform (2.12) into a system of decoupled ODEs.

Theorem 2.17 Let A and M ∈ RN×N be SPD. Then, for the generalized eigenvalue problem

find (v, λ) ∈ RN \ {0} × C, s.t. Av = λMv (2.13)

there holds:

(i) The eigenvalues λ satisfy λ > 0.

(ii) There are N eigenpairs (vi, λi), i = 1, . . . , N , which are orthogonal w.r.t. (·, ·)A and (·, ·)M, i.e.,

(vi,vj)M = ⟨Mvi,vj⟩2 = 0 ∀i ̸= j,

(vi,vj)A = ⟨Avi,vj⟩2 = 0 ∀i ̸= j.

(iii) The matrix V = (v1, . . . ,vN ) ∈ RN×N diagonalizes M and A simultaneously, i.e,

VTMV = D1

VTAV = D2

with D1,D2 being diagonal matrices.
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(iv) If the vi are normalized, such that (vi,vj)M = δij, then

VTMV = I, VTAV = D =

 λ1 0
. . .

0 λN

 .

Proof: Exercise. Hint: Consider the EVP M− 1
2AM− 1

2x = λx. □

Now, define ũ = V−1u, F̃ = VTF, ũ0 = V−1u0, then (2.12) is equivalent to

ũ′ +

 λ1 0
. . .

0 λN

 ũ = F̃, ũ(0) = ũ0. (2.14)

(2.14) is a stiff system of ODEs, if some of the eigenvalues λi > 0 are large (see lecture ”numerics of
ODEs” for more details on that). For parabolic problems, this is indeed the case.

Theorem 2.18 Let T be a regular, shape-regular triangulation and set hmin = min
K∈T

hK . Take a basis

of Vh = S1,1
0 (T ) consisting of hat functions and let A and M be the corresponding stiffness and mass

matrix. Then, there exists a constant C > 0, depending only on the shape-regularity of T , such that

C−1∥u∥2L2(Ω) ≤ |u|2H1(Ω) ≤
C

h2min
∥u∥2L2(Ω) ∀ u ∈ S1,1

0 (T ).

In particular, the eigenvalues λi of (2.13) satisfy

C−1 ≤ min
i=1,...,N

λi ≤ max
i=1,...,N

λi ≤
C

h2min
. (2.15)

Proof: Exercise. In particular, the upper bound O(h−2
min) is sharp. □

Single step methods

In the following, we consider single step methods on an uniform temporal mesh (theory for non-uniform
meshes is also possible) and define the time steps as tn = nk, where k > 0 is a fixed time step length.
We briefly introduce the notions of convergence and stability for such methods, details can be found in
the lecture ”numerics of ODEs”.

We consider single step methods with the properties:

1. (Stability function R) Applied to the scalar ODE y′ = λy, one step of the method can be written
as

y1 = R(kλ)y0

with some function R.

2. (Coordinate invariance) Let B ∈ RN×N = V−1DV be diagonalizable with diagonal matrix D =
diag(d1, . . . , dN ). Then, the change of basis x 7→ Vx should commute with the application of the
method to y′ = By, i.e., for ỹ1 = Vy1 and ỹ0 = Vy0, there holds

ỹ1 = diag(R(kd1), . . . , R(kdN ))ỹ0.

Possible choices (written for a general ODE (system) y′ = f(t, y)) are

� explicit Euler: y1 = y0 + kf(t0, y0) with the stability function R(z) = 1 + z;

� implicit Euler: y1 = y0 + kf(t1, y1) with the stability function R(z) = 1
1−z ;
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� θ-scheme: y1 = y0 + kf(t0 + θ(t1 − t0), y0 + θ(y1 − y0)) as generalization:

– θ = 0 : explicit Euler;

– θ = 1 : implicit Euler;

– θ = 1
2 : Crank-Nicolson method with the stability function R(z) = 1+z/2

1−z/2 .

� more general: Runge-Kutta methods (see lecture numerics of ODEs). They always satisfy the
coordinate invariance property (exercise)!

We call a method consistent of order p, if one step of the method allows for an error bound |y(k)− y1| ≤
Ckp+1. This gives that the function R(·) describing the method should have the asymptotics

R(z) = ez +O(|z|p+1) as z → 0. (2.16)

In the lecture numerics of ODEs, one sees that consistency of order p together with stability (more on
that later) gives convergence of order p.
The Euler methods are of order p = 1, the Crank-Nicolson method is second order p = 2.

Applying the ODE method to y′ = λy for λ < 0 (stiff ODE!) with exact solution y(t) = eλty0, shows
that numerical solutions should stay bounded. Thus, due to

|yn| = |R(kλ)|n|y0|

we want to have a method satisfying |R(z)| ≤ 1 for all z < 0 (more on that later). Such methods are
called A-stable.

For λ < 0 the exact solution even has the property that y(t) → 0 for t → ∞. Methods that reproduce
this qualitative behaviour, i.e., satisfy R(z) → 0 for z → −∞, are called L-stable.

The simplest A-stable method is the implicit Euler method considered in the following.

Example 2.19 For the implicit Euler method, the stability function satisfies

|R(z)| = 1

|1− z|
=

1

1− z
< 1 ∀z < 0.

Consequently, the method is A-stable. Moreover, there holds R(z) → 0 for z → −∞, i.e., the method is
even L-stable. The necessity of stable methods can be see in the numerical examples in Section 2.3.5.

2.3.2 The implicit Euler method

Applying the implicit Euler method to the variational formulation of our semi-discrete model problem
gives 〈

un+1
h − unh

k
, v

〉
L2

+ a(un+1
h , v) = ⟨f(tn+1), v⟩L2 ∀ v ∈ Vh, (2.17)

where k > 0 denotes the time step, tn = nk and unh ≈ uh(tn). In matrix notation (2.17) translates to

1

k
M(un+1 − un) +Aun+1 = Fn+1, (2.18)

i.e., in each step, a linear system

(M+ kA)un+1 = Mun + kFn+1

has to be solved.

Remark 2.20 In terms of computational efficiency, it is advisable to compute a Cholesky-decomposition
of M+ kA once and then do forward/backward substitution only in each time step.

Assuming sufficient regularity for the exact solution, we can now obtain an error estimate for the fully
discrete method.
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Theorem 2.21 Let u solve (2.4) and additionally assume u ∈ C2([0, T ];L2(Ω)). Let k0 > 0 be fixed and
denote by λmin the smallest eigenvalue3 of

λMx = Ax,

where M and A are mass matrix and stiffness matrix of the spatial discretization. Then, there exists
b > 0, depending only on k0 and λmin, such that for all k ∈ (0, k0] there holds

∥unh − u(tn)∥L2(Ω) ≤ ∥u(tn)− Phu(tn)∥L2(Ω) + e−btn∥u0,h − Phu0∥L2(Ω)

+

tn∫
0

e−b(tn−t)
(
∥u′(t)− Phu

′(t)∥L2(Ω) + k ∥u′′(t)∥L2(Ω)

)
dt, (2.19)

as well as

∥unh − u(tn)∥2L2(Ω) +

n∑
j=1

∥ujh − uj−1
h ∥2L2(Ω) + k|ujh − u(tj)|2H1(Ω)

≤ C
(
∥u0,h − Phu0∥2L2(Ω) +

∫ tn

0

∥u′ − Phu
′∥2L2(Ω) + k2∥u′′∥2L2(Ω) dt

+ ∥u(tn)− Phu(tn)∥2L2(Ω) + k

n∑
j=1

|u(tj−1)− Phu(tj−1)|2H1(Ω)

)
. (2.20)

Proof: Proof of (2.19): We split the error into

unh − u(tn) = unh − Phu(tn)︸ ︷︷ ︸
=:ψn

h

+ Phu(tn)− u(tn)︸ ︷︷ ︸
=:ϱn

and obtain recurrence formulas for the error that will then be solved explicitly. In the following, we
abbreviate Dkψnh := 1

k (ψ
n
h − ψn−1

h ).
Step 1: (recurrence relation for ψn) By definition of unh and u, we have

1

k
⟨unh − un−1

h , v⟩L2 + a(unh, v) = ⟨f(tn), v⟩L2 ∀ v ∈ Vh (2.21)

⟨u′(tn), v⟩L2 + a(u(tn), v) = ⟨f(tn), v⟩L2 ∀ v ∈ H1
0 (Ω),

and applying both equations gives for all v ∈ Vh

⟨Dkψnh , v⟩L2 + a(ψnh , v) = ⟨Dkunh, v⟩L2 + a(unh, v)− ⟨DkPhu(tn), v⟩L2 − a(Phu(tn), v)

= ⟨f(tn), v⟩L2 − ⟨DkPhu(tn), v⟩L2 − a(u(tn), v)

= ⟨u′(tn)−DkPhu(tn), v⟩L2 =: ⟨wn, v⟩L2 .

Using v = ψnh ∈ Vh as test function, we obtain

∥ψnh∥2L2(Ω) − ⟨ψn−1
h , ψnh⟩L2 = −k a(ψnh , ψnh) + k⟨wn, ψnh⟩L2 . (2.22)

Now, the Poincaré inequality |ψ|2H1(Ω) ≥ λmin∥ψ∥2L2(Ω) together with a(ψ,ψ) = |ψ|2H1(Ω) and the Cauchy-
Schwarz inequality imply

∥ψnh∥2L2(Ω) ≤ ∥ψn−1
h ∥L2(Ω)∥ψnh∥L2(Ω) − kλmin∥ψnh∥2L2(Ω) + k∥wn∥L2(Ω)∥ψnh∥L2(Ω).

Dividing by the L2-norm of ψnh and (1 + kλmin) this implies

∥ψnh∥L2(Ω) ≤
1

1 + kλmin
∥ψn−1

h ∥L2(Ω) +
k

1 + kλmin
∥wn∥L2(Ω).

3for the heat equation, we have λmin = O(1), i.e., this is harmless.
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Step 2: (solving the recurrence) Iteratively applying step 1 gives

∥ψnh∥L2(Ω) ≤ (1 + kλmin)
−n∥ψ0

h∥L2(Ω) +
k

1 + kλmin

n∑
j=1

(1 + kλmin)
−(n−j)∥wj∥L2(Ω).

As the function x 7→ (1 + x)−1/x is monotonously increasing, with λmink ≤ λmink0 and tn = nk there
follows

(1 + λmink)
−n = (1 + λmink)

−tnλmin/(λmink) ≤ (1 + λmink0)
−tnλmin/(λmink0) = e−btn

(1 + λmink)
−(n−(j−1)) ≤ (1 + λmink0)

−tn−j+1λmin/(λmink0) = e−b(tn−tj−1),

where b > 0 is defined by (1 + λmink0)
−λmin/(λmink0) = e−b. This leads to

∥ψnh∥L2(Ω) ≤ e−btn∥ψ0
h∥L2(Ω) + k

n∑
j=1

e−b(tn−tj−1)∥wj∥L2(Ω).

Step 3: (estimate of wj) It remains to estimate wj = u′(tj) −DkPhu(tj). Using Taylor expansion, we
may write

u′(tj) =
u(tj)− u(tj−1)

k
+

1

k

tj∫
tj−1

(t− tj−1)u
′′(t)dt

=
Phu(tj)− Phu(tj−1)

k
+
u(tj)− u(tj−1)

k
− Phu(tj)− Phu(tj−1)

k
+

1

k

tj∫
tj−1

(t− tj−1)u
′′(t)dt

= DkPhu(tj) +
1

k

tj∫
tj−1

u′(t)− Phu
′(t)dt+

1

k

tj∫
tj−1

(t− tj−1)u
′′(t)dt.

Consequently, we obtain

∥wj∥L2(Ω) ≤
1

k

tj∫
tj−1

∥u′(t)− Phu
′(t)∥L2(Ω)dt+

tj∫
tj−1

∥u′′(t)∥L2(Ω)dt. (2.23)

Together with step 2 this implies

∥ψnh∥L2(Ω) ≤ e−btn∥ψ0
h∥L2(Ω) +

n∑
j=1

e−b(tn−tj−1)

tj∫
tj−1

∥u′(t)− Phu
′(t)∥L2(Ω) + k∥u′′(t)∥L2(Ω)dt

≤ e−btn∥ψ0
h∥L2(Ω) +

tn∫
0

e−b(tn−t)
(
∥u′(t)− Phu

′(t)∥L2(Ω) + k∥u′′(t)∥L2(Ω)

)
dt,

which shows the first statement of the theorem.

Proof of (2.20): We start with (2.22) and estimate

⟨ψnh − ψn−1
h , ψnh⟩L2︸ ︷︷ ︸

= 1
2 (∥ψn

h∥2−∥ψn−1
h ∥2+∥ψn

h−ψn−1
h ∥2)

+k|ψnh |2H1(Ω) = k⟨wn, ψnh⟩L2

≤ k∥wn∥L2(Ω)∥ψnh∥L2(Ω) ≤ kCP ∥wn∥L2(Ω)|ψnh |H1(Ω).

Consequently,

∥ψnh∥2L2(Ω) − ∥ψn−1
h ∥2L2(Ω)+∥ψnh − ψn−1

h ∥2L2(Ω) + 2k|ψnh |2H1(Ω)

≤ 2kCP |ψnh |H1(Ω)∥wn∥L2(Ω)

≤ k|ψnh |2H1(Ω) + C2
P k∥wn∥2L2(Ω).
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Subtracting k|ψn+1
h |H1(Ω) on both sides and employing this estimate for j = 1, . . . , n leads to

∥ψnh∥2L2(Ω) − ∥ψ0
h∥2L2(Ω) +

n∑
j=1

∥ψjh − ψj−1
h ∥2L2(Ω) + k|ψjh|

2
H1(Ω) ≤ C2

P k

n∑
j=1

∥wj∥2L2(Ω).

As with (2.23) we can estimate

k

n∑
j=1

∥wj∥2L2(Ω) ≤
∫ tn

0

∥u′ − Phu
′∥2L2(Ω) + k2∥u′′∥2L2(Ω) dt,

there holds

∥ψnh∥2L2(Ω) +

n∑
j=1

∥ψjh − ψj−1
h ∥2L2(Ω) + k|ψjh|

2
H1(Ω) ≤ C2

P

(
∥ψ0

h∥2L2(Ω) +

∫ tn

0

∥u′ − Phu
′∥2L2(Ω) + k2∥u′′∥2L2(Ω) dt

)
.

Defining ρj := Phu(tj)− u(tj), there follows

∥ρn∥2L2(Ω) +

n−1∑
j=0

∥ρj+1 − ρj∥2L2(Ω)︸ ︷︷ ︸
≤k

∫ tj+1

tj
∥u′−Phu′∥2

L2(Ω)

+k|ρj+1|2H1(Ω) ≤ ∥ρn∥2L2(Ω) + k

∫ tn

0

∥u′ − Phu
′∥2L2(Ω)

+ k

n−1∑
j=0

|u(tj)− Phu(tj)|2H1(Ω)

and finally, with uj+1
h − u(tj+1) = ψj+1

h + ρj+1 and the triangle inequality, the claimed estimate. □

Corollary 2.22 Let u solve (2.4) and assume u ∈ C3(Ω̄ × [0, T ]). Let unh denote the fully discrete

approximation employing Vh = S1,1
0 (T ) with u0,h = Phu0 and the implicit Euler method in time. Then:

(i) There exists a constant C > 0 independent of h, k such that

∥unh − u(tn)∥L2(Ω) ≤ C(h+ k).

(ii) Additionally, if Ω is convex, then

∥unh − u(tn)∥L2(Ω) ≤ C(h2 + k).

Proof: Theorem 2.21 gives

∥unh − u(tn)∥L2(Ω) ≤ ∥u(tn)− Phu(tn)∥L2(Ω) +

tn∫
0

∥u′(t)− Phu
′(t)∥L2(Ω) + k ∥u′′(t)∥L2(Ω) dt.

Employing the approximation properties of Ph as in Corollary 2.15 shows that the first two terms on the
right-hand side are of order O(h) or even of O(h2) for convex domains Ω. □

2.3.3 The θ-scheme

As mentioned, the θ-scheme defined as

yi+1 = yi + kf(ti + θ(ti+1 − ti), yi + θ(yi+1 − yi))

is a generalization of the implicit Euler method. Applied to the heat equation the most common cases
θ = 0, 1 and θ = 1/2 lead to linear systems provided in Figure 2.1.
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θ = 0 (explicit Euler): M(un+1 − un) + kAun = kF(tn)

θ = 1 (implicit Euler): M(un+1 − un) + kAun+1 = kF(tn+1)

θ = 1/2 (Crank-Nicolson): M(un+1 − un) +
k

2
(Aun +Aun+1) = kF(tn+ 1

2
)

Figure 2.1: Matrix form of θ-scheme for the heat equation.

Statements similar to Theorem 2.21 also holds for the θ-scheme, e.g., one can show the following stability
estimate:

Exercise 2.23 Let unh be given by the θ-scheme with θ ∈ (1/2, 1]. Set un+θh := unh + θ(un+1
h − unh) and

tj+θ := tj + θ(tj+1 − tj). Then, there holds

∥unh∥2L2(Ω) +

n−1∑
j=0

k|uj+θh |2H1(Ω) + (2θ − 1)∥uj+1
h − ujh∥

2
L2(Ω) ≤ ∥u0h∥2L2(Ω) + C

n−1∑
j=0

k∥f(tj+θ)∥2L2(Ω).

Hint: consider the test-function v = ψn+θ = uh(tn+θ)− Phu(tn+θ).

For sufficient regular solutions, one obtains higher order convergence for the Crank-Nicolson method.

Theorem 2.24 (CN is second order) Let unh be defined by

1

k
⟨un+1
h − unh, v⟩L2 + a

(
un+1
h − unh

2
, v

)
= ⟨f(tn + k/2), v⟩L2 ∀v ∈ Vh.

Then, there holds

∥unh − u(tn)∥L2(Ω) ≤ ∥u0,h − Phu0∥L2(Ω) + ∥u(tn)− Phu(tn)∥L2(Ω)

+

∫ tn

0

∥u′ − Phu
′∥L2(Ω) + Ck2∥u′′′∥L2(Ω) dt

Proof: Analogous to Theorem 2.21, (2.19), use v = (ψn+1
h + ψnh)/2 as test-function. □

2.3.4 Stability of θ-scheme—the CFL-condition

By definition of A-stability and L-stability, we see from the definitions of the stability functions R that
the explicit Euler method is not A-stable, the Crank-Nicolson method is A-stable and the implicit Euler
method is A-stable and L-stable. More general, the stability properties of the θ-scheme can be seen in
Figure 2.2.

0 ≤ θ < 1/2 method not A-stable order 1
θ = 1/2 method A-stable order 2

1/2 < θ ≤ 1 method A-stable (even L-stable) order 1

Figure 2.2: Stability properties and convergence order of θ-scheme.

For 0 ≤ θ < 1/2 the θ-scheme is not A-stable but only conditionally stable, i.e., there is a condition on
the employed step sizes for the method to work, the so called CFL condition4. This is in practice very
restrictive!

4Richard Courant, Kurt Friedrichs, Hans Lewy
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In order to see this, we consider one step of the method, which can be written as

un+1
h = Runh + kFn

with a linear operator R : Vh → Vh. Therefore, we obtain (not specifying the norm on purpose)

∥un+1
h ∥ ≤ ∥R∥∥unh∥+ k∥Fn∥.

The Gronwall lemma then gives
∥uNh ∥ ≤ ∥R∥N∥u0h∥+ · · ·

With tN = Nk = T = final time, there holds

∥uNh ∥ ≤ ∥R∥T/k∥u0h∥+ · · ·

This shows that there should hold ∥R∥ ≤ 1 + Ck, since then

∥R∥T/k ≤ (1 + Ck)T/k = (1 + Ck)TC/(Ck) ≤ eCT

holds uniformly in k (otherwise: ∥R∥ ≥ 1+δ for a δ > 0 independent of k gives ∥R∥T/k ≥ (1+δ)T/k → ∞
for k → 0).

In order to keep the analysis of ∥R∥ simple, we consider ∥R∥ on the matrix level. The iteration is then
written as un+1 = Run + · · · , with the matrix R given in Fig. 2.3.
For any matrix norm, there holds ∥R∥ ≤ ρ(R) with the spectral radius ρ(R) = max{|λ| |λ ∈ σ(R)}.
Therefore, the condition ρ(R) ≤ 1 + Ck is a reasonable condition for stability. In fact, the stronger
condition

ρ(R) ≤ 1 (2.24)

is usually imposed, which gives a bound on ∥uNh ∥ independent of the end time T . Fig. 2.3 illustrates
this condition for our fully discrete methods. Note that Theorem 2.18 gives λmax ∼ C/h2. Thus, for the
θ-scheme, the condition (2.24) can be written in terms of mesh size in space h and time step length k.
For the explicit Euler method this gives the CFL condition

k

h2
= O(1) i.e. k ≤ Ch2.

For the implicit Euler method and the Crank-Nicolson method no restrictions apply as seen in Fig. 2.3.

R σ(R) ρ(R) stable?

Rexpl I− kM−1A {1− kλ | λ ∈ σ} |1− kλmax| if k ≤ 2
λmax

Rimpl (M+ kA)−1M
{

1
1+kλ | λ ∈ σ

}
1

|1+kλmin| ≤ 1 for all k > 0

RCN

(
M+ k

2A
)−1 (

M− k
2A
) {

1−k/2λ
1+k/2λ | λ ∈ σ

}
≤ 1 for all k > 0

Figure 2.3: Analysis of R in un+1 = Run + · · · . σ = {λ : ∃x ̸= 0 with Ax = λMx}

Exercise 2.25 For θ ∈ (0, 1/2), there also has to hold the CFL condition k ≤ Ch2 for stability.

2.3.5 Numerical examples

Example 2.26 We consider the heat equation for d = 1 on (0, 1)× [0, 1] with data u0 = 1 and f ≡ 0.
For the time discretization, we consider the explicit Euler, implicit Euler and the Crank-Nicholson
method. Figure 2.4 shows the computed numerical approximations and the exact solution. For the
explicit Euler method we employ step sizes k = 2.001

λmax
≥ 2

λmax
(which violates the stability bound) and

k = 1.999
λmax

≤ 2
λmax

(which satisfies the stability bound).
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Figure 2.4: Comparison of exact and numerical solution for the 1D heat equation, u0 = 1, f = 0.

In the case of even a small violation of the stability bound, the numerical solution oscillates very strongly
and is completely inaccurate.

In the next example, we take the exact solution u(x, t) = e−tx(1−x) (and correspondingly obtain u0, f by
inserting the solution into the PDE), and study the convergence behaviour of the fully discrete methods
in Figure 2.5. As expected, we obtain first order convergence O(h) (as we have k = 0.1h and expect
O(k + h2)) for the implicit Euler method (unconditionally) and for the explicit Euler method provided
the stability bound is satisfied. The Crank-Nicolson method even gives second order convergence O(h2)
(as we have k = 0.1h and expect O(k2 + h2)).
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Figure 2.5: Convergence of the fully discrete schemes.
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Example 2.27 We consider the 2D-heat equation on the unit square Ω = [0, 1]2

ut −∆u = 0 in ΩT , (2.25)

u = 0 on ∂Ω× (0, T ), u(x, 0) = sin(πx) sin(πy). (2.26)

Then, the exact solution is given by u(x, y, t) = e−2π2t sin(πx) sin(πy). We use explicit and implicit Euler
for this problem implemented in ngsolve. As seen in Figure 2.6 there is energy dissipation as expected.
However, for the explicit Euler, we again observe instability (Figure 2.7) if the time step is chosen too
large.

Figure 2.6: solution implicit Euler, first four time steps, k = 0.05, colour scale fixed between 0 (blue)
and 1 (red).

Figure 2.7: solution explicit Euler, first four time steps, k = 0.05, colour scale fixed between 0 (blue)
and 1 (red).

Remark 2.28 The previous examples show that the explicit Euler method should be avoided! In order
to keep the computational cost small, it is beneficial to make large time steps (in each time step you have
to solve a linear system!). For the explicit Euler, this means that you have to know λmax in advance and
by no means should violate the stability bound.

2.4 Weakening the notion of solution

Until now: classical solution in time, i.e., regularity u ∈ C1((0, T );H1
0 (Ω)) ∩ C0([0, T ], H1

0 (Ω)).

Observation:

� this requires u0 ∈ H1
0 (Ω) (”compatible initial data”).

� u0 ∈ H1
0 (Ω) is not natural in applications as well as in the mathematical structure of the problem

(compare the solution formula in (2.6)).
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2.4.1 A short introduction to Bochner spaces

Let X be a Banach space and (a, b) ⊂ R.
Goal: reasonable definition of

∫ b
a
f(t) dt for a function f : (a, b) → X.

Idea: work similarly to definition of Lebesgue integral by starting with step functions and then taking
limits.

For elementary functions (note χA is the characteristic function for the set A), defined as g : t 7→∑n
i=1 fiχAi(t) with A1, . . . , An ⊂ (a, b) (Lebesgue-)measurable and g1, . . . , gn ∈ X, the integral is canon-

ically defined as ∫ b

a

g(t)dt :=

n∑
i=1

gi

∫
Ai

dt =

n∑
i=1

gi|Ai| ∈ X.

Then, for every function f : (a, b) → X, which can be approximated pointwise almost everywhere by
elementary functions (this property is called Bochner-measurable), i.e., there is a sequence (fn)n∈N of
elementary functions with

lim
n→∞

fn(t) = f(t) a.e. as limit in X, (2.27)

the Bochner integral can be defined as limit of the integrals of the fn.

Definition 2.29 (Bochner-Integral) Let f : (a, b) → X and (fn)n a sequence of elementary functions
with (2.27). Assume additionally

lim
n→∞

∫ b

a

∥f(t)− fn(t)∥X dt = 0. (2.28)

Then, f is called Bochner-integrable and∫ b

a

f(t) dt := lim
n→∞

∫ b

a

fn(t) dt

is called the Bochner integral of f .

Exercise 2.30 Show that: The Bochner integral is well defined, i.e., the limit is independent of the
choice of sequence (fn)n, which has the pointwise limit f .

An important characterization of Bochner integrability is given by the following theorem.

Theorem 2.31 f : (a, b) → X is Bochner integrable ⇐⇒ f is Bochner-measurable and t 7→ ∥f(t)∥X is
integrable. Then, there also holds ∥∥∥∥∥

∫ b

a

f(t) dt

∥∥∥∥∥
X

≤
∫ b

a

∥f(t)∥X dt. (2.29)

Proof: Exercise. “=⇒”: easy.
“⇐=”: Define

f̃n(t) :=

{
fn(t) if ∥fn(t)∥X ≤ (1 + ε)∥f(t)∥X
0 otherwise

and employ the Lebesgue dominated convergence theorem. □

The previous theorem motivates that, analogous to the classical Lebesgue spaces Lp for p ∈ [1,∞), one
can define Lp-spaces of Bochner integrable functions denoted by Lp(a, b;X). The norm on these spaces
is given by

∥f∥Lp(a,b;X) :=

(∫ b

a

∥f(t)∥pX dt

)1/p

, p ∈ [1,∞), ∥f∥L∞(a,b;X) := ess sup
t∈(a,b)

∥f(t)∥X . (2.30)

By definition, the space L1(a, b;X) coincides with the space of Bochner integrable functions.
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Theorem 2.32 The spaces Lp(a, b;X) are Banach spaces. Is X a Hilbert space, then L2(a, b;X) is also
a Hilbert space with scalar product

(u, v)L2(a,b;X) =

∫ b

a

(u(t), v(t))X dt.

In the following sections, it will be useful to interchange the Bochner integral with a linear functional on
X.

Theorem 2.33 Let f ∈ L1(a, b;X). Then,

⟨g,
∫ b

a

f(t) dt⟩X′×X =

∫ b

a

⟨g, f(t)⟩X′×Xdt ∀g ∈ X ′. (2.31)

Proof: We employ a density argument.
Step 1: Let f be a elementary function, then (2.31) holds by direct calculation.
Step 2: Let g ∈ X ′. Then both the left-hand and right-hand side in (2.31) define a continuous linear
functional on L1(a, b;X) (here, we do not show the measurability of the appearing functions):∣∣∣∣∣

∫ b

a

⟨g, f(t)⟩X′×X dt

∣∣∣∣∣ ≤
∫ b

a

|⟨g, f(t)⟩X′×X | dt ≤
∫ b

a

∥g∥X′∥f(t)∥X dt = ∥g∥X′∥f∥L1(a,b;X)∣∣∣∣∣⟨g,
∫ b

a

f(t) dt⟩X′×X

∣∣∣∣∣ ≤ ∥g∥X′

∥∥∥∥∥
∫ b

a

f(t) dt

∥∥∥∥∥
X

≤ ∥g∥X′

∫ b

a

∥f(t)∥X dt = ∥g∥X′∥f∥L1(a,b;X).

As the linear functionals are equal on a dense subset by step 1, they, by continuity, also are equal on
L1(a, b;X). □

2.4.2 Weak derivatives in Bochner spaces

The space H1(a, b;X)

We denote by C∞
0 ((a, b);R) the space of infinitely continuously differentiable real-valued functions with

compact support.

Definition 2.34 Let u ∈ L1(a, b;X). Then, the distributional derivative of u is the linear mapping
C∞

0 ((a, b);R) → X given by5

C∞
0 ((a, b);R) ∋ φ 7→ −

∫ b

a

u(t)φ′(t) dt. (2.32)

If this linear mapping has a representation by a function v ∈ L1
loc(a, b;X) (meaning L1 on each compact

subset of (a, b)), i.e.,

−
∫ b

a

u(t)φ′(t) dt =

∫ b

a

v(t)φ(t) dt ∀φ ∈ C∞
0 ((a, b);R)

we call v the weak derivative of u.

If X is separable, then the weak derivative is indeed unique. Now, we can define a Sobolev-type Bochner
space.

Definition 2.35 Let X be a separable Hilbert space. Then, we define the space H1(a, b;X) := {u ∈
L2(a, b;X) |u′ ∈ L2(a, b;X)}, which is a Hilbert space with scalar product

(u, v) 7→
∫ b

a

⟨u(t), v(t)⟩X + ⟨u′(t), v′(t)⟩X dt.
5the appearing integrals are Bochner-integrals!
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The space W (a, b;X;Y )

Not every function u ∈ L2(a, b;X) has a distributional derivative, which can be represented by an X-
valued Bochner integral. For our purpose it is relevant that the distributional derivative of u has a
representation as a Bochner integral in a larger space Y ⊃ X (i.e. in a weaker topology).
We assume

X, Y separable Hilbert spaces, X ⊂ Y dense. (2.33)

Exercise 2.36 Let X,Y satisfy (2.33). Let u ∈ L1(a, b;X). Then, u ∈ L1(a, b;Y ) and with the
embedding ιX→Y : X → Y

ιX→Y

∫ b

a

u(t) dt =

∫ b

a

ιX→Y u(t) dt.

Here, the left integral is a Bochner integral in X and the right one in Y . For sake of readability we will
not write the embedding in the following any more.

Definition 2.37 Let X,Y satisfy (2.33). Let u ∈ L1(a, b;X). A function v ∈ L1(a, b;Y ) is called weak
derivative of u, if

−
∫ b

a

u(t)φ′(t) dt =

∫ b

a

v(t)φ(t) dt ∀φ ∈ C∞
0 (a, b),

which is to be understood as equality in Y (also employing exercise 2.36). We also write u′ for the weak
derivative.

Definition 2.38 Let X,Y satisfy (2.33). We then define W (a, b;X;Y ) = {u ∈ L2(a, b;X) |u′ ∈
L2(a, b;Y )}, which is a Hilbert space with scalar product

(u, v) 7→
∫ b

a

⟨u(t), v(t)⟩X + ⟨u′(t), v′(t)⟩Y dt.

For the spaces H1(a, b;X) and the generalization W (a, b;X;Y ) there hold many statements that also
hold for classical Sobolev spaces, e.g., density of smooth (X valued) functions or, similarly to the 1D
Sobolev embedding H1(0, 1) ⊂ C([0, 1]), that

W (a, b;X;X ′) ⊂ C([a, b];Y ) (2.34)

with X ′ being the dual space of X.
Moreover, forX ↪→ Y ↪→ X ′ (dense) withX,Y being separable Hilbert spaces and for u, v ∈W (a, b;X;X ′)
integration by parts formulas of the form

⟨u(t), v(t)⟩Y − ⟨u(s), v(s)⟩Y =

∫ t

s

⟨u′(τ), v(τ)⟩X′×X + ⟨u(τ), v′(τ)⟩X×X′ dτ

hold.

2.4.3 Weak formulation for the heat equation

Recap: with the eigenpairs of the Dirichlet Laplacian (φn, λn)n∈N ⊂ H1
0 (Ω) × R (which are an ONB of

L2(Ω)), we defined the evolution operator for the heat equation as

E(t)u0 =
∑
n∈N

e−λnt⟨u0, φn⟩L2φn.

The right-hand side is even well defined for u0 ∈ L2(Ω), thus we can extend the evolution operator to
an operator mapping

E(t) : L2(Ω) → H1
0 (Ω).
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Note that for all v ∈ L2(Ω) with basis expansion v =
∑
n∈N vnφn, Sobolev norms can be expressed as

∥v∥2L2(Ω) =
∑
n∈N

|vn|2,

|v|2H1(Ω) =
∑
n∈N

λn|vn|2,

∥v∥H−1(Ω) := sup
w∈H1

0 (Ω)

⟨v, w⟩L2

|w|H1(Ω)
= sup

(wn)n∈N

∑
n∈N vnwn√∑
n∈N λn|wn|2

=

√∑
n∈N

|vn|2λ−1
n .

The last equality follows from Cauchy-Schwarz for sums and the particular choice wn = 1
λn
vn.

This observation then gives the following mapping properties for the evolution operator.

Lemma 2.39 Let u0 ∈ L2(Ω) and denote by E(t) the extended evolution operator. Then, there holds

t 7→ E(t)u0 ∈ L2(0, T ;H1
0 (Ω)), (2.35)

t 7→ ∂t(E(t)u0) ∈ L2(0, T ;H−1(Ω)), (2.36)

t 7→ E(t)u0 ∈ C([0, T ];L2(Ω)). (2.37)

The norms in (2.35)–(2.37) can be estimated by C∥u0∥L2(Ω).

Proof: We only illustrate (2.36). As ∂tE(t)u0 =
∑
n−λne−λnt⟨u0, φn⟩L2φn (the interchange between

differentiation and summation can be argued with standard arguments), we have∫ T

0

∥∂tE(t)u0∥2H−1(Ω) dt =

∫ T

0

∑
n

λ2ne
−2λnt

|⟨u0, φn⟩L2 |2

λn
dt ≤ 1

2
∥u0∥2L2(Ω),

where we used that summation and integration can be interchanged and
∫ T
0
λne

−2λnt ≤ 1
2 . □

Motivation: Lemma 2.39 suggests:

� u0 ∈ L2(Ω) is sensible as initial data;

� one can expect u ∈ L2(0, T ;H1
0 (Ω)) and u

′ ∈ L2(0, T ;H−1(Ω)) for a reasonable weak formulation
of the heat equation;

� by (2.34), then there holds u ∈ C([0, T ];L2(Ω)), i.e., initial values can be well defined.

In order to derive a suitable weak formulation, we again start at the variational formulation in space

⟨u′(t), v⟩L2(Ω) + a(u(t), v) = ⟨f(t), v⟩L2(Ω) ∀v ∈ H1
0 (Ω). (2.38)

Rather than interpreting the derivative in a classical sense, we now aim for weak derivatives in time.
More precisely, we set V = H1

0 (Ω) and H = L2(Ω) and seek a solution u ∈ L2(0, T ;V ). The term
including the time derivative in (2.38) is actually well defined even for u′(t) ∈ V ′: Using a distributional
interpretation of the derivative (see (2.32)) gives the formulation

−
∫ T

0

⟨u(t), v⟩L2(Ω)φ
′(t) dt+

∫ T

0

a(u(t), v)φ(t) dt =

∫ T

0

⟨f(t), v⟩L2(Ω)φ(t) dt ∀v ∈ H1
0 (Ω) ∀φ ∈ C∞

0 (0, T ).

If we require now u ∈ L2(0, T ;V ) with u′ ∈ L2(0, T ;V ′), we calculate using the definition of weak
derivative6

−
∫ T

0

⟨u(t), v⟩L2(Ω)φ
′(t) dt = −

∫ T

0

⟨u(t), v⟩Hφ′(t) dt = −
∫ T

0

⟨u(t), v⟩V×V ′φ′(t) dt

Thm. 2.33
= −⟨v,

∫ T

0

u(t)φ′(t) dt⟩V ′×V = −⟨v,
∫ T

0

u(t)φ′(t) dt⟩V×V ′
u′∈L2(0,T ;V ′)

= ⟨v,
∫ T

0

u′(t)φ(t) dt⟩V×V ′ .

6note that more precisely, one actually would write ⟨u(t), v⟩L2(Ω) = ⟨ιu(t), ιv⟩H with the embedding ι : V → H and

obtain the second equality as ⟨ιu(t), v⟩H = ⟨u(t), ι′v⟩V ×V ′
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Thus, we obtained the formulation: Find u ∈ L2(0, T ;V ) with u′ ∈ L2(0, T ;V ′), s.t.∫ T

0

⟨u′(t), v⟩V ′×V φ(t) dt+

∫ T

0

a(u(t), v)φ(t) dt =

∫ T

0

⟨f(t), v⟩L2(Ω)φ(t) dt ∀v ∈ H1
0 (Ω) ∀φ ∈ C∞

0 (0, T ).

Variation over φ, we obtain that this can also be (equivalently) understood as pointwise almost every-
where formulation in time:

⟨u′(t), v⟩V ′×V + a(u(t), v) = ⟨f(t), v⟩L2(Ω) ∀v ∈ H1
0 (Ω) a.e.

Up until now, we tested with test functions vanishing at t = 0. Including the initial data, we observe
that u ∈ W (0, T ;V ;V ′) implies that u ∈ C([0, T ];H), i.e., u0 ∈ L2(Ω) is allowed. This leads to the
standard weak formulation for the heat equation: Find u ∈ L2(0, T ;V ) with u′ ∈ L2(0, T ;V ′) such that

⟨u′(t), v⟩V ′×V + a(u(t), v) = ⟨f(t), v⟩L2(Ω) ∀v ∈ H1
0 (Ω) a.e., (2.39a)

u(0) = u0 ∈ H. (2.39b)

Existence and uniqueness of solutions can e.g. be shown by employing a Galerkin method (see lecture
”partial differential equations”) or by employing inf-sup theory (see Section 2.7.1).

Having derived the weak formulation with less regularity requirements on the data and the solution, we
can now proceed as in Section 2.2, replace the space H1

0 (Ω) by a FEM space and obtain a corresponding
(weakly in time) ODE. The error and stability analysis of the method, however, needs to be done with
different tools, which is the topic of the following section.

2.5 Numerical approximation for non-smooth initial data

Goal: convergence theory for u0 ∈ L2(Ω) (until now: only for compatible data u0 ∈ H1
0 (Ω)).

Again, we aim to split the error into

∥u(tn)− unh∥ ≤ ∥u(tn)− uh(tn)∥+ ∥uh(tn)− ukh∥

and treat the semi-discrete error in Section 2.5.3 and the time discretization error in Section 2.5.4.

Difficulty with ∥u(tn)− uh(tn)∥: with V = H1
0 (Ω), H = L2(Ω), we can not expect that u′ ∈ L2(0, T ;V )

(only u′ ∈ L2(0, T ;V ′) by solvability theory). The analysis of the semi-discretization error in Theo-
rem 2.13 leads to

∥u(t)− uh(t)∥L2 ≤ e−γt∥u0 − Phu0∥L2 + ∥u(t)− Phu(t)∥L2 +

∫ t

0

e−γ(t−s)∥u′(s)− Phu
′(s)∥L2 ds;

and therefore needed u0 ∈ V and u′ ∈ L1(0, T ;L2(Ω)).

Simplification: in the following, we will only consider the case f ≡ 0, which already shows all the typical
phenomena for the heat equation, similar statements also hold for f ̸= 0 (assuming sufficient regularity).

2.5.1 Smoothing property

A typical property of parabolic equations is that solutions are very smooth for any t > 0, thus the
described problems only appear at t = 0.
In order to capture this behaviour, we again look at the evolution operator E(t) and observe that it
satisfies mapping properties in certain t-weighted spaces.

Lemma 2.40 Let u0 ∈ L2(Ω) and E(t) be the evolution operator. Then,

(i) The mapping t 7→ E(t)u0 is in C∞((0,∞);H1
0 (Ω)) and C

∞((0,∞);L2(Ω)).

(ii) For every m ∈ N0, there holds ∥ d
m

dtmE(t)u0∥H1(Ω) ≤ Cmt
−1/2−m∥u0∥L2(Ω).
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(iii) For every m ∈ N0, there holds ∥ d
m

dtmE(t)u0∥L2(Ω) ≤ Cmt
−m∥u0∥L2(Ω).

(iv)
∫ t
0
∥E(s)u0∥2H1(Ω) ds ≤ C∥u0∥2L2(Ω).

(v)
∫ t
0
s2∥ ddtE(s)u0∥2H1(Ω) ds ≤ C∥u0∥2L2(Ω).

Proof: Exercise. Similar to Lemma 2.39. For (iv) one e.g. calculates∫ t

0

|E(t)u0|2H1(Ω) ds =

∫ t

0

∑
n

λn|⟨E(s)u0, φn⟩L2 |2 ds =
∫ t

0

∑
n

λne
−2λns|⟨u0, φn⟩L2 |2 ds

≤ C
∑
n

|⟨u0, φn⟩L2 |2.

For (ii) and (iii) one uses that supx>0 xe
−x <∞. □

Remark 2.41 If ∂Ω ∈ C∞, then the eigenfunctions of the Dirichlet Laplacian φn are smooth as well
(on Ω), and one can show that E(t)u0 ∈ C∞((0,∞);Hk(Ω)) for every k ∈ N. However, the singularity
at t = 0 still remains.

2.5.2 Reduction to the analysis of the Ritz-projection error

As in the proof of Theorem 2.13, we split the error into two contributions

eh(t) := uh(t)− u(t) = uh(t)− Phu(t)︸ ︷︷ ︸
=ψ(t)

+Phu(t)− u(t)︸ ︷︷ ︸
=ρ(t)

(2.40)

and recall the error equation (where the derivatives are understood as elements in L2(0, T ;V ′))

⟨ψ′(t), v⟩L2 + a(ψ(t), v) = −⟨ρ′(t), v⟩L2 ∀v ∈ Vh. (2.41)

The key difference to the previously derived error analysis is that, in the present setting, ψ(0) is not
well defined. A key observation of Lemma 2.40 is that one can not expect u′ to be in L2(0, T ;H1

0 (Ω)) or
L2(0, T ;L2(Ω)), but difficulties do only appear at t = 0. Thus, we can work with t-weighted spaces and
refine the estimates from Theorem 2.13 in these norms.

Lemma 2.42 For all t > 0, there hold the stability bounds∫ t

0

∥ψ(s)∥2L2(Ω) ds ≤ Ct∥ΠL
2

eh(0)∥2L2(Ω) + C

∫ t

0

∥ρ(s)∥2L2(Ω) ds, (2.42)

and

t∥ψ(t)∥2L2(Ω) +

∫ t

0

s|ψ(s)|2H1(Ω) ds ≤ C

∫ t

0

s2∥ρ′(s)∥2L2(Ω) + ∥ρ(s)∥2L2(Ω) ds

+ C
(

sup
s∈(0,t)

s∥ρ(s)∥2L2(Ω) + t∥ΠL
2

eh(0)∥2L2(Ω)

)
. (2.43)

Proof: ad (2.42): The idea is to employ a so called parabolic duality argument (i.e. to cleverly choose
a test-function). Let t = t0 be fixed and consider the backwards equation

−zt −∆z = ψ in Ω× (0, t0),

z = 0 on ∂Ω× (0, t0),

z(t0) = 0.

Now, consider a semi-discrete approximation, i.e., zh ∈ C1((0, t0);Vh) ∩ C0([0, t0];Vh) satisfying

−⟨z′h(s), v⟩L2 + a(zh(s), v) = ⟨ψ(s), v⟩L2 ∀v ∈ Vh, s ∈ (0, t0)

zh(t0) = 0.
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For this problem, we have the stability estimate (proof in exercises!)∫ t0

0

∥z′h(s)∥2L2(Ω) ds+ t−1
0 ∥zh(0)∥2L2(Ω) ≤ C

∫ t0

0

∥ψ(s)∥2L2(Ω) ds. (2.44)

Now, for s ∈ (0, t0), we obtain

∥ψ(s)∥2L2(Ω) = −⟨z′h(s), ψ(s)⟩L2 + a(zh(s), ψ(s))

= − d

dt
⟨zh(s), ψ(s)⟩L2 + ⟨zh(s), ψ′(s)⟩L2 + a(zh(s), ψ(s))

= − d

dt
⟨zh(s), ψ(s)⟩L2 − ⟨ρ′(s), zh(s)⟩L2

= − d

dt
⟨zh(s), ψ(s)⟩L2 + ⟨ρ(s), z′h(s)⟩L2 − d

dt
⟨zh(s), ρ(s)⟩L2

= − d

dt
⟨zh(s), eh(s)⟩L2 + ⟨ρ(s), z′h(s)⟩L2 .

Integration over (ε, t0) for 0 < ε < t0 together with zh(t0) = 0 gives∫ t0

ε

∥ψ(s)∥2L2(Ω) ≤ ⟨zh(ε), eh(ε)⟩L2︸ ︷︷ ︸
→⟨zh(0),eh(0)⟩L2 since eh ∈ C([0, T ];L2)

+

∫ t0

ε

∥ρ(s)∥L2(Ω)∥z′h(s)∥L2(Ω) ds︸ ︷︷ ︸
≤
√∫ t0

0 ∥ρ∥2
L2(Ω)

√∫ t0
0 ∥z′h∥

2
L2(Ω)

.

As zh(0) ∈ Vh, we have ⟨zh(0), eh(0)⟩L2 = ⟨zh(0),ΠL
2

eh(0)⟩L2 . Using (2.44) this leads to

∫ t0

0

∥ψ(s)∥2L2(Ω) ds ≤ C
(√∫ t0

0

∥ρ(s)∥2L2(Ω) ds+
√
t0∥ΠL

2

eh(0)∥L2(Ω)

)√∫ t0

0

∥ψ(s)∥2L2(Ω) ds.

ad (2.43): The choice v = tψ(t) in (2.41) gives

1

2

d

dt
(t∥ψ(t)∥2L2(Ω)) + ta(ψ(t), ψ(t)) = −t⟨ρ′(t), ψ(t)⟩L2 +

1

2
∥ψ(t)∥2L2(Ω).

Integration over (ε, t) leads to

1

2
t∥ψ(t)∥2L2(Ω)+

∫ t

ε

s|ψ(s)|2H1(Ω) ds =
1

2
ε∥ψ(ε)∥2L2(Ω)−

∫ t

ε

⟨sρ′(s), ψ(s)⟩L2 ds︸ ︷︷ ︸
≤
√∫ t

0
s2∥ρ′(s)∥2

L2 ds
√∫ t

0
∥ψ(s)∥2

L2 ds

+
1

2

∫ t

ε

∥ψ(s)∥2L2(Ω) ds.

It remains to provide an estimate for lim supε→0 ε∥ψ(ε)∥2L2(Ω). We write ψ = eh − ρ and obtain due to

eh ∈ C([0, T ];L2(Ω))

lim sup
ε→0

√
ε∥ψ(ε)∥L2(Ω) ≤ lim sup

ε→0

√
ε∥eh(ε)∥L2(Ω) + lim sup

ε→0

√
ε∥ρ(ε)∥L2(Ω)

= lim sup
ε→0

√
ε∥ρ(ε)∥L2(Ω) ≤ sup

s∈(0,t)

√
s∥ρ(s)∥L2(Ω).

Together with Young’s-inequality and (2.42), we finally arrive at

t∥ψ(t)∥2L2(Ω)+

∫ t

0

s|ψ(s)|2H1(Ω) ds ≤ C
(∫ t

0

s2∥ρ′(s)∥2L2(Ω)+∥ρ∥2L2(Ω) ds+ sup
s∈(0,t)

s∥ρ(s)∥2L2(Ω)+t∥Π
L2

eh(0)∥2L2(Ω)

)
.

□
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2.5.3 Convergence of semi-discretization for incompatible data

In Corollary 2.15, we employed piecewise linear finite elements to obtain rates of convergence in terms
of h for the semi-discretization. More generally, one only needs certain approximation properties of the
Ritz-projection. We formulate this as a notation fixing a parameter r describing the rate.

Notation 2.43 Let r ∈ (0, 1] be defined such that for all v ∈ H1
0 (Ω) and Ph : H1

0 (Ω) → Vh

∥v − Phv∥L2(Ω) ≤ Chr∥v − Phv∥H1(Ω) ≤ Chr∥v∥H1(Ω).

For convex or smooth domains, by the Aubin-Nitsche duality argument, there holds r = 1 provided Vh
is a standard FEM space. On non-convex polygons, the parameter r depends on the interior angles of
the polygon (see elliptic shift theorems).
We formulate the case r = 1 together with additional approximation properties for H2(Ω)-functions as
assumption:

Assumption 2.44 There holds Notation 2.43 with r = 1 and for all v ∈ H2(Ω) ∩H1
0 (Ω)

∥v − Phv∥L2(Ω) ≤ Ch2∥v∥H2(Ω).

For compatible initial data u0 ∈ H2(Ω) ∩H1
0 (Ω), one obtains the optimal rate (as in Corollary 2.15).

Theorem 2.45 Let Assumption 2.44 hold. Let f ≡ 0 and u0 ∈ H2(Ω) ∩ H1
0 (Ω) and u solve (2.39).

Assume either uh,0 = ΠL
2

u0 or uh,0 = Phu0. Then,

∥u(t)− uh(t)∥L2(Ω) ≤ Ch2∥u0∥H2(Ω).

We now consider the case of incompatible initial data.

Theorem 2.46 Let r be given as in Notation 2.43. Let u0 ∈ L2(Ω) and f ≡ 0. Let uh be the semi-

discrete approximation with initial data uh,0 = ΠL
2

u0 and u solve (2.39). Then,

∥u(t)− uh(t)∥L2(Ω) ≤ Chrt−1/2∥u0∥L2(Ω). (2.45)

If additionally Assumption 2.44 holds, then

∥u(t)− uh(t)∥L2(Ω) ≤ Ch2t−1∥u0∥L2(Ω). (2.46)

Proof: ad (2.45): Due to uh(t)− u(t) = ψ(t) + ρ(t) and Lemma 2.42, we have to estimate ∥ρ(s)∥L2(Ω)

and ∥ρ′(s)∥L2(Ω). The additional term ΠL
2

eh(0) vanishes due to the choice uh,0 = ΠL
2

u0.
For s > 0, there holds u(s) = E(s)u0 ∈ H1

0 (Ω) and by assumption that

∥ρ(s)∥L2(Ω) ≤ Chr∥u(s)∥H1(Ω), ∥ρ′(s)∥L2(Ω) ≤ Chr∥u′(s)∥H1(Ω).

Using Lemma 2.40, we arrive at

t∥ψ(t)∥2L2(Ω) ≤
∫ t

0

∥ρ(s)∥2L2(Ω) ds+

∫ t

0

s2∥ρ′(s)∥2L2(Ω) ds+ sup
0<s<t

s∥ρ(s)∥2L2(Ω) ≤ Ch2r∥u0∥2L2(Ω).

ad (2.46): The proof is rather technical and therefore not done here. The main idea is to define, for

v ∈ L2(Ω), an error operator Fh(t)v := Eh(t)Π
L2

v − E(t)v using the discrete and continuous evolution
operators.
Using the semi-group properties of the evolution operators the operator Fh(t) can be written as com-
positions of operators Fh(t/2) and E(t/2). This allows to use the smoothing property of E(t/2) and in
turn Theorem 2.45 and a variant of Lemma 2.40 in H2(Ω) to obtain the scaling in h and t. □
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2.5.4 Time-discretization error for incompatible data

Here, we now aim to estimate the time stepping error uh(tn)−unh under reduced regularity assumptions
(compared to e.g. Theorem 2.21 before).
We aim for estimates of the form

∥uh(tn)− unh∥L2(Ω) ≤ Ckpt−pn ∥uh,0∥L2(Ω), n = 1, 2, . . . ,

where p denotes the order of the time-stepping scheme. Note that similar estimates can also be derived
for the case f ̸= 0.

As in Section 2.3.1, we consider single step methods described by their stability functions R(·).

Error analysis

With the eigenvalues λh,n and eigenfunctions φh,n , n = 1, . . . , N of the discretized Dirichlet Laplacian
(posed on Vh), we define the discrete spectrum σh := {λh,n |, n = 1, . . . , N} and can write the evolution
operator as

Eh(t)uh,0 =

N∑
m=1

e−λh,mt⟨uh,0, φh,m⟩L2φh,m.

Setting u0h := uh,0, one step of the time-stepping method then, by assumptions on R(·), leads to

u1h =

N∑
m=1

R(−λh,mk)⟨u0h, φh,m⟩L2φh,m.

Correspondingly, we obtain unh as

unh =

N∑
m=1

R(−λh,mk)n⟨u0h, φh,m⟩L2φh,m.

It is convenient to introduce the function

Fn(z) := e−zn − (R(−z))n.

This allows to write the error at tn as

∥uh(tn)− unh∥2L2(Ω) =

N∑
m=1

|Fn(kλh,m)|2|⟨u0h, φh,m⟩L2 |2 ≤ sup
λ∈σh

|Fn(kλ)|2∥u0h∥2L2(Ω).

Consequently, we have to control Fn(kλ) uniformly in λh,m and explicit in n. The consistency condition
(2.16) R(z) = ez +O(|z|p+1) gives good control for Fn(kλh,m) (fixed n) for λh,m where kλh,m is small.
The remaining eigenvalues λh,m are treated with additional stability assumptions for R(·).

As motivated in Section 2.3.1, it is reasonable to assume:

(I) R is defined on (−∞, 0] and satisfies |R(z)| ≤ 1 for all z ∈ (−∞, 0].

(II) R is defined on (−∞, 0] and ∀z0 > 0 ∃q(z0) < 1 with |R(z)| ≤ q(z0) < 1 for all z < −z0.

Any A-stable Runge-Kutta method, such as the Crank-Nicolson method (or more general Gauß-methods),
satisfies (I). The stronger assumption (II) is satisfied by L-stable Runge-Kutta methods such as the im-
plicit Euler method (or more general Radau IIA-methods).

Lemma 2.47 Assume that the consistency condition (2.16) holds.

(i) Let c ∈ (0, 1). Then, there is z0 > 0 and C > 0, such that

|Fn(z)| ≤ Cnzp+1e−cnz 0 < z < z0.
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(ii) Additionally assume the stability condition (I). Then,

|Fn(z)| ≤ Czp ∀z ∈ (0,∞).

(iii) Additionally assume the stability condition (II). Then, for every z0 > 0, there exist constants
c, C > 0 such that

|Fn(z)| ≤ Ce−cn ≤ Czp ∀z ≥ z0.

Proof: ad (i): The consistency condition (2.16) gives for sufficiently small λ0 > 0

|e−λ −R(−λ)| ≤ Cλp+1 0 ≤ λ ≤ λ0. (2.47)

As R(−z) = 1− z +O(z2), for every c ∈ (0, 1), there exists a z0 > 0 such that

|R(−z)| ≤ e−cz 0 ≤ z ≤ z0. (2.48)

Together with (2.47) this gives

|Fn(z)| = |e−zn − (R(−z))n| =
∣∣e−z −R(−z)

∣∣ ∣∣∣∣∣∣
n−1∑
j=0

(R(−z))n−1−je−jz

∣∣∣∣∣∣
≤ Czp+1ne−c(n−1)z ≤ Czp, (2.49)

where we used maxj∈{0,...,n−1} −jz−cz(n−1−j) = −cz(n−1) in the first inequality and supx>0 xe
−x <∞

in the last inequality.
ad (ii): Let z0 be given as in the statement of (i). As (2.49) is the sought estimate for z ∈ (0, z0), it is
enough to consider z ≥ z0. The stability assumption |R(ζ)| ≤ 1 for ζ ∈ (−∞, 0] implies for z ≥ z0

|Fn(z)| ≤ |e−zn|+ |(R(−z))n| ≤ 2 ≤ Czp0 ≤ Czp

with a suitable constant C > 0.
ad (iii): There holds

|Fn(z)| = |e−nz − (R(−z))n| ≤ e−nz + |R(−z)|n.

For z ≥ z0, there holds the assumption |R(−z)| ≤ q < 1, which gives

|Fn(z)| ≤ e−nz + |R(−z)|n ≤ e−nz0 + qn.

This finishes the proof. □

Theorem 2.48 Assume the consistency condition (2.16) and the stability assumption (II). Then,

∥uh(tn)− unh∥L2(Ω) ≤ Ckpt−pn ∥uh,0∥L2(Ω).

Proof: We have to show that

sup
λ∈σh

|Fn(kλ)| ≤ Ckpt−pn = Ckp(kn)−p = Cn−p. (2.50)

Let z0 be given as in the statement of Lemma 2.47, (i). For λ ∈ σh with kλ ≤ z0, there holds by
Lemma 2.47, (i)

|Fn(kλ)| ≤ Cn(kλ)p+1e−cnkλ = Cn−p(tnλ)
p+1e−cλtn ≤ Cn−p,

since supx>0 x
p+1e−x <∞. For λ ∈ σh with kλ ≥ z0, we employ Lemma 2.47, (iii) to estimate

|Fn(kλ)| ≤ Ce−cn ≤ Cn−p.

This shows (2.50). □

Theorem 2.48 assumes |R(∞)| < 1, which does not hold for the Crank-Nicolson method. However, this
can be fixed by doing two steps of the implicit Euler method at the beginning.
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Exercise 2.49 Consider the method: Do two steps of the implicit Euler method and afterwards only
apply the Crank-Nicolson time-stepping. Show that

∥uh(tn)− unh∥L2(Ω) ≤ Ck2t−2
n ∥u0h∥L2(Ω).

Remark 2.50 In contrast to Section 2.3.1, the estimates in Theorem 2.48 and Exercise 2.49 are not
uniform in tn: the constant gets worse for tn → 0. In order to have good estimates up to t = 0, one has
to employ non-uniform meshes in time (and possibly in space).

50



2.6 Discontinuous Galerkin

Goal: up until now, we considered single-step methods for time discretization (i.e. finite difference
techniques), here we aim for a Galerkin-discretization in time. While the formulation in itself is a bit
more complicated, one obtains a method that inherits advantages of Galerkin methods. In particular,
one obtains a space-time method with good stability properties that also allows for easy parallelization
in time.

Setting: for simplicity, we employ the method for the semidiscrete equation. We assume that Vh is finite

dimensional, with slight modifications the choice Vh = H1
0 (Ω) would also be possible.

Let uh ∈ C1((0, T );Vh) ∩ C0([0, T ];Vh) satisfy

⟨u′h(t), v⟩L2 + a(uh(t), v) = ⟨f(t), v⟩L2 ∀v ∈ Vh, t ∈ (0, T ), (2.51a)

uh(0) = uh,0 ∈ Vh. (2.51b)

Let Tk be a mesh on (0, T ) given by the knots 0 = t0 < t1 < . . . < tN = T and elements Kn = (tn, tn+1)
and define kn := tn+1 − tn. For piecewise continuous (w.r.t. the mesh Tk) functions v with values in Vh,
we define the jump at the knot tn, n = 1, . . . , N − 1 by

[[v]]n := v(tn+)− v(tn−).

The numerical method seeks a function U in the space

Xk,h := Sp,0(T ;Vh) = {u : u|K ∈ Pp(K;Vh)} with Pp(K;Vh) =
{ p∑
i=0

uK,it
i : uK,i ∈ Vh

}
,

i.e., the space of piecewise (discontinuous) polynomials of degree p (in t) with values in Vh.
In order to motivate the method, multiply (2.51) with a test function w ∈ Xk,h, integrate over [0, T ] and
then use integration by parts on each element of Tk, which gives

∑
K∈T

−
∫
K

⟨uh(t), w′(t)⟩L2 dt+ ⟨uh, w⟩L2 |∂K +

∫
K

a(uh(t), w(t)) dt =

∫ T

0

⟨f(t), w(t)⟩L2 dt.

Now, replacing the exact solution uh by the approximation U ∈ Xk,h, we obtain

∑
K∈T

−
∫
K

⟨U(t), w′(t)⟩L2 dt+ ⟨U,w⟩L2 |∂K +

∫
K

a(U(t), w(t)) dt =

∫ T

0

⟨f(t), w(t)⟩L2 dt ∀w ∈ Xk,h.

(2.52)
Since both the approximation U and the test function w are possibly discontinuous, equation (2.52) is
no complete system of equations for U : equation (2.52) rather decomposes into independent equations
on the subintervals K ∈ Tk. In other words: there is a coupling between neighbouring elements missing
(in each knot tn there are two approximations U(tn−) and U(tn+) that do not influence each other at

all). In order to couple neighbouring elements, we choose for each knot tn a value Û(tn) and set this to
be the function value at tn, i.e., we consider

∑
K∈T

−
∫
K

⟨U(t), w′(t)⟩L2 dt+ ⟨Û , w⟩L2 |∂K +

∫
K

a(U(t), w(t)) dt =

∫ T

0

⟨f(t), w(t)⟩L2 dt ∀w ∈ Xk,h.

(2.53)
Integration by parts back gives

∑
K∈T

∫
K

⟨U ′(t), w(t)⟩L2 dt+⟨−U+ Û , w⟩L2 |∂K+

∫
K

a(U(t), w(t)) dt =

∫ T

0

⟨f(t), w(t)⟩L2 dt ∀w ∈ Xk,h.

(2.54)
We now choose

Û(tn) := U(tn−).
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This choice can be motivated that the heat equation is only well-posed forward in time. With this choice
and additionally setting Û(0) := uh,0, we obtain∫ T

0

⟨U ′(t), w(t)⟩L2 + a(U(t), w(t)) dt+ ⟨U(0+), w(0+)⟩L2 +

N−1∑
n=1

⟨[[U ]]n, w(tn+)⟩L2

=

∫ T

0

⟨f(t), w(t)⟩L2 dt+ ⟨uh,0, w(0+)⟩L2 ∀w ∈ Xk,h.

This now gives the dG(p)-method :

Find U ∈ Xk,h s.t. for all w ∈ Xk,h there holds B(U,w) = l(w), with (2.55)

B(U,w) :=
∑
K∈T

∫
K

⟨U ′(t), w(t)⟩L2 + a(U(t), w(t)) dt+

N−1∑
n=1

⟨[[U ]]n, w(tn+)⟩L2 + ⟨U(0+), w(0+)⟩L2 ,

l(w) :=

∫ T

0

⟨f(t), w(t)⟩L2 dt+ ⟨uh,0, w(0+)⟩L2 .

Unique solvability of (2.55) follows from coercivity of B(·, ·).

Lemma 2.51 There holds

B(U,U) ≥
∫ T

0

a(U(t), U(t)) dt+
1

2
∥U(T−)∥2L2(Ω) ∀U ∈ Xk,h.

Proof: In order to remove the special treatment of the first element K0, we extend U ∈ Xk,h by 0 for
t < 0 fort. Consequently, [[U ]]0 = U(0+), and we obtain

B(U,w) =
∑
K∈T

∫
K

⟨U ′(t), w(t)⟩L2 + a(U(t), w(t)) dt+

N−1∑
n=0

⟨[[U ]]n, w(tn+)⟩L2 .

Elementary calculations show

2

∫ tn+1

tn

⟨U ′, U⟩L2 dt+ 2⟨[[U ]]n, U(tn+)⟩L2 = ∥U(tn+1−)∥2L2(Ω) − ∥U(tn+)∥2L2(Ω) + 2∥U(tn+)∥2L2(Ω)

− 2⟨U(tn−), U(tn+)⟩L2

≥ ∥U(tn+1−)∥2L2(Ω) − ∥U(tn+)∥2L2(Ω) + ∥U(tn+)∥2L2(Ω) − ∥U(tn−)∥2L2(Ω)

= ∥U(tn+1−)∥2L2(Ω) − ∥U(tn−)∥2L2(Ω). (2.56)

Since U(0−) = 0, this directly implies

B(U,U) ≥
∫ T

0

a(U(t), U(t)) dt+
1

2
∥U(T−)∥2L2(Ω),

which is the claimed coercivity. □

Exercise 2.52 (i) The dG(0)-method (i.e. p = 0) is a (modified) implicit Euler method of the form

1

kn
⟨Un+1 − Un, v⟩L2 + a(Un+1, v) =

1

kn

∫ tn+1

tn

⟨f(t), v⟩L2 dt ∀v ∈ Vh, U0 := uh,0,

where we employed the notation Un = U |(tn−1,tn).

(ii) The dG-method (2.55) is a time stepping method, i.e., one can compute U |K0 , U |K1 , . . . , in succes-
sion. In order to see that, introduce the jump at t0 = 0 by

[[U ]]0 := U(t0+)− uh,0. (2.57)
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Show that the dG-method can be written as: Given UKn−1
, find U |Kn

∈ Pp(Kn;Vh) such that∫ tn+1

tn

⟨U ′(t), w(t)⟩L2+a(U(t), w(t)) dt+⟨[[U ]]n, w(tn+)⟩L2 =

∫ tn+1

tn

⟨f(t), w(t)⟩L2 dt ∀w ∈ Pp(Kn;Vh).

(2.58)

In order to analyze the error U − uh, we employ a suitable interpolation operator.

Lemma 2.53 Let u ∈ C([0, T ];Vh). Let the interpolant Iu ∈ Xk,h be elementwise defined on Kn =
(tn, tn+1) by

u(tn+1) = u(tn+1−) = (Iu)(tn+1−), (2.59)∫ tn+1

tn

tℓ(u(t)− (Iu)(t)) dt = 0, ℓ = 0, . . . , p− 1. (2.60)

Let ∥ · ∥∗ be a norm on Vh. Then, for all u ∈ Cp+1([0, T ];Vh), there holds

max
t∈[tn,tn+1]

∥u(t)− (Iu)(t)∥2∗ ≤ Ck2p+1
n

∫ tn+1

tn

∥u(p+1)(s)∥2∗ ds.

Proof: The interpolation operator is well-defined: choosing a basis (ei)
N
i=1 of Vh, one can write u ∈

C([0, T ];Vh) in the form u(t) =
∑N
i=1 ui(t)ei. In the same way, one can write (Iu)(t) =

∑N
i=1 ũi(t)ei

with polynomials ũi, thus, one obtains systems of equations for ũi, which are uniquely solvable.

The error estimate follows from a scaling argument. On the reference element (0, 1) a corresponding,

scaled operator Î satisfies
∥Î û∥C([0,1];(Vh,∥·∥∗)) ≤ Λ∥û∥C([0,1];(Vh,∥·∥∗))

with a constant Λ > 0 independent of û. Moreover, it still reproduces polynomials of degree p, i.e,

Îπ = π ∀π ∈ Pp([0, 1];Vh).

Let Tpû be the Taylor polynomial of degree p of û around an arbitrary point in [0, 1]. Then,

∥û− Î û∥C = ∥û− Tpû− Î(û− Tpû)∥C ≤ (1 + Λ)∥û− Tpû∥C ≤ C

√∫ 1

0

∥û(p+1)(t)∥2∗ dt,

where the last step used Taylor expansion with remainder in integral form together with Cauchy-Schwarz.
Now, scaling of the inequality, using kn = tn+1 − tn, gives

∥u− Iu∥C([tn,tn+1];(Vh,∥·∥∗)) ≤ Ckp+1/2
n

√∫
Kn

∥u(p+1)(t)∥2∗ dt,

which shows the lemma. □

We now analyze the dG(p)-method. For that, we use the interpretation of the method as time-stepping
scheme to derive a recurrence for the error. We start with the error equation

B(uh − U,w) = 0 ∀w ∈ Xk,h,

which follows by construction of the approximation (consistency of the method). As in (2.58), we obtain
the elementwise equation∫ tn+1

tn

⟨(U − uh)
′, w⟩L2 + a(U − uh, w) dt+ ⟨[[U − uh]]n, w(tn+)⟩L2 = 0 ∀w ∈ Pp(Kn;Vh). (2.61)

Here, we used that the exact solution uh is continuous in the knots tn, n = 1, . . . , N − 1 such that
[[uh]]n = 0 for all n. Moreover, for the special case n = 0, we have extended the exact solution uh by
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a constant uh,0 for t < 0 (in the same way as for U such that the jump is well defined for n = 0). We
decompose the error U − uh into

U − uh = (U − Iuh) + (Iuh − uh) =: ψ + ρ.

In order to treat the jump at t0 = 0 correctly, we also extend Iuh by uh,0 for t < 0. 7 This now gives

ψ(t0−) = 0. (2.62)

By construction of I, we have∫ tn+1

tn

tℓρ(t) dt = 0, ℓ = 0, . . . , p− 1, ρ(tn+1−) = 0.

Together with the (elementwise) error equation (2.61) this implies∫ tn+1

tn

⟨ψ′, w⟩L2 + a(ψ,w) dt+ ⟨[[ψ]]n, w(tn+)⟩L2 = −
∫ tn+1

tn

⟨ρ′, w⟩L2 + a(ρ, w) dt− ⟨[[ρ]]n, w(tn+)⟩L2

=

∫ tn+1

tn

⟨ρ, w′⟩L2 − a(ρ, w) dt− ⟨ρ(tn+1−), w(tn+1−)⟩L2 + ⟨ρ(tn+), w(tn+)⟩L2 − ⟨[[ρ]]n, w(tn+)⟩L2

= −
∫ tn+1

tn

a(ρ, w) dt. (2.63)

We now derive a recursion for ψ. The elementary calculations in (2.56) hold in the same way for ψ as
well, i.e.,

2

∫ tn+1

tn

⟨ψ′, ψ⟩L2 dt+ 2⟨[[ψ]]n, ψ(tn+)⟩L2 ≥ ∥ψ(tn+1−)∥2L2(Ω) − ∥ψ(tn−)∥2L2(Ω).

Taking the test function w = ψ in (2.63) and employing the Cauchy-Schwarz inequality this leads to

∥ψ(tn+1−)∥2L2(Ω) + 2

∫ tn+1

tn

a(ψ,ψ) dt ≤ ∥ψ(tn−)∥2L2(Ω) − 2

∫ tn+1

tn

a(ρ, ψ) dt

≤ ∥ψ(tn−)∥2L2(Ω) +

∫ tn+1

tn

|ρ(t)|2H1(Ω) dt+

∫ tn+1

tn

|ψ(t)|2H1(Ω) dt.

Subtracting and afterwards dropping the positive term
∫ tn+1

tn
a(ψ,ψ) =

∫ tn+1

tn
|ψ(t)|2H1(Ω), the recursion

can be solved employing the Gronwall lemma, which gives

∥ψ(tn+1−)∥2L2(Ω) ≤ ∥ψ(0−)∥2L2(Ω) +

∫ tn+1

0

|ρ(t)|2H1(Ω) dt.

Since Lemma 2.53 provides the estimate ∥ρ∥2C0([tn,tn+1];(Vh;|·|H1(Ω)))
≤ Ck2p+1

n

∫
Kn

|u(p+1)
h (t)|2H1(Ω) dt, and

we have set ψ(0−) = 0, we have actually show the following theorem.

Theorem 2.54 For n = 0, 1, . . . , there holds

∥U(tn+1−)− uh(tn+1)∥2L2(Ω) ≤
∫ tn+1

0

|ρ(t)|2H1(Ω) dt ≤ C

n∑
m=0

k2p+2
m

∫ tm+1

tm

|u(p+1)
h (t)|2H1(Ω) dt.

Remark 2.55 Theorem 2.54 gives convergence of approximations at the knots tn. In fact, from these
estimates one can also obtain estimates for supt∈(tn,tn+1) ∥U(t)− uh(t)∥L2 for all n, [15, Thm. 12.2]. An
indication that this is possible comes from Exercise 2.56, as there time derivatives of U can be controlled.

Exercise 2.56 Show that for all n there holds∫ tn+1

tn

(t− tn)∥U ′(t)∥2L2 dt+ (tn+1 − tn)|U(tn+1)|2H1 ≤ C

∫ tn+1

tn

∥f(t)∥2L2 dt+ |U(t)|2H1 dt.

Hint: consider the test function Ũ ∈ Xk,h defined by Ũ |(tn,tn+1)(t) := (t− tn)U
′(t).

7All these extensions only have the purpose to correctly identify the jump [[·]]0 and thus avoid case distinction of n = 0
and n > 0.
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2.7 Space-time formulations

Goal: formulation that treats time just as an additional variable.

2.7.1 Variational formulation and solvability

The framework of the Section 2.4.3 also allows for a space-time formulation. For simplicity, we consider
u0 = 0 in the following. Recall that V,H are Hilbert spaces with V ↪→ H ↪→ V ′ (dense).
We start with the derived distributional formulation: Find u ∈ L2(0, T ;V ) with u′ ∈ L2(0, T ;V ′) such
that

−
∫ T

0

⟨u(t), v⟩Hφ′(t) dt+

∫ T

0

a(u(t), v)φ(t) dt =

∫ T

0

⟨f(t), v⟩Hφ(t) dt ∀v ∈ V ∀φ ∈ C∞
0 (0, T ),

(2.64a)

u(0) = 0 ∈ H. (2.64b)

We define the spaces

X := {u ∈ L2(0, T ;V ) |u′ ∈ L2(0, T ;V ′) and u(0) = 0}, Y := L2(0, T ;V ). (2.65)

By the following theorem, there holds that (2.64) is equivalent to the problem: Find u ∈ X such that∫ T

0

⟨u′(t), v(t)⟩V ′×V + a(u(t), v(t)) dt =

∫ T

0

⟨f(t), v(t)⟩V ′×V dt ∀v ∈ Y ; (2.66)

here, we already considered the more general case of f ∈ L2(0, T ;V ′).

Theorem 2.57 Formulations (2.39) and (2.64) are equivalent. For u0 = 0, these formulations are
equivalent to (2.66).

Note that formulation (2.66) has a different test and trial space, and thus leads to a so called Petrov-
Galerkin method. For solvability, we employ inf-sup theory.

Theorem 2.58 The bilinear form B : X × Y → R given by

(u, v) 7→ B(u, v) :=

∫ T

0

⟨u′(t), v(t)⟩V ′×V + a(u(t), v(t)) dt

satisfies

inf
u∈X

sup
v∈Y

B(u, v)

∥u∥X∥v∥Y
≥ γ > 0 (2.67)

∀0 ̸= v ∈ Y ∃u ∈ X : B(u, v) ̸= 0. (2.68)

Proof: ad (2.67): Let A : V → V ′ be the Gram-operator to the bilinear form a(·, ·), i.e.,

⟨Au, v⟩V ′×V = a(u, v) ∀u, v ∈ V.

Due to Lax-Milgram, A is continuously invertible. In particular,

∥z∥V ′ ≤ C∥A−1z∥V ∀z ∈ V ′.

Moreover, coercivity of a(·, ·) implies positive definiteness of A−1, since

⟨A−1z, z⟩V×V ′ = ⟨A−1z,AA−1z⟩V×V ′ = a(A−1z,A−1z) ≥ α∥A−1z∥2V ≥ α′∥z∥2V ′ ∀z ∈ V ′.

For given u ∈ X, we make the ansatz v(t) = A−1u′(t) + u(t)Inserting this in the bilinear form gives

B(u, v) =

∫ T

0

⟨u′(t),A−1u′(t) + u(t)⟩V ′×V + a(u(t),A−1u′(t) + u(t)) dt.
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Integration by parts gives∫ T

0

⟨u′(t), u(t)⟩V ′×V dt =
1

2

∫ T

0

d

dt
∥u(t)∥2H dt =

1

2
∥u(T )∥2H .

Consequently, as a(u(t),A−1u′(t)) = ⟨u′(t), u(t)⟩V ′×V ,

B(u, v) =

∫ T

0

⟨u′(t),A−1u′(t)⟩V ′×V dt︸ ︷︷ ︸
≥C∥u′∥2

L2(0,T ;V ′)

+
1

2
∥u(T )∥2L2(Ω)︸ ︷︷ ︸

≥0

+

∫ T

0

a(u(t), u(t)) dt︸ ︷︷ ︸
≥C∥u∥2

L2(0,T ;V )

+

∫ T

0

a(u(t),A−1u′(t)) dt︸ ︷︷ ︸
= 1

2∥u(T )∥2
H≥0

.

Thus, we have obtained

B(u, v) ≥ C
[
∥u∥2L2(0,T ;V ) + ∥u′∥2L2(0,T ;V ′)

]
= C∥u∥2X ,

∥v∥Y ≤ ∥u∥L2(0,T ;V ) + ∥A−1∥∥u′∥L2(0,T ;V ′) ≤ (1 + ∥A−1∥)∥u∥X .

ad (2.68): Let v ∈ Y with
B(u, v) = 0 ∀u ∈ X. (2.69)

We have to show that v = 0.
Step 1: we claim that the distributional derivative of v ∈ L2(0, T ;V ) is in L2(0, T ;V ′). We explicitly
give v′ by defining the function

z(t) := Av(t) t ∈ (0, T ).

Then, z ∈ L2(0, T ;V ′), due to v ∈ L2(0, T ;V ). By the following calculation, we indeed obtain that
z = v′ as for arbitrary w ∈ V and φ ∈ C∞

0 (0, T ), we have

⟨w,
∫ T

0

z(t)φ(t) dt⟩V×V ′
Thm. 2.33

=

∫ T

0

⟨w, z(t)⟩V×V ′φ(t) dt =

∫ T

0

⟨w,Av(t)⟩V×V ′φ(t) dt

=

∫ T

0

a(v(t), wφ(t)) dt
B(·,v)=0

= −
∫ T

0

⟨wφ′(t), v(t)⟩V ′×V dt

= −⟨w,
∫ T

0

v(t)φ′(t) dt⟩V×V ′

and z is the weak derivative of v.
Step 2: since v ∈ L2(0, T ;V ) and v′ ∈ L2(0, T ;V ′) integration by parts is possible and, for arbitrary
u ∈ X, we obtain

⟨u(T ), v(T )⟩H − ⟨u(0), v(0)⟩H =

∫ T

0

⟨u′(t), v(t)⟩V ′×V + ⟨v′(t), u(t)⟩V ′×V dt (2.70)

B(·,v)=0
=

∫ T

0

−a(u(t), v(t)) + ⟨v′(t), u(t)⟩V ′×V dt.

Taking a function u of the form u(t) = wφ(t) with w ∈ V and φ ∈ C∞
0 (0, T ) in (2.70), there follows∫ T

0

(
− ⟨v′(t), w⟩V ′×V + a(v(t), w)

)
φ(t) dt = 0 ∀φ ∈ C∞

0 (0, T ).

Variation over φ ∈ C∞
0 (0, T ) gives

−⟨v′(t), w⟩V ′×V + a(v(t), w) = 0 a.e., (2.71)

or in other words
v′(t) = Av(t) a.e. . (2.72)

Choosing u(t) = tw with w ∈ V arbitrary in (2.70) leads to

T ⟨w, v(T )⟩H =

∫ T

0

t (−a(w, v(t)) + ⟨v′(t), w⟩V ′×V )︸ ︷︷ ︸
(2.71)
= 0

dt = 0 ∀w ∈ V. (2.73)
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Consequently, we have in total

v′(t) = Av(t) a.e. and v(T ) = 0 in L2(Ω). (2.74)

Step 3: (2.74) implies v ≡ 0: by (2.72), we obtain

0 =

∫ T

0

−a(u(t), v(t)) + ⟨v′(t), u(t)⟩V ′×V dt ∀u ∈ L2(0, T ;V ).

Choosing u = v and exploiting v(T ) = 0 together with integration by parts, there holds

−1

2
∥v(0)∥2H =

∫ T

0

a(v(t), v(t)) dt ≥ 0,

which now implies v = 0. □

Corollary 2.59 The variational formulation (2.66) is uniquely solvable for all f ∈ L2(0, T ;V ′) and
there holds

∥u∥X ≤ 1

γ
∥f∥L2(0,T ;V ′).

Remark 2.60 The case of inhomogeneous initial conditions is possible as well. Hereby, one chooses the
test-space

Ỹ := Y ×H

and the bilinear form B̃ and right-hand side l̃

B̃(u, (v, w)) := B(u, v) + (u(0), w)H , l̃((v, w)) := l(v) + (u0, w)H .

Now, going to the discrete setting, inf-sup stable problems come with the additional difficulty that the
inf-sup condition has to be verified for the choice of discrete spaces as well (compare FEM for Stokes!).
This is in contrast to coercive problems, where coercivity is transferred to any closed subspace.
For the heat equation this is indeed a major drawback and in literature discrete inf-sup stability is usually
only shown in weaker, mesh-dependent norms and not the natural norms of the problem.

2.7.2 A space-time least squares formulation

Problem: uniform inf-sup stability for the discretization of space-time methods can not be expected!

Goal: different kind of space-time method that is uniformly inf-sup stable for any choice of discrete
subspace.

Idea: reformulate the PDE as minimization of a quadratic functional (”least squares functional”). Such
methods, called least squares finite element methods, can also be applied to other model problems, we
refer to [3] for an overview. The presented approach in this subsection is based on [5].

We again consider the heat equation

ut −∆u = f in ΩT := Ω× (0, T ), (2.75a)

u(x, t) = 0 on ∂Ω× (0, T ) (2.75b)

u(·, 0) = u0 in Ω (2.75c)

and assume for the data f ∈ L2(0, T ;L2(Ω)) (note: crucial, does not work in L2(0, T ;H−1(Ω))) and
u0 ∈ L2(Ω).

Introducing the variable σ = ∇u, we obtain (as for the Laplacian) a mixed formulation (in strong form)

ut − div σ = f

σ −∇u = 0.
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Squaring the equations (including the initial condition) and integrating gives the least squares functional

J(v, ψ) := ∥ψ −∇v∥2L2(ΩT ) + ∥vt − divψ − f∥2L2(ΩT ) + ∥v(0)− u0∥2L2(Ω). (2.76)

As the solution to (2.75) satisfies J(u,∇u) = 0, a reasonable idea is to minimize (2.76). An appropriate
Hilbert space for this problem is given by

U := {(v, ψ) : v ∈W (0, T ;H1
0 (Ω);H

−1(Ω)), ψ ∈ L2(ΩT )
d, vt − divψ ∈ L2(ΩT )}

endowed with the natural norm

∥(v, ψ)∥2U := ∥v∥2L2(0,T ;H1
0 (Ω)) + ∥vt∥2L2(0,T ;H−1(Ω)) + ∥ψ∥2L2(ΩT ) + ∥vt − divψ∥2L2(ΩT ).

The Euler-Lagrange equations for the functional J lead to the variational problem: Find (u, σ) ∈ U such
that

b((u, σ), (v, ψ)) = ℓ(v, ψ) ∀(v, ψ) ∈ U, (2.77)

where

b((u, σ), (v, ψ)) := ⟨∇u− σ,∇v − ψ⟩L2(ΩT ) + ⟨ut − div σ, vt − divψ⟩L2(ΩT ) + ⟨u(0), v(0)⟩L2(Ω),

ℓ(v, ψ) := ⟨f, vt − divψ⟩L2(Ω) + ⟨u0, v(0)⟩L2(Ω).

Note that this problem – in contrast to the previous space-time formulation – gives a symmetric Galerkin
formulation. Thus, the Lax-Milgram setting applies and we obtain unique solvability for any closed
subspace Uh ⊂ U . Note that Uh = U in the following theorem is allowed and gives well-posedness of the
formulation (2.77).

Theorem 2.61 Let Uh ⊆ U be a closed subspace. Then, the bilinear form b(·, ·) is continuous and
coercive on U , and the problem: Find (uh, σh) ∈ Uh such that

b((uh, σh), (vh, ψh)) = ℓ(vh, ψh) ∀(vh, ψh) ∈ Uh (2.78)

is uniquely solvable and there holds the quasi best-approximation property

∥(u− uh, σ − σh)∥U ≤ C min
(vh,ψh)∈Uh

∥(u− vh, σ − ψh)∥U

with a constant independent of Uh.

Proof: Boundedness of the bilinear form b(·, ·) and the linear form ℓ(·) follows from Cauchy-Schwarz and
the embedding C([0, T ];L2(Ω)) ⊂W (0, T ;H1

0 (Ω), H
−1(Ω)) (to treat the term with the initial condition).

We show coercivity of b(·, ·) on U , then the remaining statements follow from the Lax-Milgram lemma.
Let (v, ψ) ∈ U be arbitrary. Then, we write

vt −∆v = vt − div(ψ) + div(ψ −∇v)

and apply the well-posedness of Corollary 2.59 with f = vt − divψ + div(ψ −∇v) to obtain

∥v∥W (0,T ;H1
0 (Ω),H−1(Ω)) ≲ ∥vt − divψ∥L2(0,T ;H−1(Ω)) + ∥ div(ψ −∇v)∥L2(0,T ;H−1(Ω)) + ∥v(0)∥L2(Ω)

≲ ∥vt − divψ∥L2(ΩT ) + ∥ψ −∇v∥L2(ΩT ) + ∥v(0)∥L2(Ω).

The triangle inequality then implies

∥ψ∥L2(ΩT ) ≤ ∥ψ −∇v∥L2(ΩT ) + ∥∇v∥L2(ΩT ) ≤ ∥ψ −∇v∥L2(ΩT ) + ∥v∥L2(0,T ;H1
0 (Ω))

≲ ∥vt − divψ∥L2(ΩT ) + ∥ψ −∇v∥L2(ΩT ) + ∥v(0)∥L2(Ω).

Consequently, we obtain

∥(v, ψ)∥2U = ∥v∥2L2(0,T ;H1
0 (Ω)) + ∥vt∥2L2(0,T ;H−1(Ω)) + ∥ψ∥2L2(ΩT ) + ∥vt − divψ∥2L2(ΩT )

≲ ∥vt − divψ∥L2(ΩT ) + ∥ div(ψ −∇v)∥L2(ΩT ) + ∥v(0)∥L2(Ω)

= b((v, ψ), (v, ψ)),
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which shows coercivity. □

We now discretize the problem with piecewise linear finite elements. Let Th be a shape-regular, regular
mesh of the space time cylinder Ω × (0, T ). For simplicity, we assume that each element in T ∈ Th
has tensor product structure, i.e., T = Kh × ωh ∈ Kh × Ωh, where Kh is a mesh on (0, T ) and Ωh is a
shape-regular, regular mesh on Ω. As discrete subspace, we take

Uh := S1,1
0 (Th)× (S1,1(Th))d ⊂ U.

Note that by this choice, we have ∂tvh − divψh ∈ L2(Ω× (0, T )) for all (vh, ψh) ∈ Uh.
By the quasi-optimality result of Theorem 2.61, error estimates can be obtained by constructing an
approximation (here using interpolation) in Uh.

As we have u ∈ C([0, T ];L2(Ω)), we may work with a piecewise linear interpolant Ih in time, which
maps Ih : C([0, T ];L2(Ω)) → S1,1(Kh;L2(Ω)), where S1,1(Kh;L2(Ω)) denotes the space of piecewise
linear mappings (in time) with values in L2(Ω). Note that this is a semi-discrete operator. For some
Hilbert space X (we will use X = H1

0 (Ω), H
−1(Ω)), this operator has the approximation properties (the

proof is essentially identical to the scalar valued linear interpolation operator)

∥u− Ihu∥L2(0,T ;X) ≤ Ch∥u∥H1(0,T ;X) ∀u ∈ H1(0, T ;X),

∥(u− Ihu)′∥L2(0,T ;X) ≤ Ch∥u∥H2(0,T ;X) ∀u ∈ H2(0, T ;X).

In space, we employ the classical L2(Ω)-orthogonal projection Π0,h : L2(Ω) → S1,1
0 (Ωh) with the approx-

imation properties for u ∈ H2(Ω)

∥u−Π0,hu∥H1(Ω) ≤ Ch∥u∥H2(Ω),

∥u−Π0,hu∥H−1(Ω) ≤ Ch2∥u∥H1(Ω).

Combining both operators gives an operator mapping into (the first component in) Uh by

J0,h := Ih ◦ (Id⊗Π0,h) : C([0, T ];L
2(Ω)) → S1,1

0 (Th). (2.79)

Note that this definition means that, at first, the operator Id ⊗ Π0,h is applied, which does nothing in
the time variable and applies the projection Π0,h in space, and afterwards the (semi-discrete in time)
operator Ih is employed, which reproduces polynomials in the spatial variables and thus maps into the
correct discrete function space.
Regarding approximation properties, we have the following lemma.

Lemma 2.62 Let J0,h be defined by (2.79). Then, for u ∈ H1(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;H2(Ω)) there

holds

∥u− J0,hu∥L2(0,T ;H1
0 (Ω)) ≤ Ch

(
∥u∥H1(0,T ;H1

0 (Ω)) + ∥u∥L∞(0,T ;H2(Ω))

)
. (2.80)

If there holds u ∈ H2(0, T ;H−1(Ω)) ∩ L∞(0, T ;H1
0 (Ω)), then

∥(u− J0,hu)
′∥L2(0,T ;H−1(Ω)) ≤ Ch

(
∥u∥H2(0,T ;H−1(Ω)) + ∥u∥L∞(0,T ;H1

0 (Ω))

)
.

Proof: By definition of J0,h, for t ∈ (tj , tj+1), we may write

J0,hu(t) = Ihu(t) +
(Π0,hu(tj+1)− u(tj+1))(t− tj) + (Π0,hu(tj)− u(tj))(tj+1 − t)

h
.

With the approximation properties of Π0,h, we estimate for t ∈ (tj , tj+1) ∈ Kh

∥u(t)− J0,hu(t)∥H1(Ω) ≤ ∥u(t)− Ihu(t)∥H1(Ω) +
∑
k=0,1

∥Π0,hu(tj+k)− u(tj+k)∥H1(Ω)

≤ ∥u(t)− Ihu(t)∥H1(Ω) + Ch
∑
k=0,1

∥u(tj+k)∥H2(Ω)

≤ ∥u(t)− Ihu(t)∥H1(Ω) + 2Ch sup
t∈(tj ,tj+1)

∥u(t)∥H2(Ω).
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Now, integration over (0, T ) and application of the approximation properties of Ih applied with X =
H1

0 (Ω) gives

∥u− J0,hu∥L2(0,T ;H1
0 (Ω)) ≤ Ch

(
∥u∥H1(0,T ;H1

0 (Ω)) + sup
t∈(0,T )

∥u(t)∥H2(Ω)

)
,

which is the first estimate.
Similarly, we write

(J0,hu)
′(t) = (Ihu)′(t) +

(Π0,hu(tj+1)− u(tj+1))− (Π0,hu(tj)− u(tj))

h
,

and application of the approximation properties of Π0,h in theH−1(Ω)-norm as well as the approximation
properties of Ih applied with X = H−1(Ω) give the second estimate in the same way as above. □

Note that the boundary condition does only enter through the application of the L2(Ω)-orthogonal
projection mapping into S1,1

0 (Ωh) and is not explicitly used in the proof. Thus, estimate (2.80) holds in
the same way for an operator Jh := Ih ◦ (Id ⊗ Πh) : C([0, T ];L

2(Ω)) → S1,1(Th), where Πh : L2(Ω) →
S1,1(Ωh) is the L

2(Ω)-orthogonal projection without the zero boundary condition.

The previous lemma gives an estimate in the energy norm for the heat equation, an estimate in the
least-squares norm ∥ · ∥U can also be deduced.

Corollary 2.63 Assume u ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H2(Ω)) ∩H2(0, T ;L2(Ω)) ∩ L∞(0, T ;H3(Ω)).

Then,

∥(u− J0,hu,∇u− Jh∇u)∥U ≤ Ch

with a constant C > 0 independent of h (depending on some norms of u).

Proof: Exercise. Follows from definition of the U -norm and a slight modification of the previous lemma
(to give an estimate for (u− J0,hu)

′ in the L2(0, T ;L2(Ω))-norm). □

Remark 2.64 The regularity requirement of the previous holds for solutions u to the heat equation,
e.g., for smooth domains Ω and u0 ∈ H1

0 (Ω) ∩H3(Ω), f ∈ H1(0, T ;H2(Ω)) and f(0) + ∆u0 ∈ H1
0 (Ω).

Remark 2.65 The assumption that elements in Th can be weakened such that simplical meshes that
are refinements of tensor product meshes are also allowed (note that the tensor product elements are
prisms). In [5] a construction and error analysis for that can be found.

A drawback of the presented approach is, however, that the considered first order system has more
unknowns than the previously considered discretizations and is thus more expensive to solve.

A nice feature of the least-squares formulation is that it has a built in a posteriori error estimator.
For (vh, ψh) ∈ Uh and K ∈ Th, we define the local error indicators

η2K(vh, ψh) := ∥ψh −∇vh∥L2(K) + ∥∂tvh − divψh − f∥L2(K) + ∥vh(0)− u0∥L2(∂K∩Ω×{0})

and the error estimator

η(vh, ψh) :=

( ∑
K∈Th

η2K(vh, ψh)

)1/2

.

The error estimator indeed is a good measure for the error by the following theorem.

Theorem 2.66 Let (u, ψ) ∈ U denote the solution to (2.77). The estimator η is reliable and efficient,
i.e., there exist constants C1, C2 > 0 such that

C1∥(u− vh, σ − ψh)∥U ≤ η(vh, ψh) ≤ C2∥(u− vh, σ − ψh)∥U ∀(vh, ψh) ∈ U. (2.81)

Proof: The statement follows from coercivity and boundedness of b(·, ·) and

b((u− vh, σ − ψh), (u− vh, σ − ψh)) = η2(vh, ψh).

□
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2.8 Approximation for the Navier Stokes equations

In this section we consider the incompressible Navier-Stokes equations. Let Ω ⊂ Rd be a bounded
domain, T > 0 and u0 be given. We seek functions u, p (bold symbols denote vector valued quantities)
solving

∂tu− µ∆u+ (u · ∇)u+∇p = f in Ω× (0, T )

divu = 0 in Ω× (0, T )

u(0, ·) = u0 in Ω.

Regarding boundary conditions, there are various different choices depending on the considered physical
model. Oftentimes (think of flow through a pipe), the boundary Γ := ∂Ω is decomposed into an inflow
boundary Γin (with inhomogeneous Dirichlet boundary condition there), wall boundary Γw (with homo-
geneous Dirichlet conditions) and an outflow boundary Γout (with homogeneous Neumann conditions).
For simplicity, we assume homogeneous boundary conditions everywhere, i.e.,

u = 0 in ∂Ω× (0, T ).

In the following, we consider a weak formulation of the Navier-Stokes equations and apply the semi-
discretization approach, i.e., after multiplication with a test-function v and integration by parts, we seek
u : [0, T ] → H1

0 (Ω)
d with u(0) = u0 and p : [0, T ] → L2(Ω) such that∫

Ω

∂tu · v +

∫
Ω

µ∇u : ∇v + (u · ∇u) · v −
∫
Ω

divv p =

∫
Ω

f · v ∀v ∈ H1
0 (Ω)

d,∫
Ω

divu q = 0 ∀q ∈ L2(Ω).

Regarding existence and uniqueness (open problem!) and other formulations, we refer to the lecture
”nonlinear partial differential equations”. Note that we take a saddle-point approach here. Alternatively,
one could also add the side-constraint divu = 0 into the space for u. However, then, in order to
have a conforming FEM method, a discrete subspace with exact divergence free discrete functions (and
accordingly such finite elements) has to be constructed.

Semi-discretization

For discretization, we employ the method of lines. We take an inf-sub stable finite dimensional pair
Vh × Qh ⊂ H1

0 (Ω)
d × L2(Ω) , e.g., the Taylor-Hood pair. Then, the semi-discretization leads to the

problem: Find uh : [0, T ] → Vh with uh(0) = u0,h ∈ Vh and ph : [0, T ] → Qh such that

⟨∂tuh,vh⟩L2 + a(uh,vh) + c(uh,uh,vh) + b(vh, ph) = ⟨f ,vh⟩ ∀vh ∈ Vh

b(uh, qh) = 0 ∀qh ∈ Qh

with the bilinear forms a(u,v) = µ
∫
Ω
∇u : ∇v and b(v, p) = −

∫
Ω
divvp and the trilinear form

c(u,v,w) =
∫
Ω
(u · ∇v) ·w.

Choosing a basis {ϕuj : j = 1, . . . , Nu} ⊂ Vh and {φpj : j = 1, . . . , Np} ⊂ Qh, we may write

uh(x, t) =

Nu∑
j=1

uh,j(t)ϕ
u
j (x) ph(x, t) =

Np∑
j=1

ph,j(t)φ
p
j (x)

and inserting this into the semi-discrete formulation gives the system of ODEs for the coefficient vectors
uh and ph as

Mu′
h(t) +Auh(t) +C(uh(t))uh(t) +BTph(t) = F, (2.82)

Buh(t) = 0, (2.83)

where A and M denote the usual stiffness and mass matrices and

C : RNu → RNu×Nu , (C(vh))i,j = c(vh,ϕ
u
i ,ϕ

u
j ).
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Time integration

For the time integration of the nonlinear ODE (2.82), one can employ a single step method as for the
heat equation. However, as is the same there, explicit time stepping schemes should be avoided since
the appearing ODE is stiff and thus restrictions on the time step length would have to be applied (the
matrix A appears in both semi-discretizations). Thus, one could employ the implicit Euler-method (or
more general the θ-scheme with θ ∈ [1/2, 1]). Writing tn = kn for the time steps and unh = uh(tn),
pnh = ph(tn), then a fully discrete scheme with the implicit Euler reads as

M
un+1
h − unh

k
+ (A+C(un+1

h ))un+1
h +BTpn+1

h = Fn+1,

Bun+1
h = 0.

A big drawback hereby is that a nonlinear system of equations has to be solved in each step. This
is usually done with variants of the Newton method. Also note that the scheme results in two coupled
equations for velocity and pressure (the incompressibility constraint results in a saddle-point type system)(

M+ kA+ kC(un+1
h ) kBT

kB 0

)(
un+1
h

pn+1
h

)
=

(
Munh + kFn+1

0

)
.

2.8.1 Splitting methods

Splitting methods are a very popular choice for the Navier-Stokes equations and they can be applied to
many other problems (e.g. hyperbolic equations in the next chapter or problems in quantum mechanics).
We motivate the idea of splitting methods by applying easy, classical techniques to a simple ODE
example and afterwards present more involved fractional splitting methods that are popular especially
for the Navier-Stokes equations.

Idea of splitting methods

We illustrate the main idea on a simple ODE-System

u′ = Au+Bu, u(0) = u0, (2.84)

with matrices A,B (generalizations follow later).
Using the matrix exponential function, we obtain the solution as

u(t) = et(A+B)u0.

Goal: a good approximation to u(k), where k denotes the time step size.

Rules of the game: u0 7→ ek(A+B)u0 is hard to realize/expensive, but the mappings v 7→ ekAv and

v 7→ ekBv are easy/cheap.

Classical methods to approximate ek(A+B) are:

� Lie-splitting: et(A+B) ≈ etBetA. Algorithmically one write for a step of length k

u1/2 := ekAu0, u1 := ekBu1/2.

� Strang-splitting: et(A+B) ≈ e1/2tAetBe1/2tA. Algorithmically one write for a step of length k

u1/3 := ek/2Au0, u2/3 := ekBu1/3, u1 := ek/2Au2/3.

Note: the Strang-splitting seems more expensive than the Lie-splitting. However, if one does
multiple steps after each other the computational costs of both methods is roughly the same. This
follows from

ek/2AekBek/2A ek/2AekBek/2A · · · ek/2AekBek/2A = ek/2AekBekAekB · · · ekBek/2A.
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� The SWSS (“symmetrically weighted sequential splitting”) method: et(A+B) ≈ 1
2

(
etAetB + etBetA

)
.

Algorithmically one write for a step of length k

u1/2 := ekAekBu0, ũ1/2 := ekBekAu0, u1 :=
1

2

(
u1/2 + ũ1/2

)
.

Note that, in general, matrices A,B do not commute, i.e., AB ̸= BA, and thus there does not hold
et(A+B) = etAetB. This means that the methods described above really are different approximations to
the exact solution.

The Lie-splitting is a first order method and the Strang-splitting and the SWSS-method are second order
(proof: Taylor!). In principle, it is possible to construct methods of higher order. The most popular
methods, however, are the Lie- and Strang-splitting.

Application of splitting methods

Splitting methods are not limited to linear ODEs, possibilities are

� A, B can be (differential-)operators or their (spatial-)discretizations,

� A, B can be non-linear.

Splitting methods are a popular choice, if the operators A and B have different characteristics and thus
need different (numerical) treatment/discretizations.

For operators A,B the matrix exponentials in the previous chapter are replaced by the evolution operators
EA and EB of the problems

u′ = Au, u(0) = u0

u′ = Bu, u(0) = u0.

Then, one step (of length k) of the Lie-Splitting reads as

u1 := EB(k)EA(k)u0

and one step of the Strang-Splitting reads as

u1 := EA(k/2)EB(k)EA(k/2)u0.

In practice, this evolution operators are not computable and thus replaced by discrete evolution operators,
e.g., one step of explicit or implicit Euler.

Example 2.67 Adding a lower order terms to the heat equation gives the equation

ut = ∆u+ b · ∇u.

Then, the splitting Au = ∆u and Bu = b · ∇u means that one has to solve a heat equation for EA and
an advection equation (see next chapter!) for EB .

Splitting methods can also significantly reduce the computational effort on the discrete level.

Example 2.68 (ADI–alternating directions implicit variant) Consider the 2D heat equation with
the domain Ω = (0, 1)2

ut = uxx + uyy in Ω× (0, T )

u(x, t) = 0 on ∂Ω× (0, T ).

We employ semi-discretization with piecewise linear finite elements on a uniform mesh with n× n knots
(i.e. n knots per coordinate direction). As we should use implicit methods in time (i.e. the implicit
Euler), we have to solve a 2D-space problem in each time step. With typical lexicographic numbering
of the unknowns the (sparse) matrices have bandwidth b = O(n). Consequently, the LU -decomposition
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for solution of the linear system needs O(bn2) = O(n3) (note that the size of the matrices is N = n2)
memory.

A possible splitting method is given by Au = uxx and Bu = uyy. Then, the discrete evolutions EA and
EB consists of solutions of decoupled 1D equations, which produce linear systems of size n (which are even
tridiagonal). This implies that the cost for one step of the Lie-splitting is only 2nO(n) = O(n2) = O(N),
which is optimal.

2.8.2 Splitting-schemes for Navier-Stokes

For the Navier-Stokes equations splitting methods are usually applied together with fractional time steps,
i.e., one decomposes the interval (ti, ti+1) into finitely many sub-intervals and apply a (possibly different)
splitting scheme on each subinterval.
We write the Navier-Stokes equations (or its semi-discretization) as operator evolution equation in the
general form

∂tu+A(u) = f

and aim to split the operator A = A1 +A2.

The Peaceman-Rachford scheme

An operator splitting method with a similar flavour to the ADI variant of the previous example is the
rather old and popular Peaceman-Rachford scheme, which makes a half-step of an implicit Euler for A1

and explicitly treats A2 and then makes a half step with flipped roles:

un+1/2 − un

k/2
+A1u

n+1/2 +A2u
n = fn+1/2,

un+1 − un+1/2

k/2
+A1u

n+1/2 +A2u
n+1 = fn+1,

where un+ξ = u(tn+ξ) and tn+ξ = tn + ξk.

In order to analyze stability of the scheme, we apply it to the ODE system u′ = Au with the operator
splitting A = αA+ βA =: A1 +A2 with α+ β = 1. Then, one step of the scheme reads as

un+1 =

(
1 +

k

2
βA

)−1(
1− k

2
αA

)(
1 +

k

2
αA

)−1(
1− k

2
βA

)
un.

Thus, the stability function of the Peaceman-Rachford scheme reads as

R(z) =
(1− αz/2)(1− βz/2)

(1 + αz/2)(1 + βz/2)
= 1− z +

z2

2
− (α2 + β2 + αβ)

z3

4
+O(|z|4).

Consequently, the method is A-stable and of second order. However, as R(z) → 1 for z → −∞, we do
not have L-stability.

Remark 2.69 Note that the Peaceman-Rachford scheme can be seen as two steps of Lie-splittings,
where the first step has as (discrete) evolution operators the explicit Euler for EA2 followed by the
implicit Euler for EA1 and the roles are reversed in the second step.

Applied to the semi-discrete Navier Stokes equations, we choose the splitting

A1 =
1

2
A+BT together with the incompressibility constraint,

A2 =
1

2
A+C(·).

Note that parts of A should always be treated implicitly as it is a stiff part of the ODE.
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Thus, the scheme reads as: Given unh compute u
n+1/2
h ,p

n+1/2
h ,un+1

h by

Step 1 :

{
M

u
n+1/2
h −un

h

k/2 + 1
2Au

n+1/2
h +BTp

n+1/2
h = Fn+1/2 − 1

2Aunh −C(unh)u
n
h

Bu
n+1/2
h = 0

Step 2 :
{
M

un+1
h −u

n+1/2
h

k/2 + 1
2Aun+1

h +C(un+1
h )un+1

h = Fn+1 − 1
2Au

n+1/2
h −BTp

n+1/2
h .

Note that in the first step the nonlinear term is treated explicitly (thus no solution of a nonlinear system
is needed) and in the second step the incompressibility constraint is treated explicitly (which just is the
second line of step 1 and thus already computed) and therefore no saddle-point system is needed.

The fractional-step-θ-scheme

In this scheme, for some θ < 1/2, three steps are made and it reads as

un+θ − un

θk
+A1u

n+θ +A2u
n = 0

un+1−θ − un+θ

(1− 2θ)k
+A1u

n+θ +A2u
n+1−θ = 0

un+1 − un+1−θ

θk
+A1u

n+1 +A2u
n+1−θ = 0

In order to analyze stability of the scheme, we again apply it to the ODE u′ = Au with the operator
splitting A = αA+ βA with α+ β = 1. Then, with θ′ = (1− 2θ), one step of the method reads as8

un+1 = (1 + αθkA)
−2

(1− βθkA)
2
(1 + βθ′kA)

−1
(1− αθ′kA)un.

Thus, the stability function of the scheme reads as

R(z) =
(1− βθz)2(1− αθ′z)

(1 + αθz)2(1 + βθ′z)
= 1− z +

(
1 + (β − α)(2θ2 − 4θ + 1)

)z2
2

+O(|z|3).

Now, the choice of θ, α, β influences both the accuracy and stability of the scheme. As

lim
z→−∞

|R(z)| = β

α
,

there holds A-stability, if α > β. However, the method is second order, if α = β or θ = 1−1/
√
2. Taking

θ = 1− 1/
√
2, the choices

α =
1− 2θ

1− θ
β =

θ

1− θ

give α+β = 1 as well as β/α = θ/(1−2θ) < 1 and consequently, a second order, and a so called strongly
A-stable method9.

Applied to the semi-discrete Navier Stokes equations this reads as: Given unh, compute un+θh ,un+1−θ
h ,un+1

h

as well as pn+θ, pn+1 from

Step 1 :

{
M

un+θ
h −un

h

θk + αAun+θh +BTpn+θh = Fn+θ − βAunh −C(unh)u
n
h

Bun+θh = 0

Step 2 :
{
M

un+1−θ
h −un+θ

h

(1−2θ)k + βAun+1−θ
h +C(un+1−θ

h )un+1−θ
h = Fn+θ − αAun+θh −BTpn+θh

Step 3 :

{
M

un+1
h −un+1−θ

h

θk + αAun+1
h +BTpn+1

h = Fn+1 − βAun+1−θ
h −C(un+1−θ

h )un+1−θ
h

Bun+1
h = 0

Note that, again, we have decoupled the incompressibility constraint and the nonlinear convection term.
Step 1 and step 3 lead to solution of linear systems of equations, while step 2 leads to a non-linear
system, but without the need of the saddle point structure.

8the operators in the brackets commute, since (1 + σA)−1(1 + µA) = (1 + σA)−1(1 + µA)(1 + σA)(1 + σA)−1 =
(1 + σA)−1(1 + σA)(1 + µA)(1 + σA)−1 = (1 + µA)(1 + σA)−1 for all σ, µ ∈ R.

9This means that limz→−∞ |R(z)| < 1, which also induces convergence to 0 of the discrete solution for Reλ < 0 as in
the (stronger!) case of L-stability.
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The IMEX method

A popular simplification of the fractional θ-step method is the first order IMEX method

M
un+1
h − unh

k
+Aun+1

h +BTpn+1
h = Fn+1 −C(unh)u

n
h

Bun+1
h = 0,

i.e., the side constraint is treated implicitly, but the nonlinearity only explicit.
This corresponds to the choice α = 1, β = 0, θ = 1 in the fractional θ-step method and therefore is of
first order.
IMEX methods of higher order can also be constructed, which is typically done with partitioned Runge-
Kutta methods (see literature or lecture ”numerics of ODEs”).

For error analysis of the fully discrete methods, we refer to literature, e.g., [8]. In principle, the employed
techniques are similar to the analysis done for the heat equation, however, the non-linearity and saddle-
point structure of the problem induce a lot more effort into deriving the estimates.

2.8.3 Numerical example

We consider the incompressible Navier-Stokes equations with viscosity ν = 0.001 in two dimensions.
As showcase, we take the Schäfer-Turek benchmark (see NgSolve tutorials), which models flow in a
rectangular pipe around a circular obstacle. Here, the top and bottom part of the rectangle have zero
boundary conditions, while on the lateral boundaries there is an inflow (left) and outflow (right) boundary
condition.

For the initial condition, a parabolic flow profile is chosen, with which a (stationary!) Stokes problem
is solved to obtain an initial velocity profile (depicted in the top left picture in Figure 2.8). For time
discretization the IMEX method of the previous subsection is chosen and the resulting velocity profiles
at some time-steps are depicted in Figure 2.8.

Figure 2.8: solution to incompressible Navier Stokes at T = 0 (left,top), T = 0.5 (right,top), and T = 1
(left,bottom) T = 5 (right,bottom).
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Chapter 3

Hyperbolic equations

We now consider a different type of time-dependent partial differential equations, so called hyperbolic
PDEs. In principle, similar methods as for parabolic equations can be employed and as such, we consider
approaches based on semi-discretization and space time formulations. Additionally, here, we discuss finite
difference methods both in space and time, which are rather popular with engineers.

The roadmap for this chapter is as follows:

� We start with the wave equation and employ methods derived in the previous chapter based on
semi-discretization and time-stepping. A key difference to the parabolic case is, that the continous
equation satisfies energy conservation (rather than dissipation) and thus numerical methods that
preserve this have to be constructed.

� Then, we consider the advection equation and introduce finite difference schemes. The main focus
hereby is a stability analysis of the methods.

� Afterwards, we consider a space-time discontinuous Galerkin formulation, which generalizes the
DG approach of Section 2.6. Finally, we show that this approach can also be formulated as DG in
space combined with a time-stepping method.

3.1 Popular examples

Wave equations

The prime example of a second order hyperbolic PDE is the (scalar, acoustic) wave equation

utt − c∆u = f,

where c ∈ R is the so called wave speed.

Hyperbolic conservation laws

A more general definition of hyperbolicity can also be given for first order (systems of) equations. Such
equations share the same characteristic behaviour with the wave equation.

A general form of (systems of) conservation laws is given by

∂tu+

d∑
j=1

∂xj
(f j(u)) = 0 (x, t) ∈ Ω× (0,∞). (3.1)

� The components uj : Ω → R, j = 1, . . . , s of the function u : Ω → Rs are called states, the vector
u state vector.

� The functions f j : Rs → Rs, j = 1, . . . , d, are called flux functions.

67



A conservation law is called hyperbolic, if it additionally satisfies a diagonalization property for its
linearization.

Definition 3.1 (hyperbolicity) The conservation law (3.1) is called hyperbolic, if for every state
vector u and every direction ω ∈ Rd \ {0}, the matrix

A(u, ω) :=

d∑
j=1

ωjDuf
j(u)

is diagonalizable (in R).
If, for every state u and every direction ω, the eigenvalues are pairwise distinct, then the system is called
strictly hyperbolic.

For the historically important 1D-case, this can be written more easily.

Exercise 3.2 Let d = 1 and consider the conservation law

∂tu+ ∂x(F(u)) = 0. (3.2)

Show that: this conservation law is hyperbolic, if DF(u) is real diagonalisable for all state vectors u.

An important special case are scalar conservation laws.

Example 3.3 Let s = 1, then the functions f1, . . . , fd are real valued. Writing F(u) := (f1, . . . , fd)⊤,
one obtains a conservation law of the form

∂tu+∇ · (F(u)) = 0. (3.3)

The easiest example of that form is given by the advection equation

ut + b · ∇u = 0. (3.4)

Remark 3.4 Note that the name conservation law can be motivated by taking an arbitrary ”control
volume” D ⊂ Rd and integration, which gives, e.g., for a scalar conservation law that

d

dt

∫
D

u dx+

∫
∂D

F(u) · nds = 0,

which can be interpreted as mass conservation.

Conservation laws are oftentimes obtained by laws of physics (e.g., mass, energy of (angular) momentum
conservation). Very popular examples come from fluid or gas dynamics such as the Euler equations.

Example 3.5 (Euler equations) The Euler equations describe the movement of a gas or fluid. Hereby,
one has conservation of mass, energy and momentum. Denote by v(x, t) ∈ R3 the speed of a particle at
position x and time t, by ρ(x, t) the density, by p(x, t) the pressure and by e(x, t) the specific intrinsic
energy (temperature), then with the total energy E = ρe + 1

2 |v|
2 one obtains the equations for the

conservation law

∂tρ+∇ · (ρv) = 0 mass conservation

∂t(ρvi) +∇ · (ρvvi) + ∂xip = 0, i = 1, 2, 3, momentum conservation

∂tE +∇ · (v(E + p)) = 0 energy conservation.

Note that (in R3) this gives 5 equations for 6 unknowns. The missing equation can be obtained from a
constitutive law, e.g., an ideal gas law of the form p = ρ(γ − 1)e with a constant γ.
The Euler equations can be brought to form (3.1):

u =


ρ
ρv1

ρv2

ρv3

E

 , f1 =


ρv1

p+ ρv2
1

ρv1v2

ρv1v3

v1(E + p)

 , f2 =


ρv2

ρv1v2

p+ ρv2
2

ρv2v3

v2(E + p)

 , f3 =


ρv3

ρv1v3

ρv2v3

p+ ρv2
3

v3(E + p)

 .
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3.2 The wave equation

Let Ω ⊂ Rd and T ∈ (0,∞]. As a model problem, we consider the wave equation on the (infinite)
space-time cylinder ΩT := Ω× (0, T ), i.e., with given data f , u0, v0, we want to solve

utt −∆u = f in ΩT , (3.5a)

u(x, t) = 0 on ∂Ω× (0, T ), (3.5b)

u(·, 0) = u0, ut(·, 0) = v0 in Ω (3.5c)

Note that for Ω = Rd and f = 0, a solution is given by the d’Alambert formula

u(x, t) =
u0(x+ t) + u0(x− t)

2
+

1

2

∫ x+t

x−t
v0(y) dy.

Exercise 3.6 Let d = 1. Then, a solution to the inhomogeneous problem is given by

u(x, t) =
u0(x+ t) + u0(x− t)

2
+

1

2

∫ x+t

x−t
v0 +

1

2

∫ t

0

∫ x+(t−s)

x−(t−s)
f(y, s) dyds.

3.2.1 Semi-discretization

In the following, we only consider the method of lines with compatible initial data.
As for the heat equation, we multiply with a test function w = w(x) ∈ H1

0 (Ω) and integrate over Ω to
obtain the formulation

⟨utt(t), w⟩L2 + a(u(t), w) = ⟨f(t), w⟩L2 . (3.6)

An appropriate function space for this problem to be well-defined requires

� u ∈ L2(0, T ;H1
0 (Ω)), ∂tu ∈ L2(0, T ;L2(Ω)), ∂ttu ∈ L2(0, T ;H−1(Ω))

� u(0) = u0 in H1
0 (Ω), ∂tu(0) = v0 in L2(Ω).

Note that embeddings similarly to (2.34) hold and the regularities u ∈ L2(0, T ;H1
0 (Ω)), ∂tu ∈ L2(0, T ;L2(Ω)),

∂ttu ∈ L2(0, T ;H−1(Ω)) imply also u ∈ C([0, T ];H1
0 (Ω)) as well as ∂tu ∈ C([0, T ];L2(Ω)), which means

that the initial values can be well-defined.

Regarding unique solvability, we have (see [13, Thm. 8.1]) the following result.

Theorem 3.7 Let f ∈ L2(0, T ;L2(Ω)), u0 ∈ H1
0 (Ω) and v0 ∈ L2(Ω). Then, there exists a unique

solution to (3.6), which satisfies u ∈ L2(0, T ;H1
0 (Ω)), ∂tu ∈ L2(0, T ;L2(Ω)), ∂ttu ∈ L2(0, T ;H−1(Ω))

with

∥u∥2L2(0,T ;H1
0 (Ω)) + ∥∂tu∥2L2(0,T ;L2(Ω)) ≤ C

(
∥u0∥2H1(Ω) + ∥v0∥2L2(Ω) + ∥f∥2L2(0,T ;L2(Ω))

)
.

For the heat equation, we obtained an energy inequality, which showed a dissipative behaviour. For the
wave equation, this is different, as we actually have energy conservation.

Lemma 3.8 Let f = 0 and define E(t) := 1
2∥∇u(t)∥

2
L2(Ω)+

1
2∥ut∥

2
L2(Ω). Let u solve (3.6) and additionally

assume ∂tu ∈ L2(0, T ;H1
0 (Ω)). Then, there holds

E(t) = E(0) = 1

2
∥∇u0∥2L2(Ω) +

1

2
∥v0∥2L2(Ω). (3.7)

Proof: For fixed t > 0, we take w = ut(t) as test function and obtain

⟨utt(t), ut(t)⟩L2 + a(u(t), ut(t)) = 0,
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which implies
1

2

d

dt
∥ut∥2L2(Ω) +

1

2

d

dt
∥∇u∥2L2(Ω)

or d
dtE(t) = 0. □

Now, we take a finite dimensional space Vh ⊂ H1
0 (Ω) with dim(Vh) = N < ∞ with a basis {ϕi : i =

1, . . . , N}. Replacing H1
0 (Ω) by Vh in (3.6) and u0 by some u0,h ∈ Vh and v0 by some v0,h ∈ Vh gives a

semi-discrete solution uh ∈ L2(0, T ;Vh). Inserting a basis expansion of uh and vh into the equation gives
in the same way as for the heat equation an equivalent system of ODEs

Mu′′(t) +Au(t) = F(t), (3.8)

with mass matrix M and stiffness matrix A, as well as the initial conditions

u(0) = u0 u′(0) = v0.

Note that for the semi-discrete problem with F = 0, there still holds energy conservation

Eh(t) :=
1

2
u′Mu′ +

1

2
uAu = const.

Regarding a-priori estimates for the semi-discrete problem, a similar result to Theorem 2.13 holds (see
[12] for a proof).

Theorem 3.9 Let u solve (3.6) and uh be its semi-discrete approximation. Let Assumption 2.44 hold.
Then, assuming sufficient regularity of u and choosing u0,h = Phu0 ∈ Vh and v0,h = Phv0 ∈ Vh, we have

∥u(t)− uh(t)∥L2(Ω) ≤ Ch2
(
∥u(t)∥H2(Ω) +

t∫
0

∥utt(s)∥H2(Ω)ds
)

|u(t)− uh(t)|H1(Ω) ≤ Ch
(
∥u(t)∥H2(Ω) +

t∫
0

∥utt(s)∥H2(Ω)ds
)

as well as

∥u′(t)− u′h(t)∥L2(Ω) ≤ Ch2
(
∥ut(t)∥H2(Ω) +

t∫
0

∥utt(s)∥H2(Ω)ds
)
.

3.2.2 Two formulations as first order system

Formulation 1

Introducing (on the PDE level) the function v = ∂tu, the variational formulation can also be written as:
Find (u, v) ∈ L2(0, T ;H1

0 (Ω))× L2(0, T ;L2(Ω)) such that

⟨vt(t), ψ⟩L2 + a(u(t), ψ) = ⟨f(t), ψ⟩L2 ∀ψ ∈ H1
0 (Ω) (3.9a)

⟨ut(t), ϕ⟩L2 − ⟨v(t), ϕ⟩L2 = 0 ∀ϕ ∈ L2(Ω) (3.9b)

On the ODE-level this corresponds to the usual rewriting of the second order ODE (3.8) to a first order
system by defining v = u′, which gives

u′ = v

Mv′ = F−Au,

with initial conditions
u(0) = u0 v(0) = v0.
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Formulation 2

We also rewrite the wave equation in a different way as a first order system. Introducing the (vector-

valued) unknown σ =
∫ t
0
∇u, the wave equation u′′ −∆u = f can be written

σ′ = ∇u
u′ − divσ = f̃

with the integrated source f̃ =
∫ t
0
f . Now, as for the Stokes problem, one can make a mixed variational

formulation (for simplicity we treat the time derivative classically): Find (σ, u) ∈ C1((0, T );H(div,Ω))×
C1((0, T );L2(Ω)) such that

⟨σ′, τ ⟩L2 + ⟨u,div τ ⟩L2 = 0 ∀ τ ∈ H(div,Ω)

⟨u′, w⟩L2 − ⟨w,divσ⟩L2 = ⟨f̃ , w⟩L2 ∀w ∈ L2(Ω).

With mass matrices Mσ (corresponding to evaluation of ⟨σ, τ ⟩L2 with basis functions of H(div,Ω)-finite
elements, e.g. Raviart-Thomas elements) and Mu (corresponding to evaluation of ⟨u, v⟩L2 with basis
functions in L2(Ω), e.g., piecewise constant functions) as well as the stiffness matrix B (corresponding
to evaluation of the bilinear form ⟨u,div τ ⟩L2 at the (already) chosen FEM-bases in L2(Ω)×H(div,Ω)),
after space discretization we obtain the system of ODEs(

Mσ 0
0 Mu

)(
σ′

u′

)
=

(
0 −BT

B 0

)(
σ
u

)
+

(
0

F̃

)
.

In the following, we set f = 0. A nice advantage of formulation 2 is that the ODE system has the
structure of a Hamiltonian system and thus conservation of energy is easily seen from

d

dt

(
1
2σ

TMσσ + 1
2u

TMuu
)

= σTMσσ
′ + uTMuu

′ = −σTBTu+ uTBσ = 0.

3.2.3 Time-stepping methods for wave equations

In principal, one can reduce the second order ODE to a first order system (as done above), and apply
some standard time-stepping method (Euler) for it. This will in general require the solution of linear
systems of twice the size. In addition, the structure (symmetric and positive definite) may be lost, which
makes it difficult to solve. Moreover, we want a numerical method that also matches the qualitative
behaviour of energy conservation of the exact solution.

Exercise 3.10 Numerically verify that the Euler methods do not conserve energy for the scalar ODE
u′′ + u = 0.

In the following, we consider methods that allow for energy conservation and are based on either the
second order ODE formulation or the formulations as first order systems.

The Crank-Nicolson method

We consider the first-order system (3.9) and apply the Crank-Nicolson scheme to both equations (note
that in practice, one would do a semi-discretization in space first, for simplicity we formulate everything
in H1

0 and L2 here, but a semi-discrete version holds as well). This gives

⟨vn − vn−1, ϕ⟩L2 +
k

2
a(un + un−1, ϕ) =

1

2
⟨fn + fn−1, ϕ⟩L2 ∀ϕ ∈ H1

0 (Ω) (3.10)

⟨un − un−1, ψ⟩L2 − k

2
⟨vn + vn−1, ψ⟩L2 = 0 ∀ψ ∈ L2(Ω) (3.11)

The following theorem shows that the total energy

En =
1

2
∥∇un∥2L2(Ω) +

1

2
∥vn∥2L2(Ω)

is preserved.
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Theorem 3.11 Let f = 0. Then, there holds for all n

En =
1

2
∥∇un∥2L2(Ω) +

1

2
∥vn∥2L2(Ω) =

1

2
∥∇un−1∥2L2(Ω) +

1

2
∥vn−1∥2L2(Ω) = En−1,

where un, vn are defined by (3.10).

Proof: We use the test-functions ϕ = un − un−1 and ψ = vn − vn−1 in (3.10). This gives

⟨vn − vn−1, un − un−1⟩L2 +
k

2
a(un + un−1, un − un−1) = 0,

⟨un − un−1, vn − vn−1⟩L2 − k

2
⟨vn + vn−1, vn − vn−1⟩L2 = 0.

Subtracting both equations and multiplication with 2
k leads to

0 = a(un + un−1, un − un−1) + ⟨vn + vn−1, vn − vn−1⟩L2

= a(un, un)− a(un−1, un−1) + ⟨vn, vn⟩L2 − ⟨vn−1, vn−1⟩L2 ,

which implies the energy conservation. □

Exercise 3.12 Show that for the implicit Euler method, there holds energy dissipation, i.e., En ≤ En−1.

The Newmark time-stepping method

We now consider the semi-discretization as second order ODE system

Mu′′ +Au = f

and derive a very popular single-step method for this formulation, the so called Newmark method.

The Newmark method is based on second order Taylor expansion, thus we need the state un ≈ u(tn)
(for better readability we now write the time stepping indices as subscripts instead of superscripts), the
velocity u′

n ≈ u′(tn) and acceleration u′′
n ≈ u′′(tn). For given state un, the acceleration can be computed

from the given ODE as u′′
n = M−1(fn −Aun) with fn = f(tn).

Now, the next iterate for the state un+1 is given by second order Taylor expansion, the next iterate for
the velocity is given by first order Taylor expansion and the appearing second derivatives are weighted
averages of old and new accelerations. Consequently, for parameters β, γ ∈ R, the method reads as

un+1 = un + ku′
n + k2

(
( 12 − β)u′′

n + βu′′
n+1

)
(3.12)

u′
n+1 = u′

n + k
(
(1− γ)u′′

n + γu′′
n+1

)
. (3.13)

Inserting the formula for un+1 into Mu′′ +Au = f at time tn+1 gives

Mu′′
n+1 +A

(
un + ku′

n + k2(( 12 − β)u′′
n + βu′′

n+1)
)
= fn+1

or after rearrangement(
M+ βk2A

)
u′′
n+1 = fn+1 −A

(
un + ku′

n + k2( 12 − β)u′′
n

)
. (3.14)

Thus, the Newmark method requires in (3.14) the solution of a SPD linear system with system matrix
M+ k2βA and then has two explicit update formulas (3.12) and (3.13).

We use the short notation [U ]mn := Um − Un for the time steps in the following. For some parameters,
the Newmark method satisfies a discrete energy conservation.
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Theorem 3.13 Let f = 0. Then,[
1
2 (u

′)TMu′ + 1
2u

TAequ
]n+1

n
= −(γ − 1

2 )(un+1 − un)Aeq(un+1 − un),

with the so called equivalent stiffness matrix Aeq given by

Aeq = A+ (β − 1
2γ)k

2AM−1A.

Proof: Essentially direct calculations, write[
1
2 (u

′)TMu′ + 1
2u

TAu
]n+1

n
= 1

2 (u
′
n+1 + u′

n)
TM(u′

n+1 − u′
n)
T + 1

2 (un+1 + un)
TA(un+1 − un)

and then use the defining equations (3.12), (3.13) and (3.14) multiple times. The lengthy calculation can
be found in [11]. □

From this, we get the conservation of the modified energy depending on the parameter γ:

� γ = 1
2 : conservation;

� γ > 1
2 : damping;

� γ < 1
2 : growth of energy (unstable).

If Aeq is positive definite, then this conservation proves stability. This is unconditionally true if β ≥ 1
2γ

(the method is called unconditionally stable). If β < 1
2γ, the allowed time step is limited by

k2 ≤ λmax(M
−1A)−1 1

1
2γ − β

.

For second order problems we have λmax(M
−1A) ∼ h−2, and thus k ≤ Ch which is a CFL type condition.

Choices for β and γ of particular interests are:

� γ = 1
2 , β = 1

4 : unconditionally stable, conservation of original energy (Aeq = A), method is
equivalent to Crank-Nicolson.

� γ = 1
2 , β = 0: conditionally stable. We have to solve

Mu′′
n+1 = fn+1 −A(un + ku′

n + k2

2 u′′
n),

which is explicit, if M is cheaply invertible.

For γ > 1/2, the Newark method is of first order, for γ = 1/2, one even has quadratic convergence in
time.

Methods for the Hamiltonian first order system

Methods tailored for the skew-symmetric (Hamiltonian) structure are so called symplectic methods (again,
for details see lecture numerics of ODEs). The easiest symplectic method is the symplectic Euler method,
which reads as

Mσ
σn+1 − σn

k
= −BTun,

Mu
un+1 − un

k
= Bσn+1.

For updating the second variable, the new value of the first variable is used. For the analysis, we can

reduce the large system to 2×2 systems, where β are singular values of B̃ := M
−1/2
σ BM

−1/2
u (square-roots

of eigenvalues of B̃T B̃):
σ′ = −βu u′ = βσ.
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The symplectic Euler method can be written as(
σn+1

un+1

)
=

(
1 0
kβ 1

)(
1 −kβ
0 1

)
︸ ︷︷ ︸
T=

 1 −kβ
kβ 1− (kβ)2



(
σn
un

)

The eigenvalues of T satisfy λ1λ2 = det(T) = 1, and, if kβ ≤
√
2, they are conjugate complex, and thus

|λ1| = |λ2| = 1. Thus, the discrete solution is oscillating without damping or growth.

The symplectic Euler method is of first order.

Mass lumping

A drawback of some methods presented here is that, even for the explicit type methods, one has to solve
a linear system with system matrix being some mass matrix M.
A technique to circumvent this is so called mass lumping. Hereby the mass matrix M is replaced by the
diagonal matrix M with entries Mjj =

∑
kMjk, i.e., the row sums of M.

This procedure can be understood as calculation of the time derivative term using numerical quadrature.
Let d = 2, Th be a shape-regular, regular triangulation and Vh = S1,1

0 (Th) with a basis {ϕi : i =
1, . . . , N} of hat-functions. For T ∈ Th, the nodal quadrature formula corresponds to evaluation in the
vertices xT,ℓ, ℓ = 1, 2, 3 of T , i.e.,

QT,h(g) =
|T |
3

3∑
ℓ=1

g(xT,ℓ) ≈
∫
T

g.

Applying this for all elements for the time derivative term in the semi-discretization defines the approx-
imative bilinear form

⟨u′′h, v⟩h =
∑
T∈Th

QT,h(u
′′
hv).

Now the key observation is that the FEM-basis functions ϕi satisfy that (ϕiϕj)(xT ) = 0 for i ̸= j for all
nodes xT of the mesh. Thus, as all quadrature points are nodes of the mesh this implies ⟨ϕi, ϕj⟩h = 0
for i ̸= j, i.e., the corresponding mass matrix is diagonal!
Fix ϕj and denote by xj the corresponding node in the mesh Th. We now show that

⟨ϕj , ϕj⟩h =

n∑
i=1

⟨ϕj , ϕi⟩L2 .

Denoting by ω(xj) :=
⋃
{T : T ∈ Th, xj ∈ T} the so called patch of the mesh node xj , by definition of

the quadrature rule, we have

⟨ϕj , ϕj⟩h =
∑

T∈Th,T⊂ω(xj)

|T |
3

3∑
ℓ=1

ϕ2j (xT,ℓ) =
|ω(xj)|

3
.

The L2-inner products ⟨ϕj , ϕi⟩L2 are only non-zero, if two basis functions (hat functions!) ϕi, ϕj cor-

respond to neighboring nodes (i.e. nodes that are connected via an edge in the mesh) xiT1
and xjT2

.

Moreover, the integral
∫
T
ϕiϕj does vanish for all elements T with xiT1

∨ xjT2
/∈ T .

Transformation to the reference element shows that for any element T with nodes xiT1
, xjT2

∈ T , there
holds ∫

T

ϕiϕj =
|T |
12
,

∫
T

ϕ2j =
|T |
6
.

Now, for every xj and T ∈ Th, T ⊂ ω(xj) there exist only two nodes with this property. Thus,

n∑
i=1

⟨ϕj , ϕi⟩L2 =

n∑
i=1

∑
T∈Th,T⊂ω(xj)

⟨ϕj , ϕi⟩L2(T ) =
∑

T∈Th,T⊂ω(xj)

|T |
6

+ 2
|T |
12

=
|ω(xj)|

3
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Figure 3.1: Numerical solution to the wave equation at T = 0, 0.25, 0.5, 0.75.

and we have shown the claimed indentity.
Now, inserting a basis expansion of uh and v into the formulation

⟨u′′h, v⟩h + a(uh, v) = ⟨f, v⟩L2 ∀v ∈ Vh

gives the semi-discrete system

Mu′′ +Au = F,

i.e., the mass lumped system.

Note that this quadrature rule is of second order, i.e., the quadrature error can be bounded by Ch2,
and thus error bounds for the semi-discretization error using mass lumping similar to Theorem (3.9) still
hold.

3.2.4 Numerical example

We consider the 2D-wave equation on the unit square Ω = [0, 1]2 with Neumann boundary conditions

ut −∆u = 0 in ΩT , (3.15)

∂nu = 0 on ∂Ω× (0, T ), (3.16)

u(x, 0) = u0 ut(x, 0) = v0 (3.17)

We use the method of lines with piecewise cubic finite elements (p = 3) in space and Newmark timestep-
ping (γ = 1/2, β = 1/4).

In Figure 3.1, we choose u0 = exp(−100 · |x − 0.5|2) and v0 = u0 and observe that the initial peak in
the middle (think of it as a stone dropping into water) produces a circular wave travelling until it hits
the boundary, where it is reflected. In contrast to the heat equation, there is no dissipative behaviour
observed.
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Moreover, in Figure 3.2, one can observe that the energy difference between the initial discrete energy
E0 = 1

2u0Au0 +
1
2v0Av0 is essentially preserved over time when the Newmark method is employed for

time-stepping.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

·10−10

t

E
n
−
E

0

Discrete energy difference, Newmark timestepping

Figure 3.2: Difference between initial energy E0 and energy En at time-step tn.

3.3 The advection equation – finite differences

Idea: Obtain a numerical method by replace derivatives by evaluations of difference quotients. This is
very popular for engineers, much less so for mathematicians.

Advantages:

� very easy to understand and implement;

� can be used for non-linear equations.

Disadvantages: hard to treat complicated geometries, boundary conditions.

Focus here: stability of methods in time (→ do not care about boundary conditions by considering
full-space problems). also for simplicity: 1D-space only here.

3.3.1 FD for the advection equation

As model problem, with a ∈ R, we consider the advection equation

ut + aux = g in R× (0,∞)

u(x, 0) = u0(x) in R.

For the data g and u0 we assume compact support.

For the case g ≡ 0, the exact solution is given by

u(x, t) = u0(x− at). (3.18)

In order to approximate derivatives by difference quotients, we consider a uniform mesh xi = ih, i ∈ Z
in space and a uniform mesh in time tn = nk, n = 0, 1, . . . . We aim to compute uni ≈ u(xi, tn).

Notation: We call a sequence (Ui)i∈Z grid function. One can think of this as values at the knots xi = ih.
In order to denote the current time step n, we use super scripts. Thus, the grid function Un = (Uni )i∈Z
can be seen as values in the points (xi, tn).

76



Moreover, for grid functions U = (Ui)i∈Z, we introduce the difference operators D+Ui := Ui+1 − Ui
(forward difference), D−Ui := Ui − Ui−1 (backward difference) and D0Ui := Ui+1 − Ui−1 (symmetric
difference).

We consider the following explicit methods:

1. forward time/backward space: take the right-difference quotient in time and the left difference
quotient in space, i.e., approximate a 1D- derivative by (u(x+ h)− u(x))/h, which leads to

un+1
i − uni

k
+ a

uni − uni−1

h
= g(xi, tn). (3.19)

2. forward time/forward space: take the right-difference quotient in time and space, which leads to

un+1
i − uni

k
+ a

uni+1 − uni
h

= g(xi, tn). (3.20)

3. Lax-Friedrichs: take the central difference quotient in space, which leads to

1

k

(
un+1
i − 1

2

(
uni+1 + uni−1

))
+

a

2h

(
uni+1 − uni−1

)
= g(xi, tn). (3.21)

With the grid function Un := (uni )i∈Z, all schemes have the form

Un+1 = EUn + kGn, (3.22)

with the so called propagation operator E, which is a linear operator on the space of grid functions, and
Gn denoting the grid function (g(xi, tn))i∈Z.

As usual, the key properties are the notions of consistency and stability. Consistency is the error of the
method in one step with exact initial data, i.e., let u be the exact solution and a grid function Unkh given
by

Unkh,i := u(xi, tn),

then, the consistency error is

τn+1
i :=

1

k

[
Un+1
kh,i − ((EUnkh)i + kGni )

]
.

Using the equation ut + aux = g, this can also be more conveniently written as

τn+1
i =

1

k

(
Un+1
kh,i − (EUnkh)i

)
− (ut(xi, tn) + aux(xi, tn)) (3.23)

for sufficiently smooth functions u.

Exercise 3.14 Use Taylor expansion to show that for the methods introduced above there holds

|τni | ≤ C (k + h) ,

with a constant C > 0 depending on u, but not on h, k.

Stability measures the amplification of previous errors by the numerical method. Define the error

εni := u(xi, tn)− uni = Unkh,i − uni .

For the method and the consistency error, there holds

Un+1 = EUn + kGn

Un+1
kh = EUnkh + kGn + kτn+1.
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Due to the linearity of E, we obtain the recursion

εn+1 = Eεn + kτn+1.

We now fix a norm on the space of grid functions

∥(Vi)i∈Z∥ℓ1h :=
∑
i∈Z

h|Vi|.

There holds

∥εn∥ℓ1h ≤ ∥En∥ℓ1h∥ε
0∥ℓ1h + k

n∑
ℓ=1

∥En−ℓ∥ℓ1h∥τ
ℓ∥ℓ1h .

Thus, for fixed T and 0 ≤ nk ≤ T , it is reasonable to require

sup
n:0≤nk≤T

∥En∥ℓ1h ≤ CT , (3.24)

with a constant CT > 0 independent of k and h, since then

∥εn∥ℓ1h ≤ CT

[
∥ε0∥ℓ1h + sup

ℓ≤n
∥τ ℓ∥ℓ1h

n∑
ℓ=1

k︸ ︷︷ ︸
≤T

]
.

For the considered methods, there follows

sup
n:0≤nk≤T

∥εn∥ℓ1h ≤ CT

[
∥ε0∥ℓ1h + C(k + h)

]
.

If the starting error ∥ε0∥ℓ1h is O(h), which holds for nodal evaluation or even for taking mean values over

elements, the overall error will be of order O(k + h).
Nonetheless, the stability property (3.24) is key. Practically it holds, provided

� ∥E∥ℓ1h ≤ 1

� or slightly weaker ∥E∥ℓ1h ≤ 1 + Ck with a constant C > 0 not depending on k or h.

As seen also previously for other model problems, the stability property will only hold for explicit
methods, if the quantity k/h is sufficiently small, i.e., there holds a CFL condition of the form

|ak|
h

≤ c, (3.25)

with some constant c > 0 independent of k, h, but dependent on the problem and chosen numerical
method.

Example 3.15 (Advection equation on torus) We consider

ut + ux = 0, x ∈ (0, 1), t > 0, u(0, t) = u(1, t) ∀t > 0

u(x, 0) = sin(πx)

Figure 3.3–3.8 show the behaviour of different numerical methods. In particular, the CFL-condition

λ = k|a|
h ≤ 1 is essential for the explicit methods.

Exercise 3.16 Show that, for the Lax-Friedrichs scheme, under the CFL-condition |ak/h| ≤ 1, there
holds

∥E∥ℓ1h ≤ 1.
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Figure 3.3: comparison of exact solution and approximation by ft/bs and ft/fs.
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Figure 3.4: influence of CFL-condition for ft/bs and ft/fs.
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Figure 3.5: influence of CFL-condition for Lax-Friedrichs.
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3.3.2 Upwinding

We now consider the forward time/forward space and forward time/backward space methods. The key
for stability of the methods is the sign of a:{

use ft/bs (3.19) if a > 0

use ft/fs (3.20) if a < 0 .
(3.26)

Theorem 3.17 (stability of upwinding) Under the CFL-condition |ak/h| ≤ 1, the propagation op-
erator E of the upwind method (3.26) satisfies ∥E∥ℓ1h ≤ 1. For sufficiently smooth solutions, the error is

then of order O(k + h).

Proof: Consider the case a > 0. For a grid function (Vi)i∈Z, there holds

(EV )i = Vi −
ak

h
(Vi − Vi−1)

and consequently

∥EV ∥ℓ1h ≤
∑
i

h

[∣∣∣∣1− ka

h

∣∣∣∣ |Vi|+ |Vi−1|
∣∣∣∣kah

∣∣∣∣]
(3.25)
=

(
1− ak

h

)∑
i

h|Vi|+
ak

h

∑
i

h|Vi−1| = ∥V ∥ℓ1h ,

which gives the statement. □

Exercise 3.18 Show that: Under the assumptions of Theorem 3.17 and the CFL-condition |a|k/h ≤ 1,
there holds ∥E∥ℓ∞ ≤ 1 (operator norm), i.e. the method is stable in ℓ∞.

Physical plausibility of the CFL condition/upwinding

Considering the ft/fs method, we see that the numerical value at point (xi, tn) is only constructed from
values at (xi, tn−1) and (xi+1, tn−1). Inductively, this can be traced back until t = 0 and thus the
numerical method only uses the initial data at the points (xi+j , 0) for j = 0, . . . , n. For the case a > 0,
this means that only values right of xi are used (see red dots in Figure 3.6). This is called numerical
domain of dependence.
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t
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� � �����

� � � � � � �

� � � � � � �
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� � � � � � �

� � � � � � �

0

tn

xi

Figure 3.6: The ft/fs method (left) and the ft/bs (right) for a = 1.

However, by the solution formula for f = 0, the exact solution at point (xi, tn) is given by u0(xi − atn),
i.e., it does only depend on the values of u0 at a point left of xi (domain of dependence of the true
solution). Taking initial data that is e.g. 1 in the blue dot in Figure 3.6 and zero for all x ≥ xi, then
u(xi, tn) = 1, but the numerical approximation will be uni = 0, irrespectively of the step sizes!.

Thus, if the numerical domain of dependence is not containing the domain of dependence of the exact
solution, the method can not work! We have thus obtained:
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� For a > 0 the ft/fs-method can not work. In the same way, for a < 0, the ft/bs-method can not
work.

� For a < 0 the ft/fs-method can only work, if nh ≥ atn, which is exactly the CFL condition.

� For a > 0 the ft/bs-method can only work, if nh ≥ atn, which is exactly the CFL condition.

Remark 3.19 Upwinding can also be formulated for systems of equations. Let A be a constant matrix
and consider

Ut +AUx = 0.

If A = VDV−1 is diagonalizable, then one does ft/bs in transformed variables Ũ = V−1U with Dii > 0
and ft/fs for components with Dii < 0. Write

D = D+ +D−,

where D+ is given by D+
ii = max{Dii, 0} and D− by D−

ii = min{Dii, 0}. The upwind method then reads
as

Ũn+1
j = Ũn

j − k

h
D+(Ũn

j − Ũn
j−1)−

k

h
D−(Ũn

j+1 − Ũn
j ).

Transforming back to U-variables, gives with

A+ = VD+V−1, A− = VD−V−1

that

Un+1
j = Un

j − k

h
A+(Un

j −Un
j−1)−

k

h
A−(Un

j+1 −Un
j ).

3.3.3 Splitting methods

In the following, we employ the splitting methods of Section 2.8.1 to obtain an approximation for the
2D-advection equation.

Example 3.20 Consider the advection equation in two spatial dimensions

ut + aux + buy = 0 in Ω = R2, u(·, 0) = u0(·). (3.27)

We use the splitting Au = aux and Bu = buy. For a function v = v(x, y), the exact evolutions are given
by

(EAv)(x, y, t) = v(x− at, y), (EBv)(x, y, t) = v(x, y − bt).

Consequently, one step of the Lie-splitting EBEA is given by

v 7→ v(x− at, y − bt).

This is even the exact solution, i.e., the Lie-splitting is exact! As the operators A, B commute, this
could have been expected.

We also apply an IMEX scheme to deal with an advection diffusion equation.

Example 3.21 Let a > 0 and consider the advection-diffusion equation

ut = (uxx + uyy)− aux.

Finite difference discretization (backward in space since a > 0) in space give the ODE system

d

dt
ui,j =

1

h2
[
D+
xD

−
x +D+

y D
−
y

]
ui,j −

a

h
D−
x ui,j
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The operator A corresponds to a spatial discretization of the Laplacian and the operator B to the
transport term. Writing u = ϕ+ ψ and employing implicit Euler for ϕ and explicit Euler for ψ leads to

1

k

(
ϕn+1
i,j − ϕni,j

)
=

1

h2
[
D+
xD

−
x +D+

y D
−
y

]
un+1
i,j ,

1

k

(
ψn+1
i,j − ψni,j

)
= −a

h
D−
x u

n
i,j .

Summing up, this gives

un+1
i,j = unij +

k

h2
[
D+
xD

−
x +D+

y D
−
y

]
un+1
i,j − ak

h
D−
x u

n
i,j . (3.28)

As the transport term was treated explicitly, the CFL-condition k|a|/h ≤ 1 needs to hold. A classical
implicit Euler would lead to

un+1
i,j = unij +

k

h2
[
D+
xD

−
x +D+

y D
−
y

]
un+1
i,j − ak

h
D−
x u

n+1
i,j (3.29)

without CFL condition. However, the linear system in (3.28) is SPD, while the linear system in (3.29)
is non symmetric and thus more expensive to solve.

3.4 von Neumann-analysis

The classical stability analysis is done in the norm

∥(Vi)∥ℓ2h :=

(∑
i

h|Vi|2
)1/2

.

Correspondingly, we denote by ℓ2h the space of sequences with finite norm.
The reason for that lies in the fact that it is very convenient to employ Fourier analysis. We define

� The ”Fourier-transform” of a grid function (vj)j∈Z (recall xj = jh):

v̂(ξ) := (Fh(v))(ξ) := h
∑
j

e−iξxjvj , ξ ∈ [−π/h, π/h]

� the L2
h-norm:

∥v̂∥2L2
h
:=

∫ π/h

−π/h
|v̂(ξ)|2 dξ

� The convolution of two sequences u = (ui)i, v = (vi)i

(u ∗ v)i := h
∑
j

ui−jvj = h
∑
j

ujvi−j

Theorem 3.22 (i) (Parseval) Fh is an isomorphism ℓ2h → L2
h:

√
2π∥(vi)i∈Z∥ℓ2h = ∥v̂∥L2

h
, v̂ = Fh((vi)i∈Z).

Its inverse is given by

vj = (F−1
h (v̂))j =

1

2π

∫ π/h

−π/h
eiξxj v̂(ξ) dξ.

(ii) For (ui)i∈Z ∈ ℓ2h and (vi)i∈Z ∈ ℓ1h, there holds u ∗ v ∈ ℓ2h and

(̂u ∗ v)(ξ) = û(ξ)v̂(ξ)
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(iii) (Translation) For j0 ∈ Z there is Fh((vj+j0)j∈Z)(ξ) = eiξxj0 v̂(ξ)

(iv) (Modulation) For ξ0 ∈ R there is Fh((eiξ0xjvj)j∈Z)(ξ) = v̂(ξ − ξ0)

(v) (Dilation) For m ∈ Z \ {0} there is Fh((vmj)j∈Z)(ξ) = v̂(ξ/m)/|m|

(vi) (Conjugation) Fh((vj)j∈Z)(ξ) = v̂(−ξ)

Proof: Exercise. □

Consider a single-step method with propagation operator E of the form

(Ev)i =

s∑
ℓ=−r

αℓvi+ℓ

with coefficients αℓ. Then, the operator E is of convolution type

(Ev) = a ∗ v, aℓ =
1

h
α−ℓ.

Correspondingly, we have

(̂Ev)(ξ) = â(ξ)v̂(ξ),

where â is called amplification factor.

Exercise 3.23 There holds
∥E∥ℓ2h = max

ξ∈[−π/h,π/h]
|â(ξ)|

Consequently, the stability analysis is reduced to the calculation of â. A method satisfies the von-
Neumann-stability condition, if the corresponding amplification factor â satisfies

|â(ξ)| ≤ 1 + Ck ∀ξ ∈ [−π/h, π/h], (3.30)

where C > 0 is a constant independent of k.

Example 3.24 (Upwind) The upwind method for the advection equation with a = −1 and g ≡ 0 is
given by

vn+1
j = (Evn)j = vnj + λ(vnj+1 − vnj ), λ =

k

h
.

This can be written as Evn = a ∗ vn with

aj =
1

h
λδ−1,j +

1

h
(1− λ)δj,0, δn,m = Kronecker δ.

Thus, the Fourier transform can be calculated as

â(ξ) = h(e−iξx−1a−1 + e−iξx0a0) = λeiξh + (1− λ),

and, for 0 < λ ≤ 1, there holds
|â(ξ)| ≤ 1 ∀ξ ∈ [−π/h, π/h].

This means that the method satisfies the von-Neumann stability condition (3.30).

In practice, the calculation of g(ξ) := â(ξ) is oftentimes shortened by using a ”calculation rule”: make
the ansatz vnj = gneiξjh and insert it into the method, this gives a formula for g(ξ).
The reason for including the term Ck in the stability condition (3.30) comes from the desire to also treat
equations with lower order terms.
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Operator Symbol
Forward diff. D+: ui+1 − ui eiξ − 1
Backward diff. D−: ui − ui−1 1− e−iξ

symmetric diff. D0: ui+1 − ui−1 2i sin ξ
δ defined by: ui+1/2 − ui−1/2 2i sin(ξ/2)

D+ ◦D− −4 sin2(ξ/2)

Figure 3.7: Fourier symbols of some difference operators.

Exercise 3.25 Let c : R → R be continuous with ∥c∥L∞ <∞. Consider the equation

ut − ux + c(x)u = 0

and employ the upwind method

vn+1
j = (Evn)j = vnj + λ(vnj+1 − vnj ) + kc(xj)vj , λ =

k

h
. (3.31)

Let E0 be the evolution corresponding to c ≡ 0. Example 3.24 shows that ∥E0∥ℓ2h ≤ 1.

Show that ∥E∥ℓ2h ≤ ∥E0∥ℓ2h + k∥c∥L∞ holds and deduce that E satisfies the von-Neumann condition.

Exercise 3.26 Consider a discretization of the heat equation ut − uxx = 0 with explicit Euler in time
and symmetric differences in space given by

un+1
i − uni = σ

(
uni+1 − 2uni + uni−1

)
, σ :=

k

h2

Show that the amplification factor is g(ξ) = 1− 4σ sin2(ξh/2). What can you say about stability of the
method in dependence on k and h?

Remark 3.27 � The von-Neumann analysis can also be applied for systems (and thus also for multi
step methods) – see exercises.

� In general, it only provides necessary conditions for stability, but not sufficient conditions. In
practice, however, it does provide a fairly good idea of what the CFL condition is.

� For problems with non-constant coefficients, one typically proceeds as follows: In a first step one
determines the range of values of the coefficients and then perform a von Neumann analysis for
the equation with frozen coefficients (“freezing of coefficients”). In principle, this can also be done
for nonlinear equations. In this way, of course, one does not obtain sharp estimates for the CFL
condition, but often useful indicators.

3.4.1 The leap frog method

We now consider a very common 2-step method, the so called leap frog method.

Note: Multi-step methods can be interpreted as vector single-step methods (exercise!) and thus be
analyzed similarly to single-step methods. However, oftentimes a direct analysis is easier.

For the advection equation the leap frog method replaces the derivatives by central difference quotients,
i.e., it reads as

un+1
i − un−1

i

2k
+ a

uni+1 − uni−1

2h
= 0. (3.32)

Note that no value uni appears in the approximation of the time derivative, this has been ”leaped over”,
which explains the name of the method. Leap frog also is an explicit method.

Remark 3.28 � As a two step method, leap frog needs two starting values u00 and u1i , i ∈ Z. The
values u1i can be computed with a single step method.
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Figure 3.8: influence of CFL-condition for the leap frog method.

� Defining

Uni :=

(
uni
un−1
i

)
the method (3.32) can be formulated as a single-step method.

We now make a von-Neumann stability analysis: the Fourier transform ûn(ξ) := Fh((uni )i)(ξ) satisfies

ûn+1(ξ) + 2iaλ sin(ξh)ûn(ξ)− ûn−1(ξ) = 0, λ =
k

h
. (3.33)

For fixed ξ, h, this is a recurrence relation in n that can be solved.

Exercise 3.29 Let α, β ∈ C. Let x1, x2 be solutions of 0 = x2 + αx+ β. Consider all sequences (vn)n
with

vn+1 + αvn + βvn−1 = 0, ∀n ≥ 1.

Then, there holds

(a) The space of sequences with this property is a 2-dimensional vector space.
(b) If x1 ̸= x2, then the sequences (xn1 )n and (xn2 )n are a basis for this space.
(c) If x1 = x2, then the sequences (xn1 )n and (nxn1 )n are a basis for this space.

Now, let g+(ξ) and g−(ξ) be solutions to

g2 + 2iaλ sin(ξh)g − 1 = 0,

i.e.,

g±(ξh) = −iaλ sin(ξh)±
√

1− (aλ)2 sin2(ξh).

Consequently, we can write ûn as

ûn(ξ) = γ(ξ)(g+(ξh))
n + δ(ξ)(g−(ξ))

n falls g+(ξh) ̸= g−(ξh),

ûn(ξ) = γ(ξ)(g+(ξh))
n + δ(ξ)n(g+(ξ))

n falls g+(ξh) = g−(ξh).

The functions γ(ξ), δ(ξ) are determined by the starting values û0(ξ), û1(ξ). Stability of the discretization
requires

|g+(ξh)| ≤ 1 and |g−(ξh)| ≤ 1 ∀ξ ∈ (−π/h, π/h), (3.34)

if g+(ξ) = g−(ξ) then|g+(ξh)| < 1. (3.35)

We now observe:
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� |aλ| > 1 implies |g−(−π/(2h))| > 1, which means that the CFL-condition |aλ| ≤ 1 has to hold.

� |aλ| ≤ 1 implies |g+|2 = |g−|2 = 1 − (aλ)2 sin2(ξh) + (aλ sin(ξh))2 = 1, i.e., the method is stable
apart from the case g+(ξh) = g−(ξh). In this case 1 = |aλ sin(ξh)|, i.e. |aλ| = 1 and ξ = ±π/(2h).
Then, g+ = g− = ±i, i.e. condition (3.35) is violated.

Summary: If |aλ| < 1, then leap frog is stable, if |aλ| = 1, it is (weakly) unstable.

Leap frog for the wave equation

The leap frog method is also a popular time-stepping method for the wave equation. Applied to the
semi-discrete system

Mutt +Au = f

this reads as

M
un+1 − 2un + un−1

k2
+Aun = fn.

For the leap frog method there holds energy conservation, which is desirable for the wave equation.

Exercise 3.30 Define the discrete energy

En+1/2 := ⟨(I− k2

4
K)

zn+1 − zn

k
,
zn+1 − zn

k
⟩+ ⟨Kzn+1 + zn

2
,
zn+1 + zn

2
⟩

and show that En+1/2 = En−1/2.

Note that, in contrast to the Crank-Nicolson method, the leap frog method is explicit (thus needs CFL
condition!), where only a linear system with matrix M has to be solved. Again, employing mass lumping
this can be done very efficiently.

3.5 Dissipative methods

3.5.1 Preliminary view

Starting point:

1. For linear equations with constant coefficients, von-Neumann analysis provides a simple tool to
derive a stability analysis.

2. For systems
Un+1 = EUm + kGn

one can analogously look at the Fourier transform Ê(ξ). For simplicity, one analyzes the spec-

tral radius ρ(Ê) for ξ ∈ (−π/h, π/h). Thus, the method satisfies the von-Neumann condition, if

ρ(Ê(ξ)) ≤ 1 + Ck for all ξ ∈ (−π/h, π/h).

Problems: variable coefficients? Nonlinear equations?

Standard procedure: von-Neumann analysis for frozen coefficients, i.e., one does von-Neumann analysis
for all (expected) values of the coefficients. Oftentimes, this gives good indicators for stability or step
size restrictions. For so called dissipative methods and certain problem classes (e.g. parabolic problems),
the method of freezing of coefficients is indeed good enough.

However, the following example shows that the method also may fail.

Example 3.31 (Zabusky-Kruskal-method for KdV equation) We consider the KdV equation

ut + (αu2 + νuxx)x = 0

with a leap-frog type discretization

un+1
j = un−1

j − 2αµ

3

(
unj−1 + unj + unj+1

) (
unj+1 − unj−1

)
− νµ

h2
(
unj+2 − 2unj+1 + 2unj−1 − unj−2

)
, µ =

k

h
.
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Figure 3.9: Zabusky-Kruskal-method, solution plot for the KdV equation.

Using von-Neumann analysis after freezing of coefficients gives

k <
h

4|ν|/h2 + 2|αumax|
.

We now consider the method with

� ν = 0.0222, α = 0.5, u0(x) = cos(πx), u(0, t) = u(2, t).

� One can show that |u| ≤ 5.

� =⇒ One expects that h = 0.01 and k < 0.004 produce a stable method.

� In the numerical example in Fig. 3.9, we thus take h = 0.01 and k = 0.0001.

The numerical simulation in Fig. 3.9 shows that this (conservative!) step size choice is not good enough!
At time T > 21/π a blow-up happens, even tough the exact solution exists for all times.

The failure of the Zabusky-Kruskal-method [16]1 is caused by an instability in the sense that high-
frequency components of the solution (i.e. with large ξ in Fourier image) are amplified by the non-
linearity.
Thus, a common way is to use methods which induce (some) dissipation.

3.5.2 Dissipative methods

Definition 3.32 A method with propagation operator E is called dissipative of order 2r, if

ρ(Ê(ξ)) ≤ (1− δ|ξh|2r)(1 + Ck)

for constants C, δ > 0 independent of k, h.
1in this paper the notion of solitons was introduced
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Example 3.33 (Lax-Wendroff) For the advection equation with a = −1, the method is given by

vn+1
j = (Evn)j = vnj +

1

2
λ(vnj+1 − vnj−1) +

1

2
λ2(vnj+1 − 2vnj + vnj−1), λ = k/h.

Using the ansatz vnj = gneiξjh and division by gneiξjh leads to

g(ξ) = 1 +
1

2
λ(eiξh − e−iξh) +

1

2
λ2(eiξh − 2 + e−iξh) = 1 + iλ sin ξh− 2λ2 sin2

ξh

2
.

An elementary calculation shows that for λ ∈ (0, 1] the condition

sup
ξ∈[−π/h,π/h]

|g(ξ)|2 = sup
ξ∈[−π/h,π/h]

(
1− 4λ2(1− λ2) sin4(ξh/2)

) λ∈(0,1]

≤ 1

is satisfied, i.e., the method satisfies the von-Neumann condition (3.30).
Moreover, the amplification factor also shows that the method is dissipative of order 2r = 4, if λ =
k/h < 1 (use

√
1− x = 1− 1/2x+O(x2) for small x). There holds g(ξ) ≈ 1 for ξ ≈ 0, but for |ξ| ≈ π/h

there even |g(ξ)| ≈ 1− 4λ2(1−λ2) < 1, if λ < 1. In other words: While the low frequency terms (due to
consistency!) are neither amplified nor damped, the high frequency solution components (and therefore
also the error contributions) are damped.

For parabolic equations dissipative methods are very natural as the continuous problem has the same
property.

Example 3.34 Consider the explicit Euler discretization for the heat equation from Exercise 3.26, which
has the amplification factor g(ξ) given by g(ξ) = 1−4σ sin2(ξh/2). Stability (|g(ξ)| ≤ 1) requires σ ≤ 1/2.
For σ ≤ 1/2 the method is dissipative of order 2.
Exercise: For the implicit Euler, the amplification factor is g(ξ) = 1/(1 + 4σ sin2(ξh/2)). The method is
therefore stable and dissipative of order 2.

In the easiest case, dissipativity and consistency gives stability.

Theorem 3.35 (Kreiss) Consider strictly hyperbolic systems

ut +Aux = 0,

i.e., the constant matrix A has pairwise distinct real eigenvalues. Then, an (explicit) difference method
is stable, if it is consistent and dissipative of order 2r > 0.

Proof: See [2, Thm. 5.2] and e.g. [7, Thm. 6.5.2]. □

Remark 3.36 The interplay of consistency and dissipativity has already been seen for parabolic equa-
tions in Section 2.5.4 in the analysis of the function Fn: for ”small” z = λnk we used the consistency,
for large z = λnk we used the L-stability of the one-step method. Similar ideas are the basis of Theo-
rem 3.35: for consistent methods, one expects that the stability behaviour for small ξ is obtained from
the continuous problem, while the stability behaviour for large ξ is an additional property.

As theorem 3.35 shows, dissipativity of a method can be a useful property. In fact many methods (also
for hyperbolic problems) have some dissipation – the Lax-Wendroff method is an example. While, for
parabolic problems such as the heat equation, dissipation is a property of the continuous problem, for
hyperbolic problems, it is usually not. Therefore, one usually tries to keep the dissipation of the method
as low as possible.
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Derivation of Lax-Wendroff

As previously done, e.g. for parabolic problems, many methods are derived by doing a semi-discretization
in space (FEM,FD) and then employing a time stepping method. The Lax-Wendroff method (here
for the advection equation) is derived differently: With the difference operators D+, D−, D0 (e.g.
D+u(x) = u(x+ h)− u(x), D0u(x) = u(x+ h)− u(x− h)) Taylor expansion gives

u(t+ k, x) = u+ kut +
k2

2
utt +O(k3).

Employing the equation ut + aux = 0 gives formally

ut = −aux =⇒ utt = a2uxx. (3.36)

Thus, we can replace time derivatives by spatial derivatives and afterwards approximate those by differ-
ence quotients (which leads to the additional term O(h2)):

u(t+ k, x) = u− k

2h
aD0u+

k2

2h2
a2D+D−u+ kO(k2 + h2).

This shows that the method

un+1
i = uni − λ

2

(
uni+1 − uni−1

)
+
λ2

2

(
uni+1 − 2uni + umi−1

)
= 0, λ =

ka

h

is consistent of order 2 (or more precisely: (2, 2)).

Modified equation

Fourier analysis (i.e., von Neumann analysis) is a way to understand the behaviour of discretizations.
Another way to understand the qualitative behaviour of methods is to interpret them as a ”better”
approximation to another modified equation and to stipulate that the qualitative behaviour of this con-
tinuous equation describes the numerical method.
We illustrate this with three classical examples:

Example 3.37 (Modified equation for updwind) We consider ut + aux = 0 with a < 0. The
upwind method is given by

un+1
i = uni − aλ(uni+1 − uni ), λ =

k

h
.

Taylor expansion around (t, x) gives

u(t+ k, x) = u+ kut +
k2

2
utt +

k3

6
uttt + · · · ,

u(t, x+ h) = u+ hux +
h2

2
uxx +

h3

6
uxxx + · · · ,

τ =
u(t+ k, x)− u

k
+ a

u(t, x+ h)− u

h
=

[
ut +

k

2
utt +

k2

6
uttt + · · ·

]
+ a

[
ux +

h

2
uxx +

h2

6
uxxx + · · ·

]
= ut + aux +

1

2
kutt +

1

2
hauxx +O(k2 + h2)

Exploiting ut+ aux = 0, we obtain that the upwind method has consistency order (1, 1). However, if we
assume that u solves the equation

ut + aux +
1

2
kutt +

1

2
hauxx = 0, (3.37)

then we obtain consistency order (2, 2). Equation (3.37) is called the modified equation. Typically, this
equation is reformulated by replacing time derivatives by spatial derivatives: from (3.37), one obtains
(formally) by differentiation w.r.t. t and x:

utt + auxt = O(k + h), uxt + auxx = O(k + h), (3.38)
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such that we can write (3.37) (dropping the terms of order O(h2 + k2) and using kh ≤ k2 + h2)

0 = ut + aux +
1

2
kutt +

1

2
hauxx

(3.38)
= ut + aux +

1

2
[−kauxt + hauxx + kO(k + h)]

(3.38)
= ut + aux +

1

2

[
ka2uxx + hauxx + kO(k + h)

]
= ut + aux +

1

2

[
ka2 + ha

]
uxx +O(k2 + h2).

Thus, the above stated upwind method approximates the equation

ut + aux − νuxx = 0, ν := −1

2

(
ka2 + ah

) a<0
=

h

2k/h

(
k

h
|a| − k2

h2
a2
)

(3.39)

with consistency order (2, 2). We note that ν > 0, if the CFL-condition holds. One can think that the
upwind method approximates the advection equation, but also with higher accuracy the heat equation
(3.39) with (small) diffusion. As the heat equation is dissipative, one expects that the upwind method
is dissipative as well.

Exercise 3.38 Show that for the Lax-Friedrichs method the modified equation is

ut + aux + νuxx = 0, ν =
h

2λ

(
1− λ2a2

)
, λ =

k

h
.

In particular, the diffusion constant ν is bigger for Lax-Friedrichs than for upwind.

Exercise 3.39 Show that for the Lax-Wendroff method the modified equation is

ut + aux +
ah2

6

(
1− k2

h2
a2
)
uxxx = 0.

Example 3.40 We consider the advection equation with periodic boundary conditions

ut − ux = 0 on (0, 1)× R+, u(0, t) = u(1, t) ∀t > 0. (3.40)

In order to determine the influence of the high-frequency components of the initial condition, we take
u0(x) = χ[0.25,0.75](x) (and consequently the exact solution remains a piecewise constant function).
In Fig. 3.10 we plot the results of different numerical methods at T = 1 and for k/h = 0.5.
The modified equation for the upwind and Lax-Friedrichs methods are parabolic equations with quite a
lot dissipation. This can be seen in Fig. 3.10.
The modified equation of Lax-Wendroff is an equation of third order, for which dispersion (see remark
below) is important, which explains the oscillations in the numerical solution.

Remark 3.41 (Dispersion) The solution u of

ut + aux = 0, u(0, x) = u0(x)

is

u(t, x) = u0(x− at) =
1√
2π

∫
ξ

û0(ξ)e
iξ(x−at) dξ.

This representation comes directly from the Fourier inversion formula (we scale the Fourier transform
and its inverse with 1√

2π
) or after Fourier transformation of the PDE and solution afterwards.

We interpret this as follows: The Fourier component û0(ξ)e
iξx corresponding to the frequency ξ expands

with speed a (to the right). The propagation speed a is independent of ξ.
Let now ξ 7→ a(ξ) be a function of ξ. Then, v(x, t) = 1√

2π

∫
ξ
û0(ξ)e

iξ(x−a(ξ)t) dξ is a function with the

following property: the Fourier component of v(·, 0) corresponding to the frequency ξ moves with speed
a(ξ).
More general, one speaks of dispersion, if the Fourier components expand with ξ-dependent speed.
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Figure 3.10: Upwind, LW, LF for advection equation with discontinuous initial data.

We solve the equation
ut + aux + νuxxx = 0, u(0, x) = u0(x)

Fourier transformation (in x) gives the ODE

û(t, ξ) + aiξû(t, ξ) + ν(iξ)3û(t, ξ) = 0, û(0, ξ) = û0(ξ)

with solution
û(t, ξ) = exp(−(aiξ + ν(iξ)3)t)û0(ξ).

Fourier inversion leads to

u(t, x) =
1√
2π

∫
ξ

eiξxe−(aiξ+ν(iξ)3)tû0(ξ)dξ.

In particular, we observe that the expansion of different Fourier components of the initial values of
u0 have different speed. This is observed in the Lax-Wendroff method in Fig. 3.10 and explains the
oscillations.

3.6 Space-time-DG

We consider a more general form of (3.4):

ut + b(x, t) · ∇u+ c(x, t)u = g. (3.41)

In contrast to parabolic equations, the t-variable in (3.41) does not have a special role. Rewriting it as
(t, x) = (x0, x1, . . . , xd), we can also write this problem as

b(x) · ∇u+ c(x)u = g on Ω, (3.42)

where now Ω ⊂ Rd+1.
As a first order equation, one can not impose boundary conditions on the entire boundary ∂Ω. We define
the inflow, outflow and characteristic boundary by

Γ− := {x ∈ ∂Ω: b(x) · n(x) < 0}, (3.43)

Γ+ := {x ∈ ∂Ω: b(x) · n(x) > 0}, (3.44)

Γ= := {x ∈ ∂Ω: b(x) · n(x) = 0}. (3.45)
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Here, n(x) denotes the (outer) normal vector in the point x ∈ ∂Ω.
For the equation (3.42), we can only impose a boundary condition on Γ− or Γ+. Therefore, we consider
the boundary value problem

b(x) · ∇u+ c(x)u = g on Ω, (3.46a)

u = 0 on Γ−. (3.46b)

Example 3.42 Consider the problem

−u′ + u = g on (0, 1),

and argue that one can not require u(0) = 0 = u(1) in a sensible way, only u(0) = 0 or u(1) = 0.

Our goal is a numerical method for (3.46). Let T be a mesh that resolves Γ−, i.e., every edge e of an
element in T either satisfies e ⊂ Γ− or e ⊂ ∂Ω \ Γ−. Moreover, for K ∈ T , we denote by nK its outer
normal vector.

For motivation, we assume that the solution u of (3.46) is sufficiently smooth. Let v be a piecewise
smooth test function, i.e., v|K is smooth for all K ∈ T . Multiplication of (3.46a) with v, integration over
K and integration by parts give∫

K

gv =

∫
K

(cu+ b · ∇u)v =

∫
K

u(cv − u∇ · (bv)) +
∫
∂K

(b · nK)uv.

Summation over all elements K ∈ T then leads to∑
K∈T

∫
K

u (cv −∇ · (bv)) +
∫
∂K

(b · nK)uv =
∑
K∈T

∫
K

gv.

We now introduce the notion of flux on the boundary of the element K:

fK = (b · nK)u.

It will be convenient to denote the common edge/face (we will use the word edge for both in the following,
even tough for d > 2 this means a hyperplane) between two elements K and K ′ by

K|K ′,

where the order of the elements fixes an orientation.
Moreover, we define the neighbours of an element by

N (K) := {K ′ ∈ T | K and K ′ share a manifold with co-dimension 1}.

For the discretization, we assume that u is only piecewise smooth, i.e., in the space

Sp,0(T ) := {u ∈ L2(Ω): u|K ∈ Pp ∀K ∈ T }.

for given p ∈ N0. For a numerical realization, it is convenient to also take test functions v from this
space. As for the DG for parabolic equations, this leads to the fact that there is no coupling between
u|K and u|K′ for neighbouring elements K and K ′.
We realize this coupling by fixing a so called numerical flux on the common edge K|K ′, where two
approximations u|K and u|K′ of the exact solution are available. Thus, we replace the flux fK by some

f̂K|K′ . A reasonable choice would be, e.g.,

f̂K|K′ = (b · nK)ûK|K′ ,

where the choice of û has many possibilities. Plausible choices seem to be e.g.

� ûK|K′ = 1
2 (u|K + u|K′)|e

� ûK|K′ = u|K
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� ûK|K′ = u|K′

For boundary edges e ⊂ Γ−, one would require2

û|e = 0 ∀e ⊂ Γ−.

In the present case, the numerical flux f̂K|K′ is uniquely defined by the choice of û on the edges.
We have thus derived the following numerical method:

Find u ∈ Sp,0(T ) s.t. (3.47)

BTransDG (u, v) :=
∑
K∈T

∫
K

u (cv +∇ · (bv)) +
∫
∂K

(b · nK)ûv =

∫
Ω

gv =: l(v) ∀v ∈ Sp,0(T ).

Usually, this formulation is integrated by parts back and we obtain

Find u ∈ Sp,0(T ) s.t. (3.48)

BTransDG (u, v) =
∑
K∈T

∫
K

cuv + b · ∇uv +
∫
∂K

(b · nK)(û− u)v =

∫
Ω

gv ∀v ∈ Sp,0(T )

The choice of numerical flux is essential for the quality of the numerical method. We illustrate this on
the following example.

Example 3.43 Let g(x) = 1 + x and consider

u′ + u = g on (0, 1), u(0) = 0.

Then, the exact solution is u(x) = x. Let xi = ih, i = 0, . . . , N and Ki = (xi−1, xi). For the choice
p = 0 (i.e. piecewise constants), we write for u|Ki = ui and also v|Ki = vi for the piecewise constant test
functions. Then the DG-bilinear form reads as

BTransDG (u, v) =

N∑
i=1

∫
Ki

(u′ + u)v + (û(xi)− ui)vi − (û(xi−1)− ui)vi

=

N∑
i=1

∫
Ki

uv + (û(xi)− û(xi−1))vi

=

N∑
i=1

[hui + (û(xi)− û(xi−1))] vi,

which leads to the linear system∫
Ki

g = hui + û(xi)− û(xi−1), i = 1, . . . , N.

We consider two choices of û(xi):

� upwind flux: û(xj) = uj for 1 ≤ j ≤ N and û(x0) = 0 (and û(xN ) = uN );

� central flux: û(xj) =
1
2 (uj + uj+1) for 1 ≤ j ≤ N − 1 and û(x0) = 0 and û(xN ) = uN .

In Fig. 3.11, we observe that the choice of the upwind flux gives a good approximation to the true solution
as well as (expected!) convergence O(h), while the choice of central flux does not lead to a convergent
method.

Key for the choice of numerical flux is that it is dependent on the sign of b ·nK in (3.49). As we will see
below, the right choice of numerical flux will lead to a numerical method with good stability properties.

The upwind flux (b · nK)û is defined by the following choice of û on every edge:

2this choice seems obvious, but is not necessary!

93



0 0.2 0.4 0.6 0.8 1

0

1

x

upwind flux

central flux

10−3 10−2 10−1

10−3

10−2

10−1

100

O(h)

h

L
2
-e
rr
o
r

upwind flux

central flux

Figure 3.11: DG for the 1D example; left: solution plot, right: error plot.

� Let e be an interior edge of T that is shared by K and K ′. For x ∈ e, we define

û(x) = whatever if b(x) · nK(x) = b(x) · nK′(x) = 0

û(x) = u|K(x) if b(x) · nK(x) > 0

û(x) = u|K′(x) if b(x) · nK′(x) > 0.

� Let e be an edge on Γ−: then, we define û|e = 0.

� Let e be an edge on ∂Ω \ Γ−: then, we define û|e as limit of u from the neighbouring element.

This method has good stability properties, which we show in the following. For that we need to define
the jump [[u]] on an edge e = K|K ′:

[[u]]|e = u|KnK + u|K′nK′ if e = K|K ′ is an interior edge,

[[u]]|e = u|KnK if e is an edge on the boundary with e ⊂ ∂K.

Theorem 3.44 Assume

c− 1

2
∇ · b ≥ c0 > 0 on Ω.

With the jump [[·]] and the choice of ”upwind flux”, there holds for smooth functions u that

BTransDG (u, u) ≥
∑
K∈T

∥
√
c0u∥2L2(K) +

∑
e∈E

1

2
∥|b · nK |1/2[[u]]∥2L2(e),

where E denotes the set of all edges of T . For boundary edges, the jump is just the value of the trace.

Proof: For smooth functions u, there holds u∇u = ∇( 12u
2). Thus, for every element K ∈ T , we have∫

K

u(cu+ b · ∇u) =
∫
K

u2
(
c− 1

2
∇ · b

)
+

∫
∂K

1

2
b · nKu2.

Consequently,

BTransDG (u, u) =
∑
K∈T

∫
K

u2
(
c− 1

2
∇ · b

)
︸ ︷︷ ︸

≥c0

+

∫
∂K

b · nK
[
ûu− 1

2
u2
]
.

We write the sum
∑
K∈T

∫
∂K

as sum over all edges. Hereby, we consider:
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� Let e be an interior edge, shared by the elements K and K ′. Let x ∈ e. Let w.l.o.g. K the element
with b(x) · nK(x) > 0 (the case b(x) · nK(x) = 0 is not interesting). We then calculate due to
nK = −nK′ and the choice of û(x):

b(x) · nK(x)

(
û(x)uK(x)− 1

2
uK(x)2

)
+ b(x) · nK′(x)

(
û(x)uK′(x)− 1

2
uK′(x)2

)
= b(x) · nK(x)

(
uK(x)2 − 1

2
uK(x)2 − uK(x)uK′(x) +

1

2
uK′(x)2

)
= b(x) · nK(x)

1

2
(uK(x)− uK′(x))2.

Note that this calculation also holds true for the case b(x) · nK(x) = 0.

� If e is a boundary edge with e ⊂ Γ−, then û = 0 on e and consequently

b · nK
(
û− 1

2
u

)
u = −b · nK

1

2
u2 =

1

2
|b · nK |u2 =

1

2
|b · nK ||[[u]]|2,

where we exploited the definition of the jump on the boundary edges in the last step.

� If e is a boundary edge with e ⊂ ∂Ω \ Γ−, then b · nK ≥ 0 and û = u. Consequently,

b · nK
(
û− 1

2
u

)
u =

1

2
b · nKu2 =

1

2
b · nK |[[u]]|2,

where we again exploited the definition of the jump on the boundary edges.

Combining all edge contributions, we obtain∑
K∈T

∫
∂K

b · nK
(
û− 1

2
u

)
u =

1

2

∑
e∈E

∥|b · nK |1/2[[u]]∥2L2(e),

where we (sloppily) write nK for a normal vector on e. □

Theorem 3.44 shows that the bilinear form BTransDG is coercive. In particular, this gives unique solvability
of the discrete method.

The derivation of the variational formulation additionally shows that the method is consistent in the
following sense:
If u is a solution to (3.46) that additionally satisfies the regularity requirement u ∈ H1(Ω), then

BTransDG (u, v) = l(v) ∀v ∈ Sp,0(T ). (3.49)

This implies Galerkin orthogonality

BTransDG (u− uN , v) = 0 ∀v ∈ Sp,0(T ). (3.50)
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3.6.1 Numerical example

We consider the equation
b(x) · ∇u = f on (0, 1)2,

with given wind b(x, y) := (1, sin(4πx)/2) and source f = exp(−400 · (y − 0.5)2). The discretization is
done with DG in ngsolve with p = 2 and upwinding numerical flux. Figure 3.12 depicts the wind as well
as the numerical solution.

Figure 3.12: Numerical solution (right) to (3.42) with wind b depicted on the left.

3.7 DG and time-stepping

In the previous section, we used that the time variable does not warrant a special treatment and derived
a space-time method. In practice, as for parabolic problems, time-stepping is the more common method
and can be employed together with DG in space.

Setting: In order to not care about boundary conditions, we take the simplest case Ω = Rd (treatment
of boundary conditions is a topic on its own). Moreover, we assume that u0 has compact support.
We consider the hyperbolic conservation law

ut +∇ · f(u) = 0 on Ω× R+, u(·, 0) = u0 (3.51)

Let T be a triangulation of Ω. For (discontinuous) test-functions v ∈ Sp,0(T ), we obtain after elementwise
integration by parts∑

K∈T

d

dt

∫
K

uv −
∫
K

∇v · f(u) +
∫
∂K

nK · f(u)v = 0 ∀v ∈ Sp,0(T ).

As usual with DG methods, we have to choose a numerical flux f̂ = f̂(u, v, n) to enforce a coupling of
neighboring elements. Denote by N (K) := {K ′ ∈ T : K ∩K ′ ̸= ∅} the neighboring elements of K ∈ T .
Thus, we have the numerical method: Find u ∈ Sp,0(T ), such that∑

K

d

dt

∫
K

uv −
∫
K

∇v · f(u) +
∑

K′∈N (K)

∫
K|K′

f̂(uK , uK′ , nK)v = 0 ∀v ∈ Sp,0(T ),

where we again used the notation K|K ′ for the common edge between the elements K and K ′. For the
numerical flux, we define some desired properties.

Definition 3.45 (Numerical Flux) Let Sd−1 = {x ∈ Rd | ∥x∥2 = 1}. A function f̂ : R×R×Sd−1 → R
is called numerical flux, if it is locally Lipschitz-continuous. The numerical flux is called

� consistent, if f̂(u, u,n) = f(u) · n for all u.

� conservative, if f̂(u, v,n) = −f̂(v, u,−n).
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� monotone, if f̂ is monotone increasing in the first argument and monotone decreasing in the second
argument: f̂(↑, ↓,n).

Example 3.46 Consider the advection equation, i.e., f(u) = bu with constant b. Upwinding means
choosing on K|K ′ the numerical flux

f̂(uK , uK′ ,nK) =

{
b · nKuK if b · nK > 0

b · nKuK′ if b · nK < 0.

This choice of flux is conservative (exercise!) and consistent. Note that this choice of flux can also be
written (without case distinction) as

f̂(uK , uK′ ,nK) =
1

2
b · nK (uK′ + uK)− 1

2
|b · nK | (uK′ − uK) .

Remark 3.47 The property f̂(u, v,n) = −f̂(v, u,−n) expresses a conservation property: With the
test-function v ≡ 1, we obtain

d

dt

∫
Ω

u =
∑
K∈T

d

dt

∫
K

u = −
∑
K∈T

∑
K′∈N (K)

∫
K|K′

f̂(uK , uK′ ,nK).

Writing this as a sum over edges (i.e. hyperplanes), together with the observation that each interior edge
e in the mesh is shared by two elements Ke, K

′
e, this leads to

d

dt

∫
Ω

u = −
∑
K∈T

∑
K′∈N (K)

∫
K|K′

f̂(uK , uK′ ,nK) = −
∑
e

∫
e

f̂(uKe , uK′
e
,nKe) +

∫
e

f̂(uK′
e
, uKe ,nK′

e
)

= −
∑
e

∫
e

f̂(uKe
, uK′

e
,nKe

)− f̂(uKe
, uK′

e
,nKe

) = 0,

where we have used the conservative property in the last equation.

Now, the DG-method can be combined with a time-stepping scheme, e.g. the Euler-methods. The easiest
case is the explicit Euler method. Note that, as for previous semi-discrete methods, the term involving
the time-derivative produces a mass matrix, which now is block-diagonal (as there is no coupling between
the elements/basis functions there) and thus very efficiently inverted. Moreover, for the explicit Euler
method, there still holds the conservation property from Remark 3.47:

Exercise 3.48 Formulate the time-stepping DG-method with explicit Euler method. Denote by un the
numerical approximation at time tn. Show that∫

Ω

un+1 =

∫
Ω

un ∀n ∈ N0.

Remark 3.49 There are many choices for time-stepping. Oftentimes, a method is desirable that repro-
duces some (monotonicity) property of the exact solution. For scalar conservation laws there might hold
something like ∥u(·, t)∥L∞ ≤ ∥u0(·)∥L∞ . Methods that reproduce such a property, i.e. produce approx-
imations with ∥un+1∥ ≤ ∥un∥ (in some norm, on the ODE-level) are called strong stability preserving
methods.
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3.7.1 Numerical example

We consider the instationary transport equation

ut + div(bu) = 0 on (0, 1)2 × R+, u(·, 0) = u0 (3.52)

with given circular wind b(x, y) = (y − 0.5, 0.5 − x) and initial condition u0(x, y) = exp(−100 · [(x −
0.5)2 + (y − 0.75)2]).
The spatial discretization is done with DG in ngsolve with p = 3 and upwinding numerical flux. For
time discretization we employ the explicit Euler method. Figure 3.13 depicts the wind as well as the
numerical solution at different times.

Figure 3.13: Numerical solution to (3.52). Wind b depicted left, then initial condition at T = 0 and
numerical solutions at T = 10, 20.
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