

ROBERTSON MODEL

A MULTI-PARAMETER SINGULAR PERTURBATION PROBLEM

Lukas Baumgartner • Supervisor: Peter Szmolyan

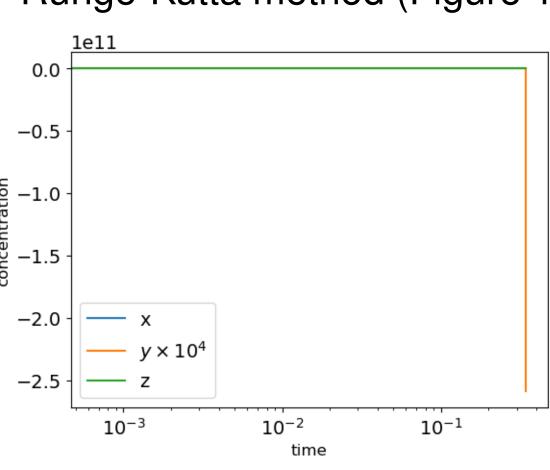
I. Model

• The classical Robertson model [6] is given by

$$\dot{x} = -k_1 x + k_3 y z$$
 $\dot{y} = k_1 x - k_2 y^2 - k_3 y z$
 $\dot{z} = k_2 y^2$, (1)

with $k_1 = 4 \cdot 10^{-2}$, $k_2 = 3 \cdot 10^7$, $k_3 = 10^4$ and initial value $(x, y, z)^T = (1, 0, 0)^T$, where $x, y, z \ge 0$ is of interest.

• The ODE (1) is a famous stiff test problem for numerical solvers, e.g. explicit Runge-Kutta method (Figure 1) vs. implicit stiff solver BDF (Figure 2):



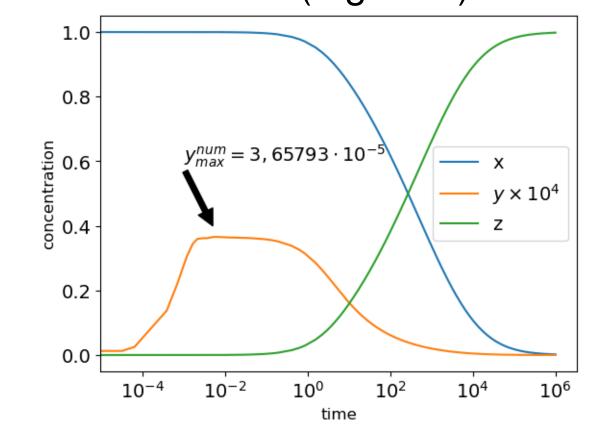


Figure 1: Numerics with RK45.

Figure 2: Numerics with BDF. Note the logarithmic time scale.

• Goal: Asymptotic analysis by Geometric Singular Perturbation Theory (GSPT), e.g. [2, 5].

II. Scalings and Singular Limits

- Assumption: Second reaction is the fastest, i.e., $k_2 >> k_1, k_3$.
- Conservation of mass $\dot{x}+\dot{y}+\dot{z}=0$, change to the fast time $\tau=k_2t$, define $\frac{k_1}{k_2}=:\tilde{k}_1,\frac{k_3}{k_2}=:\tilde{k}_3$. Dropping the $\tilde{(\cdot)}$

$$y' = k_1(c - y - z) - y^2 - k_3 yz$$

 $z' = y^2,$ (2)

where $(\cdot)'$ denotes differentiation w.r.t. τ , c is the total mass, k_1 , $k_3 << 1$ and (y,z)=(0,c) is the unique equilibrium.

- System (2) is a multi-parameter singular perturbation problem leading to three different scaling regimes: R_1 ($k_1 >> k_3$), R_2 ($k_1 \approx k_3$) and R_3 ($k_1 << k_3$).
- The limiting problem ($k_1 = k_3 = 0$)

$$y' = -y^2$$
(3)

is shown in Figure 3. The critical manifold S is given by the line y=0.

• Note that S is not normally hyperbolic, i.e., points (0,z) are nilpotent.

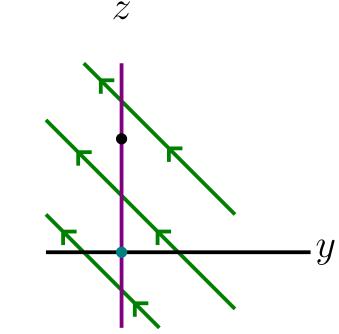


Figure 3: The non-hyperbolic critical manifold ${\cal S}$ and fast trajectories.

III. Scalings and Singular Limits

• To obtain a full description of (2) for small parameter values, we blow-up the origin of the parameter space by introducing

$$k_1 = r^2 \tilde{k}_1, \quad k_3 = r \tilde{k}_3$$
 (4

with $r \in [0, r_0)$ and $\tilde{k_1} + \tilde{k}_3 = 1$.

- Add the equation r' = 0 to (2).
- Analyze the dynamics in two charts \mathcal{K}_1 and \mathcal{K}_3 corresponding formally to setting $\tilde{k}_1=1$ and $\tilde{k}_3=1$ in (4), respectively.
- In chart \mathcal{K}_1 system (2) is given by $u' = r^2(c u z) u^2 r\tilde{k}_2 uz$

$$y' = r^{2}(c - y - z) - y^{2} - r\tilde{k}_{3}yz$$

$$z' = y^{2}$$

$$r' = 0.$$

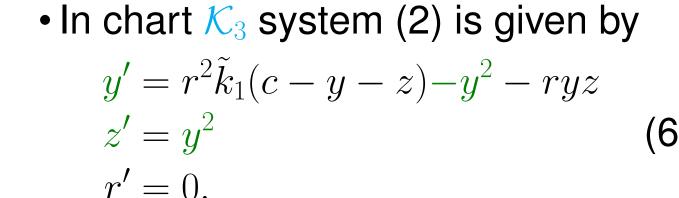


Figure 4: Parameter scaling regimes.

- Although the limiting problems (r = 0) of (5) and (6) are identical in both charts, the regimes R_1 , R_2 and R_3 have different asymptotics.
- If \tilde{k}_1 and \tilde{k}_3 are both bounded away from 0, i.e., in regime R_2 , (5) and (6) are equivalent. Here we focus on R_2 (described in chart \mathcal{K}_1 for definiteness), which covers the choice of parameters in (1).

IV. Blow-up

- The non-hyperbolic critical manifold (y = 0, r = 0) of (5) is desingularized by a cylindrical blow-up, see Figure 5.
- The **blow-up** (cf. [1, 4]) is given by

$$\Phi: \mathbb{S}^1 \times \mathbb{R} \times [0, \rho_0] \to \mathbb{R}^3$$

$$(\bar{y}, \bar{r}, \bar{z}, \rho) \mapsto (\rho \bar{y}, \bar{z}, \rho \bar{r}).$$
(7)

- Note that $\mathbb{S}^1 \times \mathbb{R} \times \{0\}$ is the cylinder.
- In the scaling chart \mathcal{K}_{12} ($\bar{r}=1$) the blow-up is given by

 $y = \rho y_2, z = z_2, r = \rho.$

ullet The equations in \mathcal{K}_{12} are

$$y'_{2} = c - \rho y_{2} - z_{2} - y_{2}^{2} - \tilde{k}_{3} y_{2} z_{2}$$

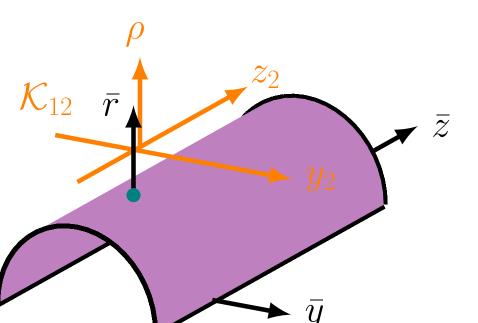
$$z'_{2} = \rho y_{2}^{2}$$

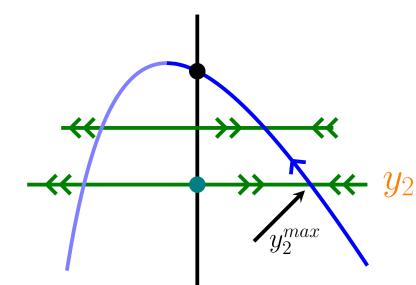
$$\rho' = 0.$$
(8)

• System (8) is slow-fast in ρ . For $\rho=0$, i.e., on the cylinder, we find a critical manifold S_1 given by

$$S_1 = \left\{ (y_2, z_2)^T \in \mathbb{R}^2 : z_2 = \frac{c - y_2^2}{1 + \tilde{k}_3 y_2} \right\},$$

which is normally attracting for $y_2 > \frac{-1}{\tilde{k}_2}$.





 y_2^{max}

Figure 5: The preimage of the line y = 0, r = 0 under (7) is the cylinder $\rho = 0$.

Figure 6: Dynamics of (8) with $\rho=0$, i.e. on the cylinder for $\frac{1}{\tilde{k}_3^2}>c$.

Figure 7: Dynamics of (8) with $\rho=0$, i.e. on the cylinder for $\frac{1}{\tilde{k}_3^2} < c$.

V. Results

- There exists a singular orbit γ_0 : A layer connecting the initial value to S_1 , following the reduced flow on S_1 converging to the equilibrium.
- Fenichel theory [2] implies that there exists a smooth orbit γ_{ρ} close to γ_{0} , for $\rho>0$ small enough.
- There is good quantitative agreement with the numerics:

$$y_{max}^{asy} = \sqrt{\frac{4}{3}} \cdot 10^{-\frac{9}{2}} + O(10^{-9}) \approx 3,6514 \cdot 10^{-5}.$$

• This proofs a heuristic argument in [3].

VI. Conclusion and Outlook

- Using (GSPT) and the blow-up method we obtained a **full asymptotic analysis** of the Robertson model in the regime R_2 .
- We did not discuss the asymptotic behaviour in the regimes R_1 and R_3 . These more complicated cases are part of ongoing work.
- Multi-parameter singular perturbations are expected to be important in many chemical reaction networks.

VII. References

- [1] F. Dumortier and R. Roussarie. *Canard Cycles and Center Manifolds*. Vol. 121. Memoirs of the American Mathematical Society 577. American Mathematical Society, 1996.
- [2] N. Fenichel. "Geometric Singular Perturbation Theory for Ordinary Differential Equations". In: *Journal of Differential Equations* 31.1 (1979), pp. 53–98.
- [3] E. Hairer and G. Wanner. *Solving Ordinary Differential Equations II*. 2nd ed. Springer, 1996.
- [4] M. Krupa and P. Szmolyan. "Extending geometric singular perturbation theory to nonhyperbolic points-Fold and canard points in two dimensions". In: *SIAM Journal on Mathematical Analysis* 33.2 (2001), pp. 286–314.
- [5] C. Kuehn. *Multiple Time Scale Dynamics*. Vol. 191. Applied Mathematical Sciences. Springer, 2015.
- [6] H.H. Robertson. "The Solution of a Set of Reaction Rate Equations". In: *Numerical Analysis: An Introduction*. Academic Press, 1966, pp. 178–182.

Contact

Mail: lukas.baumgartner@tuwien.ac.at