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IV. Blow-up

* The classical Robertson model [6] is given by

T = —]Cl.flf + kgyz
y = kix — kay” — k3yz (1)
Z = k2y27
with k1 = 4-1072, ky = 3 - 107, k3 = 10* and initial value (x,y, 2)! = (1,0,0),
where x,y, z > 0 Is of interest.

* The ODE (1) is a famous stiff test problem for numerical solvers, e.g. explicit
Runge-Kutta method (Figure 1) vs. implicit stiff solver BDF (Figure 2):
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Figure 1: Numerics with RK45. Note the logarithmic time scale.

» Goal: Asymptotic analysis by Geometric Singular Perturbation Theory (GSPT),
e.g. [2, 9].

Il. Scalings and Singular Limits

» Assumption: Second reaction is the fastest, i.e., ky >> ky, ks.

» Conservation of mass z + y + z = 0, change to the fast time 7 = k¢, define
" —: ki, & = ks. Dropping the (-)
Y =kilc—y—2z) =y — ksyz
/2 (2)
<= y )
where () denotes differentiation w.r.t. 7, c is the total mass, ki, k3 << 1 and
(y, 2) = (0, c¢) is the unique equilibrium.

« System (2) is a multi-parameter singular perturbation problem leading to
three different scaling regimes: R, (k; >> k3), Ry (k1 = k3) and R3 (k1 << k3).
<

* The limiting problem (k; = k3 = 0)
/2
L 3)
2=y
IS shown in Figure 3. The critical
manifold S is given by the line y = 0.

*Note that S is not normally hyper-

bolic, i.e., points (0, z) are nilpotent. Figure 3: The non-hyperbolic critical
manifold S and fast trajectories.

* To obtain a full description of (2) for small
parameter values, we blow-up the origin
of the parameter space by introducing

]Cl — 7‘2/%1, /Cg — 7”];3 (4)
with r € [0,7) and k; + ks = 1.
» Add the equation ' = 0 to (2).

* Analyze the dynamics in two charts /C;
and /C; corresponding formally to setting
I, = 1 and & = 1 in (4), respectively.

*In chart /C; system (2) is given by * In chart /C; system (2) is given by

Figure 4: Parameter scaling regimes.

v =1ic—y—2)—y —rkyz v =rki(c—y—2)—y’ —ryz
=y (5) 2=y (6)

r' = 0. r' = 0.

* Although the limiting problems (r = 0) of (5) and (6) are identical in both charts,
the regimes R, Ry and R have different asymptotics.

* If &, and k; are both bounded away from 0, i.e., in regime R, (5) and (6) are
equivalent. Here we focus on R, (described in chart /C, for definiteness), which
covers the choice of parameters in (1).

* The non-hyperbolic critical manifold (y = 0, » = 0) of (5) is desingularized by a
cylindrical blow-up, see Figure 5.

* The blow-up (cf. [1, 4]) is given by
d:S'x R x [0, py] = R’
(Y, 7,2, p) = (pY, 2, pT).
 Note that S' x R x {0} is the cylinder.

*In the scaling chart » The equations in /C,, are
fon (= 1) the blow- Yo = ¢ — pya — 22 — Y3 — ko2
up is given by 2b = py? (8)
Y= pY2, 2= 2, 7 =P o =0.

» System (8) is slow-fast in p. For p = 0, i.e., on the cylinder, we find a critical
manifold S| given by

c — 2
Sl — {(yQ,ZQ)T & RQ L 2o = ~y2 },

1+ ksyo
which is normally attracting for y, > —.
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Figure 5: The preimage of Figure 6: Dynamics of Figure 7: Dynamics of
the line y = 0, » = 0 under (8) with p = 0, i.e. on (8) with p = 0, i.e. on
(7) is the cylinder p = 0. the cylinder for % > c. the cylinder for é < c.

3 3

V. Reslults

* There exists a singular orbit ~,: A layer connecting the initial value to 5i,
following the reduced flow on S; converging to the equilibrium.

* Fenichel theory [2] implies that there exists a smooth orbit v, close to , for
p > 0 small enough.

* There is good quantitative agreement with the numerics:

ymaaz

4
asy _ \@ 1072 + O(107%) ~ 3,6514 - 107°.

* This proofs a heuristic argument in [3].

VI. Conclusion and Outlook

* Using (GSPT) and the blow-up method we obtained a full asymptotic anal-
ysis of the Robertson model in the regime Rs.

* We did not discuss the asymptotic behaviour in the regimes R, and R;. These
more complicated cases are part of ongoing work.

* Multi-parameter singular perturbations are expected to be important in many
chemical reaction networks.
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