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I. Model

• The classical Robertson model [6] is given by

ẋ = −k1x + k3yz

ẏ = k1x− k2y
2 − k3yz

ż = k2y
2,

(1)

with k1 = 4 · 10−2, k2 = 3 · 107, k3 = 104 and initial value (x, y, z)T = (1, 0, 0)T ,
where x, y, z ≥ 0 is of interest.

• The ODE (1) is a famous stiff test problem for numerical solvers, e.g. explicit
Runge-Kutta method (Figure 1) vs. implicit stiff solver BDF (Figure 2):

Figure 1: Numerics with RK45.
Figure 2: Numerics with BDF.
Note the logarithmic time scale.

• Goal: Asymptotic analysis by Geometric Singular Perturbation Theory (GSPT),
e.g. [2, 5].

II. Scalings and Singular Limits

• Assumption: Second reaction is the fastest, i.e., k2 >> k1, k3.
• Conservation of mass ẋ + ẏ + ż = 0, change to the fast time τ = k2t, define
k1
k2
=: k̃1, k3

k2
=: k̃3. Dropping the (̃·)

y′ = k1(c− y − z)− y2 − k3yz

z′ = y2,
(2)

where (·)′ denotes differentiation w.r.t. τ , c is the total mass, k1, k3 << 1 and
(y, z) = (0, c) is the unique equilibrium.

• System (2) is a multi-parameter singular perturbation problem leading to
three different scaling regimes: R1 (k1 >> k3), R2 (k1 ≈ k3) and R3 (k1 << k3).

• The limiting problem (k1 = k3 = 0)
y′ = −y2

z′ = y2
(3)

is shown in Figure 3. The critical
manifold S is given by the line y = 0.

• Note that S is not normally hyper-
bolic, i.e., points (0, z) are nilpotent.
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Figure 3: The non-hyperbolic critical
manifold S and fast trajectories.

III. Scalings and Singular Limits

• To obtain a full description of (2) for small
parameter values, we blow-up the origin
of the parameter space by introducing

k1 = r2k̃1, k3 = rk̃3 (4)

with r ∈ [0, r0) and k̃1 + k̃3 = 1.
• Add the equation r′ = 0 to (2).
• Analyze the dynamics in two charts K1

and K3 corresponding formally to setting
k̃1 = 1 and k̃3 = 1 in (4), respectively.

R3

R2

R1
k̃1

k̃3

K1

K3

Figure 4: Parameter scaling regimes.

• In chart K1 system (2) is given by
y′ = r2(c− y − z)−y2 − rk̃3yz

z′ = y2

r′ = 0.

(5)

• In chart K3 system (2) is given by
y′ = r2k̃1(c− y − z)−y2 − ryz

z′ = y2

r′ = 0.

(6)

• Although the limiting problems (r = 0) of (5) and (6) are identical in both charts,
the regimes R1, R2 and R3 have different asymptotics.

• If k̃1 and k̃3 are both bounded away from 0, i.e., in regime R2, (5) and (6) are
equivalent. Here we focus on R2 (described in chart K1 for definiteness), which
covers the choice of parameters in (1).

IV. Blow-up

• The non-hyperbolic critical manifold (y = 0, r = 0) of (5) is desingularized by a
cylindrical blow-up, see Figure 5.

• The blow-up (cf. [1, 4]) is given by
Φ : S1 × R× [0, ρ0] → R3

(ȳ, r̄, z̄, ρ) 7→ (ρȳ, z̄, ρr̄).
(7)

• Note that S1 × R× {0} is the cylinder.
• In the scaling chart
K12 (r̄ = 1) the blow-
up is given by
y = ρy2, z = z2, r = ρ.

• The equations in K12 are
y′2 = c− ρy2 − z2 − y22 − k̃3y2z2
z′2 = ρy22
ρ′ = 0.

(8)

• System (8) is slow-fast in ρ. For ρ = 0, i.e., on the cylinder, we find a critical
manifold S1 given by

S1 =
{
(y2, z2)

T ∈ R2 : z2 =
c− y22
1 + k̃3y2

}
,

which is normally attracting for y2 > −1
k̃3

.

z̄
r̄

ȳ
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Figure 5: The preimage of
the line y = 0, r = 0 under
(7) is the cylinder ρ = 0.
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Figure 6: Dynamics of
(8) with ρ = 0, i.e. on
the cylinder for 1

k̃23
> c.
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Figure 7: Dynamics of
(8) with ρ = 0, i.e. on
the cylinder for 1

k̃23
< c.

V. Results

• There exists a singular orbit γ0: A layer connecting the initial value to S1,
following the reduced flow on S1 converging to the equilibrium.

• Fenichel theory [2] implies that there exists a smooth orbit γρ close to γ0, for
ρ > 0 small enough.

• There is good quantitative agreement with the numerics:

yasymax =

√
4

3
· 10−

9
2 +O(10−9) ≈ 3, 6514 · 10−5.

• This proofs a heuristic argument in [3].

VI. Conclusion and Outlook

• Using (GSPT) and the blow-up method we obtained a full asymptotic anal-
ysis of the Robertson model in the regime R2.

• We did not discuss the asymptotic behaviour in the regimes R1 and R3. These
more complicated cases are part of ongoing work.

• Multi-parameter singular perturbations are expected to be important in many
chemical reaction networks.
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