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Kurzfassung

Diese Arbeit widmet sich ratenoptimalen adaptiven Finite ElementeMethoden (AFEMs)
zur Lösung von semilinearen, elliptischen partiellen Differentialgleichungen (PDEs). Das
zugrundeliegendeModellproblem besitzt einen nichtlinearen Reaktionsterm, wobei der
mit der PDE assoziierte Operator lokal Lipschitz-stetig ist. Diese Arbeit präsentiert und
analysiert Algorithmen, welchemehrere Fehlerquellen passend austarieren und dadurch
ratenoptimal sind, d.h. eine Fehlergröße fällt mit bestmöglicher Rate über der Anzahl der
Freiheitsgrade der Diskretisierung. Die drei Hauptkapitel haben folgenden Inhalt:
Im ersten Hauptkapitel untersuchen wir eine zielgerichtete AFEM (engl. goal-oriented

AFEM, GOAFEM) für semilineare Problememit linearer Zielgröße (engl. quantity of inte-
rest). Bei GOAFEM steht die ratenoptimale Approximation eines Funktionalwertes der ex-
akten, aber unbekannten Lösung im Vordergrund. Mittels gängiger Dualisierungstechnik
ist der Approximationsfehler durch ein Produkt zweier Fehlerkomponenten abschätzbar,
wodurch sich Konvergenzraten potentiell addieren. Dadurch ist GOAFEM in der Praxis
sehr geschätzt. Der Approximationsfehler im Zielfunktional führt bei nichtlinearen Pro-
blemen zu einem nicht-berechenbaren, theoretischen dualen Problem, welches von der
exaktenLösung abhängt.Deshalbwirddieses durch einberechenbares, praktisches duales
Problem ersetzt. Passendes Markieren der zu verfeinernden Elemente ermöglicht den
Beweis von linearer Konvergenz: Kontraktion des Fehlerprodukts unabhängig davon, wel-
che Fehlerkomponente die markierten Elemente bestimmt. Weiters zeigen wir optimale
Konvergenzraten bezüglich der Anzahl der Freiheitsgrade der Diskretisierung. Dies er-
weitert die Literatur über ratenoptimale GOAFEM erstmalig auf einModellproblemmit
nichtlinearer PDE.
UmdasnichtlineareModellproblemeffizient zu lösen, betrachtenwir imzweitenHaupt-

kapitel eine AFEM, welche auch die Anzahl der Linearisierungsschritte adaptiv steuert.
Wir nehmen zunächst an, dass die linearisierten Systememit linearem Aufwand exakt
gelöst werden können. Dann ist der präsentierte Algorithmus (engl. adaptive iteratively
linearized FEM, AILFEM) kostenoptimal. Das heißt, eine Fehlergröße fällt mit optimalen
Raten über dem kumulativen Rechenaufwand zur Berechnung der numerischen Appro-
ximation. Die Hauptschwierigkeit in der numerischen Analysis lokal Lipschitz-stetiger
Probleme ist es, die uniforme Beschränktheit aller berechneten Iterierten zu zeigen. Da-
mit können wir volle R-lineare Konvergenz zeigen, d.h. Kontraktion einer Fehlergröße
unabhängig von derWahl der Adaptivitätsparameter und unabhängig davon, ob dasGitter
verfeinert wird oder ein weiterer Linearisierungsschritt vollzogen wird. Für hinreichend
kleine Adaptivitätsparameter zeigen wir schließlich optimale Konvergenzraten bezüglich
des theoretischen Rechenaufwands der präsentierten AILFEM.
Im dritten Hauptkapitel analysieren wir die obige AILFEM, wobei das linearisierte Pro-

blemmittels eines algebraischenLösers approximativ gelöstwird.DienumerischeStörung
dieser inexakten Linearisierung erhöht signifikant die mathematische Schwierigkeit, die
uniforme Beschränktheit aller Iterierten zu zeigen. Wie zuvor beweisen wir volle R-lineare
Konvergenz einer Fehlergröße, welche nun Diskretisierungs-, Linearisierungs- und alge-
braischen Fehler beinhaltet. Wir folgern optimale Raten bezüglich des Rechenaufwands.
Da nun alle Schritte der AILFEM rigorosmit linearer Komplexität realisierbar sind, sind
Konvergenzraten bezüglich des kumulativen Rechenaufwands auch als Raten bezüglich
der Gesamtrechenzeit zu verstehen. Dies zeigt sich auch in numerischen Experimenten.





Abstract

This thesis is devoted to rate-optimal adaptive finite element methods (AFEMs) for semi-
linear elliptic partial differential equations (PDEs). It considers amodel problemwith a
nonlinear reaction term, where the operator associated to the PDE is locally Lipschitz
continuous. By equilibrating various error sources, this thesis proves that all presented
algorithms are rate-optimal, i.e., a suitable error quantity converges with optimal decay
rate with respect to the number of degrees of freedom of the discretization. The main
contributions are the following:
First, we investigate a goal-oriented AFEM (GOAFEM) for the semilinear model prob-

lem where the principal aim is to approximate a linear functional (quantity of interest)
evaluated at the exact, but unknown solution with optimal convergence rates. Bymeans
of established duality techniques, the approximation error can be estimated by a product
of two approximation errors. This product structure allows that convergence rates add
up, contributing substantially to the attractivity of GOAFEMs in practice. For nonlinear
problems, the approximation error in the goal first leads to a noncomputable theoretical
dual problem that depends on the unavailable exact solution. To make the goal error
accessible, we replace this by a computable practical dual problem. A suitablemarking
strategy for the refinement allows for the proof of R-linear convergence: contraction of
the error product regardless of which error component determines themarked elements.
Moreover, we show optimal convergence rates with respect to the number of degrees of
freedomof the discretization. This, for the first time, extends the literature on rate-optimal
GOAFEM to amodel problemwith underlying nonlinear PDE.
Second, to efficiently solve the nonlinear model problem, we consider an AFEM, where

the number of linearization steps is also steered adaptively. Under the assumption that
all arising linear systems can be solved at linear cost, the proposed algorithm, coined
as adaptive iteratively linearized finite element method (AILFEM), is cost-optimal. This
means that the suitable error quantity decays with optimal convergence rates with respect
to the (theoretical) overall computational cost that is needed to obtain the numerical
approximation. Themain challenge in the numerical analysis of locally Lipschitz continu-
ous problems is to ensure that all iterates are uniformly bounded. Having achieved this,
we prove full R-linear convergence, i.e., contraction of an error quantity independently
of the adaptivity parameters and regardless of whether we refine the mesh or perform
a linearization step. For sufficiently small adaptivity parameters, we eventually estab-
lish optimal convergence rates with respect to the theoretical computational cost of the
proposed AILFEM.
Third, we analyze the preceding AILFEM, where the linearized problem is additionally

solvedwith an iterative algebraic solver. This perturbation of the exact linearization proce-
dure significantly increases the technicalities to verify uniform boundedness of all iterates.
As before, we prove full R-linear convergence for an error quantity that now consists of er-
ror components stemming from discretization, linearization, and the algebraic solver. We
conclude optimal rates with respect to computational complexity. Importantly, all steps in
the AILFEM strategy can now rigorously be realized in linear complexity. Hence, optimal
convergence rates with respect to overall computational cost can indeed be understood
as optimal convergence rates with respect to computation time. This is also observed in
numerical experiments.
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1 Introduction

Nowadays in science, partial differential equations (PDEs) are ubiquitous. Their appli-
cations range from classical mechanics to electrodynamics, hysteresis phenomena, the
Schrödinger equation in quantum physics, but PDEs are also used as the underlying
mathematical foundation for the Black–Scholes equation in option pricing. Due to the
complex nature of PDEs, their exact solution is in general not available. Thismakes the de-
velopment of numericalmethods to reliably approximate the unknown solution of highest
relevance. Adaptive finite element methods (AFEMs) are computationally particularly
effective as underlined by the following quote.

In the past three decades self-adaptive discretisationmethods have gained enormous importance
for the numerical solution of partial differential equations that arise from physical and technical
applications. The aim is to obtain a numerical solution within a prescribed tolerance using a
minimal amount of work. [emphasis added in boldface]

—Rüdiger Verfürth in [Ver13, Preface], 2013

This thesis investigates adaptive finite element methods (AFEMs) for a certain class
of nonlinear problems, namely semilinear elliptic PDEs. The principal objective is to
prove optimal convergences rates with respect to the number of degrees of freedom of
computable approximate solutions towards the exact (unknown) solution or towards a
quantity of interest that depends on the exact solution. The presented AFEMs have proven
optimal convergence rates with respect to the number of degrees of freedom of the finite
element space and, by including linearization and algebraic solver, also quasi-optimal
computational cost.
The thesis is structured as follows: This introduction discusses the involved concepts,

presents themain results, and puts the results in context with the existing literature. In
Section 1.1, we present the semilinear model problem considered throughout the thesis
and its inherent properties. Section 1.2 introduces the concept of mesh adaptivity and dis-
cusses the standard routines that are present in any AFEM routine. Wepresent a schematic
AFEM algorithm that also takes linearization and an algebraic solver into account (adap-
tive iteratively linearized FEM, AILFEM; Algorithm 1.8 below). Section 1.3 explains in
which sense optimal convergence is understood and presents themain contributions of
this thesis for the presented AILFEMs. Section 1.4 motivates the extension of AFEM to the
goal-oriented setting (GOAFEM) and states themain theorem on optimal convergence
rates. We conclude the introduction with an outline of this thesis in Section 1.5 and other
scientific contributions beyond this thesis that are not presented in detail (Section 1.6).
Themain part of the thesis is subdivided into threemain chapters.
[ 1 GOA]: R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Rate-
optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. Comput. Math. Appl.,
118:18–35, 2022. DOI: 10.1016/j.camwa.2022.05.008

Chapter 2 is based on [ 1 GOA] and investigates a GOAFEM for the semilinear model prob-
lem. Themain results are optimal convergence rateswith respect to the number of degrees
of freedom of the finite element space.

1
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[ 2 AIL1]: R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Cost-
optimal adaptive iterative linearized FEM for semilinear elliptic PDEs. ESAIMMath.
Model. Numer. Anal., 57(4):2193–2225, 2023. DOI: 10.1051/m2an/2023036

Chapter 3 recasts the semilinear model problem in an abstract framework of locally Lips-
chitz continuous operators and proves optimal convergence rates with respect to compu-
tational cost under the assumption that the arising linearized systems can be solved in
linear complexity. The underlying publication of this chapter is [ 2 AIL1].

[ 3 AIL2]: M. Brunner, D. Praetorius, and J. Streitberger. Cost-optimal adaptive FEMwith
linearization and algebraic solver for semilinear elliptic PDEs, 2024. arXiv: 2401.06486

Building on [ 2 AIL1], we analyze the proposed AILFEMwith an additional nested loop to
solve the linearized systems iteratively in linear complexity. Chapter 4 investigates the
perturbation from the inexact linearization and is based on [ 3 AIL2]. Since all steps in
the proposed algorithm can indeed be realized in linear complexity, we prove optimal
convergence rates with respect to computation time.

1.1 Semilinear elliptic problem and first results

By means of conforming finite element methods, we seek for a rate-optimal discrete
approximation of the solution𝑢★ ∈ 𝐻 1

0 (Ω) to the second-order semilinear ellipticmodel
problem

−div(𝑨 ∇𝑢★) + 𝑏 (𝑢★) = 𝑓 − div(𝒇 ) inΩ, (1.1)
𝑢★ = 0 on 𝜕Ω,

where the computational domain Ω ⊂ ℝ𝑑 is a Lipschitz domain with 𝑑 ∈ {1, 2, 3}, the
diffusion coefficient 𝑨 : Ω → ℝ𝑑×𝑑

sym is elliptic, the nonlinear reaction coefficient 𝑏 : Ω → ℝ

is monotonically increasing, and given data 𝑓 ∈ 𝐿2(Ω) and 𝒇 ∈ [𝐿2(Ω)]𝑑 . A precise
discussion of the assumptions is found in [ 2 AIL1, Section 3.3 below]. For the moment,
we only highlight that the nonlinear reaction 𝑠 ↦→ 𝑏 (𝑠 ) for 𝑠 ∈ ℝ satisfies a certain growth
condition (for further details, cf. (GC) and its more restrictive variant (CGC) below). This
growth condition ensures that the semilinear term is a compact perturbation of a linear
model problem.
In itsweak form, themodel problem (1.1) reads: Find a solution𝑢★ ∈ 𝐻 1

0 (Ω) that satisfies

⟨A𝑢★, 𝑣⟩ B ⟨𝑨 ∇𝑢★,∇𝑣⟩Ω+⟨𝑏 (𝑢★), 𝑣⟩Ω = ⟨𝑓 , 𝑣⟩Ω+⟨𝒇 ,∇𝑣⟩Ω C ⟨𝐹 ,𝑣⟩ for all 𝑣 ∈ 𝐻 1
0 (Ω), (1.2)

where ⟨· , ·⟩Ω denotes the 𝐿2(Ω)-scalar product, which is naturally extended to the duality
brackets ⟨· , ·⟩ between𝐻 1

0 (Ω) and its topological dual space𝐻 −1(Ω) = 𝐻 1
0 (Ω)′. The weak

formulation is obtained bymultiplying the strong form (1.1) with a so-called test function
𝑣 ∈ 𝐻 1

0 (Ω) and integration by parts. Since 𝐻 1
0 (Ω)-functions can be characterized by its

vanishing trace on the boundary, the boundary condition is already incorporated into the
ansatz space𝐻 1

0 (Ω). We note that 𝐹 ∈ 𝐻 −1(Ω), and oftentimes abbreviate 𝐹 (𝑣 ) B ⟨𝐹 , 𝑣⟩.
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1.1 Semilinear elliptic problem and first results

Throughout the thesis, we suppose that the linear diffusion coefficient 𝑨 (𝑥) is bounded,
symmetric, and uniformly elliptic. For 𝑣 ∈ 𝐻 1

0 (Ω), the associated energy norm ⦀ ·⦀ is
induced by the principal part of the PDE and defined as

⦀𝑣⦀2 B ⟨𝑨 ∇𝑣 , ∇𝑣⟩Ω.

This is an equivalent norm on𝐻 1
0 (Ω). The induced energy scalar product is denoted by

⟪ · , ·⟫ = ⦀ ·⦀2.
To guaranteewell-posedness of (1.2) (and hence the well-posedness of themodel prob-

lem), we require that the operatorA : 𝐻 −1(Ω) → 𝐻 1
0 (Ω) is strongly monotone, i.e., there

exists 𝛼 > 0 such that

𝛼 ⦀𝑣 −𝑤⦀

2 ≤ ⟨A𝑣 − A𝑤 , 𝑣 −𝑤⟩ for all 𝑣,𝑤 ∈ 𝐻 1
0 (Ω), (SM)

and locally Lipschitz continuous, i.e., there exists 𝐿 [max{⦀𝑣⦀,⦀𝑤⦀}] > 0 such that

sup
𝜑 ∈𝐻 1

0 (Ω)\{0}

⟨A𝑣 − A𝑤 , 𝜑⟩
⦀𝜑⦀

≤ 𝐿 [max{⦀𝑣⦀,⦀𝑤⦀}] ⦀𝑣 −𝑤⦀ for all 𝑣,𝑤 ∈ 𝐻 1
0 (Ω). (LIP)

Then, the Browder–Minty theorem onmonotone operators (see [Zei90, Theorem 26.A])
guarantees the existence and uniqueness of the solution𝑢★ ∈ 𝐻 1

0 (Ω) to (1.2).
The weak form (1.2) can bemade approximable through discretization techniques. One

fundamental advantage of finite element methods is that they allow for fairly general ge-
ometries. In order to neglect any error form the partition of the domain, let the underlying
domainΩ ⊂ ℝ𝑑 be a polygonal, bounded Lipschitz domain.
Once the domainΩ is decomposed by a simplicial triangulation T𝐻 (cf. [EG04, Section

1.3]), we replaceX B 𝐻 1
0 (Ω) by piecewise polynomial ansatz spaces with fixed 𝑝 ∈ ℕ

S𝑝 (T𝐻 ) B {𝑣 ∈ 𝐻 1(Ω) | for all𝑇 ∈ T𝐻 , 𝑣𝐻 |𝑇 is a polynomial of total degree ≤ 𝑝}.

Furthermore, we defineX𝐻 B S𝑝

0 (T𝐻 ) B 𝐻 1
0 (Ω) ∩ S𝑝 (T𝐻 ). The discrete formulation reads:

Seek𝑢★
𝐻
∈ X𝐻 such that

⟨A𝑢★
𝐻 , 𝑣𝐻 ⟩ = ⟨𝐹 , 𝑣𝐻 ⟩ for all 𝑣𝐻 ∈ X𝐻 . (1.3)

SinceX𝐻 ⊂ X is a closed subspace, the Browder–Minty theorem ensures the existence and
uniqueness of the discrete solution𝑢★

𝐻
∈ X𝐻 as well.

The compact growthof the semilinearity𝑏 ensures that there exists awell-defined energy
functional E for the semilinear model problem (1.2) (cf. [ 2 AIL1, Assumption (CGC) and
Section 3.3.6 below]). Hence, the semilinearmodel problem (1.2) can be seen as the Euler–
Lagrange equation of an energy minimization problem with a Gâteaux differentiable
functional E : X → ℝ. More precisely, the operatorA possesses a Gâteaux differentiable
potential P : X → ℝ such that its derivative dP : X′ → X equalsA, i.e.,

⟨A𝑣 , 𝑤⟩ = ⟨dP𝑣 , 𝑤⟩ = lim
𝑡→0

P(𝑣 + 𝑡𝑤 ) − P(𝑣 )
𝑡

for all 𝑣,𝑤 ∈ X. (POT)

3



1 Introduction

The energy E can be defined as E(𝑣 ) B (P − 𝐹 )𝑣 and, for (1.2), reads

E(𝑣 ) B 1
2

∫
Ω
|𝑨1/2∇𝑣 |2 d𝑥 +

∫
Ω

∫ 𝑣 (𝑥 )

0
𝑏 (𝑠 ) d𝑠 d𝑥 −

∫
Ω
𝑓 𝑣 d𝑥 −

∫
Ω
𝒇 · ∇𝑣 d𝑥. (1.4)

There holds a classical equivalence that relates energy norm ⦀ ·⦀ and energy differences.

Lemma 1.1 (see, e.g., [GHPS18, Lemma 5.1]). Suppose that A satisfies (SM), (LIP),
and (POT). Let 𝑣𝐻 ∈ X𝐻 withmax{⦀𝑣𝐻⦀,⦀𝑢★

𝐻
⦀} ≤ 𝜗. Then, it holds that

𝛼

2 ⦀𝑢★
𝐻 − 𝑣𝐻⦀2 ≤ E(𝑣𝐻 ) − E(𝑢★

𝐻 ) ≤
𝐿 [𝜗]
2 ⦀𝑢★

𝐻 − 𝑣𝐻⦀2. (1.5)

In particular, the discrete formulation to (1.3) is equivalent to the energy minimization
problem:

Find 𝑢★
𝐻 ∈ X𝐻 such that E(𝑢★

𝐻 ) = min
𝑣𝐻 ∈X𝐻

E(𝑣𝐻 ). □ (1.6)

An important feature of strongly monotone and locally Lipschitz continuous problems
is that there holds a quasi-best approximation property (see [ 1 GOA, Proposition 2.11
below] for the semilinear model problem and [ 2 AIL1, Proposition 3.2 below] for its proof
in the abstract setting).
Proposition1.2 (Céa). Suppose (SM)and (LIP). Then, the solution𝑢★ ∈ 𝐻 1

0 (Ω) from (1.2)
and its discrete approximation𝑢★

𝐻
∈ X𝐻 from (1.3) satisfy

⦀𝑢★ − 𝑢★
𝐻⦀ ≤ 𝐿 [2𝑀 ]

𝛼
min
𝑣𝐻 ∈X𝐻

⦀𝑢★ − 𝑣𝐻⦀, where 𝑀 B
1
𝛼
||𝐹 − A0||𝐻 −1 (Ω) . (1.7)

We use𝐶Céa = 𝐶Céa [𝑀 ] B 𝐿 [2𝑀 ]/𝛼 to abbreviate the constant. The factor 2 stems from
a slightly different but equivalent definition of local Lipschitz continuity (cf. (LIP) and
Remark 3.1 in the third chapter below). □

The investigation of nonlinearities typically asks which (polynomial) growth𝑁 ∈ ℕ0 of
the reaction contribution

|𝑏 | : ℝ → ℝ, 𝜉 ↦→ |𝑏 (𝜉 ) | ≤ 𝐶 |𝜉 |𝑁 for𝐶 > 0 (1.8)

is possible such that the problem (1.2) remains computationally stable. By choosing suit-
able norms that are connected to the variational setting, this question can be answered
with arguments based on Sobolev embeddings and is related to the local Lipschitz con-
tinuity in its core. To see this, suppose that 𝑏 (0) = 0. This is without loss of generality,
since otherwise the right-hand side of (1.2) may be replaced by 𝑓 B 𝑓 − 𝑏 (0). The suitable
growth condition on𝑁 from [ 3 AIL2, Assumption (GC) below] reads:

4



1.1 Semilinear elliptic problem and first results

There exist 𝑅 > 0 and𝑁 ∈ ℕwith𝑁 ≤ 5 for 𝑑 = 3 such that

|𝑏 (𝑁 ) (𝜉 ) | ≤ 𝑅 for all 𝜉 ∈ ℝ. (GC)

The growth condition (GC) admits the estimate

||𝑏 (𝑢𝐻 ) − 𝑏 (0) ||𝐻 −1 (Ω) ≲ ⦀𝑢𝐻 − 0⦀𝑝 C 𝐶bnd [⦀𝑢𝐻⦀] ⦀𝑢𝐻⦀ for all appoximations𝑢𝐻 ≈ 𝑢★.

In the existing literature, discrete 𝐿∞(Ω)-bounds are either assumed for the discrete exact
solutions (e.g., [HPZ15; XHYM21]) or derived under the assumption that𝑢★ ∈ 𝐻 𝑠 (Ω) for
𝑠 > 1 [BHSZ11]. Without additional regularity, a discrete maximum principle is restrictive
in an adaptive setting, since it imposes angle constraints on the triangulations. Oftentimes,
global Lipschitz continuity of 𝑏 , i.e., a global Lipschitz constant 𝐿 > 0 is also supposed in
the literature (e.g., [AW15; HPZ15; XHYM21]).
The preprint [BHSZ11] shows that the global Lipschitz continuity can be replaced

by a growth condition. By further improving this approach (without supposing addi-
tional regularity), all presented works [ 1 GOA, Chapter 2 below], [ 2 AIL1, Chapter 3 below],
and [ 3 AIL2, Chapter 4 below] rely on growth conditions and only on the local Lipschitz
continuity of the semilinearity 𝑏 without discrete 𝐿∞(Ω)-bounds. This is a novel result and
generalizes the existing literature.
The difficulty of requiring the Lipschitz continuity assumption (LIP) only locally is that

the Lipschitz constant may vary with the functions 𝑣 ∈ 𝐻 1
0 (Ω) and𝑤 ∈ 𝐻 1

0 (Ω). This is
also the case in the energy equivalence from Lemma 1.1 and the Céa lemma 1.2 that ex-
ploit (LIP). This local dependence is also passed on to the stability constant of the residual
a posteriori error estimator that is used to steer the algorithm (see [ 1 GOA, Stability (A1)
below]). In conclusion, the local Lipschitz continuity necessitates uniform boundedness
of all computed quantities in the algorithm.
Proposition 1.3. Suppose (SM), (LIP), and possibly (POT) (depending on the case chosen
in Proposition 1.4 below). If the algorithm takes linearization and/or an algebraic solver
into account, we additionally suppose the estimator axioms (A1)–(A3) introduced below.
Then, there exists𝐶bnd = 𝐶bnd [𝑀 ] with𝑀 B 1

𝛼
||𝐹 − A0||𝐻 −1 (Ω) such that

⦀𝑢𝐻⦀ ≤ 𝐶bnd = 𝐶bnd [𝑀 ] for all𝑢𝐻 that are computed in Algorithm 1.8 below. (UB)

The bound simplifies to 𝐶bnd = 𝑀 for the exact solutions; cf [ 2 AIL1, Proposition 3.2]
below.

Sketch of proof. This is rigorously proven in [ 1 GOA, Lemma 2.8 below], where the argu-
ment exploits a continuousmaximum principle for𝑢★ and does not rely on the estimator
axioms (A1)–(A3). In [ 2 AIL1, Corollary 3.11 below] as well as [ 3 AIL2, Theorem 4.8 below],
the argument mainly relies on the contraction of the proposed linearization strategy and
the contraction of the algebraic solver (for more details, see Section 1.2.6 below). □

(Quasi-)Pythagorean estimate and compactness. For the proof of linear convergence
(and thus optimal rates), we exploit that the semilinear model problem (1.2) admits a
(quasi-)Pythagorean estimate. There are two consideredmetrics: First, the difference of
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energy E from (1.4) and second, the energy norm ⦀ ·⦀ induced by the principal part of
the PDE operator. The latter relies on compactness arguments, thus imposing further
constraints on (GC) for the case of 𝑑 = 3, namely:
There exist 𝑅 > 0 and𝑁 ∈ ℕwith𝑁 ∈ {2, 3} for 𝑑 = 3 such that

|𝑏 (𝑁 ) (𝜉 ) | ≤ 𝑅 for all 𝜉 ∈ ℝ. (CGC)

Proposition 1.4. Suppose thatA satisfies (SM), (LIP), and thatX𝐻 ⊂ X.
(i) Additionally, we suppose (POT). Then, the energy (1.4) satisfies that all differences

appearing in

E(𝑣𝐻 ) − E(𝑢★) = [E(𝑣𝐻 ) − E(𝑢★
𝐻 )] + [E(𝑢★

𝐻 ) − E(𝑢★)] for all 𝑣𝐻 ∈ X𝐻 , (O)

are nonnegative.
(ii)Under a suitable notion of compactness of the nonlinearity (CGC), we get a weaker

result for the energy norm ⦀ ·⦀: For every 0 < 𝜀 < 1, there exists a sufficiently fine discrete
spaceX𝐻 such that, for all spacesXℎ withXℎ ⊇ X𝐻 , there holds quasi-orthogonality, i.e.,

1
1 + 𝜀 ⦀𝑢

★ − 𝑣ℎ⦀2 ≤ ⦀𝑢★ − 𝑢★
ℎ ⦀

2 + ⦀𝑢★
ℎ − 𝑣ℎ⦀2 ≤ 1

1 − 𝜀 ⦀𝑢
★ − 𝑣ℎ⦀2 for all 𝑣ℎ ∈ Xℎ . (QO)

Sketch of proof. (i) This is immediate from the energyminimization (1.6) in Lemma 1.1
and its counterpart on the continuous level for (1.6).
(ii) The result is proved in [ 1 GOA, Equation 2.78 below] in slightly modified form. The

argument applies Galerkin orthogonality and nestedness of spaces for𝑢★
𝐻
∈ X𝐻 ⊆ Xℎ , but

this can be applied to any 𝑣ℎ ∈ Xℎ (instead of𝑢★
𝐻
). □

1.2 Adaptive FEM with linearization and algebraic solver

This section starts with the concept of (mesh) adaptivity in Section 1.2.1. Sections 1.2.2–
1.2.4 aredevoted to thediscussionof the involvedmodules of standardAFEM. Section1.2.5
gives an overview of the literature on standard AFEM. Section 1.2.6 extends the standard
AFEM to AILFEM, where linearization and an algebraic solver are included into the SOLVE-
module of the standardAFEM routine. We concludewith a literature overviewonAILFEMs
in Section 1.2.7.

1.2.1 The concept of adaptivity

The discrete finite element spaceX𝐻 is supposed to admit an a priori bound depending
on themesh-refinement level𝐻 B max𝑇 ∈T𝐻 |𝑇 |1/𝑑 of the form

||𝑢★ − 𝑢★
𝐻 ||𝐻 1

0 (Ω) = O(𝐻 𝑟 ) as 𝐻 → 0, (1.10)

where 𝑟 > 0 denotes the rate of the (global) approximation. The generic approach is to
uniformly reduce themesh size𝐻 of the domainX𝐻 , where the number of elements grow

6



1.2 Adaptive FEMwith linearization and algebraic solver

SOLVE & ESTIMATE MARK REFINE

Figure 1.1: AFEM loop where linearization and (possibly) an algebraic solver is steered.

T0 T1 T2 T3 T4

Figure 1.2: First meshes in the sequence of adaptively refined meshes for the problem
from Experiment 1.5. The refinement focuses on the reentrant corner at (0, 0), where the
unknown exact solution possesses a singularity.

exponentially. For sufficiently smooth solutions, the convergence rate is only bounded by
the polynomial degree ofX𝐻 . In nonconvex domains, the geometry leads to singularities
at the reentrant corners and the convergence behavior may be spoiled by such (local
point-) singularities. Uniform refinement has no means of localization of singularities
by only steering the global mesh-refinement level 𝐻 . Consequently, the global refine-
ment requires additional computational effort to efficiently resolve the singularity and
overall leads to a deteriorated convergence rate; see [Gri11] for nonconvex geometries
and Experiment 1.5 below. By introducing a computable local error measure𝜂𝐻 (𝑇 ) of the
approximation error on all triangles𝑇 ∈ T𝐻 that does not rely on the unknown solution
𝑢★, such a posteriori information can indeed detect singularities and steer a localized
mesh-refinement feedback loop as displayed in Figure 1.1. This is the concept of mesh
adaptivity.
The feedback loop from Figure 1.1 can be described as follows: For a given triangulation

T𝐻 , the module SOLVE & ESTIMATE steers the linearization and the algebraic solver and
computes 𝜂𝐻 (𝑇 ) for all𝑇 ∈ T𝐻 . The module MARK singles out elements, where the local
contributions are large, e.g., by employing the Dörfler marking criterion (1.19) below
that is first found in the seminal contribution [Dör96]. The REFINE module bisects the
marked elements and performs amesh-closure step to avoid hanging nodes. Overall, a
new triangulation Tℎ is obtained by a posteriori information on potential singularities.
A sequence of adaptively refinedmeshes is depicted in Figure 1.2, where the schematic

loop from Figure 1.1 is carried out by a simplified version of Algorithm 1.8 below; cf. Ex-
periment 1.5 for further details.
With themesh-level index ℓ and an approximation𝑢ℓ ≈ 𝑢★

ℓ
computed by Algorithm 1.8

below, thedecay rate of the energy error⦀𝑢★−𝑢ℓ⦀over thenumberof degrees of freedomof
Xℓ is a suitable measure for a fair comparison of uniformmesh refinement and adaptively
refinedmeshes.
Experiment 1.5 (Convergence of uniform vs. adaptive refinement). We consider the 𝐿-
shaped domain Ω = (−1, 1)2 \ [0, 1) × [−1, 0) ⊂ ℝ2, where the boundary consists of a
homogeneous Dirichlet part 𝜕Ω𝐷 (highlighted in blue and bold in Figure 1.2) and an inho-
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Figure 1.3: Adaptive (diamond, red) vs. uniformmesh refinement (circle, blue): Plot of the
approximation error ⦀𝑢★ − 𝑢ℓ⦀ for an approximation𝑢ℓ ≈ 𝑢★ computed by Algorithm 1.8
over the number of degrees of freedom (left) and over computation time in seconds (right).

mogeneous Neumann part 𝜕Ω𝑁 such that 𝜕Ω = 𝜕Ω𝐷 ∪ 𝜕Ω𝑁 = 𝜕Ω \ 𝜕Ω𝐷 . With the normal
derivative 𝜕𝑛 , we solve the Laplace problem

−Δ𝑢★ = 0 inΩ subject to 𝑢★ = 0 on 𝜕Ω𝐷 and 𝜕𝑛𝑢
★ = 𝑔𝑁 on 𝜕Ω𝑁 .

The exact solution reads 𝑢★(𝑥) = 𝑟 2/3 sin (2/3𝜑 ) for 𝑥 ∈ Ω in polar coordinates (𝑟 , 𝜑 ) ∈
ℝ≥0 × [0, 2𝜋) and is used to determine 𝑔𝑁 . Its derivative has the generic point singularity at
the reentrant corner (0, 0). As refinement strategies, we compare uniformmesh refinement
and an adaptive mesh-refining algorithm.
An empirical investigation of the convergence behavior is shown in Figure 1.3. On the left,

we plot the energy error over the number of degrees of freedom. In practice, one is oftenmore
interested inmeasuring computation time in seconds. This is displayed in Figure 1.3 (right).
The data points represent the iterates of the algebraic loop (more precisely: ||𝑢★ − 𝑢 𝑗

ℓ
||𝐻 1

0 (Ω) ,
where ℓ is the mesh-refinement index and 𝑗 the final algebraic solver index; the index set is
defined in the spirit of Q from (1.20) belowwith a void linearization loop). In both cases,
uniform refinement (circle, blue) converges with suboptimal rate 𝑟 = −1/3 regardless of
the polynomial degree 𝑝 ∈ {1, 3} of the ansatz space S𝑝

0 (Ω). Adaptive mesh refinement
(diamond, red) restores the optimal rate 𝑟 = −𝑝/2with respect to the number of degrees of
freedom and computation time after a short preasymtotic phase.

1.2.2 Module REFINE — Newest-vertex bisection

The newest-vertex bisection algorithm (NVB) is a local bisection method from [Sew72;
Mit91; Ste08; DGS23] that preserves conformity and 𝛾 -shape regularity, which can be
understood as a lower bound on the angles of all triangles. For the introduction, we restrict
ourselves to the case 𝑑 = 2, where NVB and the mesh closure can be presented as an
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1.2 Adaptive FEMwith linearization and algebraic solver

(1) (2) (3) (4) (5)

�����
(6)

Figure 1.4: (1): Marked element 𝑇 with refinement edge refEdge(𝑇 ) ∈ M0 (blue). (2):
Refinement of (1) by NVB. Due to the mesh-closure step to avoid hanging nodes, all
three edges might be marked for refinement; (1) for one marked edge, (3)–(4) for two
marked edges after performed refinement, and (5) for three marked edges and performed
refinement. (6): A hanging node in the neighboring triangle is highlighted in red (6).

Figure 1.5:Graphical illustration that NVB preserves𝛾 -shape regularity. Left: Arbitrary
triangle with refinement edge at the bottom. Center left to right: Successive NVB iterates
of the children elements. The only possible similarity classes of triangles are highlighted
in different colors.

inductive algorithm [KPP13].
For a triangle 𝑇 = conv(𝑧0, 𝑧1, 𝑧2), where conv(𝑧0, 𝑧1, 𝑧2) denotes the convex hull of

{𝑧0, 𝑧1, 𝑧2} ∈ Ω, we use the convention that refEdge(𝑇 ) B conv(𝑧1, 𝑧2) is the edge opposite
of 𝑧0. To refine 𝑇 along refEdge(𝑇 ), we introduce the midpoint𝑚𝑇 B

𝑧1+𝑧2
2 . Then, 𝑇 is

refined by bisection into𝑇 = 𝑇1 ∪𝑇2, where𝑇1 B conv(𝑚𝑇 , 𝑧1, 𝑧0) and𝑇2 B conv(𝑚𝑇 , 𝑧1, 𝑧2)
with |𝑇 |

2 = |𝑇1 | = |𝑇2 |; see the two leftmost triangles in Figure 1.4 for the bisection of the
triangle𝑇 along the refinement edge and themidpoint𝑚𝑇 (circle). The next refEdge(𝑇1,2)
is opposite to𝑚𝑇 , justifying the name newest-vertex bisection.
Moreover, NVB also includes a procedure to avoid hanging nodes that may appear in

the refinement process; see Figure 1.4(6), thus additionally refining elements that are not
marked. This is denoted by Tℓ+1 B refine(Tℓ ,Mℓ), whereMℓ are themarked elements on
level ℓ.
We remark that𝛾 -shape regularity of the input mesh Tℓ , i.e., a uniform lower bound on

the interior angles of all𝑇 ∈ Tℓ , is respected by NVB, since at most four different similarity
classes of children elements (and, thus, only finitely many interior angles) may occur in
sequences of conforming triangulations generated by NVB refinement. This observation
is depicted in Figure 1.5.
Remark 1.6 (NVB in higher dimensions). We refer to [Mau95; Tra97; Ste08] for 𝑑 ≥ 3,
where the NVB algorithm is formulated recursively. Until very recently, the termination of
this recursive formulation was only ensured by the admissibility condition imposed on the
initial triangulation T0 originating from [BDD04]. However, this can be circumvented by an
initialization strategy proposed in the recent preprint [DGS23].

We denote with 𝕋 (T𝐻 ) the set of all triangulations Tℎ that are the result of finitely many
steps of newest-vertex bisection from T𝐻 , i.e., we write Tℎ ∈ 𝕋 (T𝐻 ) if there exists 𝑛 ∈ ℕ

9
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such that T𝑛 = Tℎ and marked elementsMℓ ⊆ Tℓ with Tℓ+1 = refine(Tℓ ,Mℓ) with for all
ℓ = 1, . . . , 𝑛 − 1 where T1 = T𝐻 . Moreover, we use T0 to denote a fixed initial mesh and we
may abbreviate 𝕋 = 𝕋 (T0).
NVB admits the following fine properties of mesh refinement, which will be applied

to obtain optimal convergence rates. To this end, for T ,T ′ ∈ 𝕋 = 𝕋 (T0), we call the
triangulation T ⊕ T ′ B argminT̃∈𝕋 (T)∩𝕋 (T′ ) #T̃ the coarsest common refinement of T and
T ′.

(R1) children estimate: For arbitrary T𝐻 ∈ 𝕋 and arbitrary Tℎ ∈ 𝕋 (T𝐻 ), there exists𝐶child ∈
ℕ such that

#(T𝐻 \ Tℎ) + #T𝐻 ≤ #Tℎ ≤ 𝐶child#(T𝐻 \ Tℎ) + #(T𝐻 ∩ Tℎ). (R1)

(R2) overlay estimate: For arbitrary T𝐻 ∈ 𝕋 and a refinement Tℎ ∈ 𝕋 (T𝐻 ), we have that

#(T𝐻 ⊕ Tℎ) ≤ #T𝐻 + #Tℎ − #T0. (R2)

(R3) closure estimate: For any sequence of triangulations (Tℓ)ℓ∈ℕ0 generated by subsets
of marked elements (Mℓ)ℓ∈ℕ0 such that Tℓ+1 B refine(Tℓ ,Mℓ) for ℓ ∈ ℕ0, it holds
that

#Tℓ − #T0 ≤ 𝐶mesh
ℓ−1∑︁
ℓ′=0

#Mℓ′ for all ℓ ∈ ℕ0, (R3)

where𝐶mesh ≥ 1 is independent of the sequences (Tℓ)ℓ∈ℕ0 and (Mℓ)ℓ∈ℕ0 , but depends
only on T0.

The refinement is based on NVB and of constant cost for each element. Since there are at
most finitely many children [GSS14] and there holds amesh-closure estimate [BDD04;
Ste08], the overall cost are thus of order O(#T𝐻 ) to generate Tℎ = refine(T𝐻 ,M𝐻 ).

1.2.3 Module ESTIMATE

As the local error measure for the model problem (1.1) (with homogeneous Dirichlet
boundary conditions), we introduce the residual a posteriori error estimators follow-
ing [AO00; Ver13]. Residual error estimators are motivated by the fact that the (com-
putationally not available) error𝑢★−𝑢★

𝐻
can be estimated via the residual in the dual space

𝐻 −1(Ω) by a discrete, computable quantity𝜂𝐻 (𝑢★
𝐻
).

Suppose that 𝑨 |𝑇 ∈ [𝑊 1,∞(𝑇 )]𝑑×𝑑sym and 𝒇 |𝑇 ∈ [𝑊 1,∞(𝑇 )]𝑑 for all𝑇 ∈ T0. With ℎ𝑇 = |𝑇 |1/𝑑 ,
elementwise integration by parts of the residual 𝐹 − A(𝑣𝐻 ) with 𝑣𝐻 ∈ X𝐻 give rise to the
elementwise contribution

𝜂𝐻 (𝑇 ,𝑣𝐻 )2 B ℎ2𝑇 || 𝑓 + div(𝑨 ∇𝑣𝐻 − 𝒇 ) − 𝑏 (𝑣𝐻 ) ||2𝐿2 (𝑇 ) + ℎ𝑇 || [[(𝑨 ∇𝑣𝐻 − 𝒇 )]] ||2
𝐿2 (𝜕𝑇∩Ω) .

10



1.2 Adaptive FEMwith linearization and algebraic solver

Moreover, we abbreviate, forU𝐻 ⊆ T𝐻 ,

𝜂𝐻 (U𝐻 , 𝑣𝐻 )2 B
∑︁

𝑇 ∈U𝐻

𝜂𝐻 (𝑇 ,𝑣𝐻 )2 (1.11)

and the global contribution by𝜂𝐻 (𝑣𝐻 )2 B 𝜂𝐻 (T𝐻 , 𝑣𝐻 )2.
To ensure optimal convergence rates, four abstract conditions of the error estimator

are required. The analysis in its axiomatic form has been introduced by [CFPP14]. For
nonlinear problems, the proof of stability (A1) below requires new ideas and, in particular,
the stability constant inherits the local Lipschitz continuity (LIP)ofourabstract framework,
whereas (A2)–(A4) follow from standard arguments in [CFPP14].

Proposition 1.7 ([ 1 GOA, Proposition 2.15 below]). Let T𝐻 ∈ 𝕋 and Tℎ ∈ 𝕋 (T𝐻 ). The
standard residual a posteriori error estimator (1.11) for the semilinear model problem
satisfies the following properties:

(A1) stability: For all 𝜗 > 0, there exists 𝐶stab [𝜗] > 0 such that for all 𝑣ℎ ∈ Xℎ and
𝑣𝐻 ∈ X𝐻 withmax{⦀𝑣ℎ⦀,⦀𝑣𝐻⦀} ≤ 𝜗, it holds that��𝜂ℎ (Tℎ ∩ T𝐻 , 𝑣ℎ) −𝜂𝐻 (Tℎ ∩ T𝐻 , 𝑣𝐻 )

�� ≤ 𝐶stab [𝜗] ⦀𝑣ℎ − 𝑣𝐻⦀. (A1)

(A2) reduction:With 0 < 𝑞red := 2−1/(2𝑑 ) < 1 and provided that simplices are refined by
NVB, there holds, for all 𝑣𝐻 ∈ X𝐻 and all𝑤 ∈ 𝐻 1

0 (Ω), that

𝜂ℎ (Tℎ\T𝐻 , 𝑣𝐻 ) ≤ 𝑞red𝜂𝐻 (T𝐻 \Tℎ , 𝑣𝐻 ). (A2)

(A3) reliability: There exists𝐶rel > 0 such that

⦀𝑢★ − 𝑢★
𝐻⦀ ≤ 𝐶rel𝜂𝐻 (𝑢★

𝐻 ). (A3)

(A4) discrete reliability: There exists𝐶drel > 0 such that

⦀𝑢★
ℎ − 𝑢★

𝐻⦀ ≤ 𝐶drel𝜂𝐻 (T𝐻 \Tℎ , 𝑢★
𝐻 ). (A4)

We remark that the constants𝐶stab [𝜗],𝐶rel, and𝐶drel depend on𝛾 -shape regularity of the
mesh and that𝐶stab [𝜗] and𝐶drel depend additionally on the polynomial degree𝑝 . We also
highlight that (A3)–(A4) hold only for the exact solution𝑢★ and Galerkin solutions𝑢★

𝐻
, 𝑢★

ℎ
,

respectively.

1.2.4 Module MARK

Themarking procedure determines elements with large estimator contributions for refine-
ment. In adaptive finite elementmethods— in particular in the context of rate-optimality
— theDörflermarking from [Dör96] is frequently used and reads as follows. For an adaptiv-
ity parameter 0 < 𝜃 ≤ 1, we seek a (possibly nonunique) set of marked elementsM𝐻 ⊆ T𝐻

11
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such that

𝜃 𝜂2𝐻 ≤ 𝜂𝐻 (M𝐻 )2. (1.12)

Among themany setsMℓ that satisfy (1.12), we chooseMℓ with quasi-minimal cardinality,
i.e., for a fixed constant𝐶mark ≥ 1 that does not depend on the mesh-refinement index
such that

#M𝐻 ≤ 𝐶mark min
U★
𝐻
∈𝕄𝐻

U★
𝐻 with 𝕄𝐻 B {U𝐻 ⊆ T𝐻 | 𝜃 𝜂2𝐻 ≤ 𝜂𝐻 (U𝐻 )2}. (1.13)

Then, the choice of 𝜃 = 1 results in uniform refinement, whereas a small adaptivity
parameter 0 < 𝜃 ≪ 1marks very few elements with largest error indicators.
The standard approach to determine a set of marked elements is to sort the error

contributions [Dör96]. However, this would lead to the minimal cardinality in loglin-
ear complexity. For the price of marking slightly toomany elements, [Ste07] singles out
a set of quasi-minimal cardinality 𝐶mark = 2 in linear complexity based on a bin-sort
approach. An adaptation of quickselect in [PP20] realizes Dörfer marking at linear cost
with𝐶mark = 1.
Concerning the proof of optimal convergence rates, the quasi-minimality of Dörfler

marking (1.13) is sufficient [Dör96] and even necessary [Ste07] (cf. Proposition 1.11 below).

1.2.5 Literature on adaptive FEM

Improving the computational accuracy via a feedback loop as in Figure 1.1 already appears
in earlyworks such as, e.g., [BR79; BV84; ZZ87]. Theproof of (plain and linear) convergence
of an adaptive FEM is significantly more challenging than for uniform refinement, since
themaximalmesh sizeℎ𝑇 = |𝑇 |1/𝑑 may not tend to zero uniformly (cf. (1.10) and Figure 1.2
for an illustration of that). While a first convergence result was presented in [BV84] for
𝑑 = 1, its proof remained open for 𝑑 ≥ 2 until [Dör96; MNS00]. At about the same time, an
overview on available error estimators for AFEM appeared in [AO00].
After the introduction of suitable approximation classes in the context of adaptive

wavelet methods [CDD01; CDD03] and bymeans of an additional coarsening step of the
mesh, [BDD04] proved rate-optimality of an AFEM for the 2D Poisson model problem
for the first time. The coarsening procedure was circumvented in [Ste07] for the 2D Pois-
son model problem. In the publication [MSV08], other marking strategies such as the
maximummarking criterion and their implications on convergence of AFEMare analyzed.
The paper [DK08] frees the proposed AFEM of the additional separate marking for the

oscillations osc𝐻 (𝑢★
𝐻
). This strategy is refined in [CKNS08], which observed that

⦀𝑢★ − 𝑢★
𝐻⦀ + osc𝐻 (𝑢★

𝐻 )2 ≈ 𝜂𝐻 (𝑢★
𝐻 )2 ≈ ⦀𝑢★ − 𝑢★

𝐻⦀ + 𝜇𝜂𝐻 (𝑢★
𝐻 )2 with 𝜇 > 0.

The term on the left-hand side is the total error. It consists of the approximation quality of
𝑢★ and the data approximation properties encoded in osc𝐻 (𝑢★

𝐻
). The total error was also

used to define the approximation class of𝑢★; cf. (1.32) below. The term on the right-hand
side is the quasi-error that is contracted by the AFEM for a suitable choice of 𝜇 > 0. Thus,
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1.2 Adaptive FEMwith linearization and algebraic solver

no inner loop for data approximation is necessary in the setting of symmetric second-
order elliptic PDEs (if the initial triangulation resolves the geometry). Fostered by the
presented breakthroughs, many papers on particular schemes or applications appeared.
For instance, the paper [KS11] investigated and proved convergence for other (locally)
equivalent estimators. Moreover, extracting the essential (estimator) properties (A1)–(A4)
and (QO) gave rise to an axiomatic framework that relies solely on upper bounds of the
error estimator [CFPP14].
The extension of the framework to nonlinear problems goes back to, e.g., [Vee02; DK08;

BDK12] for the p-Laplacian. Moreover, we refer to [GMZ12] for strongly-monotone and
globally Lipschitz continuous quasilinear PDEs, and to [FFP14] for second-order nonsym-
metric PDEs and some nonlinear problems.

1.2.6 AFEM with linearization and linear solver

The solution of the nonlinear discrete problem (1.2) is an involved task. One way to solve
nonlinear problems is by using a fixed-point iteration to linearize the nonlinear equation.
We extend the AFEM setting which usually supposes an exact solution of the discrete
problem to Algorithm 1.8 below. This Algorithm 1.8 has an inner loop which employs
the Zarantonello iteration to linearize the nonlinear equation and steers adaptively the
number of linearization steps. Moreover, we employ an algebraic solver to solve the
linearized system, we refer to this extended AFEM as adaptive iteratively linearized FEM
(AILFEM).
The linearization and the algebraic solver that is used to efficiently solve the linearized

discrete problem can also be stopped adaptively with a posteriori information. Schemati-
cally, this leads to nested loops that are depicted in Figure 1.6, where the nested loops and
their hierarchy are indicated by the boxes— discretization (with index ℓ), linearization
(with index 𝑘 ), and algebraic solver (with index 𝑗 ).
In all presented algorithms in this thesis, discretization (ℓ, blue) incorporates themod-

ules MARK and REFINE. When including additional errors that stem from linearization (𝑘 ,
red), this is realized as a nested loop that leads to a symmetric and positive definite (SPD)
problem. The expensive SPD problem is solved by an algebraic solver. This constitutes yet
another nested loop (𝑗 , green).
The Zarantonello iteration is used as a linearizationmethod. It is particularly attractive

for two reasons: On each level, only a Laplace-type problem has to be solved. Moreover,
the assembly of the Laplace system can be done only once at eachmesh level ℓ and does
not depend on the computed iterates. For a damping parameter 𝛿 > 0 and given𝑤𝐻 ∈ X𝐻 ,
the Zarantonello updateΦ𝐻 (𝛿 ;𝑤𝐻 ) ∈ X𝐻 solves

⟪Φ𝐻 (𝛿 ;𝑢𝐻 ) , 𝑣𝐻⟫ = ⟪𝑢𝐻 , 𝑣𝐻⟫ + 𝛿 [
𝐹 (𝑣𝐻 ) − ⟨A𝑢𝐻 , 𝑣𝐻 ⟩

]
for all 𝑣𝐻 ∈ X𝐻 . (1.14)

The Lax–Milgram theorem proves existence and uniqueness ofΦ𝐻 (𝛿 ;𝑢𝐻 ), i.e., the Zaran-
tonello operatorΦ𝐻 (𝛿 ; ·) : X𝐻 → X𝐻 is well-defined. In particular, 𝑢★

𝐻
= Φ(𝛿 ;𝑢★

𝐻
) is the

unique fixed point ofΦ𝐻 (𝛿 ; ·) for any damping parameter 𝛿 > 0. For a sufficiently small
damping parameter 𝛿 > 0, the Zarantonello iteration is norm-contractive; cf. [Zei90,
Section 25.4]. This is the main ingredient to show that the energy norm of two succes-
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Algebraic solver (𝒋)

𝒖𝒌 ,𝒋
� ≈ 𝒖𝒌 ,★

� ≈ 𝒖★
� ≈ 𝒖★

+ solve SPD problem itera-
tively

+ contractive algebraic
solver, e.g., multigrid

+ cost-optimal

+ rate-optimal wrt. compu-
tation time

Linearization (𝒌 )

𝒖𝒌 ,★
� ≈ 𝒖★

� ≈ 𝒖★

− solve expensive SPD
problem

+ iterative solution of
nonlinear problem

+ residual-type
fixed-point iteration

+ idealized cost-optimal,
i.e., SPD system solvable
in linear complexity

Discretization (�)

𝒖★
� ≈ 𝒖★

− SOLVE. solve nonlinear
discrete problem

+ ESTIMATE. a posteriori
residual error estimator

+ MARK. Dörfler marking

+ REFINE. adaptive mesh
refinement

+ rate-optimal wrt. num-
ber of degrees of freedom

Figure 1.6: Illustration of a two-fold nested loop in adaptive mesh-refinement algorithm
with linearization and algebraic solver.

sive iterates is bounded. For a detailed discussion of the Zarantonello iteration, we refer
to [ 2 AIL1, Section 3.2.2–3.2.4 below].
The Zarantonello linearization leads to an SPD problem (1.14). Solving large SPD prob-

lems in linear complexity requires an advanced solving procedure. To this end, we employ
aniterative algebraic solver withprocess functionΨ𝐻 : X′×X𝐻 → X𝐻 to solve the linearized
system (1.14). More precisely, given a linear functional 𝜑 ∈ X′ and an approximation
𝑤𝐻 ∈ X𝐻 of the exact solution𝑤★

𝐻
∈ X𝐻 to

⟪𝑤★
𝐻 , 𝑣𝐻⟫ = 𝜑 (𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 , (1.15)

the algebraic solver returns an improved approximationΨ𝐻 (𝜑 ;𝑤𝐻 ) ∈ X𝐻 in the sense that
there exists a uniform constant 0 < 𝑞alg < 1 independent of 𝜑 andX𝐻 such that

⦀𝑤★
𝐻 − Ψ𝐻 (𝜑 ;𝑤𝐻 )⦀ ≤ 𝑞alg ⦀𝑤

★
𝐻 −𝑤𝐻⦀ for all𝑤𝐻 ∈ X𝐻 . (1.16)

To simplify notation in case of a complicated right-hand side 𝜑 (as for the Zarantonello
iteration (1.14)), we shall writeΨ𝐻 (𝑤★

𝐻
; ·) instead ofΨ𝐻 (𝜑 ; ·), even though𝑤★

𝐻
is unknown

and is never computed.
Examples of norm-contractive solvers include optimally preconditioned conjugate

gradient methods [CNX12] or optimal geometric multigrid methods; see, e.g., [WZ17]
for fixed 𝑝 ∈ ℕ or [IMPS23] for an ℎ𝑝-robust multigrid method, where the latter will be
employed for some of the numerical experiments.
Define 𝑗 B 𝑘 B ℓ B 0, where ℓ is the counter for mesh refinement, 𝑘 = 𝑘 [ℓ] is the

counter for linearization, and 𝑗 = 𝑗 [ℓ, 𝑘 ] is the counter for the algebraic solver. Algo-
rithm 1.8 presents the quasi-optimal AILFEM strategy.
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Algorithm 1.8: adaptive iteratively linearized FEM (AILFEM)
Input: T0 conformingmesh, initial guess𝑢0,00 ∈ X𝐻 , marking parameters 0 < 𝜃 ≤ 1 and
𝐶mark ≥ 1 for Dörfler marking, and Zarantonello damping parameter 𝛿 > 0.
Adaptive loop: For all ℓ = 0, 1, 2, . . . , repeat the following steps (I)–(III):

(I) SOLVE & ESTIMATE. For all 𝑘 = 1, 2, 3, . . . , repeat the steps (a)–(c):

(a) Set 𝑢𝑘 ,0
ℓ
B 𝑢𝑘 ,0

ℓ
and define, for theoretical reasons, the exact solution of the

linearization iterate𝑢𝑘 ,★
ℓ
B Φℓ (𝛿 ;𝑢𝑘 ,0ℓ ) from (1.14).

(b) For all 𝑗 = 1, 2, 3, . . . repeat steps (i)–(ii):
(i) Compute𝑢𝑘,𝑗

ℓ
B Ψ(𝑢𝑘,★

ℓ
;𝑢𝑘 ,𝑗−1

ℓ
) ≈ 𝑢𝑘 ,★

ℓ
from (1.15) and𝜂ℓ (𝑢𝑘,𝑗ℓ

).

(ii) Terminate the 𝑗 -loop and define 𝑗 [ℓ, 𝑘 ] B 𝑗 if

the algebraic error ⦀𝑢𝑘,★
ℓ

− 𝑢𝑘 ,𝑗
ℓ

⦀ is sufficiently small. (1.17)

(c) Terminate the 𝑘-loop and define 𝑘 [ℓ] B 𝑘 if

the linearization error ⦀𝑢★
ℓ − 𝑢𝑘 ,𝑗

ℓ
⦀ is sufficiently small. (1.18)

(II) MARK.With𝕄ℓ [𝜃 ,𝑢
𝑘 ,𝑗

ℓ
] B {Uℓ ⊆ Tℓ | 𝜃 𝜂ℓ (𝑢

𝑘 ,𝑗

ℓ
)2 ≤ 𝜂ℓ (Uℓ , 𝑢

𝑘 ,𝑗

ℓ
)2}, determine a set

Mℓ ∈ 𝕄ℓ [𝜃 ,𝑢
𝑘 ,𝑗

ℓ
] from (1.13) with quasi-minimal cardinality

#Mℓ ≤ 𝐶mark min
Uℓ ∈𝕄ℓ [𝜃 ,𝑢

𝑘 ,𝑗

ℓ
]
#Uℓ . (1.19)

(III) REFINE.Generate the newmesh Tℓ+1 B refine(Mℓ ,Tℓ) by employing NVB and
set𝑢0,0

ℓ+1 B 𝑢
0,𝑗
ℓ+1 B 𝑢0,★

ℓ+1 B 𝑢
𝑘 ,𝑗

ℓ
(nested iteration).

Output: Sequences of successively refined conforming triangulations Tℓ , discrete ap-
proximations𝑢𝑘 ,𝑗

ℓ
, and corresponding error estimators𝜂ℓ (𝑢𝑘,𝑗ℓ

).

For the analysis of Algorithm 1.8, we define the index set

Q B {(ℓ, 𝑘 , 𝑗 ) ∈ ℕ3
0 | 𝑢𝑘,𝑗

ℓ
is used in Algorithm 1.8}, (1.20)

where, for any (ℓ, 0, 0) ∈ Q, the stopping indices are defined in coincidence with Algo-
rithm 1.8 as

ℓ B sup{ℓ ∈ ℕ0 | (ℓ, 0, 0) ∈ Q} ∈ ℕ0 ∪ {∞},
𝑘 [ℓ] B sup{𝑘 ∈ ℕ | (ℓ, 𝑘 , 0) ∈ Q} ∈ ℕ ∪ {∞},

𝑗 [ℓ, 𝑘 ] B sup{𝑗 ∈ ℕ | (ℓ, 𝑘 , 𝑗 ) ∈ Q} ∈ ℕ ∪ {∞}.
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We introduce the total step counter i.e., for two indices (ℓ, 𝑘 , 𝑗 ), (ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q, it holds that

|ℓ, 𝑘 , 𝑗 | ≤ |ℓ′, 𝑘 ′, 𝑗 ′ | : ⇐⇒ (ℓ, 𝑘 , 𝑗 ) appears not later than (ℓ′, 𝑘 ′, 𝑗 ′) in Algorithm 1.8.

This provides indeed a lexicographic ordering with respect to the total step counter on Q,

|ℓ, 𝑘 , 𝑗 | B #{(ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q | |ℓ′, 𝑘 ′, 𝑗 ′ | < |ℓ, 𝑘 , 𝑗 |} =
ℓ−1∑︁
ℓ′=0

𝑘 [ℓ′ ]∑︁
𝑘 ′=1

𝑗 [ℓ′,𝑘 ′ ]∑︁
𝑗 ′=1

1 +
𝑘−1∑︁
𝑘 ′=1

𝑗 [ℓ,𝑘 ′ ]∑︁
𝑗 ′=1

1 +
𝑗−1∑︁
𝑗 ′=1

1.

Remark 1.9 (Linear complexity). Each module of Algorithm 1.8 is realizable in linear
complexity:

• SOLVE & ESTIMATE. The employed Zarantonello linearization produces a linear sys-
tem that is solved by means of the geometric multigrid method from [IMPS23] as a
solver with linear complexity, i.e., each iterate𝑢𝑘 ,𝑗

ℓ
can be obtained with O(#Tℓ) opera-

tions. The computation of the refinement indicators𝜂ℓ (𝑇 ,𝑢𝑘 ,𝑗ℓ
) for all𝑇 ∈ Tℓ can be

parallelized and done at the cost of O(#Tℓ).
• MARK. The employed Dörfler marking (and the involved determination of the marked
elementsMℓ) is indeed a linear complexity problem; see [Ste07] for quasi-minimality
with𝐶mark = 2 and [PP20] for minimal cardinality.

• REFINE. The refinement of Tℓ is based on NVB and hence is of linear cost O(#Tℓ).

The cumulative nature of the AILFEM suggests to consider the computational cost as
amore restrictivemeasure than the degrees of freedom of the underlying spaceXℓ . The
computational cost for obtaining𝑢𝑘 ,𝑗

ℓ
depends on the whole history and, since each step

is of linear complexity, the cost is proportional to the sum of the number of elements in
each iteration. More formally, it holds that

cost(ℓ, 𝑘 , 𝑗 ) B
∑︁

(ℓ′,𝑘 ′,𝑗 ′ ) ,(ℓ,𝑘 ,𝑗 ) ∈Q
|ℓ′,𝑘 ′,𝑗 ′ | ≤ |ℓ,𝑘 ,𝑗 |

#Tℓ′ =
ℓ−1∑︁
ℓ′=0

𝑘 [ℓ′ ]∑︁
𝑘 ′=1

𝑗 [ℓ′,𝑘 ′ ]∑︁
𝑗 ′=1

#Tℓ′ +
𝑘−1∑︁
𝑘 ′=1

𝑗 [ℓ,𝑘 ′ ]∑︁
𝑗 ′=1

#Tℓ +
𝑗−1∑︁
𝑗 ′=1

#Tℓ . (1.22)

This subsectionconcludeswithadiscussionofpossible stoppingcriteria inAlgorithm1.8.
Recall the discrete exact solution 𝑢★

𝐻
≈ 𝑢★ from (1.3), the exact solution of the Zaran-

tonello iteration 𝑢𝑘 ,★
𝐻

= Φ𝐻 (𝛿 ;𝑢𝑘,0
𝐻

) ≈ 𝑢★
𝐻
from (1.14), and the linear solver iterate 𝑢𝑘 ,𝑗

𝐻
=

Ψ(𝑢𝑘,★
𝐻
, 𝑢

𝑘,𝑗−1
𝐻

) ≈ 𝑢𝑘 ,★
𝐻

from (1.15). By stability (A1) and reliability (A3), we have that

⦀𝑢★ − 𝑢𝑘 ,𝑗
ℓ

⦀ ≤ ⦀𝑢★ − 𝑢★
ℓ ⦀ + ⦀𝑢★

ℓ − 𝑢𝑘,𝑗
ℓ

⦀

≲ 𝜂ℓ (𝑢𝑘,𝑗ℓ
) + ⦀𝑢★

ℓ − 𝑢𝑘 ,★
ℓ

⦀ + ⦀𝑢𝑘,★
ℓ

− 𝑢𝑘,𝑗
ℓ

⦀, (1.23)

which controls the overall error from above by splitting it into discretization error, lin-
earization error, and algebraic error. This splitting is used to derive the stopping crite-
ria (1.17)–(1.18) inAlgorithm1.8. However, theexact solutions𝑢★

ℓ
and𝑢𝑘 ,★

ℓ
arenot available.

A computable variant of the stopping criteria relies on the following heuristics: The lin-
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1.2 Adaptive FEMwith linearization and algebraic solver

earization error shall be dominated by the discretization error, and the algebraic error
shall be dominated by the discretization and linearization errors.
The contraction of the algebraic solver (1.16) yields the a posteriori error estimate

⦀𝑢𝑘 ,★
ℓ

− 𝑢𝑘 ,𝑗
ℓ

⦀ ≤ 𝑞alg
1 − 𝑞alg

⦀𝑢
𝑘,𝑗

ℓ
− 𝑢𝑘 ,𝑗−1

ℓ
⦀ for all 1 ≤ 𝑗 ≤ 𝑗 [ℓ, 𝑘 ].

To bound the algebraic error by the discretization and linearization error, we ask for

1 − 𝑞alg
𝑞alg

⦀𝑢𝑘,★
ℓ

− 𝑢𝑘 ,𝑗
ℓ

⦀ ≤ ⦀𝑢
𝑘 ,𝑗

ℓ
− 𝑢𝑘,𝑗−1

ℓ
⦀

!≤ 𝜆alg
[
𝜆lin𝜂ℓ (𝑢𝑘 ,𝑗ℓ

) + ⦀𝑢
𝑘 ,𝑗

ℓ
− 𝑢𝑘,0

ℓ
⦀

]
, (1.24)

where the second estimate can be checked in practice and is used in (1.17). The Zaran-
tonello linearization is contractive for the exact solution [BIM+23, Equation (4.1)], i.e.,

⦀𝑢★
ℓ − 𝑢𝑘 ,★

ℓ
⦀ ≤ 𝑞★

Zar ⦀𝑢
★
ℓ − 𝑢𝑘,0

ℓ
⦀ ≤ 𝑞★

Zar
[
⦀𝑢★

ℓ − 𝑢𝑘 ,★
ℓ

⦀ + ⦀𝑢𝑘,★
ℓ

− 𝑢𝑘,𝑗
ℓ

⦀ + ⦀𝑢
𝑘,𝑗

ℓ
− 𝑢𝑘 ,0

ℓ
⦀

]
.

We also have the a posteriori error estimate

(1 − 𝑞★
Zar) ⦀𝑢★

ℓ − 𝑢𝑘 ,★
ℓ

⦀ ≤ ⦀𝑢𝑘 ,★
ℓ

− 𝑢𝑘 ,𝑗
ℓ

⦀ + ⦀𝑢
𝑘 ,𝑗

ℓ
− 𝑢𝑘,0

ℓ
⦀

(1.24)≤ 𝑞alg
1 − 𝑞alg

𝜆alg
[
𝜆lin𝜂ℓ (𝑢𝑘 ,𝑗ℓ

) + ⦀𝑢
𝑘 ,𝑗

ℓ
− 𝑢𝑘,0

ℓ
⦀

] + ⦀𝑢
𝑘,𝑗

ℓ
− 𝑢𝑘 ,0

ℓ
⦀,

where ⦀𝑢
𝑘 ,𝑗

ℓ
− 𝑢𝑘 ,0

ℓ
⦀

!≤ 𝜆lin𝜂ℓ (𝑢
𝑘,𝑗

ℓ
) can also be checked in practice for the final iterates

of the 𝑗 -loop. This is used to stop the 𝑘-loop. With a hidden constant that includes the
constants from the previous estimates and also relies on stability (A1) and reliability (A3),
this overall ensures that

⦀𝑢★ − 𝑢𝑘 ,𝑗
ℓ

⦀ ≲ (1 + 𝜆alg 𝜆lin)𝜂ℓ (𝑢
𝑘 ,𝑗

ℓ
)

for the final iterate once both, the linearization and the algebraic solver have terminated.

Remark 1.10. The stopping criteria (1.17)–(1.18) are adapted in the proposed AILFEMs to
enforce algorithmically that enough linearization as well as algebraic solver steps are made.
This is a crucial ingredient to uniform boundedness (UB).

1.2.7 Literature on AILFEM

The inclusion of iterative solvers into AFEMs already goes back to [Ste07]. Under realistic
assumptions on a generic iterative solver, AFEMwith optimal complexity was first proven
in [Ste07] for the Poissonmodel problem and [CG12] for the Poisson eigenvalue problem.
Other contributions to the development of AILFEMswith either linearization or an inexact
solver are, e.g., found in [BMS10; EEV11; AGL13; EV13; AW15; CW17]. To use the Zaran-
tonello iteration as a numerical linearization strategy seems to go back to [CW17], and is
also used for globally Lipschitz continuous nonlinearities in [GHPS18; HW20a; HW20b;
GHPS21; HPW21; HPSV21].
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1 Introduction

We point out that [HW20a; HW20b; HPW21] also consider other common linearization
strategies, namely the Kačanov iteration and a damped Newtonmethod. These, however,
are (so far) hard to use in the semilinear setting, since the bilinear forms associated with
the linearization depend on the previous iterate and norm contractionmay not hold. This
prevents amain ingredient to uniform boundedness (UB) of the iterates.
The coupling of the Zarantonello linearization with an algebraic loop is analyzed in the

own work [BIM+23] for nonsymmetric second-order linear elliptic PDEs and for strongly
monotone (and globally Lipschitz continuous) model problems in [HPSV21; BFM+23].

1.3 Convergence with optimal rates

The ultimate goal of any numerical scheme is to drive down the error with the least com-
putational effort possible. In this section, we sketch the interplay of model problem
properties such as (quasi-) orthogonality (QO)/(O) and uniform boundedness (UB) with
estimator properties (A1)–(A4), results onDörflermarking, andfineproperties of themesh
refinement (R1)–(R3).

1.3.1 Dörfler marking: sufficient and necessary

The Dörfler marking in the MARK procedure is sufficient to ensure convergence (and also
optimal rates) of the finite element method. In some sense, [Ste07] observed that Dörfler
marking is even necessary. Since these results follow from standard reasoning with minor
modifications due to the local Lipschitz continuity, we include a short proof as these will
not be proven in themain chapters.
Proposition 1.11 (see, e.g., [CFPP14, Lemma 4.7, Lemma 4.12]). Let ℓ ∈ ℕ0 be such
that ℓ < ℓ. Let (Tℓ)ℓ be the sequence of meshes generated by Algorithm 1.8. Let A sat-
isfy (SM), (LIP), and (POT). Then, the following implications hold:
(i) Suppose (UB) with 𝐶bnd = 𝐶bnd [𝑀 ] for all final iterates of the two inner loops of

Algorithm 1.8. Under the estimator properties (A1)–(A2) and for 𝑢𝑘 ,𝑗
ℓ

∈ Xℓ and
𝑢
𝑘 ,𝑗

ℓ+1 ∈ Xℓ+1, the Dörfler marking (1.19) implies that

𝜂ℓ+1(𝑢
𝑘 ,𝑗

ℓ+1) ≤ 𝑞𝜃 𝜂ℓ (𝑢
𝑘 ,𝑗

ℓ
) +𝐶stab [𝐶bnd]⦀𝑢

𝑘 ,𝑗

ℓ+1 − 𝑢
𝑘 ,𝑗

ℓ
⦀ with 0 < 𝑞𝜃 < 1, (1.25)

where 𝑞𝜃 B
[
1 − (1 − 𝑞2red) 𝜃

]1/2. Note that 𝑞𝜃 → 1 if 𝜃 → 0.
(ii) Suppose (A1) and (A4) as well as (UB) for the exact solution 𝑢★

𝐻
with 𝐶bnd = 𝑀

from (1.7). Let 0 < 𝜃 < 𝜃opt B (1+𝐶stab [2𝑀 ]2𝐶 2
drel)−1. Then, there exists 0 < 𝑞opt < 1

such that

𝜂ℓ+𝑛 (𝑢★
ℓ+𝑛)2 ≤ 𝑞opt𝜂ℓ (𝑢★

ℓ )2 =⇒ 𝜃 𝜂ℓ (𝑢★
ℓ )2 ≤ 𝜂ℓ (Tℓ \ Tℓ+𝑛 ;𝑢★

ℓ )2 for 𝑛 ∈ ℕ0 (1.26)

Remark 1.12. (i) The term ⦀𝑢
𝑘 ,𝑗

ℓ+1 −𝑢
𝑘 ,𝑗

ℓ
⦀ vanishes for |ℓ, 𝑘 , 𝑗 | → ∞, either by a priori conver-

gence in the discrete limit spaceXℓ B
⋃∞
ℓ=0Xℓ if ℓ = ∞ or by the contraction of the Zaran-
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1.3 Convergence with optimal rates

tonello iteration if 𝑘 [ℓ] = ∞. The case 𝑗 [ℓ, 𝑘 ] = ∞ is analytically not possible (cf. [ 3 AIL2,
Lemma 4.7 below]).
(ii)Dörflermarking is used for the final iterates of the SOLVE & ESTIMATEmodule. In case

of an AILFEMwith an exact solution of the linearization as in [ 2 AIL1], we have𝑢𝑘 ,★
ℓ

and
𝑢
𝑘 ,★

ℓ+1 as the final iterates. In case of discretization only, i.e., no linearization and no algebraic
solver, the final approximations are𝑢★

ℓ
and𝑢★

ℓ+1.

Proof of Proposition 1.11. The first statement, in essence, is presented in [CKNS08]. The
second statement, formulated for the error, goes back to [Ste07], while the formulation
through the error estimator is first found in [CFPP14].
(i) Stability (A1) and reduction (A2) prove that

𝜂ℓ+1(𝑢
𝑘 ,𝑗

ℓ
)2 = 𝜂ℓ+1(Tℓ+1 ∩ Tℓ , 𝑢

𝑘 ,𝑗

ℓ
)2 +𝜂ℓ+1(Tℓ+1 \ Tℓ , 𝑢

𝑘 ,𝑗

ℓ
)2

≤ 𝜂ℓ (Tℓ+1 ∩ Tℓ , 𝑢
𝑘 ,𝑗

ℓ
)2 + 𝑞2red𝜂ℓ (Tℓ \ Tℓ+1, 𝑢

𝑘 ,𝑗

ℓ
)2

= 𝜂ℓ (𝑢
𝑘 ,𝑗

ℓ
)2 − (1 − 𝑞2red)𝜂ℓ (Tℓ \ Tℓ+1, 𝑢

𝑘 ,𝑗

ℓ
)2.

Dörfler marking (1.19) and refinement of (at least) all marked elements lead to

𝜃 𝜂ℓ (𝑢
𝑘 ,𝑗

ℓ
)2 ≤ 𝜂ℓ (Mℓ , 𝑢

𝑘 ,𝑗

ℓ
)2 ≤ 𝜂ℓ (Tℓ \ Tℓ+1, 𝑢

𝑘 ,𝑗

ℓ
)2.

Combining the last two estimates leads to

𝜂ℓ+1(𝑢
𝑘 ,𝑗

ℓ
) ≤ 𝑞𝜃 𝜂ℓ (𝑢

𝑘 ,𝑗

ℓ
) with 0 < 𝑞𝜃 B

[
1 − (1 − 𝑞2red) 𝜃

]1/2
< 1.

Combined with 𝜂ℓ+1(𝑢
𝑘 ,𝑗

ℓ+1) ≤ 𝜂ℓ+1(𝑢
𝑘 ,𝑗

ℓ
) + 𝐶stab [𝐶bnd] ⦀𝑢

𝑘 ,𝑗

ℓ+1 − 𝑢
𝑘 ,𝑗

ℓ
⦀ due to stability (A1)

and (UB) for the final iterates𝑢𝑘 ,𝑗
ℓ

and𝑢𝑘 ,𝑗
ℓ+1 yields (1.25).

(ii) Since ⦀𝑢★
ℓ+𝑛 − 𝑢★

ℓ
⦀ ≤ 2𝑀 , the Young inequality with 𝛿 > 0 shows that

𝜂ℓ (𝑢★
ℓ )2 = 𝜂ℓ (Tℓ \ Tℓ+𝑛 ;𝑢★

ℓ )2 +𝜂ℓ (Tℓ ∩ Tℓ+𝑛 ;𝑢★
ℓ )2

(A1)≤ 𝜂ℓ (Tℓ \ Tℓ+𝑛 ;𝑢★
ℓ )2 + (1 + 𝛿 )𝜂ℓ+𝑛 (𝑢★

ℓ+𝑛)2 + (1 + 𝛿 −1)𝐶stab [2𝑀 ]2 ⦀𝑢★
ℓ − 𝑢★

ℓ+𝑛⦀
2

(A4)≤ 𝜂ℓ (Tℓ \ Tℓ+𝑛 ;𝑢★
ℓ )2 + (1 + 𝛿 ) 𝑞2𝜃 𝜂ℓ (𝑢★

ℓ )2 + (1 + 𝛿 −1)𝐶stab [2𝑀 ]2𝐶 2
drel𝜂ℓ (Tℓ \ Tℓ+𝑛 ;𝑢★

ℓ )2.

Rearrangement yields

1 − (1 + 𝛿 ) 𝑞2opt
1 + (1 + 𝛿 −1)𝐶stab [2𝑀 ]2𝐶 2

drel
𝜂ℓ (𝑢★

ℓ )2 ≤ 𝜂ℓ (Tℓ \ Tℓ+𝑛 ;𝑢★
ℓ )2. (1.27)

Choosing 𝛿 > 0 and afterwards 0 < 𝑞opt < 1 in a way that ensures

𝜃 ≤
1 − (1 + 𝛿 ) 𝑞2opt

1 + (1 + 𝛿 −1)𝐶stab [2𝑀 ]2𝐶 2
drel

<
1

1 +𝐶stab [2𝑀 ]2𝐶 2
drel
C 𝜃opt
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1 Introduction

concludes the proof. □

For the sake of completeness, we also include themonotonicity of the estimators.

Lemma 1.13. Let (UB) hold for the Galerkin solutions𝑢★
ℓ
to (1.3)with𝐶bnd = 𝑀 associ-

ated to the meshesXℓ that appear in Algorithm 1.8. Suppose (A1), (A3), and a Céa-type
estimate (1.7). Then, there holds quasi-monotonicity of the estimator, i.e., there exists
𝐶mon > 0 such that, for all Tℓ ∈ 𝕋 and Tℓ′ ∈ 𝕋 (Tℓ) with 0 ≤ ℓ < ℓ′ < ℓ,

𝜂ℓ′ (𝑢★
ℓ′) ≤ 𝐶mon𝜂ℓ (𝑢★

ℓ ) where 𝐶mon = 1 +𝐶stab [2𝑀 ]𝐶rel (1 +𝐶Céa [2𝑀 ]). (1.28)

Proof. Since ⦀𝑢★
ℓ′ − 𝑢★

ℓ
⦀ ≤ 2𝑀 by (UB), it holds that

𝜂ℓ′ (𝑢★
ℓ′)

(A1)≤ 𝜂ℓ (𝑢★
ℓ ) +𝐶stab [2𝑀 ] ⦀𝑢★

ℓ − 𝑢★
ℓ′⦀

(1.7)≤ 𝜂ℓ (𝑢★
ℓ ) +𝐶stab [2𝑀 ] (1 +𝐶Céa [2𝑀 ]) ⦀𝑢★ − 𝑢★

ℓ ⦀

and reliability (A3) concludes the proof. □

1.3.2 Full linear convergence

A cornerstone to prove optimal convergence rates is full R-linear convergence. Regardless
of whether themesh is refined, another linearization step is made, or an additional linear
solver step is performed, the algorithm contracts the quasi-error from the right-hand side
of (1.23).

Theorem 1.14: Full R-linear convergence; [ 3 AIL2, Theorem 4.13 below]
Let A satisfy (SM), (LIP), and (POT). Suppose (UB) for all iterates and the estimator
properties (A1)–(A3). Then, for arbitrary adaptivity parameters 𝜆lin, 𝜆alg > 0, and 0 < 𝜃 ≤
1, the quasi-error from (1.23)

H𝑘 ,𝑗

ℓ
B 𝜂ℓ (𝑢𝑘,𝑗ℓ

) + ⦀𝑢★
ℓ − 𝑢𝑘,★

ℓ
⦀ + ⦀𝑢𝑘 ,★

ℓ
− 𝑢𝑘 ,𝑗

ℓ
⦀ (1.29)

is R-linear convergent, i.e., there exists𝐶lin > 0 and 0 < 𝑞lin < 1 such that

H𝑘 ,𝑗

ℓ
≤ 𝐶lin𝑞

|ℓ,𝑘 ,𝑗 |− |ℓ′,𝑘 ′,𝑗 ′ |
lin H𝑘 ′,𝑗 ′

ℓ′ for all (ℓ, 𝑘 , 𝑗 ), (ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q with |ℓ′, 𝑘 ′, 𝑗 ′ | ≤ |ℓ, 𝑘 , 𝑗 |.
(1.30)

In particular, it follows that

⦀𝑢★ − 𝑢𝑘 ,𝑗
ℓ

⦀ → 0 as |ℓ, 𝑘 , 𝑗 | → ∞. (1.31)

Proof idea. The gist of the proof of (1.30) lies in the estimator reduction (1.25) (index ℓ),
the contraction of the Zarantonello iteration (index 𝑘 ) and the contraction of the algebraic
solver (index 𝑗 ). Also the stopping criteria and quasi-monotonicity arguments of the
noncontracted error components are used. A detailed proof of (1.30) is given in [ 3 AIL2,
Theorem 4.13 below].
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1.3 Convergence with optimal rates

To see the convergence (1.31), note that reliability (A3), uniform boundedness (UB)
in (A1), and R-linear convergence (1.30) yield that

⦀𝑢★ − 𝑢𝑘,𝑗
ℓ

⦀ ≤ ⦀𝑢★ − 𝑢★
ℓ ⦀ + ⦀𝑢★

ℓ − 𝑢𝑘,𝑖
ℓ
⦀

(A3)
≲ 𝜂ℓ (𝑢★

ℓ ) + ⦀𝑢★
ℓ − 𝑢𝑘,𝑗

ℓ
⦀

(A1)
≲ 𝜂ℓ (𝑢𝑘 ,𝑗ℓ

) + ⦀𝑢★
ℓ − 𝑢𝑘 ,𝑗

ℓ
⦀

(1.23)
≲ H𝑘,𝑗

ℓ

(1.30)
≲ 𝑞

|ℓ,𝑘 ,𝑗 |
lin H0,0

0 → 0 as |ℓ, 𝑘 , 𝑗 | → ∞.

This concludes the proof. □

Remark 1.15. (i) In [ 2 AIL1, Lemma 3.12 below], the 𝑘-loop stopping criterion and [ 3 AIL2,
Theorem 4.8 below] also the 𝑗 -loop stopping criterion need to be adjusted to ensure (UB).
This adaptation, however, also allows for arbitrary adaptivity parameters 0 < 𝜃 ≤ 1, 0 < 𝜆lin,
and 0 < 𝜆alg in the statement of R-linear convergence.
(ii)We remark that the estimator contraction (1.25) in Proposition 1.11 holds only for

the final iterates, while full R-linear convergence proves the statement for any two indices
(ℓ, 𝑘 , 𝑗 ), (ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q with |ℓ′, 𝑘 ′, 𝑗 ′ | ≤ |ℓ, 𝑘 , 𝑗 |.
Moreover, with full R-linear convergence (1.30), we conclude that convergences rates

with respect to the number of degrees of freedom coincide with the rates with respect to
overall computational cost. This will become apparent with the notation of approximabil-
ity below.
Corollary 1.16 (rates =̂ complexity; [BFM+23, Corollary 14]). Let 𝑟 > 0. Under the
assumptions of Theorem 1.14 and with cost(ℓ, 𝑘 , 𝑗 ) from (1.22), there holds that

sup
(ℓ,𝑘 ,𝑗 ) ∈Q

(#Tℓ)𝑟 H𝑘,𝑗

ℓ
< ∞ ⇐⇒ sup

(ℓ,𝑘 ,𝑗 ) ∈Q
cost(ℓ, 𝑘 , 𝑗 )𝑟 H𝑘 ,𝑗

ℓ
< ∞. □

1.3.3 Optimal convergence rates and the notion of approximability

We introduce the approximation class of rate 𝑟 > 0 along the lines of [CFPP14], which
were introduced in the context of AFEM in [BDD04; Ste07; CKNS08]. Let T0 be the initial
triangulation. We define

||𝑢★ ||𝔸𝑟 B ||𝑢★ ||𝔸𝑟 (T0 ) B sup
𝑁 ∈ℕ0

(𝑁 + 1)𝑟 min
Topt (𝑁 ) ∈𝕋 (𝑁 )

𝜂opt(𝑢★
opt) ∈ [0,∞], (1.32)

where theminimum is taken over the finite set 𝕋 (𝑁 ) = {T ∈ 𝕋 | #T − #T0 ≤ 𝑁 } with the
error estimator𝜂 from (1.11). The index opt = opt(𝑁 ) is used for quantities that depend
on functions in the finite element spaceXopt associatedwith aminimizing (optimal)mesh
in 𝕋 (𝑁 ).
If ||𝑢★ ||𝔸𝑟 < ∞, we say that the exact solution 𝑢★ of the model problem (1.2) is in the

approximation class of rate 𝑟 > 0. This is ensured if and only if

min
Topt∈𝕋 (𝑁 )

𝜂opt(𝑢★
opt) = O(𝑁 −𝑟 ) for 𝑁 → ∞.

With other words, starting from an initial triangulation T0, the sequence of the error mea-
sure (𝜂opt(𝑁 ) )𝑁 ∈ℕ0 on the corresponding theoretically optimal (but too costly to compute)
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meshes (Topt(𝑁 ) )𝑁 ∈ℕ0 decays at least with algebraic rate 𝑟 > 0with respect to the number𝑁
of additional triangles. To see the equivalence, recall that elementary calculations [BHP17,
Lemma 22] show that

#Topt − #T0 + 1 ≃ #Topt,

where the hidden constant depends only on #T0. From this, we infer the claimed equiva-
lence

||𝑢★ ||𝔸𝑟 < ∞ ⇐⇒ min
Topt∈𝕋 (𝑁 )

𝜂opt(𝑢★
opt) ≤ 𝐶 (𝑟 ) (#Topt)−𝑟 < ∞ for all𝑁 ∈ ℕ0.

Remark 1.17. In general, the sequence of optimal meshes (Topt(𝑁 ) )𝑁 ∈ℕ0 may not be nested
and does not necessarily stem from successive refinement.

1.3.4 Comparison lemma

To connect the sequences of the meshes generated by Algorithm 1.8 with the optimal
meshes from the definition of the (1.32), we recall the comparison lemma. It states that by
adding a certain number of elements to the triangulation from Algorithm 1.8 there holds
contraction of the estimator.
Proposition 1.18 (comparison lemma). Let quasi-monotonicity of the estimators from
Lemma 1.13 and the overlay estimate (R2) hold. Let 0 ≤ ℓ < ℓ with Tℓ ∈ 𝕋 that satisfies
𝜂ℓ (𝑢★

ℓ
) > 0. Moreover, let 0 < 𝑞 < 1 and let 𝑟 > 0 such that ||𝑢★ ||𝔸𝑟 < ∞. Then, for every ℓ,

there exists a refinement Tℓ′ ∈ 𝕋 (Tℓ) that satisfies

#Tℓ′ − #Tℓ ≤
(𝐶mon ||𝑢★ ||𝔸𝑟

𝑞 𝜂ℓ (𝑢★
ℓ
)

)1/𝑟
, (1.33)

𝜂ℓ′ (𝑢★
ℓ′) ≤ 𝑞 𝜂ℓ (𝑢★

ℓ ). (1.34)

Proof. First, pick theminimal𝑁 ∈ ℕ0 such that

𝐶mon ||𝑢★ ||𝔸𝑟 ≤ 𝑞 (𝑁 + 1)𝑟 𝜂ℓ (𝑢★
ℓ ). (1.35)

Note that𝑁 = 0 would give𝐶mon ||𝑢★ ||𝔸𝑟 ≤ 𝑞 𝜂ℓ (𝑢★
ℓ
). This is not possible since 𝑞 𝜂ℓ (𝑢★

ℓ
) <

𝜂ℓ (𝑢★
ℓ
) ≤ 𝐶mon𝜂0(𝑢★

0 ) ≤ 𝐶mon ||𝑢★ ||𝔸𝑟 . We conclude that𝑁 ∈ ℕ.
Next, we determine

Topt★ B argmin
Topt∈𝕋 (𝑁 )

𝜂opt(𝑢★
opt) and define the overlay Tℓ′ B Tℓ ⊕ Topt★ .

The overlay estimate (R2) gives

#Tℓ′ − #Tℓ
(R2)≤ (#Topt★ − #T0 + #Tℓ ) − #Tℓ ≤ 𝑁 .

The (not met) minimality for𝑁 − 1 ∈ ℕ0 in (1.35) ensures that 𝑞 𝑁 𝑟 𝜂ℓ (𝑢★
ℓ
) < 𝐶mon ||𝑢★ ||𝔸𝑟 .

Rearrangement together with the previous estimate results in (1.33). The quasi-monoto-
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nicity of the estimators and the definition of the approximation class (1.32) yield

𝜂ℓ′ (𝑢★
ℓ′) ≤ 𝐶mon𝜂opt★ (𝑢★

opt★) ≤
𝐶mon ||𝑢★ ||𝔸𝑟

(𝑁 + 1)𝑟
(1.35)≤ 𝑞 𝜂ℓ (𝑢★

ℓ ). (1.36)

This concludes the proof of (1.34). □

1.3.5 Main theorem on optimal rates with respect to cost

Onemain result in this thesis, namely quasi-optimal convergence of the proposedAILFEM
strategy, is the content of the following theorem. This guaranteed cost-optimal steering
of discretization, linearization, and the algebraic solver hold for general locally Lipschitz
continuous problems and, thus, extends known results on strongly-monotone and Lip-
schitz continuous problems [GHPS21; HPSV21; HPW21].

Theorem 1.19: optimal complexity; [ 2 AIL1, Theorem 3.17 below]
Suppose (SM), (LIP), and (POT) aswell as (UB). Under the assumptions of (A1)–(A4) and
the fine properties of mesh refinement (R1)–(R3), let 𝑟 > 0. Then, for arbitrary adaptivity
parameter 𝜆alg > 0 and sufficiently small 𝜆lin > 0 and 𝜃 > 0, Algorithm 1.8 reproduces
optimal rates with respect to the cost and computation time. Formally, with the quasi-
errorH𝑘 ,𝑗

ℓ
from (1.29) and cost(ℓ, 𝑘 , 𝑗 ) from (1.22), it holds that

sup
𝑁 ∈ℕ0

(𝑁 + 1)𝑟 min
Topt (𝑁 ) ∈𝕋 (𝑁 )

𝜂opt(𝑢★
opt) < ∞ =⇒ sup

(ℓ,𝑘 ,𝑗 ) ∈Q
cost(ℓ, 𝑘 , 𝑗 )𝑟 H𝑘 ,𝑗

ℓ
< ∞. (1.37)

With other words, the quasi-errorH𝑘,𝑗

ℓ
decays with the best possible rate 𝑟 > 0 over the

computational cost, if𝑢★ satisfies ||𝑢★ ||𝔸𝑟 < ∞, i.e.,𝑢★ can theoretically be approximated
at rate 𝑟 > 0 on a sequence of error estimators of Galerkin solutions 𝑢★

opt on optimally
chosenmeshes Topt. □

Remark 1.20. (i) In case of [ 2 AIL1], where an exact algebraic solver of the linear procedure
is assumed, the theorem holds with amodified quasi-error without algebraic contribution.
(ii) The proof of optimal convergence rates uses a perturbation argument that 0 < 𝜃

and 0 < 𝜆lin are sufficiently small to relate the Dörfler marking on the final iterates in
Algorithm 1.8 to Dörfler marking on exact Galerkin solutions𝑢★

ℓ
. The comparison lemma

then connects the optimal meshes in the approximation class to the meshes generated by
the algorithm.
(iii) The stopping criterion of the 𝑗 -loop is tailored to ensure (UB) for all iterates. This

implicitly, but not explicitly enforces that also 𝜆alg is sufficiently small.

We conclude the section on AILFEMs with a schematic connection of the presented
results; see Figure 1.7.
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Dörfler sufficient
Proposition 1.11(i)

Quasi-monotonicity
Lemma 1.13

Dörfler necessary
Proposition 1.11(ii)

Full R-linear convergence
Theorem 1.14

Comparison lemma
Proposition 1.18

Optimal complexity
Theorem 1.19

(A1)

(A2) (A3)

(A4)

(QO)/(O)

(UB)

(R1)

(R2)

(R3)

Figure 1.7:Overview of the proof strategy to obtain optimal complexity. The blocks high-
lighted in greenconcern theapproximate solutions fromthealgorithm,whereas the results
in gray are for the exact discrete solutions. The comparison lemma (Proposition 1.18) is
used to connect R-linear convergence (Theorem 1.14) on the algorithmic approximations
with the definition of the approximation class that relies on the exact solution to obtain
optimal complexity (Theorem 1.19). The properties (UB) and (QO)/(O) need to hold only
for themeshes that are generated by the proposed Algorithm 1.8.

1.4 Goal-oriented AFEM

The next section is devoted to goal-oriented AFEMs for semilinear PDEs. Usually, stan-
dard adaptive FEM aims to compute the exact solution 𝑢★ ∈ 𝐻 1

0 (Ω) of the given model
problem (1.2). In applications, it is oftentimesmore important to compute a scalar goal
functional 𝐺 ∈ 𝐻 −1(Ω), e.g., an energy, evaluated at the solution𝑢★. Goal-oriented adap-
tive FEMs (GOAFEMs) thus seek to approximate𝐺 (𝑢★) ≈ 𝐺 (𝑢★

ℓ
), where, in our case, the

quantity of interest is assumed to be of the linear form

𝐺 (𝑣 ) =
∫
Ω
𝑔 𝑣 d𝑥 +

∫
Ω
𝒈 · ∇𝑣 d𝑥, (1.38)

whichmodels a general𝐻 −1(Ω) right-hand side.
Unlike the naive approach based on continuity of𝐺

|𝐺 (𝑢★) −𝐺 (𝑢★
𝐻 ) | = |𝐺 (𝑢★ − 𝑢★

𝐻 ) | ≤ ||𝐺 ||𝐻 −1 (Ω) ||𝑢★ − 𝑢★
𝐻 ||𝐻 1

0 (Ω) , (1.39)

a more sophisticated approach relies on duality techniques from [GS02] and leads to
a (potential) doubling of convergence rates. The increased difficulty of goal-oriented
methods lies in the fact that the algorithm needs to balance singularities of the model
problem (1.2) with singularities that only appear in the goal quantity𝐺 ∈ 𝐻 −1(Ω) to overall
minimize the goal error𝐺 (𝑢★) −𝐺 (𝑢★

𝐻
) with the best convergence rate possible.
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1.4 Goal-oriented AFEM

1.4.1 Dual problems and a goal-error estimate

Wefirst consider a linearmodel problem togain insights onhow todefine thedual problem
and derive a goal-error identity as well as a goal-error estimate. Afterwards, we discuss
the changes needed to cover the semilinear case as well.

The linear case. For vanishing nonlinearity 𝑏 (·) = 0 and 𝐹 ,𝐺 ∈ 𝐻 −1(Ω), the primal and
the dual problem reads: Find𝑢★ ∈ 𝐻 1

0 (Ω) and 𝑧★ ∈ 𝐻 1
0 (Ω), respectively, that satisfies

⟪𝑢★ , 𝑣⟫ = ⟨𝐹 , 𝑣⟩ for all 𝑣 ∈ 𝐻 1
0 (Ω) resp. ⟪𝑣 , 𝑧★⟫ = ⟨𝐺 , 𝑣⟩ for all 𝑣 ∈ 𝐻 1

0 (Ω). (1.40)

For the finite element space X𝐻 with corresponding Galerkin solutions 𝑢★
𝐻

∈ X𝐻 and
𝑧★
𝐻
∈ X𝐻 . The linear goal quantity𝐺 together with Galerkin orthogonality establish

𝐺 (𝑢★) −𝐺 (𝑢★
𝐻 ) = 𝐺 (𝑢★ − 𝑢★

𝐻 )
(1.40)
= ⟪𝑢★ − 𝑢★

𝐻 , 𝑧
★
⟫ (1.41)

(1.40)
= ⟪𝑢★ − 𝑢★

𝐻 , 𝑧
★ − 𝑧★𝐻⟫ ≲ ⦀𝑢★ − 𝑢★

𝐻⦀⦀𝑧★ − 𝑧★𝐻⦀. (1.42)

This already yields two important observations: First, in (1.41), we see that the goal error
is the dual problem tested with 𝑢★ − 𝑢★

𝐻
. Second, in (1.42) we already see a (nonlinear)

product structure that allows for a doubling of convergence rates (under the premise that
both problems can be approximated with the same rate; cf. (1.39)). We also remark that in
linear problems, the primal and dual error contribute equally to the error product.

Theoretical dual problem and goal-error identity. We shift the focus to the semilinear
setting by translating (1.41) to the semilinear model problem (1.2). For a linear goal𝐺 ∈
𝐻 −1(Ω) and the semilinear model problem (1.2), the (symbolic) dual solution 𝑧★ [𝑢★

𝐻
] ∈

𝐻 1
0 (Ω) satisfies

𝐺 (𝑢★) −𝐺 (𝑢★
𝐻 ) = 𝐺 (𝑢★ − 𝑢★

𝐻 ) = ⟨A(𝑢★) − A(𝑢★
𝐻 ) , 𝑧★ [𝑢★

𝐻 ]⟩
= ⟪𝑢★ − 𝑢★

𝐻 , 𝑧
★ [𝑢★

𝐻 ]⟫ + ⟨𝑏 (𝑢★) − 𝑏 (𝑢★
𝐻 ) , 𝑧★ [𝑢★

𝐻 ]⟩Ω,

where we use the notation [ · ] for arguments in 𝐻 1
0 (Ω) to signify the dependence on

the linearization point. Under the assumption of a differentiable 𝑏 (cf. [ 2 AIL1, Assump-
tion (CAR) below]), the difference 𝑏 (𝑢★) − 𝑏 (𝑢★

𝐻
) can be rewritten with themain theorem

of calculus as

𝑏 (𝑢★) − 𝑏 (𝑢★
𝐻 ) =

( ∫ 1

0
𝑏 ′(𝑢★ + 𝜏 (𝑢★

𝐻 − 𝑢★)) d𝜏
)
(𝑢★ − 𝑢★

𝐻 ). (1.43)

By defining

𝑩 (𝑢★, 𝑢★
𝐻 )𝑤 B

( ∫ 1

0
𝑏 ′(𝑢★ + 𝜏 (𝑢★

𝐻 − 𝑢★)) d𝜏
)
𝑤 for𝑤 ∈ 𝐻 1

0 (Ω). (1.44)
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and motivated by the linear case, this gives rise to the theoretical dual problem: Find
𝑧★ [𝑢★

𝐻
] ∈ 𝐻 1

0 (Ω) such that

⟪𝑣 , 𝑧★ [𝑢★
𝐻 ]⟫ + ⟨𝑣 , 𝑩 (𝑢★, 𝑢★

𝐻 ) 𝑧★ [𝑢★
𝐻 ]⟩ = 𝐺 (𝑣 ) for all 𝑣 ∈ 𝐻 1

0 (Ω). (1.45)

Overall, for 𝑧𝐻 ∈ X𝐻 , the Galerkin orthogonality for the primal problem (1.2) yields a
goal-error identity that is similar to (1.41)

𝐺 (𝑢★) −𝐺 (𝑢★
𝐻 )

(1.43)
= ⟪𝑢★ − 𝑢★

𝐻 , 𝑧
★ [𝑢★

𝐻 ]⟫ + ⟨𝑏 (𝑢★) − 𝑏 (𝑢★
𝐻 ) , 𝑧★ [𝑢★

𝐻 ]⟩
(1.2)
= ⟪𝑢★ − 𝑢★

𝐻 , 𝑧
★ [𝑢★

𝐻 ] − 𝑧𝐻⟫ + ⟨𝑏 (𝑢★) − 𝑏 (𝑢★
𝐻 ) , 𝑧★ [𝑢★

𝐻 ] − 𝑧𝐻 ⟩.
(1.46)

Practical dual problem and goal-error estimate. Though similar to the linear case,
the goal-error identity (1.46) faces two major differences when compared to the linear
problem: First, the dual problem depends on the linearization point𝑢★

𝐻
and thus changes

on each mesh level. Second, the theoretical dual problem (1.45) is not computable in
practice, since the operator𝑩 (𝑢★, 𝑢★

𝐻
) involves theunavailable exact solution𝑢★. A remedy

to the second issue comes from the observation that 𝑩 (𝑢★, 𝑢★
𝐻
) → 𝑏 ′(𝑢★

𝐻
) as 𝑢★

𝐻
→ 𝑢★.

This motivates the so-called practical dual problem: Seek 𝑧★ [𝑢★
𝐻
] ∈ 𝐻 1

0 (Ω) such that

⟪𝑣 , 𝑧★ [𝑢★
𝐻 ]⟫ + ⟨𝑣 , 𝑏 ′(𝑢★

𝐻 ) 𝑧★ [𝑢★
𝐻 ]⟩ = 𝐺 (𝑣 ) for all 𝑣 ∈ 𝐻 1

0 (Ω). (1.47)

We include the practical problem into (1.46) and arrive at the goal-error identity

𝐺 (𝑢★)−𝐺 (𝑢★
𝐻 )

(1.46)
= ⟪𝑢★−𝑢★

𝐻 , 𝑧
★ [𝑢★

𝐻 ]−𝑧★ [𝑢★
𝐻 ]⟫ + ⟨𝑏 (𝑢★)−𝑏 (𝑢★

𝐻 ) , 𝑧★ [𝑢★
𝐻 ]−𝑧★ [𝑢★

𝐻 ]⟩
+ ⟪𝑢★−𝑢★

𝐻 , 𝑧
★ [𝑢★

𝐻 ]−𝑧★𝐻 [𝑢★
𝐻 ]⟫ + ⟨𝑏 (𝑢★)−𝑏 (𝑢★

𝐻 ) , 𝑧★ [𝑢★
𝐻 ]−𝑧★𝐻 [𝑢★

𝐻 ]⟩.
(1.48)

The dual problems (1.45) and (1.47) are well-posed due to the Lax–Milgram lemma,
relying on themonotonicity of 𝑏 (and𝑩 (𝑢★, 𝑢★

𝐻
)) (see [ 2 AIL1, Assumption (MON) below]),

the growth condition [ 1 GOA, Section 2.7 below], and the ellipticity of the diffusion part
(see [ 2 AIL1, Assumption (ELL) below]).
To reliably control the goal error |𝐺 (𝑢★) − 𝐺 (𝑢★

𝐻
) |, we rigorously derive two stability

results ([ 1 GOA, Lemma 2.9 and 2.10 below]).
Proposition 1.21. Suppose (SM) and (LIP). Then, it holds that

||𝑏 (𝑢★) − 𝑏 (𝑢★
𝐻 ) ||𝐻 −1 (Ω) ≲ ⦀𝑢★ − 𝑢★

𝐻⦀ and ⦀𝑧★ [𝑢★
𝐻 ] − 𝑧★ [𝑢★

𝐻 ]⦀ ≲ ⦀𝑢★ − 𝑢★
𝐻⦀. (1.49)

Applied to (1.48), this proves the goal-error estimate

|𝐺 (𝑢★) −𝐺 (𝑢★
𝐻 ) |

(1.48)
≲ ⦀𝑢★ − 𝑢★

𝐻⦀
[
⦀𝑧★ [𝑢★

𝐻 ] − 𝑧★𝐻 [𝑢★
𝐻 ]⦀2 + ⦀𝑢★ − 𝑢★

𝐻⦀
2]1/2. (1.50)

for semilinear PDEs; compare with (1.42). □

Weremark that thefirst stability estimate (1.49) is immediate ifwe suppose global Lipschitz
continuity of 𝑏 . The second stability estimate (1.49) follows if 𝑏 ′ is Lipschitz continuous
(since 𝑩 (𝑢★, 𝑢★

𝐻
) = 𝑩 (𝑢★

𝐻
, 𝑢★)).
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1.4 Goal-oriented AFEM

Goal-orientedadaptivity. Thegoal-error estimate (1.50) is the startingpoint for a reliable
goal-error control. To this end, we introduce the error estimator related to the practical
dual problem. For a linearization point𝑤𝐻 ∈ X𝐻 , the strong form of the practical dual
problem reads

−div(𝑨 ∇𝑧★ [𝑤𝐻 ]) + 𝑏 ′(𝑤𝐻 )𝑧★ [𝑤𝐻 ] = 𝑔 − div(𝒈 ) inΩ, (1.51)
𝑧★ [𝑤𝐻 ] = 0 on 𝜕Ω.

The elementwise contribution of the a posteriori estimator related to the practical dual
problem (1.47) read

𝜁𝐻 (𝑤𝐻 ;𝑇 ,𝑣𝐻 ) B ℎ2𝑇 ||𝑔 + div(𝑨 ∇𝑣𝐻 − 𝒈 ) − 𝑏 ′(𝑤𝐻 ) 𝑣𝐻 ||2𝐿2 (𝑇 ) + ℎ𝑇 || [[𝑨 ∇𝑣𝐻 − 𝒈 ]] ||𝐿2 (𝜕𝑇∩Ω) ,

which depends on the linearization point𝑤𝐻 ∈ X𝐻 . Moreover, forU𝐻 ⊆ T𝐻 and𝑤𝐻 ∈ X𝐻 ,
the practical and computable dual estimator reads

𝜁𝐻 (𝑤𝐻 ;U𝐻 , 𝑣𝐻 )2 B
∑︁

𝑇 ∈U𝐻

𝜁𝐻 (𝑤𝐻 ;𝑇 ,𝑣𝐻 )2 and 𝜁𝐻 (𝑤𝐻 ;𝑣𝐻 )2 B 𝜁𝐻 (𝑤𝐻 ;T𝐻 , 𝑣𝐻 )2.

The dual estimator 𝜁𝐻 (𝑢★
𝐻
; 𝑧★
𝐻
[𝑢★

𝐻
]) also satisfies (A1)–(A4); see [ 1 GOA, Proposition 2.15

below]. Therefore, reliability (A3) and the goal error estimate (1.50) show

|𝐺 (𝑢★) −𝐺 (𝑢★
𝐻 ) |

(1.50)
≲ ⦀𝑢★ − 𝑢★

𝐻⦀
[
⦀𝑧★ [𝑢★

𝐻 ] − 𝑧★𝐻 [𝑢★
𝐻 ]⦀2 + ⦀𝑢★ − 𝑢★

𝐻⦀
2]1/2

≲ 𝜂𝐻 (𝑢★
𝐻 )

[
𝜁𝐻 (𝑢★

𝐻 ; 𝑧★𝐻 [𝑢★
𝐻 ])2 +𝜂𝐻 (𝑢★

𝐻 )2
]1/2
C 𝜂𝐻 (𝑢★

𝐻 ) 𝜌𝐻 (𝑢★
𝐻 , 𝑧

★
𝐻 [𝑢★

𝐻 ]),
(1.52)

where we call the estimator 𝜌𝐻 (· , ·) combined estimator. The combined estimator also
satisfies the axioms of adaptivity (A1)–(A4); see [BIP21, Proposition 7], where we note
that [BIP21] considers a linear PDEwith anonlinear goal functional, but ultimately obtains
the same goal-error estimate (1.50).

1.4.2 Goal-oriented AFEM algorithm and the MARK module

Theproduct structure in (1.52) requires a suitablemarking step to preserve quasi-minimal-
ity of the marked elements. An abstract algorithmic formulation of a goal-oriented adap-
tive FEM is given in Algorithm 1.22.

Algorithm 1.22: schematic goal-oriented adaptive FEM
Input: T0 conformingmesh, marking parameters 0 < 𝜃 ≤ 1,𝐶mark ≥ 1 for MARKmodule.
Adaptive loop: For all ℓ = 0, 1, 2, . . . , repeat the following steps (I)–(V):

(I) SOLVE & ESTIMATE (primal). Compute 𝑢★
ℓ
from the discrete primal prob-

lem (1.3) and the primal estimator𝜂ℓ (𝑢★
ℓ
).

(II) SOLVE & ESTIMATE (dual). Compute 𝑧★
ℓ
[𝑢★

ℓ
] from the practical dual prob-

lem (1.47) and the practical dual estimator 𝜁ℓ (𝑢★
ℓ
; 𝑧★

ℓ
[𝑢★

ℓ
]).
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(III) Compute the combined estimator 𝜌ℓ (𝑢★
ℓ
, 𝑧★

ℓ
[𝑢★

ℓ
]) from (1.52).

(IV) MARK. Mℓ ↦→mark(Tℓ ,𝜂ℓ , 𝜌ℓ); % respects product structure (1.52).
(V) REFINE. Tℓ+1 ↦→refine(Tℓ ,Mℓ). % newest-vertex bisection

Output: Sequence of successively refined conforming triangulations Tℓ , discrete solu-
tions𝑢★

ℓ
and 𝑧★

ℓ
[𝑢★

ℓ
], and corresponding error estimators𝜂ℓ (𝑢★

ℓ
), 𝜌ℓ (𝑢★

ℓ
, 𝑧★

ℓ
[𝑢★

ℓ
]).

We remark that the dual problem depends on the previously computed discrete solution
𝑢★
ℓ
and thus (unlike linear PDEs [BBPS23]), the SOLVE & ESTIMATE-modules cannot be

parallelized, but have to be solved sequentially.
In Proposition 1.11(i), quasi-minimal cardinality in the Dörfler marking (1.19) is a cru-

cial ingredient. The naive approach for primal and dual problems is separate Dörfer
marking (1.19) for the primal estimator𝜂ℓ with setM𝜂

ℓ
and the second estimator 𝜌ℓ with

setM𝜌

ℓ
and then taking the unionM𝜂

ℓ
∪M𝜌

ℓ
as the set of overall marked elements [HPZ15].

However, this may lead to a suboptimal allocation of resources that may cause rates to de-
teriorate. A problematic case is if one estimator marks only a few elements with very large
contributions and the other estimator marks a large number of elements, but with com-
parably very small indicators compared to the first estimator. A remedy to this problem
was introduced in [MS09] for the Poisson problem, where only the set of lesser cardinality
constitutes the set of marked elements. The algorithm is presented in Algorithm 1.23.

Algorithm 1.23: mark— MARKmodule from [MS09]
Input: triangulation Tℓ , estimators𝜂ℓ , 𝜌ℓ , marking parameters 0 < 𝜃 ≤ 1,𝐶mark ≥ 1.
(i) Find a quasi-minimal set that satisfies the Dörfler marking for the estimator𝜂ℓ

#M𝜂

ℓ
≤ 𝐶mark min

U★
ℓ
∈𝕄𝜂

ℓ

#U★
ℓ with 𝕄

𝜂

ℓ
B {Uℓ ⊆ Tℓ | 𝜃 𝜂2ℓ ≤ 𝜂ℓ (Uℓ)2}.

(ii) Find a quasi-minimal set that satisfies the Dörfler marking for the estimator 𝜌ℓ

#M𝜌

ℓ
≤ 𝐶mark min

U★
ℓ
∈𝕄𝜌

ℓ

#U★
ℓ with 𝕄

𝜌

ℓ
B {Uℓ ⊆ Tℓ | 𝜃 𝜌2ℓ ≤ 𝜌ℓ (Uℓ)2}.

(iii) ChooseMℓ ∈ {#M𝜂

ℓ
, #M𝜌

ℓ
} such that #Mℓ = min{#M𝜂

ℓ
, #M𝜌

ℓ
}.

Output:marked elementsMℓ .

In our case, due to the goal error estimate (1.52), the MARKmodule takes the primal and
combined estimator from (1.52). Marking only the set with lesser cardinality ensures that
at each level ℓ, Dörfler marking holds either for the primal or the combined estimator.
Remark1.24 (alternativemarking strategies). Themarking in [MS09] is anapproachwhere
marking is performed separately as a first step and then the primal and dual a posteriori
information is combined. A refined version of the [MS09] marking is proposed in [FPZ16],
where Step (iii) is replaced by
(iii’) Define𝑁 B min{#M𝜂

ℓ
, #M𝜌

ℓ
}.
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(iv) Pick M̃𝜂

ℓ
⊆ M𝜂

ℓ
and M̃𝜌

ℓ
⊆ M𝜌

ℓ
, where #M̃𝜂

ℓ
= #M̃𝜌

ℓ
= 𝑁 .

(v) DefineMℓ B M̃𝜂

ℓ
∪ M̃𝜌

ℓ
.

These twomarking strategies are in the spirit of mark first, combine later.
A different but equivalent marking in the sense of estimator equivalence is proposed

in [BET11]. For given estimators𝜂ℓ and 𝜌ℓ , the elementwise contributions of the weighted
estimator 𝜚ℓ read

𝜚ℓ (𝑇 ) B 𝜂ℓ (𝑇 )𝜌ℓ +𝜂ℓ𝜌ℓ (𝑇 ). (1.53)
Then, Dörfler marking is performed for the weighted estimator 𝜚ℓ . Thus, this approach can
be summarized as combine first, mark later.
For GOAFEM for semilinear PDEs, all three marking strategies involve the primal estima-

tor𝜂ℓ = 𝜂ℓ (𝑢★
ℓ
) as well as the combined estimator 𝜌ℓ = 𝜌ℓ (𝑢★

ℓ
, 𝑧★
𝐻
[𝑢★

𝐻
]) as motivated by the

goal-error estimate (1.52).

1.4.3 Literature on goal-oriented adaptive FEM

Despite the high relevance of goal-oriented adaptive FEM (GOAFEM) in practice, litera-
ture is comparably scarce compared to standard AFEM. GOAFEMs are related to dual and
adjoint methods that were developed in [EEHJ95; BR01; BR03; GS02] to improve computa-
tional performance in the presence of a goal functional.. Roughly speaking, GOAFEMs
are divided into two schools of thought: First, dual weighted residual methods (DWR),
where the primal and dual estimators are weighted elementwise. These DWRmethods are
computationally very performant but convergence of the related adaptive strategies is
hard to analyze rigorously and appears to be still open. We refer to [ELW19; ELW20; DBR21;
AESW22] for some recent contributions. The second large class are AFEMmethods that
are based on (merely) global error estimation for the primal and dual problem, which
allows for guaranteed convergence rates. We shall discuss the latter in greater detail.
The first result on optimal convergence rates for a GOAFEM is found in [MS09] for the

Poissonmodel problem. A computable and less local variant ofDWRwasused to single out
elements in the MARK-module in [BET11] (see (1.53) above) with an empirically improved
performance, yielding a connection between both schools of thought.
Linear convergence of GOAFEM for the semilinear model problem (1.2) was shown

in [HPZ15; XHYM21], however, relying on the global Lipschitz continuity of 𝑏 and discrete
𝐿∞(Ω)-bound on the discrete solutions. Themere convergence of GOAFEM for general
nonsymmetric second-order linear elliptic problems was proven in [HP16],
while [FFGHP16] published results on optimal rates for symmetric second-order lin-
ear elliptic PDEs. The paper [FPZ16] generalized those results on optimal rates to gen-
eral second-order linear elliptic PDEs withmarkingmore elements compared to [MS09].
In [BIP21], optimal convergence rates were proven for a nonsymmetric model problem
with quadratic goal functional, where the key goal error estimate has a similar product
structure as in (1.52) (for different reasons).
GOAFEMs that also include an inexact solver are scarce. The aforementioned contribu-

tions, except for [MS09] with a generic contractive solver, are under the assumption of an
exact solve procedure. Moreover, the solve procedure of [MS09] does not comment on
the practical steering of the contractive solver. By including (and also adaptively steering)
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an inexact solver, a cost-optimal GOAFEM for symmetric second-order linear PDEs is
presented in [BGIP23]. For a linear and nonsymmetric problemwith a coupled loop of the
form of Algorithm 1.8 with symmetrization and an algebraic solver, we refer to the recent
own work [BBPS23].
This thesis presents the followingmajor extensions to the existing literature: In [ 1 GOA],

a thorough analysis replaces global Lipschitz continuity with growth conditions on the
nonlinear reaction 𝑏 . Moreover, any discrete 𝐿∞(Ω)-assumptions are avoided. By intro-
ducing the practical dual problem, we are able to prove the stability estimates (1.49) as
well as the goal-error estimate (1.50). Moreover, since the primal and dual problem do not
decouple as in the linear case [MS09; BIP21; BGIP23], stability estimates with respect to
the linearization point𝑤 ∈ 𝐻 1

0 (Ω) (Lemma 2.25 below) of the form

⦀𝑧★ [𝑢★] − 𝑧★ [𝑤 ]⦀ + ⦀𝑧★𝐻 [𝑢★] − 𝑧★𝐻 [𝑤 ]⦀ ≲ ⦀𝑢★ −𝑤⦀ (1.54)

are required and pose a significant additional challenge.
In addition, we rigorously prove R-linear convergence (Theorem 2.19 below) and op-

timal convergence rates (Theorem 2.20 below) with respect to the number of degrees
of freedom for the semilinear model problem in the goal-oriented setting. This result is
obtained under a supposed exact solve procedure. Overall, this is the first mathematically
rigorous result on optimal convergence rates of GOAFEM for a nonlinear PDEs.

1.4.4 Main results: linear convergence and optimal convergence rates

For a sufficiently large mesh-refinement index ℓ0 ∈ ℕ0, we establish the quasi-orthogonal-
ity (QO) in the energy norm for the primal problem [ 1 GOA, Lemma 2.29 below] and the
exact dual problem [ 1 GOA, Lemma 2.30 below] as an intermediate step. From this and
motivated by (1.52), we prove the technically demanding quasi-orthogonality for the
combined quantity ([ 1 GOA, Lemma 2.31 below])

⦀𝑧★ [𝑢★] − 𝑧★𝐻 [𝑢★
𝐻 ]⦀2 + ⦀𝑢★ − 𝑢★

𝐻⦀
2. (1.55)

With this, we are able to present R-linear convergence regardless of the whether Dörfler
marking is performed for the primal or the combined estimator.

Theorem 1.25: R-linear convergence [ 1 GOA, Theorem 2.19 below]
Suppose (SM) and (LIP). From (1.52), recall the combined estimator 𝜌ℓ (𝑢★

ℓ
, 𝑧★

ℓ
[𝑢★

ℓ
]) =[

𝜁ℓ (𝑢★
ℓ
; 𝑧★

ℓ
[𝑢★

ℓ
])2 +𝜂ℓ (𝑢★

ℓ
)2]1/2. Let𝜂ℓ and 𝜌ℓ satisfy (A1)–(A3) and let (QO) hold for

⦀𝑢★ − 𝑢★
𝐻⦀

2 and ⦀𝑧★ [𝑢★] − 𝑧★𝐻 [𝑢★
𝐻 ]⦀2 + ⦀𝑢★ − 𝑢★

𝐻⦀
2.

Then, for arbitrary 0 < 𝜃 ≤ 1 and arbitrary 1 ≤ 𝐶mark ≤ ∞, there exists 0 < 𝑞lin < 1,
𝐶lin > 0, and ℓ0 ∈ ℕ0, such that, for all𝑚 ≥ ℓ ≥ ℓ0, it holds that

𝜂𝑚 (𝑢★
𝑚) 𝜌𝑚 (𝑢★

𝑚 , 𝑧
★
𝑚 [𝑢★

𝑚]) ≤ 𝐶lin 𝑞
𝑚−ℓ
lin 𝜂ℓ (𝑢★

ℓ ) 𝜌ℓ (𝑢★
ℓ , 𝑧

★
ℓ [𝑢★

ℓ ]). □ (1.56)
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1.5 Outline of the thesis

For the product setting, we state a suitable comparison lemma from the literature cus-
tomized for the case of the primal and combined estimators.

Proposition 1.26 (variant of comparison lemma [FPZ16, Lemma 15]). Suppose quasi-
monotonicity of the estimators (Lemma 1.13) separately for𝜂ℓ and 𝜌ℓ and the overlay
estimate (R2). Let 0 ≤ ℓ < ∞with Tℓ ∈ 𝕋 that satisfies 𝜂ℓ (𝑢★

ℓ
) > 0 and 𝜌ℓ (𝑧★ℓ [𝑢★

ℓ
]) > 0.

Moreover, let 𝑟 > 0 and 𝑠 > 0 such that ||𝑢★ ||𝔸𝑟 + ||𝑧★ [𝑢★] ||𝔸𝑠 < ∞. Then, for every 0 < 𝑞 < 1,
there exists a refinement Tℓ′ ∈ 𝕋 (Tℓ) that satisfies

#Tℓ′ − #Tℓ ≤
(
𝐶mon ||𝑢★ ||𝔸𝑟

[||𝑧★ [𝑢★] ||𝔸𝑠 + ||𝑢★ ||𝔸𝑟

]
𝑞 𝜂ℓ (𝑢★

ℓ
) 𝜌ℓ (𝑧★ℓ [𝑢★

ℓ
])

)−min{2𝑟 ,𝑠+𝑟 }
, (1.57)

𝜂ℓ′ (𝑢★
ℓ′) 𝜌ℓ′ (𝑧★ℓ′ [𝑢★

ℓ′]) ≤ 𝑞 𝜂ℓ (𝑢★
ℓ ) 𝜌ℓ (𝑧★ℓ [𝑢★

ℓ ]), (1.58)

where𝐶mon depends only on the primal and dual quasi-monotonicity constant. □

We remark that the proof constructs two overlays (and uses the overlay estimate (R2)
twice), namely Tℓ ⊕ T𝜂 ⊕ T𝜁 , where T𝜂 and T𝜁 denote the optimal meshes from the primal
and dual approximation classes, respectively.
We are able to present the main result on optimal convergence rates with respect to the

number of degrees of freedom.

Theorem 1.27: Optimal rates [ 1 GOA, Theorem 2.20 below]
LetA fulfill (SM) and (LIP). Suppose that𝜂ℓ and 𝜁ℓ satisfy (A1)–(A4) and that (R1)–(R3)
holds. Recall the combined estimator 𝜌ℓ (𝑢★

ℓ
, 𝑧★

ℓ
[𝑢★

ℓ
]) =

[
𝜁ℓ (𝑢★

ℓ
; 𝑧★

ℓ
[𝑢★

ℓ
])2 + 𝜂ℓ (𝑢★

ℓ
)2]1/2.

Let (QO) hold for a sufficiently large mesh-refinement index ℓ0 ∈ ℕ0 and

⦀𝑢★ − 𝑢★
𝐻⦀

2 and ⦀𝑧★ [𝑢★] − 𝑧★𝐻 [𝑢★
𝐻 ]⦀2 + ⦀𝑢★ − 𝑢★

𝐻⦀
2.

Suppose that ||𝑢★ ||𝔸𝑟 < ∞ for 𝑟 > 0 and that ||𝑧★ [𝑢★] ||𝔸𝑠 < ∞ for 𝑠 > 0. Then, for sufficiently
small 𝜃 > 0 and 1 ≤ 𝐶mark < ∞, and for all ℓ ≥ ℓ0, it holds that

𝜂ℓ (𝑢★
ℓ ) 𝜌ℓ (𝑢★

ℓ , 𝑧
★
ℓ [𝑢★

ℓ ]) ≲ ||𝑢★ ||𝔸𝑟

[||𝑢★ ||𝔸𝑟 + ||𝑧★ [𝑢★] ||𝔸𝑠

] (#Tℓ − #T0)−min{2𝑟 ,𝑟+𝑠 } . (1.59)

In particular, the rate of convergence ismin{2𝑟 , 𝑟 + 𝑠 }. □

This concludes the introduction.

1.5 Outline of the thesis

The following section gives an overview of the contributions presented in this thesis. The
remainder of this thesis presents results that I, together with collaborators, have estab-
lished duringmy PhD studies. These contributions are subdivided into three additional
chapters— one for each research question, which shall bemotivated in the following.
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1.5.1 Chapter 2: goal-oriented adaptive finite element method (GOAFEM)
with exact solver for semilinear PDEs

[ 1 GOA]: R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Rate-
optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. Comput. Math. Appl.,
118:18–35, 2022. DOI: 10.1016/j.camwa.2022.05.008

In this publication, we consider the semilinear primal problem (1.2) and a linear goal
quantity 𝐺 ∈ 𝐻 −1(Ω) under the assumption of an exact solve procedure. Semilinear
problems in a goal-oriented setting have been investigated in [HPZ15; XHYM21], however,
without proven optimal convergence rates. Closing this gap is the main achievement
of [ 1 GOA], where optimal convergence rates are understood with respect to the number
of degrees of freedom. This achievement relies on the followingmain observations:
First, we replace the theoretical dual problem by a practical dual problem along the

lines of [HPZ15]. By clarifying the assumptions on the problem setting, the growth argu-
ment [BHSZ11] can be used to obtain themain stability estimates (1.49).
Second, existing literature on rate-optimalGOAFEMs focusesmainly on linear problems

and linear goals [MS09; BET11; FFGHP16; FPZ16]. The publication [BIP21] considers a
linearmodel problembut a quadratic goal and derives a structurally similar goal error esti-
mate (1.52) (for different reasons). Themarking procedure therein is motivated by [MS09]
and ensures quasi-minimal cardinality of themarked elements and is used to drive the
mesh refinement in the proposed GOAFEM.
Third, for nonlinear problems, the dual problem depends on the linearization point.

By proving a stability result (1.54) with respect to the linearization point, we are able to
verify the combined quasi-orthogonality (1.55), which then gives rise to the full R-linear
convergence (Theorem 1.25) and, eventually, optimal convergence rates (Theorem 1.27).

1.5.2 Chapter 3: adaptive iteratively linearized finite element method
(AILFEM) with exact linearization for semilinear PDEs

[ 2 AIL1]: R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Cost-
optimal adaptive iterative linearized FEM for semilinear elliptic PDEs. ESAIMMath.
Model. Numer. Anal., 57(4):2193–2225, 2023. DOI: 10.1051/m2an/2023036

Numerical methods to linearize nonlinear equations such as the discrete problem (1.3)
are analyzed in depth and widely applied, yet, their application in the context of adaptive
FEM poses an exciting research question. The linearizationmethod produces cost in the
sense of (1.22) and the question arises when to adaptively stop the linearization without
spoiling optimal convergence rates.
In principle, the seminal work [Ste07] addresses this question for a generic iterative

solver in GALSOLVE that contracts the energy error of an initial guess with contraction
factor 0 < 𝑞 < 1 at the cost of O(| log(𝑞) | #T𝐻 ) for the Poisson model problem. R-linear
convergence and optimal convergence rates then hold for sufficiently small adaptivity
parameter 𝜃 > 0 and solver parameter 𝜆lin > 0 and only for the final iterates of the iterative
solver. Following [CKNS08], the convergence analysis can be generalized to arbitrary
0 < 𝜃 ≤ 1 (yet sufficiently small 𝜆lin > 0) by a perturbation argument from [CFPP14]. Im-
portantly, [Ste07] does not explicitly state on how the inexact solver is stopped in practice.
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1.5 Outline of the thesis

By recasting the semilinear problem into an abstract operator framework from [CW17;
HW20b; HPW21; GHPS21], we propose an AILFEM strategy in the spirit of Algorithm 1.8
with a void algebraic solver loop, i.e., by supposing an exact algebraic solver for the lin-
earized problem. The damped Zarantonello operatorΦ(𝛿 ; ·) : X𝐻 → X𝐻 with damping
parameter 𝛿 > 0 is employed as ameans of linearization. For a sufficiently small 𝛿 > 0, the
Zarantonello operator is contractive in the energy norm in the sense that there exists a
0 < 𝑞 < 1 such that

⦀Φ𝐻 (𝛿 ;𝑣𝐻 ) −Φ𝐻 (𝛿 ;𝑤𝐻 )⦀ ≤ 𝑞 ⦀𝑣𝐻 −𝑤𝐻⦀ for all 𝑣𝐻 ,𝑤𝐻 ∈ X𝐻 ,

where it is important to note that 𝛿 and 𝑞 depend onmax{⦀𝑣𝐻⦀,⦀𝑤𝐻⦀} due to the locally
Lipschitz continuous setting. The AILFEM strategy steers and equibalances errors that
come from discretization and linearization, respectively. For two successive iterates𝑢𝑘

𝐻
∈

X𝐻 and 𝑢𝑘+1
𝐻

∈ X𝐻 , the proposed algorithm stops the inner loop for linearization given
that

⦀𝑢𝑘+1𝐻 − 𝑢𝑘𝐻⦀ ≤ 𝜆lin𝜂𝐻 (𝑢𝑘+1𝐻 ) and ⦀𝑢𝑘+1𝐻 ⦀ ≤ 𝐶bnd [𝑀 ] for some 0 < 𝐶bnd [𝑀 ] (1.60)

with𝑀 from (1.7). This extends the algorithmic stopping criterion found in, e.g., [BIM+23;
HPSV21; GHPS21] for globally Lipschitz continuous operators.
In practice, the norm criterion on the right-hand side in (1.60) further constrains (UB)

in the sense that ⦀𝑢𝑘
𝐻
⦀ ≤ 𝐶bnd [𝑀 ] < 𝐶bnd [𝑀 ] for the final iterates of the linearization

loop. This nested iteration criterion (cf. (3.28) below) follows essentially from the norm
contraction of the Zarantonello iteration under the premise of a suitable 𝛿 > 0 and will be
met after 𝑘0-many linearization steps for 𝑘0 ∈ ℕ0 (cf. Corollary 3.11).
The algorithmic adaption allows us to prove full R-linear convergence, i.e., contraction

of a suitable quasi-error regardless of the algorithmic decision to either refine themesh or
perform another linearization step (cf. Theorem 1.14) also for arbitrary 𝜃 > 0 and 𝜆lin > 0.
With full R-linear convergence, we infer that convergence rates with respect to the number
of degrees of freedom and with respect to computational cost (1.22) coincide under the
assumption of linear complexity for the solution of the linearized system.
Finally, we prove optimal convergence rates with respect to the degrees of freedom for

𝜃 > 0 and 𝜆lin > 0 sufficiently small. Since the Pythagorean identity (O) holds for a setting
with energy E, the results hold for all mesh-refinement levels ℓ ∈ ℕ0.
We conclude the paper with a practical algorithm that asymptotically ensures that a

suitable damping parameter is determined. In future research, this may be extended to a
fully-adaptive damping strategy in the spirit of [AW15], where optimal convergence rates
are observed experimentally for an employed Newtonmethod.

1.5.3 Chapter 4: adaptive iteratively linearized finite element method
(AILFEM) with linearization and algebraic solver for semilinear PDEs

[ 3 AIL2]: M. Brunner, D. Praetorius, and J. Streitberger. Cost-optimal adaptive FEMwith
linearization and algebraic solver for semilinear elliptic PDEs, 2024. arXiv: 2401.06486

The exact solution of a sparse SPD system such as the Zarantonello update (1.14) is
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experimentally of loglinear complexity; cf. [BIM+23, Figure 3]. This can be avoided by
including a contractive solver as an inner loop. Examples are an optimally preconditioned
conjugate gradient method [CNX12] or an optimal geometric multigridmethod [WZ17;
IMPS23].
Theadditional inner solver loopwith iterates𝑢𝑘 ,𝑗

ℓ
approximates the (exact and inpractice

unavailable) Zarantonello solutions𝑢𝑘,★
ℓ
. Heuristically, it is clear that sufficiently many

algebraic solver steps will cause the perturbation to be negligible. Since the linear solver
loop produces also cost in the sense of (1.22), we propose an AILFEM (Algorithm 1.8) that
equibalances discretization, linearization, and algebraic solver errors. This motivates the
research question of [ 3 AIL2]: Is the proposed AILFEM strategy cost-optimal with respect
to this perturbation? This question is more delicate than it seems at first glance for the
following two reasons:
First, the perturbed Zarantonello iteration is contractive only for 1 ≤ 𝑘 < 𝑘 [ℓ]

(cf. [BIM+23, Lemma 5.1]), i.e., there exists 0 < 𝑞 < 1 such that

⦀𝑢★
ℓ − 𝑢𝑘+1,𝑗

ℓ
⦀ ≤ 𝑞 ⦀𝑢★

ℓ − 𝑢𝑘 ,𝑗
ℓ

⦀ for all 1 ≤ 𝑘 + 1 < 𝑘 [ℓ], (1.61)

unless there are sufficiently many algebraic solver steps. We prove that there exists an
𝑗min ∈ ℕ0 that is independent of themesh-refinement index ℓ and the linearization index
𝑘 and enforce algorithmically that at least 𝑗min steps are performed.
Second, there holds a Pythagorean identity (O) holds for all ℓ ∈ ℕ0 in case of the energy.

Thus, it is desirable to formulate the linearization error as an energy difference instead of
a difference in norm. However, the algebraic solver contracts in norm, while the (exact)
linearization contracts in energy. A link of energy and energy norm for the final iterates
of the 𝑗 -loop is established in the spirit of [HPW21, Property (F4)] (cf. Lemma 4.9 below),
which also depends on sufficientlymany linear solver steps. This equivalence is important,
since it consists only of computable quantities.
As a first result, we prove uniform boundedness (UB) for all iterates (see Theorem 4.8

below) and establish R-linear convergence based on a new proof strategy from [BFM+23]
for arbitrary adaptivity parameters 𝜃 > 0, 𝜆lin > 0, and 𝜆alg > 0. Consequently, for 𝜃 > 0
and 𝜆lin > 0 sufficiently small, we prove optimal convergence rates understood with
respect to the number of degrees of freedomandwith respect to computational cost (1.22).
Moreover, since all steps in the AILFEM strategy are rigorously of linear complexity, we
also infer optimal rates with respect to computation time.

1.6 Other contributions on nonsymmetric elliptic PDEs

1.6.1 Adaptive iteratively symmetrized FEM (AISFEM) with symmetrization
and linear solver

[BIM+23]: M. Brunner, M. Innerberger, A. Miraçi, D. Praetorius, J. Streitberger, and P.
Heid. Adaptive FEMwith quasi-optimal overall cost for nonsymmetric linear elliptic
PDEs. IMA J. Numer. Anal., 2023. DOI: 10.1093/imanum/drad039. Corrigendum to:
Adaptive FEMwith quasi-optimal overall cost for nonsymmetric linear elliptic PDEs.
IMA J. Numer. Anal., 2024. DOI: 10.1093/imanum/drad103
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1.7 Additional remarks on notation

In this publication, we consider a general nonsymmetric second-order linear elliptic
PDE in the framework of the Lax–Milgram lemma.
The usual approach to apply generalizedminimal residual methods (GMRES) to non-

symmetric problems is replaced by an adaptive algorithm of the form of Algorithm 1.8.
This is motivated by the fact that the link of an abstract contraction property of (optimally
preconditioned) GMRES methods in vector norms lack a connection to the functional
analytical setting of the finite element formulation until now. In addition, the Zarantonello
iteration (1.14) does not only linearize but also symmetrize the underlying problem. This is
combined with a linear solver for the arising symmetric and positive definite Zarantonello
system.
Since nonsymmetric problems do not possess an energy, only quasi-orthogonality

results in the norm (as in (O) in Proposition 1.4(i)) can be exploited. Thus, there exists a
mesh refinement index ℓ0 ∈ ℕ0 such that full R-linear convergence holds for all ℓ ≥ ℓ0.
Regardless of the preasyptotic phase, we prove optimal convergence rates with respect to
the overall computational cost, i.e., the total computation time for the proposed adaptive
iteratively symmetrized finite element method (AISFEM).

1.6.2 Goal-oriented adaptive iteratively symmetrized FEM (GOAISFEM) with
symmetrization and linear solver

[BBPS23]: P. Bringmann,M. Brunner, D. Praetorius, and J. Streitberger. Optimal com-
plexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs, 2023.
arXiv: 2312.00489

In this preprint, we extend the given framework from [BIM+23] to the setting of goal-
oriented FEM. The analytical challenge is the nonlinear product structure for the quasi-
error (similar to (1.52)), where themarking leads only to reduction of one of the factors.
Since the nested loops (symmetrization and algebraic solver) admit only the contraction

of the inexact Zarantonello iteration for all but the last indices [BIM+23, Lemma 5.1]
(cf. (1.61)), the proof of full R-linear convergence requires a novel approach based on a tail-
summability criterion from [BFM+23]. The proof exploits a relaxed quasi-orthogonality
condition from [Fei22] that, in addition to [BIM+23], enables us to prove full R-linear
convergence for all ℓ ≥ ℓ0 = 0, which holds for linear second-order elliptic PDEs. With
full R-linear convergence, we are able to prove optimal complexity of the proposed goal-
oriented adaptive iteratively symmetrized finite element method (GOAISFEM).

1.7 Additional remarks on notation

Sobolev spaces. For a smooth𝑣 ∈ 𝐶∞(Ω), wedefine theSobolev scalar product according
to [Alt16, Section 3.27–3.29]

⟨𝑣 , 𝑤⟩𝐻 1 (Ω) B
∫
Ω

(
𝑣 (𝑥)𝑤 (𝑥) + ∇𝑣 (𝑥) · ∇𝑤 (𝑥)) d𝑥 for all 𝑣,𝑤 ∈ 𝐶∞(Ω)

35

https://arxiv.org/abs/2312.00489


1 Introduction

with the induced norm

||𝑣 ||2
𝐻 1 (Ω) B ⟨𝑣 , 𝑣⟩𝐻 1 (Ω) .

The Sobolev space𝐻 1(Ω) is defined by the closure cl with respect to the || · ||𝐻 1 (Ω)-norm as
𝐻 1(Ω) B cl{𝑣 ∈ 𝐶∞(Ω) | ||𝑣 ||𝐻 1 (Ω) < ∞}. Analogously, the Sobolev space𝐻 1

0 (Ω) is defined
as the closure of𝐶∞

0 (Ω) with respect to the || · ||𝐻 1 (Ω)-norm.

Jump term. The normal jumps across a face 𝐹 of a triangulation T𝐻 that is shared by two
neighboring elements𝑇1 and𝑇2 is defined as

[[𝑣 ]] B [[𝑣 · 𝒏]]𝐹 B 𝑣 |𝑇1 𝒏1 + 𝑣 |𝑇2 𝒏2,

where 𝒏 𝑖 denotes the outer normal on 𝜕𝑇𝑖 for 𝑖 = 1, 2.

Inequality and equality up to constants. Frequently, we will make use of the notation
𝑎 ≲ 𝑏 for 𝑎, 𝑏 ∈ ℝ, if there exists a constant𝐶 > 0 that is clear from the context such that
𝑎 ≤ 𝐶𝑏 . Moreover, if 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎 , we write 𝑎 ≃ 𝑏 .

Approximation. We use𝑢★ ≈ 𝑢𝐻 ∈ X𝐻 as an abbreviation for the phrase that𝑢𝐻 ∈ X𝐻 is
an approximation of𝑢★. This relation is not symmetric and context-sensitive.
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2 Rate-optimal goal-oriented adaptive
FEM for semilinear elliptic PDEs

This chapter is taken from:

[ 1 GOA]: R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Rate-
optimal goal-oriented adaptive FEM for semilinear elliptic PDEs. Comput. Math. Appl.,
118:18–35, 2022. DOI: 10.1016/j.camwa.2022.05.008

The reference [BGIP23] was updated from the preprint to the publication.

2.1 Introduction

2.1.1 Goal-oriented adaptive FEM

While standard adaptivity aims to approximate the exact solution 𝑢★ ∈ 𝐻 1
0 (Ω) of a suit-

able PDE at optimal rate in the energy norm (see, e.g., [Dör96; MNS00; BDD04; Ste07;
CKNS08] for some seminal contributions and [FFP14] for the present model problem),
goal-oriented adaptivity aims to approximate, at optimal rate, only the functional value
𝐺 (𝑢★) ∈ ℝ (also called quantity of interest in the literature). Usually, goal-oriented adap-
tivity is more important in practice than standard adaptivity and, therefore, has attracted
much interest also in themathematical literature; see, e.g., [BR03; EEHJ95; GS02; BR01]
for some prominent works and [KVD19; ELW19; ELW20; DBR21; BGIP23; BMZ21] for
some recent contributions. Often, dual-weighted residual (DWR) estimators are used
for goal-oriented adaptivity [BR03; GS02; ELW19; ELW20]. One drawback of such an ap-
proach, however, is that it requires an approximation of the dual solution to make the
DWR estimator computable. Instead, the present work takes a different route following
the seminal paper [MS09] and only employs computable error estimators via a suitably
modified dual problem.
Unlike standard adaptivity, there are only few works that aim for a thorough mathe-

matical understanding of optimal rates for goal-oriented adaptivity; see [MS09; BET11;
FFGHP16; FPZ16] for linear problems with linear goal functional and [BIP21] for a linear
problem, but nonlinear goal functional. The works [HPZ15; XHYM21] consider semilinear
PDEs and linear goal functionals, but only prove convergence, while optimal convergence
rates remain open (and can hardly be proved for the proposed algorithms). The present
work proves, for the first time, optimal convergence rates for goal-oriented adaptivity for
a nonlinear problem. To this end, we see, in particular, that the marking strategy used
in [HPZ15; XHYM21] must bemodified along the ideas of [BIP21].
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2 semilinear GOAFEM

2.1.2 Model problem

For 𝑑 ∈ {1, 2, 3}, let Ω ⊂ ℝ𝑑 be a bounded Lipschitz domain. Given 𝑓 , 𝑔 ∈ 𝐿2(Ω) and
𝒇 , 𝒈 ∈ [𝐿2(Ω)]𝑑 , we aim to approximate the linear goal quantity

𝐺 (𝑢★) :=
∫
Ω
𝑔𝑢★ d𝑥 +

∫
Ω
𝒈 · ∇𝑢★ d𝑥, (2.1)

where𝑢★ ∈ 𝐻 1
0 (Ω) is the weak solution of the semilinear elliptic PDE

−div(𝑨∇𝑢★) + 𝑏 (𝑢★) = 𝑓 − div 𝒇 inΩ subject to 𝑢★ = 0 on Γ := 𝜕Ω. (2.2)

While the precise assumptions on the coefficients 𝑨 : Ω → ℝ𝑑×𝑑
sym and 𝑏 : Ω × ℝ → ℝ

are given in Section 2.2.1–2.2.2, we note that, here and below, we abbreviate 𝑨∇𝑢★ ≡
𝑨 (·)∇𝑢★(·) : Ω → ℝ𝑑 and 𝑏 (𝑢★) ≡ 𝑏 (·, 𝑢★(·)) : Ω → ℝ.
The weak formulation of the so-called primal problem (2.2) reads as follows: Find

𝑢★ ∈ 𝐻 1
0 (Ω) such that

⟪𝑢★ , 𝑣⟫ + ⟨𝑏 (𝑢★) , 𝑣⟩ = 𝐹 (𝑣 ) := ⟨𝑓 , 𝑣⟩ + ⟨𝒇 , ∇𝑣⟩ for all 𝑣 ∈ 𝐻 1
0 (Ω), (2.3)

where ⟨𝑣 , 𝑤⟩ :=
∫
Ω
𝑣𝑤 d𝑥 denotes the 𝐿2(Ω)-scalar product and ⟪𝑣 , 𝑤⟫ := ⟨𝑨∇𝑣 , ∇𝑤⟩ is

the 𝑨-induced energy scalar product on𝐻 1
0 (Ω). We stress that existence and uniqueness

of the solution𝑢★ ∈ 𝐻 1
0 (Ω) of (2.3) follow from the Browder–Minty theorem onmonotone

operators (see Section 2.2.4).
Based on conforming triangulations T𝐻 ofΩ and a fixed polynomial degree𝑚 ∈ ℕ, let

X𝐻 := {𝑣𝐻 ∈ 𝐻 1
0 (Ω) | ∀𝑇 ∈ T𝐻 : 𝑣𝐻 |𝑇 is a polynomial of degree ≤ 𝑚}. Then, the FEM

discretization of the primal problem (2.3) reads: Find𝑢★
𝐻
∈ X𝐻 such that

⟪𝑢★
𝐻 , 𝑣𝐻⟫ + ⟨𝑏 (𝑢★

𝐻 ) , 𝑣𝐻 ⟩ = 𝐹 (𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 . (2.4)

This allows to approximate the sought goal quantity𝐺 (𝑢★) bymeans of the computable
quantity𝐺 (𝑢★

𝐻
).

2.1.3 Error control and GOAFEM algorithm

The optimal error control of the goal error𝐺 (𝑢★) −𝐺 (𝑢★
𝐻
) involves the so-called (practical)

dual problem: Find 𝑧★ [𝑢★
𝐻
] ∈ 𝐻 1

0 (Ω) such that

⟪𝑧★ [𝑢★
𝐻 ] , 𝑣⟫ + ⟨𝑏 ′(𝑢★

𝐻 )𝑧★ [𝑢★
𝐻 ] , 𝑣⟩ = 𝐺 (𝑣 ) for all 𝑣 ∈ 𝐻 1

0 (Ω), (2.5)

where 𝑏 ′(𝑥, 𝑡 ) := 𝜕𝑡𝑏 (𝑥, 𝑡 ). Existence and uniqueness of 𝑧★ [𝑢★
𝐻
] follow from the Lax–

Milgram lemma (see Section 2.2.5). With the same FEM spaces as for the primal problem,
the FEM discretization of the dual problem (2.5) reads: Find 𝑧★

𝐻
[𝑢★

𝐻
] ∈ X𝐻 such that

⟪𝑧★𝐻 [𝑢★
𝐻 ] , 𝑣𝐻⟫ + ⟨𝑏 ′(𝑢★

𝐻 )𝑧★𝐻 [𝑢★
𝐻 ] , 𝑣𝐻 ⟩ = 𝐺 (𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 . (2.6)
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2.1 Introduction

The notation 𝑧★ [𝑢★
𝐻
] emphasizes that the dual solution depends on the (exact) discrete

primal solution𝑢★
𝐻
(instead of the practically unavailable exact primal solution𝑢★); the

same holds for the discrete dual solution 𝑧★
𝐻
[𝑢★

𝐻
].

For this setting, we derive below (see Theorem 2.7) the goal error estimate

|𝐺 (𝑢★) −𝐺 (𝑢★
𝐻 ) | ≲ ||𝑢★ − 𝑢★

𝐻 ||𝐻 1 (Ω) ||𝑧★ [𝑢★
𝐻 ] − 𝑧★𝐻 [𝑢★

𝐻 ] ||𝐻 1 (Ω) + ||𝑢★ − 𝑢★
𝐻 ||2𝐻 1 (Ω) (2.7)

where ≲ denotes ≤ up to some genericmultiplicative constant𝐶 > 0. While the product of
primal anddual error is alsopresent for goal error estimates for linearPDEs (see, e.g., [GS02;
MS09; FPZ16]), the last summand on the right-hand side of (2.7) controls the linearization
error of the (practical) dual problem. The arising error terms are controlled by standard
residual a posteriori error estimates (see Section 2.3.2), i.e.,

||𝑢★ − 𝑢★
𝐻 ||𝐻 1 (Ω) ≲ 𝜂𝐻 (𝑢★

𝐻 ) and ||𝑧★ [𝑢★
𝐻 ] − 𝑧★𝐻 [𝑢★

𝐻 ] ||𝐻 1 (Ω) ≲ 𝜁𝐻 (𝑧★𝐻 [𝑢★
𝐻 ]).

Hence, (2.7) gives rise to the fully computable error bound

|𝐺 (𝑢★) −𝐺 (𝑢★
𝐻 ) | ≲ 𝜂𝐻 (𝑢★

𝐻 ) [𝜂𝐻 (𝑢★
𝐻 )2 + 𝜁𝐻 (𝑧★𝐻 [𝑢★

𝐻 ])2]1/2 (2.8)

that, following [MS09; FPZ16; BIP21], is used to steer an adaptive loop of the type

Solve Estimate Mark Refine (2.9)

2.1.4 Outline

This work is organized as follows: In Section 2.2, the analytical preliminaries for the semi-
linear setting and its linearizations are presented. This includes the precise assumptions
on the PDE and the right-hand sides as well as well-posedness of the arising continuous
and discrete problems. In Section 2.2.7, the key estimate (2.7) is proved; cf. Theorem 2.7.
In Section 2.3, we formulate the GOAFEM algorithm (cf. Algorithm 2.17), which employs
a marking strategy that respects the product structure found in (2.8). We proceed with
stating themain results. First, Theorem 2.19 shows linear convergence of the proposed al-
gorithm. Second, Theorem2.20 showsoptimal convergence rates. Section 2.4 is devoted to
the proofs of the aforementioned results, which contain the axioms of adaptivity [CFPP14]
for the semilinear setting (Section 2.4.1), a stability result for the linearized dual problem
(Section 2.4.2),which turns out to be important, and the necessary quasi-orthogonalities
(Section 2.4.5). Numerical experiments in 1D and 2D underline our theoretical findings in
Section 2.5. Finally, some conclusions are drawn in Section 2.6.

2.1.5 General notation

We use | · | to denote the absolute value |𝜆| of a scalar 𝜆 ∈ ℝ, the Euclidean norm |𝑥 | of a
vector 𝑥 ∈ ℝ𝑑 , and the Lebesguemeasure |𝜔 | of a set 𝜔 ⊆ Ω, depending on the respective
context. Furthermore, #U denotes the cardinality of a finite setU.
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2 semilinear GOAFEM

2.2 Model problem

2.2.1 Assumptions on diffusion coefficient

The diffusion coefficient 𝑨 : Ω → ℝ𝑑×𝑑
sym satisfies the following standard assumptions:

(ELL) 𝑨 ∈ 𝐿∞(Ω;ℝ𝑑×𝑑
sym ), where 𝑨 (𝑥) ∈ ℝ𝑑×𝑑

sym is a symmetric and uniformly positive definite
matrix, i.e., theminimal andmaximal eigenvalues satisfy

0 < 𝜇0 := inf
𝑥∈Ω

𝜆min(𝑨 (𝑥)) ≤ sup
𝑥∈Ω

𝜆max (𝑨 (𝑥)) =: 𝜇1 < ∞.

In particular, the 𝑨-induced energy scalar product ⟪𝑣 , 𝑤⟫ = ⟨𝑨∇𝑣 , ∇𝑤⟩ induces an equiv-
alent norm ⦀𝑣⦀ := ⟪𝑣 , 𝑣⟫1/2 on𝐻 1

0 (Ω).
To guarantee later that the residual a posteriori error estimators are well-defined, we

additionally require that 𝐴 |𝑇 ∈𝑊 1,∞(𝑇 ) for all𝑇 ∈ T0, where T0 is the initial triangulation
of the adaptive algorithm.

2.2.2 Assumptions on the nonlinear reaction coefficient

The nonlinearity 𝑏 : Ω×ℝ → ℝ satisfies the following assumptions, which follow [BHSZ11,
(A1)–(A3)]:

(CAR) 𝑏 : Ω ×ℝ → ℝ is a Carathéodory function, i.e., for all 𝑛 ∈ ℕ0, the 𝑛-th derivative 𝜕𝑛𝜉 𝑏
of 𝑏 with respect to the second argument 𝜉 satisfies that
• for any 𝜉 ∈ ℝ, the function 𝑥 ↦→ 𝜕𝑛

𝜉
𝑏 (𝑥, 𝜉 ) is measurable onΩ,

• for any 𝑥 ∈ Ω, the function 𝜉 ↦→ 𝜕𝑛
𝜉
𝑏 (𝑥, 𝜉 ) is smooth.

(MON) We assumemonotonicity in the second argument, i.e., 𝑏 ′(𝑥, 𝜉 ) := 𝜕𝜉𝑏 (𝑥, 𝜉 ) ≥ 0 for all
𝑥 ∈ Ω and 𝜉 ∈ ℝ. In order to avoid technicalities1, we assume that 𝑏 (𝑥, 0) = 0.

To establish continuity of ⟨𝑏 (𝑣 ) , 𝑤⟩Ω resp. ⟨𝑏 ′(𝑣 )𝜑 , 𝑤⟩Ω, we impose the following growth
condition on 𝑏 (𝑣 ); see, e.g., [FK80, Chapter III, (12)] or [BHSZ11, (A4)]:
(GC) If 𝑑 ∈ {1, 2}, let𝑁 ∈ ℕ be arbitrary with 1 ≤ 𝑁 < ∞. For 𝑑 = 3, let 1 ≤ 𝑁 ≤ 5. Suppose

that, for 𝑑 ∈ {1, 2, 3}, there exists 𝑅 > 0 such that

|𝑏 (𝑛 ) (𝑥, 𝜉 ) | ≤ 𝑅 (1 + |𝜉 |𝑁 −𝑛) for all 𝑥 ∈ Ω, all 𝜉 ∈ ℝ, and all 0 ≤ 𝑛 ≤ 𝑁 .

While (GC) turns out to be sufficient for plain convergence of the later AILFEM algorithm,
we require the following stronger assumption for linear convergence and optimal conver-
gence rates.

(CGC) There holds (GC), if𝑑 ∈ {1, 2}. If𝑑 = 3, there holds (GC)with the stronger assumption
𝑁 ∈ {2, 3}.

1The assumption 𝑏 (0) = 0 is without loss of generality, since we could consider 𝑏 (𝑣 ) := 𝑏 (𝑣 ) − 𝑏 (0) and
𝑓 := 𝑓 − 𝑏 (0) instead.
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2.2 Model problem

Remark 2.1. (i) Let 𝑣,𝑤 ∈ 𝐻 1
0 (Ω). To establish continuity of (𝑣,𝑤 ) ↦→ ⟨𝑏 (𝑣 ) , 𝑤⟩, we apply

the Hölder inequality with 1 ≤ 𝑠 , 𝑠 ′ := 𝑠/(𝑠 − 1) ≤ ∞ to obtain that

⟨𝑏 (𝑣 ),𝑤⟩ ≤ ||𝑏 (𝑣 ) ||𝐿𝑠 ′ (Ω) ||𝑤 ||𝐿𝑠 (Ω)
(GC)
≲ (1+||𝑣𝑛 ||𝐿𝑠 ′ (Ω) ) ||𝑤 ||𝐿𝑠 (Ω) = (1+||𝑣 ||𝑛

𝐿𝑛𝑠
′ (Ω) ) ||𝑤 ||𝐿𝑠 (Ω) . (2.10)

To guarantee that ⟨𝑏 (𝑣 ) , 𝑤⟩ < ∞, condition (GC) has to ensure that the embedding

𝐻 1
0 (Ω) ↩→ 𝐿𝑟 (Ω) is continuous for 𝑟 = 𝑠 and 𝑟 = 𝑛𝑠 ′. (2.11)

If 𝑑 ∈ {1, 2}, then (2.11) holds true for arbitrary 1 ≤ 𝑟 < ∞ and hence arbitrary 1 < 𝑠 < ∞
and 𝑛 ∈ ℕ. If 𝑑 = 3, then 𝑟 = 𝑠 = 6 is the maximal index in (2.11) and 𝑠 ′ = 6/5. Hence, it
follows necessarily that 𝑛 ≤ 6/𝑠 ′ = 5. Furthermore, if 𝑑 = 3, note that it suffices to consider
𝑛 = 5 since, for 𝑛 < 5, we can estimate (1 + |𝜉 |𝑛−𝑘 ) ≲ (1 + |𝜉 |5−𝑘 ) for all 𝜉 ∈ ℝ, and all
0 ≤ 𝑘 ≤ 𝑛 < 5. Altogether, we conclude continuity of (𝑣,𝑤 ) ↦→ ⟨𝑏 (𝑣 ) , 𝑤⟩ for all 𝑛 ∈ ℕ if
𝑑 ∈ {1, 2}, and 𝑛 ≤ 5 if 𝑑 = 3.
(ii) Let𝑣,𝑤, 𝜑 ∈ 𝐻 1

0 (Ω). In the same spirit, we establish continuity of (𝑣,𝑤, 𝜑 ) ↦→ ⟨𝑏 ′(𝑣 )𝜑,𝑤⟩.
If 𝑑 ∈ {1, 2}, for arbitrary 1 < 𝑡 < ∞, we use the generalized Hölder inequality; see, e.g.,
[KJF77, Section 2.2]. To this end, define 𝑡 ′′ by 1 = 1/𝑡 ′′ + 1/𝑡 + 1/𝑡 and observe that

⟨𝑏 ′(𝑣 )𝜑 , 𝑤⟩ ≤ ||𝑏 ′(𝑣 ) ||𝐿𝑡 ′′ (Ω) ||𝜑 ||𝐿𝑡 (Ω) ||𝑤 ||𝐿𝑡 (Ω)
(GC)≤ (1 + ||𝑣𝑛−1 ||𝐿𝑡 ′′ (Ω) ) ||𝜑 ||𝐿𝑡 (Ω) ||𝑤 ||𝐿𝑡 (Ω) . (2.12)

Using ||𝑣𝑛−1 ||𝐿𝑡 ′′ (Ω) = ||𝑣 ||𝑛−1
𝐿 (𝑛−1)𝑡 ′′ (Ω) , the (GC) needs to ensure that the Sobolev embedding

𝐻 1
0 (Ω) ↩→ 𝐿𝑟 (Ω) is continuous for both 𝑟 = (𝑛 − 1)𝑡 ′′ and 𝑟 = 𝑡 . If 𝑑 ∈ {1, 2}, this holds for

arbitrary 1 < 𝑡 < ∞ and 𝑛 ∈ ℕ. If 𝑑 = 3, then 𝑟 = 𝑡 = 6 is the maximal index in (2.11) and
hence 𝑡 ′′ = 3/2. The upper bound (𝑛 − 1) ≤ 6/𝑡 ′′ = 4 thus guarantees continuity.
(iii) Let 𝑣, 𝜑 ∈ 𝐻 1

0 (Ω) and 𝑤 ∈ 𝐿∞(Ω). Then, the reasoning of (ii) reduces to the Hölder
conjugates from (i).
(iv) The additional constraints on the upper bounds of 𝑛 in (CGC)will become apparent
later; see Remark 2.32.
(v) The lower bound 2 ≤ 𝑛 imposed for 𝑑 ∈ {1, 2, 3} stems from the necessity of a Taylor
expansion of the dual problem; cf. (2.45). □

2.2.3 Assumptions on the right-hand sides

For 𝑑 = 1, the exact solution 𝑢★ from (2.3) and the dual solutions 𝑧★ [𝑤 ] and 𝑧★ [𝑤 ] with
arbitrary𝑤 ∈ 𝐻 1

0 (Ω) from (2.15) and (2.18) below satisfy 𝐿∞-bounds, since𝐻 1-functions
are absolutely continuous. For 𝑑 ∈ {2, 3}, we need the following assumption:

(RHS) We suppose that the right-hand side fulfills that

𝒇 ∈ 𝐿𝑝 (Ω) for some 𝑝 > 𝑑 ≥ 2 and 𝑓 ∈ 𝐿𝑞 (Ω) where 1/𝑞 := 1/𝑝 + 1/𝑑.

To guarantee later that the residual a posteriori error estimators from (2.54)–(2.55) arewell-
defined,weadditionally require that 𝒇 |𝑇 , 𝒈 |𝑇 ∈ 𝐻 (div,𝑇 )with traces 𝒇 |𝑇 ·𝒏 , 𝒈 |𝑇 ·𝒏 ∈ 𝐿2(𝜕𝑇 )
for all𝑇 ∈ T0, where T0 is the initial triangulation of the adaptive algorithm.
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2 semilinear GOAFEM

2.2.4 Well-posedness of primal problem

First, we deal with the continuous primal problem (2.3). With the dual space𝐻 −1(Ω) :=
𝐻 1
0 (Ω)∗, we consider the operator

A : 𝐻 1
0 (Ω) → 𝐻 −1(Ω), A𝑤 := ⟪𝑤 , ·⟫ + ⟨𝑏 (𝑤 ) , · ⟩. (2.13)

The assumption (GC) implies that A is well-defined, (ELL) and (MON) yield that A is
strongly monotone, and (CAR) is used to show thatA is hemi-continuous. Overall, the
Browder–Minty theorem (see, e.g., [Zei90, Theorem 26.A (a)–(c)]) applies and proves that
the primal problem (2.3) admits a unique solution𝑢★ ∈ 𝐻 1

0 (Ω). The same argument shows
that the discrete primal problem (2.4) admits a unique solution 𝑢★

𝐻
∈ X𝐻 . Details are

provided in Appendix 2.7.

2.2.5 Well-posedness of dual problem and goal error identity

For 𝑣,𝑤 ∈ 𝐻 1
0 (Ω), define

𝑩 (𝑤,𝑣 ) :=
∫ 1

0
𝑏 ′ (𝑤 + (𝑣 −𝑤 )𝜏 ) d𝜏 ≥ 0 a.e. inΩ. (2.14)

Note that 𝑩 (𝑤,𝑣 ) : Ω → ℝ≥0. If 𝑣 = 𝑢★ is the exact primal solution, we introduce the
shorthand 𝑩★(𝑤 ) := 𝑩 (𝑤,𝑢★). With this notation, the theoretical dual problem reads as
follows: Find 𝑧★ [𝑤 ] ∈ 𝐻 1

0 (Ω) and 𝑧★𝐻 [𝑤 ] ∈ X𝐻 such that

⟪𝑧★ [𝑤 ] , 𝑣⟫ + ⟨𝑩★(𝑤 )𝑧★ [𝑤 ] , 𝑣⟩ = 𝐺 (𝑣 ) for all 𝑣 ∈ 𝐻 1
0 (Ω), (2.15a)

⟪𝑧★𝐻 [𝑤 ] , 𝑣𝐻⟫ + ⟨𝑩★(𝑤 )𝑧★𝐻 [𝑤 ] , 𝑣𝐻 ⟩ = 𝐺 (𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 . (2.15b)

Under the assumptions (ELL), (MON), and (GC), the Lax–Milgram lemmaproves existence
and uniqueness of 𝑧★ [𝑤 ] ∈ 𝐻 1

0 (Ω) and 𝑧★𝐻 [𝑤 ] ∈ X𝐻 . Details are found in Appendix 2.7.
According to the Taylor theorem, it holds that

𝑏 (𝑢★) − 𝑏 (𝑤 ) = (𝑢★ −𝑤 ) 𝑩★(𝑤 ) inΩ. (2.16)

For any approximation 𝑧★ [𝑢★
𝐻
] ≈ 𝑧𝐻 ∈ X𝐻 , this yields the error identity

𝐺 (𝑢★) −𝐺 (𝑢★
𝐻 )

(2.15a)
= ⟪𝑧★ [𝑢★

𝐻 ] , 𝑢★ − 𝑢★
𝐻⟫ + ⟨𝑩★(𝑢★

𝐻 )𝑧★ [𝑢★
𝐻 ] , 𝑢★ − 𝑢★

𝐻 ⟩
(2.16)
= ⟪𝑢★ − 𝑢★

𝐻 , 𝑧
★ [𝑢★

𝐻 ]⟫ + ⟨𝑏 (𝑢★) − 𝑏 (𝑢★
𝐻 ) , 𝑧★ [𝑢★

𝐻 ]⟩
(2.3), (2.4)

= ⟪𝑢★ − 𝑢★
𝐻 , 𝑧

★ [𝑢★
𝐻 ] − 𝑧𝐻⟫ + ⟨𝑏 (𝑢★) − 𝑏 (𝑢★

𝐻 ) , 𝑧★ [𝑢★
𝐻 ] − 𝑧𝐻 ⟩.

(2.17)

While this error identity looks similar to the one for linear problems (see, e.g., [MS09;
BET11; FPZ16] as well as [BGIP23] in the presence of inexact solvers), we stress that it
suffers from one essential shortcoming: The theoretical dual problem (2.15) involves
𝑩★(𝑢★

𝐻
) = 𝑩 (𝑢★

𝐻
, 𝑢★) which depends on the unknown exact solution 𝑢★. Consequently,

the corresponding bilinear form cannot be implemented in practice and, hence, 𝑧★ [𝑢★
𝐻
]
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2.2 Model problem

cannot be approximated by its FEM solution 𝑧★
𝐻
[𝑢★

𝐻
].

However, it follows formally that𝑩★(𝑢★
𝐻
) −𝑏 ′(𝑢★

𝐻
) → 0 as𝑢★

𝐻
→ 𝑢★. Hence, we introduce

the practical dual problem (2.5) and its discretization (2.6), now considered for a general
argument: Given𝑤 ∈ 𝐻 1

0 (Ω), find 𝑧★ [𝑤 ] ∈ 𝐻 1
0 (Ω) and 𝑧★𝐻 [𝑤 ] ∈ X𝐻 such that

⟪𝑧★ [𝑤 ] , 𝑣⟫ + ⟨𝑏 ′(𝑤 )𝑧★ [𝑤 ] , 𝑣⟩ = 𝐺 (𝑣 ) for all 𝑣 ∈ 𝐻 1
0 (Ω), (2.18a)

⟪𝑧★𝐻 [𝑤 ] , 𝑣𝐻⟫ + ⟨𝑏 ′(𝑤 )𝑧★𝐻 [𝑤 ] , 𝑣𝐻 ⟩ = 𝐺 (𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 . (2.18b)

The same arguments as for the theoretical problem (2.15) apply and prove existence and
uniqueness of 𝑧★ [𝑤 ] ∈ 𝐻 1

0 (Ω) and 𝑧★𝐻 [𝑤 ] ∈ X𝐻 . Details are found in Appendix 2.7.
Overall, the error identity (2.17) for 𝑧𝐻 = 𝑧★

𝐻
[𝑢★

𝐻
] then takes the following form

𝐺 (𝑢★)−𝐺 (𝑢★
𝐻 )

(2.17)
= ⟪𝑢★−𝑢★

𝐻 , 𝑧
★ [𝑢★

𝐻 ] − 𝑧★𝐻 [𝑢★
𝐻 ]⟫ + ⟨𝑏 (𝑢★)−𝑏 (𝑢★

𝐻 ), 𝑧★ [𝑢★
𝐻 ]−𝑧★𝐻 [𝑢★

𝐻 ]⟩
+ ⟪𝑢★−𝑢★

𝐻 , 𝑧
★ [𝑢★

𝐻 ]−𝑧★ [𝑢★
𝐻 ]⟫ + ⟨𝑏 (𝑢★)−𝑏 (𝑢★

𝐻 ), 𝑧★ [𝑢★
𝐻 ]−𝑧★ [𝑢★

𝐻 ]⟩.
(2.19)

This identity will be the starting point for proving the goal error estimate (2.7); see Theo-
rem 2.7 below for the formal statement.

2.2.6 Pointwise boundedness of primal and dual solutions

In this section, we prove that imposing regularity assumptions on the right-hand side
yields that the exact solution𝑢★ and the dual solutions 𝑧★ [𝑤 ] and 𝑧★ [𝑤 ] are bounded in
𝐿∞(Ω). For 𝑑 = 1, this is immediate, since 𝐻 1(Ω)↩→𝐶 (Ω). For 𝑑 ∈ {2, 3} and 𝒇 = 0 = 𝒈 ,
we refer to, e.g., [BHSZ11, Theorem 2.2]. These 𝐿∞-bounds turn out to be crucial for the
goal error estimate (Theorem 2.7) as well as for the numerical analysis of the proposed
adaptive goal-oriented strategy (Algorithm2.17). Inparticular, theyalso allowone toderive
Céa-type estimates for the discrete primal and dual solutions (Proposition 2.11, 2.12).
Proposition 2.2. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Then, the weak so-
lution 𝑢★ ∈ 𝐻 1

0 (Ω) of (2.3) is bounded in 𝐿∞(Ω). In particular, for 𝑑 ∈ {2, 3}, there
holds

||𝑢★ ||𝐿∞ (Ω) ≤ 𝐶 𝜇−1
0 |Ω| (1/𝑑−1/𝑝 ) ( || 𝑓 ||𝐿𝑞 (Ω) + ||𝒇 ||𝐿𝑝 (Ω) ) (2.20)

with a constant𝐶 = 𝐶 (𝑑,𝑝) > 0.

Remark 2.3. In this remark, we consider special choices of 𝑝 and 𝑞 from (RHS). If 𝑑 = 2
and 𝑝 = ∞, then 𝑞 = 2. If 𝑑 = 3 and 𝑝 = 6, then also 𝑞 = 2. In [BHSZ11, Theorem 2.2], the
following statement is proven with a slightly simplified proof: Suppose 𝑓 ∈ 𝐿2(Ω) and 𝒇 = 0
as well as (ELL), (CAR), and (MON). Then, the weak solution𝑢★ ∈ 𝐻 1

0 (Ω) of (2.3) satisfies
||𝑢★ ||𝐿∞ (Ω) ≤ 𝐶 (Ω, 𝑑) 𝜇−1

0 || 𝑓 ||𝐿2 (Ω) . □

The proof of Proposition 2.2 requires the following elementary result from [WYW06,
Lemma 4.1.1]:

43



2 semilinear GOAFEM

Lemma 2.4. With positive constants𝐶 ,𝜅0 > 0 and𝜅1 > 1, let 𝜙 : ℝ≥0 → ℝ≥0 satisfy

0 ≤ 𝜙 (Λ) ≤ 𝜙 (𝜆) and 𝜙 (Λ) ≤
(

𝐶

Λ − 𝜆

)𝜅0
𝜙 (𝜆)𝜅1 for all 0 ≤ 𝜆 < Λ. (2.21)

Then, there holds that 𝜙 (Λ) = 0 for all Λ ≥ 𝐶 𝜙 (0) (𝜅1−1)/𝜅0 2𝜅1/(𝜅1−1) . □

Furthermore, the proof of Proposition 2.2 requires the Gagliardo–Nirenberg–Sobolev
inequality; see, e.g., [FK80, Theorem 16.6] or [Chi09, Theorem 12.7]:
Lemma 2.5 (Gagliardo–Nirenberg–Sobolev inequality). LetΩ ⊆ ℝ𝑑 be open and bound-
ed and suppose that 1 ≤ 𝑝 < ∞. If 1 ≤ 𝑝 < 𝑑 , let 1 ≤ 𝑟 ≤ 𝑝∗ := 𝑑𝑝/(𝑑 − 𝑝) < ∞. If
𝑑 ≤ 𝑝 < ∞, let 1 ≤ 𝑟 < ∞. Then, there exists a constant𝐶 ′

GNS = 𝐶
′
GNS(𝑑,𝑝, 𝑟 ) such that

||𝑣 ||𝐿𝑟 (Ω) ≤ 𝐶GNS ||∇𝑣 ||𝐿𝑝 (Ω) for all 𝑣 ∈𝑊 1,𝑝
0 (Ω), (2.22)

where𝐶GNS := 𝐶 ′
GNS |Ω|1/𝑑−1/𝑝+1/𝑟 . If 1 ≤ 𝑝 < 𝑑 and 𝑟 = 𝑝∗, then𝐶GNS = 𝑝 (𝑑 − 1)/(𝑑 − 𝑝)

depends only on 𝑑 and 𝑝 . □

Proof of Proposition 2.2. If𝑑 = 1,𝑢★ ∈ 𝐶 (Ω) ⊂ 𝐿∞(Ω) holds due to the Sobolev embedding.
If 𝑑 ∈ {2, 3} and for 𝜆 ≥ 0, we define the test function

𝜑+
𝜆 (𝑥) := max{𝑢★(𝑥) − 𝜆, 0}

and recall from [Chi09, Theorem 12.4] that 𝜑+
𝜆
∈ 𝐻 1

0 (Ω) with

∇𝜑+
𝜆 (𝑥) = ∇𝑢★(𝑥) for almost all 𝑥 ∈ Ω(𝜆) := {𝑥 ∈ Ω | 𝑢★(𝑥) > 𝜆}. (2.23)

Themean value theorem and (MON) prove for somemin{𝜉1, 𝜉2} < 𝜁 < max{𝜉1, 𝜉2} that(
𝑏 (𝜉2)−𝑏 (𝜉1)

) (𝜉2−𝜉1) = 𝑏 ′(𝜁 ) (𝜉2−𝜉1)2 ≥ 0 for all 𝜉1, 𝜉2 ∈ ℝ. (2.24)

Hence, it follows that
〈
𝑏 (𝑢★) − 𝑏 (𝜆) , 𝑢★ − 𝜆〉

Ω(𝜆) ≥ 0. Using (MON), we see that 𝑏 (𝜆) ≥
𝑏 (0) = 0 and hence

〈
𝑏 (𝜆) , 𝑢★ − 𝜆〉

Ω(𝜆) ≥ 0. Using the coercivity assumption (ELL) and
testing the weak formulation (2.3) with 𝜑+

𝜆
, we observe that

𝜇0 ||∇𝜑+
𝜆 ||2𝐿2 (Ω)

(ELL)≤ ⟪𝜑+
𝜆 , 𝜑

+
𝜆⟫ = ⟪𝑢★ , 𝜑+

𝜆⟫
(2.3)
= ⟨𝑓 , 𝜑+

𝜆 ⟩ + ⟨𝒇 , ∇𝜑+
𝜆 ⟩ − ⟨𝑏 (𝑢★) , 𝜑+

𝜆 ⟩
= ⟨𝑓 , 𝜑+

𝜆 ⟩ + ⟨𝒇 , ∇𝜑+
𝜆 ⟩ − ⟨𝑏 (𝑢★) , 𝑢★ − 𝜆 ⟩Ω(𝜆)

= ⟨𝑓 , 𝜑+
𝜆 ⟩ + ⟨𝒇 , ∇𝜑+

𝜆 ⟩ − ⟨𝑏 (𝑢★) − 𝑏 (𝜆) , 𝑢★ − 𝜆 ⟩Ω(𝜆) − ⟨𝑏 (𝜆) , 𝑢★ − 𝜆 ⟩Ω(𝜆)
≤ ⟨𝑓 , 𝜑+

𝜆 ⟩ + ⟨𝒇 , ∇𝜑+
𝜆 ⟩. (2.25)

With the Hölder inequality, we arrive at

𝜇0 ||∇𝜑+
𝜆 ||2𝐿2 (Ω) ≤ || 𝑓 ||𝐿𝑞 (Ω) ||𝜑+

𝜆 ||𝐿𝑞′ (Ω) + ||𝒇 ||𝐿𝑝 (Ω) ||∇𝜑+
𝜆 ||𝐿𝑝′ (Ω) . (2.26)

Moreover, (RHS) yields that 1/𝑞 ′ = 1 − 1/𝑞 = 1 − 1/𝑝 − 1/𝑑 = 1/𝑝 ′ − 1/𝑑 = 1/𝑝 ′∗, where
𝑝 ′ < 2 ≤ 𝑑 . Since |Ω| < ∞, we have that𝐻 1

0 (Ω) ↩→𝑊
1,𝑝 ′
0 (Ω). Therefore, Lemma2.5 (applied
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to 1 ≤ 𝑝 ′ < 𝑑 and 𝑟 = 𝑝 ′∗ = 𝑞 ′) yields that

||𝜑+
𝜆 ||𝐿𝑞′ (Ω) ≤ 𝐶GNS ||∇𝜑+

𝜆 ||𝐿𝑝′ (Ω) , (2.27)

where𝐶GNS depends only on 𝑑,𝑝 ′. Collecting (2.25)–(2.27), we obtain that

||∇𝜑+
𝜆 ||2𝐿2 (Ω) ≤ 𝐶1 ||∇𝜑+

𝜆 ||𝐿𝑝′ (Ω) with 𝐶1 =
max{𝐶GNS, 1}

𝜇0

( || 𝑓 ||𝐿𝑞 (Ω) + ||𝒇 ||𝐿𝑝 (Ω)
)
. (2.28)

Now, we aim at a lower bound for the left-hand side of (2.28). Recall the definition of
Ω(𝜆) from (2.23). Applying the Hölder inequality, we observe that

||∇𝜑+
𝜆 ||𝑝

′

𝐿𝑝
′ (Ω) =

∫
Ω(𝜆)

|∇𝜑+
𝜆 |𝑝

′ d𝑥 ≤
(∫

Ω(𝜆)
|∇𝜑+

𝜆 |2 d𝑥
)𝑝 ′/2

|Ω(𝜆) |1−𝑝 ′/2.

Taking the last equation to the power of 2/𝑝 ′ > 1, we show that

||∇𝜑+
𝜆 ||2𝐿𝑝′ (Ω) ≤ ||∇𝜑+

𝜆 ||2𝐿2 (Ω) |Ω(𝜆) |2/𝑝 ′−1 (2.28)≤ 𝐶1𝐶GNS ||∇𝜑+
𝜆 ||𝐿𝑝′ (Ω) |Ω(𝜆) |2/𝑝 ′−1. (2.29)

In combination with (2.27), we arrive at

||𝜑+
𝜆 ||𝐿𝑞′ (Ω) ≤ 𝐶GNS ||∇𝜑+

𝜆 ||𝐿𝑝′ (Ω) ≤ 𝐶1𝐶 2
GNS |Ω(𝜆) |2/𝑝 ′−1. (2.30)

For 0 < 𝜆 < Λ, we observe that
Ω(𝜆) ⊇ Ω(Λ).

This observation and𝑢★ > Λ onΩ(Λ) provide a lower bound for the left-hand side of (2.30):

||𝜑+
𝜆 ||𝐿𝑞′ (Ω) ≥

(∫
Ω(Λ)

(max{𝑢★(𝑥) − 𝜆, 0})𝑞 ′ d𝑥)1/𝑞
′

≥ (Λ − 𝜆) |Ω(Λ) |1/𝑞 ′ .

Combining this estimate with (2.30), we see that

|Ω(Λ) | ≤
(
𝐶2

Λ − 𝜆

)𝑞 ′
|Ω(𝜆) |𝑞 ′ (2/𝑝 ′−1) with 𝐶2 = 𝐶1𝐶GNS. (2.31)

Recall that 1/𝜅0 := 1/𝑞 ′ = 1 − 1/𝑝 − 1/𝑑 . Together with 𝑝 > 𝑑 ≥ 2, we thus observe that

𝜅1 := 𝑞 ′ (2/𝑝 ′ − 1) = (2 − 2/𝑝 − 1)/(1 − 1/𝑝 − 1/𝑑) = (1 − 2/𝑝)/(1 − 1/𝑝 − 1/𝑑) > 1.

Therefore, we are able to apply Lemma 2.4 to (2.31). This yields that |Ω(Λ) | = 0 for Λ ≥
𝐶2 |Ω(0) | (𝜅1−1)/𝜅0 2𝜅1/(𝜅1−1) . By definition ofΩ(Λ), this proves that

𝑢★(𝑥) ≤ 𝐶2 |Ω| (1/𝑑−1/𝑝 ) 2(1/𝑑−1/𝑝 )/(1−2/𝑝 ) for almost all 𝑥 ∈ Ω.

To see that −𝑢★ satisfies the same bound, we argue analogously. For 𝜆 ≥ 0, we define the
test function 𝜑−

𝜆
:= min{𝑢★(𝑥) −𝜆, 0} ≤ 0 and observe that 𝜑−

𝜆
∈ 𝐻 1

0 (Ω). WithΩ(𝜆) := {𝑥 ∈
Ω | 𝑢 (𝑥) < −𝜆} and the above arguments, we then conclude the proof. □
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In the same spirit as in Proposition 2.2, we are able to establish𝐿∞-bounds for the solutions
of the theoretical and practical dual problems (2.15a) and (2.18a).
Proposition 2.6. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Let𝑤 ∈ 𝐻 1

0 (Ω). Then,
the weak solutions 𝑧★ [𝑤 ] ∈ 𝐻 1

0 (Ω) of the theoretical dual problem (2.15a) and 𝑧★ [𝑤 ] ∈
𝐻 1
0 (Ω) of the practical dual problem (2.18a) are bounded in 𝐿∞(Ω). In particular, for

𝑑 ∈ {2, 3}, there holds

||𝑧★ [𝑤 ] ||𝐿∞ (Ω) + ||𝑧★ [𝑤 ] ||𝐿∞ (Ω) ≤ 𝐶 𝜇−1
0 |Ω| (1/𝑑−1/𝑝 ) ( ||𝑔 ||𝐿𝑞 (Ω) + ||𝒈 ||𝐿𝑝 (Ω) ) (2.32)

with a constant𝐶 = 𝐶 (𝑑,𝑝) > 0, which is, in particular, independent of𝑤 .

Proof. Weargue as for Proposition 2.2. The case𝑑 = 1 follows from the Sobolev embedding.
For 𝑑 ∈ {2, 3} and for 𝜆 ≥ 0, we define the test function

𝜑+
𝜆 (𝑥) := max{𝑧★ [𝑤 ] (𝑥) − 𝜆, 0}

and recall that 𝜑+
𝜆
∈ 𝐻 1

0 (Ω) with

∇𝜑+
𝜆 (𝑥) = ∇𝑧★ [𝑤 ] (𝑥) for almost all 𝑥 ∈ Ω(𝜆) := {𝑥 ∈ Ω | 𝑧★ [𝑤 ] > 𝜆}.

From (2.14), recall that 𝑩★(𝑤 ) = 𝑩 (𝑤,𝑢★) ≥ 0. In particular, it follows that
⟨𝑩★(𝑤 )𝑧★ [𝑤 ] , 𝑧★ [𝑤 ] − 𝜆⟩Ω(𝜆) ≥ 0. Using the coercivity assumption (ELL) and testing
the weak formulation (2.15a) with 𝜑+

𝜆
, we observe that

𝜇0 ||∇𝜑+
𝜆
||2
𝐿2 (Ω)

(ELL)≤ ⟪𝜑+
𝜆
, 𝜑+

𝜆
⟫ = ⟪𝑧★ [𝑤 ], 𝜑+

𝜆
⟫

(2.15a)
= ⟨𝑔 , 𝜑+

𝜆
⟩ + ⟨𝒈 ,∇𝜑+

𝜆
⟩ − ⟨𝑩★(𝑤 )𝑧★ [𝑤 ], 𝜑+

𝜆
⟩

= ⟨𝑔 , 𝜑+
𝜆
⟩ + ⟨𝒈 , ∇𝜑+

𝜆
⟩ − ⟨𝑩★(𝑤 )𝑧★ [𝑤 ] , 𝑧★ [𝑤 ] − 𝜆 ⟩Ω(𝜆) ≤ ⟨𝑔 , 𝜑+

𝜆
⟩ + ⟨𝒈 , ∇𝜑+

𝜆
⟩.

Following the steps of the proof of Proposition 2.2 (where the latter estimate corresponds
to (2.25)), we conclude the proof for 𝑧 [𝑤 ]. The same argument applies for the practical
dual problem, where 𝑩★(𝑤 ) is replaced by 𝑏 ′(𝑤 ) ≥ 0. This concludes the proof. □

2.2.7 Goal error estimate

The following theorem provides, up to norm equivalence, the formal statement of the goal
error estimate (2.7).

Theorem 2.7
Suppose (RHS), (ELL), (CAR), (MON), and (GC). Let𝑢★ ∈ 𝐻 1

0 (Ω) solve (2.3) and𝑢★
𝐻
∈ X𝐻

be its approximation (2.4). Then, it holds that

|𝐺 (𝑢★) −𝐺 (𝑢★
𝐻 ) | ≤ 𝐶est

[
⦀𝑢★ − 𝑢★

𝐻⦀⦀𝑧
★ [𝑢★

𝐻 ] − 𝑧★𝐻 [𝑢★
𝐻 ]⦀ + ⦀𝑢★ − 𝑢★

𝐻⦀
2] , (2.33)

where𝐶est = 𝐶est( |Ω|, 𝑑, ||𝑢★ ||𝐿∞ (Ω) , 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝑔 , 𝒈 , 𝜇0).

The proof of Theorem 2.7 requires some preparations. We start with the following lemma
which extends [BHSZ11, Lemma 3.1] to 𝒇 ≠ 0.
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Lemma 2.8. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Let𝑤 ∈ 𝐻 1
0 (Ω). Then, it

holds that
⦀𝑢★

⦀ + ⦀𝑢★
𝐻⦀ ≤ 𝐶bnd, (2.34a)

⦀𝑧★ [𝑤 ]⦀ + ⦀𝑧★𝐻 [𝑤 ]⦀ + ⦀𝑧★ [𝑤 ]⦀ + ⦀𝑧★𝐻 [𝑤 ]⦀ ≤ 𝐶bnd, (2.34b)
where 𝐶bnd = 𝐶bnd( |Ω|, 𝑑,𝑝, 𝑓 , 𝒇 , 𝜇0) for (2.34a) and 𝐶bnd = 𝐶bnd( |Ω|, 𝑑,𝑝, 𝑔 , 𝒈 , 𝜇0)
for (2.34b). The constant𝐶bnd is independent of𝑤 ∈ 𝐻 1

0 (Ω).

Proof. In the case 𝑑 = 1, (2.34) follows from the Sobolev embedding and (ELL). Moreover,
note that 𝑏 (0) = 0 and (2.24) prove that ⟨𝑏 (𝑢★) , 𝑢★⟩ ≥ 0. Using (ELL), (MON), and the
Hölder inequality, we obtain that

⦀𝑢★
⦀

2 = ⟪𝑢★ , 𝑢★
⟫

(2.3)
= ⟨𝑓 , 𝑢★⟩ + ⟨𝒇 , ∇𝑢★⟩ − ⟨𝑏 (𝑢★) , 𝑢★⟩

≤ || 𝑓 ||𝐿𝑞 (Ω) ||𝑢★ ||𝐿𝑞′ (Ω) + ||𝒇 ||𝐿𝑝 (Ω) ||∇𝑢★ ||𝐿𝑝′ (Ω) .
(2.35)

Arguing as for (2.27) and applying the Hölder inequality, we see that

⦀𝑢★
⦀

2 ≤ max{𝐶GNS, 1}
( || 𝑓 ||𝐿𝑞 (Ω) + ||𝒇 ||𝐿𝑝 (Ω)

) ||∇𝑢★ ||𝐿𝑝′ (Ω) (2.36)
≤ max{𝐶GNS, 1}

( || 𝑓 ||𝐿𝑞 (Ω) + ||𝒇 ||𝐿𝑝 (Ω)
) |Ω|1/𝑝 ′−1/2 ||∇𝑢★ ||𝐿2 (Ω) ,

where 𝐶GNS depends only on 𝑑 and 𝑝 ′. With ||∇𝑢★ ||𝐿2 (Ω) ≤ 𝜇
−1/2
0 ⦀𝑢★

⦀, this concludes
the proof for 𝑢★. The same argument (based on (2.4) instead of (2.3)) applies for 𝑢★

𝐻
.

Furthermore, the same argument applies also for the dual problems (based on (2.15)
and (2.18) instead of (2.3) for the theoretical and practical dual problem, respectively). For
𝑤,𝑣 ∈ 𝐻 1

0 (Ω), themonotonicity ⟨𝑏 (𝑣 ) , 𝑣⟩ ≥ 0 is substituted in case of the dual problems
by ⟨𝑏 ′(𝑤 )𝑣 , 𝑣⟩ ≥ 0 and ⟨𝑩★(𝑤 )𝑣 , 𝑣⟩ ≥ 0, respectively. This concludes the proof. □

The following lemma is one of the twomain ingredients for the proof of Theorem 2.7.

Lemma2.9. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Let𝑤 ∈ 𝐻 1
0 (Ω)with⦀𝑤⦀ ≤

𝑀 < ∞. Then, it holds that

⟨𝑏 (𝑢★) − 𝑏 (𝑤 ) , 𝑣⟩ ≤ 𝐶Lip ⦀𝑢
★ −𝑤⦀⦀𝑣⦀ for all 𝑣 ∈ 𝐻 1

0 (Ω) (2.37)

with𝐶Lip = 𝐶Lip( |Ω|, 𝑑, ||𝑢★ ||𝐿∞ (Ω) ,𝑀 , 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝜇0).

Proof. We argue as in the proof of [BHSZ11, Theorem 3.4]. With respect to Remark 2.1,
choose 𝑠 > 1 arbitrarily for 𝑑 ∈ {1, 2} and 𝑠 = 6 for 𝑑 = 3. In any case, we see that

⟨𝑏 (𝑢★) − 𝑏 (𝑤 ) , 𝑣⟩ ≤ ||𝑏 (𝑢★) − 𝑏 (𝑤 ) ||𝐿𝑠 ′ (Ω) ||𝑣 ||𝐿𝑠 (Ω) ≤ 𝐶 ||𝑏 (𝑢★) − 𝑏 (𝑤 ) ||𝐿𝑠 ′ (Ω)⦀𝑣⦀, (2.38)

where𝐶 := 𝜇−1
0 𝐶GNS. It remains to prove that

||𝑏 (𝑢★) − 𝑏 (𝑤 ) ||𝐿𝑠 ′ (Ω) ≲ ⦀𝑢★ −𝑤⦀.
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Due to the smoothness assumption (CAR), wemay consider the Taylor expansion

𝑏 (𝑤 ) =
𝑛−1∑︁
𝑘=0

𝑏 (𝑘 ) (𝑢★) (𝑤 − 𝑢★)𝑘
𝑘 ! + (𝑤 − 𝑢★)𝑛

(𝑛 − 1)!
∫ 1

0
(1 − 𝜏)𝑛−1 𝑏 (𝑛 ) (𝑢★ + (𝑤 − 𝑢★) 𝜏 ) d𝜏. (2.39)

Since 𝑏 is smooth and𝑢★ ∈ 𝐿∞(Ω), we obtain that

||𝑏 (𝑘 ) (𝑢★) ||𝐿∞ (Ω) ≤ 𝐶 for all 𝑘 = 1, . . . , 𝑛 − 1,

where𝐶 depends only on ||𝑢★ ||𝐿∞ (Ω) , and 𝑛. Moreover, (GC) allows to bound the remainder
term, i.e., for any 0 ≤ 𝜏 ≤ 1, it holds that

||𝑏 (𝑛 ) (𝑢★ + (𝑤 − 𝑢★)𝜏) ||𝐿∞ (Ω) ≤ 𝐶 ,

where𝐶 depends only on |Ω|, 𝑛, and 𝑅 . The triangle inequality yields that

||𝑏 (𝑢★) − 𝑏 (𝑤 ) ||𝐿𝑠 ′ (Ω) ≲
𝑛∑︁
𝑘=1

|| (𝑢★ −𝑤 )𝑘 ||𝐿𝑠 ′ (Ω) =
𝑛∑︁
𝑘=1

||𝑢★ −𝑤 ||𝑘
𝐿𝑘𝑠

′ (Ω) . (2.40)

Recall from Remark 2.1 that 𝐻 1
0 (Ω) ↩→ 𝐿𝑘𝑠

′ (Ω) for all 1 ≤ 𝑘 ≤ 𝑛 by choice of 𝑠 and 𝑛.
Therefore, the Gagliardo–Nirenberg–Sobolev inequality proves that

||𝑏 (𝑢★) − 𝑏 (𝑤 ) ||𝐿𝑠 ′ (Ω) ≲
𝑛∑︁
𝑘=1

||∇(𝑢★ −𝑤 ) ||𝑘
𝐿2 (Ω) , (2.41)

where the hidden constant depends only on |Ω|, 𝑑 , ||𝑢★ ||𝐿∞ (Ω) , 𝑛, and 𝑅 . With
||∇(𝑢★ −𝑤 ) ||𝐿2 (Ω) ≃ ⦀𝑢★ −𝑤⦀ ≤ 𝐶bnd +𝑀 , this leads to

||𝑏 (𝑢★) − 𝑏 (𝑤 ) ||𝐿𝑠 ′ (Ω) ≲

(
𝑛∑︁
𝑘=1

||∇(𝑢★ −𝑤 ) ||𝑘−1
𝐿2 (Ω)

)
||∇(𝑢★ −𝑤 ) ||𝐿2 (Ω) ≲ ⦀𝑢★ −𝑤⦀, (2.42)

with hidden constants 𝐶 = 𝐶 ( |Ω|, 𝑑, ||𝑢★ ||𝐿∞ (Ω) ,𝑀 , 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝜇0) > 0. Together
with (2.38), this concludes the proof of (2.37). □

The following lemma is the last missing part for establishing Theorem 2.7.

Lemma 2.10. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Let 𝑤 ∈ 𝐻 1
0 (Ω) with

⦀𝑤⦀ ≤ 𝑀 < ∞. Then, it holds that

⦀𝑧★ [𝑤 ] − 𝑧★ [𝑤 ]⦀ ≤ 𝐶dual ⦀𝑢
★ −𝑤⦀, (2.43)

where𝐶dual = 𝐶dual( |Ω|, 𝑑, ||𝑢★ ||𝐿∞ (Ω) ,𝑀 , 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝑔 , 𝒈 , 𝜇0).

Proof. Define 𝛿 := 𝑧★ [𝑤 ] − 𝑧★ [𝑤 ] ∈ 𝐻 1
0 (Ω). For the exact primal solution𝑢★, we observe

that the theoretical dual problem and the practical dual problem coincide, as 𝑩★(𝑢★) =
𝑩 (𝑢★, 𝑢★) =

∫ 1
0 𝑏 ′(𝑢★) d𝜏 = 𝑏 ′(𝑢★) and hence 𝑧 [𝑢★] = 𝑧 [𝑢★]. Usingmonotonicity and the
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definition of the theoretical as well as practical dual problem, we obtain that

⦀𝛿⦀2 = ⟪𝛿 , 𝛿⟫
(MON)≤ ⟪𝛿 , 𝛿⟫ + ⟨𝑏 ′(𝑤 )𝛿 , 𝛿 ⟩

(2.18a)
= [⟪𝑧★ [𝑤 ] , 𝛿⟫ + ⟨𝑏 ′(𝑤 )𝑧★ [𝑤 ] , 𝛿 ⟩] −𝐺 (𝛿 )
= [⟪𝑧★ [𝑤 ] , 𝛿⟫ + ⟨𝑩★(𝑤 )𝑧★ [𝑤 ] , 𝛿 ⟩] −𝐺 (𝛿 ) + ⟨[𝑏 ′(𝑤 ) − 𝑩★(𝑤 )] 𝑧★ [𝑤 ] , 𝛿 ⟩

(2.15a)
= ⟨[𝑏 ′(𝑤 ) − 𝑏 ′(𝑢★) + 𝑩★(𝑢★) − 𝑩★(𝑤 )] 𝑧★ [𝑤 ] , 𝛿 ⟩.

Since Proposition 2.6 yields that 𝑧★ [𝑤 ] ∈ 𝐿∞(Ω) independently of𝑤 , we can proceed as
in Remark 2.1(i). To this end, we choose 𝑠 > 1 arbitrarily for 𝑑 ∈ {1, 2} and 𝑠 = 6 for 𝑑 = 3.
Assumption (GC) then yields that

⦀𝛿⦀2 ≲
[
||𝑏 ′(𝑢★) − 𝑏 ′(𝑤 ) ||𝐿𝑠 ′ (Ω) + ||𝑩★(𝑢★) − 𝑩★(𝑤 ) ||𝐿𝑠 ′ (Ω)

]
||𝑧★ [𝑤 ] ||𝐿∞ (Ω) . (2.44)

It remains to prove that

||𝑏 ′(𝑢★) − 𝑏 ′(𝑤 ) ||𝐿𝑠 ′ (Ω) ≲ ⦀𝑢★ −𝑤⦀ and ||𝑩★(𝑢★) − 𝑩★(𝑤 ) ||𝐿𝑠 ′ (Ω) ≲ ⦀𝑢★ −𝑤⦀. (2.45)

We observe that the change of variables 𝜏 ↦→ 1 − 𝜏 leads to

𝑩★(𝑤 ) = 𝑩 (𝑤,𝑢★) =
∫ 1

0
𝑏 ′ (𝑤 + (𝑢★ −𝑤 ) 𝜏 ) d𝜏 =

∫ 1

0
𝑏 ′ (𝑢★ + (𝑤 − 𝑢★) 𝜏 ) d𝜏 = 𝑩 (𝑢★,𝑤 ),

and, hence,

𝑩★(𝑢★) − 𝑩★(𝑤 ) =
∫ 1

0

[
𝑏 ′ (𝑢★) − 𝑏 ′ (𝑢★ + (𝑤 − 𝑢★) 𝜏 ) ] d𝜏.

We only prove the second inequality of (2.45), but note that the first estimate follows for
𝜏 = 1 by the subsequent arguments: Due to the smoothness assumption (CAR), wemay
consider the Taylor expansion of the integrand 𝑏 ′(𝑢★ + (𝑤 −𝑢★) 𝜏) for 0 ≤ 𝜏 ≤ 1 to see that

𝑏 ′(𝑢★ + (𝑤 − 𝑢★) 𝜏) =
𝑛−1∑︁
𝑘=1

𝑏 (𝑘 ) (𝑢★) (𝑤 − 𝑢★)𝑘−1 𝜏𝑘−1
(𝑘 − 1)!

+ (𝑤 − 𝑢★)𝑛−1 𝜏𝑛−1
(𝑛 − 2)!

∫ 1

0
(1 − 𝜎)𝑛−2 𝑏 (𝑛 ) (𝑢★ + (𝑤 − 𝑢★) 𝜏 𝜎 ) d𝜎.

(2.46)

Since 𝑏 is smooth and𝑢★ ∈ 𝐿∞(Ω), we obtain that

||𝑏 (𝑘 ) (𝑢★) ||𝐿∞ (Ω) ≤ 𝐶 for all 𝑘 = 2, . . . , 𝑛 − 1,

where𝐶 depends only on ||𝑢★ ||𝐿∞ (Ω) , and 𝑛. Moreover, (GC) allows us to bound the remain-
der term, i.e., for any 0 ≤ 𝜏 𝜎 ≤ 1, it holds that

||𝑏 (𝑛 ) (𝑢★ + (𝑤 − 𝑢★) 𝜏 𝜎 ) ||𝐿∞ (Ω) ≤ 𝐶 ,
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where𝐶 depends only on |Ω|, 𝑛, and 𝑅 . If 𝑑 ∈ {1, 2}, note that (𝑛 − 1)𝑠 ′ < ∞. If 𝑑 = 3, it
holds that (𝑛 − 1)𝑠 ′ < 6. Hence, we obtain for all 2 ≤ 𝑘 ≤ 𝑛 − 1 that

|| (𝑢★ −𝑤 )𝑘−1 ||𝐿𝑠 ′ (Ω) = ||𝑢★ −𝑤 ||𝑘−1
𝐿 (𝑘−1)𝑠 ′ (Ω) ≲ (𝐶bnd +𝑀 )𝑛−2 ⦀𝑢★ −𝑤⦀,

where the hidden constant depends only on norm equivalence ⦀·⦀ ≃ ||∇(·) ||𝐿2 (Ω) . Arguing
as for (2.40)–(2.42) above, we infer that

||𝑏 ′(𝑢★) − 𝑏 ′(𝑤 ) ||𝐿𝑠 ′ (Ω) + ||𝑩★(𝑢★) − 𝑩★(𝑤 ) ||𝐿𝑠 ′ (Ω) ≤ 𝐶 ′
dual ⦀𝑢

★ −𝑤⦀, (2.47)

where𝐶 ′
dual = 𝐶

′
dual( |Ω|, 𝑑, ||𝑢★ ||𝐿∞ (Ω) ,𝑀 , 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝑔 , 𝒈 , 𝜇0) > 0. This shows the inequali-

ties in (2.45). The estimate (2.44) together with (2.45) yields (2.43), where
𝐶dual= 𝐶dual( |Ω|, 𝑑, ||𝑢★ ||𝐿∞ (Ω) ,𝑀 , 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝑔 , 𝒈 , 𝜇0) > 0. This concludes the proof. □

Proof of Theorem 2.7. Since Lemma2.8 guarantees⦀𝑢★
𝐻
⦀ ≤ 𝐶bnd, we can apply Lemma2.9

and Lemma 2.10 to𝑤 = 𝑢★
𝐻
to obtain that

⟨𝑏 (𝑢★) − 𝑏 (𝑢★
𝐻 ) , 𝑣⟩ ≤ 𝐶Lip ⦀𝑢

★ − 𝑢★
𝐻⦀⦀𝑣⦀ for all 𝑣 ∈ 𝐻 1

0 (Ω) (2.48a)

as well as

⦀𝑧★ [𝑢★
𝐻 ] − 𝑧★ [𝑢★

𝐻 ]⦀ ≤ 𝐶dual ⦀𝑢
★ − 𝑢★

𝐻⦀. (2.48b)

Combining these estimates with the error identity (2.19), we prove the error estimate

|𝐺 (𝑢★) −𝐺 (𝑢★
𝐻 ) | = |⟪𝑢★ − 𝑢★

𝐻 , 𝑧
★ [𝑢★

𝐻 ] − 𝑧★𝐻 [𝑢★
𝐻 ]⟫ + ⟨𝑏 (𝑢★) − 𝑏 (𝑢★

𝐻 ) , 𝑧★ [𝑢★
𝐻 ] − 𝑧★𝐻 [𝑢★

𝐻 ]⟩
+ ⟪𝑢★ − 𝑢★

𝐻 , 𝑧
★ [𝑢★

𝐻 ] − 𝑧★ [𝑢★
𝐻 ]⟫ + ⟨𝑏 (𝑢★) − 𝑏 (𝑢★

𝐻 ) , 𝑧★ [𝑢★
𝐻 ] − 𝑧★ [𝑢★

𝐻 ]⟩|
(2.48)≤ 𝐶est

[
⦀𝑢★ − 𝑢★

𝐻⦀⦀𝑧
★ [𝑢★

𝐻 ] − 𝑧★𝐻 [𝑢★
𝐻 ]⦀ + ⦀𝑢★ − 𝑢★

𝐻⦀
2] ,

where𝐶est = (1 +𝐶Lip)max{1,𝐶dual}. This concludes the proof. □

The assumptions of Lemma 2.9 (resp. Lemma 2.10) also yield the validity of a Céa-
type best approximation property for the discrete primal solution𝑢★

𝐻
∈ X𝐻 (resp. for the

discrete dual solutions 𝑧★
𝐻
[𝑤 ], 𝑧★

𝐻
[𝑤 ] for any𝑤 ∈ 𝐻 1

0 (Ω) with ⦀𝑤⦀ ≤ 𝑀 < ∞), even though
the PDE operatorA from (2.13) is not Lipschitz continuous.
Proposition2.11 (Céa lemmaforprimalproblem). Under theassumptionsofLemma2.9,
it holds that

⦀𝑢★ − 𝑢★
𝐻⦀ ≤ 𝐶Céa min

𝑣𝐻 ∈X𝐻
⦀𝑢★ − 𝑣𝐻⦀, (2.49)

where𝐶Céa = 𝐶Céa( |Ω|, 𝑑, 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝜇0).

Proof. The Galerkin orthogonality reads

⟪𝑢★ − 𝑢★
𝐻 , 𝑣𝐻⟫ + ⟨𝑏 (𝑢★) − 𝑏 (𝑢★

𝐻 ) , 𝑣𝐻 ⟩ = 0, for all 𝑣𝐻 ∈ X𝐻 . (2.50)
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Using (MON) and the Galerkin orthogonality, we observe that

⦀𝑢★ − 𝑢★
𝐻⦀

2(2.24)≤ ⟪𝑢★ − 𝑢★
𝐻 , 𝑢

★ − 𝑢★
𝐻⟫ + ⟨𝑏 (𝑢★) − 𝑏 (𝑢★

𝐻 ) , 𝑢★ − 𝑢★
𝐻 ⟩

(2.50)
= ⟪𝑢★ − 𝑢★

𝐻 , 𝑢
★ − 𝑣𝐻⟫ + ⟨𝑏 (𝑢★) − 𝑏 (𝑢★

𝐻 ) , 𝑢★ − 𝑣𝐻 ⟩
(2.37)≤ 𝐶Céa ⦀𝑢

★ − 𝑢★
𝐻⦀⦀𝑢★ − 𝑣𝐻⦀,

where 𝐶Céa := 1 + 𝐶Lip. This proves (2.49), where the minimum is attained due to finite
dimension ofX𝐻 . □

Proposition 2.12 (Céa lemma for dual problems). Let𝑤 ∈ 𝐻 1
0 (Ω) with ⦀𝑤⦀ ≤ 𝑀 < ∞.

Under the assumptions of Lemma 2.10, it holds that

⦀𝑧★ [𝑤 ] − 𝑧★𝐻 [𝑤 ]⦀ ≤ 𝐶Céa min
𝑣𝐻 ∈X𝐻

⦀𝑧★ [𝑤 ] − 𝑣𝐻⦀, (2.51)

⦀𝑧★ [𝑤 ] − 𝑧★𝐻 [𝑤 ]⦀ ≤ 𝐶Céa min
𝑣𝐻 ∈X𝐻

⦀𝑧★ [𝑤 ] − 𝑣𝐻⦀, (2.52)

where𝐶Céa = 𝐶Céa( |Ω|, 𝑑, ||𝑢★ ||𝐿∞ (Ω) ,𝑀 , 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝜇0).

Proof. We prove the statement for the practical dual problem. Withminor modifications,
the same argument also applies for the theoretical dual problem. We only need to show
that the bilinear form of the practical dual problem is continuous and elliptic. Then, by
standard theory for Lax–Milgram-type problems, this proves the Céa lemma (2.52). To
this end, we exploit (MON) and obtain that

⦀𝑣⦀2 = ⟪𝑣 , 𝑣⟫ ≤ ⟪𝑣 , 𝑣⟫ + ⟨𝑏 ′(𝑤 )𝑣 , 𝑣⟩ for all 𝑣 ∈ 𝐻 1
0 (Ω),

i.e., the bilinear form is elliptic with constant 1. In view of Remark 2.1, choose 𝑡 > 1
arbitrarily for 𝑑 ∈ {1, 2} and 𝑡 = 6 and, hence, 𝑡 ′′ = 3/2 for 𝑑 = 3. With (ELL) and (GC), it
follows that

⟪𝑧 , 𝑣⟫ + ⟨𝑏 ′(𝑤 )𝑧 , 𝑣⟩ ≤ (1 +𝐶 ||𝑏 ′(𝑤 ) ||𝐿𝑡 ′′ (Ω) )⦀𝑧⦀⦀𝑣⦀ for all 𝑣, 𝑧 ∈ 𝐻 1
0 (Ω).

With (2.45) and ⦀𝑢★ −𝑤⦀ ≤ 𝐶bnd +𝑀 , we can finally bound

||𝑏 ′(𝑤 ) ||𝐿𝑡 ′′ (Ω) ≤ ||𝑏 ′(𝑢★) ||𝐿𝑡 ′′ (Ω) +𝐶⦀𝑢★ −𝑤⦀ ≤ ||𝑏 ′(𝑢★) ||𝐿𝑡 ′′ (Ω) +𝐶 (𝐶bnd +𝑀 ).

Combining the last two estimates, we prove continuity of the bilinear formwith𝐶Céa =
𝐶Céa( |Ω|, 𝑑, ||𝑢★ ||𝐿∞ (Ω) ,𝑀 , 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝜇0). This concludes the proof. □

Remark 2.13. If it is a priori guaranteed that ||𝑢★
𝐻
||𝐿∞ (Ω) ≤ 𝐶 < ∞, then the proofs of

Section 2.2.7 simplify considerably and the use of (GC) can be avoided. By Proposition 2.2,
we infer

||𝑢★
𝐻 − 𝜏 (𝑢★ − 𝑢★

𝐻 ) ||𝐿∞ (Ω) < ∞ for all 0 ≤ 𝜏 ≤ 1. (2.53)
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To establish Lemma 2.9, recall𝑩★(𝑢★
𝐻
) from (2.16). The observation (2.53) together with the

smoothness assumption (CAR) yields that ||𝑩★(𝑢★
𝐻
) ||𝐿∞ (Ω) < ∞. Altogether, we obtain that

⟨𝑏 (𝑢★) − 𝑏 (𝑢★
𝐻 ) , 𝑣⟩ ≤ ||𝑩★(𝑢★

𝐻 ) ||𝐿∞ (Ω) ||𝑢★ − 𝑢★
𝐻 ||𝐿2 (Ω) ||𝑣 ||𝐿2 (Ω) .

Note that (2.53) also establishes the crucial estimate (2.45) fromLemma2.10 due to the local
Lipschitz continuity from (CAR); see [HPZ15, Proposition 1]. However, we stress that already
for lowest-order FEM, the validity of a discretemaximumprinciple requires assumptions on
the triangulation which are not imposed for (GC) and usually not met for adaptive mesh
refinement. □

Remark 2.14. Note that (CAR) implies only that 𝑏 (𝑥, · ) is locally Lipschitz. If we addi-
tionally assume global Lipschitz continuity, i.e., 𝐿 ′ := sup𝑥∈Ω ||𝑏 ′(𝑥, ·) ||𝐿∞ (ℝ) < ∞, then the
strongly monotone operatorA : 𝐻 1

0 (Ω) → 𝐻 −1(Ω) from (2.13) is also Lipschitz continuous
with 𝐿 := max{𝜇1, 𝐿 ′}. In particular, the problem (2.3) fits into the framework of the main
theorem on strongly monotone operators, and the proof of Lemma 2.9 becomes trivial. The
same applies to the proof of Lemma 2.10, if 𝑏 ′ is globally Lipschitz continuous. □

2.3 Goal-oriented adaptive algorithm and main results

2.3.1 Mesh refinement

From now on, let T0 be a given conforming triangulation ofΩ. For mesh refinement, we
employ newest vertex bisection (NVB); see [Ste08]. For each triangulation T𝐻 andmarked
elements M𝐻 ⊆ T𝐻 , let Tℎ := refine(T𝐻 ,M𝐻 ) be the coarsest triangulation where all
𝑇 ∈ M𝐻 have been refined, i.e.,M𝐻 ⊆ T𝐻 \Tℎ . We write Tℎ ∈ 𝕋 (T𝐻 ), if Tℎ results from T𝐻 by
finitely many steps of refinement. To abbreviate notation, let 𝕋 := 𝕋 (T0).
Throughout, each triangulation T𝐻 ∈ 𝕋 is associated with the finite-dimensional FEM

spaceX𝐻 ⊆ 𝐻 1
0 (Ω) from the introduction, and, since we employ NVB, Tℎ ∈ 𝕋 (T𝐻 ) implies

nestednessX𝐻 ⊆ Xℎ .

2.3.2 A posteriori error estimators

For T𝐻 ∈ 𝕋 , 𝑣𝐻 ∈ X𝐻 , and𝑤 ∈ 𝐻 1
0 (Ω), let

𝜂𝐻 (𝑇 ,𝑣𝐻 )2 := ℎ2𝑇 || 𝑓 + div(𝑨 ∇𝑣𝐻 − 𝒇 ) − 𝑏 (𝑣𝐻 ) ||2𝐿2 (𝑇 )
+ ℎ𝑇 ||⟦(𝑨 ∇𝑣𝐻 − 𝒇 ) · 𝒏⟧||2

𝐿2 (𝜕𝑇∩Ω) ,
(2.54)

𝜁𝐻 (𝑤 ;𝑇 ,𝑣𝐻 )2 := ℎ2𝑇 ||𝑔 + div(𝑨 ∇𝑣𝐻 − 𝒈 ) − 𝑏 ′(𝑤 ) (𝑣𝐻 ) ||2𝐿2 (𝑇 )
+ ℎ𝑇 ||⟦(𝑨 ∇𝑣𝐻 − 𝒈 ) · 𝒏⟧||2

𝐿2 (𝜕𝑇∩Ω)
(2.55)

be the local contributions of the standard residual error estimators, where ⟦ · ⟧ denotes the
jump across edges (for 𝑑 = 2) resp. faces (for 𝑑 = 3) and 𝒏 denotes the outer unit normal
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vector. For 𝑑 = 1, these jumps vanish, i.e., ⟦ · ⟧ = 0. ForU𝐻 ⊆ T𝐻 , let

𝜂𝐻 (U𝐻 , 𝑣𝐻 ) :=
( ∑︁
𝑇 ∈ U𝐻

𝜂𝐻 (𝑇 ,𝑣𝐻 )2
)1/2

and 𝜁𝐻 (𝑤 ;U𝐻 , 𝑣𝐻 ) :=
( ∑︁
𝑇 ∈ U𝐻

𝜁𝐻 (𝑤 ;𝑇 ,𝑣𝐻 )2
)1/2

.

To abbreviate notation, let 𝜂𝐻 (𝑣𝐻 ) := 𝜂𝐻 (T𝐻 , 𝑣𝐻 ) and 𝜁𝐻 (𝑤 ;𝑣𝐻 ) := 𝜁𝐻 (𝑤 ;T𝐻 , 𝑣𝐻 ). Fur-
thermore, we write, e.g., 𝜁𝐻 (U𝐻 , 𝑧

★
𝐻
[𝑤 ]) := 𝜁𝐻 (𝑤 ; U𝐻 , 𝑧

★
𝐻
[𝑤 ]), since𝑤 is clear from the

context.
The next result establishes that the error estimators (2.54)–(2.55) satisfy the following

slightly relaxed axioms of adaptivity from [CFPP14]. Compared to [CFPP14], stability (A1)
is slightly relaxed and reduction (A2) is simplified due to the nestedness of the discrete
spaces. Furthermore, we note that well-posedness of (2.54)–(2.55) requires additional
regularity assumptions on 𝑨, 𝒇 , and 𝒈 (as stated in Section 2.2.1 and 2.2.3) so that the
jump terms are well-defined. The proof is postponed to Section 2.4.1.

Proposition 2.15. Suppose (RHS), (ELL), (CAR), (MON), and (CGC). Let T𝐻 ∈ 𝕋 and
Tℎ ∈ 𝕋 (T𝐻 ). Then, there hold the following properties:
(A1) stability: For all 𝑀 > 0, there exists 𝐶stab [𝑀 ] > 0 such that for all 𝑤 ∈ 𝐻 1

0 (Ω),
𝑣ℎ ∈ Xℎ , and 𝑣𝐻 ∈ X𝐻 withmax{⦀𝑤⦀,⦀𝑣ℎ⦀,⦀𝑣𝐻⦀} ≤ 𝑀 , it holds that��𝜂ℎ (Tℎ ∩ T𝐻 , 𝑣ℎ) −𝜂𝐻 (Tℎ ∩ T𝐻 , 𝑣𝐻 )

�� ≤ 𝐶stab [𝑀 ] ⦀𝑣ℎ − 𝑣𝐻⦀,��𝜁ℎ (𝑤 ;Tℎ ∩ T𝐻 , 𝑣ℎ) − 𝜁𝐻 (𝑤 ;Tℎ ∩ T𝐻 , 𝑣𝐻 )
�� ≤ 𝐶stab [𝑀 ] ⦀𝑣ℎ − 𝑣𝐻⦀.

(A2) reduction:With 0 < 𝑞red := 2−1/(2𝑑 ) < 1, there holds that, for all 𝑣𝐻 ∈ X𝐻 and all
𝑤 ∈ 𝐻 1

0 (Ω),

𝜂ℎ (Tℎ\T𝐻 , 𝑣𝐻 ) ≤ 𝑞red𝜂𝐻 (T𝐻 \Tℎ , 𝑣𝐻 ) and 𝜁ℎ (𝑤 ;Tℎ\T𝐻 , 𝑣𝐻 ) ≤ 𝑞red 𝜁𝐻 (𝑤 ;T𝐻 \Tℎ , 𝑣𝐻 ).

(A3) reliability: For all𝑤 ∈ 𝐻 1
0 (Ω), there exists𝐶rel > 0 such that

⦀𝑢★ − 𝑢★
𝐻⦀ ≤ 𝐶rel𝜂𝐻 (𝑢★

𝐻 ) and ⦀𝑧★ [𝑤 ] − 𝑧★𝐻 [𝑤 ]⦀ ≤ 𝐶rel 𝜁𝐻 (𝑧★𝐻 [𝑤 ]).

(A4) discrete reliability: For all𝑤 ∈ 𝐻 1
0 (Ω), there exists𝐶drel > 0 such that

⦀𝑢★
ℎ − 𝑢★

𝐻⦀ ≤ 𝐶drel𝜂𝐻 (T𝐻 \Tℎ , 𝑢★
𝐻 ) and ⦀𝑧★ℎ [𝑤 ] − 𝑧★𝐻 [𝑤 ]⦀ ≤ 𝐶drel 𝜁𝐻 (T𝐻 \Tℎ , 𝑧★𝐻 [𝑤 ]).

The constant 𝐶rel depends only on 𝑑 , 𝜇0, and uniform shape regularity of the meshes
T𝐻 ∈ 𝕋 . 𝐶drel depends additionally on the polynomial degree𝑚, and𝐶stab [𝑀 ] depends
furthermore on |Ω|,𝑀 , 𝑛, 𝑅 , and 𝑨.

Remark 2.16. As far as the axioms of adaptivity (A1)–(A4) are concerned, we stress that
only the constant𝐶stab [𝑀 ] depends on𝑀 > 0. From Lemma 2.8, we know that ⦀𝑣⦀ ≤ 𝐶bnd
for all 𝑣 ∈ {𝑢★, 𝑢★

ℎ
, 𝑢★

𝐻
, 𝑧★ [𝑤 ], 𝑧★

ℎ
[𝑤 ], 𝑧★

𝐻
[𝑤 ]}. Hence, for𝑤 ∈ {𝑢★, 𝑢★

ℎ
, 𝑢★

𝐻
}, 𝑣ℎ ∈ {𝑢★

ℎ
, 𝑧★
ℎ
[𝑤 ]},

and 𝑣𝐻 ∈ {𝑢★
𝐻
, 𝑧★
𝐻
[𝑤 ]}, also the constant𝐶stab = 𝐶stab [𝐶bnd] in (A1) becomes generic.
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2.3.3 Goal-oriented adaptive algorithm

The following algorithm essentially coincides with that of [HPZ15]. Following [BIP21], we
adapt themarking strategy tomathematically guarantee optimal convergence rates.

Algorithm 2.17: Goal-oriented adaptive FEM
Input: Adaptivity parameters 0<𝜃 ≤ 1 and𝐶mark ≥1, initial mesh T0.
Loop: For all ℓ = 0, 1, 2, . . . , perform the following steps (i)–(v):

(i) Compute the discrete solutions𝑢★
ℓ
, 𝑧★

ℓ
[𝑢★

ℓ
] ∈ Xℓ to (2.4) resp. (2.6).

(ii) Compute the refinement indicators𝜂ℓ (𝑇 ,𝑢★
ℓ
) and 𝜁ℓ (𝑇 , 𝑧★ℓ [𝑢★

ℓ
]) for all𝑇 ∈ Tℓ .

(iii) Determine setsM𝑢

ℓ ,M
𝑢𝑧

ℓ ⊆ Tℓ of up to themultiplicative constant𝐶markminimal
cardinality such that

𝜃 𝜂ℓ (𝑢★
ℓ )2 ≤ 𝜂ℓ (M

𝑢

ℓ , 𝑢
★
ℓ )2, (2.56a)

𝜃
[
𝜂ℓ (𝑢★

ℓ )2 + 𝜁ℓ (𝑢★
ℓ ; 𝑧★ℓ [𝑢★

ℓ ])2
] ≤ [

𝜂ℓ (M
𝑢𝑧

ℓ , 𝑢
★
ℓ )2 + 𝜁ℓ (𝑢★

ℓ ;M
𝑢𝑧

ℓ , 𝑧
★
ℓ [𝑢★

ℓ ])2
]
. (2.56b)

(iv) SelectM𝑢
ℓ
⊆ M𝑢

ℓ andM𝑢𝑧
ℓ

⊆ M𝑢𝑧

ℓ with #M𝑢
ℓ
= #M𝑢𝑧

ℓ
= min{ #M𝑢

ℓ , #M
𝑢𝑧

ℓ }.
(v) DefineMℓ := M𝑢

ℓ
∪M𝑢𝑧

ℓ
and generate Tℓ+1 := refine(Tℓ ,Mℓ).

Output: Sequence of triangulations Tℓ with corresponding discrete solutions𝑢★
ℓ
and

𝑧★
ℓ
[𝑢★

ℓ
] as well as error estimators𝜂ℓ (𝑢★

ℓ
) and 𝜁ℓ (𝑢★

ℓ
; 𝑧★

ℓ
[𝑢★

ℓ
]).

2.3.4 Main results

In the following, we give formal statements of our main results on Algorithm 2.17. The
proofs are postponed to Section 2.4 below. Our first result states that Algorithm 2.17
indeed relies on reliable a posteriori error control for the goal error and guarantees plain
convergence.

Proposition 2.18. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Then, there hold the
following statements (i)–(ii):
(i) There exists a constant𝐶 ′

rel > 0 such that
��𝐺 (𝑢★) −𝐺 (𝑢★

𝐻 )
�� ≤ 𝐶 ′

rel𝜂𝐻 (𝑢★
𝐻 )

[
𝜂𝐻 (𝑢★

𝐻 )2 + 𝜁𝐻 (𝑧★𝐻 [𝑢★
𝐻 ])2

]1/2 for all T𝐻 ∈ 𝕋 . (2.57)

(ii) For all 0 < 𝜃 ≤ 1 and 1 < 𝐶mark ≤ ∞, Algorithm 2.17 leads to convergence

|𝐺 (𝑢★) −𝐺 (𝑢★
ℓ ) | ≤ 𝐶 ′

rel𝜂ℓ (𝑢★
ℓ )

[
𝜂ℓ (𝑢★

ℓ )2 + 𝜁ℓ (𝑧★ℓ [𝑢★
ℓ ])2

]1/2 −→ 0 as ℓ → ∞ (2.58)

where𝐶 ′
rel = 𝐶

′
rel( |Ω|, 𝕋 , 𝑑, 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝑔 , 𝒈 , 𝜇0).

We stress that (2.57) is an immediate consequence of the goal error estimate (2.33) from
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Theorem 2.7 and reliability (A3), i.e.,

𝐶 −1
est |𝐺 (𝑢★) −𝐺 (𝑢★

𝐻 ) | ≤
[
⦀𝑢★ − 𝑢★

𝐻⦀⦀𝑧
★ [𝑢★

𝐻 ] − 𝑧★𝐻 [𝑢★
𝐻 ]⦀ + ⦀𝑢★ − 𝑢★

𝐻⦀
2]

≤ 𝐶 2
rel

[
𝜂𝐻 (𝑢★

𝐻 )𝜁𝐻 (𝑧★𝐻 [𝑢★
𝐻 ]) +𝜂𝐻 (𝑢★

𝐻 )2
]

≤
√
2𝐶 2

rel𝜂𝐻 (𝑢★
𝐻 )

[
𝜁𝐻 (𝑧★𝐻 [𝑢★

𝐻 ])2 +𝜂𝐻 (𝑢★
𝐻 )2

]1/2
.

Consequently, only the convergence (2.58) of Proposition 2.18(ii) has to be proven. Re-
placing the assumption (GC) on the nonlinearity by the stronger assumption (CGC), we
even get linear convergence, which improves Proposition 2.18(ii).

Theorem 2.19
Suppose (RHS), (ELL), (CAR), (MON), and (CGC). Then, for all 0 < 𝜃 ≤ 1 and 1 ≤ 𝐶mark ≤
∞, there exists ℓ0 ∈ ℕ0,𝐶lin > 0, and 0 < 𝑞lin < 1 such that Algorithm 2.17 guarantees that,
for all ℓ, 𝑘 ∈ ℕ0 with 𝑘 ≥ ℓ ≥ ℓ0,

𝜂𝑘 (𝑢★
𝑘 )

[
𝜂𝑘 (𝑢★

𝑘 )2 + 𝜁𝑘 (𝑧★𝑘 [𝑢★
𝑘 ])2

]1/2 ≤ 𝐶lin𝑞
𝑘−ℓ
lin 𝜂ℓ (𝑢★

ℓ )
[
𝜂ℓ (𝑢★

ℓ )2 + 𝜁ℓ (𝑧★ℓ [𝑢★
ℓ ])2

]1/2
. (2.59)

The constants𝐶lin and 𝑞lin as well as the index ℓ0 depend only on |Ω|, 𝕋 , 𝑑 ,𝑚, 𝜃 , 𝑛, 𝑅 , 𝑝 , 𝑓 ,
𝒇 , 𝑔 , 𝒈 , 𝜇0, and 𝑨.

To formulate our main result on optimal convergence rates, we need some additional
notation. For 𝑁 ∈ ℕ0, let 𝕋𝑁 := {T ∈ 𝕋 | #T − #T0 ≤ 𝑁 } denote the (finite) set of all
refinements of T0 which have at most𝑁 elements more than T0. For 𝑠 , 𝑡 > 0, we define

||𝑢★ ||𝔸𝑠 := sup
𝑁 ∈ℕ0

(
(𝑁 + 1)𝑠 min

T𝐻 ∈𝕋𝑁
𝜂𝐻 (𝑢★

𝐻 )
)
∈ ℝ≥0 ∪ {∞},

||𝑧★ [𝑢★] ||𝔸𝑡 := sup
𝑁 ∈ℕ0

(
(𝑁 + 1)𝑡 min

T𝐻 ∈𝕋𝑁
𝜁𝐻 (𝑧★𝐻 [𝑢★])

)
∈ ℝ≥0 ∪ {∞}.

In explicit terms, e.g., ||𝑢★ ||𝔸𝑠 < ∞means that an algebraic convergence rate O(𝑁 −𝑠 ) for
the error estimator𝜂ℓ is possible, if the optimal triangulations are chosen.
In comparison to [HPZ15] or [XHYM21], our proof of Theorem 2.19 avoids any 𝐿∞-

bounds on the discrete solutions as well as the assumption that the initial mesh is suffi-
ciently fine. Moreover, in contrast to [XHYM21], which proves linear convergence for the
marking strategy suggested in [HPZ15] (and amultilevel correction step), we even prove
optimal convergence rates without assuming global Lipschitz continuity for the primal
and dual operators.

Theorem 2.20
Suppose (RHS), (ELL), (CAR), (MON), and (CGC). Let 𝑠 , 𝑡 > 0with ||𝑢★ ||𝔸𝑠 + ||𝑧★ [𝑢★] ||𝔸𝑡 <
∞. Then, for all 0 < 𝜃 < 𝜃opt := (1 + 𝐶 2

stab𝐶
2
drel)−1 and 1 ≤ 𝐶mark < ∞, there holds the

following: With the index ℓ0 ∈ ℕ0 from Theorem 2.19, there exists 𝐶opt > 0 such that
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Algorithm 2.17 guarantees that, for all ℓ ∈ ℕ0 with ℓ ≥ ℓ0,

𝜂ℓ (𝑢★
ℓ )

[
𝜂ℓ (𝑢★

ℓ )2 + 𝜁ℓ (𝑧★ℓ [𝑢★
ℓ ])2

]1/2 ≤ 𝐶opt ||𝑢★ ||𝔸𝑠 ( ||𝑢★ ||𝔸𝑠 + ||𝑧★ [𝑢★] ||𝔸𝑡 ) (#Tℓ − #T0)−𝛼 ,
(2.60)

where 𝛼 := min{2𝑠 , 𝑠 + 𝑡 }. The constant𝐶opt depends only on |Ω|, 𝕋 , 𝑑 ,𝑚,𝐶nvb,𝐶mark, ℓ0,
𝜃 , 𝑛, 𝑅 , 𝑝 , 𝑓 , 𝒇 , 𝑔 , 𝒈 , 𝜇0, and 𝑨.

Remark 2.21. Compared to the treatment of linear problems in [FPZ16], the crucial
change in the marking strategy considers the combined error estimator due to the structure
from (2.7). This allows us to prove convergence rates in contrast to [HPZ15; XHYM21] by
using key ingredients from [BIP21]. As a trade-off, the proofs of the essential quasi-orthogo-
nalities are much more involved both in the semilinear primal setting as well as for the
combined error estimator.

Remark 2.22. With the estimate𝜂ℓ (𝑢★
ℓ
) [𝜂ℓ (𝑢★

ℓ
)2 + 𝜁ℓ (𝑧★ℓ [𝑢★

ℓ
])2]1/2 ≤ 𝜂ℓ (𝑢★

ℓ
)2 + 𝜁ℓ (𝑧★ℓ [𝑢★

ℓ
])2,

one can also consider Algorithm 2.17 withMℓ := M𝑢𝑧

ℓ , which then takes the form of the
standard AFEM algorithm (see, e.g., [CFPP14]) for the product space estimator. Then, The-
orem 2.19 and 2.20 hold accordingly with the product replaced by the square sum and
𝛼 = min{2𝑠 , 2𝑡 }, which is slightly worse than the rate 𝛼 from Theorem 2.20. We refer
to [BIP21] for details (in a different, but structurally similar setting).

Remark 2.23. Themarking strategy proposed in [BET11] uses Dörfler marking

𝜃
∑︁
𝑇 ∈Tℓ

𝜌ℓ (𝑇 ,𝑢★
ℓ , 𝑧ℓ [𝑢★

ℓ ])2 ≤
∑︁

𝑇 ∈Mℓ

𝜌ℓ (𝑇 ,𝑢★
ℓ , 𝑧ℓ [𝑢★

ℓ ])2 (2.61)

for the weighted estimator product

𝜌ℓ (𝑇 ,𝑢★
ℓ , 𝑧ℓ [𝑢★

ℓ ])2 := 𝜂ℓ (𝑇 ,𝑢★
ℓ )2𝜁ℓ (𝑧★ℓ [𝑢★

ℓ ])2 +𝜂ℓ (𝑢★
ℓ )2𝜁ℓ (𝑇 , 𝑧★ℓ [𝑢★

ℓ ])2.

This combined estimator can be interpreted as a computable (but less local) upper bound for
the dual weighted residual estimator. Beyond linear PDEs [FPZ16], however, convergence
cannot be guaranteed, since the linearization error of the dual problemwill not tend to zero
in general. As a possible remedy, [BIP21, Remark 3(iii)] proposes to consider

𝜚ℓ (𝑇 ,𝑢★
ℓ , 𝑧ℓ [𝑢★

ℓ ])2 :=𝜂ℓ (𝑇 ,𝑢★
ℓ )2

[
𝜂ℓ (𝑢★

ℓ )2+𝜁ℓ (𝑧★ℓ [𝑢★
ℓ ])2

]+𝜂ℓ (𝑢★
ℓ )2

[
𝜂ℓ (𝑇 ,𝑢★

ℓ )2+𝜁ℓ (𝑇 , 𝑧★ℓ [𝑢★
ℓ ])2

]
for the Dörfler marking (2.61). The present results in combination with the analysis
from [FPZ16] show that this strategy implies convergence with optimal ratemin{2𝑠 , 𝑠 + 𝑡 }.
Details are left to the reader.

2.4 Proofs

In this section, we give the proofs of Proposition 2.15 and 2.18 as well as Theorem 2.19
and 2.20.
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2.4.1 Axioms of Adaptivity

In this section, we sketch the proof of Proposition 2.15 and verify that the residual er-
ror estimators from Section 2.3.2 satisfy the (relaxed) axioms of adaptivity (A1)–(A4)
from [CFPP14]. As usual for nonlinear problems, only the verification of stability (A1)
requires new ideas, while (A2)–(A4) follow from standard arguments. For a triangulation
Tℎ ∈ 𝕋 and an element𝑇 ∈ Tℎ , let E(𝑇 ) be the set of its facets (i.e., nodes for 𝑑 = 1, edges
for 𝑑 = 2, and faces for 𝑑 = 3, respectively). Moreover, let

Ωℎ [𝑇 ] :=
⋃

{𝑇 ′ ∈ Tℎ | 𝑇 ∩𝑇 ′ ≠ ∅} (2.62)

denote the usual element patch. Recall that (RHS) ensures that the error estimators (2.54)–
(2.55) are well-defined. To abbreviate notation, we define the primal and dual residuals

ℜ(𝑣𝐻 ) := 𝑓 + div(𝑨 ∇𝑣𝐻 − 𝒇 ) − 𝑏 (𝑣𝐻 ), (2.63a)
ℜ∗(𝑤 ;𝑣𝐻 ) := 𝑔 + div(𝑨∇𝑣𝐻 − 𝒈 ) − 𝑏 ′(𝑤 )𝑣𝐻 (2.63b)

for all 𝑣𝐻 ∈ X𝐻 and𝑤 ∈ 𝐻 1
0 (Ω). We stress that we do not explicitly state the dependence of

the constants on the𝛾 -shape regularity constant.
To prove stability (A1), we need the following auxiliary result:
Lemma 2.24. Suppose (ELL), (CAR), and (CGC). Let 𝑀 > 0 and 𝑣,𝑤 ∈ 𝐻 1

0 (Ω) with
max{⦀𝑣⦀,⦀𝑤⦀} ≤ 𝑀 . Then, it holds that

||𝑏 (𝑣 ) − 𝑏 (𝑤 ) ||𝐿2 (Ω) ≤ 𝐶 [𝑀 ] ⦀𝑣 −𝑤⦀ (2.64)

with𝐶 [𝑀 ] = 𝐶 ( |Ω|, 𝑑,𝑀 , 𝑛, 𝑅, 𝜇0).

Proof. Similarly to the Taylor expansion in (2.39), it holds that

𝑏 (𝑣 ) =
𝑛−1∑︁
𝑘=0

𝑏 (𝑘 ) (𝑤 ) (𝑣 −𝑤 )𝑘
𝑘 ! + (𝑣 −𝑤 )𝑛

(𝑛 − 1)!
∫ 1

0
(1 − 𝜏)𝑛−1 𝑏 (𝑛 ) (𝑤 + (𝑣 −𝑤 ) 𝜏) d𝜏. (2.65)

This yields that

||𝑏 (𝑣 )−𝑏 (𝑤 ) ||𝐿2 (Ω) ≲
������𝑛−1∑︁
𝑘=1

𝑏 (𝑘 ) (𝑤 ) (𝑣−𝑤 )𝑘 + (𝑣−𝑤 )𝑛
∫ 1

0
(1−𝜏)𝑛−1 𝑏 (𝑛 ) (𝑤+(𝑣−𝑤 )𝜏) d𝜏

������
𝐿2 (Ω)

.

Recall the generalized Hölder inequality

||𝜑𝜓 ||𝐿2 (Ω) ≤ ||𝜑 ||𝐿2𝜌′ (Ω) ||𝜓 ||𝐿2𝜌 (Ω) , where 1/2 = 1/2 (1/𝜌 + 1/𝜌 ′).

Recall that ||𝑣𝑘 ||𝐿𝜌 (Ω) = ||𝑣 ||𝑘
𝐿𝑘𝜌 (Ω) . For any 𝑘 = 1, . . . , 𝑛 − 1 and 1 < 𝜌 < ∞, it holds that

||𝑏 (𝑘 )(𝑤 ) (𝑣−𝑤 )𝑘 ||𝐿2 (Ω) ≤ ||𝑏 (𝑘 )(𝑤 ) ||𝐿2𝜌′ (Ω) ||𝑣−𝑤 ||𝑘
𝐿2𝑘𝜌 (Ω)

(CGC)
≲ (1+||𝑤 ||𝑛−𝑘

𝐿2(𝑛−𝑘 )𝜌′ (Ω) ) ||𝑣−𝑤 ||𝑘
𝐿2𝑘𝜌 (Ω) .

57



2 semilinear GOAFEM

For 𝑑 = 1, 2, both norms can be estimated by the corresponding energy norm. For 𝑑 = 3,
let 𝜌 = 𝑛/𝑘 and hence 𝜌 ′ = 𝑛/(𝑛 − 𝑘 ) > 1. Note that 2(𝑛 − 𝑘 )𝜌 ′ = 2𝑛 ≤ 6 = 2∗ as well as
2𝑘𝜌 = 2𝑛 ≤ 6 = 2∗ by virtue of (CGC). For the remainder term in (2.65), (CGC) yields that
|𝑏 (𝑛 ) (𝑤 ) | ≲ 1 for all𝑤 ∈ 𝐻 1

0 (Ω) and thus the integral is bounded by a constant. Altogether,
this guarantees that

||𝑏 (𝑣 )−𝑏 (𝑤 ) ||𝐿2 (Ω) ≲
𝑛−1∑︁
𝑘=1

||𝑏 (𝑘 ) (𝑤 ) (𝑣−𝑤 )𝑘 ||𝐿2 (Ω)+||(𝑣−𝑤 )𝑛 ||𝐿2 (Ω) ≲
𝑛∑︁
𝑘=1

(1+⦀𝑤⦀

𝑛−𝑘 ) ⦀𝑣−𝑤⦀

𝑘,

where the hidden constant depends only on Ω, 𝑑 , 𝑀 , 𝑛, and 𝑅 from (CGC), and 𝜇0
from (ELL). Note that ⦀𝑣 − 𝑤⦀

𝑘 ≲ ⦀𝑣 − 𝑤⦀, where the hidden constant depends only
on𝑀 . This concludes the proof. □

With Lemma 2.24 at hand, stability (A1) follows as for a linear model problem [CKNS08].

Proof of stability (A1) for primal problem. With the primal residual ℜ(𝑣𝐻 ) from (2.63a),
the refinement indicators read

𝜂𝐻 (𝑇 ,𝑣𝐻 )2 = ℎ2𝑇 ||ℜ(𝑣𝐻 ) ||2𝐿2 (𝑇 ) + ℎ𝑇 ||⟦(𝑨 ∇𝑣𝐻 + 𝒇 ) · 𝒏⟧||2
𝐿2 (𝜕𝑇∩Ω) .

Define 𝛿ℎ := 𝑣ℎ − 𝑣𝐻 ∈ Xℎ and𝔇(𝛿ℎ) := div(𝑨 ∇𝛿ℎ) + 𝑏 (𝑣𝐻 ) − 𝑏 (𝑣ℎ). Observe that

ℜ(𝑣ℎ)=
[
𝑓 + div(𝑨∇𝑣𝐻 − 𝒇 ) − 𝑏 (𝑣𝐻 )

] + [div(𝑨∇𝛿ℎ) + 𝑏 (𝑣𝐻 ) − 𝑏 (𝑣ℎ)]=ℜ(𝑣𝐻 ) +𝔇(𝛿ℎ).

Elementary calculus proves that

𝜂ℎ (𝑇 ,𝑣ℎ)=
(
ℎ2𝑇 ||ℜ(𝑣𝐻 ) +𝔇(𝛿ℎ) ||2𝐿2 (𝑇 ) + ℎ𝑇 ||⟦(𝑨 ∇(𝑣𝐻 + 𝛿ℎ) + 𝒇 ) · 𝒏⟧||2

𝐿2 (𝜕𝑇∩Ω)
)1/2

≤ 𝜂ℎ (𝑇 ,𝑣𝐻 ) + ℎ𝑇 ||𝔇(𝛿ℎ) ||𝐿2 (𝑇 ) + ℎ1/2𝑇
||⟦𝑨 ∇𝛿ℎ · 𝒏⟧||𝐿2 (𝜕𝑇∩Ω) .

(2.66)

Recalling the definition of𝔇(𝛿ℎ), we see that

||𝔇(𝛿ℎ) ||𝐿2 (𝑇 ) ≤ ||div(𝑨 ∇𝛿ℎ) ||𝐿2 (𝑇 ) + ||𝑏 (𝑣𝐻 ) − 𝑏 (𝑣ℎ) ||𝐿2 (𝑇 ) . (2.67)

For the first term in (2.67), we use the product rule and an inverse inequality to see that

||div(𝑨 ∇𝛿ℎ) ||𝐿2 (𝑇 ) ≤ ||(div 𝑨) · ∇𝛿ℎ ||𝐿2 (𝑇 ) + ||𝑨 : D2𝛿ℎ ||𝐿2 (𝑇 )

≲
(
||div 𝑨 ||𝐿∞ (𝑇 ) + ℎ−1

𝑇 ||𝑨 ||𝐿∞ (𝑇 )
)
||∇𝛿ℎ ||𝐿2 (𝑇 ) ,

(2.68)

where : denotes the Frobenius scalar product onℝ𝑑×𝑑 and D2𝛿ℎ is the Hessian of 𝛿ℎ . The
jump term in (2.66) can be estimated by a discrete trace inequality:

||⟦𝑨 ∇𝛿ℎ · 𝒏⟧||𝐿2 (𝜕𝑇∩Ω) ≲ ℎ
−1/2
𝑇

||𝑨 ||𝐿∞ (Ωℎ [𝑇 ] ) ||∇𝛿ℎ ||𝐿2 (Ωℎ [𝑇 ] ) . (2.69)
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Collecting (2.66)–(2.69), we obtain that

|𝜂ℎ (𝑇 ,𝑣ℎ) −𝜂ℎ (𝑇 ,𝑣𝐻 ) |
≲ ℎ𝑇

[||div 𝑨 ||𝐿∞ (𝑇 ) + ℎ−1
𝑇 ||𝑨 ||𝐿∞ (Ωℎ [𝑇 ] )

] ||∇𝛿ℎ ||𝐿2 (Ωℎ [𝑇 ] ) + ℎ𝑇 ||𝑏 (𝑣𝐻 ) − 𝑏 (𝑣ℎ) ||𝐿2 (𝑇 )
≲

[|Ω|1/𝑑 max
𝑇 ′∈T0

||div 𝑨 ||𝐿∞ (𝑇 ′ ) + ||𝑨 ||𝐿∞ (Ω)
] ||∇𝛿ℎ ||𝐿2 (Ωℎ [𝑇 ] ) + |Ω|1/𝑑 ||𝑏 (𝑣𝐻 ) − 𝑏 (𝑣ℎ) ||𝐿2 (𝑇 ) ,

where the hidden constant depends only on the shape regularity of Tℎ , and the polynomial
degree𝑚 of the ansatz spaces. Together with Lemma 2.24, this yields that

|𝜂ℎ (Tℎ ∩ T𝐻 , 𝑣ℎ) −𝜂ℎ (Tℎ ∩ T𝐻 , 𝑣𝐻 ) | ≤
( ∑︁
𝑇 ∈ Tℎ∩T𝐻

|𝜂ℎ (𝑇 ,𝑣ℎ) −𝜂ℎ (𝑇 ,𝑣𝐻 ) |2
)1/2

≲
( ∑︁
𝑇 ∈ Tℎ∩T𝐻

( ||∇𝛿ℎ ||2𝐿2 (Ωℎ [𝑇 ] ) + ||𝑏 (𝑣𝐻 ) − 𝑏 (𝑣ℎ) ||2𝐿2 (𝑇 )
) )1/2

≲
( ||∇𝛿ℎ ||2𝐿2 (Ω) + ||𝑏 (𝑣𝐻 ) − 𝑏 (𝑣ℎ) ||2𝐿2 (Ω)

)1/2
≲ ⦀𝑣ℎ − 𝑣𝐻⦀.

The hidden constant depends only on |Ω|, the shape regularity of Tℎ , 𝑑 ,𝑚,𝑀 , 𝑛,𝑅 , 𝜇0, and
𝑨. Note that for any non-refined element𝑇 ∈ Tℎ ∩ T𝐻 , it holds that𝜂ℎ (𝑇 ,𝑣𝐻 ) = 𝜂𝐻 (𝑇 ,𝑣𝐻 ).
This concludes the proof. □

Proof of stability (A1) for dual problem. With thedual residualℜ∗(𝑤 ;𝑣𝐻 ) from (2.63b), the
refinement indicators read

𝜁𝐻 (𝑤 ;𝑇 ,𝑣𝐻 )2 = ℎ2𝑇 ||ℜ∗(𝑤 ;𝑣𝐻 ) ||2𝐿2 (𝑇 ) + ℎ𝑇 ||⟦(𝑨 ∇𝑣𝐻 − 𝒈 ) · 𝒏⟧||2
𝐿2 (𝜕𝑇∩Ω) .

We define 𝛿ℎ := 𝑣ℎ − 𝑣𝐻 ∈ Xℎ and𝔇∗(𝛿ℎ) := div(𝑨 ∇𝛿ℎ) − 𝑏 ′(𝑤 )𝛿ℎ . Observe that similar
arguments as for the proof of stability (A1) of the primal problem lead to

ℜ∗(𝑤 ;𝑣ℎ) = ℜ∗(𝑤 ;𝑣𝐻 ) +𝔇∗(𝛿ℎ)

and, hence,

𝜁ℎ (𝑤 ;𝑇 ,𝑣ℎ) ≤ 𝜁ℎ (𝑤 ;𝑇 ,𝑣𝐻 ) + ℎ𝑇 ||𝔇∗(𝛿ℎ) ||𝐿2 (𝑇 ) + ℎ1/2𝑇
||⟦𝑨 ∇𝛿ℎ · 𝒏⟧||𝐿2 (𝜕𝑇∩Ω) .

Here, we only estimate the term ||𝑏 ′(𝑤 )𝛿ℎ ||𝐿2 (Ω) , since the other terms follow from the
arguments provided for the primal problem. To this end, choose 2 < 𝜌 < ∞ arbitrarily if
𝑑 ∈ {1, 2}. If 𝑑 = 3, let 𝜌 = 3 and, hence, 𝜌 ′ = 3/2. Assumption (CGC) guarantees that the
Sobolev embedding (2.11) holds with 𝑟 = 2𝜌 and 𝑟 = 2(𝑛 − 1)𝜌 ′ simultaneously. Therefore,
we obtain that

||𝑏 ′(𝑤 )𝛿ℎ ||𝐿2 (Ω) ≤ ||𝑏 ′(𝑤 ) ||𝐿2𝜌′ (Ω) ||𝛿ℎ ||𝐿2𝜌 (Ω) ≲ (1 + ||𝑤𝑛−1 ||𝐿2𝜌′ (Ω) ) ||𝛿ℎ ||𝐿2𝜌 (Ω)
= (1 + ||𝑤 ||𝑛−1

𝐿2(𝑛−1)𝜌′ (Ω) ) ||𝛿ℎ ||𝐿2𝜌 (Ω) ≲ (1 + ⦀𝑤⦀

𝑛−1)⦀𝛿ℎ⦀ ≲ ⦀𝛿ℎ⦀.
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Arguing as for the primal problem, we see that

|𝜁ℎ (𝑤 ; Tℎ ∩ T𝐻 , 𝑣ℎ) − 𝜁ℎ (𝑤 ; Tℎ ∩ T𝐻 , 𝑣𝐻 ) |

≲
( ∑︁
𝑇 ∈ Tℎ∩T𝐻

||∇𝛿ℎ ||2𝐿2 (Ωℎ [𝑇 ] ) + ||𝑏 ′(𝑤 ) (𝑣𝐻 − 𝑣ℎ) ||2𝐿2 (Ω)
)1/2
≲ ⦀𝑣ℎ − 𝑣𝐻⦀.

The hidden constant depends only on |Ω|, the shape regularity of Tℎ , 𝑑 , the polynomial
degree𝑚 of the ansatz spaces,𝑀 , 𝑛, 𝑅 , 𝜇0, and 𝑨. This concludes the proof. □

The proof of (A2) follows as for linear PDEs; see, e.g., [CKNS08]. The verification of (A3)–
(A4) is based on standard arguments found in, e.g., [Ver13]. Therefore, the proofs of (A2)–
(A4) are only sketched in Appendix 2.8.

2.4.2 Stability of dual problem

The next result transfers [BIP21, Lemma 6] to the present setting of semilinear PDEs. It
shows that the norm difference of dual solutions can be estimated by that of the corre-
sponding primal solutions.

Lemma2.25. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Let𝑀 > 0and𝑤 ∈ 𝐻 1
0 (Ω)

with ⦀𝑤⦀ ≤ 𝑀 . Then, it holds that

⦀𝑧★ [𝑢★] − 𝑧★ [𝑤 ]⦀ + ⦀𝑧★𝐻 [𝑢★] − 𝑧★𝐻 [𝑤 ]⦀ ≤ 𝐶diff⦀𝑢
★ −𝑤⦀, (2.70)

where𝐶diff = 𝐶diff ( |Ω|, 𝑑,𝑀 , 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝑔 , 𝒈 , 𝜇0).

Proof. First, note that

⟪𝑧★ [𝑢★] − 𝑧★ [𝑤 ] , 𝑣⟫ + ⟨𝑏 ′(𝑢★)𝑧★ [𝑢★] − 𝑏 ′(𝑤 )𝑧★ [𝑤 ] , 𝑣⟩ = 0 for all 𝑣 ∈ 𝐻 1
0 (Ω),

⟪𝑧★𝐻 [𝑢★] − 𝑧★𝐻 [𝑤 ] , 𝑣𝐻⟫ + ⟨𝑏 ′(𝑢★)𝑧★𝐻 [𝑢★] − 𝑏 ′(𝑤 )𝑧★𝐻 [𝑤 ] , 𝑣𝐻 ⟩ = 0 for all 𝑣𝐻 ∈ X𝐻 .
(2.71)

We aim to prove that

⦀𝑧★ [𝑢★] − 𝑧★ [𝑤 ]⦀ ≤ 𝐶diff⦀𝑢
★ −𝑤⦀.

To this end, note that the strategy in the proof of Proposition 2.10 provides a similar
estimate to (2.47) by choosing 𝑡 from Remark 2.1(ii) instead of 𝑠 from Remark 2.1(i), i.e.,

||𝑏 ′(𝑢★) − 𝑏 ′(𝑤 ) ||𝐿𝑡 ′′ (Ω) ≤ 𝐶 ′
dual⦀𝑢

★ −𝑤⦀, (2.72)

with 𝐶 ′
dual = 𝐶 ′

dual( |Ω|, 𝑑, ||𝑢★ ||𝐿∞ (Ω) ,𝑀 , 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝑔 , 𝒈 , 𝜇0) > 0. The Hölder inequality
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leads us to

⦀𝑧★ [𝑢★] − 𝑧★ [𝑤 ]⦀2 = ⟪𝑧★ [𝑢★] − 𝑧★ [𝑤 ] , 𝑧★ [𝑢★] − 𝑧★ [𝑤 ]⟫
(2.71)
= −⟨𝑏 ′(𝑢★)𝑧★ [𝑢★] − 𝑏 ′(𝑤 )𝑧★ [𝑤 ] , 𝑧★ [𝑢★] − 𝑧★ [𝑤 ]⟩
= −⟨(𝑏 ′(𝑢★)−𝑏 ′(𝑤 ))𝑧★ [𝑢★], 𝑧★ [𝑢★]−𝑧★ [𝑤 ]⟩−⟨𝑏 ′(𝑤 ) (𝑧★ [𝑢★]−𝑧★ [𝑤 ]), 𝑧★ [𝑢★]−𝑧★ [𝑤 ]⟩

(MON)≤ −⟨(𝑏 ′(𝑢★) − 𝑏 ′(𝑤 ))𝑧★ [𝑢★] , 𝑧★ [𝑢★] − 𝑧★ [𝑤 ]⟩ (2.73)
≤ ||𝑏 ′(𝑢★) − 𝑏 ′(𝑤 ) ||𝐿𝑡 ′′ (Ω) ||𝑧★ [𝑢★] ||𝐿𝑡 (Ω) ||𝑧★ [𝑢★] − 𝑧★ [𝑤 ] ||𝐿𝑡 ′′ (Ω)

(2.72)
≲ ⦀𝑢★ −𝑤⦀⦀𝑧★ [𝑢★]⦀⦀𝑧★ [𝑢★] − 𝑧★ [𝑤 ]⦀,

where the hidden constant depends only on 𝐶 ′
dual from (2.72) and norm equivalence.

Finally, recall that ⦀𝑧★ [𝑢★]⦀ ≤ 𝐶bnd from Lemma 2.8. The same reasoning applies for
⦀𝑧★

𝐻
[𝑢★] − 𝑧★

𝐻
[𝑤 ]⦀. This concludes the proof. □

2.4.3 Proof of Proposition 2.18

The proof of Proposition 2.18 builds on the following lemma, which adapts [BIP21, Propo-
sition 14] to the present setting.
Lemma 2.26. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Then, for any choice of
the marking parameters 0 < 𝜃 ≤ 1 and 1 ≤ 𝐶mark ≤ ∞, Algorithm 2.17 guarantees that

• ⦀𝑢★ − 𝑢★
ℓ
⦀ +𝜂ℓ (𝑢★

ℓ
) → 0 if #{𝑘 ∈ ℕ0 | M𝑘 satisfies (2.56a)} = ∞,

• ⦀𝑢★ − 𝑢★
ℓ
⦀ +𝜂ℓ (𝑢★

ℓ
) + ⦀𝑧★ [𝑢★] − 𝑧★

ℓ
[𝑢★

ℓ
]⦀ + ⦀𝑧★ [𝑢★] − 𝑧★

ℓ
[𝑢★]⦀ + 𝜁ℓ (𝑧★ℓ [𝑢★

ℓ
]) → 0

if #{𝑘 ∈ ℕ0 | M𝑘 satisfies (2.56b)} = ∞,
as ℓ → ∞. Moreover, at least one of these two cases is met.

Sketch of proof. The proof is essentially verbatim to that of [BIP21, Proposition 14] and
therefore only sketched. From the Céa lemma (2.49) for the primal problem (resp. (2.52)
for the dual problem), the nestednessXℓ ⊆ Xℓ+1 of the discrete spaces for all ℓ ∈ ℕ0, and
the stability of the dual problem (Lemma 2.25), it follows that there exist a priori limits
𝑢★∞, 𝑧★∞ [𝑢★∞] ∈ 𝐻 1

0 (Ω) such that

⦀𝑢★
∞ − 𝑢★

ℓ ⦀ + ⦀𝑧★∞ [𝑢★
∞] − 𝑧★ℓ [𝑢★

ℓ ]⦀
ℓ→∞−−−−→ 0.

Together with stability (A1) and reduction (A2), the estimator reduction principle proves
that

𝜂ℓ (𝑢★
ℓ )

ℓ→∞−−−−→ 0 if #{𝑘 ∈ ℕ0 | M𝑘 satisfies (2.56a)} = ∞,
𝜂ℓ (𝑢★

ℓ ) + 𝜁ℓ (𝑧★ℓ [𝑢★
ℓ ])

ℓ→∞−−−−→ 0 if #{𝑘 ∈ ℕ0 | M𝑘 satisfies (2.56b)} = ∞.

Clearly, at least one of these two cases is met. With reliability (A3), it follows that𝑢★ = 𝑢★∞,
while 𝑧★ [𝑢★] = 𝑧★∞ [𝑢★∞] requires that #{𝑘 ∈ ℕ0 | M𝑘 satisfies (2.56b)} = ∞; see [BIP21,
Proposition 14] for details. □
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Proof of Proposition 2.18. The proof is verbatim that of [BIP21, Proposition 1] and there-
fore only sketched. From (A1)–(A3), the Céa lemma (2.49) for the primal problem
(resp. (2.52) for the practical dual problem), and the nestedness of the discrete spaces,
there follows boundedness

𝜂ℓ (𝑢★
ℓ ) + 𝜁ℓ (𝑧★ℓ [𝑢★

ℓ ]) ≲ 𝜂0(𝑢★
0 ) + 𝜁0(𝑧★0 [𝑢★

0 ]) < ∞ for all ℓ ∈ ℕ0;

see [BIP21, Section 4.1] for details. Together with the convergence results of Lemma 2.26,
this yields convergence

𝜂ℓ (𝑢★
ℓ )

[
𝜂ℓ (𝑢★

ℓ )2 + 𝜁ℓ (𝑧★ℓ [𝑢★
ℓ ])2

]1/2 ℓ→∞−−−−→ 0.

This concludes the proof. □

2.4.4 Auxiliary results

We continue with some preliminary results, which are needed for proving the quasi-
orthogonalities and which are, hence, crucial to prove linear convergence. To this end,
consider the Fréchet derivative ofA at𝑤 ∈ 𝐻 1

0 (Ω), i.e.,

A′ [𝑤 ] ( · ) : 𝐻 1
0 (Ω) → 𝐻 −1(Ω), A′ [𝑤 ] (𝑧) := ⟪𝑧 , ·⟫ + ⟨𝑏 ′(𝑤 )𝑧 , ·⟩. (2.74)

Lemma 2.27. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Then, there exists a con-
stant𝐶 = 𝐶 ( |Ω|, 𝑑, ||𝑢★ ||𝐿∞ (Ω) , 𝑛, 𝑅,𝑝, 𝑓 , 𝒇 , 𝜇0) such that

⟨A(𝑢★) −A(𝑢★
ℓ ) −A′ [𝑢★] (𝑢★ −𝑢★

ℓ ) , 𝑣⟩ ≤ 𝐶 ⦀𝑢★ −𝑢★
ℓ ⦀

2
⦀𝑣⦀ for all 𝑣 ∈ 𝐻 1

0 (Ω). (2.75)

Proof. Due to the linearity of ⟪ · , ·⟫ in the left-hand argument, we conclude that the only
contribution is due to 𝑏 , i.e., for all 𝑣 ∈ 𝐻 1

0 (Ω), it holds that

⟨A(𝑢★) − A(𝑢★
ℓ ) − A′ [𝑢★] (𝑢★ − 𝑢★

ℓ ) , 𝑣⟩ = ⟨𝑏 (𝑢★) − 𝑏 (𝑢★
ℓ ) − 𝑏 ′(𝑢★) (𝑢★ − 𝑢★

ℓ ) , 𝑣⟩.

For 𝑣 ∈ 𝐻 1
0 (Ω), the Hölder inequality with arbitrary 1 < 𝑠 < ∞ if 𝑑 ∈ {1, 2} and 𝑠 = 2∗ if

𝑑 = 3 proves that

⟨𝑏 (𝑢★) − 𝑏 (𝑢★
ℓ ) − 𝑏 ′(𝑢★) (𝑢★ − 𝑢★

ℓ ) , 𝑣⟩ ≲ ||𝑏 (𝑢★) − 𝑏 (𝑢★
ℓ ) − 𝑏 ′(𝑢★) (𝑢★ − 𝑢★

ℓ ) ||𝐿𝑠 ′ (Ω)⦀𝑣⦀.

From the Taylor expansion (2.39), note that

𝑏 (𝑢★) − 𝑏 (𝑢★
ℓ ) − 𝑏 ′(𝑢★) (𝑢★ − 𝑢★

ℓ ) = −
𝑛−1∑︁
𝑘=2

𝑏 (𝑘 ) (𝑢★) (𝑢
★
ℓ
− 𝑢★)𝑘
𝑘 !

− (𝑢★
ℓ
− 𝑢★)𝑛

(𝑛 − 1)!
∫ 1

0
(1 − 𝜏)𝑛−1 𝑏 (𝑛 ) (𝑢★ + (𝑢★

ℓ − 𝑢★) 𝜏 ) d𝜏.
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Together with Lemma 2.8 and𝑢★ ∈ 𝐿∞(Ω), the assumption (GC) yields that

||𝑏 (𝑢★) − 𝑏 (𝑢★
ℓ ) − 𝑏 ′(𝑢★) (𝑢★ − 𝑢★

ℓ ) ||𝐿𝑠 ′ (Ω) ≲
𝑛∑︁
𝑘=2

|| (𝑢★ − 𝑢★
ℓ )𝑘 ||𝐿𝑠 ′ (Ω)

=
𝑛∑︁
𝑘=2

||𝑢★ − 𝑢★
ℓ ||𝑘𝐿𝑘𝑠 ′ (Ω) ≲ ||∇(𝑢★ − 𝑢★

ℓ ) ||2𝐿2 (Ω) ≃ ⦀𝑢★ − 𝑢★
ℓ ⦀

2,

where the hidden constants depend only on𝐶bnd from Lemma 2.8, 𝑛,𝑅 from (GC) and
norm equivalence. This concludes the proof. □

The next lemma is an auxiliary result for establishing quasi-orthogonality. Our proof
combines arguments from the linear setting [BHP17, Lemma 17] with ideas from [FFP14,
Lemma 6.10]. We stress that the proof exploits the a priori convergence ⦀𝑢★ − 𝑢★

ℓ
⦀ → 0

from Lemma 2.26.

Lemma 2.28. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Then, the normalized
sequences

𝑒ℓ :=



𝑢★ − 𝑢★
ℓ

⦀𝑢★ − 𝑢★
ℓ
⦀

, for𝑢★ ≠ 𝑢★
ℓ

0, otherwise
and 𝐸ℓ :=




𝑢★
ℓ+1 − 𝑢★

ℓ

⦀𝑢★
ℓ+1 − 𝑢★

ℓ
⦀

, for𝑢★
ℓ+1 ≠ 𝑢

★
ℓ

0, otherwise
(2.76)

converge weakly to 0 in𝐻 1
0 (Ω).

Proof. We only show the statement for 𝑒ℓ . The proof for 𝐸ℓ follows by similar arguments.
To prove that 𝑒ℓ ⇀ 0 in𝐻 1

0 (Ω), we show that each subsequence (𝑒ℓ𝑘 )𝑘 ∈ℕ0 admits a further
subsequence (𝑒ℓ𝑘𝑗 )𝑗 ∈ℕ0 such that 𝑒ℓ𝑘𝑗 ⇀ 0 as 𝑗 → ∞. To this end, consider a subsequence
(𝑒ℓ𝑘 )𝑘 ∈ℕ0 of (𝑒ℓ)ℓ∈ℕ0 . Without loss of generality, wemay assume that 𝑒ℓ𝑘 ≠ 0 for all 𝑘 ∈ ℕ0.
Note that ⦀𝑒ℓ𝑘⦀ ≤ 1. Hence, the Banach–Alaoglu theorem yields a further subsequence
(𝑒ℓ𝑘𝑗 )𝑗 ∈ℕ0 satisfying weak convergence 𝑒ℓ𝑘𝑗 ⇀𝑤∞ ∈ 𝐻 1

0 (Ω) as 𝑗 → ∞. It remains to show
that𝑤∞ = 0. Lemma 2.26 implies that𝑢★ ∈ X∞ and, hence, 𝑒ℓ ∈ X∞ for all ℓ ∈ ℕ0. Mazur’s
lemma (see, e.g., [FK80, Theorem 25.2]) yields that𝑤∞ ∈ X∞.
First, the Galerkin orthogonality shows that

⟨A(𝑢★) − A(𝑢★
ℓ𝑘𝑗
) , 𝑣𝑖 ⟩ = 0 for all 𝑖 ≤ ℓ𝑘 𝑗 and 𝑣𝑖 ∈ X𝑖 .

Letting 𝑗 → ∞, we infer that

lim
𝑗→∞

⟨A(𝑢★) − A(𝑢★
ℓ𝑘𝑗
) , 𝑣𝑖 ⟩

⦀𝑢★ − 𝑢★
ℓ𝑘𝑗
⦀

= 0 for all 𝑖 ∈ ℕ0 and 𝑣𝑖 ∈ X𝑖 .

Let 𝑣∞ ∈ X∞. By definition of X∞, there exists a sequence (𝑣𝑖 )𝑖 ∈ℕ0 with 𝑣𝑖 ∈ X𝑖 and ⦀𝑣∞ −
𝑣𝑖⦀ → 0 as 𝑖 → ∞. Given 𝜀 > 0, there exists 𝑖0 ∈ ℕ0 such that⦀𝑣𝑖 −𝑣∞⦀ ≤ 𝜀 for all 𝑖0 ≤ 𝑖 ∈ ℕ0.
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Estimate (2.37) yields that

lim
𝑗→∞

⟨A(𝑢★) − A(𝑢★
ℓ𝑘𝑗
) , 𝑣𝑖 − 𝑣∞⟩

⦀𝑢★ − 𝑢★
ℓ𝑘𝑗
⦀

≲ ⦀𝑣𝑖 − 𝑣∞⦀ ≤ 𝜀,

where the hidden constant depends only on𝐶Lip. Hence, we get that

lim
𝑗→∞

⟨A(𝑢★) − A(𝑢★
ℓ𝑘𝑗
) , 𝑣∞⟩

⦀𝑢★ − 𝑢★
ℓ𝑘𝑗
⦀

= 0 for all 𝑣∞ ∈ X∞.

Moreover, Lemma 2.27 and the triangle inequality lead to

|⟨A′ [𝑢★] (𝑢★ − 𝑢★
ℓ𝑘𝑗
) , 𝑣∞⟩|

⦀𝑢★ − 𝑢★
ℓ𝑘𝑗
⦀

≤
|⟨A(𝑢★) − A(𝑢★

ℓ𝑘𝑗
) , 𝑣∞⟩|

⦀𝑢★ − 𝑢★
ℓ𝑘𝑗
⦀

+𝐶 ⦀𝑢★ − 𝑢★
ℓ𝑘𝑗
⦀⦀𝑣∞⦀.

Together with a priori convergence ⦀𝑢★ − 𝑢★
ℓ𝑘𝑗
⦀ → 0, we thus obtain that

lim
𝑗→∞

|⟨A′ [𝑢★] (𝑢★ − 𝑢★
ℓ𝑘𝑗
) , 𝑣∞⟩|

⦀𝑢★ − 𝑢★
ℓ𝑘𝑗
⦀

= 0. (2.77)

Note that due to (ELL) and (MON),A′ [𝑢★] ( · ) is bounded from below, i.e.,

⦀𝑣⦀2 ≤ ⟨A′ [𝑢★] (𝑣 ) , 𝑣⟩ ≲ ||A′ [𝑢★] (𝑣 ) ||𝐻 −1 (Ω)⦀𝑣⦀ for all 𝑣 ∈ 𝐻 1
0 (Ω).

Due to the smoothness of 𝜉 ↦→ 𝑏 (𝑡 , 𝜉 ) and the 𝐿∞-bound for 𝑢★ from Proposition 2.2,
we infer that 0 ≤ 𝑏 ′(𝑢★) ≤ 𝐶 . Hence, A′ [𝑢★] ( · ) is a bounded linear operator and the
restrictionA′ [𝑢★] ( · ) |X∞ : X∞ → X∗∞ is an isomorphism. Consequently, also the adjoint
(A′ [𝑢★] |X∞)∗ : X∗∞ → X∞ is an isomorphism, where we note thatX∞ is a closed subspace
of the Hilbert space𝐻 1

0 (Ω) and, hence, reflexive. Hence, for every 𝑣∞ ∈ X∞, there exists
𝑣∞ ∈ X∞ such that

0 = lim
𝑗→∞

|⟨A′ [𝑢★] (𝑢★ − 𝑢★
ℓ𝑘𝑗
) , 𝑣∞⟩|

⦀𝑢★ − 𝑢★
ℓ𝑘𝑗
⦀

= lim
𝑗→∞

|⟨A′ [𝑢★]∗(𝑣∞) , 𝑢★ − 𝑢★
ℓ𝑘𝑗
⟩|

⦀𝑢★ − 𝑢★
ℓ𝑘𝑗
⦀

= lim
𝑗→∞

|⟪𝑢★ − 𝑢★
ℓ𝑘𝑗
, 𝑣∞⟫|

⦀𝑢★ − 𝑢★
ℓ𝑘𝑗
⦀

= lim
𝑗→∞

⟪𝑒ℓ𝑘𝑗 , 𝑣∞⟫.

This shows that𝑤∞ = 0 and concludes the proof. □

2.4.5 Quasi-orthogonalities

Our proof of the crucial quasi-orthogonalities adapts that of [BHP17, Lemma 17, 18] from
the linear setting in the Lax–Milgram framework to the present nonlinear setting. However,
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we stress that the following results all need the stronger growth condition (CGC), while
our earlier results only require (GC).
Lemma 2.29 (quasi-orthogonality for primal problem). Suppose (RHS), (ELL), (CAR),
(MON), and (CGC). Then, for all 0 < 𝜀 < 1, there exists ℓ0 ∈ ℕ such that for all ℓ ≥ ℓ0 and
all 𝑘 ∈ ℕ0, it holds that

⦀𝑢★ − 𝑢★
ℓ+𝑘⦀

2 + ⦀𝑢★
ℓ+𝑘 − 𝑢★

ℓ ⦀
2 ≤ 1

1 − 𝜀 ⦀𝑢
★ − 𝑢★

ℓ ⦀
2. (2.78)

Proof. Together with the Rellich–Kondrachov compactness theorem (see, e.g., [KJF77,
Theorem 5.8.2]), Lemma 2.28 yields strong convergence

||𝑒ℓ ||𝐿𝜎 (Ω) , ||𝐸ℓ ||𝐿𝜎 (Ω)
ℓ→∞−−−−→ 0 where

{
𝜎 ∈ [1,∞), if 𝑑 ∈ {1, 2},
𝜎 ∈ [1, 2∗), if 𝑑 = 3.

If𝑑 = 1, 2, let 1 < 𝜎 < ∞be arbitrarywithHölder conjugate𝜎 ′ > 1. If𝑑 = 3, let𝜎 = 5 = 2∗−1
and hence 𝜎 ′ = 5/4 = (2∗ − 1)/(2∗ − 2). Note that (CGC) yields that 𝑛𝜎 ′ ≤ 𝜎 and hence
||𝑒ℓ ||𝐿𝑛𝜎′ (Ω) ≲ ||𝑒ℓ ||𝐿𝜎 (Ω) → 0 as ℓ → ∞. We argue as for (2.40): By the Taylor expansion,
𝑛𝜎 ′ < 2∗, and with Lemma 2.8, we obtain that

||𝑏 (𝑢★) − 𝑏 (𝑢★
ℓ ) ||𝐿𝜎′ (Ω) ≲

𝑛∑︁
𝑗=1

||𝑢★ − 𝑢★
ℓ || 𝑗𝐿 𝑗𝜎′ (Ω) ≲ ||𝑢★ − 𝑢★

ℓ ||𝐿𝑛𝜎′ (Ω)

= ⦀𝑢★ − 𝑢★
ℓ ⦀||𝑒ℓ ||𝐿𝑛𝜎′ (Ω) ≲ ⦀𝑢★ − 𝑢★

ℓ ⦀||𝑒ℓ ||𝐿𝜎 (Ω) .

(2.79)

Furthermore, for 𝑘 , ℓ ∈ ℕ, recall the Galerkin orthogonality

⟪𝑢★ − 𝑢★
ℓ+𝑘 , 𝑣ℓ+𝑘⟫ + ⟨𝑏 (𝑢★) − 𝑏 (𝑢★

ℓ+𝑘 ) , 𝑣ℓ+𝑘 ⟩ = 0 for all 𝑣ℓ+𝑘 ∈ Xℓ+𝑘 . (2.80)

Due to the bilinearity and symmetry of ⟪ · , ·⟫, we have that

⦀𝑢★ − 𝑢★
ℓ ⦀

2 = ⦀𝑢★ − 𝑢★
ℓ+𝑘⦀

2 + ⦀𝑢★
ℓ+𝑘 − 𝑢★

ℓ ⦀
2 + 2⟪𝑢★ − 𝑢★

ℓ+𝑘 , 𝑢
★
ℓ+𝑘 − 𝑢★

ℓ ⟫. (2.81)

Let 0 < 𝜀 < 1. Note that𝑢★
ℓ+𝑘−𝑢★

ℓ
∈ Xℓ+𝑘 due tonestedness of thediscrete spaces. Exploiting

theGalerkin orthogonality (2.80) and the Young inequality, we thus obtain that there exists
ℓ0 such that, for all ℓ ≥ ℓ0 and all 𝑘 ≥ 0,

2⟪𝑢★ − 𝑢★
ℓ+𝑘 , 𝑢

★
ℓ+𝑘 − 𝑢★

ℓ ⟫
(2.80)≥ −2|⟨𝑏 (𝑢★) − 𝑏 (𝑢★

ℓ+𝑘 ) , 𝑢★
ℓ+𝑘 − 𝑢★

ℓ ⟩|
≥ −2||𝑏 (𝑢★) − 𝑏 (𝑢★

ℓ+𝑘 ) ||𝐿𝜎′ (Ω) ||𝑢★
ℓ+𝑘 − 𝑢★

ℓ ||𝐿𝜎 (Ω)
(2.79)≥ −2𝜀⦀𝑢★ − 𝑢★

ℓ+𝑘⦀⦀𝑢
★
ℓ+𝑘 − 𝑢★

ℓ ⦀

≳ −𝜀 [⦀𝑢★ − 𝑢★
ℓ+𝑘⦀

2 + ⦀𝑢★
ℓ+𝑘 − 𝑢★

ℓ ⦀
2]

The combination with (2.81) proves that

1
1 − 𝜀⦀𝑢

★ − 𝑢★
ℓ ⦀

2 ≥ ⦀𝑢★ − 𝑢★
ℓ+𝑘⦀

2 + ⦀𝑢★
ℓ+𝑘 − 𝑢★

ℓ ⦀
2.
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This concludes the proof. □

While Lemma 2.26 guarantees a priori convergence ⦀𝑢★ − 𝑢★
ℓ
⦀ → 0 of the primal

problem, a priori convergence of the dual problem has to be assumed (and depends on
themarking steps).

Lemma 2.30 (quasi-orthogonality for exact practical dual problem). Suppose (RHS),
(ELL), (CAR), (MON), and (CGC). Suppose that ⦀𝑧★ [𝑢★] − 𝑧★

ℓ
[𝑢★]⦀ → 0 as ℓ → ∞. Then,

for all 0 < 𝜀 < 1, there exists ℓ0 ∈ ℕ such that for all ℓ ≥ ℓ0 and all 𝑘 ∈ ℕ0, it holds that

⦀𝑧★ [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★]⦀2 + ⦀𝑧★ℓ+𝑘 [𝑢★] − 𝑧★ℓ [𝑢★]⦀2 ≤ 1
1 − 𝜀 ⦀𝑧

★ [𝑢★] − 𝑧★ℓ [𝑢★]⦀2. (2.82)

Proof. Note that the dual problem reads

𝑎 (𝑧★ [𝑢★], 𝑣 ) + ⟨K(𝑧★ [𝑢★]) , 𝑣⟩ = 𝐺 (𝑣 ) for all 𝑣 ∈ 𝐻 1
0 (Ω),

whereK(𝑤 ) := 𝑏 ′(𝑢★)𝑤 ∈ 𝐿2(Ω) defines a compact operatorK : 𝐻 1
0 (Ω) → 𝐻 −1(Ω). The

claim thus follows from [BHP17, Lemma 17, 18]. □

Lemma 2.31 (combined quasi-orthogonality for inexact practical dual problem). Sup-
pose (RHS), (ELL), (CAR), (MON), and (CGC). Suppose that ⦀𝑧★ [𝑢★] − 𝑧★

ℓ
[𝑢★

ℓ
]⦀ → 0 as

ℓ → ∞. Then, for all 0 < 𝛿 < 1, there exists ℓ0 ∈ ℕ such that for all ℓ ≥ ℓ0 and all 𝑘 ∈ ℕ0,
it holds that[

⦀𝑢★ − 𝑢★
ℓ+𝑘⦀

2 + ⦀𝑧★ [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★
ℓ+𝑘 ]⦀2

] + [
⦀𝑢★

ℓ+𝑘 − 𝑢★
ℓ ⦀

2 + ⦀𝑧★ℓ+𝑘 [𝑢★
ℓ+𝑘 ] − 𝑧★ℓ [𝑢★

ℓ ]⦀2
]

≤ 1
1 − 𝛿

[
⦀𝑢★ − 𝑢★

ℓ ⦀
2 + ⦀𝑧★ [𝑢★] − 𝑧★ℓ [𝑢★

ℓ ]⦀2
]
. (2.83)

Proof. According to Lemma 2.25, it holds that

⦀𝑧★ [𝑢★] − 𝑧★ℓ [𝑢★]⦀ ≤ ⦀𝑧★ [𝑢★] − 𝑧★ℓ [𝑢★
ℓ ]⦀ + ⦀𝑧★ℓ [𝑢★] − 𝑧★ℓ [𝑢★

ℓ ]⦀
(2.70)
≲ ⦀𝑧★ [𝑢★] − 𝑧★ℓ [𝑢★

ℓ ]⦀ + ⦀𝑢★ − 𝑢★
ℓ ⦀

ℓ→∞−−−−→ 0.

Hence, we may exploit the conclusions of Lemma 2.29 and Lemma 2.30. For arbitrary
𝛼 > 0, the Young inequality guarantees that

⦀𝑧★ [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★
ℓ+𝑘 ]⦀2 ≤ (1 + 𝛼) ⦀𝑧★ [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★]⦀2 + (1 + 𝛼−1) ⦀𝑧★ℓ+𝑘 [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★

ℓ+𝑘 ]⦀2,
⦀𝑧★ℓ+𝑘 [𝑢★

ℓ+𝑘 ] − 𝑧★ℓ [𝑢★
ℓ ]⦀2 ≤ (1 + 𝛼) ⦀𝑧★ℓ+𝑘 [𝑢★] − 𝑧★ℓ [𝑢★]⦀2 + (1 + 𝛼−1)2 ⦀𝑧★ℓ [𝑢★] − 𝑧★ℓ [𝑢★

ℓ ]⦀2
+ (1 + 𝛼) (1 + 𝛼−1) ⦀𝑧★ℓ+𝑘 [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★

ℓ+𝑘 ]⦀2,
⦀𝑧★ [𝑢★] − 𝑧★ℓ [𝑢★]⦀2 ≤ (1 + 𝛼) ⦀𝑧★ [𝑢★] − 𝑧★ℓ [𝑢★

ℓ ]⦀2 + (1 + 𝛼−1) ⦀𝑧★ℓ [𝑢★] − 𝑧★ℓ [𝑢★
ℓ ]⦀2.
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2.4 Proofs

Together with Lemma 2.30, this leads to

⦀𝑧★ [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★
ℓ+𝑘 ]⦀2 + ⦀𝑧★ℓ+𝑘 [𝑢★

ℓ+𝑘 ] − 𝑧★ℓ [𝑢★
ℓ ]⦀2

≤ (1 + 𝛼) [
⦀𝑧★ [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★]⦀2 + ⦀𝑧★ℓ+𝑘 [𝑢★] − 𝑧★ℓ [𝑢★]⦀2 ]

+ (2 + 𝛼) (1 + 𝛼−1) ⦀𝑧★ℓ+𝑘 [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★
ℓ+𝑘 ]⦀2 + (1 + 𝛼−1)2 ⦀𝑧★ℓ [𝑢★] − 𝑧★ℓ [𝑢★

ℓ ]⦀2
(2.82)≤ 1 + 𝛼

1 − 𝜀 ⦀𝑧★ [𝑢★] − 𝑧★ℓ [𝑢★]⦀2 + (1 + 𝛼−1)2 ⦀𝑧★ℓ [𝑢★] − 𝑧★ℓ [𝑢★
ℓ ]⦀2

+ (2 + 𝛼) (1 + 𝛼−1) ⦀𝑧★ℓ+𝑘 [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★
ℓ+𝑘 ]⦀2

≤ (1 + 𝛼)2
1 − 𝜀 ⦀𝑧★ [𝑢★] − 𝑧★ℓ [𝑢★

ℓ ]⦀2 +
[
(1 + 𝛼−1)2 + (1 + 𝛼−1) (1 + 𝛼)

1 − 𝜀
]
⦀𝑧★ℓ [𝑢★] − 𝑧★ℓ [𝑢★

ℓ ]⦀2

+ (2 + 𝛼) (1 + 𝛼−1) ⦀𝑧★ℓ+𝑘 [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★
ℓ+𝑘 ]⦀2 (2.84)

for all 0 < 𝜀 < 1 and all ℓ ≥ ℓ0, where ℓ0 ∈ ℕ0 depends only on 𝜀. If 𝑑 ∈ {1, 2}, let 1 < 𝑡 < ∞
be arbitrary. If 𝑑 = 3, let 𝑡 = 2∗ and, hence, 𝑡 ′′ = 3/2; cf. Remark 2.1. We argue as for (2.40):
By the Taylor expansion, 𝜎 := (𝑛 − 1)𝑡 ′′ < 2∗, and with Lemma 2.8, we obtain that

||𝑏 ′(𝑢★)−𝑏 ′(𝑢★
ℓ ) ||𝐿𝑡 ′′ (Ω)≲

𝑛−1∑︁
𝑗=1

||𝑢★−𝑢★
ℓ || 𝑗𝐿 𝑗𝑡 ′′ (Ω)≲ ||𝑢

★−𝑢★
ℓ ||𝐿 (𝑛−1)𝑡 ′′ (Ω) ≲⦀𝑢

★−𝑢★
ℓ ⦀||𝑒ℓ ||𝐿𝜎 (Ω) , (2.85)

where ||𝑒ℓ ||𝐿𝜎 (Ω) → 0 as ℓ → ∞. Recall that the inequality (2.73) in the proof of Lemma 2.25
does not rely on any 𝐿∞(Ω)-bounds; hence, wemay exploit the discrete analogue of (2.73)
in combination with the Hölder inequality to obtain that

⦀𝑧★ℓ [𝑢★] − 𝑧★ℓ [𝑢★
ℓ ]⦀2

(2.73)≤ −⟨[𝑏 ′(𝑢★) − 𝑏 ′(𝑢★
ℓ )]𝑧★ℓ [𝑢★] , 𝑧★ℓ [𝑢★] − 𝑧★ℓ [𝑢★

ℓ ]⟩
≲ ||𝑏 ′(𝑢★) − 𝑏 ′(𝑢★

ℓ ) ||𝐿𝑡 ′′ (Ω) ||𝑧★ℓ [𝑢★] ||𝐿𝑡 (Ω) ||𝑧★ℓ [𝑢★] − 𝑧★ℓ [𝑢★
ℓ ] ||𝐿𝑡 (Ω)

(2.70)
≲ ⦀𝑧★ℓ [𝑢★]⦀||𝑏 ′(𝑢★) − 𝑏 ′(𝑢★

ℓ ) ||𝐿𝑡 ′′ (Ω)⦀𝑢
★ − 𝑢★

ℓ ⦀
(2.85)
≲ ⦀𝑧★ℓ [𝑢★]⦀||𝑒ℓ ||𝐿𝜎 (Ω)⦀𝑢★ − 𝑢★

ℓ ⦀
2.

Since ⦀𝑧★
ℓ
[𝑧★]⦀ ≤ 𝐶bnd due to Lemma 2.8, this proves that

⦀𝑧★ℓ [𝑢★] − 𝑧★ℓ [𝑢★
ℓ ]⦀2 ≤ 𝜅ℓ⦀𝑢

★ − 𝑢★
ℓ ⦀

2 with 0 ≤ 𝜅ℓ
ℓ→∞−−−−→ 0. (2.86)

Plugging (2.86) into (2.84), we thus have shown that

⦀𝑧★ [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★
ℓ+𝑘 ]⦀2 + ⦀𝑧★ℓ+𝑘 [𝑢★

ℓ+𝑘 ] − 𝑧★ℓ [𝑢★
ℓ ]⦀2

≤ (1 + 𝛼)2
1 − 𝜀 ⦀𝑧★ [𝑢★] − 𝑧★ℓ [𝑢★

ℓ ]⦀2 +
[
(1 + 𝛼−1)2 + (1 + 𝛼−1) (1 + 𝛼)

1 − 𝜀
]
𝜅ℓ ⦀𝑢

★ − 𝑢★
ℓ ⦀

2

+ (2 + 𝛼) (1 + 𝛼−1) 𝜅ℓ+𝑘 ⦀𝑢★ − 𝑢★
ℓ+𝑘⦀

2

for all 0 < 𝜀 < 1, all 𝛼 > 0, and all ℓ ≥ ℓ0, where ℓ0 ∈ ℕ0 depends only on 𝜀. We combine
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this estimate with that of Lemma 2.29. This leads to[
⦀𝑢★ − 𝑢★

ℓ+𝑘⦀
2 + ⦀𝑧★ [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★

ℓ+𝑘 ]⦀2
] + [

⦀𝑢★
ℓ+𝑘 − 𝑢★

ℓ ⦀
2 + ⦀𝑧★ℓ+𝑛 [𝑢★

ℓ+𝑘 ] − 𝑧★ℓ [𝑢★
ℓ ]⦀2

]
≤ 𝐶 (𝛼, 𝜀, ℓ) [

⦀𝑢★ − 𝑢★
ℓ ⦀

2 + ⦀𝑧★ [𝑢★] − 𝑧★ℓ [𝑢★
ℓ ]⦀2

] + (2 + 𝛼) (1 + 𝛼−1) 𝜅ℓ+𝑘 ⦀𝑢★ − 𝑢★
ℓ+𝑘⦀

2,

where, since 1/(1 − 𝜀) ≤ (1 + 𝛼)2/(1 − 𝜀),

𝐶 (𝛼, 𝜀, ℓ) := max
{ (1 + 𝛼)2

1 − 𝜀 ,
[
(1 + 𝛼−1)2 + (1 + 𝛼−1) (1 + 𝛼)

1 − 𝜀
]
𝜅ℓ

}

for all 0 < 𝜀 < 1, all 𝛼 > 0, and all ℓ ≥ ℓ0, where ℓ0 ∈ ℕ0 depends only on 𝜀. For arbitrary
0 < 𝛼, 𝛽, 𝜀 < 1, there exists ℓ′0 ∈ ℕ0 such that for all ℓ ≥ ℓ′0, it holds that

(2 + 𝛼) (1 + 𝛼−1)𝜅ℓ+𝑘 ≤ 𝛽

as well as
[
(1 + 𝛼−1)2 + (1 + 𝛼−1) (1 + 𝛼)

1 − 𝜀
]
𝜅ℓ ≤ (1 + 𝛼)2

1 − 𝜀 .

Hence, we are led to[
⦀𝑢★ − 𝑢★

ℓ+𝑘⦀
2 + ⦀𝑧★ [𝑢★] − 𝑧★ℓ+𝑘 [𝑢★

ℓ+𝑘 ]⦀2
] + [

⦀𝑢★
ℓ+𝑘 − 𝑢★

ℓ ⦀
2 + ⦀𝑧★ℓ+𝑘 [𝑢★

ℓ+𝑘 ] − 𝑧★ℓ [𝑢★
ℓ ]⦀2

]
≤ (1 + 𝛼)2

(1 − 𝜀) (1 − 𝛽)
[
⦀𝑢★ − 𝑢★

ℓ ⦀
2 + ⦀𝑧★ [𝑢★] − 𝑧★ℓ [𝑢★

ℓ ]⦀2
]
.

(2.87)

Given 0 < 𝛿 < 1, we first fix 𝛼 > 0 such that (1 + 𝛼)2 < 1
1−𝛿 . Then, we choose 0 < 𝜀, 𝛽 < 1

such that (1+𝛼 )2
(1−𝜀 ) (1−𝛽 ) ≤ 1

1−𝛿 . The choices of 𝜀 and 𝛽 also provide some index ℓ0 ∈ ℕ0 such
that estimate (2.87) holds for all ℓ ≥ ℓ0. This concludes the proof. □

Remark 2.32. For 𝑑 = 3, assumption (CGC) requires 𝑛 ∈ {2, 3}. We note that, while
well-posedness of the residual error estimator relies on this assumption, the quasi-ortho-
gonalities (2.78) and (2.83) only require 𝑛 ∈ {2, 3, 4} for 𝑑 = 3.

Remark 2.33. If 𝑑 > 3, the same reasoning using the Hölder inequality still holds true,
though the polynomial degree 𝑛 in (CGC) becomes more constrained.

2.4.6 Proof of Theorem 2.19 and Theorem 2.20

It is a key observation in the analysis of [BIP21] that it suffices to prove
• stability of the (practical) dual problem (see Lemma 2.25 resp. [BIP21, Lemma 6]),
• quasi-orthogonality of the primal problem (see Lemma 2.29 resp. [BIP21, Lemma 11]),
• combined quasi-orthogonality for the practical dual problem (see Lemma 2.31 resp.

[BIP21, Lemma 13]).
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2.5 Numerical experiments

Then, the estimator axioms (A1)–(A4) already prove linear convergence (2.59) in the sense
of Theorem 2.19 (see [BIP21, Theorem 2(i)] and [BIP21, Section 6.1]) with optimal con-
vergence rates (2.60) in the sense of Theorem 2.20 (see [BIP21, Theorem 2(ii)] and [BIP21,
Section 6.2]).

2.5 Numerical experiments

In this section, we test and illustrate Algorithm 2.17 with numerical experiments for 𝑑 = 1
and 𝑑 = 2. We consider equation (2.2), where 𝑨 =

( 1 0
0 1

). The adaptivity parameter is set
to 𝜃 = 0.5. We compare the proposed GOAFEM (Algorithm 2.17) with standard AFEM
(adapted from, e.g., [CFPP14; CKNS08]), wheremesh-refinement is driven by the primal
estimator (i.e., Algorithm 2.17 withMℓ := M𝑢

ℓ in step (v)) and standard AFEM driven by
the product space estimator (see Remark 2.22).
Example 2.34 (boundary value problem in 1D). For 𝑑 = 1 andΩ = (0, 1), consider

−(𝑢★)′′ + arctan(𝑢★) = 𝑓 inΩ subject to 𝑢★(0) = 𝑢★(1) = 0, (2.88)

with semilinearity 𝑏 (𝑣 ) = arctan(𝑣 ) and hence 𝑏 ′(𝑣 ) = 1/(1 + 𝑣2). We set 𝒇 = 0 and choose
𝑓 in such a way that

𝑢★(𝑥) = sin(𝜋𝑥).

The implementation of conforming finite elements of order𝑚 ∈ {1, 2, 3, 4} is done using
Legendre polynomials and Gauss–Legendre quadrature and Gauss–Jacobi quadrature for
the interval containing the left interval endpoint. Formesh refinement, 1D bisection is used.
Moreover, we employ the (damped) Newtonmethod from [AW15, Section 3] for step (i) in
Algorithm 2.17 to approximate the nonlinear primal problem. Let 𝑔 = 𝑥−9/20 ∈ 𝐿2(Ω) and
𝒈 = 0 serve as the goal functions. As a reference, we use the value of the integral which reads

𝐺 (𝑢★) =
∫ 1

0

sin(𝜋𝑥)
𝑥9/20

d𝑥 ≈ 0.95925303932778833 . . . . (2.89)

The uniform initial mesh is given by T0 = {[ 𝑘−12 , 𝑘2 ] | 𝑘 = 1, 2}. Figure 2.1 showsmeshes of
GOAFEM and AFEM for𝑚 ∈ {1, 2, 3, 4} as well as discrete solutions𝑢★

𝐻
and 𝑧★

𝐻
[𝑢★

𝐻
].

The numerical convergence results are depicted in Figure 2.2. We observe that the estima-
tor aswell as the goal error achieve the expected rate #T −2𝑚

𝐻
if computedwithAlgorithm2.17.

In contrast, standard AFEM leads to a slower convergence for𝑚 ≥ 2, since singularities
induced by the goal functional might not be resolved properly.
Example 2.35. ForΩ = (0, 1)2, we test Algorithm 2.17 with a semilinear variant of [MS09,
Example 7.3]: The weak formulation of the primal problem reads: Find𝑢★ ∈ 𝐻 1

0 (Ω) such
that

⟪𝑢★ , 𝑣⟫ + ⟨𝑏 (𝑢★) , 𝑣⟩ =
∫
Ω
𝒇 · ∇𝑣 d𝑥, for all 𝑣 ∈ 𝐻 1

0 (Ω), (2.90)

where 𝑏 (𝑣 ) = 𝑣3 and 𝒇 = 𝜒Ω𝒇 (−1, 0) with the characteristic function 𝜒Ω𝒇 ofΩ𝒇 = {𝑥 ∈ Ω |
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(a)Mesh plot for𝑚 ∈ {1, 2, 3, 4}, where
#DOF ∈ {80, 77, 79, 85} for GOAFEM (left) and

#DOF ∈ {90, 79, 79, 85} for AFEM (right).
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(b) Primal solution𝑢★
𝐻
(solid) and dual

solution 𝑧★
𝐻
[𝑢★

𝐻
] (dashed), where

#T𝐻 = 1236 and𝑚 = 1.

Figure 2.1:Mesh plots (left) for ansatz spaces with 𝑚 ∈ {1, 2, 3, 4} for GOAFEM (Algo-
rithm 2.17) and standard AFEM and plots of the solutions 𝑢★

𝐻
and 𝑧𝐻 [𝑢★

𝐻
] (right) for for

Example 2.34.

𝑥1 +𝑥2 ≤ 1
2 }. The weak formulation of the practical dual problem for𝑤 ∈ 𝐻 1

0 (Ω) reads: Find
𝑧★ [𝑤 ] ∈ 𝐻 1

0 (Ω) such that

⟪𝑧★ [𝑤 ] , 𝑣⟫ + ⟨𝑏 ′(𝑤 )𝑧★ [𝑤 ] , 𝑣⟩ =
∫
Ω
𝒈 · ∇𝑣 d𝑥, for all 𝑣 ∈ 𝐻 1

0 (Ω),

where 𝑏 ′(𝑣 ) = 3𝑣2 and 𝒈 = 𝜒Ω𝒈 (−1, 0) withΩ𝒈 = {𝑥 ∈ Ω | 𝑥1 + 𝑥2 ≥ 3
2 }. Our implementation

employs the Matlab code packageMooAFEM [IP23] for 2D AFEM.
For various polynomial degrees𝑚 ∈ {1, 2, 3, 4}, Figure 2.4 shows the goal error calcu-

lated with the proposed GOAFEM algorithm, the standard AFEM driven by the primal
estimator 𝜂ℓ (𝑢ℓ)2, and AFEM driven by 𝜂ℓ (𝑢ℓ)2 + 𝜁ℓ (𝑧ℓ [𝑢ℓ])2 for the marking (AFEM+).
Following [HPW21], we solve the discrete primal problems by an energy-based Newton
iteration, where the energy reads

E(𝑢★) = 1
2

∫
Ω
|∇𝑢★ |2 d𝑥 +

∫
Ω

∫ 𝑢 (𝑥 )

0
𝑏 (𝑠 ) d𝑠 d𝑥 −

∫
Ω
𝒇 · ∇𝑢★ d𝑥.

The reference goal value𝐺 (𝑢★) = −0.0015849518088245 is obtained from the calculated
goal values using GOAFEMwith𝑚 = 4. For𝑚 = 1, an example of the meshes generated
by GOAFEM (Algorithm 2.17) is shown in Figure 2.5a, by the standard AFEM algorithm in
Figure 2.5b, and AFEM+ in Figure 2.5c. For GOAFEM and AFEM+, the singularities for both
the primal and the dual problem are resolved, whereas for standard AFEM only those of the
primal problem are taken into account. Themeshes for𝑚 ∈ {2, 3, 4} look similar with an
increasing focus of the refinement on the singular points for increasing𝑚 (not displayed).
In particular, GOAFEM and AFEM+ lead to similar results, although in practice AFEM+ is
slightly inferior from the point of theory (see Remark 2.22).
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Figure 2.2: Relative goal error |𝐺 (𝑢★) −𝐺 (𝑢★
ℓ
) |/|𝐺 (𝑢★) | (left) and the estimator product

𝜂ℓ

√︃
𝜂2
ℓ
+ 𝜁 2

ℓ
(right) over the total number of degrees of freedom in Example 2.34 for ansatz

spaces with𝑚 ∈ {1, 2, 3, 4} for Algorithm 2.17 (solid) and standard AFEM (dotted).

Figure 2.3: Plot of𝑢★
𝐻
(left) and 𝑧★

𝐻
[𝑢★

𝐻
] (right) generated by Algorithm 2.17, where𝑚 = 2

and #DOF = 54653.

2.6 Contributions and conclusion

Let (Tℓ)ℓ∈ℕ0 be the sequence of meshes generated by the adaptive loop (2.9) of Algo-
rithm 2.17. Let𝜂ℓ := 𝜂ℓ (𝑢ℓ) and 𝜁ℓ := 𝜁ℓ (𝑧ℓ [𝑢ℓ]) be the corresponding computable error
estimators, where 𝑢ℓ and 𝑧ℓ [𝑢ℓ] are conforming piecewise polynomials of degree ≤ 𝑚

on Tℓ , which solve the discrete primal and dual problem (2.4) and (2.6), respectively. We
prove that the proposed adaptive strategy leads to linear convergence

𝜂ℓ+𝑛 [𝜂2ℓ+𝑛 + 𝜁 2ℓ+𝑛]1/2 ≤ 𝐶lin 𝑞
𝑛
lin𝜂ℓ [𝜂2ℓ + 𝜁 2ℓ ]1/2 for all ℓ, 𝑛 ∈ ℕ0, (2.91)

where𝐶lin > 0 and 0 < 𝑞lin < 1 are generic constants. This guarantees that

||𝑢 − 𝑢ℓ ||𝐻 1 (Ω) ||𝑧 [𝑢ℓ] − 𝑧ℓ [𝑢ℓ] ||𝐻 1 (Ω) + ||𝑢 − 𝑢ℓ ||2𝐻 1 (Ω)
ℓ→∞−−−−→ 0.
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Figure 2.4: Relative goal error |𝐺 (𝑢★) − 𝐺 (𝑢★
ℓ
) |/|𝐺 (𝑢) | (left) and estimator product

𝜂ℓ

√︃
𝜂2
ℓ
+ 𝜁 2

ℓ
(right) for𝑚 ∈ {1, 2, 3, 4}with adaptive refinement according to Algorithm 2.17

(solid) compared to standard AFEM (dotted), and AFEM+ (dashed).

(a)GOAFEMmesh
with #Tℓ = 3602.

(b) Standard AFEMmesh
with #Tℓ = 3727.

(c) AFEM+mesh
with #Tℓ = 4161.

Figure 2.5: Visualization of adaptivemeshes for Example 2.35 generated by Algorithm 2.17
(left), standard AFEM (center), and AFEM+ (right) for𝑚 = 1.

According to the goal-error estimate (2.7), this also yields convergence of the goal quantity
𝐺 (𝑢ℓ) → 𝐺 (𝑢) as ℓ → ∞.
Furthermore, we prove that the estimator product leads to convergence

𝜂ℓ [𝜂2ℓ + 𝜁 2ℓ ]1/2 = O((#Tℓ)𝛼), (2.92)

where the rate 𝛼 = min{2𝑠 , 𝑠 + 𝑡 } is optimal in the sense that 𝑠 > 0 is any possible rate
for𝜂ℓ and 𝑡 > 0 is any possible rate for 𝜁ℓ (with respect to the usual approximation class-
es [CFPP14]). In particular, this is the first optimality result on GOAFEM for a nonlinear
model problem. While the optimal ratewouldbe𝛼 = 𝑠 +𝑡 for linearmodel problems [MS09;
FPZ16], the slightly worse rate 𝛼 = min{2𝑠 , 𝑠 + 𝑡 } stems from the fact that the adaptive
algorithmmust also control the linearization of the dual problem. Technical key results
include Pythagoras-type quasi-orthogonalities for the semilinear model problem (2.2)
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2.7 Appendix: Well-posedness of primal and dual problems

and the linearized dual problem (2.5). Finally, we note that our analysis allows tomodify
the marking strategies of [HPZ15; XHYM21] to ensure linear convergence of 𝜂2

ℓ
+ 𝜁 2

ℓ
=

O((#Tℓ)−𝛼) with rate 𝛼 = min{2𝑠 , 2𝑡 }.
Finally, while prior results in the literature usually assumed global Lipschitz continuity

of the semilinearity 𝑏 (𝑢), our analysis relies only on growth conditions on 𝑏 (𝑢) that imply
local Lipschitz continuity. Furthermore, our analysis avoids any 𝐿∞-boundedness assump-
tion on the discrete solutions as well as the necessity of a sufficiently fine initial mesh T0.
Under such (usually unrealistic) assumptions, the present analysis could be simplified
significantly.

2.7 Appendix: Well-posedness of primal and dual problems

Recall the operator

A : 𝐻 1
0 (Ω) → 𝐻 −1(Ω), A𝑤 := ⟪𝑤 , ·⟫ + ⟨𝑏 (𝑤 ) , · ⟩.

Assumption (GC) and the resulting estimate (2.10) yield that

⟨𝑏 (𝑣 ) , 𝑤⟩ (2.10)
≲ ||𝑏 (𝑣 ) ||𝐿𝑠 ′ (Ω) ⦀𝑤⦀ < ∞.

Together with the continuity of ⟪ · , ·⟫, we infer thatA is well-defined.
The estimate (2.24) in combination with (ELL) leads us to

⟨A𝑤 − A𝑣 , 𝑤 − 𝑣⟩ = ⟪𝑤 − 𝑣 , 𝑤 − 𝑣⟫ + ⟨𝑏 (𝑤 ) − 𝑏 (𝑣 ) , 𝑤 − 𝑣⟩
≥ ⦀𝑤 − 𝑣⦀2 ≃ ||∇(𝑤 − 𝑣 ) ||2

𝐿2 (Ω) for all 𝑣,𝑤 ∈ 𝐻 1
0 (Ω),

(2.93)

where the hidden constant depends only on 𝜇0 from (ELL). This proves thatA is strongly
monotone and hence, in particular, monotone and coercive. Moreover, the solution
𝑢★ ∈ 𝐻 1

0 (Ω) of (2.3) is necessarily unique. Finally, recall from (CAR) that 𝑏 is smooth in 𝜉 .
Therefore, themapping

𝜏 ↦→
∫
Ω
𝑏 (𝑣 + 𝜏𝑤 )𝜑 d𝑥 ∈ ℝ for 𝜏 ∈ [0, 1] and 𝑣,𝑤, 𝜑 ∈ 𝐻 1

0 (Ω)

is continuous, i.e.,A is hemi-continuous. Therefore, the Browder–Minty theorem applies
and yields existence and uniqueness.
To address well-posedness of the theoretical dual problem (2.15), we show that (GC)

implies that
∫
Ω
|𝑩★(𝑤 )𝑧𝑣 | d𝑥 < ∞ for all 𝑣,𝑤, 𝑧 ∈ 𝐻 1

0 (Ω). The cases 𝑑 ∈ {1, 2} are covered,
e.g., in [AW15, Lemma A.1]. If 𝑑 = 3, we exploit (GC) and apply the same reasoning as for
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2 semilinear GOAFEM

the estimate (2.12) to obtain that, with 𝑡 = 6 and 𝑡 ′′ = 3/2,

⟨𝑩 (𝑤 )𝑧 , 𝑣⟩(2.12)≤ ||𝑩 (𝑤 ) ||𝐿𝑡 ′′ (Ω) ||𝑧 ||𝐿𝑡 (Ω) ||𝑣 ||𝐿𝑡 (Ω) ≲
∫ 1

0
𝑏 ′(𝑢 + 𝜏 (𝑤 − 𝑢)) d𝜏


𝐿𝑡

′′ (Ω)
⦀𝑧⦀⦀𝑣⦀

(GC)
≲

∫ 1

0
(1 + |𝑢 + 𝜏 (𝑤 − 𝑢) |𝑛−1 d𝜏


𝐿𝑡

′′ (Ω)
⦀𝑧⦀⦀𝑣⦀ (2.94)

≲

(
1 +

∫ 1

0
|| (𝑢 + 𝜏 (𝑤 − 𝑢))𝑛−1 ||𝐿𝑡 ′′ (Ω) d𝜏

)
⦀𝑧⦀⦀𝑣⦀ < ∞,

where the last step uses that || (𝑢 + 𝜏 (𝑤 − 𝑢))𝑛−1 ||𝐿𝑡 ′′ (Ω) = ||𝑢 + 𝜏 (𝑤 − 𝑢) ||𝑛−1
𝐿 (𝑛−1)𝑡 ′′ (Ω) with

(𝑛 − 1)𝑡 ′′ ≤ 4 · 3/2 = 6 so that the bracket is uniformly bounded in terms of ⦀𝑢⦀ + ⦀𝑤⦀; see
Remark 2.1. Using (ELL) and (MON) for coercivity (see, e.g., (2.93) above), theLax–Milgram
lemma proves existence and uniqueness of 𝑧★ [𝑤 ] ∈ 𝐻 1

0 (Ω) and 𝑧★𝐻 [𝑤 ] ∈ X𝐻 .

2.8 Appendix: Proof of Axioms of Adaptivity (A2)–(A4)

This section contains the standard arguments of (A2)–(A4), which carry over to the semi-
linear setting.

Proof of reduction (A2). For𝑇 ∈ T𝐻 \Tℎ , let Tℎ |𝑇 := {𝑇 ′ ∈ Tℎ | 𝑇 ′ ⊆ 𝑇 } denote the set of its
children. Note that NVB guarantees that

ℎ𝑇 ′ ≤ 2−1/𝑑ℎ𝑇 = 2−1/𝑑 |𝑇 |1/𝑑 for all𝑇 ′ ∈ Tℎ |𝑇 . (2.95)

Recall that

𝜂ℎ (𝑇 ′, 𝑣𝐻 )2 = ℎ2𝑇 ′ ||ℜ(𝑣𝐻 ) ||2𝐿2 (𝑇 ′ ) + ℎ𝑇 ′ ||⟦(𝑨 ∇𝑣𝐻 + 𝒇 ) · 𝒏⟧||2
𝐿2 (𝜕𝑇 ′∩Ω) .

Applying the bisection estimate (2.95), we obtain that

𝜂ℎ (Tℎ\T𝐻 , 𝑣𝐻 )2 =
∑︁

𝑇 ′∈Tℎ\T𝐻
𝜂ℎ (𝑇 ′, 𝑣𝐻 )2 =

∑︁
𝑇 ∈T𝐻 \Tℎ

∑︁
𝑇 ′∈Tℎ |𝑇

𝜂ℎ (𝑇 ′, 𝑣𝐻 )2

=
∑︁

𝑇 ∈T𝐻 \Tℎ

∑︁
𝑇 ′∈Tℎ |𝑇

(
ℎ2𝑇 ′ ||ℜ(𝑣𝐻 ) ||2𝐿2 (𝑇 ′ ) + ℎ𝑇 ′ ||⟦(𝑨 ∇𝑣𝐻 + 𝒇 ) · 𝒏⟧||2

𝐿2 (𝜕𝑇 ′∩Ω)
)
.

For the first term, it holds that∑︁
𝑇 ′∈Tℎ |𝑇

ℎ2𝑇 ′ ||ℜ(𝑣𝐻 ) ||2𝐿2 (𝑇 ′ ) ≤ 2−2/𝑑 ℎ2𝑇 ||ℜ(𝑣𝐻 ) ||2𝐿2 (𝑇 ) .

For the second term, note that 𝑣𝐻 ∈ X𝐻 is a coarse-mesh function and, hence, smooth in
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2.8 Appendix: Proof of Axioms of Adaptivity (A2)–(A4)

the interior of𝑇 ∈ T𝐻 . Hence, all jumps in the interior of𝑇 ∈ T𝐻 vanish. This leads to∑︁
𝑇 ′∈Tℎ |𝑇

ℎ𝑇 ′ ||⟦(𝑨 ∇𝑣𝐻 + 𝒇 ) · 𝒏⟧||2
𝐿2 (𝜕𝑇 ′∩Ω) =

∑︁
𝑇 ′∈Tℎ |𝑇

ℎ𝑇 ′ ||⟦(𝑨 ∇𝑣𝐻 + 𝒇 ) · 𝒏⟧||2
𝐿2 (𝜕𝑇 ′∩𝜕𝑇∩Ω)

≤ 2−1/𝑑 ℎ𝑇
∑︁

𝑇 ′∈Tℎ |𝑇
||⟦(𝑨 ∇𝑣𝐻 + 𝒇 ) · 𝒏⟧||2

𝐿2 (𝜕𝑇 ′∩𝜕𝑇∩Ω) = 2
−1/𝑑 ℎ𝑇 ||⟦(𝑨 ∇𝑣𝐻 + 𝒇 ) · 𝒏⟧||2

𝐿2 (𝜕𝑇∩Ω) .

Altogether, we conclude reduction (A2) for the primal estimator

𝜂ℎ (Tℎ\T𝐻 , 𝑣𝐻 )2≤2−2/𝑑
∑︁

𝑇 ∈T𝐻 \Tℎ
ℎ2𝑇 ||ℜ(𝑣𝐻 ) ||2𝐿2 (𝑇 ) + 2−1/𝑑

∑︁
𝑇 ∈T𝐻 \Tℎ

ℎ𝑇 ||⟦(𝑨 ∇𝑣𝐻 +𝒇 ) · 𝒏⟧||2
𝐿2 (𝜕𝑇∩Ω)

≤ 2−1/𝑑 𝜂𝐻 (T𝐻 \Tℎ , 𝑣𝐻 )2.

The same arguments apply for the dual estimator. □

Sketch of proof of reliability (A3). Assumptions (ELL)and (MON)yield that, for all𝑢,𝑤, 𝑧 ∈
𝐻 1
0 (Ω),

⦀𝑢 − 𝑢★
𝐻⦀

2 (2.93)≤ ⟨A(𝑢) − A(𝑢★
𝐻 ) , 𝑢 − 𝑢★

𝐻 ⟩, (2.96a)
⦀𝑧 − 𝑧★𝐻 [𝑤 ]⦀2 ≤ ⟨A′ [𝑤 ] (𝑧 − 𝑧★𝐻 [𝑤 ]) , 𝑧 − 𝑧★𝐻 [𝑤 ]⟩. (2.96b)

For all 𝑣𝐻 ∈ X𝐻 , the Galerkin orthogonalities for the primal and dual setting read

⟨A(𝑢★) − A(𝑢★
𝐻 ) , 𝑣𝐻 ⟩ = 0 = ⟨A(𝑢★

ℎ ) − A(𝑢★
𝐻 ) , 𝑣𝐻 ⟩, (2.97a)

⟨A′ [𝑤 ] (𝑧★ [𝑤 ]) − A′ [𝑤 ] (𝑧★𝐻 [𝑤 ]) , 𝑣𝐻 ⟩ = 0 = ⟨A′ [𝑤 ] (𝑧★ℎ [𝑤 ]) − A′ [𝑤 ] (𝑧★𝐻 [𝑤 ]) , 𝑣𝐻 ⟩.
(2.97b)

For 𝑑 ∈ {2, 3}, let 𝐻 : 𝐻 1
0 (Ω) → X𝐻 be a Clément-type quasi-interpolation operator, while

𝐻 is the nodal interpolation operator for 𝑑 = 1. For the primal setting, let𝑢 ∈ {𝑢★, 𝑢★
ℎ
} and

chooseX ∈ {𝐻 1
0 (Ω),Xℎ} accordingly. Then, (2.96)–(2.97) and (2.3) or (2.4) (according to

𝑢) lead to

⦀𝑢 − 𝑢★
𝐻⦀ ≤ sup

0≠𝑣∈X
⦀𝑣⦀−1⟨A(𝑢) − A(𝑢★

𝐻 ) , 𝑣⟩ = sup
0≠𝑣∈X

⦀𝑣⦀−1⟨A(𝑢) − A(𝑢★
𝐻 ) , 𝑣 −𝐻 𝑣⟩

= sup
0≠𝑣∈X

⦀𝑣⦀−1 [⟨𝑓 , 𝑣 −𝐻 𝑣⟩ + ⟨𝒇 , ∇(𝑣 −𝐻 𝑣 )⟩ − ⟨A(𝑢★
𝐻 ) , 𝑣 −𝐻 𝑣⟩

]
. (2.98)

For the dual setting, let 𝑧 ∈ {𝑧★ [𝑤 ], 𝑧★
ℎ
[𝑤 ]} and choose X ∈ {𝐻 1

0 (Ω),Xℎ} accordingly.
Using (2.96)–(2.97), and (2.5) or (2.6) (according to 𝑧), the same arguments as above yield
that

⦀𝑧 − 𝑧★𝐻 [𝑤 ]⦀≤ sup
0≠𝑣∈X

⦀𝑣⦀−1 [⟨𝑔 ,𝑣−𝐻𝑣⟩+⟨𝒈 ,∇(𝑣−𝐻𝑣 )⟩−⟨A′ [𝑤 ] (𝑧★𝐻 [𝑤 ]), 𝑣−𝐻𝑣⟩
]
. (2.99)

Based on (2.98)–(2.99), standard arguments employing elementwise integration by parts
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and fine properties of Clément-type operators conclude reliability (A3), i.e.,

⦀𝑢★ − 𝑢★
𝐻⦀ ≲ 𝜂𝐻 (𝑢★

𝐻 ) and ⦀𝑧★ [𝑤 ] − 𝑧★𝐻 [𝑤 ]⦀ ≤ 𝐶rel 𝜁𝐻 (𝑧★𝐻 [𝑤 ]).

The hidden constants depend only on 𝐻 and, hence, only on 𝑑 and 𝜇0. □

Sketch of proof of discrete reliability (A4). To prove discrete reliability (A4), we choose 𝐻

as the Scott–Zhang projector [SZ90] for 𝑑 ∈ {2, 3}, which is a Clément-type quasi-inter-
polation operator, and note that 𝐻 can be chosen in such a way that (𝑣ℎ −𝐻 𝑣ℎ) |𝑇 = 0 for
all𝑇 ∈ T𝐻 ∩ Tℎ and 𝑣ℎ ∈ Xℎ ; see [CKNS08]. Standard arguments then show that

⦀𝑢★
ℎ − 𝑢★

𝐻⦀ ≲ 𝜂𝐻 (T𝐻 \Tℎ , 𝑢★
𝐻 ) and ⦀𝑧★ℎ [𝑤 ] − 𝑧★𝐻 [𝑤 ]⦀ ≲ 𝜁𝐻 (T𝐻 \Tℎ , 𝑧★𝐻 [𝑤 ]).

The hidden constants depend only on the dimension 𝑑 , the polynomial degree𝑚, and
norm equivalence. This concludes the proof of discrete reliability (A4). □
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3 Cost-optimal adaptive linearized adaptive
FEM for semilinear elliptic PDEs

This chapter is taken from:

[ 2 AIL1]: R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Cost-
optimal adaptive iterative linearized FEM for semilinear elliptic PDEs. ESAIMMath.
Model. Numer. Anal., 57(4):2193–2225, 2023. DOI: 10.1051/m2an/2023036

3.1 Introduction

3.1.1 State of the art

Cost-optimal computation of a discrete solution with an error below a given tolerance
is the prime aim of any numerical method. Since convergence of numerical schemes is
usually (but not necessarily) spoiled by singularities of the (given) data or the (unknown)
solution, a posteriori error estimation and adaptive mesh refinement schemes are pivotal
to reliable and efficient numerical approximation. This is the foundation of adaptive finite
element methods (AFEM), for which the mathematical understanding of convergence
and optimality is fairly mature; we refer to [BV84; Dör96; MNS00; BDD04; Ste07; MSV08;
CKNS08; KS11; CN12; FFP14] for linear elliptic equations, to [Vee02; DK08; BDK12; GMZ12;
GHPS18] for certain quasi-linear PDEs, and to [CFPP14] for an overviewof available results
on rate-optimal AFEM.
In particular, for nonlinear PDEs, the arising discrete equationsmust be solved itera-

tively. The interplay of adaptivemesh refinement and iterative solvers has been treated
extensively in the literature; we refer, e.g., to [Ste07; BMS10; AGL13; ALMS13] for algebraic
solvers for linear PDEs, to [EEV11; GMZ11; AW15; HW18; GHPS18; HW20a; HW20b] for the
iterative linearization of nonlinear PDEs, and to [EV13; HPSV21] for fully adaptive schemes
including linearization and algebraic solver. For the latter works, the consideration is
usually restricted to the class of strongly monotone and globally Lipschitz continuous
nonlinearities; see [GMZ11] for the first plain convergence result, [HW20a] for an abstract
framework for plain convergence of adaptive iteratively linearized finite elementmethods
(AILFEM), [GHPS18; GHPS21] for rate-optimality of AILFEM based on the Zarantonello
iteration (as proposed in [CW17]), and [HPW21] for rate-optimality for other linearization
strategies including the Kačanov iteration as well as the damped Newton method. In
particular, we note that [GHPS21; HPW21; HPSV21] prove optimal convergence rates
with respect to the overall computational cost. For more general nonlinear operators,
optimal convergences rates are empirically observed (e.g., [EV13]), but the quest for a
soundmathematical analysis is still ongoing.
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3 semilinear AILFEMwith linearization

3.1.2 Contributions of the present work

Weproveoptimal convergenceofAILFEMfor stronglymonotone, but only locally Lipschitz
continuous operators, where our interest stems from the treatment of semilinear elliptic
PDEs. For𝑑 ∈ {1, 2, 3} and a bounded Lipschitz domainΩ ⊂ ℝ𝑑 , ourmodel problem reads:
Find the (unique) solution𝑢★ ∈ 𝐻 1

0 (Ω) to the (scalar) semilinear elliptic PDE

−div(𝑨∇𝑢★) + 𝑏 (𝑢★) = 𝑓 − div 𝒇 inΩ subject to 𝑢★ = 0 on 𝜕Ω, (3.1)

where we refer to Section 3.3 for a discussion of the precise assumptions on the diffusion
matrix𝑨, the semilinearity𝑏 , and the givendata 𝑓 and 𝒇 . The presentedAILFEMalgorithm
employs the Zarantonello linearization with a damping parameter 𝛿 > 0, requiring only to
solve a linear Poisson-type problem in each linearization step. The AILFEM algorithm
takes the form

ITERATIVELY SOLVE AND ESTIMATE MARK RE�NE

where the first step represents an inner loop of the Zarantonello iteration and error es-
timation by a residual a posteriori error estimator. This inner loop is stopped when the
linearization error (measured in terms of the energy difference of discrete Zarantonello
iterates) is small with respect to the discretization error (measured in terms of the error
estimator). However, since the PDE operator is only locally Lipschitz continuous, the
stopping criterionmust be slightly extended when compared to that of [HW20a; GHPS21;
HPW21] for globally Lipschitz continuous operators. As usual in this context, we employ
the Dörfler marking to single out elements for refinement, andmesh refinement relies on
newest vertex bisection.
We prove that the solver iterates are uniformly bounded, provided that the Zarantonello

parameter 𝛿 is chosen appropriately (Corollary 3.11). For arbitrary adaptivity param-
eters (𝜃 for marking and 𝜆 for stopping the Zarantonello iteration), we then prove full
linear convergence (Theorem 3.14), i.e., linear convergence regardless of the algorithmic
decision for yet another solver step ormesh refinement. For sufficiently small marking
parameters, this even guarantees rate-optimality with respect to the number of degrees
of freedom (Theorem 3.17) and cost-optimality, i.e., rate-optimality with respect to the
overall computational cost (Corollary 3.19).

3.1.3 Outline

This work is organized as follows: In Section 3.2, we present our adaptive iterative lin-
earized finite element method (Algorithm 3.10) and the details of its individual steps. This
includes the discussion of the abstract Hilbert space setting, the precise assumptions for
the iterative solver, and a discussion of the extended stopping criterion. Finally, we prove
full linear convergence of the proposed AILFEM algorithm (Theorem 3.14) and optimal
rates both with respect to the degrees of freedom (Theorem 3.17) as well as the overall
computational cost (Corollary 3.19). In Section 3.3, we introduce and discuss semilinear
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elliptic PDEs, which fit into the abstract framework of Section 3.2. Section 3.4 presents a
practical extension of our AILFEM strategy (Algorithm 3.23), which includes the adaptive
choice of the Zarantonello damping parameter 𝛿 . In Section 3.5, we support our theo-
retical findings with numerical experiments. Finally, Appendix 3.6 concludes the work
by providing additional material, which allows us to apply the abstract setting to a wider
range of problems like non-scalar semilinear PDEs.

3.1.4 General notation

Without ambiguity, we use | · | to denote the absolute value |𝜆| of a scalar 𝜆 ∈ ℝ, the
Euclidean norm |𝑥 | of a vector 𝑥 ∈ ℝ𝑑 , and the Lebesgue measure |𝜔 | of a set 𝜔 ⊆ ℝ𝑑 ,
depending on the respective context. Furthermore, #U denotes the cardinality of a finite
setU.

3.2 Strongly monotone operators

In this section, we present the mathematical heart of our analysis, which will later be
applied to strongly monotone semilinear PDEs.

3.2.1 Abstract model problem

Let X be a Hilbert space over ℝ with scalar product ⟪· , ·⟫ and induced norm ⦀ ·⦀. Let
X𝐻 ⊆ X be a closed subspace. LetX′ be the dual space with norm ||·||X′ and denote by ⟨· , ·⟩
the duality bracket onX′ ×X. LetA : X → X′ be a nonlinear operator. We suppose thatA
is stronglymonotone, i.e., there exists 𝛼 > 0 such that

𝛼 ⦀𝑣 −𝑤⦀

2 ≤ ⟨A𝑣 − A𝑤 , 𝑣 −𝑤⟩ for all 𝑣,𝑤 ∈ X. (SM)

Moreover, we suppose thatA is locally Lipschitz continuous, i.e., for all 𝜗 > 0, there exists
𝐿 [𝜗] > 0 such that

⟨A𝑣−A𝑤, 𝜑⟩ ≤𝐿 [𝜗]⦀𝑣−𝑤⦀⦀𝜑⦀ for all 𝑣,𝑤, 𝜑 ∈ Xwithmax
{
⦀𝑣⦀,⦀𝑣−𝑤⦀

} ≤𝜗. (LIP)

Remark 3.1. [Zei90, p. 565] defines local Lipschitz continuity as follows: For allΘ > 0, there
exists 𝐿 ′ [Θ] > 0 such that

⟨A𝑣−A𝑤, 𝜑⟩ ≤𝐿 ′ [Θ]⦀𝑣−𝑤⦀⦀𝜑⦀ for all 𝑣,𝑤, 𝜑 ∈ X with max
{
⦀𝑣⦀,⦀𝑤⦀

} ≤ Θ. (3.2)

Conditions (LIP) and (3.2) are indeed equivalent in the sense that

max
{
⦀𝑣⦀,⦀𝑤⦀

} ≤ max
{
⦀𝑣⦀,⦀𝑣 −𝑤⦀ + ⦀𝑣⦀

} ≤ 2 𝜗,
max

{
⦀𝑣⦀,⦀𝑣 −𝑤⦀

} ≤ max
{
⦀𝑣⦀,⦀𝑣⦀ + ⦀𝑤⦀

} ≤ 2Θ.

However, (LIP) is better suited for the inductive structure in the proof of Corollary 3.5.
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3 semilinear AILFEMwith linearization

Without loss of generality, wemay suppose thatA0 ≠ 𝐹 ∈ X′. We consider the operator
equation

A𝑢★ = 𝐹 . (3.3)

For any closed subspaceX𝐻 ⊆ X, we consider the corresponding Galerkin discretization

⟨A𝑢★
𝐻 , 𝑣𝐻 ⟩ = ⟨𝐹 , 𝑣𝐻 ⟩ for all 𝑣𝐻 ∈ X𝐻 . (3.4)

We observe that the setting of strongly monotone and locally Lipschitz operators yields
existence and uniqueness of the solutions to (3.3)–(3.4) as well as a Céa-type estimate.
Proposition 3.2. Suppose that A satisfies (SM) and (LIP). Then, (3.3)–(3.4) admit
unique solutions𝑢★ ∈ X and𝑢★

𝐻
∈ X𝐻 , respectively, and it holds that

max
{
⦀𝑢★

⦀,⦀𝑢★
𝐻⦀

} ≤ 𝑀 B
1
𝛼
||𝐹 − A0||X′ ≠ 0 (3.5)

as well as

⦀𝑢★ − 𝑢★
𝐻⦀ ≤ 𝐶Céa min

𝑣𝐻 ∈X𝐻
⦀𝑢★ − 𝑣𝐻⦀ with 𝐶Céa = 𝐿 [2𝑀 ]/𝛼. (3.6)

Proof. SinceA is (even locally Lipschitz) continuous, existence of 𝑢★
𝐻
follows from the

Browder–Minty theorem onmonotone operators [Zei90, Theorem 26.A]. Uniqueness of
𝑢★
𝐻
follows from strongmonotonicity, since any two solutions𝑢★

𝐻
, 𝑢𝐻 ∈ X𝐻 to (3.4) satisfy

𝛼 ⦀𝑢★
𝐻 − 𝑢𝐻⦀2

(SM)≤ ⟨A𝑢★
𝐻 − A𝑢𝐻 , 𝑢★

𝐻 − 𝑢𝐻 ⟩ (3.4)
= 0

and hence𝑢★
𝐻
= 𝑢𝐻 . Boundedness (3.5) follows from

𝛼 ⦀𝑢★
𝐻⦀

2 (SM)≤ ⟨A𝑢★
𝐻 − A0 , 𝑢★

𝐻 ⟩ = ⟨𝐹 − A0 , 𝑢★
𝐻 ⟩ ≤ ||𝐹 − A0||X′⦀𝑢★

𝐻⦀.

Since (3.3) is equivalent to (3.4) with X = X𝐻 , the foregoing results also cover 𝑢★ ∈ X.
This concludes the proof of (3.5). To see the Céa-type estimate (3.6), recall the Galerkin
orthogonality

⟨A𝑢★ − A𝑢★
𝐻 , 𝑣𝐻 ⟩ = 0 for all 𝑣𝐻 ∈ X𝐻 . (3.7)

For 𝑣𝐻 ∈ X𝐻 , standard reasoning leads us to

𝛼 ⦀𝑢★ − 𝑢★
𝐻⦀

2 (SM)≤ ⟨A𝑢★ − A𝑢★
𝐻 , 𝑢

★ − 𝑢★
𝐻 ⟩

(3.7)
= ⟨A𝑢★ − A𝑢★

𝐻 , 𝑢
★ − 𝑣𝐻 ⟩

(LIP)≤ 𝐿 [2𝑀 ] ⦀𝑢★ − 𝑢★
𝐻⦀⦀𝑢

★ − 𝑣𝐻⦀.

Rearranging the last estimate, we prove (3.6), where theminimum is attained sinceX𝐻 is
closed. This concludes the proof. □

Finally, we suppose that the operatorA possesses a potential P: there exists a Gâteaux

80



3.2 Strongly monotone operators

differentiable function P : X → ℝ such that its derivative dP : X → X′ coincides withA,
i.e., it holds that

⟨A𝑤 , 𝑣⟩ = ⟨dP(𝑤 ) , 𝑣⟩ = lim
𝑡→0
𝑡 ∈ℝ

P(𝑤 + 𝑡𝑣 ) − P(𝑤 )
𝑡

for all 𝑣,𝑤 ∈ X. (POT)

We define the energy E(𝑣 ) B (P − 𝐹 )𝑣 , where 𝐹 is the right-hand side from (3.3).
Note that the energy E trivially satisfies that

E(𝑣𝐻 ) − E(𝑢★) = [E(𝑣𝐻 ) − E(𝑢★
𝐻 )

] + [E(𝑢★
𝐻 ) − E(𝑢★)] for all 𝑣𝐻 ∈ X𝐻 (3.8)

and all these energy differences are non-negative; see (3.10).
Moreover, assumption (POT) admits the following classical equivalence:

Lemma 3.3 (see, e.g., [GHPS18, Lemma 5.1]). Suppose that A satisfies (SM), (LIP),
and (POT). Let 𝜗 ≥ 𝑀 . Let 𝑣𝐻 ∈ X𝐻 with ⦀𝑣𝐻 − 𝑢★

𝐻
⦀ ≤ 𝜗. Then, it holds that

𝛼

2 ⦀𝑣𝐻 − 𝑢★
𝐻⦀

2 ≤ E(𝑣𝐻 ) − E(𝑢★
𝐻 ) ≤

𝐿 [𝜗]
2 ⦀𝑣𝐻 − 𝑢★

𝐻⦀
2. (3.9)

In particular, the solution𝑢★
𝐻
of (3.4) is indeed the uniqueminimizer of E inX𝐻 , i.e.,

E(𝑢★
𝐻 ) ≤ E(𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 , (3.10)

and, therefore, (3.4) can equivalently be reformulated as an energy minimization prob-
lem:

Find 𝑢★
𝐻 ∈ X𝐻 such that E(𝑢★

𝐻 ) = min
𝑣𝐻 ∈X𝐻

E(𝑣𝐻 ). □

3.2.2 Zarantonello iteration

Let X𝐻 ⊆ X be a closed subspace. For given damping parameter 𝛿 > 0, we define the
Zarantonello mappingΦ𝐻 (𝛿 ; ·) : X𝐻 → X𝐻 by

⟪Φ𝐻 (𝛿 ;𝑤𝐻 ) , 𝑣𝐻⟫ = ⟪𝑤𝐻 , 𝑣𝐻⟫ + 𝛿 ⟨𝐹 − A𝑤𝐻 , 𝑣𝐻 ⟩ for all 𝑣𝐻 ∈ X𝐻 . (3.11)

Clearly, existence and uniqueness of Φ𝐻 (𝛿 ;𝑤𝐻 ) ∈ X𝐻 and hence well-posedness
of Φ𝐻 (𝛿 ; ·) follows from the Riesz theorem. The following two estimates are obvious:
first,

⦀Φ𝐻 (𝛿 ;𝑤𝐻 ) −𝑤𝐻⦀ ≤ 𝛿 ||𝐹 − A𝑤𝐻 ||X′ = 𝛿 sup
𝑣∈X\{0}

⟨𝐹 − A𝑤𝐻 , 𝑣⟩
⦀𝑣⦀

for all𝑤𝐻 ∈ X𝐻 ; (3.12)

second,

⦀Φ𝐻 (𝛿 ;𝑣𝐻 )−Φ𝐻 (𝛿 ;𝑤𝐻 )⦀ ≤ ⦀𝑣𝐻 −𝑤𝐻⦀ + 𝛿 ||A𝑣𝐻 −A𝑤𝐻 ||X′ for all 𝑣𝐻 ,𝑤𝐻 ∈ X𝐻 . (3.13)
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3 semilinear AILFEMwith linearization

Due to the local Lipschitz continuity (LIP) ofA, this proves that alsoΦ𝐻 (𝛿 ; ·) is locally
Lipschitz continuous. By definition,𝑢★

𝐻
∈ X𝐻 solves (3.4) if and only it is a fixed point of

Φ𝐻 (𝛿 ; ·), i.e.,𝑢★
𝐻
= Φ𝐻 (𝛿 ;𝑢★

𝐻
).

3.2.3 Zarantonello iteration and norm contraction

LetX𝐻 ⊆ X be a closed subspace. The next proposition [Zei90, Section 25.4] proves local
contraction ofΦ𝐻 (𝛿 ; ·) with respect to the energy norm. For the convenience of the reader,
we include the proof to highlight that local Lipschitz continuity suffices.
Proposition 3.4 (norm contraction). Suppose thatA satisfies (SM) and (LIP). Let 𝜗 > 0
and 𝑣𝐻 ,𝑤𝐻 ∈ X𝐻 withmax

{
⦀𝑣𝐻⦀,⦀𝑣𝐻 −𝑤𝐻⦀

} ≤ 𝜗. Then, for all 0 < 𝛿 < 2𝛼/𝐿 [𝜗]2 and
0 < 𝑞N [𝛿 ]2 B 1 − 𝛿 (2𝛼 − 𝛿𝐿 [𝜗]2) < 1, it holds that

⦀Φ𝐻 (𝛿 ;𝑣𝐻 ) −Φ𝐻 (𝛿 ;𝑤𝐻 )⦀ ≤ 𝑞N [𝛿 ] ⦀𝑣𝐻 −𝑤𝐻⦀. (3.14)

We note that 𝑞N [𝛿 ] → 1 as 𝛿 → 0. Moreover, for known 𝛼 and 𝐿 [𝜗], the contraction
constant 𝑞N [𝛿 ]2 = 1 − 𝛼2/𝐿 [𝜗]2 = 1 − 𝛼 𝛿 is minimal and only attained for 𝛿 = 𝛼/𝐿 [𝜗]2.

Proof. Recall that the Riesz mapping

𝐼𝐻 : X𝐻 → X′
𝐻 , 𝑣𝐻 ↦→ 𝐼𝐻 (𝑣𝐻 ) B ⟪· , 𝑣𝐻⟫ for all 𝑣𝐻 ∈ X𝐻 (3.15)

is an isometric isomorphism; cf., e.g., [Yos95, Chapter III.6]. Therefore, a reformulation of
the Zarantonello iteration reads

⟪Φ𝐻 (𝛿 ;𝑤𝐻 ) , 𝜑𝐻⟫ = ⟪𝑤𝐻 , 𝜑𝐻⟫ + 𝛿 ⟪𝜑𝐻 , 𝐼 −1𝐻 (𝐹 − A𝑤𝐻 )⟫ for all 𝜑𝐻 ,𝑤𝐻 ∈ X𝐻 .

Given 𝑣𝐻 ,𝑤𝐻 ∈ X𝐻 with max
{
⦀𝑣𝐻⦀,⦀𝑣𝐻 − 𝑤𝐻⦀

} ≤ 𝜗, we exploit the last equality for
Φ𝐻 (𝛿 ;𝑣𝐻 ) by subtraction ofΦ𝐻 (𝛿 ;𝑤𝐻 ) and use 𝜑𝐻 = Φ𝐻 (𝛿 ;𝑣𝐻 ) −Φ𝐻 (𝛿 ;𝑤𝐻 ) to arrive at

⦀Φ𝐻 (𝛿 ;𝑣𝐻 ) −Φ𝐻 (𝛿 ;𝑤𝐻 )⦀2 = ⦀𝑣𝐻 −𝑤𝐻⦀
2 − 2𝛿 ⟪𝑣𝐻 −𝑤𝐻 , 𝐼

−1
𝐻 (A𝑣𝐻 − A𝑤𝐻 )⟫

+ 𝛿 2 ⦀𝐼 −1𝐻 (A𝑣𝐻 − A𝑤𝐻 )⦀2.

The isometry property of 𝐼𝐻 implies that

⦀𝐼 −1𝐻 (A𝑣𝐻 − A𝑤𝐻 )⦀2 (3.15)
= ||A𝑣𝐻 − A𝑤𝐻 ||2X′

(LIP)≤ 𝐿 [𝜗]2 ⦀𝑣𝐻 −𝑤𝐻⦀
2.

Moreover, it holds that

⟪𝑣𝐻 −𝑤𝐻 , 𝐼
−1
𝐻 (A𝑣𝐻 − A𝑤𝐻 )⟫ (3.15)

= ⟨A𝑣𝐻 − A𝑤𝐻 , 𝑣𝐻 −𝑤𝐻 ⟩
(SM)≥ 𝛼 ⦀𝑣𝐻 −𝑤𝐻⦀

2.

Combining these observations, we see that

0 ≤ ⦀Φ𝐻 (𝛿 ;𝑣𝐻 ) −Φ𝐻 (𝛿 ;𝑤𝐻 )⦀2 ≤ [1 − 2𝛿𝛼 + 𝛿 2𝐿 [𝜗]2] ⦀𝑣𝐻 −𝑤𝐻⦀
2.

Rearranging 𝑞N [𝛿 ]2 B 1− 2𝛿𝛼 + 𝛿 2𝐿 [𝜗]2 = 1− 𝛿 (2𝛼 − 𝛿𝐿 [𝜗]2), we conclude the first claim.
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3.2 Strongly monotone operators

Finally, it follows from elementary calculus that 𝛿 = 𝛼/𝐿 [𝜗]2 is the uniqueminimizer of
the quadratic polynomial 𝑞N [𝛿 ] if 𝛼 and 𝐿 [𝜗]2 are fixed. This concludes the proof. □

Corollary 3.5. Suppose thatA satisfies (SM) and (LIP). Let𝑢0
𝐻
∈ X𝐻 with ⦀𝑢0

𝐻
⦀ ≤ 2𝑀 .

Let 0 < 𝛿 < 2𝛼/𝐿 [3𝑀 ]2 and let 0 < 𝑞N [𝛿 ] < 1 be chosen according to Proposition 3.4,
where 𝜗 = 3𝑀 . Define

𝑢𝑘+1𝐻 B Φ𝐻 (𝛿 ;𝑢𝑘𝐻 ) for all 𝑘 ∈ ℕ0. (3.16)

Then, it holds that

(1 − 𝑞N [𝛿 ]) ⦀𝑢★
𝐻 − 𝑢𝑘𝐻⦀ ≤ ⦀𝑢𝑘+1𝐻 − 𝑢𝑘𝐻⦀ ≤ (1 + 𝑞N [𝛿 ]) ⦀𝑢★

𝐻 − 𝑢𝑘𝐻⦀ (3.17)

and

⦀𝑢★
𝐻 −𝑢𝑘+1𝐻 ⦀ ≤ 𝑞N [𝛿 ] ⦀𝑢★

𝐻 −𝑢𝑘𝐻⦀ ≤ 𝑞N [𝛿 ]𝑘+1 ⦀𝑢★
𝐻 −𝑢0𝐻⦀ ≤ 3𝑀 for all 𝑘 ∈ ℕ0. (3.18)

In particular, it follows that

⦀𝑢𝑘𝐻⦀ ≤ 4𝑀 for all 𝑘 ∈ ℕ0. (3.19)

Proof. The claim (3.18) is proved by induction on 𝑘 . By recalling (3.5), it holds that ⦀𝑢★
𝐻
⦀ ≤

𝑀 as well as ⦀𝑢★
𝐻
− 𝑢0

𝐻
⦀ ≤ ⦀𝑢★

𝐻
⦀ + ⦀𝑢0

𝐻
⦀ ≤ 3𝑀 . Therefore, Proposition 3.4 proves that

⦀𝑢★
𝐻 − 𝑢1𝐻⦀ = ⦀Φ𝐻 (𝛿 ;𝑢★

𝐻 ) −Φ𝐻 (𝛿 ;𝑢0𝐻 )⦀
(3.14)≤ 𝑞N [𝛿 ] ⦀𝑢★

𝐻 − 𝑢0𝐻⦀ ≤ 3𝑀.

This proves (3.18) for 𝑘 = 0. In the induction step, we know that ⦀𝑢★
𝐻
− 𝑢𝑘

𝐻
⦀ ≤ 3𝑀 . As

before, (3.14) from Proposition 3.4 and the induction hypothesis prove that

⦀𝑢★
𝐻 − 𝑢𝑘+1𝐻 ⦀ = ⦀Φ𝐻 (𝛿 ;𝑢★

𝐻 ) −Φ𝐻 (𝛿 ;𝑢𝑘𝐻 )⦀
(3.14)≤ 𝑞N [𝛿 ] ⦀𝑢★

𝐻 − 𝑢𝑘𝐻⦀
≤ 𝑞N [𝛿 ]𝑘+1 ⦀𝑢★

𝐻 − 𝑢0𝐻⦀ ≤ 3𝑀.

This proves (3.18) for general 𝑘 ∈ ℕ0, and the inequalities (3.17) follow from (3.14) and the
triangle inequality. Moreover, the triangle inequality yields that

⦀𝑢𝑘𝐻⦀ ≤ ⦀𝑢★
𝐻⦀ + ⦀𝑢★

𝐻 − 𝑢𝑘𝐻⦀ ≤ 4𝑀.

This concludes the proof. □

Corollary 3.6. Suppose thatA satisfies (SM) and (LIP). Let𝑢0
𝐻
∈ X𝐻 with ⦀𝑢0

𝐻
⦀ ≤ 2𝑀 .

Let 0 < 𝛿 < 2𝛼/𝐿 [6𝑀 ]2 and let 0 < 𝑞N [𝛿 ] < 1 be chosen according to Proposition 3.4,
where 𝜗 = 6𝑀 . Then, the Zarantonello iterates from (3.16) satisfy (3.17)–(3.19) as well as

⦀𝑢𝑘+1𝐻 −𝑢𝑘𝐻⦀ ≤ 𝑞N [𝛿 ] ⦀𝑢𝑘𝐻 −𝑢𝑘−1𝐻 ⦀ ≤ 𝑞N [𝛿 ]𝑘 ⦀𝑢1𝐻 −𝑢0𝐻⦀ ≤ 6𝑀 for all 𝑘 ∈ ℕ. (3.20)

83



3 semilinear AILFEMwith linearization

Proof. Since 𝐿 [3𝑀 ] ≤ 𝐿 [6𝑀 ], it only remains to prove (3.20). We argue by induction and
note that

⦀𝑢1𝐻 − 𝑢0𝐻⦀ ≤ ⦀𝑢1𝐻⦀ + ⦀𝑢0𝐻⦀
(3.19)≤ 6𝑀.

Therefore, Proposition 3.4 proves that

⦀𝑢2𝐻 − 𝑢1𝐻⦀ = ⦀Φ𝐻 (𝛿 ;𝑢1𝐻 ) −Φ𝐻 (𝛿 ;𝑢0𝐻 )⦀
(3.14)≤ 𝑞N [𝛿 ] ⦀𝑢1𝐻 − 𝑢0𝐻⦀ ≤ 6𝑀.

This proves (3.20) for 𝑘 = 1. In the induction step, we know that ⦀𝑢𝑘+1
𝐻

− 𝑢𝑘
𝐻
⦀ ≤ 6𝑀 .

Therefore, Proposition 3.4 and the induction hypothesis prove that

⦀𝑢𝑘+2𝐻 −𝑢𝑘+1𝐻 ⦀ = ⦀Φ𝐻 (𝛿 ;𝑢𝑘+1𝐻 ) −Φ𝐻 (𝛿 ;𝑢𝑘𝐻 )⦀
(3.14)≤ 𝑞N [𝛿 ] ⦀𝑢𝑘+1𝐻 − 𝑢𝑘𝐻⦀ ≤ 6𝑀.

This proves (3.20) for general 𝑘 ∈ ℕ and concludes the proof. □

3.2.4 Zarantonello iteration and energy contraction

Let X𝐻 ⊆ X be a closed subspace. The next result extends the abstract lower bound
from [HW20a, Proposition 1] to the Zarantonello iteration in the locally Lipschitz continu-
ous setting.

Lemma 3.7. Suppose thatA satisfies (SM), (LIP), and (POT). Let𝑢0
𝐻
∈ X𝐻 with ⦀𝑢0

𝐻
⦀ ≤

2𝑀 . Then, for 0 < 𝛿 < 2𝛼/𝐿 [6𝑀 ]2, the Zarantonello iteration (3.11) yields that

0 ≤ 𝜅 [𝛿 ] ⦀𝑢𝑘+1𝐻 − 𝑢𝑘𝐻⦀2 ≤ E(𝑢𝑘𝐻 ) − E(𝑢𝑘+1𝐻 ) ≤ 𝐾 [𝛿 ] ⦀𝑢𝑘+1𝐻 − 𝑢𝑘𝐻⦀2, (3.21)

where𝜅 [𝛿 ] = (𝛿 −1 − 𝐿 [6𝑀 ]/2) > 0 and 𝐾 [𝛿 ] = (
𝛿 −1 − 𝛼/2) .

Proof. Define 𝑒𝑘+1
𝐻
B 𝑢𝑘+1

𝐻
− 𝑢𝑘

𝐻
for all 𝑘 ∈ ℕ0. Then, (POT) guarantees that E = P − 𝐹 is

Gâteaux differentiable. Define 𝜑 (𝑡 ) B E(𝑢𝑘
𝐻
+ 𝑡 𝑒𝑘+1

𝐻
) for 𝑡 ∈ [0, 1] and observe that

𝜑 ′(𝑡 ) = ⟨dE(𝑢𝑘𝐻 + 𝑡 𝑒𝑘+1𝐻 ) , 𝑒𝑘+1𝐻 ⟩ = ⟨A(𝑢𝑘𝐻 + 𝑡 𝑒𝑘+1𝐻 ) − 𝐹 , 𝑒𝑘+1𝐻 ⟩.

For 0 < 𝛿 < 2𝛼/𝐿 [6𝑀 ]2, Corollary 3.6 together with the boundedness ⦀𝑢𝑘
𝐻
⦀ ≤ 4𝑀

from (3.19) and the convexity of the norm show that

max
{
⦀𝑒𝑘+1𝐻 ⦀,⦀𝑢𝑘𝐻 − 𝑡 𝑒𝑘+1𝐻 ⦀

} ≤ 6𝑀 for all 𝑘 ∈ ℕ0. (3.22)

With the fundamental theorem of calculus and the Zarantonello iteration (3.11), we see
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that

E(𝑢𝑘𝐻 ) − E(𝑢𝑘+1𝐻 ) = −
∫ 1

0
⟨A(𝑢𝑘𝐻 + 𝑡 𝑒𝑘+1𝐻 ) − 𝐹 , 𝑒𝑘+1𝐻 ⟩ d𝑡

= −
∫ 1

0
⟨A(𝑢𝑘𝐻 + 𝑡 𝑒𝑘+1𝐻 ) − A𝑢𝑘𝐻 , 𝑒𝑘+1𝐻 ⟩ d𝑡 − ⟨A𝑢𝑘𝐻 − 𝐹 , 𝑒𝑘+1𝐻 ⟩

(3.11)
= −

∫ 1

0
⟨A(𝑢𝑘𝐻 + 𝑡 𝑒𝑘+1𝐻 ) − A𝑢𝑘𝐻 , 𝑒𝑘+1𝐻 ⟩ d𝑡 + 1

𝛿
⟪𝑒𝑘+1𝐻 , 𝑒𝑘+1𝐻 ⟫

(LIP)≥
( 1
𝛿
−

∫ 1

0
𝑡 𝐿 [6𝑀 ] d𝑡

)
⦀𝑢𝑘+1𝐻 − 𝑢𝑘𝐻⦀2 =

( 1
𝛿
− 𝐿 [6𝑀 ]

2
)
⦀𝑢𝑘+1𝐻 − 𝑢𝑘𝐻⦀2.

Since 𝛿 < 2𝛼/𝐿 [6𝑀 ]2 ≤ 2/𝐿 [6𝑀 ], it follows that𝜅 [𝛿 ] = (1/𝛿 − 𝐿 [6𝑀 ]/2) > 0. This proves
the lower bound in (3.21). Moreover, the same argument also yields that

E(𝑢𝑘𝐻 ) − E(𝑢𝑘+1𝐻 ) (3.11)= −
∫ 1

0
⟨A(𝑢𝑘𝐻 + 𝑡 𝑒𝑘+1𝐻 ) − A𝑢𝑘𝐻 , 𝑒𝑘+1𝐻 ⟩ d𝑡 + 1

𝛿
⟪𝑒𝑘+1𝐻 , 𝑒𝑘+1𝐻 ⟫

(SM)≤
( 1
𝛿
−

∫ 1

0
𝛼 𝑡 d𝑡

)
⦀𝑢𝑘+1𝐻 − 𝑢𝑘𝐻⦀2 =

( 1
𝛿
− 𝛼

2
)
⦀𝑢𝑘+1𝐻 − 𝑢𝑘𝐻⦀2.

This concludes the proof. □

The Zarantonello iterates are also contractivewith respect to the energy difference.

Proposition 3.8 (energy contraction). Suppose thatA satisfies (SM), (LIP), and (POT).
Then, for 0 < 𝛿 < 2𝛼/𝐿 [6𝑀 ]2, it holds that

0 ≤ E(𝑢𝑘+1𝐻 ) − E(𝑢★
𝐻 ) ≤ 𝑞E [𝛿 ]2 [E(𝑢𝑘𝐻 ) − E(𝑢★

𝐻 )] for all 𝑘 ∈ ℕ0 (3.23a)

with contraction constant

0 ≤ 𝑞E [𝛿 ]2 B 1 −
(
1 − 𝛿𝐿 [6𝑀 ]

2
) 2𝛿𝛼2
𝐿 [3𝑀 ] < 1. (3.23b)

We note that 𝑞E [𝛿 ] → 1 as 𝛿 → 0. Furthermore, for all 𝑘 ∈ ℕ0, it holds that

(1−𝑞E [𝛿 ]2)
[E(𝑢𝑘𝐻 ) −E(𝑢★

𝐻 )
] ≤ E(𝑢𝑘𝐻 ) −E(𝑢𝑘+1𝐻 ) ≤ (1+𝑞E [𝛿 ]2)

[E(𝑢𝑘𝐻 ) −E(𝑢★
𝐻 )

]
. (3.24)

Proof. First, we observe that

𝛼 ⦀𝑢★
𝐻 − 𝑢𝑘𝐻⦀2 ≤ ⟨A𝑢★

𝐻 − A𝑢𝑘𝐻 , 𝑢★
𝐻 − 𝑢𝑘𝐻 ⟩

(3.4)
= ⟨𝐹 − A𝑢𝑘𝐻 , 𝑢★

𝐻 − 𝑢𝑘𝐻 ⟩
(3.11)
=

1
𝛿
⟪𝑢𝑘+1𝐻 − 𝑢𝑘𝐻 , 𝑢★

𝐻 − 𝑢𝑘𝐻⟫ ≤ 1
𝛿
⦀𝑢𝑘+1𝐻 − 𝑢𝑘𝐻⦀⦀𝑢★

𝐻 − 𝑢𝑘𝐻⦀.
(3.25)
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Since 0 < 𝛿 < 2𝛼/𝐿 [6𝑀 ]2, it follows that

0 (3.9)≤ E(𝑢𝑘+1𝐻 ) − E(𝑢★
𝐻 ) = E(𝑢𝑘𝐻 ) − E(𝑢★

𝐻 ) −
[E(𝑢𝑘𝐻 ) − E(𝑢𝑘+1𝐻 )]

(3.21)≤ E(𝑢𝑘𝐻 ) − E(𝑢★
𝐻 ) −

( 1
𝛿
− 𝐿 [6𝑀 ]

2
)
⦀𝑢𝑘+1𝐻 − 𝑢𝑘𝐻⦀2

(3.25)≤ E(𝑢𝑘𝐻 ) − E(𝑢★
𝐻 ) −

( 1
𝛿
− 𝐿 [6𝑀 ]

2
)
𝛿 2𝛼2 ⦀𝑢★

𝐻 − 𝑢𝑘𝐻⦀2

(3.9)≤
[
1 −

(
1 − 𝛿𝐿 [6𝑀 ]

2
) 2𝛿𝛼2
𝐿 [3𝑀 ]

] [E(𝑢𝑘𝐻 ) − E(𝑢★
𝐻 )

]
,

where (3.9)holdsdue to (3.18) fromCorollary 3.5. Thisproves (3.23). The inequalities (3.24)
follow from the triangle inequality. This concludes the proof. □

Remark 3.9. For a globally Lipschitz continuousA with Lipschitz constant 𝐿, we observe
that the energy contraction factor is minimal for 𝛿 = 1/𝐿, where 𝑞E [𝛿 ]2 = 1− 𝛼2

𝐿2 . In contrast,
theoptimalnormcontraction factor𝑞N [𝛿 ]2 = 1− 𝛼2

𝐿2 is obtained for 𝛿 = 𝛼
𝐿2 ; cf. Proposition3.4.

To allow a larger damping parameter 𝛿 > 0, energy contraction is preferred.

3.2.5 Mesh refinement

From now on, let T0 be a given conforming triangulation of the polyhedral Lipschitz
domain Ω ⊂ ℝ𝑑 with 𝑑 ≥ 1. For mesh refinement, we employ newest vertex bisection
(NVB) for 𝑑 ≥ 2 (see, e.g., [Ste08]), or the 1D bisection from [AFF+13] for 𝑑 = 1. For each
triangulation T𝐻 and a set of marked elementsM𝐻 ⊆ T𝐻 , let Tℎ B refine(T𝐻 ,M𝐻 ) be
the coarsest triangulation such that all𝑇 ∈ M𝐻 have been refined, i.e.,M𝐻 ⊆ T𝐻 \Tℎ . We
write Tℎ ∈ 𝕋 (T𝐻 ), if Tℎ results from T𝐻 by finitely many steps of refinement. To abbreviate
notation, let 𝕋 B 𝕋 (T0).
Throughout, each triangulation T𝐻 ∈ 𝕋 is associated with a conforming finite-dimen-

sional spaceX𝐻 ⊂ X, andwe suppose thatmesh refinementTℎ ∈ 𝕋 (T𝐻 ) implies nestedness
X𝐻 ⊆ Xℎ ⊂ X.

3.2.6 Axioms of adaptivity and a posteriori error estimator

For T𝐻 ∈ 𝕋 and 𝑣𝐻 ∈ X𝐻 , let

𝜂𝐻 (𝑇 , ·) : X𝐻 → ℝ≥0 for all𝑇 ∈ T𝐻 (3.26)

be the local contributions of an a posteriori error estimator

𝜂𝐻 (𝑣𝐻 ) B 𝜂𝐻 (T𝐻 , 𝑣𝐻 ), where𝜂𝐻 (U𝐻 , 𝑣𝐻 ) B
( ∑︁
𝑇 ∈ U𝐻

𝜂𝐻 (𝑇 ,𝑣𝐻 )2
)1/2

for allU𝐻 ⊆ T𝐻 .

We suppose that the error estimator 𝜂𝐻 satisfies the following axioms of adaptivity
from [CFPP14] with a slightly relaxed variant of stability (A1) from [ 1 GOA].
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(A1) stability: For all 𝜗 > 0 and all1 U𝐻 ⊆ Tℎ ∩ T𝐻 , there exists𝐶stab [𝜗] > 0 such that for all
𝑣ℎ ∈ Xℎ and 𝑣𝐻 ∈ X𝐻 withmax

{
⦀𝑣ℎ⦀,⦀𝑣ℎ − 𝑣𝐻⦀

} ≤ 𝜗, it holds that��𝜂ℎ (U𝐻 , 𝑣ℎ) −𝜂𝐻 (U𝐻 , 𝑣𝐻 )
�� ≤ 𝐶stab [𝜗] ⦀𝑣ℎ − 𝑣𝐻⦀.

(A2) reduction:With 0 < 𝑞red < 1, it holds that

𝜂ℎ (Tℎ\T𝐻 , 𝑣𝐻 ) ≤ 𝑞red𝜂𝐻 (T𝐻 \Tℎ , 𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 .

(A3) reliability: There exists𝐶rel > 0 such that

⦀𝑢★ − 𝑢★
𝐻⦀ ≤ 𝐶rel𝜂𝐻 (𝑢★

𝐻 ).

(A4) discrete reliability: There exists𝐶drel > 0 such that

⦀𝑢★
ℎ − 𝑢★

𝐻⦀ ≤ 𝐶drel𝜂𝐻 (T𝐻 \Tℎ , 𝑢★
𝐻 ).

3.2.7 Idealized adaptive algorithm

In the following, we formulate and analyze an AILFEM algorithm in the spirit of [GHPS21],
but with an extended stopping criterion in Algorithm 3.10(i.b), i.e.,

|E(𝑢𝑘−1ℓ ) − E(𝑢𝑘ℓ ) | ≤ 𝜆2𝜂ℓ (𝑢𝑘ℓ )2 ∧ ⦀𝑢𝑘ℓ ⦀ ≤ 2𝑀. (i.b)

Clearly, if the stopping criterion from Algorithm 3.10(i.b) holds, then also the simpler
stopping criterion |E(𝑢𝑘−1

ℓ
) − E(𝑢𝑘

ℓ
) | ≤ 𝜆2𝜂ℓ (𝑢𝑘ℓ ) from [GHPS21, Algorithm 2] holds.

The proposed algorithm is idealized in the sense that an appropriate parameter 𝛿 > 0 is
chosen a priori; see Theorem 3.17 below.

Algorithm 3.10: idealized AILFEMwith energy contraction
Input: initial triangulation T0, initial guess𝑢00 B 0with𝑀 = 1

𝛼
||𝐹 −A0||X′ < ∞ according

to (3.5), marking parameters 0 < 𝜃 ≤ 1 and 1 ≤ 𝐶mark < ∞, damping parameter 𝛿 > 0,
solver parameter 𝜆 > 0.
Loop: For ℓ = 0, 1, 2, . . . , repeat the following steps (i)–(iv):
(i) For all 𝑘 = 1, 2, 3, . . . , repeat the following steps (a)–(b):

(a) Compute𝑢𝑘
ℓ
B Φℓ (𝛿 ;𝑢𝑘−1ℓ

) and𝜂ℓ (𝑇 ,𝑢𝑘ℓ ) for all𝑇 ∈ Tℓ .
(b) Terminate 𝑘-loop if ( |E(𝑢𝑘−1

ℓ
) − E(𝑢𝑘

ℓ
) | ≤ 𝜆2𝜂ℓ (𝑢𝑘ℓ )2 ∧ ⦀𝑢𝑘

ℓ
⦀ ≤ 2𝑀 ) .

(ii) Upon termination of the 𝑘-loop, define 𝑘 (ℓ) B 𝑘 .
(iii) Determine a setMℓ ⊆ Tℓ with up to the multiplicative factor 𝐶mark minimal

cardinality such that 𝜃 𝜂ℓ (𝑢𝑘 (ℓ )ℓ
)2 ≤ ∑

𝑇 ∈Mℓ
𝜂ℓ (𝑇 ,𝑢𝑘 (ℓ )ℓ

)2.

1While [ 1 GOA, Proposition 15] states stability only forTℎ ∩T𝐻 , the inspection of the proof reveals that indeed
arbitrary subsetsU𝐻 ⊆ Tℎ ∩ T𝐻 are admissible.
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(iv) Generate Tℓ+1 B refine(Tℓ ,Mℓ) and define𝑢0ℓ+1 B 𝑢
𝑘 (ℓ )
ℓ

.

Following [GHPS21], the analysis of Algorithm 3.10 requires the ordered index set

Q B {(ℓ, 𝑘 ) ∈ ℕ2
0 | index pair (ℓ, 𝑘 ) occurs in Algorithm 3.10 and 𝑘 < 𝑘 (ℓ)}, (3.27)

where 𝑘 (ℓ) ≥ 1 counts the number of solver steps for each ℓ. The pair (ℓ, 𝑘 (ℓ)) is excluded
from Q, since either (ℓ + 1, 0) ∈ Q and𝑢0

ℓ+1 = 𝑢
𝑘 (ℓ )
ℓ

or even 𝑘 (ℓ) B ∞ if the 𝑘-loop does not
terminate after finitely many steps. Since Algorithm 3.10 is sequential, the index set Q is
lexicographically ordered: For (ℓ, 𝑘 ) and (ℓ′, 𝑘 ′) ∈ Q, we write (ℓ′, 𝑘 ′) < (ℓ, 𝑘 ) if and only
if (ℓ′, 𝑘 ′) appears earlier in Algorithm 3.10 than (ℓ, 𝑘 ). Given this ordering, we define the
total step counter

| (ℓ, 𝑘 ) | B #{(ℓ′, 𝑘 ′) ∈ Q | (ℓ′, 𝑘 ′) < (ℓ, 𝑘 )} = 𝑘 +
ℓ−1∑︁
ℓ′=0

𝑘 (ℓ′),

which provides the total number of solver steps up to the computation of𝑢𝑘
ℓ
.

Moreover, we define Q B Q ∪ {(ℓ, 𝑘 (ℓ)) | ℓ ∈ ℕ0 with (ℓ + 1, 0) ∈ Q}. Note that
Q ⊂ ℕ0 × ℕ0 is a countably infinite index set such that, for all (ℓ, 𝑘 ) ∈ ℕ0 × ℕ0,

(ℓ + 1, 0) ∈ Q =⇒ (ℓ, 𝑘 (ℓ)) ∈ Q and 𝑘 (ℓ) = max{𝑘 ∈ ℕ0 | (ℓ, 𝑘 ) ∈ Q},
(ℓ, 𝑘 + 1) ∈ Q =⇒ (ℓ, 𝑘 ) ∈ Q.

With ℓ B sup{ℓ ∈ ℕ0 | (ℓ, 0) ∈ Q}, it then follows that either ℓ = ∞ or 𝑘 (ℓ) = ∞. From
now on and throughout the paper, we employ the abbreviations (ℓ, 𝑘 ) B (ℓ, 𝑘 (ℓ)) and
𝑢
𝑘

ℓ
B 𝑢

𝑘 (ℓ )
ℓ

.

Corollary 3.11. Suppose thatA satisfies (SM), (LIP), and (POT). Suppose the axioms of
adaptivity (A1)–(A3). Let 𝜆 > 0 and 0 < 𝜃 ≤ 1 be arbitrary. Then, there exists a choice of
the parameter 𝛿 > 0 in Algorithm 3.10 such that there exist 0 < 𝑞N < 1 and 0 < 𝑞E < 1
such that the following properties hold:
⊲ nested iteration: ⦀𝑢0ℓ⦀ ≤ 2𝑀 for all (ℓ, 0) ∈ Q; (3.28)

⊲ boundedness: ⦀𝑢𝑘ℓ ⦀ ≤ 4𝑀 for all (ℓ, 𝑘 ) ∈ Q; (3.29)

⊲ norm contraction: ⦀𝑢★
ℓ − 𝑢𝑘+1ℓ ⦀ ≤ 𝑞N ⦀𝑢★

ℓ − 𝑢𝑘ℓ ⦀ for all (ℓ, 𝑘 ) ∈ Q; (3.30)

⊲ energy contraction: E(𝑢𝑘+1ℓ ) − E(𝑢★
ℓ ) ≤ 𝑞2E

[E(𝑢𝑘ℓ ) − E(𝑢★
ℓ )

]
for all (ℓ, 𝑘 ) ∈ Q. (3.31)

Moreover, this guarantees (3.17)–(3.18) for all (ℓ, 𝑘 ) ∈ Q with 𝑞N [𝛿 ] replaced by 𝑞N.
Furthermore, there exists 𝑘0 ∈ ℕ0 such that ⦀𝑢𝑘ℓ ⦀ ≤ 2𝑀 for all (ℓ, 𝑘 ) ∈ Q with 𝑘 ≥ 𝑘0.

Proof. Let 0 < 𝛿 < 2𝛼/𝐿 [6𝑀 ]2 be arbitrary but fixed. From Algorithm 3.10 and𝑢00 B 0, we
have that ⦀𝑢0

ℓ
⦀ ≤ 2𝑀 . Then, ⦀𝑢★

ℓ
− 𝑢0

ℓ
⦀ ≤ 3𝑀 . Choose 0 < 𝑞N B 𝑞N [𝛿 ] < 1 according to
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Proposition 3.4, where 𝜗 = 3𝑀 as well as 0 < 𝑞E B 𝑞E [𝛿 ] < 1 according to Proposition 3.8.
This proves norm contraction (3.30) as well as energy contraction (3.31) for all (ℓ, 𝑘 ) ∈ Q.
Furthermore, for all (ℓ, 𝑘 ) ∈ Q, it follows that

⦀𝑢𝑘ℓ ⦀ ≤ ⦀𝑢★
ℓ ⦀ + ⦀𝑢★

ℓ − 𝑢𝑘ℓ ⦀
(3.18)≤ 𝑀 + 𝑞𝑘N ⦀𝑢★

ℓ − 𝑢0ℓ⦀ ≤ 𝑀 + 𝑞𝑘N 3𝑀 ≤ 4𝑀, (3.32)

which proves boundedness (3.29). Moreover, (3.32) together with 0 < 𝑞N < 1 from (3.30)
proves that there exists 𝑘0 ∈ ℕ0, which is independent of ℓ, such that, for all 𝑘 ≥ 𝑘0, it
holds that

⦀𝑢𝑘ℓ ⦀
(3.32)≤ 𝑀 + 𝑞𝑘N 3𝑀

!≤ 2𝑀.

This shows for (ℓ, 0) ∈ Q that the stopping criterion ⦀𝑢𝑘
ℓ
⦀ ≤ 2𝑀 is met for all (ℓ, 𝑘 ) ∈ Q

with 𝑘 ≥ 𝑘0. This concludes the proof. □

3.2.8 AILFEM under the assumption of energy contraction (3.31)

Norm contraction (3.30) is the critical ingredient in the proof of Corollary 3.11— leading
to boundedness (Corollary 3.5), which is key to the proof of energy contraction (3.31)
(cf. (3.22)). Thus, norm contraction (3.30) is sufficient for obtaining nested iteration (3.28),
boundedness (3.29), and energy contraction (3.31). However, supposing (3.31) already
suffices to obtain uniform constants in the energy norm as the next result shows. Thus,
throughout the rest of this paper, we suppose that energy contraction (3.31) holds for all
(ℓ, 𝑘 ) ∈ Q.
Lemma 3.12. Suppose thatA satisfies (SM), (LIP), and (POT). Suppose that the choice
of 𝛿 > 0 guarantees that Algorithm 3.10 satisfies energy contraction (3.31). Then, it holds
that

⦀𝑢𝑘ℓ ⦀ ≤ 𝑀 + 3𝑀 𝐿 [3𝑀 ]
𝛼

C
𝜏

2 for all (ℓ, 𝑘 ) ∈ Q. (3.33a)

Moreover, it holds that

⦀𝑢𝑘ℓ − 𝑢𝑘 ′
ℓ ⦀ ≤ 𝜏 for all (ℓ, 𝑘 ), (ℓ, 𝑘 ′) ∈ Q. (3.33b)

Furthermore, there exists 𝑘0 ∈ ℕ0, which is independent of ℓ, such that

⦀𝑢𝑘ℓ ⦀ ≤ 2𝑀 for all (ℓ, 𝑘 ) ∈ Q with 𝑘 ≥ 𝑘0. (3.34)

Proof. From Algorithm 3.10 and 𝑢00 B 0, we have that ⦀𝑢0
ℓ
⦀ ≤ 2𝑀 . With ⦀𝑢★

ℓ
⦀ ≤ 𝑀

from (3.5), it holds that ⦀𝑢★
ℓ
− 𝑢0

ℓ
⦀ ≤ 3𝑀 . For all (ℓ, 𝑘 ) ∈ Q, it follows that

⦀𝑢𝑘ℓ ⦀ ≤ ⦀𝑢★
ℓ ⦀ + ⦀𝑢★

ℓ − 𝑢𝑘ℓ ⦀
(3.9)≤ 𝑀 +

( 2
𝛼

)1/2 (E(𝑢𝑘ℓ ) − E(𝑢★
ℓ )

)1/2
(3.31)≤ 𝑀 + 𝑞𝑘E

( 2
𝛼

)1/2 (E(𝑢0ℓ ) − E(𝑢★
ℓ )

)1/2 (3.9)≤ 𝑀 + 𝑞𝑘E 3𝑀
(𝐿 [3𝑀 ]

𝛼

)1/2
(3.35)

(3.31)≤ 𝑀 + 3𝑀
(𝐿 [3𝑀 ]

𝛼

)1/2
C
𝜏

2 . (3.36)
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This and the triangle inequality prove (3.33b). Moreover, inequality (3.35) together with
0 < 𝑞E < 1 from energy contraction (3.31) proves that there exists 𝑘0 ∈ ℕ0, which is
independent of ℓ, such that

⦀𝑢𝑘ℓ ⦀
(3.35)≤ 𝑀 + 𝑞𝑘E 3𝑀

(𝐿 [3𝑀 ]
𝛼

)1/2 !≤ 2𝑀 for all (ℓ, 𝑘 ) ∈ Q with 𝑘 ≥ 𝑘0. (3.37)

This concludes the proof. □

Remark 3.13. (i)FromLemma3.12, we infer that the stopping criterion can fail only finitely
many times due to the energy norm criterion ⦀𝑢𝑘

ℓ
⦀ ≤ 2𝑀 .

(ii)Under the assumption of energy contraction (3.31), we note that (3.33b) shows that 𝜏
provides a uniform upper bound for the involved stability and Lipschitz constants𝐶stab [𝜏]
and 𝐿 [𝜏], respectively. Indeed, it will become apparent later that stability and local Lipschitz
continuity will only be exploited for the differences ⦀𝑢𝑘

𝐻
−𝑢𝑘−1

𝐻
⦀, ⦀𝑢★

𝐻
−𝑢𝑘+1

𝐻
⦀, or ⦀𝑢★ −𝑢★

𝐻
⦀

in (A1), (3.9), and (3.21).

3.2.9 Main results

Given the Pythagoras identity (3.8) and energy contraction (3.31), the first main theorem
states full linear convergence of the quasi-error

Δ𝑘ℓ B ⦀𝑢★ − 𝑢𝑘ℓ ⦀ +𝜂ℓ (𝑢𝑘ℓ ). (3.38)

Theorem 3.14: full linear convergence
Suppose thatA satisfies (SM), (LIP), and (POT). Suppose the axioms of adaptivity (A1)–
(A3) and orthogonality (3.8), whereX𝐻 is understood asXℓ for (ℓ, 𝑘 ) ∈ Q. Let 0 < 𝜃 ≤ 1,
1 ≤ 𝐶mark ≤ ∞, and𝜆 > 0. Suppose that the choice of 𝛿 > 0 guarantees that Algorithm3.10
satisfies energy contraction (3.31). Then, there exist𝐶lin > 0 and 0 < 𝑞lin < 1 such that
Algorithm 3.10 leads to

Δ𝑘ℓ ≤ 𝐶lin𝑞
| (ℓ,𝑘 ) |− | (ℓ′,𝑘 ′ ) |
lin Δ𝑘

′
ℓ′ for all (ℓ, 𝑘 ), (ℓ′, 𝑘 ′) ∈ Q with (ℓ′, 𝑘 ′) < (ℓ, 𝑘 ). (3.39)

The constants𝐶lin and 𝑞lin depend only on𝑀 , 𝐿 [𝜏/2], 𝛼,𝐶stab [𝜏], 𝑞red,𝐶rel, and 𝑞E as well
as on the adaptivity parameters 0 < 𝜃 ≤ 1 and 𝜆 > 0. □

The proof of Theorem 3.14 extends that of [GHPS21, Theorem 4], since the stopping
criterion from Algorithm 3.10(i.b) requires further analysis to cover all cases. To ease
notation, we introduce the shorthand

d(𝑣,𝑤 )2 = |E(𝑣 ) − E(𝑤 ) | for all 𝑣,𝑤 ∈ X.

The following lemma provides the essential step in the proof of Theorem 3.14.
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Lemma 3.15. Under the assumptions of Theorem 3.14, there exist constants 𝜇 > 0 and
0 < 𝑞lin < 1 such that

Λ𝑘ℓ B d(𝑢★, 𝑢𝑘ℓ )2 + 𝜇𝜂ℓ (𝑢𝑘ℓ )2 for all (ℓ, 𝑘 ) ∈ Q (3.40)

satisfies the following statements (i)–(ii):
(i) Λ𝑘+1

ℓ
≤ 𝑞2lin Λ

𝑘
ℓ

for all (ℓ, 𝑘 + 1) ∈ Q.
(ii) Λ0

ℓ+1 ≤ 𝑞2lin Λ
𝑘−1
ℓ

for all (ℓ + 1, 0) ∈ Q.
The constants 𝜇 and 𝑞lin depend only on𝑀 , 𝐿 [2𝑀 ], 𝛼,𝐶stab [𝜏], 𝑞red,𝐶rel, and 𝑞E as well
as on the adaptivity parameters 0 < 𝜃 ≤ 1 and 𝜆 > 0.

Proof. For 𝑘 ∈ ℕ such that 1 ≤ 𝑘 ≤ 𝑘 (ℓ), the stopping criterion of Algorithm 3.10(i.b), i.e.,

d(𝑢𝑘−1ℓ , 𝑢𝑘ℓ )2 = |E(𝑢𝑘−1ℓ ) − E(𝑢𝑘ℓ ) | ≤ 𝜆2𝜂ℓ (𝑢𝑘ℓ )2 ∧ ⦀𝑢𝑘ℓ ⦀ ≤ 2𝑀, (i.b)

comprises four cases. Statement (i) contains the cases true ∧ false, false ∧ false, and
false ∧ true. Statement (ii) consists of the remaining case true ∧ true.
Case 1: Evaluation of (i.b) returns true ∧ false. This case investigates (i.b) for 𝑘 + 1 <

𝑘 (ℓ). First, we note that

⦀𝑢★ − 𝑢★
ℓ ⦀

2 (A3)≤ 𝐶 2
rel𝜂ℓ (𝑢★

ℓ )2
(A1),(3.33a)≤ 2𝐶 2

rel𝜂ℓ (𝑢𝑘+1ℓ )2 + 2𝐶 2
rel𝐶

2
stab [𝜏] ⦀𝑢★

ℓ − 𝑢𝑘+1ℓ ⦀

2.

Together with (3.9), this leads us to

d(𝑢★, 𝑢★
ℓ )2

(3.9)≤ 𝐿 [2𝑀 ]
2 ⦀𝑢★ − 𝑢★

ℓ ⦀
2 (3.9)≤ 𝐶1𝜂ℓ (𝑢𝑘+1ℓ )2 +𝐶2 d(𝑢★

ℓ , 𝑢
𝑘+1
ℓ )2,

where we define 𝐶1 B 𝐿 [2𝑀 ]𝐶 2
rel and 𝐶2 B 2𝛼−1𝐿 [2𝑀 ]𝐶 2

rel𝐶
2
stab [𝜏]. For 0 < 𝜀 < 1, we

obtain that

d(𝑢★, 𝑢𝑘+1ℓ )2 (3.8)
= (1 − 𝜀) d(𝑢★, 𝑢★

ℓ )2 + 𝜀 d(𝑢★, 𝑢★
ℓ )2 + d(𝑢★

ℓ , 𝑢
𝑘+1
ℓ )2

≤ (1 − 𝜀) d(𝑢★, 𝑢★
ℓ )2 + 𝜀 𝐶1𝜂ℓ (𝑢𝑘+1ℓ )2 + (1 + 𝜀 𝐶2) d(𝑢★

ℓ , 𝑢
𝑘+1
ℓ )2

(3.31)≤ (1 − 𝜀) d(𝑢★, 𝑢★
ℓ )2 + 𝜀 𝐶1𝜂ℓ (𝑢𝑘+1ℓ )2 + (1 + 𝜀 𝐶2) 𝑞2E d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2.

We use the last inequality for the quasi-error Λ𝑘+1
ℓ

to obtain that

Λ𝑘+1ℓ = d(𝑢★, 𝑢𝑘+1ℓ )2 + 𝜇𝜂ℓ (𝑢𝑘+1ℓ )2
≤ (1 − 𝜀) d(𝑢★, 𝑢★

ℓ )2 + (𝜇 + 𝜀 𝐶1)𝜂ℓ (𝑢𝑘+1ℓ )2 + (1 + 𝜀 𝐶2) 𝑞2E d(𝑢★
ℓ , 𝑢

𝑘
ℓ )2. (3.41)

We need four auxiliary estimates:
First, since ⦀𝑢★

ℓ
⦀ ≤ 𝑀 and ⦀𝑢★

ℓ
− 𝑢★

0 ⦀ ≤ 2𝑀 hold independently of ℓ, the axioms (A1)–
(A3) and Proposition 3.2 imply quasi-monotonicity of the estimators, i.e.,

𝜂ℓ (𝑢★
ℓ ) ≤ 𝐶mon𝜂0(𝑢★

0 ) with 𝐶mon =
(2 + 8𝐶stab [2𝑀 ]2(1 +𝐶 2

Céa)𝐶 2
rel

)1/2; (3.42)
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cf. [CFPP14, Lemma 3.6]. With𝐶0 B 𝐶monmax{1,𝐶stab [𝑀 ]𝑀 }, we infer that

𝜂ℓ (𝑢★
ℓ )

(3.42)≤ 𝐶mon𝜂0(𝑢★
0 )

(A1)≤ 𝐶mon𝜂0(0) +𝐶mon𝐶stab [𝑀 ]⦀𝑢★
0 ⦀ ≤ 𝐶0(𝜂0(0) + 1). (3.43)

Second, with𝐶3 B 2𝐶0(𝜂0(0) + 1) and𝐶4 B 4𝛼−1𝐶stab [𝜏]2 𝑞2E, it holds that

𝜂ℓ (𝑢𝑘+1ℓ )2 (A1)≤ 2𝜂ℓ (𝑢★
ℓ )2 + 2𝐶stab [𝜏]2 ⦀𝑢★

ℓ − 𝑢𝑘+1ℓ ⦀

2 (3.9)≤ 2𝜂ℓ (𝑢★
ℓ )2 +

4
𝛼
𝐶stab [𝜏]2 d(𝑢★

ℓ , 𝑢
𝑘+1
ℓ )2

(3.31)≤ 2𝜂ℓ (𝑢★
ℓ )2 +

4
𝛼
𝐶stab [𝜏]2 𝑞2E d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2

(3.43)≤ 𝐶3 +𝐶4 d(𝑢★
ℓ , 𝑢

𝑘
ℓ )2. (3.44)

Third, the error estimator allows for the following estimate with an arbitrary but fixed
Young parameter 0 < 𝛾 < 1:

𝜂ℓ (𝑢𝑘+1ℓ )2 (A1)≤ (1 +𝛾 )𝜂ℓ (𝑢𝑘ℓ )2 + (1 +𝛾 −1)𝐶stab [𝜏]2 ⦀𝑢𝑘+1ℓ − 𝑢𝑘ℓ ⦀2
≤ (1 +𝛾 )𝜂ℓ (𝑢𝑘ℓ )2 + 2 (1 +𝛾 −1)𝐶stab [𝜏]2

[
⦀𝑢★

ℓ − 𝑢𝑘+1ℓ ⦀

2 + ⦀𝑢★
ℓ − 𝑢𝑘ℓ ⦀2

]
(3.9)≤ (1 +𝛾 )𝜂ℓ (𝑢𝑘ℓ )2 +

4
𝛼
(1 +𝛾 −1)𝐶stab [𝜏]2

[
d(𝑢★

ℓ , 𝑢
𝑘+1
ℓ )2 + d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2

]
(3.31)≤ (1 +𝛾 )𝜂ℓ (𝑢𝑘ℓ )2 +𝐶5 d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2, (3.45)

where𝐶5 B 4𝛼−1(1 +𝛾 −1)𝐶stab [𝜏]2 (1 + 𝑞2E).
Fourth, we observe that the case true ∧ false yields that

2𝑀 < ⦀𝑢𝑘+1ℓ ⦀ ≤ ⦀𝑢★
ℓ ⦀ + ⦀𝑢★

ℓ − 𝑢𝑘+1ℓ ⦀ ≤ 𝑀 + ⦀𝑢★
ℓ − 𝑢𝑘+1ℓ ⦀

and hence𝑀 < ⦀𝑢★
ℓ
− 𝑢𝑘+1

ℓ
⦀. With𝐶6 B 2𝛼−1𝑀 −2 𝑞2E, this observation leads us to

1 <
⦀𝑢★

ℓ
− 𝑢𝑘+1

ℓ
⦀

2

𝑀 2
(3.9)≤ 2𝛼−1𝑀 −2 d(𝑢★

ℓ , 𝑢
𝑘+1
ℓ )2 (3.31)≤ 𝐶6 d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2. (3.46)

Recall that 0 < 𝜀 < 1 and define 0 < 𝜎 B
𝜀+𝛾
1+𝛾 < 1. This choice of 𝜎 ensures that

(1 − 𝜎) (1 +𝛾 ) = 1 − 𝜀. (3.47)

We apply these observations to the term (𝜇 + 𝜀 𝐶1)𝜂ℓ (𝑢𝑘+1ℓ
)2 of (3.41) to arrive at

(𝜇 + 𝜀 𝐶1)𝜂ℓ (𝑢𝑘+1ℓ )2 = (1 − 𝜎) 𝜇𝜂ℓ (𝑢𝑘+1ℓ )2 + (𝜎 𝜇 + 𝜀 𝐶1)𝜂ℓ (𝑢𝑘+1ℓ )2
(3.45)≤ (1 − 𝜎) (1 +𝛾 ) 𝜇𝜂ℓ (𝑢𝑘ℓ )2 + (1 − 𝜎) 𝜇𝐶5 d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2 + (𝜎 𝜇 + 𝜀 𝐶1)𝜂ℓ (𝑢𝑘+1ℓ )2

(3.44)≤ (1 − 𝜎) (1 +𝛾 ) 𝜇𝜂ℓ (𝑢𝑘ℓ )2 + (1 − 𝜎) 𝜇𝐶5 d(𝑢★
ℓ , 𝑢

𝑘
ℓ )2 + (𝜎 𝜇 + 𝜀 𝐶1)

[
𝐶3 +𝐶4 d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2

]
(3.46)
< (1 − 𝜎) (1 +𝛾 ) 𝜇𝜂ℓ (𝑢𝑘ℓ )2+(1 − 𝜎) 𝜇𝐶5 d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2+(𝜎 𝜇 + 𝜀 𝐶1) (𝐶3𝐶6 +𝐶4) d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2

(3.47)
= (1 − 𝜀) 𝜇𝜂ℓ (𝑢𝑘ℓ )2 +

[(1 − 𝜎)𝐶5 + 𝜎 𝐶7]𝜇 d(𝑢★
ℓ , 𝑢

𝑘
ℓ )2 + 𝜀 𝐶1𝐶7 d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2, (3.48)
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where𝐶7 B 𝐶3𝐶6 +𝐶4. Together with (3.41), we obtain that

Λ𝑘+1ℓ

(3.41)≤ (1 − 𝜀) d(𝑢★, 𝑢★
ℓ )2 + (𝜇 + 𝜀 𝐶1)𝜂ℓ (𝑢𝑘+1ℓ )2 + (1 + 𝜀 𝐶2) 𝑞2E d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2

(3.48)≤ (1 − 𝜀) d(𝑢★, 𝑢★
ℓ )2 + (1 − 𝜀) 𝜇𝜂ℓ (𝑢𝑘ℓ )2

+ {[(1 − 𝜎)𝐶5 + 𝜎 𝐶7]𝜇 + 𝜀 𝐶1𝐶7 + (1 + 𝜀 𝐶2) 𝑞2E
}
d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2

≤ (1 − 𝜀) d(𝑢★, 𝑢★
ℓ )2 + (1 − 𝜀) 𝜇𝜂ℓ (𝑢𝑘ℓ )2

+ {
𝜇 max {𝐶5,𝐶7} + 𝜀 𝐶1𝐶7 + (1 + 𝜀 𝐶2) 𝑞2E

}
d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2.

Note that𝐶1, . . . ,𝐶7 depend only on the problem setting. Provided that

𝜇 max {𝐶5,𝐶7} + 𝜀 𝐶1𝐶7 + (1 + 𝜀 𝐶2) 𝑞2E ≤ 1 − 𝜀, (3.49)

we conclude that

Λ𝑘+1ℓ ≤ (1 − 𝜀) [
d(𝑢★, 𝑢★

ℓ )2 + d(𝑢★
ℓ , 𝑢

𝑘
ℓ )2 + 𝜇𝜂ℓ (𝑢𝑘ℓ )2

]
(3.8)
= (1 − 𝜀) [

d(𝑢★, 𝑢𝑘ℓ )2 + 𝜇𝜂ℓ (𝑢𝑘ℓ )2
]
= (1 − 𝜀) Λ𝑘ℓ .

Case 2: Evaluation of (i.b) returns false ∧ false or false ∧ true. These cases follow
from the arguments found in [GHPS21, Lemma 10(i)]. There, the proof is based in essence
on the estimate

𝜂ℓ (𝑢𝑘+1ℓ )2 < 𝜆−2 d(𝑢𝑘+1ℓ , 𝑢𝑘ℓ )2
(3.31)≤ 𝜆−2 (1 + 𝑞2E) d(𝑢★

ℓ , 𝑢
𝑘
ℓ )2,

to obtain an upper bound of the quasi-error Λ𝑘+1
ℓ

in terms of the linearization
error d(𝑢★

ℓ
, 𝑢𝑘

ℓ
)2. With𝐶8 B 𝜆−2 (1 + 𝑞2E) and provided that

(𝜇 + 𝜀 𝐶1)𝐶8 + (1 + 𝜀 𝐶2) 𝑞2E ≤ 1 − 𝜀, (3.50)

[GHPS21, Lemma 10(i)] then proves that

Λ𝑘+1ℓ ≤ (1 − 𝜀)Λ𝑘ℓ .

Up to the final choice of 𝜇, 𝜀 > 0, this concludes the proof of these cases and statement (i).
Case 3: Evaluation of (i.b) returns true ∧ true. The case true ∧ true is analyzed

in [GHPS21, Lemma 10(ii)] and is based on the contractivity of the error estimator given
that the Dörfler marking is employed.
Define 𝑞𝜃 B

(1− (1−𝑞2red) 𝜃 ) and𝐶9 B 4𝛼−1(1 +𝑞2E)𝐶stab [𝜏]2. Let 0 < 𝜔 < 1 be arbitrary.
Note that𝐶1,𝐶2,𝐶9 > 0 and 0 < 𝑞𝜃 < 1 depend only on the problem setting. Provided that

𝜀 𝐶1 𝜇−1 + 𝑞𝜃 (1 + 𝛿 ) ≤ 1 − 𝜀 and 𝜀 𝐶2 + 𝑞2E + 𝜇 𝑞𝜃 (1 + 𝜔−1)𝐶9 ≤ 1 − 𝜀, (3.51)

we obtain from [GHPS21, Lemma 10(ii)] that

Λ0ℓ+1 ≤ (1 − 𝜀) Λ𝑘−1
ℓ

.
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Up to the final choice of 𝜔,𝜇, 𝜀 > 0, this concludes the proof of Lemma 3.15(ii).
Choice of parameters.We proceed as follows:
1. Choose 𝜔 > 0 such that (1 + 𝜔) 𝑞𝜃 < 1.
2. Choose 𝜇 > 0 such that 𝑞2E + 𝜇 max{𝐶5,𝐶7} < 1, 𝑞2E + 𝜇𝐶8 < 1,

and 𝑞2E + 𝜇 𝑞𝜃 (1 + 𝜔)−1𝐶9 < 1.
3. Finally, choose 𝜀 > 0 sufficiently small such that (3.49)–(3.51) are satisfied.

This concludes the proof of Lemma 3.15 with 𝑞2lin B (1 − 𝜀). □

Proof of Theorem 3.14. According to (3.9), it holds that Δ𝑘
ℓ
≃ (Λ𝑘

ℓ
)1/2, where the hidden

constants depend only on𝜇, 𝛼, and 𝐿 [𝜏/2]. We use (3.9) for the term ⦀𝑢★
ℓ
−𝑢𝑘

ℓ
⦀, and hence

the dependency 𝐿 [𝜏/2] is justified by (3.36). Then, linear convergence (3.39) follows from
Lemma 3.15 and induction, since the set Q is linearly ordered with respect to the total step
counter | (·, ·) |. □

Remark 3.16. (i) Provided that energy contraction (3.31) holds and that the adaptivity
parameter 𝜆 > 0 is sufficiently small, the stopping criterion

|E(𝑢𝑘−1ℓ ) − E(𝑢𝑘ℓ ) | ≤ 𝜆2𝜂ℓ (𝑢𝑘ℓ )2 (i.b′)

from [GHPS21] is a viable alternative to the stopping criterion of Algorithm 3.10(i.b). The
main difficulty is to ensure nested iteration (3.28). This relies, in essence, on the estimate

𝛼

2 ⦀𝑢★
ℓ − 𝑢𝑘

ℓ
⦀

2 (3.9)≤ E(𝑢𝑘
ℓ
) − E(𝑢★

ℓ )
(3.31), (3.24)≤ 𝑞E [𝛿 ]2

1 − 𝑞E [𝛿 ]2
[E(𝑢𝑘−1

ℓ
) − E(𝑢𝑘

ℓ
)]

(i.b′)≤ 𝑞E [𝛿 ]2
1 − 𝑞E [𝛿 ]2

𝜆2𝜂ℓ (𝑢𝑘ℓ )2
(A1)≤ 2 𝑞E [𝛿 ]2

1 − 𝑞E [𝛿 ]2
𝜆2

[
𝜂ℓ (𝑢★

ℓ )2+𝐶stab [𝜏/2]2⦀𝑢★
ℓ − 𝑢𝑘

ℓ
⦀

2] ,
where ⦀𝑢★

ℓ
− 𝑢𝑘

ℓ
⦀ ≤ 𝜏/2 stems from (3.36). Using a uniform estimate for the error estimator

as in (3.43), the last estimate, and the observation that ⦀𝑢𝑘
ℓ
⦀ ≤ 𝑀 + ⦀𝑢★

ℓ
− 𝑢𝑘

ℓ
⦀ lead us to

⦀𝑢0ℓ+1⦀ = ⦀𝑢
𝑘

ℓ
⦀ ≤ 𝑀 + 𝜆 𝑟 [𝛿 ]𝐶0 (𝜂0(0) + 1)

[1 − 𝜆2 𝑟 [𝛿 ]2𝐶stab [𝜏/2]2]1/2
!≤ 2𝑀 with 𝑟 [𝛿 ]2 B 4

𝛼

𝑞E [𝛿 ]2
1 − 𝑞E [𝛿 ]2

,

where a sufficiently small 𝜆 such that 𝜆2 𝑟 [𝛿 ]2𝐶stab [𝜏/2]2 < 1 is required and where𝐶0 B
𝐶mon max{1,𝐶stab [𝑀 ]𝑀 }. We see that a sufficiently small 𝜆 > 0 ensures nested itera-
tion (3.28). In contrast, (i.b) leads to full linear convergence for arbitrary 𝜆 > 0.
(ii) Theorem 3.14 proves linear convergence, and hence in particular plain convergence

Δ𝑘
ℓ
→ 0 as | (ℓ, 𝑘 ) | → ∞. In Appendix 3.6, it is shown that plain convergence also holds for

Algorithm 3.10 with the modified stopping criterion

⦀𝑢𝑘ℓ − 𝑢𝑘+1ℓ ⦀ ≤ 𝜆𝜂ℓ (𝑢𝑘ℓ ) ∧ ⦀𝑢𝑘ℓ ⦀ < 2𝑀 (i.b′′)

(instead of Algorithm 3.10(i.b)) in the strongly monotone and locally Lipschitz continuous
setting without (POT). Due to the lack of an energy E, the result relies on norm contrac-
tion (3.30) instead of energy contraction (3.31).
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3.2 Strongly monotone operators

To formulate our main result on optimal convergence rates, we need some additional
notation. For 𝑁 ∈ ℕ0, let 𝕋𝑁 B {T ∈ 𝕋 | #T − #T0 ≤ 𝑁 } denote the (finite) set of all
refinements of T0 which have at most𝑁 elements more than T0. For 𝑠 > 0, we define

||𝑢★ ||𝔸𝑠 B sup
𝑁 ∈ℕ0

(
(𝑁 + 1)𝑠 min

Topt∈𝕋𝑁

[
⦀𝑢★ − 𝑢★

opt⦀ +𝜂opt(𝑢★
opt)

] ) ∈ ℝ≥0 ∪ {∞}. (3.52)

Here, 𝑢★
opt ∈ Xopt denotes the exact Galerkin solution (3.4) with respect to the optimal

mesh Topt, where optimality is understood with respect to the quasi-error Δ★
opt from (3.38)

(consisting of the energy norm error plus error estimator). In explicit terms, ||𝑢★ ||𝔸𝑠 < ∞
means that an algebraic convergence rate O(𝑁 −𝑠 ) for the quasi-error Δ★

opt is possible, if
the optimal triangulations are chosen.
The secondmain theoremstatesoptimal convergence ratesof thequasi-error (3.38)with

respect to the number of degrees of freedom. As usual in this context (see,
e.g., [CFPP14]), the result requires that the adaptivity parameters 0 < 𝜃 ≤ 1 and 𝜆 > 0 are
sufficiently small. The proof is found in, e.g., [GHPS21, Theorem 8]. A careful inspection
of the proof reveals that it requires only estimates of the form

d(𝑢𝑘
ℓ
, 𝑢

𝑘−1
ℓ

) ≤ 𝜆𝜂ℓ (𝑢𝑘ℓ ),

as well as linear convergence (3.39), which are satisfied for Algorithm 3.10. The results
from [GHPS21] are proven for a uniform Lipschitz and stability constant; in the present
setting, this follows from Remark 3.13(ii).

Theorem 3.17: rate-optimality w.r.t. degrees of freedom
Suppose thatA satisfies (SM), (LIP), and (POT) as well as the axioms of adaptivity (A1)–
(A4). Suppose that the choice of 𝛿 > 0 guarantees that Algorithm 3.10 satisfies energy
contraction (3.31). Define

𝜆opt B
1 − 𝑞E

𝑞E𝐶stab [𝜏]
(𝛼
2
)1/2

, (3.53)

with 𝜏 from (3.33). Let 0 < 𝜃 ≤ 1 and 0 < 𝜆 < 𝜆opt𝜃 such that

0 < 𝜃 ′ B
𝜃 + 𝜆/𝜆opt
1 − 𝜆/𝜆opt < (1 +𝐶stab [𝜏]2𝐶 2

rel)−1/2. (3.54)

Let 𝑠 > 0. Then, there exist 𝑐opt,𝐶opt > 0 such that

𝑐−1opt ||𝑢★ ||𝔸𝑠 ≤ sup
(ℓ,𝑘 ) ∈Q

(#Tℓ − #T0 + 1)𝑠 Δ𝑘ℓ ≤ 𝐶opt max{||𝑢★ ||𝔸𝑠 ,Δ
0
0}, (3.55)

where ||𝑢★ ||𝔸𝑠 is defined in (3.52). The constant 𝑐opt > 0 depends only on𝐶Céa = 𝐿 [2𝑀 ]/𝛼,
fine properties of NVB refinement,𝐶stab [𝜏],𝐶rel, #T0, and 𝑠 , and additionally on ℓ or ℓ0, if
ℓ < ∞ or𝜂ℓ0 (𝑢𝑘ℓ0) = 0 for some (ℓ0, 0) ∈ Q, respectively. The constant𝐶opt > 0 depends only
on fine properties of NVB refinement, 𝛼,𝐶stab [𝜏], 𝑞red,𝐶rel,𝐶drel, 1 − 𝜆/𝜆opt (and hence on
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3 semilinear AILFEMwith linearization

energy contraction 𝑞E),𝐶mark,𝐶lin, 𝑞lin, and 𝑠 . □

To estimate thework necessary to compute𝑢𝑘
ℓ
∈ Xℓ , wemake the following assumptions

which are usually satisfied in practice:
⊲ The computation of all indicators𝜂ℓ (𝑇 ,𝑢𝑘ℓ ) for𝑇 ∈ Tℓ requires O(#Tℓ) operations;
⊲ Themarking in Algorithm 3.10(iii) can be performed at linear cost O(#Tℓ) (cf. [Ste07],
or the algorithm from [PP20] providingMℓ withminimal cardinality);

⊲ We have linear cost O(#Tℓ) to generate the newmesh Tℓ+1 in Algorithm 3.10(iv).
In addition, wemake the following “idealized” assumption, but refer to Remark 3.18(ii):

⊲ The solutions𝑢𝑘
ℓ
∈ Xℓ of the linearized problems in Algorithm 3.10(i.a) can be com-

puted in linear complexity O(#Tℓ).
Since a step (ℓ, 𝑘 ) ∈ Q of Algorithm 3.10 depends on the full history of preceding steps,
the total work spent to compute𝑢𝑘

ℓ
∈ Xℓ is then of order

work(ℓ, 𝑘 ) B
∑︁

(ℓ′,𝑘 ′ ) ∈Q
(ℓ′,𝑘 ′ )≤ (ℓ,𝑘 )

#Tℓ′ for all (ℓ, 𝑘 ) ∈ Q. (3.56)

Remark 3.18. (i) In order to avoid the computation of𝜂ℓ+1(𝑢𝑘ℓ+1) in each step of the inner
loop, i.e., for all 𝑘 such that (ℓ + 1, 𝑘 ) ∈ Q, onemay use𝜂ℓ (𝑢𝑘ℓ ) instead. While the proof of
linear convergence with the adapted stopping criterion is possible, the proof of optimality
remains an open question that goes beyond this work.
(ii) The idealized assumption that the cost of solving the linearized discrete system in

Algorithm 3.10(i.a) is linear, can be avoided with an extended algorithm (and refined anal-
ysis) in the spirit of [HPSV21]. There, an algebraic solve procedure is built into the presented
adaptive algorithm as an additional inner loop, taking into account not only discretization
and linearization errors but also algebraic errors. In this setting, the “idealized” assump-
tion on the solver would be reduced to the assumption that one solver step has linear cost,
which is feasible in the context of FEM. To keep the length of the present manuscript reason-
able, we have decided to focus only on the linearization. The details follow along the lines
of [HPSV21] and are omitted.

The next corollary states the equivalence of rate-optimality with respect to the number
of degrees of freedom and rate-optimality with respect to the total work, i.e., the overall
computational cost.
Corollary 3.19 (rate-optimality w.r.t. computational cost). Let (Tℓ)ℓ∈ℕ0 be the sequence
generated by Algorithm 3.10. Suppose full linear convergence (3.39)with respect to the
quasi-error Δ𝑘

ℓ
from (3.38). Then, for all 𝑠 > 0, it holds that

𝐶rate B sup
(ℓ,𝑘 ) ∈Q

(#Tℓ − #T0 + 1)𝑠 Δ𝑘ℓ ≤ sup
(ℓ,𝑘 ) ∈Q

work(ℓ, 𝑘 )𝑠 Δ𝑘ℓ ≤ (#T0)𝑠 𝐶lin(1 − 𝑞1/𝑠lin
)𝑠 𝐶rate. (3.57)
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Consequently, rate-optimality with respect to the number of elements (3.55) yields that

𝑐−1opt ||𝑢★ ||𝔸𝑠 ≤ sup
(ℓ,𝑘 ) ∈Q

work(ℓ, 𝑘 )𝑠 Δ𝑘ℓ ≤ 𝐶opt
(#T0)𝑠 𝐶lin(1 − 𝑞1/𝑠lin

)𝑠 max{||𝑢★ ||𝔸𝑠 ,Δ
0
0}. (3.58)

Proof. The first inequality in (3.57) is obvious. To obtain the upper bound, let (ℓ, 𝑘 ) ∈ Q.
Elementary calculus (see [BHP17, Lemma 22]) proves that

#T𝐻 ≤ #T0
(#T𝐻 − #T0 + 1

) for all T𝐻 ∈ 𝕋 .

Moreover, linear convergence (3.39) and the geometric series lead us to

∑︁
(ℓ′,𝑘 ′ ) ∈Q

(ℓ′,𝑘 ′ )≤ (ℓ,𝑘 )

(Δ𝑘 ′
ℓ′ )−1/𝑠

(3.39)≤ 𝐶
1/𝑠
lin (Δ𝑘ℓ )−1/𝑠

∑︁
(ℓ′,𝑘 ′ ) ∈Q

(ℓ′,𝑘 ′ )≤ (ℓ,𝑘 )

(𝑞1/𝑠lin ) | (ℓ,𝑘 ) |− | (ℓ′,𝑘 ′ ) | ≤
𝐶
1/𝑠
lin (Δ𝑘

ℓ
)−1/𝑠

1 − 𝑞1/𝑠lin
.

Combining the last two inequalities, we obtain that∑︁
(ℓ′,𝑘 ′ ) ∈Q

(ℓ′,𝑘 ′ )≤ (ℓ,𝑘 )

#Tℓ′ ≤ (#T0)
∑︁

(ℓ′,𝑘 ′ ) ∈Q
(ℓ′,𝑘 ′ )≤ (ℓ,𝑘 )

(#Tℓ′ − #T0 + 1) ≤ (#T0)𝐶 1/𝑠
rate

∑︁
(ℓ′,𝑘 ′ ) ∈Q

(ℓ′,𝑘 ′ )≤ (ℓ,𝑘 )

(Δ𝑘 ′
ℓ′ )−1/𝑠

≤ (#T0)
𝐶
1/𝑠
lin

1 − 𝑞1/𝑠lin
(Δ𝑘ℓ )−1/𝑠 𝐶 1/𝑠

rate.

Rearranging this estimate, we obtain the upper bound in (3.57). □

3.3 Semilinear model problem

3.3.1 Model problem

For 𝑑 ∈ {1, 2, 3}, let Ω ⊂ ℝ𝑑 be a bounded Lipschitz domain. Given 𝑓 ∈ 𝐿2(Ω) and
𝒇 ∈ [𝐿2(Ω)]𝑑 , we aim to approximate the weak solution𝑢★ ∈ X B 𝐻 1

0 (Ω) of the semilinear
elliptic PDE

−div(𝑨∇𝑢★) + 𝑏 (𝑢★) = 𝑓 − div 𝒇 inΩ subject to 𝑢★ = 0 on 𝜕Ω. (3.59)

While the precise assumptions on the coefficients 𝑨 : Ω → ℝ𝑑×𝑑
sym and 𝑏 : Ω × ℝ → ℝ

are given in Section 3.3.3–3.3.4, we note that, here and below, we abbreviate 𝑨∇𝑢★ ≡
𝑨 (·)∇𝑢★(·) : Ω → ℝ𝑑 and 𝑏 (𝑢★) ≡ 𝑏 (·, 𝑢★(·)) : Ω → ℝ.
Let ⟨ · , · ⟩Ω denote the 𝐿2(Ω)-scalar product ⟨𝑣 , 𝑤⟩Ω B

∫
Ω
𝑣𝑤 d𝑥 and let ⟪𝑣 , 𝑤⟫ B

⟨𝑨∇𝑣 , ∇𝑤⟩Ω be the 𝑨-induced energy scalar product on𝐻 1
0 (Ω). Then, the weak formula-

tion of (3.59) reads as follows: Find𝑢★ ∈ 𝐻 1
0 (Ω) such that

⟨A𝑢★ , 𝑣⟩B⟪𝑢★ , 𝑣⟫+⟨𝑏 (𝑢★) , 𝑣⟩Ω= ⟨𝑓 , 𝑣⟩Ω+⟨𝒇 , ∇𝑣⟩ΩC ⟨𝐹 , 𝑣⟩ for all 𝑣 ∈ 𝐻 1
0 (Ω). (3.60)
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3 semilinear AILFEMwith linearization

Existence and uniqueness of the solution𝑢★ ∈ 𝐻 1
0 (Ω) of (3.60) follow from the Browder–

Minty theorem onmonotone operators (see Section 3.3.6 for details).
Based on conforming triangulations T𝐻 of Ω and fixed polynomial degree𝑚 ∈ ℕ, let

X𝐻 B {𝑣𝐻 ∈ 𝐻 1
0 (Ω) | ∀𝑇 ∈ T𝐻 : 𝑣𝐻 |𝑇 is a polynomial of degree ≤ 𝑚}. Then, the FEM

discretization of (3.60) reads: Find𝑢★
𝐻
∈ X𝐻 such that

⟪𝑢★
𝐻 , 𝑣𝐻⟫ + ⟨𝑏 (𝑢★

𝐻 ) , 𝑣𝐻 ⟩Ω = ⟨𝐹 , 𝑣𝐻 ⟩ for all 𝑣𝐻 ∈ X𝐻 . (3.61)

The FEM solution𝑢★
𝐻
approximates the sought exact solution𝑢★.

3.3.2 General notation

For 1 ≤ 𝑝 ≤ ∞, let 1 ≤ 𝑝 ′ ≤ ∞ be the conjugate Hölder index which ensures that
||𝜙 𝜓 ||𝐿1 (Ω) ≤ ||𝜙 ||𝐿𝑝 (Ω) ||𝜓 ||𝐿𝑝′ (Ω) for 𝜙 ∈ 𝐿𝑝 (Ω) and 𝜓 ∈ 𝐿𝑝

′ (Ω), i.e., 1/𝑝 + 1/𝑝 ′ = 1 with
the convention that 𝑝 ′ = 1 for 𝑝 = ∞ and vice versa. Moreover, for 1 ≤ 𝑝 < 𝑑 , let
1 ≤ 𝑝∗ B 𝑑𝑝/(𝑑 − 𝑝) < ∞ denote the critical Sobolev exponent of 𝑝 in dimension 𝑑 ∈ ℕ.
We recall the Gagliardo–Nirenberg–Sobolev inequality (see, e.g., [FK80, Theorem 16.6])

||𝑣 ||𝐿𝑟 (Ω) ≤ 𝐶GNS ||∇𝑣 ||𝐿𝑝 (Ω) for all 𝑣 ∈𝑊 1,𝑝
0 (Ω) (3.62)

with a constant 𝐶GNS = 𝐶GNS( |Ω|, 𝑑,𝑝, 𝑟 ). With X = 𝐻 1
0 (Ω), we restrict to 𝑝 = 2. If 𝑑 ∈

{1, 2}, (3.62) holds for any 1 ≤ 𝑟 < ∞. If 𝑑 = 3, (3.62) holds for all 1 ≤ 𝑟 ≤ 𝑝∗ = 6, where
𝑟 = 𝑝∗ is the largest possible exponent such that the embedding𝑊 1,𝑝 (Ω) ↩→ 𝐿𝑟 (Ω) is
continuous.

3.3.3 Assumptions on diffusion coefficient

The diffusion coefficient 𝑨 : Ω → ℝ𝑑×𝑑
sym satisfies the following standard assumptions:

(ELL) 𝑨 ∈ 𝐿∞(Ω;ℝ𝑑×𝑑
sym ), where 𝑨 (𝑥) ∈ ℝ𝑑×𝑑

sym is a symmetric and uniformly positive definite
matrix, i.e., theminimal andmaximal eigenvalues satisfy

0 < 𝜇0 B inf
𝑥∈Ω

𝜆min(𝑨 (𝑥)) ≤ sup
𝑥∈Ω

𝜆max (𝑨 (𝑥)) C 𝜇1 < ∞.

In particular, the 𝑨-induced energy scalar product ⟪𝑣 , 𝑤⟫ B ⟨𝑨∇𝑣 , ∇𝑤⟩Ω induces an
equivalent norm ⦀𝑣⦀ B ⟪𝑣 , 𝑣⟫1/2 on𝐻 1

0 (Ω).
To guarantee later that the residual a posteriori error estimators are well-defined, we ad-

ditionally require that𝐴 |𝑇 ∈ [𝑊 1,∞(𝑇 )]𝑑×𝑑 for all𝑇 ∈ T0, whereT0 is the initial triangulation
of the adaptive algorithm.

3.3.4 Assumptions on the nonlinear reaction coefficient

The nonlinearity 𝑏 : Ω×ℝ → ℝ satisfies the following assumptions, which follow [BHSZ11,
(A1)–(A3)]:

(CAR) 𝑏 : Ω × ℝ → ℝ is a Carathéodory function, i.e., for all 𝑛 ∈ ℕ0, the 𝑛-th derivative
𝑏 (𝑛 ) B 𝜕𝑛

𝜉
𝑏 of 𝑏 with respect to the second argument 𝜉 satisfies that
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⊲ for any 𝜉 ∈ ℝ, the function 𝑥 ↦→ 𝑏 (𝑛 ) (𝑥, 𝜉 ) is measurable onΩ,
⊲ for any 𝑥 ∈ Ω, the function 𝜉 ↦→ 𝑏 (𝑛 ) (𝑥, 𝜉 ) exists and is continuous in 𝜉 .

(MON) We assumemonotonicity in the second argument, i.e., 𝑏 ′(𝑥, 𝜉 ) B 𝑏 (1) (𝑥, 𝜉 ) ≥ 0 for all
𝑥 ∈ Ω and 𝜉 ∈ ℝ. Without loss of generality2, we assume that 𝑏 (𝑥, 0) = 0.

To establish continuity of 𝑣 ↦→ ⟨𝑏 (𝑣 ) , 𝑤⟩Ω, we impose the following growth condition on
𝑏 (𝑣 ); see, e.g., [FK80, Chapter III, (12)] or [BHSZ11, (A4)]:
(GC) If 𝑑 ∈ {1, 2}, there exists 𝑁 ∈ ℕ such that 1 ≤ 𝑁 < ∞. For 𝑑 = 3, there exists 𝑁 ∈ ℕ

such that 1 ≤ 𝑁 ≤ 5. Suppose that, for 𝑑 ∈ {1, 2, 3}, there exists 𝑅 > 0 such that

|𝑏 (𝑁 ) (𝑥, 𝜉 ) | ≤ 𝑅 for a.e. 𝑥 ∈ Ω and all 𝜉 ∈ ℝ. (3.63)

While (GC) turns out to be sufficient for plain convergence of the later AILFEM algorithm,
we require the following stronger assumption for linear convergence and optimal conver-
gence rates.

(CGC) There holds (GC), if𝑑 ∈ {1, 2}. If𝑑 = 3, there holds (GC)with the stronger assumption
𝑁 ∈ {2, 3}.

Remark 3.20. (i) Let 𝑣,𝑤 ∈ 𝐻 1
0 (Ω). To establish continuity of (𝑣,𝑤 ) ↦→ ⟨𝑏 (𝑣 ) , 𝑤⟩Ω, we

apply the Hölder inequality with Hölder conjugates 1 ≤ 𝑠 , 𝑠 ′ ≤ ∞ to obtain that

|⟨𝑏 (𝑣 ) , 𝑤⟩Ω | ≤ ||𝑏 (𝑣 ) ||𝐿𝑠 ′ (Ω) ||𝑤 ||𝐿𝑠 (Ω) . (3.64)

The smoothness assumption (CAR) admits aTaylor expansion for𝑏 . Togetherwith𝑏 (0) = 0
from (MON), this yields that

𝑏 (𝑣 ) (MON)
=

𝑁 −1∑︁
𝑛=1

𝑏 (𝑛 ) (0)
𝑛! 𝑣𝑛 +

( ∫ 1

0

(1 − 𝜉 )𝑁 −1

(𝑁 − 1)! 𝑏 (𝑁 ) (𝜉𝑣 ) d𝜉
)
𝑣𝑁 . (3.65)

With ||𝑣𝑛 ||𝐿𝑠 ′ (Ω) = ||𝑣 ||𝑛
𝐿𝑛𝑠

′ (Ω) , it follows that

||𝑏 (𝑣 ) ||𝐿𝑠 ′ (Ω)
(GC)
≲

𝑁 −1∑︁
𝑛=1

||𝑣𝑛 ||𝐿𝑠 ′ (Ω) + ||𝑣𝑁 ||𝐿𝑠 ′ (Ω) =
𝑁 −1∑︁
𝑛=1

||𝑣 ||𝑛
𝐿𝑛𝑠

′ (Ω) + ||𝑣 ||𝑁
𝐿𝑁𝑠

′ (Ω)

≲
𝑁∑︁
𝑛=1

||𝑣 ||𝑛
𝐿𝑁𝑠

′ (Ω) ≤ 𝑁 max{1, ||𝑣 ||𝑁 −1
𝐿𝑁𝑠

′ (Ω) } ||𝑣 ||𝐿𝑁𝑠 ′ (Ω) ,

where the second to last estimate exploits the 𝐿𝑝-space inclusions for bounded Ω. To
guarantee that |⟨𝑏 (𝑣 ) , 𝑤⟩Ω | < ∞, condition (GC) should ensure that the embedding

𝐻 1
0 (Ω) ↩→ 𝐿𝑟 (Ω) is continuous for 𝑟 = 𝑠 and 𝑟 = 𝑁𝑠 ′. (3.66)

2Otherwise, consider 𝑏 (𝑣 ) B 𝑏 (𝑣 ) − 𝑏 (0) and 𝑓 B 𝑓 − 𝑏 (0) instead.
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If 𝑑 ∈ {1, 2}, (3.66) follows if 1 ≤ 𝑟 < ∞ and hence arbitrary 1 < 𝑠 < ∞ and𝑁 ∈ ℕ. If 𝑑 = 3,
𝑟 = 𝑠 = 2∗ = 6 is the maximal index in (3.66). Hence, it follows that 𝑁 ≤ 2∗/𝑠 ′ = 2∗/2∗′ =
2∗ − 1 = 5. Altogether, we conclude continuity of (𝑣,𝑤 ) ↦→ ⟨𝑏 (𝑣 ) , 𝑤⟩Ω for all 𝑁 ∈ ℕ if
𝑑 ∈ {1, 2}, and𝑁 ≤ 5 if 𝑑 = 3.
(ii) The definition of [ 1 GOA, (GC)] uses

|𝑏 (𝑛 ) (𝑥, 𝜉 ) | ≤ 𝑅 (1 + |𝜉 |𝑁 −𝑛) for all 𝑥 ∈ Ω, all 𝜉 ∈ ℝ, and all 0 ≤ 𝑛 ≤ 𝑁

insteadof (3.63). However, the followingobservation replaces theestimates for all𝑏 (𝑛 ) with
0 ≤ 𝑛 < 𝑁 . Due to the smoothness assumption (CAR), wemay apply a Taylor expansion
for an admissible 𝜎 such that (𝑁 − 𝑛) 𝜎 < ∞ if 𝑑 = 1, 2 and (𝑁 − 𝑛) 𝜎 ≤ 6 if 𝑑 = 3. Together
with ||𝑣𝑛 ||𝐿𝜎 (Ω) = ||𝑣 ||𝑛

𝐿𝑛𝜎 (Ω) , this leads us to

||𝑏 (𝑛 ) (𝑣 ) ||𝐿𝜎 (Ω) ≤
𝑁 −1∑︁
𝑗=𝑛

𝑏 ( 𝑗 ) (0)
(𝑗 − 𝑛)! ||𝑣

𝑗−𝑛 ||𝐿𝜎 (Ω) +
( ∫ 1

0

(1 − 𝜉 )𝑁 −1−𝑛

(𝑁 − 1 − 𝑛)! 𝑏
(𝑁 ) (𝜉𝑣 ) d𝜉

)
||𝑣𝑁 −𝑛 ||𝐿𝜎 (Ω)

(GC)
≲

𝑁 −1∑︁
𝑗=𝑛

||𝑣 || 𝑗−𝑛
𝐿 ( 𝑗−𝑛)𝜎 (Ω) + ||𝑣 ||𝑁 −𝑛

𝐿 (𝑁 −𝑛)𝜎 (Ω) ≲
𝑁∑︁
𝑗=𝑛

||𝑣 || 𝑗−𝑛
𝐿 (𝑁 −𝑛)𝜎 (Ω)

≤ (𝑁 − 𝑛) (1 + ||𝑣 ||𝑁 −𝑛
𝐿 (𝑁 −𝑛)𝜎 (Ω)

)
≲ (𝑁 − 𝑛) (1 + ⦀𝑣⦀𝑁 −𝑛), (3.67)

where the additive constant stems from the fact that 𝑏 (𝑛 ) (0) ≠ 0 in general (in contrast
to the reasoning in (i)). This estimate plays a central role in proving the local Lipschitz
continuity of 𝑏 and thus of the overall semilinear model problem; see Lemma 3.21 below
and the discussion thereafter. □

3.3.5 Assumptions on the right-hand sides

For 𝑑 = 1, the exact solution𝑢★ from (3.60) below satisfies an 𝐿∞-bound, since𝐻 1-func-
tions are absolutely continuous. For 𝑑 ∈ {2, 3}, we need the following assumption:

(RHS) We suppose that the right-hand side fulfills that

𝒇 ∈ [𝐿𝑝 (Ω)]𝑑 for some 𝑝 > 𝑑 ≥ 2 and 𝑓 ∈ 𝐿𝑞 (Ω) where 1/𝑞 B 1/𝑝 + 1/𝑑.

To guarantee later that the residual a posteriori error estimator from (3.74) is well-defined,
we additionally require that 𝒇 |𝑇 ∈ 𝐻 (div,𝑇 ) and 𝒇 |𝑇 · 𝒏 ∈ 𝐿2(𝜕𝑇 ) for all𝑇 ∈ T0, where T0 is
the initial triangulation of the adaptive algorithm.

3.3.6 Well-posedness and applicability of abstract framework

Let 𝑣,𝑤 ∈ 𝐻 1
0 (Ω). We consider the operatorA, where𝐻 −1(Ω) B 𝐻 1

0 (Ω)′ is used to denote
the dual space of𝐻 1

0 (Ω),

A : 𝐻 1
0 (Ω) → 𝐻 −1(Ω), A𝑤 B ⟪𝑤 , ·⟫ + ⟨𝑏 (𝑤 ) , · ⟩Ω. (3.68)
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3.3 Semilinear model problem

Since 𝑏 ′(𝑥, 𝜁 ) ≥ 0 according to (MON), this implies that
(
𝑏 (𝑥, 𝜉2) − 𝑏 (𝑥, 𝜉1)

) (𝜉2 − 𝜉1) ≥ 0 for all 𝑥 ∈ Ω and 𝜉1, 𝜉2 ∈ ℝ.

Together with (ELL) and for 𝑣,𝑤 ∈ 𝐻 1
0 (Ω), we thus see that

⟨A𝑤 − A𝑣 , 𝑤 − 𝑣⟩ = ⟪𝑤 − 𝑣 , 𝑤 − 𝑣⟫ + ⟨𝑏 (𝑤 ) − 𝑏 (𝑣 ) , 𝑤 − 𝑣⟩Ω ≥ ⦀𝑤 − 𝑣⦀2. (3.69)

This proves thatA is strongly monotone with 𝛼 = 1 with respect to the energy norm ⦀ ·⦀.
The following lemma is crucial to prove local Lipschitz continuity.
Lemma 3.21. Suppose (RHS), (ELL), (CAR), (MON), and (GC). Let 𝜗 > 0 and let 𝑣,𝑤 ∈
𝐻 1
0 (Ω) withmax

{
⦀𝑤⦀,⦀𝑤 − 𝑣⦀} ≤ 𝜗 < ∞. Then, it holds that

⟨𝑏 (𝑤 ) − 𝑏 (𝑣 ) , 𝑧⟩Ω ≤ 𝐿 [𝜗] ⦀𝑤 − 𝑣⦀⦀𝑧⦀ for all 𝑧 ∈ 𝐻 1
0 (Ω) (3.70)

with 𝐿 [𝜗] = 𝐿 ( |Ω|, 𝑑, 𝜗,𝑁 ,𝑅, 𝜇0).

Proof. Due to the smoothness assumption (CAR), wemay consider the Taylor expansion

𝑏 (𝑣 ) =
𝑁 −1∑︁
𝑛=0

𝑏 (𝑛 ) (𝑤 ) (𝑣 −𝑤 )𝑛
𝑛! + (𝑣 −𝑤 )𝑁

(𝑁 − 1)!
∫ 1

0
(1 − 𝜉 )𝑁 −1 𝑏 (𝑁 ) (𝑤 + (𝑣 −𝑤 ) 𝜉 ) d𝜉 . (3.71)

In order to apply the generalized Hölder inequality for three terms 𝜙, 𝜑,𝜓 ∈ 𝐻 1
0 (Ω)

⟨𝜙 𝜑 , 𝜓⟩Ω ≤ ||𝜙 ||𝐿𝑡 ′′ (Ω) ||𝜑 ||𝐿𝑡 (Ω) ||𝜓 ||𝐿𝑡 (Ω) ,

where 1 = 1/𝑡 + 1/𝑡 + 1/𝑡 ′′, we choose 𝑡 > 2 arbitrarily for 𝑑 ∈ {1, 2} and 𝑡 = 6 and hence
𝑡 ′′ = 3/2 for 𝑑 = 3. In both cases, we see that

⟨𝑏 (𝑤 ) − 𝑏 (𝑣 ) , 𝑧⟩Ω ≤
𝑁 −1∑︁
𝑛=1

1
𝑛! ||𝑏

(𝑛 ) (𝑤 ) (𝑤 − 𝑣 )𝑛−1 ||𝐿𝑡 ′′ (Ω) ||𝑤 − 𝑣 ||𝐿𝑡 (Ω) ||𝑧 ||𝐿𝑡 (Ω)

+
���| (𝑤 − 𝑣 )𝑁 −1

(𝑁 − 1)!
∫ 1

0
(1 − 𝜉 )𝑁 −1 𝑏 (𝑁 ) (𝑤 + (𝑣 −𝑤 ) 𝜉 ) d𝜉 ���|𝐿𝑡 ′′ (Ω) ||𝑤 − 𝑣 ||𝐿𝑡 (Ω) ||𝑧 ||𝐿𝑡 (Ω)

(GC)
≲

( 𝑁 −1∑︁
𝑛=1

||𝑏 (𝑛 ) (𝑤 ) (𝑤 − 𝑣 )𝑛−1 ||𝐿𝑡 ′′ (Ω) + ||𝑤 − 𝑣 ||𝑁 −1
𝐿 (𝑁 −1)𝑡 ′′ (Ω)

)
⦀𝑤 − 𝑣⦀⦀𝑧⦀,

where the hidden constant depends on 𝑅 from (GC). Since 𝐻 1
0 (Ω) ↩→ 𝐿 (𝑁 −1)𝑡 ′′ (Ω) for

𝑑 ∈ {1, 2, 3}, it remains to prove that

||𝑏 (𝑛 ) (𝑤 ) (𝑤 − 𝑣 )𝑛−1 ||𝐿𝑡 ′′ (Ω) ≤ 𝐶 [𝜗] for all 𝑛 = 1, . . . , 𝑁 − 1. (3.72)

To this end, choose 𝑡1 = (𝑁 − 1)𝑡 ′′/(𝑁 − 𝑛) and 𝑡2 = (𝑁 − 1)𝑡 ′′/(𝑛 − 1) and note that
1
𝑡 ′′

=
1
𝑡 ′′

(𝑁 − 𝑛
𝑁 − 1 + 𝑛 − 1

𝑁 − 1
)
=
1
𝑡1

+ 1
𝑡2
.
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3 semilinear AILFEMwith linearization

Using the Hölder inequality, we arrive at

||𝑏 (𝑛 ) (𝑤 ) (𝑤 − 𝑣 )𝑛−1 ||𝐿𝑡 ′′ (Ω) ≤ ||𝑏 (𝑛 ) (𝑤 ) ||𝐿𝑡1 (Ω) || (𝑤 − 𝑣 )𝑛−1 ||𝐿𝑡2 (Ω) .

Since ||𝜑 𝑗 ||𝐿𝜎 (Ω) = ||𝜑 || 𝑗
𝐿 𝑗𝜎 (Ω) and (𝑁 − 1)𝑡 ′′ < ∞ if 𝑑 ∈ {1, 2} and (𝑁 − 1)𝑡 ′′ ≤ 6 if 𝑑 = 3

guarantee admissibility as in Remark 3.20(ii), we apply the Sobolev embedding to obtain
that

||𝑏 (𝑛 ) (𝑤 ) ||𝐿𝑡1 (Ω)
(3.67)
≲ 1 + ||𝑤 ||𝑁 −𝑛

𝐿 (𝑁 −𝑛)𝑡1 (Ω) = 1 + ||𝑤 ||𝑁 −𝑛
𝐿 (𝑁 −1)𝑡 ′′ (Ω) ≲ 1 + ⦀𝑤⦀

𝑁 −𝑛

and

|| (𝑤 − 𝑣 )𝑛−1 ||𝐿𝑡2 (Ω) = ||𝑤 − 𝑣 ||𝑛−1
𝐿 (𝑛−1)𝑡2 (Ω) = ||𝑤 − 𝑣 ||𝑛−1

𝐿 (𝑁 −1)𝑡 ′′ (Ω) ≲ ⦀𝑤 − 𝑣⦀𝑛−1.

The last estimates together with the assumptions ⦀𝑤 − 𝑣⦀ ≤ 𝜗 and ⦀𝑤⦀ ≤ 𝜗 conclude the
proof with hidden constant 𝐿 [𝜗] = 𝐿 ( |Ω|, 𝑑, 𝜗,𝑁 ,𝑅, 𝜇0) > 0. □

To see the local Lipschitz continuity ofA, let 𝑣,𝑤,𝜓 ∈ 𝐻 1
0 (Ω) and observe that

⟨A𝑤 − A𝑣 , 𝜓⟩ = ⟪𝑤 − 𝑣 , 𝜓⟫ + ⟨𝑏 (𝑤 ) − 𝑏 (𝑣 ) , 𝜓⟩Ω
(3.70)≤ (1 + 𝐿 [𝜗]) ⦀𝑤 − 𝑣⦀⦀𝜓⦀,

provided that ⦀𝑤⦀ ≤ 𝜗 and ⦀𝑤 − 𝑣⦀ ≤ 𝜗. This shows thatA is locally Lipschitz contin-
uous with Lipschitz constant 𝐿 [𝜗] B 1 + 𝐿 [𝜗]. Hence,A fits into the abstract setting of
Section 3.2.
Furthermore, following [AHW23], we note that the energy for the semilinear model

problem (3.59) of Section 3.3 for 𝑣 ∈ 𝐻 1
0 (Ω) is given by

E(𝑣 ) = 1
2

∫
Ω
|𝑨1/2∇𝑣 |2 d𝑥 +

∫
Ω

∫ 𝑣 (𝑥 )

0
𝑏 (𝑠 ) d𝑠 d𝑥 −

∫
Ω
𝑓 𝑣 d𝑥 −

∫
Ω
𝒇 · ∇𝑣 d𝑥. (3.73)

To see that the second integral is well-defined, note that the integration of the Taylor
expansion (3.65) gives rise to a term 𝑠𝑁+1 evaluated at 𝑠 = 𝑣 (𝑥) and 𝑠 = 0. Its integrability
||𝑣𝑁+1 ||𝐿1 (Ω) = ||𝑣 ||𝑁+1

𝐿 (𝑁+1) (Ω) < ∞ is ensured by (CGC).

3.3.7 Residual error estimators

For T𝐻 ∈ 𝕋 and 𝑣𝐻 ∈ X𝐻 , the local contributions of the standard residual error estimator
for the semilinear model problem (3.60) read

𝜂𝐻 (𝑇 ,𝑣𝐻 )2 B ℎ2𝑇 || 𝑓 + div(𝑨 ∇𝑣𝐻 − 𝒇 ) − 𝑏 (𝑣𝐻 ) ||2𝐿2 (𝑇 )
+ ℎ𝑇 || [[(𝑨 ∇𝑣𝐻 − 𝒇 ) · 𝒏]] ||2

𝐿2 (𝜕𝑇∩Ω) ,
(3.74)

where [[ · ]] denotes the jump across edges (for 𝑑 = 2) resp. faces (for 𝑑 = 3) and 𝒏 de-
notes the outer unit normal vector. For 𝑑 = 1, these jumps vanish, i.e., [[ · ]] = 0. [ 1 GOA,
Proposition 15] proves the axioms of adaptivity (A1)–(A4) for the present setting.
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3.4 Practical algorithm

Proposition 3.22 ([ 1 GOA, Proposition 15]). Suppose (RHS), (ELL), (CAR), (MON),
and (CGC). Then, the residual error estimator from (3.74) satisfies (A1)–(A4) from Sec-
tion 3.2.6. The constant𝐶rel depends only on 𝑑 , 𝜇0, and uniform shape regularity of the
meshes T𝐻 ∈ 𝕋 . The constant𝐶drel depends, in addition, on the polynomial degree𝑚, and
𝐶stab [𝜗] depends furthermore on |Ω|, 𝜗, 𝑛, 𝑅 , and 𝑨. □

3.4 Practical algorithm

For the semilinear problem (3.59) of Section 3.3, it holds that 𝛼 = 1 according to (3.69).
The optimal damping parameter 𝛿 > 0 as well as 𝐿 [6𝑀 ] are unknown in practice. In this
section, we present a practical algorithmwhich is formulated with computable quantities
only.

3.4.1 AILFEM and contraction of damped Zarantonello iteration

Instead of adaptively choosing 𝛿 > 0, we adapt the local Lipschitz constant 𝐿. Since 𝛼 = 1,
this already determines the optimal choice 𝛿 = 1/𝐿 and 𝑞 [𝛿 ]2 = 1 − 𝛿 2; see Remark 3.9.

Algorithm 3.23: practical AILFEM
Input: initial triangulation T0, initial guess𝑢00 B 0 and𝑀 = ||𝐹 − A0||X′ < ∞ according
to (3.5), marking parameters 0 < 𝜃 ≤ 1 and𝐶mark ≥ 1, solver termination parameter
𝜆 > 0, and solver parameters 𝐿0 B 1 and 𝛽 B

√
2.

Loop: For ℓ = 0, 1, 2, . . . , repeat the following steps (i)–(v):
(i) Calculate 𝛿ℓ ↦→1/𝐿ℓ and 𝑞2ℓ ↦→1 − 𝛿 2

ℓ
.

(ii) For all 𝑘 = 1, 2, . . . , repeat the following steps (a)–(c):
(a) Compute𝑢𝑘

ℓ
B Φℓ (𝛿ℓ ;𝑢𝑘−1ℓ

) and𝜂ℓ (𝑇 ,𝑢𝑘ℓ ) for all𝑇 ∈ Tℓ .
(b) Terminate 𝑘-loop if ( |E(𝑢𝑘−1

ℓ
) − E(𝑢𝑘

ℓ
) | ≤ 𝜆2𝜂ℓ (𝑢𝑘ℓ )2 ∧ ⦀𝑢𝑘

ℓ
⦀ ≤ 2𝑀 ) .

(c) If (E(𝑢𝑘
ℓ
) > 𝑞2

ℓ
E(𝑢𝑘−1

ℓ
)) , then

(c1) Discard the computed𝑢𝑘
ℓ
and set 𝑘 ↦→𝑘 − 1.

(c2) Increase 𝐿ℓ ↦→𝛽 𝐿ℓ .
(c3) Update 𝛿ℓ ↦→1/𝐿ℓ and 𝑞2ℓ ↦→1 − 𝛿 2

ℓ
.

(iii) Upon termination of the 𝑘-loop, define 𝑘 (ℓ) B 𝑘 .
(iv) DetermineMℓ ⊆ Tℓ with 𝜃 𝜂ℓ (𝑢𝑘 (ℓ )ℓ

)2 ≤ ∑
𝑇 ∈Mℓ

𝜂ℓ (𝑇 ,𝑢𝑘 (ℓ )ℓ
)2.

(v) Generate Tℓ+1 B refine(Tℓ ,Mℓ) and define𝑢0ℓ+1 B 𝑢
𝑘 (ℓ )
ℓ

.

Remark 3.24. Themotivation of the criterion in Algorithm 3.23(ii.c) is based on the equiv-
alence

E(𝑢𝑘ℓ )−E(𝑢★
ℓ ) ≤ 𝑞2ℓ

[E(𝑢𝑘−1ℓ )−E(𝑢★
ℓ )

] ⇐⇒ E(𝑢𝑘ℓ )−𝑞2ℓ E(𝑢𝑘−1ℓ ) ≤ (1−𝑞2ℓ ) E(𝑢★
ℓ ). (3.75)
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3 semilinear AILFEMwith linearization

The energy minimization property from Lemma 3.3 and 𝑏 (0) = 0 from (MON) show that
E(𝑢★

ℓ
) ≤ E(0) = 0; cf. (3.73). As a necessary criterion for energy contraction (3.31), we thus

obtain E(𝑢𝑘
ℓ
) ≤ 𝑞2

ℓ
E(𝑢𝑘−1

ℓ
), which is enforced by Algorithm 3.23(ii.c).

Remark 3.25. Note that𝜆 > 0 is arbitrary but fixed and remains unchanged throughout the
algorithm. In the numerical experiments below, the particular choice 𝜆 = 0.1 is motivated
by the following heuristic argument: the estimator𝜂ℓ (𝑢★

ℓ
) and hence approximately𝜂ℓ (𝑢𝑘ℓ )

controls the discretization error, while ⦀𝑢★
ℓ
− 𝑢

𝑘

ℓ
⦀

2 (3.9)≃ E(𝑢𝑘
ℓ
) − E(𝑢★

ℓ
) (3.24)
≲ E(𝑢𝑘−1

ℓ
) −

E(𝑢𝑘
ℓ
) (3.21)≃ ⦀𝑢

𝑘

ℓ
−𝑢𝑘−1

ℓ
⦀

2 controls the linearization error—at least if 𝛿𝐻 is sufficiently small.
Hence, E(𝑢𝑘−1

ℓ
) − E(𝑢𝑘

ℓ
) ≤ 0.12𝜂ℓ (𝑢𝑘ℓ )2 heuristically aims at limiting the linearization error

to be at most 10% of the current discretization error.

The next result states that Algorithm 3.23(ii.c) will not lead to an infinite loop.
Proposition 3.26. Suppose thatA satisfies (SM), (LIP), and (POT). Let 𝑢0

𝐻
∈ X𝐻 with

⦀𝑢0
𝐻
⦀ ≤ 2𝑀 . Set 𝐿0, 𝐿𝐻 ↦→1 and define 𝛽 B

√
2. Compute 𝛿𝐻 = 1/𝐿𝐻 and 𝑞2

𝐻
= 1 − 𝛿 2

𝐻
.

Starting with 𝑘 ↦→1 and𝑢1
𝐻
B Φ𝐻 (𝛿𝐻 ;𝑢0𝐻 ) ∈ X𝐻 , we proceed as follows:

• Given𝑢𝑘
𝐻
∈ X𝐻 for 𝑘 ≥ 1, compute𝑢𝑘+1

𝐻
B Φ𝐻 (𝛿𝐻 ;𝑢𝑘𝐻 ) ∈ X𝐻 and check if

E(𝑢𝑘+1𝐻 ) ≤ 𝑞2𝐻 E(𝑢𝑘𝐻 ). (3.76)

• If (3.76) holds, then increase 𝑘 ↦→𝑘 + 1.
• If (3.76) fails, then increase 𝐿𝐻 ↦→𝛽 𝐿𝐻 and update 𝛿𝐻 ↦→1/𝐿𝐻 and 𝑞2

𝐻
↦→1 − 𝛿 2

𝐻
.

Discard the computed𝑢𝑘+1
𝐻

.
Then, the condition (3.76) fails only finitely often so that this simple algorithm defines
the sequence of iterates (𝑢𝑘

𝐻
)𝑘 ∈ℕ0 .

Proof. Step 1. Given the initial 𝐿0 = 1, there exists a minimal number 𝑗 ∈ ℕ0 such that

𝐿 [6𝑀 ]2
2𝛼 < 𝛽 𝑗𝐿0 = 𝐿𝐻 (𝑗 ) and thus 𝛿𝐻 B 𝛿𝐻 (𝑗 ) = 1

𝛽 𝑗𝐿0
<

2𝛼
𝐿 [6𝑀 ]2 .

Define 𝑞𝐻 [𝛿𝐻 (𝑘 )]2 B 1 − 𝛿𝐻 (𝑘 )2. Recall 𝑞E [𝛿𝐻 ] from (3.23b) and observe that

𝑞E [𝛿𝐻 (𝑘 )]2 = 1 − (1 − 𝛿𝐻 (𝑘 )𝐿 [6𝑀 ]
2

) 2𝛿𝐻 (𝑘 )𝛼2
𝐿 [3𝑀 ] ≃ 1 − 𝛿𝐻 (𝑘 ) + 𝛿𝐻 (𝑘 )2 for 𝛿𝐻 (𝑘 ) → 0.

Since 𝛿𝐻 (𝑘 ) → 0 for 𝑘 → ∞, there exists a minimal number 𝑘0 ∈ ℕwith 𝑘0 ≥ 𝑗 such that

𝑞E [𝛿𝐻 (𝑘0)]2 < 𝑞2𝐻 [𝛿𝐻 (𝑘0)] = 1 − 1
𝛽2𝑘0𝐿20

< 1 as well as 𝛿𝐻 (𝑘0) = 1
𝛽𝑘0𝐿0

<
2𝛼

𝐿 [6𝑀 ]2 .

This implies that Proposition 3.8 holds for the theoretical sequence 𝑢0
𝐻
B 𝑢

𝑘0
𝐻
and

𝑢𝑘+1
𝐻
B Φ𝐻 (𝛿𝐻 ;𝑢𝑘𝐻 ). In particular, we conclude that energy contraction (3.31) holds with

𝑞2
𝐻
= 1−𝛿 2

𝐻
. Moreover, Remark 3.24 shows that the necessary criterion (3.76) is guaranteed

to hold for the iterates (𝑢𝑘
𝐻
)𝑘 ∈ℕ0 as soon as (3.31) holds.
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3.5 Numerical experiments
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Figure 3.1: Results of Experiment 3.28 with polynomial degree 𝑚 = 1. Left: Error
estimator 𝜂ℓ (𝑢𝑘ℓ ) (diamond, left ordinate) and energy difference of iterative solutions(E(𝑢𝑘

ℓ
) −E(𝑢★))1/2 (circle, left ordinate) against work(ℓ, 𝑘 ) and the number of Zarantonello

steps onXℓ (cross, right ordinate). Right: Energy difference of E(𝑢𝑘ℓ ) to E(𝑢★) (circle) and
to E(𝑢★

ℓ
) (square) over the total step counter | (ℓ, 𝑘 ) |. Throughout, E(𝑢★) is obtained by

Aitken extrapolation and E(𝑢★
ℓ
) by sufficient Zarantonello steps on each level ℓ.

Step 2. Since the failure of (3.76) increases the current value of 𝐿 to 𝛽𝐿, it follows from
Step 1 that (3.76) can fail only finitely often, until the recomputed sequence (𝑢𝑘

𝐻
)𝑘 ∈ℕ0

satisfies (3.76) for all 𝑘 ∈ ℕ0 with 𝑘 ≥ 𝑘0. □

Remark 3.27. The optimality results for Algorithm 3.10 are expected to carry over — at
least asymptotically— to Algorithm 3.23; see Proposition 3.26. Themajor difficulty lies in
algorithmically determining whether the correct estimate of the Lipschitz constant (and
thus 𝛿𝐻 ) is preasymptotic or not, i.e., determining 𝑘 in Step 2 from the last proposition by
means of computable quantities only. However, it is ensured that 𝛿𝐻 remains uniformly
bounded from below.

3.5 Numerical experiments

In this section, we test and illustrate Algorithm 3.23 with numerical experiments. All
experiments were implemented using theMatlab codeMooAFEM [IP23]. Throughout,
Ω ⊂ ℝ2 andwe use 𝑥 = (𝑥1, 𝑥2) ∈ Ω to denote the Cartesian coordinates. In all experiments,
we consider equation (3.59) with isotropic diffusion 𝑨 =

(
𝜀 0
0 𝜀

) with 0 < 𝜀 ≤ 1. The
adaptivity parameter is set to 𝜃 = 0.5 and𝐶mark = 1. Moreover, recall the definition of the
overall computational cost from (3.56), which reads

work(ℓ, 𝑘 ) =
∑︁

(ℓ′,𝑘 ′ ) ∈Q
(ℓ′,𝑘 ′ )≤ (ℓ,𝑘 )

#Tℓ′ = 𝑘 #Tℓ +
ℓ−1∑︁
ℓ′=0

𝑘 (ℓ′) #Tℓ′ .
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3 semilinear AILFEMwith linearization

Experiment3.28 (nonlinear variantof the sine-Gordonequation [AHW23, Experiment5.1]).
ForΩ = (0, 1)2, letX = 𝐻 1

0 (Ω) with ⦀ ·⦀2 = ⟨∇· , ∇·⟩ (i.e., 𝜀 = 1) and consider

−Δ𝑢★ + (𝑢★)3 + sin(𝑢★) = 𝑓 inΩ subject to 𝑢★ = 0 on 𝜕Ω, (3.77)

with themonotone semilinearity 𝑏 (𝑣 ) = 𝑣3 + sin(𝑣 ), which satisfies (ELL), (CAR), (MON),
and (GC). We set 𝒇 = 0 and choose 𝑓 in such a way that

𝑢★(𝑥) = sin(𝜋𝑥1) sin(𝜋𝑥2),

which satisfies (RHS). In Figure 3.1, we plot the a posteriori estimator𝜂ℓ (𝑢𝑘ℓ ) and the energy
difference of the iterative solutions

(E(𝑢𝑘
ℓ
) −E(𝑢★))1/2 against the work(ℓ, 𝑘 ) for lowest order

FEM𝑚 = 1, where we approximate E(𝑢★) bymeans of Aitken convergence acceleration on
uniformmeshes with up to #Tfinal = 67108864 degrees of freedom on the finest mesh. The
decay rate is of (expected) optimal order O(work(ℓ, 𝑘 )−1/2) as | (ℓ, 𝑘 ) | → ∞. Moreover, the
experimentally observed number of sufficient linearization steps 𝑘 (ℓ) is two. Furthermore,
in Figure 3.1, we plot the difference of E(𝑢𝑘

ℓ
) to the approximated reference energy E(𝑢★)

using Aitken’s acceleration and to the energy E(𝑢★
ℓ
) onXℓ over the step counter | (ℓ, 𝑘 ) |. The

reference energyE(𝑢★
ℓ
) is calculatedbya sufficientnumberofZarantonello iterationsoneach

level ℓ until the energy difference of successive iterates is below the tolerance tol < 10−15.
Experiment 3.29 (singularly perturbed sine-Gordon equation). This example is a variant
of [AHW23, Experiment 5.2]. For 𝑑 = 2 andΩ = (0, 1)2, let 𝜀 = 10−5 and consider

−𝜀Δ𝑢★ + 2𝑢★ + sin(𝑢★) = 1 inΩ subject to 𝑢★ = 0 on 𝜕Ω,

with the monotone semilinearity 𝑏 (𝑣 ) = 𝑣 + sin(𝑣 ). In this case, the exact solution 𝑢★ is
unknown. The used X-norm is given by ⦀ ·⦀2 = 𝜀 ⟨∇· , ∇·⟩ + ⟨· , ·⟩. The particular choice
of the X-norm allows for 𝛼 = 1 due to the monotonicity of 𝑏 (𝑣 ). The problem clearly
satisfies (ELL), (CAR), (MON), and (GC). Moreover, 𝑓 = 1 and 𝒇 = 0 satisfy (RHS). In this
experiment, we employ a slight modification of the error estimator (3.74) following [Ver13,
Remark 4.14]

𝜂𝐻 (𝑇 ,𝑣𝐻 )2 B ℏ2𝑇 || 𝑓 + 𝜀Δ𝑣𝐻 − 𝑏 (𝑣𝐻 ) ||2𝐿2 (𝑇 ) + ℏ𝑇 || [[𝜀 ∇𝑣𝐻 · 𝒏]] ||2
𝐿2 (𝜕𝑇∩Ω) ,

where the scaling factors ℏ𝑇 = min{𝜀−1/2 ℎ𝑇 , 1} ensure 𝜀-robustness of the estimator.
InFigure3.2A,weplot the error estimator𝜂ℓ (𝑢𝑘ℓ ) forall (ℓ, 𝑘 ) ∈ Q against thework(ℓ, 𝑘 ) for

polynomial degrees 𝑚 ∈ {1, 2}. The decay rate is of (expected) optimal
order O(work(ℓ, 𝑘 )−𝑚/2) as | (ℓ, 𝑘 ) | → ∞. The number of Zarantonello steps on eachmesh
refinement level ℓ stabilizes for𝑚 ∈ {1, 2} at three (𝑚 = 1) and two (𝑚 = 2) after an ini-
tial phase. For𝑚 = 2, Figure 3.2B shows the approximate solution 𝑢𝑘

ℓ
, where ℓ = 28 and

𝑘 (28) = 2. Figure 3.2C depicts a mesh plot for #Tℓ = 4295 for ℓ = 11 and𝑚 = 1. In partic-
ular, this experiment shows that Algorithm 3.23 is suitable for a setting with dominating
nonlinear reaction given that a suitable norm on X is chosen. Furthermore, we remark
that the nonlinearity 𝑏 (𝑣 ) = 𝑣 + sin(𝑣 ) is globally Lipschitz continuous with Lipschitz con-
stant 𝐿 = 2. In our experiments, 𝛿ℓ is decreased twice, i.e., 𝛿ℓ decreases from 1 to 0.5 = 1/𝐿,
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(A) Error estimator𝜂ℓ (𝑢𝑘ℓ ) over work (diamond, left ordinate) and number of Zarantonello iteration
steps onXℓ over work (cross, right ordinate) for𝑚 = 1 (left) and𝑚 = 2 (right).

(B) Approximate solutions 𝑢𝑘
ℓ
, where

ℓ = 28, 𝑘 (28) = 2, and𝑚 = 2.
(C)Mesh with #Tℓ = 4295, where
ℓ = 11 and𝑚 = 1.

Figure 3.2:Using the norm ⦀ ·⦀2 = 𝜀 ⟨∇· , ∇·⟩ + ⟨· , ·⟩ in Experiment 3.29. Top: Convergence
plot of the error estimator𝜂ℓ (𝑢𝑘ℓ ) over work(ℓ, 𝑘 ) and number of Zarantonello iterations
onXℓ over work for𝑚 = 1 (top, left) and𝑚 = 2 (top, right). Bottom: Plot of the approximate
solution𝑢𝑘

ℓ
(bottom, left) and plot of a samplemesh (bottom, right).
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(A) Results for𝑚 = 1.
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(B) Results for𝑚 = 2.
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(C) Results for𝑚 = 4.
(D) Plot of iterative solution 𝑢𝑘

ℓ
, where ℓ = 16,

𝑘 (16) = 2, dim(Xℓ) = 14599, and𝑚 = 1.

Figure 3.3: 3.3A–3.3C: Product error estimator𝜂ℓ (𝑢𝑘ℓ )
[
𝜂ℓ (𝑢𝑘ℓ )2 + 𝜁ℓ (𝑧ℓ [𝑢𝑘ℓ ])2

]1/2 (diamond,
left ordinate), absolute goal error |𝐺 (𝑢★) −𝐺 (𝑢𝑘

ℓ
) | (circle, left ordinate), and number of

Zarantonello steps onXℓ over work (cross, right ordinate) for𝑚 = 1 (top, left),𝑚 = 2 (top,
right), and𝑚 = 4 (bottom, left). 3.3D: Plot of an iterative solution𝑢𝑘

ℓ
. (bottom, right).

which is optimal according to Remark 3.9 and remains uniformly bounded from below;
cf. Remark 3.27.

Experiment 3.30 (Goal-oriented AILFEM (GAILFEM)). We also test a canonical extension
of Algorithm 3.23 in a goal-oriented setting similar to that of [MS09, Example 7.3]. A
thorough treatment of this problem (and the assumptions thereof) is found in [ 1 GOA,
Example 35]. We use the proposed practical Algorithm 3.23 as the solve module for the
semilinear primal problem in theGOAFEMalgorithm [ 1 GOA, Algorithm17]. LetΩ = (0, 1)2
and 𝜀 = 1. The weak formulation of the primal problem reads: Find𝑢★ ∈ 𝐻 1

0 (Ω) such that

⟨∇𝑢★ , ∇𝑣⟩ + ⟨𝑏 (𝑢★) , 𝑣⟩ =
∫
Ω
𝒇 · ∇𝑣 d𝑥, for all 𝑣 ∈ 𝐻 1

0 (Ω), (3.78)
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3.6 Appendix: Convergence for vector-valued semilinear PDEs

where 𝑏 (𝑣 ) = 𝑣3 and 𝒇 = 𝜒Ω𝒇 (−1, 0) with the characteristic function 𝜒Ω𝒇 ofΩ𝒇 = {𝑥 ∈ Ω |
𝑥1 +𝑥2 ≤ 1

2 }. The weak formulation of the practical dual problem for the linearization point
𝑤 ∈ 𝐻 1

0 (Ω) reads: Find 𝑧★ [𝑤 ] ∈ 𝐻 1
0 (Ω) such that

⟨∇𝑧★ [𝑤 ] , ∇𝑣⟩ + ⟨𝑏 ′(𝑤 )𝑧★ [𝑤 ] , 𝑣⟩ =
∫
Ω
𝒈 · ∇𝑣 d𝑥, for all 𝑣 ∈ 𝐻 1

0 (Ω),

where 𝑏 ′(𝑣 ) = 3𝑣2 and 𝒈 = 𝜒Ω𝒈 (−1, 0) withΩ𝒈 = {𝑥 ∈ Ω | 𝑥1 + 𝑥2 ≥ 3
2 }. The goal functional

thus reads

𝐺 (𝑣 ) B −
∫
Ω𝒈

𝜕𝑣

𝜕𝑥1
d𝑥 for all 𝑣 ∈ 𝐻 1

0 (Ω).

. Since div(𝒈 ) = 0 on every element 𝑇 ∈ T0, the associated error estimator for the dual
problem reads

𝜁𝐻 (𝑤 ;𝑇 ,𝑣𝐻 )2 B ℎ2𝑇 ||Δ𝑣𝐻 − 𝑏 ′(𝑤 ) (𝑣𝐻 ) ||2𝐿2 (𝑇 ) + ℎ𝑇 || [[(∇𝑣𝐻 − 𝒈 ) · 𝒏]] ||2
𝐿2 (𝜕𝑇∩Ω) . (3.79)

We used ⦀ ·⦀2 = ⟪· , ·⟫ as theX-norm. For various polynomial degrees𝑚 ∈ {1, 2, 4}, Fig-
ure 3.3A–3.3C shows the results of the proposed GAILFEM algorithm driven by the product
estimator𝜂ℓ (𝑢𝑘ℓ )

[
𝜂ℓ (𝑢𝑘ℓ )2 + 𝜁ℓ (𝑧ℓ [𝑢𝑘ℓ ])2

]1/2, which is an upper bound to the goal error differ-
ence𝐺 (𝑢★) −𝐺 (𝑢★

ℓ
) and a viable way to recover optimal convergence rates; cf. [ 1 GOA]. We

plot the estimator product𝜂ℓ (𝑢𝑘ℓ )
[
𝜂ℓ (𝑢𝑘ℓ )2 + 𝜁ℓ (𝑧ℓ [𝑢𝑘ℓ ])2

]1/2, the number of Zarantonello
steps, and the absolute goal error difference |𝐺 (𝑢★) − 𝐺 (𝑢𝑘

ℓ
) | over the work(ℓ, 𝑘 ), where

𝐺 (𝑢★) = −0.0015849518088245 serves as a reference value; see [ 1 GOA, Example 35]. In
Figure 3.3D, we plot the sample solution𝑢𝑘

ℓ
, where ℓ = 13, 𝑘 (13) = 2, and𝑚 = 1.

The decay rate is of (expected) optimal order O(work(ℓ, 𝑘 )−𝑚) for | (ℓ, 𝑘 ) | → ∞, where
𝑚 ∈ {1, 2, 4} is the polynomial degree of the FEM space Xℓ . The number of Zarantonello
steps does not exceed two for𝑚 = {1, 2, 4} and stabilizes after an initial phase at one for
𝑚 = 4, respectively. Figure 3.4 depicts twomeshes for𝑚 = 1 and𝑚 = 4.

3.6 Appendix: Convergence for vector-valued semilinear PDEs

This appendix aims to extend the analysis from Section 3.2 to problems where themono-
tone operator does not have a potential, e.g., vector-valued semilinear PDEs. We prove
plain convergence of Algorithm 3.10 without the assumption (POT) andwith themodified
stopping criterion

⦀𝑢𝑘ℓ − 𝑢𝑘−1ℓ ⦀ ≤ 𝜆𝜂ℓ (𝑢𝑘ℓ ) ∧ ⦀𝑢𝑘ℓ ⦀ ≤ 2𝑀 (i.b′′)

replacing Algorithm 3.10(i.b). The proof requires some preliminary observations: First,
the convergence of the exact discrete solutions 𝑢★

ℓ
towards the exact solution 𝑢★∞ in the

so-called discrete limit space, which dates back to the seminal work [BV84]. Second, we
need to show that the approximate discrete solutions𝑢𝑘

ℓ
converge to the same limit.
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3 semilinear AILFEMwith linearization

(A)Mesh generated for𝑚 = 1, where
dimXℓ = 3092 and ℓ = 12.

(B)Mesh generated for𝑚 = 4, where
dimXℓ = 3081 and ℓ = 12.

Figure 3.4:Generated GAILFEMmeshes for𝑚 = 1 (Figure 3.4A) and𝑚 = 4 (Figure 3.4B).

Lemma 3.31. Suppose thatA satisfies (SM) and (LIP). With the discrete subspacesXℓ ⊂
X from Algorithm 3.10 (with or without themodified stopping criterion (i.b′′)), define
the discrete limit spaceX∞ := ⋃ℓ

ℓ=0Xℓ , where we recall that ℓ = sup{ℓ ∈ ℕ0 | (ℓ, 0) ∈ Q}.
Then, there exists a unique𝑢★∞ ∈ X∞ which solves

⟨A𝑢★
∞ , 𝑣∞⟩ = ⟨𝐹 , 𝑣∞⟩ for all 𝑣∞ ∈ X∞. (3.80)

Moreover, given the exact discrete solutions𝑢★
ℓ
∈ Xℓ , it holds that

⦀𝑢★
∞ − 𝑢★

ℓ ⦀ → 0 as ℓ → ℓ. (3.81)

Additionally, suppose (A1)–(A3)and suppose that the choice of 𝛿 > 0 inAlgorithm3.10 en-
sures norm contraction (3.30). Then, the approximations𝑢𝑘

ℓ
computed in Algorithm 3.10

fulfill that

⦀𝑢★
∞ − 𝑢𝑘ℓ ⦀ → 0 as (ℓ, 𝑘 ) ∈ Q with | (ℓ, 𝑘 ) | → ∞. (3.82)

Proof. The proof consists of three steps.
Step 1 (exact solutions). Since Xℓ ⊆ Xℓ+1 ⊂ X, the discrete limit space X∞ := ⋃ℓ

ℓ=0Xℓ
is a closed subspace of X. Proposition 3.2 proves the existence of a unique 𝑢★∞ ∈ X∞
satisfying (3.80). The Galerkin solutions𝑢★

ℓ
from (3.4) are also Galerkin approximations of

𝑢★∞. Hence, there holds the Céa-type estimate

⦀𝑢★
∞ − 𝑢★

ℓ ⦀
(3.6)≤ 𝐶Céa min

𝑣ℓ ∈Xℓ
⦀𝑢★

∞ − 𝑣ℓ⦀
ℓ→ℓ−−−→ 0, (3.83)

where convergence follows by definition ofX∞.

110



3.6 Appendix: Convergence for vector-valued semilinear PDEs

Step 2 (approximate solutions for ℓ = ∞). The norm contraction (3.30) and𝑢0
ℓ+1 = 𝑢

𝑘

ℓ

reveal that

0 ≤ ⦀𝑢★
ℓ+1 − 𝑢

𝑘 (ℓ+1)
ℓ+1 ⦀

(3.30)≤ 𝑞
𝑘 (ℓ+1)
N ⦀𝑢★

ℓ+1 − 𝑢0ℓ+1⦀ ≤ 𝑞N
[
⦀𝑢★

ℓ − 𝑢𝑘 (ℓ )
ℓ

⦀ + ⦀𝑢★
ℓ+1 − 𝑢★

ℓ ⦀
]
.

From Step 1, we infer that (𝑢★
ℓ
)ℓ∈ℕ0 is a Cauchy sequence. Defining 𝑎ℓ := ⦀𝑢★

ℓ
− 𝑢𝑘

ℓ
⦀ and

𝑏ℓ := 𝑞N ⦀𝑢★
ℓ+1 − 𝑢★

ℓ
⦀, the last estimate can be rewritten as

0 ≤ 𝑎ℓ+1 ≤ 𝑞N 𝑎ℓ + 𝑏ℓ , where lim
ℓ→∞

𝑏ℓ = 0.

It follows from elementary calculus (cf. [CFPP14, Corollary 4.8]) that

0 = lim
ℓ→∞

𝑎ℓ = lim
ℓ→∞

⦀𝑢★
ℓ − 𝑢𝑘

ℓ
⦀.

Altogether, we obtain that

⦀𝑢★
∞ − 𝑢𝑘ℓ ⦀ ≤ ⦀𝑢★

∞ − 𝑢★
ℓ ⦀ + ⦀𝑢★

ℓ − 𝑢𝑘ℓ ⦀
(3.30)≤ ⦀𝑢★

∞ − 𝑢★
ℓ ⦀ + ⦀𝑢★

ℓ − 𝑢0ℓ⦀
≤ ⦀𝑢★

∞ − 𝑢★
ℓ ⦀ + ⦀𝑢★

ℓ − 𝑢★
ℓ−1⦀ + ⦀𝑢★

ℓ−1 − 𝑢
𝑘

ℓ−1⦀ → 0 as ℓ → ∞.

Step 3 (approximate solutions for ℓ < ∞ and 𝑘 (ℓ) = ∞). It holds that 𝑢★∞ = 𝑢★
ℓ
and

hence, due to (3.30),

⦀𝑢★
∞ − 𝑢𝑘ℓ ⦀ = ⦀𝑢★

ℓ − 𝑢𝑘ℓ ⦀ → 0 as | (ℓ, 𝑘 ) | → ∞.

This concludes the proof. □

The following theorem states plain convergence in the abstract setting of the proposed
AILFEM algorithm.

Theorem 3.32: Plain convergence
Suppose that A satisfies (SM) and (LIP). Suppose the axioms of adaptivity (A1)–(A3).
Suppose that the choice of 𝛿 > 0 in Algorithm 3.10 ensures (3.30). Then, for any choice
of the marking parameters 0 < 𝜃 ≤ 1, 𝜆 > 0, and 1 ≤ 𝐶mark ≤ ∞, Algorithm 3.10 with
modified stopping criterion (i.b′′) guarantees convergence of the quasi-error from (3.38),
i.e.,

Δ𝑘ℓ = ⦀𝑢★ − 𝑢𝑘ℓ ⦀ +𝜂ℓ (𝑢𝑘ℓ ) → 0 as (ℓ, 𝑘 ) ∈ Q with | (ℓ, 𝑘 ) | → ∞. (3.84)

Proof. The assertion | (ℓ, 𝑘 ) | → ∞ consists of two cases:
Case 1 (ℓ = ∞). Recall the generalized estimator reduction [CFPP14, Lemma 4.7]: Let

𝜔 > 0. Given the Dörfler marking in Algorithm 3.10(iii), it follows that

𝜂ℓ+1(𝑢𝑘ℓ+1)
2 ≤ 𝑞est𝜂ℓ (𝑢𝑘ℓ )2 +𝐶est ⦀𝑢

𝑘

ℓ+1 − 𝑢
𝑘

ℓ
⦀

2, (3.85)
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3 semilinear AILFEMwith linearization

where 0 < 𝑞est := (1 + 𝜔) [
1 − (1 − 𝑞2red) 𝜃

]
< 1 and 𝐶est := (1 + 𝜔−1)𝐶stab [4𝑀 ]2 with

𝜔 > 0 being sufficiently small and where 4𝑀 stems from nested iteration (3.28). From
Lemma 3.31, we infer that ⦀𝑢𝑘

ℓ+1 − 𝑢
𝑘

ℓ
⦀ → 0 as ℓ → ∞. Hence, it follows from elementary

calculus (cf. [CFPP14, Corollary 4.8]) that 𝜂ℓ (𝑢𝑘ℓ ) → 0 as ℓ → ∞. Moreover, this and
Lemma 3.31 prove that

⦀𝑢★ − 𝑢𝑘
ℓ
⦀

(A3)≤ 𝐶rel𝜂ℓ (𝑢★
ℓ ) + ⦀𝑢★

ℓ − 𝑢𝑘
ℓ
⦀

(A1)≤ 𝐶rel𝜂ℓ (𝑢𝑘ℓ ) + (1 +𝐶rel𝐶stab [3𝑀 ]) ⦀𝑢★
ℓ − 𝑢𝑘

ℓ
⦀

≤ 𝐶rel𝜂ℓ (𝑢𝑘ℓ ) + (1 +𝐶rel𝐶stab [3𝑀 ]) [⦀𝑢★
ℓ − 𝑢★

∞⦀ + ⦀𝑢★
∞ − 𝑢𝑘

ℓ
⦀

] ℓ→∞−−−−→ 0.

We conclude that ⦀𝑢★ − 𝑢𝑘
ℓ
⦀ +𝜂ℓ (𝑢𝑘ℓ ) +𝜂ℓ (𝑢★

ℓ
) → 0 as ℓ → ∞. Due to (3.18) together with

Lemma 3.31 and for𝐶 ′
rel B 1 +𝐶rel, this yields for all (ℓ, 𝑘 ) ∈ Q that

Δ𝑘ℓ ≤ 𝐶 ′
rel𝜂ℓ (𝑢★

ℓ ) +
[
1 +𝐶stab [3𝑀 ]] ⦀𝑢★

ℓ − 𝑢𝑘ℓ ⦀
(3.30)≤ 𝐶 ′

rel𝜂ℓ (𝑢★
ℓ ) +

[
1 +𝐶stab [3𝑀 ]] ⦀𝑢★

ℓ − 𝑢0ℓ⦀
≤ 𝐶 ′

rel𝜂ℓ (𝑢★
ℓ ) +

[
1 +𝐶stab [3𝑀 ]] [

⦀𝑢★
ℓ − 𝑢★

ℓ−1⦀ + ⦀𝑢★
ℓ−1 − 𝑢

𝑘

ℓ−1⦀
] ℓ→∞−−−−→ 0.

This concludes the proof of the first case.
Case 2 (ℓ < ∞ and 𝑘 (ℓ) = ∞). Since 𝑘 (ℓ) = ∞, at least one of the cases is met:

#{𝑘 ∈ ℕ0 | ⦀𝑢𝑘ℓ ⦀ > 2𝑀 } = ∞ or #{𝑘 ∈ ℕ0 | 𝜆𝜂ℓ (𝑢𝑘ℓ ) < ⦀𝑢𝑘ℓ − 𝑢𝑘−1ℓ ⦀} = ∞.

Since norm contraction (3.30) holds, the arguments to obtain (3.32) prove the existence of
𝑘0 ∈ ℕ such that, for all 𝑘 ≥ 𝑘0, it holds that

⦀𝑢𝑘ℓ ⦀ ≤ 2𝑀.

We deduce from the (not met) stopping criterion in Algorithm 3.10(i.b′′) and (3.30) that

𝜆𝜂ℓ (𝑢𝑘ℓ )
(i.b′′)
< ⦀𝑢𝑘ℓ − 𝑢𝑘−1ℓ ⦀

𝑘→∞−−−−→ 0.

With contraction (3.30), we see that

⦀𝑢★ − 𝑢𝑘ℓ ⦀
(A3)≤ 𝐶rel𝜂ℓ (𝑢★

ℓ ) + ⦀𝑢★
ℓ − 𝑢𝑘ℓ ⦀

(A1)≤ 𝐶rel𝜂ℓ (𝑢𝑘ℓ ) + (1 +𝐶stab [3𝑀 ]) ⦀𝑢★
ℓ − 𝑢𝑘ℓ ⦀

𝑘→∞−−−−→ 0.

This concludes the proof of the second case and the proof is complete. □

The next corollary states that the exact solution𝑢★ = 𝑢★
ℓ
is discrete if ℓ < ∞. Moreover, if

there exists ℓ with𝜂ℓ (𝑢𝑘ℓ ) = 0, then the exact solution𝑢★ coincides with𝑢𝑘
ℓ
.

Corollary 3.33. Under the assumptions of Theorem 3.32, there hold the following impli-
cations:
(i) If ℓ = sup{ℓ ∈ ℕ0 | (ℓ, 0) ∈ Q} < ∞, then𝑢★ = 𝑢★

ℓ
and𝜂ℓ (𝑢★

ℓ
) = 0.

(ii) If ℓ ∈ ℕ0 with 𝑘 < ∞ and𝜂ℓ (𝑢𝑘ℓ ) = 0, then𝑢
𝑘

ℓ
= 𝑢★ = 𝑢★

ℓ
.
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3.6 Appendix: Convergence for vector-valued semilinear PDEs

Proof. (i). According to Theorem 3.32, it holds that

Δ𝑘ℓ = ⦀𝑢★ − 𝑢𝑘ℓ ⦀ +𝜂ℓ (𝑢𝑘ℓ ) → 0 as 𝑘 → ∞.

Norm contraction (3.30) proves that

⦀𝑢★
ℓ − 𝑢𝑘ℓ ⦀ ≤ 𝑞𝑘N ⦀𝑢★

ℓ − 𝑢0ℓ⦀ → 0 as 𝑘 → ∞.

Uniqueness of the limit yields that𝑢★ = 𝑢★
ℓ
. With stability (A1), we obtain that

0 ≤ 𝜂ℓ (𝑢★
ℓ ) ≤ 𝜂ℓ (𝑢𝑘ℓ ) +𝐶stab [3𝑀 ] ⦀𝑢★

ℓ − 𝑢𝑘ℓ ⦀ → 0 as 𝑘 → ∞.

This concludes the proof of (i).
(ii). Note that the stopping criterion in Algorithm 3.10(i.b′′) implies that ⦀𝑢𝑘

ℓ
− 𝑢𝑘−1

ℓ
⦀ ≤

𝜆𝜂ℓ (𝑢𝑘ℓ ) = 0 by assumption. Thus, 𝑢𝑘
ℓ
= 𝑢

𝑘−1
ℓ

. This implies that 𝑢𝑘−1
ℓ

is a fixed point of
Φℓ (𝛿 ; ·). Since the fixed point is unique, we infer that𝑢𝑘ℓ = 𝑢

𝑘−1
ℓ

= 𝑢★
ℓ
. With reliability (A3),

we thus obtain that

⦀𝑢★ − 𝑢★
ℓ ⦀

(A3)≤ 𝐶rel𝜂ℓ (𝑢★
ℓ ) = 𝐶rel𝜂ℓ (𝑢

𝑘

ℓ
) = 0.

This concludes the proof. □

Plain convergence is required to obtain results proving weak convergence in the spirit
of [ 1 GOA, Lemma 28]. This is pivotal for achieving quasi-orthogonality along the lines
of [ 1 GOA, Lemma 29], which can substitute (3.8) in the proof of full linear convergence.
Details are omitted.
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4 Cost-optimal adaptive linearized adaptive
FEM with linearization and algebraic
solver for semilinear elliptic PDEs

This chapter is taken from:

[ 3 AIL2]: M. Brunner, D. Praetorius, and J. Streitberger. Cost-optimal adaptive FEMwith
linearization and algebraic solver for semilinear elliptic PDEs, 2024. arXiv: 2401.06486

4.1 Introduction

4.1.1 Problem setting and main results

Undoubtedly, adaptive finite elementmethods (AFEMs) are in the canon of reliable nu-
merical methods for the solution of partial differential equations (PDEs). Some of the
seminal contributions in this still very active area are [BV84; Dör96;MNS00; BDD04; Ste07;
CKNS08; KS11; CN12; FFP14] for linear problems, [Vee02; DK08; BDK12; GMZ12; GHPS21]
for nonlinear problems, and [CFPP14] for an abstract framework.
Bymeans of conforming finite elements, this paper is concerned with the cost-optimal

computation of the solution𝑢★ ∈ 𝐻 1
0 (Ω) to the semilinear elliptic model problem

−div(𝑨∇𝑢★) + 𝑏 (𝑢★) = 𝐹 inΩ subject to 𝑢★ = 0 on 𝜕Ω, (4.1)

with a Lipschitz domainΩ ⊂ ℝ𝑑 for 𝑑 ∈ {1, 2, 3}, an elliptic diffusion coefficient 𝑨 : Ω →
ℝ𝑑×𝑑
sym , a monotone nonlinearity 𝑏 : Ω → ℝ, and sufficiently regular data 𝐹 . The assump-

tions are such that the Browder–Minty theorem ensures existence and uniqueness.
Moreover, the model problem (4.1) can be recast into the framework of strongly mono-

tone and locally Lipschitz continuous operators such that the abstract model problem
reads: ForX = 𝐻 1

0 (Ω) with topological dual spaceX′ = 𝐻 −1(Ω) and duality bracket ⟨· , ·⟩, a
nonlinear operatorA : X → X′, and given data𝐹 ∈ X′, we aim to approximate the solution
𝑢★ ∈ X to

⟨A𝑢★ , 𝑣⟩ = ⟨𝐹 , 𝑣⟩ for all 𝑣 ∈ X. (4.2)

To this end, we employ conforming piecewise polynomial finite element spacesX𝐻 ⊂ X
with the corresponding discrete solution𝑢★

𝐻
∈ X𝐻 to

⟨A𝑢★
𝐻 , 𝑣𝐻 ⟩ = ⟨𝐹 , 𝑣𝐻 ⟩ for all 𝑣𝐻 ∈ X𝐻 , (4.3)

which, however, can hardly be computed exactly, since (4.3) is still a discrete nonlinear
system of equations.
Themajor difficulty of such problems is that the Lipschitz constant ofA depends on
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4 semilinear AILFEMwith linearization and algebraic solver

the considered functions 𝑣 and𝑤 in the sense that for 𝜗 > 0, it holds that

||A𝑣 − A𝑤 ||X′ ≤ 𝐿 [𝜗] ⦀𝑣 −𝑤⦀ for all 𝑣,𝑤 ∈ X with max
{
⦀𝑣⦀,⦀𝑤⦀

} ≤ 𝜗. (LIP′)

Moreover, this dependence also appears in the stability constant of the residual-based
a posteriori error estimator [Ver13; 1 GOA].
Hence, for such a problem class, any approximate numerical scheme must ensure

uniform boundedness of all computed approximations 𝑢★
𝐻

≈ 𝑢𝐻 ∈ X𝐻 throughout the
algorithm. This constitutes the first main result: The developed adaptive iteratively lin-
earized FEM (AILFEM) algorithm (more detailed in Algorithm 4.6 below) guarantees a
uniform upper bound on all iterates (see Theorem 4.8 below). In particular, the algorithm
steers the decision whether it is more preferable to refine themesh adaptively or to do an
additional step of linearization or a further algebraic solver step instead.
Once uniform boundedness is established, we prove full R-linear convergence (Theo-

rem 4.13 below) as the secondmain result. Full R-linear convergence establishes contrac-
tion in each step of the algorithm regardless of the algorithmic decision. At the expense
of amore challenging analysis that links energy arguments with the energy norm of the
algebraic solver, full R-linear convergence is guaranteed for allmesh levels ℓ ≥ ℓ0 = 0while
prior works [ 1 GOA; BIM+23] used compactness arguments which only guaranteed the
existence of the index ℓ0 ∈ ℕ0 (and not necessarily ℓ0 = 0). As a consequence of uniform
boundedness and full R-linear convergence, the thirdmain result proves optimal rates
both understood with respect to the degrees of freedom and with respect to the overall
computational cost (Corollary 4.14 and Theorem 4.15) of the proposed algorithm.
Compared to existing results in the literature [GHPS21; HPSV21; HPW21; BFM+23], all

threemain results require a suitable adaptation of the stopping criteria of the lineariza-
tion loop as well as sufficiently many iterations in the algebra loop, together with subtle
technical challenges, in particular, for the proof of full R-linear convergence.

4.1.2 From AFEM to AILFEM

On eachmesh level (withmesh index ℓ), the arising discrete nonlinear problems cannot
be solved exactly in practice as supposed in classical AFEM [Vee02; DK08; BDK12; GMZ12].
To deal with this issue, we follow [CW17; GHPS18; HW20b] and consider the so-called
Zarantonello iteration from [Zar60] as a linearizationmethod (with index 𝑘 ). The Zaran-
tonello iteration is a Richardson-type iteration where only a Laplace-type problem has to
be solved in each iteration. Since the arising large SPD systems are still expensive to solve
exactly, we employ a contractive algebraic solver as a nested loop to solve the Zarantonello
system inexactly (with iteration index 𝑖 ). The loops thus come with a natural nestedness
(see Figure 4.1), where the overall schematic loop of the algorithm reads

SOLVE & ESTIMATE MARK REFINE

Since the proposed adaptive loop depends on all previous computations, optimal con-
vergence rates should be understood with respect to the overall computational cost. This
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Algebraic solver (𝒊 )

𝒖𝒌 ,𝒊
ℓ ≈ 𝒖𝒌 ,★

ℓ ≈ 𝒖★
ℓ ≈ 𝒖★

+ solve linear algebra itera-
tively

+ contractive algebraic
solver, e.g., multigrid

Linearization (𝒌 )

𝒖𝒌 ,★
ℓ ≈ 𝒖★

ℓ ≈ 𝒖★

− solve expensive SPD
problem

+ iterative solution of non-
linear problem

+ residual-type iteration

Discretization (ℓ)

𝒖★
ℓ ≈ 𝒖★

− SOLVE. solve nonlinear
discrete problem

+ ESTIMATE. residual error
estimator

+ MARK, REFINE. Dörfler
marking, adaptive mesh
refinement SO

LV
E

&
ES

TI
MA

TE

Figure 4.1:Depiction of the nested loops of the AILFEM algorithm 4.6 below.

idea of optimal complexity originates from the wavelet community [CDD01; CDD03] and
was later used in the context of AFEM in [Ste07] for the Poissonmodel problem and [CG12]
for the Poisson eigenvalue problem, both under realistic assumptions on generic iterative
solvers.
AILFEMs with iterative and/or inexact solver with a posteriori error estimators are

found in, e.g., [BMS10; EEV11; AGL13; EV13; AW15; CW17] and references therein. Be-
sides the Zarantonello iteration, for globally Lipschitz continuous nonlinearities, the
works [HW20a; HW20b; HPW21] analyze also other linearizations such as the Kačanov
iteration or damped Newton schemes. Optimal complexity of the Zarantonello loop that
is coupled with an algebraic loop is analyzed in [BIM+23] for nonsymmetric second-order
linear elliptic PDEs and for strongly monotone (and globally Lipschitz continuous) model
problems in [GHPS18; GHPS21; HPSV21; HPW21; BFM+23].
The literature on AILFEMs for locally Lipschitz continuous problems is scarce and

closing this gap is the aim of this work. The semilinear model problem is treated in,
e.g., [AW15] by a damped Newton iteration and in [AHW23] by an energy-based approach
with experimentally observed optimal rates. We also refer to the own work [ 2 AIL1] for an
AILFEMwith optimal rates with respect to the the overall computational cost under the
assumption that the algebraic solver can be performed at linear cost.

4.1.3 Outline

This paper is structured as follows: Section 4.2 introduces the abstract framework on
locally Lipschitz continuous operators. In Section 4.3, we formulate the (idealized) AIL-
FEM algorithm (Algorithm 4.6). We prove uniform boundedness for the final iterates
of the algebraic solver (Theorem 4.8). Section 4.4 presents the secondmain result: Full
R-linear convergence (Theorem 4.13). In particular, rates with respect to the degrees of
freedom coincide with rates with respect to the computational cost (Corollary 4.14). In
Section 4.5, we prove the main result on optimal complexity of the proposed AILFEM
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algorithm (Theorem 4.15). In Section 4.6, we present numerical experiments of the pro-
posed AILFEM strategy and investigate its optimal complexity for various choices of the
adaptivity parameters.

4.2 Strongly monotone operators

This section introduces an abstract framework of strongly monotone and locally Lipschitz
continuous operators. This class of operators covers themodel problem (4.1) of semilinear
elliptic PDEs withmonotone semilinearity.

4.2.1 Abstract model problem

Let X be a Hilbert space over ℝ with scalar product ⟪· , ·⟫ and induced norm ⦀ ·⦀. Let
X𝐻 ⊆ X be a closed subspace. Let X′ be the dual space with norm || · ||X′ and denote by
⟨· , ·⟩ the duality bracket onX′ × X. LetA : X → X′ be a nonlinear operator. We suppose
thatA is stronglymonotone, i.e., there exists a monotonicity constant 𝛼 > 0 such that

𝛼 ⦀𝑣 −𝑤⦀

2 ≤ ⟨A𝑣 − A𝑤 , 𝑣 −𝑤⟩ for all 𝑣,𝑤 ∈ X. (SM)

Moreover, we suppose thatA is locally Lipschitz continuous, i.e., for all 𝜗 > 0, there exists
𝐿 [𝜗] > 0 such that

⟨A𝑣−A𝑤, 𝜑⟩ ≤𝐿 [𝜗] ⦀𝑣−𝑤⦀⦀𝜑⦀ for all 𝑣,𝑤, 𝜑 ∈ Xwithmax
{
⦀𝑣⦀,⦀𝑣−𝑤⦀

} ≤𝜗. (LIP)

Remark 4.1. We remark that local Lipschitz continuity is often defined differently in the
existing literature, cf. [Zei90, p. 565]: For all Θ > 0, there exists 𝐿 ′ [Θ] > 0 such that

⟨A𝑣−A𝑤, 𝜑⟩ ≤𝐿 ′ [Θ] ⦀𝑣−𝑤⦀⦀𝜑⦀ for all 𝑣,𝑤, 𝜑 ∈ X with max
{
⦀𝑣⦀,⦀𝑤⦀

} ≤ Θ. (LIP′)

We note that the conditions (LIP) and (LIP′) are indeed equivalent in the sense that (LIP)
yields (LIP′)with Θ = 2𝜗, and, conversely, (LIP′) yields (LIP)with 𝜗 = 2Θ. However, con-
dition (LIP) is better suited for the inductive proof of Proposition 4.4 which is the main
ingredient to guarantee uniform boundedness in Theorem 4.8.

Without loss of generality, wemay suppose thatA0 ≠ 𝐹 ∈ X′. We consider the operator
equation: Seek 𝑢★ ∈ X that solves (4.2). For any closed subspace X𝐻 ⊆ X, we consider
the corresponding Galerkin discretization (4.3). We note existence and uniqueness of the
solutions to (4.2)–(4.3) and a Céa-type estimate.
Proposition 4.2 ([ 2 AIL1, Proposition 2]). Suppose that A satisfies (SM) and (LIP).
Then, (4.2)–(4.3) admit unique solutions𝑢★ ∈ X and𝑢★

𝐻
∈ X𝐻 , respectively, and

max
{
⦀𝑢★

⦀,⦀𝑢★
𝐻⦀

} ≤ 𝑀 B
1
𝛼
||𝐹 − A0||X′ > 0 (4.4)
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as well as

⦀𝑢★ − 𝑢★
𝐻⦀ ≤ 𝐶Céa min

𝑣𝐻 ∈X𝐻
⦀𝑢★ − 𝑣𝐻⦀ with 𝐶Céa = 𝐿 [2𝑀 ]/𝛼. □ (4.5)

Finally, we suppose that A has a potential P: There exists a Gâteaux differentiable
function P : X → ℝ such that its derivative dP : X → X′ coincides withA, i.e.,

⟨A𝑤 , 𝑣⟩ = ⟨dP(𝑤 ) , 𝑣⟩ = lim
𝑡→0
𝑡 ∈ℝ

P(𝑤 + 𝑡𝑣 ) − P(𝑤 )
𝑡

for all 𝑣,𝑤 ∈ X. (POT)

With the energy E(𝑣 ) B (P − 𝐹 )𝑣 , there holds the following classical equivalence.
Lemma 4.3 (see, e.g., [GHPS18, Lemma 5.1]). LetX𝐻 ⊆ X be a closed subspace (where
alsoX𝐻 replaced byX𝐻 is admissible). Suppose thatA satisfies (SM), (LIP), and (POT).
Let 𝜗 ≥ 𝑀 . Let 𝑣𝐻 ∈ X𝐻 with ⦀𝑣𝐻 − 𝑢★

𝐻
⦀ ≤ 𝜗. Then, it holds that

𝛼

2 ⦀𝑣𝐻 − 𝑢★
𝐻⦀

2 ≤ E(𝑣𝐻 ) − E(𝑢★
𝐻 ) ≤

𝐿 [𝜗]
2 ⦀𝑣𝐻 − 𝑢★

𝐻⦀
2. (4.6)

In particular, the solution𝑢★
𝐻
of (4.3) is indeed the uniqueminimizer of E inX𝐻 , i.e.,

E(𝑢★
𝐻 ) ≤ E(𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 , (4.7)

and, therefore, (4.3) can equivalently be reformulated as an energy minimization prob-
lem:

Find 𝑢★
𝐻 ∈ X𝐻 such that E(𝑢★

𝐻 ) = min
𝑣𝐻 ∈X𝐻

E(𝑣𝐻 ). (4.8)

In particular, it holds that

E(𝑣𝐻 ) − E(𝑢★) = [E(𝑣𝐻 ) − E(𝑢★
𝐻 )

] + [E(𝑢★
𝐻 ) − E(𝑢★)] for all 𝑣𝐻 ∈ X𝐻 (4.9)

and all these energy differences are nonnegative. □

4.2.2 Iterative linearization and algebraic solver

LetX𝐻 ⊂ X be a finite-dimensional (and hence closed) subspace ofX. In order to solve
the arising nonlinear discrete problems (4.3), we will incorporate a linearizationmethod
as well as an algebraic solver into the proposed algorithm.

LinearizationbyZarantonello iteration. For adetaileddiscussionof theZarantonello
iteration,we refer to [ 2 AIL1, Section 2.2–2.4]. For adampingparameter 𝛿 > 0 and𝑤𝐻 ∈ X𝐻 ,
letΦ𝐻 (𝛿 ;𝑤𝐻 ) ∈ X𝐻 solve

⟨Φ𝐻 (𝛿 ;𝑢𝐻 ) , 𝑣𝐻 ⟩ = ⟪𝑢𝐻 , 𝑣𝐻⟫ + 𝛿 [
𝐹 (𝑣𝐻 ) − ⟨A(𝑢𝐻 ) , 𝑣𝐻 ⟩

]
for all 𝑣𝐻 ∈ X𝐻 . (4.10)

The Lax–Milgram lemma proves existence and uniqueness ofΦ𝐻 (𝛿 ;𝑢𝐻 ), i.e., the Zaran-
tonello operatorΦ𝐻 (𝛿 ; ·) : X𝐻 → X𝐻 is well-defined. In particular, 𝑢★

𝐻
= Φ(𝛿 ;𝑢★

𝐻
) is the
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unique fixed point ofΦ𝐻 (𝛿 ; ·) for any damping parameter 𝛿 > 0. Moreover, for sufficiently
small 𝛿 > 0, the Zarantonello operator is norm-contractive.

Proposition 4.4 (see, e.g., [ 2 AIL1, Proposition 3.4]). Suppose that A satisfies (SM)
and (LIP). Let 𝜗 > 0 and 𝑣𝐻 ,𝑤𝐻 ∈ X𝐻 with max

{
⦀𝑣𝐻⦀,⦀𝑣𝐻 − 𝑤𝐻⦀

} ≤ 𝜗. Then, for
all 0 < 𝛿 < 2𝛼/𝐿 [𝜗]2 and 0 < 𝑞★

Zar [𝛿 , 𝜗]2 B 1 − 𝛿 (2𝛼 − 𝛿𝐿 [𝜗]2) < 1, it holds that

⦀Φ𝐻 (𝛿 ;𝑣𝐻 ) −Φ𝐻 (𝛿 ;𝑤𝐻 )⦀ ≤ 𝑞★
Zar [𝛿 , 𝜗] ⦀𝑣𝐻 −𝑤𝐻⦀. (4.11)

We note that 𝑞★
Zar [𝛿 , 𝜗] → 1 as 𝛿 → 0. For known 𝛼 and 𝐿 [𝜗], the contraction constant

𝑞★
Zar [𝛿 , 𝜗]2 = 1 − 𝛼2/𝐿 [𝜗]2 = 1 − 𝛼 𝛿 is minimal and only attained for 𝛿 = 𝛼/𝐿 [𝜗]2. □

Algebraic solver. The Zarantonello system (4.10) leads to an SPD system of equations
to compute Φ𝐻 (𝛿 ;𝑢𝐻 ). Since large SPD problems are still computationally expensive,
we employ an iterative algebraic solver with process function Ψ𝐻 : X′ × X𝐻 → X𝐻 to
solve the arising system (4.10). More precisely, given a linear functional 𝜑 ∈ X′ and an
approximation𝑤𝐻 ∈ X𝐻 of the exact solutions𝑤★

𝐻
∈ X𝐻 to

⟪𝑤★
𝐻 , 𝑣𝐻⟫ = 𝜑 (𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 ,

the algebraic solver returns an improved approximationΨ𝐻 (𝜑 ;𝑤𝐻 ) ∈ X𝐻 in the sense that
there exists a uniform constant 0 < 𝑞alg < 1 independent of 𝜑 andX𝐻 such that

⦀𝑤★
𝐻 − Ψ𝐻 (𝜑 ;𝑤𝐻 )⦀ ≤ 𝑞alg ⦀𝑤

★
𝐻 −𝑤𝐻⦀ for all𝑤𝐻 ∈ X𝐻 . (4.12)

To simplify notation when the right-hand side 𝜑 is complicated or lengthy (as for the
Zarantonello iteration (4.10)), we shall writeΨ𝐻 (𝑤★

𝐻
; ·) instead ofΨ𝐻 (𝜑 ; ·), even though

𝑤★
𝐻
is unknown and will never be computed.

4.2.3 Mesh refinement

Henceforth, let T0 be an initial triangulation of Ω into compact triangles. For mesh re-
finement, we use newest vertex bisection (NVB); cf. [Ste08] for 𝑑 ≥ 2 with admissible T0
as well as [KPP13] for 𝑑 = 2 and [DGS23] for 𝑑 ≥ 2 with nonadmissible T0. For 𝑑 = 1,
we refer to [AFF+13]. For each triangulation T𝐻 and marked elements M𝐻 ⊆ T𝐻 , let
Tℎ B refine(T𝐻 ,M𝐻 ) be the coarsest refinement of T𝐻 such that at least all elements
𝑇 ∈ M𝐻 have been refined, i.e.,M𝐻 ⊆ T𝐻 \ Tℎ . We write Tℎ ∈ 𝕋 (T𝐻 ) if Tℎ can be obtained
from T𝐻 by finitely many steps of NVB, and, for𝑁 ∈ ℕ0, we write Tℎ ∈ 𝕋𝑁 (T𝐻 ) if Tℎ ∈ 𝕋 (T𝐻 )
and #Tℎ − #T𝐻 ≤ 𝑁 . To abbreviate notation, let 𝕋 B 𝕋 (T0). Throughout, any T𝐻 ∈ 𝕋

is associated with a finite-dimensional space X𝐻 ⊂ X such that nestedness of meshes
Tℎ ∈ 𝕋 (T𝐻 ) implies nestedness of the associated spacesX𝐻 ⊆ Xℎ .
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4.2.4 Axioms of adaptivity and a posteriori error estimator

For T𝐻 ∈ 𝕋 , 𝑇 ∈ T𝐻 , and 𝑣𝐻 ∈ X𝐻 , let 𝜂𝐻 (𝑇 ,𝑣𝐻 ) ∈ ℝ≥0 be the local contributions of an
a posteriori error estimator and abbreviate

𝜂𝐻 (𝑣𝐻 ) B 𝜂𝐻 (T𝐻 , 𝑣𝐻 ), where𝜂𝐻 (U𝐻 , 𝑣𝐻 ) B
( ∑︁
𝑇 ∈ U𝐻

𝜂𝐻 (𝑇 ,𝑣𝐻 )2
)1/2

for allU𝐻 ⊆ T𝐻 . (4.13)

We suppose that the error estimator 𝜂𝐻 satisfies the following axioms of adaptivity
from [CFPP14] with a slightly relaxed variant of stability (A1) in the spirit of [ 1 GOA].

(A1) stability: For all 𝜗 > 0 and allU𝐻 ⊆ Tℎ ∩ T𝐻 , there exists𝐶stab [𝜗] > 0 such that for all
𝑣ℎ ∈ Xℎ and 𝑣𝐻 ∈ X𝐻 withmax

{
⦀𝑣ℎ⦀,⦀𝑣ℎ − 𝑣𝐻⦀

} ≤ 𝜗, it holds that��𝜂ℎ (U𝐻 , 𝑣ℎ) −𝜂𝐻 (U𝐻 , 𝑣𝐻 )
�� ≤ 𝐶stab [𝜗] ⦀𝑣ℎ − 𝑣𝐻⦀.

(A2) reduction:With 0 < 𝑞red < 1, it holds that

𝜂ℎ (Tℎ\T𝐻 , 𝑣𝐻 ) ≤ 𝑞red𝜂𝐻 (T𝐻 \Tℎ , 𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 .

(A3) reliability: There exists𝐶rel > 0 such that

⦀𝑢★ − 𝑢★
𝐻⦀ ≤ 𝐶rel𝜂𝐻 (𝑢★

𝐻 ).

(A4) discrete reliability: There exists𝐶drel > 0 such that

⦀𝑢★
ℎ − 𝑢★

𝐻⦀ ≤ 𝐶drel𝜂𝐻 (T𝐻 \Tℎ , 𝑢★
𝐻 ).

4.2.5 Application of abstract framework (4.2) to semilinear PDEs (4.1)

In the following, we comment on how the semilinear PDE (4.1) fits into the abstract frame-
work in Section 4.2.1–4.2.4. Let Ω ⊂ ℝ𝑑 , 𝑑 ∈ {1, 2, 3 | }, be a bounded Lipschitz domain
with polygonal boundary. The weak formulation of the semilinear model problem (4.1)
reads: Given 𝐹 ∈ 𝐻 −1(Ω), find𝑢★ ∈ X B 𝐻 1

0 (Ω) such that

⟨𝑨 ∇𝑢★ , ∇𝑣⟩Ω + ⟨𝑏 (𝑢★) , 𝑣⟩Ω = ⟨𝐹 , 𝑣⟩ for all 𝑣 ∈ 𝐻 1
0 (Ω), (4.14)

where ⟨· , ·⟩Ω denotes the𝐿2(Ω)-scalar product. Note that (4.14) coincideswith (4.2), where
A𝑢 B ⟨𝑨 ∇𝑢 , ∇ ·⟩Ω+⟨𝑏 (𝑢) , ·⟩Ωwith𝑢 ∈ X. Theprecise assumptionson themodelproblem
are given as follows.

Assumptions on the right-hand side. We suppose the following.
(RHS) Let ⟨𝐹 , 𝑣⟩ B ⟨𝑓 , 𝑣⟩Ω + ⟨𝒇 , ∇𝑣⟩Ω with given 𝑓 ∈ 𝐿2(Ω) and 𝒇 ∈ [𝐿2(Ω)]𝑑 .

Assumptions on the diffusion coefficient. The diffusion coefficient 𝑨 satisfies the
following standard assumptions:
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4 semilinear AILFEMwith linearization and algebraic solver

(ELL) 𝑨 ∈ 𝐿∞(Ω;ℝ𝑑×𝑑
sym ), where 𝑨 (𝑥) is a symmetric and uniformly positive definite matrix,

i.e., theminimal andmaximal eigenvalues satisfy

0 < 𝜇0 B ess inf
𝑥∈Ω

𝜆min(𝑨 (𝑥)) ≤ ess sup
𝑥∈Ω

𝜆max (𝑨 (𝑥)) C 𝜇1 < ∞.

In particular, the 𝑨-induced energy scalar product ⟪𝑣 , 𝑤⟫ B ⟨𝑨∇𝑣 , ∇𝑤⟩Ω induces an
equivalent norm ⦀𝑣⦀ B ⟪𝑣 , 𝑣⟫1/2 on𝐻 1

0 (Ω).

Assumptions on the nonlinear reaction coefficient. The nonlinearity 𝑏 (·) satisfies
the following assumptions from [BHSZ11, (A1)–(A3)]:

(CAR) 𝑏 : Ω × ℝ → ℝ is a Carathéodory function, i.e., for all 𝑛 ∈ ℕ0, the 𝑛-th derivative
𝑏 (𝑛 ) B 𝜕𝑛

𝜉
𝑏 of 𝑏 with respect to the second argument 𝜉 satisfies that

⊲ for any 𝜉 ∈ ℝ, the function 𝑥 ↦→ 𝑏 (𝑛 ) (𝑥, 𝜉 ) is measurable onΩ,
⊲ for any 𝑥 ∈ Ω, the function 𝜉 ↦→ 𝑏 (𝑛 ) (𝑥, 𝜉 ) exists and is continuous in 𝜉 .

(MON) We assumemonotonicity in the second argument, i.e., 𝑏 ′(𝑥, 𝜉 ) B 𝑏 (1) (𝑥, 𝜉 ) ≥ 0 for
all 𝑥 ∈ Ω and 𝜉 ∈ ℝ. By considering 𝑏 (𝑣 ) B 𝑏 (𝑣 ) − 𝑏 (0) and 𝑓 B 𝑓 − 𝑏 (0), we assume
without loss of generality that 𝑏 (𝑥, 0) = 0.

To establish continuity of 𝑣 ↦→ ⟨𝑏 (𝑣 ) , 𝑤⟩Ω, we impose the following growth condition on
𝑏 (𝑣 ); see, e.g., [FK80, Chapter III, (12)] or [BHSZ11, (A4)]:
(GC) There exist 𝑅 > 0 and𝑁 ∈ ℕwith𝑁 ≤ 5 for 𝑑 = 3 such that

|𝑏 (𝑁 ) (𝑥, 𝜉 ) | ≤ 𝑅 for a.e. 𝑥 ∈ Ω and all 𝜉 ∈ ℝ.

These assumptions suffice to prove that the operatorA B X → X′ = 𝐻 −1(Ω) associated
with themodel problem (4.14) is strongly monotone (SM) and locally Lipschitz continu-
ous (LIP) in the sense of Section 4.2.1; see [ 2 AIL1, Lemma 3.21].

Energyminimization. Associated with the semilinear model problem (4.14), we con-
sider the energy

E(𝑣 )= 12
∫
Ω
|𝑨1/2∇𝑣 |2 d𝑥 +

∫
Ω

∫ 𝑣 (𝑥 )

0
𝑏 (𝑠 ) d𝑠 d𝑥 −

∫
Ω
𝑓 𝑣 d𝑥 −

∫
Ω
𝒇 · ∇𝑣 d𝑥 for 𝑣 ∈ 𝐻 1

0 (Ω).

To ensure the well-posedness of integrals, we require the following stronger growth con-
dition (guaranteeing compactness of the nonlinear reaction term). Indeed, the same
assumption is also required for stability (A1) of the residual error estimator (4.15) below.

(CGC) There holds (GC), if𝑑 ∈ {1, 2}. If𝑑 = 3, there holds (GC)with the stronger assumption
𝑁 ∈ {2, 3}.

Residual error estimator. To guarantee well-posedness, we additionally require that
𝑨 |𝑇 ∈ [𝑊 1,∞(𝑇 )]𝑑×𝑑 and 𝒇 |𝑇 ∈ [𝑊 1,∞(𝑇 )]𝑑 for all𝑇 ∈ T0, whereT0 is the initial triangulation
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4.3 Fully adaptive algorithm

of the adaptive algorithm. Then, for T𝐻 ∈ 𝕋 and 𝑣𝐻 ∈ X𝐻 , the local contributions of the
standard residual error estimator (4.13) for the semilinear model problem (4.14) read

𝜂𝐻 (𝑇 ,𝑣𝐻 )2 B ℎ2𝑇 || 𝑓 + div(𝑨 ∇𝑣𝐻 − 𝒇 ) − 𝑏 (𝑣𝐻 ) ||2𝐿2 (𝑇 )
+ ℎ𝑇 || [[(𝑨 ∇𝑣𝐻 − 𝒇 ) · 𝒏]] ||2

𝐿2 (𝜕𝑇∩Ω) ,
(4.15)

where ℎ𝑇 = |𝑇 |1/𝑑 and where [[ · ]] denotes the jump across edges (for 𝑑 = 2) resp. faces
(for 𝑑 = 3) and 𝒏 denotes the outer unit normal vector. For 𝑑 = 1, these jumps vanish, i.e.,
[[ · ]] = 0. The axioms of adaptivity are established for the present setting in [ 1 GOA].
Proposition 4.5 ([ 1 GOA, Proposition 2.15]). Suppose (RHS), (ELL), (CAR), (MON),
and (CGC). Suppose that NVB is employed as a refinement strategy. Then, the resid-
ual error estimator from (4.15) satisfies (A1)–(A4) from Section 4.2.4. The constant𝐶rel
depends only on 𝑑 , 𝜇0, and uniform shape regularity of the initial mesh T0. The constant
𝐶drel depends, in addition, on the polynomial degree𝑝 , and𝐶stab [𝜗] depends furthermore
on |Ω|, 𝜗,𝑁 , 𝑅 , and 𝑨. □

Algebraic solver. As an algebraic solver, we employ a norm-contractive solver to solve
the Zarantonello system (4.10). Possible choices are, e.g., an optimally preconditioned
conjugate gradient method [CNX12] or an optimal geometric multigrid [WZ17; IMPS23].
More precisely, the numerical experiments below employ theℎ𝑝-robustmultigridmethod
from [IMPS23], which is well-defined owing to ellipticity (ELL).

4.3 Fully adaptive algorithm

In this section, we present the adaptive iterative linearized finite elementmethod (AIL-
FEM). As a first main result, we prove that the iterates from the proposed algorithm are
uniformly bounded.

4.3.1 Fully adaptive algorithm

In this section, we introduce a fully adaptive algorithm that steersmesh refinement (ℓ), lin-
earization (𝑘 ) and the algebraic solver (𝑖 ). The algorithm utilizes specific stopping indices
denoted by an underline, namely ℓ, 𝑘 [ℓ], 𝑖 [ℓ, 𝑘 ]. However, wemay omit the dependence
when it is apparent from the context, such as in the abbreviation𝑢𝑘,𝑖

ℓ
B 𝑢

𝑘,𝑖 [ℓ,𝑘 ]
ℓ

.

Algorithm 4.6: adaptive iterative linearized FEM (AILFEM)
Input: Initial mesh T0, marking parameters 0 < 𝜃 ≤ 1, 𝐶mark ≥ 1, solver parameters
𝜆lin, 𝜆alg > 0, minimal number of algebraic solver steps 𝑖min ∈ ℕ, initial guess 𝑢0,00 B

𝑢0,★0 B 𝑢
0,𝑖
0 ∈ X0 with ⦀𝑢0,00 ⦀ ≤ 2𝑀 , and Zarantonello damping parameter 𝛿 > 0.

Adaptive loop: For all ℓ = 0, 1, 2, . . . , repeat the following steps (I)–(III):
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4 semilinear AILFEMwith linearization and algebraic solver

(I) SOLVE & ESTIMATE. For all 𝑘 = 1, 2, 3, . . . , repeat steps (a)–(c):

(a) Define𝑢𝑘,0
ℓ
B 𝑢

𝑘−1,𝑖
ℓ

and, for theoretical reasons,𝑢𝑘,★
ℓ
B Φℓ (𝛿 ;𝑢𝑘−1,𝑖ℓ

).
(b) For all 𝑖 = 1, 2, 3, . . . repeat steps (i)–(ii):

(i) Compute𝑢𝑘 ,𝑖
ℓ
B Ψℓ (𝑢𝑘 ,★ℓ

;𝑢𝑘,𝑖−1
ℓ

) and error estimator𝜂ℓ (𝑢𝑘 ,𝑖ℓ ).
(ii) Terminate the 𝑖-loop and define 𝑖 [ℓ, 𝑘 ] B 𝑖 if

⦀𝑢𝑘 ,𝑖−1
ℓ

− 𝑢𝑘 ,𝑖
ℓ
⦀ ≤ 𝜆alg

[
𝜆lin𝜂ℓ (𝑢𝑘,𝑖ℓ ) + ⦀𝑢𝑘,𝑖

ℓ
− 𝑢𝑘 ,0

ℓ
⦀

]
AND 𝑖min ≤ 𝑖 . (4.16)

(c) Terminate the 𝑘-loop and define 𝑘 [ℓ] B 𝑘 if

E(𝑢𝑘 ,0
ℓ

) − E(𝑢𝑘 ,𝑖
ℓ
) ≤ 𝜆2lin𝜂ℓ (𝑢

𝑘 ,𝑖

ℓ
)2 AND ⦀𝑢

𝑘 ,𝑖

ℓ
⦀ ≤ 2𝑀. (4.17)

(II) MARK. Find a setMℓ ∈ 𝕄ℓ [𝜃 ,𝑢𝑘 ,𝑖ℓ ] B {Uℓ ⊆Tℓ | 𝜃 𝜂ℓ (𝑢𝑘 ,𝑖ℓ )2 ≤ 𝜂ℓ (Uℓ , 𝑢
𝑘 ,𝑖

ℓ
)2} such

that
#Mℓ ≤ 𝐶mark min

Uℓ ∈𝕄ℓ [𝜃 ,𝑢𝑘 ,𝑖ℓ ]
#Uℓ . (4.18)

(III) REFINE.Generate the newmesh Tℓ+1 B refine(Mℓ ,Tℓ) by employing NVB and
define𝑢0,0

ℓ+1 B 𝑢
0,𝑖
ℓ+1 B 𝑢0,★

ℓ+1 B 𝑢
𝑘 ,𝑖

ℓ
(nested iteration).

Output: Sequences of successively refined triangulations Tℓ , discrete approximations
𝑢𝑘,𝑖
ℓ
and corresponding error estimators𝜂ℓ (𝑢𝑘,𝑖ℓ ).

For the analysis of Algorithm 4.6, we define the countably infinite index set

Q B {(ℓ, 𝑘 , 𝑖 ) ∈ ℕ3
0 : 𝑢𝑘 ,𝑖ℓ is used in Algorithm 4.6 |, }

where, for any (ℓ, 0, 0) ∈ Q, the final indices are defined as

ℓ B sup{ℓ ∈ ℕ0 : (ℓ, 0, 0) ∈ Q} ∈ ℕ0 ∪ {∞},
𝑘 [ℓ] B sup{{| 𝑘 } ∈ ℕ : (ℓ, 𝑘 , 0) ∈ Q} ∈ ℕ ∪ {∞},

𝑖 [ℓ, 𝑘 ] B sup{{| 𝑖 } ∈ ℕ : (ℓ, 𝑘 , 𝑖 ) ∈ Q} ∈ ℕ ∪ {∞}.

We note, first, that these definitions are consistent with those of Algorithm 4.6, second,
that Lemma 4.7 below proves that 𝑖 [ℓ, 𝑘 ] < ∞, and, third, that hence either ℓ = ∞ or ℓ < ∞
with 𝑘 [ℓ] = ∞. For all (ℓ, 𝑘 , 𝑖 ) ∈ Q, we introduce the total step counter |·, ·, ·| defined by

|ℓ, 𝑘 , 𝑖 | B #{(ℓ′, 𝑘 ′, 𝑖 ′) ∈ Q | (ℓ′, 𝑘 ′, 𝑖 ′) < (ℓ, 𝑘 , 𝑖 )} =
ℓ−1∑︁
ℓ′=0

𝑘 [ℓ′ ]∑︁
𝑘 ′=1

𝑖 [ℓ′,𝑘 ′ ]∑︁
𝑖 ′=1

1 +
𝑘−1∑︁
𝑘 ′=1

𝑖 [ℓ,𝑘 ′ ]∑︁
𝑖 ′=1

1 +
𝑖−1∑︁
𝑖 ′=1

1.

We note that this definition provides a lexicographic ordering on Q.
In the later application to AILFEM for semilinear elliptic PDEs, every step of Algo-

rithm 4.6 can be performed in linear complexity as the following arguments show.
⊲ SOLVE. The employed algebraic solver is an ℎ𝑝-robust multigrid [IMPS23] and hence
each algebraic solver step requires only O(#Tℓ) operations.
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⊲ ESTIMATE. The simultaneous computation of the standard error indicators𝜂ℓ (𝑇 ,𝑢𝑘 ,𝑖ℓ )
for all𝑇 ∈ Tℓ can be done at the cost of O(#Tℓ).

⊲ MARK. The employed Dörflermarking (and the involved determination ofMℓ) is in-
deed a linear complexity problem; see [Ste07] for𝐶mark = 2 and [PP20] for𝐶mark = 1.

⊲ REFINE. The refinement of Tℓ is based on NVB and, owing to themesh-closure esti-
mate [BDD04; Ste08], requires only linear cost O(#Tℓ).

Thus, the total work until and including the computation of𝑢𝑘 ,𝑖
ℓ
is proportional to

cost(ℓ, 𝑘 , 𝑖 ) B
∑︁

(ℓ′,𝑘 ′,𝑖 ′ ) ∈Q
|ℓ′,𝑘 ′,𝑖 ′ | ≤ |ℓ,𝑘 ,𝑖 |

#Tℓ′ =
ℓ−1∑︁
ℓ′=0

𝑘 [ℓ′ ]∑︁
𝑘 ′=1

𝑖 [ℓ′,𝑘 ′ ]∑︁
𝑖 ′=1

#Tℓ′ +
𝑘−1∑︁
𝑘 ′=1

𝑖 [ℓ,𝑘 ′ ]∑︁
𝑖 ′=1

#Tℓ +
𝑖∑︁

𝑖 ′=1
#Tℓ . (4.19)

An important observation is that the algebraic solver loop always terminates.
Lemma 4.7. Independently of the adaptivity parameters 𝜃 , 𝜆lin, and 𝜆alg, the 𝑖-loop of
Algorithm 4.6 always terminates, i.e., 𝑖 [ℓ, 𝑘 ] < ∞ for all (ℓ, 𝑘 , 0) ∈ Q.

Proof. We argue as in [BIM+23, Lemma 3.2]. Let (ℓ, 𝑘 , 0) ∈ Q. We argue by contradiction
and assume that the 𝑖-loop stopping criterion (4.16) in Algorithm 4.6(I.b.ii) always fails
and hence 𝑖 [ℓ, 𝑘 ] = ∞. By assumption (4.12), the algebraic solverΨℓ (𝑢𝑘,★ℓ

; · ) is contractive
and hence convergent with limit𝑢𝑘 ,★

ℓ
B Φℓ (𝛿 ;𝑢𝑘−1,𝑖ℓ

) from Algorithm 4.6(I.a). Moreover,
by failure of the stopping criterion (4.16) in Algorithm 4.6(I.b.ii), we thus obtain that

𝜂ℓ (𝑢𝑘,𝑖ℓ ) + ⦀𝑢𝑘 ,𝑖
ℓ

− 𝑢𝑘,0
ℓ

⦀

(4.16)
≲ ⦀𝑢𝑘 ,𝑖

ℓ
− 𝑢𝑘,𝑖−1

ℓ
⦀

𝑖→∞−−−−→ 0.

This yields ⦀𝑢𝑘,★
ℓ

−𝑢𝑘 ,0
ℓ

⦀ = 0 and hence𝑢𝑘 ,★
ℓ

= 𝑢𝑘 ,𝑖
ℓ
for all 𝑖 ∈ ℕ0m since the algebraic solver

is contractive. Consequently, the 𝑖-loop stopping criterion (4.16) in Algorithm 4.6(I.b.ii)
will be satisfied for 𝑖 = 𝑖min. This contradicts our assumption, and hence we conclude that
𝑖 [ℓ, 𝑘 ] < ∞. □

4.3.2 Energy contraction for the inexact Zarantonello iteration

In this section, we prove uniform boundedness of the iterates 𝑢𝑘 ,𝑖
ℓ
from Algorithm 4.6:

Note that the algorithm does not compute the Zarantonello iterate𝑢𝑘,★
ℓ
B Φℓ (𝛿 ;𝑢𝑘−1,𝑖ℓ

)
exactly, but relies on an approximation𝑢𝑘 ,𝑖

ℓ
≈ 𝑢𝑘 ,★

ℓ
. We prove that this inexact Zarantonello

iteration is contractive with respect to the energy, which is the case if at least 𝑖min ∈ ℕ

steps of the contractive algebraic solver are performed, i.e., 𝑖 [ℓ, 𝑘 ] ≥ 𝑖min. In particular,
a suitable choice of the damping parameter 𝛿 > 0 and the index 𝑖min are derived in the
following.

Theorem 4.8
Suppose that A satisfies (SM), (LIP), and (POT). With 𝑀 from (4.4), define 𝜏 B 𝑀 +
3𝑀 ( 𝐿 [3𝑀 ]

𝛼

)1/2 ≥ 4𝑀 . Let 𝜆lin, 𝜆alg > 0 and 0 < 𝜃 ≤ 1 be arbitrary. Suppose that ⦀𝑢0,0
ℓ

⦀ =
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⦀𝑢
0,𝑖
ℓ
⦀ ≤ 2𝑀 with𝑀 > 0 from (4.4). Choose 𝑖min ∈ ℕ such that

𝑞
𝑖min
alg ≤ 1/3. (4.20)

Then, for any choice of 𝛿 > 0 satisfying 0 < 𝛿 < min{ 1
𝐿 [5𝜏 ] ,

2𝛼
𝐿 [2𝜏 ]2 }, there exists a uniform

energy contraction constant 0 < 𝑞E = 𝑞E [𝛿 ,𝜏] < 1 (see (4.33b) below) such that the
following holds.

⊲ nested iteration: ⦀𝑢
𝑘 ,𝑖

ℓ
⦀ ≤ 2𝑀 if (ℓ, 𝑘 , 𝑖 ) ∈ Q; (4.21)

⊲ 𝑖-uniform bound: ⦀𝑢
𝑘,𝑖

ℓ
⦀ ≤ 𝜏 if (ℓ, 𝑘 , 𝑖 ) ∈ Q; (4.22)

⊲ E-contraction: E(𝑢𝑘+1,𝑖
ℓ

) − E(𝑢★
ℓ ) ≤ 𝑞2E

(E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ )
)
if (ℓ, 𝑘 + 1, 𝑖 ) ∈ Q. (4.23)

With (4.21)–(4.23), we obtain for all iterates the

⊲ uniform bound: ⦀𝑢𝑘,𝑖
ℓ
⦀ ≤ 5𝜏 if (ℓ, 𝑘 , 𝑖 ) ∈ Q. (4.24)

Moreover, there exists an index 𝑘0 = 𝑘0 [𝛿 ,𝜏, 𝛼, 𝐿 [3𝑀 ],𝑀 ] ∈ ℕ independently of the mesh
refinement index ℓ such that, for all 𝑘 ′ ≥ 𝑘0, the nested iteration condition ⦀𝑢

𝑘 ′,𝑖
ℓ

⦀ ≤ 2𝑀
in the 𝑘-loop stopping criterion (4.17) is always met.

Themain observation of the following lemma is that the uniform boundedness is passed
on by the inexact Zarantonello iteration along the 𝑘-loop indices.
Lemma 4.9. Suppose thatA satisfies (SM), (LIP), and (POT). Let 𝜆lin, 𝜆alg > 0 be arbi-
trary and define 𝜏 B 𝑀 + 3𝑀 ( 𝐿 [3𝑀 ]

𝛼

)1/2 ≥ 4𝑀 . Let 𝑘 ∈ ℕ0 with 0 ≤ 𝑘 < 𝑘 [ℓ] and

⦀𝑢
𝑘,𝑖

ℓ
⦀ ≤ 𝜏. (4.25)

Then, for 𝑖min ∈ ℕ satisfying (4.20) and for any 0 < 𝛿 < min{ 1
𝐿 [5𝜏 ] ,

2𝛼
𝐿 [2𝜏 ]2 }, it holds that

0 ≤
( 1
2𝛿 − 𝐿 [5𝜏]

2
)
⦀𝑢

𝑘+1,𝑖
ℓ

− 𝑢𝑘,𝑖
ℓ
⦀

2 ≤ E(𝑢𝑘,𝑖
ℓ
) − E(𝑢𝑘+1,𝑖

ℓ
)

≤
( 1
𝛿 (1 − 𝑞 𝑖min

alg )
− 𝛼

2
)
⦀𝑢

𝑘+1,𝑖
ℓ

− 𝑢𝑘,𝑖
ℓ
⦀

2 for all (ℓ, 𝑘 + 1, 𝑖 ) ∈ Q.
(4.26)

Proof. The proof is subdivided into five steps.
Step 1 (choice of 𝑖min). We note that for any 𝑖min ∈ ℕ, the property (4.20) is indeed

equivalent to

1
2

!≤
1 − 2𝑞 𝑖alg
1 − 𝑞 𝑖alg

for all 𝑖 ≥ 𝑖min. (4.27)

Step 2 (boundedness). Define 𝑒𝑘+1
ℓ
B 𝑢

𝑘+1,𝑖
ℓ

−𝑢𝑘 ,𝑖
ℓ
. Recall that for 0 < 𝛿 < 2𝛼/𝐿 [2𝜏]2, the

Zarantonello iteration satisfies contraction (4.11). Hence, the contraction of the algebraic
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solver (4.12), the triangle inequality, nested iteration𝑢𝑘+1,0
ℓ

= 𝑢
𝑘,𝑖

ℓ
, assumption (4.25), and

4𝑀 ≤ 𝜏 show that

⦀𝑒𝑘+1ℓ ⦀ ≤ ⦀𝑢𝑘+1,★
ℓ

−𝑢𝑘+1,𝑖
ℓ

⦀ + ⦀𝑢𝑘+1,★
ℓ

−𝑢𝑘 ,𝑖
ℓ
⦀

(4.12)≤ 𝑞
𝑖 [ℓ,𝑘+1]
alg ⦀𝑢𝑘+1,★

ℓ
−𝑢𝑘+1,0

ℓ
⦀ + ⦀𝑢𝑘+1,★

ℓ
−𝑢𝑘,𝑖

ℓ
⦀

≤ 2⦀𝑢𝑘+1,★
ℓ

− 𝑢𝑘 ,𝑖
ℓ
⦀ ≤ 2

[
⦀𝑢★

ℓ − 𝑢𝑘,𝑖
ℓ
⦀ + ⦀𝑢★

ℓ − 𝑢𝑘+1,★
ℓ

⦀

]
(4.11)≤ 2 (1 + 𝑞★

Zar [𝛿 , 2𝜏]) ⦀𝑢★
ℓ − 𝑢𝑘 ,𝑖

ℓ
⦀

(4.25)≤ 4(𝑀 + 𝜏) ≤ 5𝜏.

With the convexity of the norm and ⦀𝑢
𝑘,𝑖

ℓ
⦀ ≤ 𝜏 ≤ 5𝜏 , we also obtain that

⦀𝑢
𝑘+1,𝑖
ℓ

⦀ ≤ max
0≤𝑡 ≤1

⦀𝑢
𝑘 ,𝑖

ℓ
− 𝑡 𝑒𝑘+1ℓ ⦀ ≤ 5𝜏. (4.28)

Step 3. Since the energy E = P − 𝐹 from (POT) is Gâteaux differentiable, it follows that
𝜑 (𝑡 ) B E(𝑢𝑘 ,𝑖

ℓ
+ 𝑡 𝑒𝑘+1

ℓ
) is differentiable with

𝜑 ′(𝑡 ) = ⟨dE(𝑢𝑘 ,𝑖
ℓ

+ 𝑡 𝑒𝑘+1ℓ ) , 𝑒𝑘+1ℓ ⟩ = ⟨A(𝑢𝑘,𝑖
ℓ

+ 𝑡 𝑒𝑘+1ℓ ) − 𝐹 , 𝑒𝑘+1ℓ ⟩. (4.29)

The fundamental theorem of calculus and the exact Zarantonello iteration (4.10) show
that

E(𝑢𝑘,𝑖
ℓ
)−E(𝑢𝑘+1,𝑖

ℓ
) = 𝜑 (0) − 𝜑 (1) = −

∫ 1

0
𝜑 ′(𝑡 ) d𝑡 (4.29)

= −
∫ 1

0
⟨A(𝑢𝑘 ,𝑖

ℓ
+ 𝑡 𝑒𝑘+1ℓ ) − 𝐹 , 𝑒𝑘+1ℓ ⟩ d𝑡

= −
∫ 1

0
⟨A(𝑢𝑘 ,𝑖

ℓ
+ 𝑡 𝑒𝑘+1ℓ ) − A(𝑢𝑘,𝑖

ℓ
) , 𝑒𝑘+1ℓ ⟩ d𝑡 − ⟨A(𝑢𝑘 ,𝑖

ℓ
) − 𝐹 , 𝑒𝑘+1ℓ ⟩

(4.10)
= −

∫ 1

0
⟨A(𝑢𝑘 ,𝑖

ℓ
+ 𝑡 𝑒𝑘+1ℓ ) − A(𝑢𝑘 ,𝑖

ℓ
) , 𝑒𝑘+1ℓ ⟩ d𝑡 + 1

𝛿
⟪𝑢𝑘+1,★

ℓ
− 𝑢𝑘 ,𝑖

ℓ
, 𝑒𝑘+1ℓ ⟫. (4.30)

Step 4 (proof of lower bound in (4.26)). For any 𝑖 ∈ ℕ with 𝑖 ≤ 𝑖 [ℓ, 𝑘 ], the contrac-
tion (4.12) of the algebraic solver and nested iteration𝑢𝑘,𝑖

ℓ
= 𝑢𝑘+1,0

ℓ
prove that

⦀𝑢𝑘+1,★
ℓ

− 𝑢𝑘+1,𝑖
ℓ

⦀

(4.12)≤ 𝑞
𝑖 [ℓ,𝑘+1]
alg ⦀𝑢𝑘+1,★

ℓ
− 𝑢𝑘,𝑖

ℓ
⦀ ≤ 𝑞 𝑖alg ⦀𝑢

𝑘+1,★
ℓ

− 𝑢𝑘+1,𝑖
ℓ

⦀ + 𝑞 𝑖alg ⦀𝑢
𝑘+1,𝑖
ℓ

− 𝑢𝑘,𝑖
ℓ
⦀.

This gives rise to the a posteriori estimate

⦀𝑢𝑘+1,★
ℓ

− 𝑢𝑘+1,𝑖
ℓ

⦀ ≤
𝑞 𝑖alg

1 − 𝑞 𝑖alg
⦀𝑢

𝑘+1,𝑖
ℓ

− 𝑢𝑘 ,𝑖
ℓ
⦀ =

𝑞 𝑖alg
1 − 𝑞 𝑖alg

⦀𝑒𝑘+1ℓ ⦀. (4.31)
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With (4.31), 𝑖min ≤ 𝑖 ≤ 𝑖 [ℓ, 𝑘 + 1], and (4.27), we derive

⟪𝑢𝑘+1,★
ℓ

− 𝑢𝑘,𝑖
ℓ
, 𝑒𝑘+1ℓ ⟫ = ⟪𝑢

𝑘+1,𝑖
ℓ

− 𝑢𝑘,𝑖
ℓ
, 𝑒𝑘+1ℓ ⟫ + ⟪𝑢𝑘+1,★

ℓ
− 𝑢𝑘+1,𝑖

ℓ
, 𝑒𝑘+1ℓ ⟫

= ⦀𝑒𝑘+1ℓ ⦀

2 + ⟪𝑢𝑘+1,★
ℓ

− 𝑢𝑘+1,𝑖
ℓ

, 𝑒𝑘+1ℓ ⟫ ≥ ⦀𝑒𝑘+1ℓ ⦀

2 − ⦀𝑢𝑘+1,★
ℓ

− 𝑢𝑘+1,𝑖
ℓ

⦀⦀𝑒𝑘+1ℓ ⦀

(4.31)≥ ⦀𝑒𝑘+1ℓ ⦀

[
⦀𝑒𝑘+1ℓ ⦀ −

𝑞 𝑖alg
1 − 𝑞 𝑖alg

⦀𝑒𝑘+1ℓ ⦀

]
=

(1 − 2𝑞 𝑖alg
1 − 𝑞 𝑖alg

)
⦀𝑒𝑘+1ℓ ⦀

2 (4.27)≥ 1
2 ⦀𝑒𝑘+1ℓ ⦀

2 ≥ 0. (4.32)

With the local Lipschitz continuity (LIP) and (4.28), it follows from (4.30) that

E(𝑢𝑘,𝑖
ℓ
) − E(𝑢𝑘+1,𝑖

ℓ
) (LIP)≥ −

( ∫ 1

0
𝑡 𝐿 [5𝜏] d𝑡

)
⦀𝑒𝑘+1ℓ ⦀

2 + 1
𝛿
⟪𝑢𝑘+1,★

ℓ
− 𝑢𝑘 ,𝑖

ℓ
, 𝑒𝑘+1ℓ ⟫

(4.32)≥
[ 1
2 𝛿 − 𝐿 [5𝜏]

2
]
⦀𝑒𝑘+1ℓ ⦀

2.

Since 0 < 𝛿 < 1/𝐿 [5𝜏], the last expression is positive.
Step 5 (proof of upper bound in (4.26)). To derive the upper equivalence constant, we

infer from Step 4 that

⟪𝑢𝑘+1,★
ℓ

− 𝑢𝑘 ,𝑖
ℓ
, 𝑒𝑘+1ℓ ⟫ ≤ ⦀𝑒𝑘+1ℓ ⦀

2 + ⦀𝑢𝑘+1,★
ℓ

− 𝑢𝑘+1,𝑖
ℓ

⦀⦀𝑒𝑘+1ℓ ⦀

(4.31)≤ ⦀𝑒𝑘+1ℓ ⦀

[
⦀𝑒𝑘+1ℓ ⦀ +

𝑞 𝑖alg
1 − 𝑞 𝑖alg

⦀𝑒𝑘+1ℓ ⦀

]
=

( 1
1 − 𝑞 𝑖alg

)
⦀𝑒𝑘+1ℓ ⦀

2.

Combined with Step 3, we obtain that

E(𝑢𝑘 ,𝑖
ℓ
)−E(𝑢𝑘+1,𝑖

ℓ
) (4.30)= −

∫ 1

0
⟨A(𝑢𝑘 ,𝑖

ℓ
+ 𝑡 𝑒𝑘+1ℓ )−A(𝑢𝑘 ,𝑖

ℓ
), 𝑒𝑘+1ℓ ⟩ d𝑡 + 1

𝛿
⟪𝑢𝑘+1,★

ℓ
−𝑢𝑘,𝑖

ℓ
, 𝑒𝑘+1ℓ ⟫

(SM)≤ −
( ∫ 1

0
𝑡 𝛼 d𝑡

)
⦀𝑒𝑘+1ℓ ⦀

2 + 1
𝛿
⟪𝑢𝑘+1,★

ℓ
− 𝑢𝑘 ,𝑖

ℓ
, 𝑒𝑘+1ℓ ⟫ ≤

( 1
𝛿 (1 − 𝑞 𝑖min

alg )
− 𝛼

2
)
⦀𝑒𝑘+1ℓ ⦀

2.

This concludes the proof. □

Lemma 4.10 (energy contraction). Suppose the assumptions of Lemma 4.9. Recall
𝑖min ∈ ℕ from (4.20). Then, for 0 < 𝛿 < min{ 1

𝐿 [5𝜏 ] ,
2𝛼

𝐿 [2𝜏 ]2 }, it holds that

0 ≤ E(𝑢𝑘+1,𝑖
ℓ

) − E(𝑢★
ℓ ) ≤ 𝑞E [𝛿 ,𝜏]2 [E(𝑢𝑘,𝑖ℓ ) − E(𝑢★

ℓ )] (4.33a)

with the contraction constant

0 ≤ 𝑞E [𝛿 ,𝜏]2 B 1 −
( 1
𝛿
− 𝐿 [5𝜏]

) (1 − 𝑞 𝑖min
alg )2 𝛿 2𝛼2
𝐿 [2𝜏] < 1. (4.33b)
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We note that 𝑞E [𝛿 ,𝜏] → 1 as 𝛿 → 0. In particular, it holds that

(1 − 𝑞E [𝛿 ,𝜏]2)
[E(𝑢𝑘,𝑖

ℓ
) − E(𝑢★

ℓ )
] ≤ E(𝑢𝑘,𝑖

ℓ
) − E(𝑢𝑘+1,𝑖

ℓ
) ≤ E(𝑢𝑘 ,𝑖

ℓ
) − E(𝑢★

ℓ ). (4.34)

Proof. First, we observe that

𝛼 ⦀𝑢★
ℓ − 𝑢𝑘,𝑖

ℓ
⦀

2 (SM)≤ ⟨A𝑢★
ℓ − A𝑢𝑘,𝑖

ℓ
, 𝑢★

ℓ − 𝑢𝑘 ,𝑖
ℓ
⟩ (4.3)

= ⟨𝐹 − A𝑢𝑘,𝑖
ℓ
, 𝑢★

ℓ − 𝑢𝑘,𝑖
ℓ
⟩

(4.10)
=

1
𝛿
⟪𝑢𝑘+1,★

ℓ
− 𝑢𝑘,𝑖

ℓ
, 𝑢★

ℓ − 𝑢𝑘 ,𝑖
ℓ
⟫ ≤ 1

𝛿
⦀𝑢𝑘+1,★

ℓ
− 𝑢𝑘 ,𝑖

ℓ
⦀⦀𝑢★

ℓ − 𝑢𝑘 ,𝑖
ℓ
⦀.

(4.35)

The inverse triangle inequality and contraction (4.12) of the algebraic solver prove that

⦀𝑢
𝑘+1,𝑖
ℓ

− 𝑢𝑘,𝑖
ℓ
⦀ ≥ ⦀𝑢𝑘+1,★

ℓ
− 𝑢𝑘 ,𝑖

ℓ
⦀ − ⦀𝑢𝑘+1,★

ℓ
− 𝑢𝑘+1,𝑖

ℓ
⦀

(4.12)≥ (1 − 𝑞 𝑖min
alg ) ⦀𝑢𝑘+1,★

ℓ
− 𝑢𝑘 ,𝑖

ℓ
⦀

(4.35)≥ (1 − 𝑞 𝑖min
alg ) 𝛿 𝛼 ⦀𝑢★

ℓ − 𝑢𝑘 ,𝑖
ℓ
⦀.

(4.36)

Since 0 < 𝛿 < min{ 1
𝐿 [5𝜏 ] ,

2𝛼
𝐿 [2𝜏 ]2 }, it follows that

0 (4.6)≤ E(𝑢𝑘+1,𝑖
ℓ

) − E(𝑢★
ℓ ) = E(𝑢𝑘 ,𝑖

ℓ
) − E(𝑢★

ℓ ) −
[E(𝑢𝑘,𝑖

ℓ
) − E(𝑢𝑘+1,𝑖

ℓ
)]

(4.26)≤ E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ ) −
( 1
2𝛿 − 𝐿 [5𝜏]

2
)
⦀𝑢

𝑘+1,𝑖
ℓ

− 𝑢𝑘,𝑖
ℓ
⦀

2

(4.36)≤ E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ ) −
( 1
2𝛿 − 𝐿 [5𝜏]

2
)
(1 − 𝑞 𝑖min

alg )2 𝛿 2 𝛼2 ⦀𝑢★
ℓ − 𝑢𝑘,𝑖

ℓ
⦀

2

(4.6)≤
(
1 − [

1 − 𝛿 𝐿 [5𝜏]] (1 − 𝑞 𝑖min
alg )2 𝛼2 𝛿
𝐿 [2𝜏]

) [E(𝑢𝑘,𝑖
ℓ
) − E(𝑢★

ℓ )
]

C 𝑞E [𝛿 ,𝜏]2
[E(𝑢𝑘 ,𝑖

ℓ
) − E(𝑢★

ℓ )
]
.

We may rewrite 𝑞E [𝛿 ,𝜏]2 = 1 − 𝐶𝛿 + 𝐶 𝐿 [5𝜏] 𝛿 2 with 𝐶 =
(1−𝑞 𝑖min

alg )2 𝛼2
𝐿 [2𝜏 ] . Since 0 < 𝛿 <

min{ 1
𝐿 [5𝜏 ] ,

2𝛼
𝐿 [2𝜏 ]2 } ≤ 1

𝐿 [5𝜏 ] , we obtain that 0 < 𝑞E [𝛿 ,𝜏] < 1. This proves (4.33). The lower
inequality in (4.34) follows from the triangle inequality. The upper inequality in (4.34)
holds due to 0 ≤ E(𝑢𝑘+1,𝑖

ℓ
) −E(𝑢★

ℓ
) andhence E(𝑢𝑘,𝑖

ℓ
) −E(𝑢𝑘+1,𝑖

ℓ
) = E(𝑢𝑘,𝑖

ℓ
) −E(𝑢★

ℓ
) +E(𝑢★

ℓ
) −

E(𝑢𝑘+1,𝑖
ℓ

) ≤ E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ
). This concludes the proof. □

Proof of Theorem 4.8. The proof consists of four steps.
Step 1 (proof of (4.22)–(4.23) for 𝒌 = 0 and all ℓ ∈ ℕ0) Let ℓ ∈ ℕ0 with ℓ ≤ ℓ be arbitrary,

but fixed. From the initial guess 𝑢0,00 or Algorithm 4.6(I.c) and 𝑢0,𝑖
ℓ

= 𝑢0,0
ℓ

= 𝑢
𝑘 ,𝑖

ℓ−1 for any
ℓ ∈ ℕ, we have that ⦀𝑢0,0

ℓ
⦀ ≤ 2𝑀 and a fortiori ⦀𝑢0,0

ℓ
⦀ ≤ 𝜏 . This proves (4.22) for 𝑘 = 0 and

all ℓ ∈ ℕ0 with ℓ ≤ ℓ (even with the stronger bound 2𝑀 ≤ 𝜏).
Inparticular,wemayapplyLemma4.10 toobtain thatE(𝑢1,𝑖

ℓ
)−E(𝑢★

ℓ
) ≤ 𝑞E [𝛿 ,𝜏]2

[E(𝑢0,𝑖
ℓ
)−

E(𝑢★
ℓ
)] , which proves (4.23) for 𝑘 = 0 and ℓ ∈ ℕ0.

Step 2 (proof of (4.22)–(4.23) for 𝒌 ≥ 0 and all ℓ ∈ ℕ0) Let ℓ ∈ ℕ0 with ℓ ≤ ℓ. We argue
by induction on 𝑘 , where Step 1 proves the base case 𝑘 = 0. Hence, we may assume
that boundedness (4.22) holds for all 0 ≤ 𝑘 ′ ≤ 𝑘 . Lemma 4.10 applied separately for all

129



4 semilinear AILFEMwith linearization and algebraic solver

0 ≤ 𝑘 ′ ≤ 𝑘 yields energy contraction (4.33) for the indices 0 ≤ 𝑘 ′ ≤ 𝑘 . Overall, we obtain
that

E(𝑢𝑘+1,𝑖
ℓ

) − E(𝑢★
ℓ )

(4.33)≤ 𝑞E [𝛿 ,𝜏]2
[E(𝑢𝑘 ,𝑖

ℓ
) − E(𝑢★

ℓ )
] (4.33)≤ 𝑞E [𝛿 ,𝜏]2(𝑘+1)

[E(𝑢0,𝑖
ℓ
) − E(𝑢★

ℓ )
]
,

(4.37)

where we only used energy contraction (4.33) for 0 ≤ 𝑘 ′ ≤ 𝑘 , i.e., for indices that are
covered by the induction hypothesis. From (4.37), ⦀𝑢★

ℓ
⦀ ≤ 𝑀 from (4.4), and ⦀𝑢

0,𝑖
ℓ
⦀ ≤ 2𝑀

and𝑢0,𝑖
ℓ

= 𝑢0,0
ℓ

from Step 1, we obtain that

⦀𝑢
𝑘+1,𝑖
ℓ

⦀ ≤ ⦀𝑢★
ℓ ⦀ + ⦀𝑢★

ℓ − 𝑢𝑘+1,𝑖
ℓ

⦀

(4.6)≤ 𝑀 +
( 2
𝛼

)1/2 [E(𝑢𝑘+1,𝑖
ℓ

) − E(𝑢★
ℓ )

]1/2
(4.37)≤ 𝑀 + 𝑞𝑘+1E

( 2
𝛼

)1/2 [E(𝑢0,𝑖
ℓ
) − E(𝑢★

ℓ )
]1/2

(4.6)≤ 𝑀 + 𝑞𝑘+1E

(𝐿 [3𝑀 ]
𝛼

)1/2
⦀𝑢★

ℓ − 𝑢0,𝑖
ℓ
⦀ ≤ 𝑀 + 𝑞𝑘+1E

(𝐿 [3𝑀 ]
𝛼

)1/2
3𝑀 ≤ 𝜏. (4.38)

Thus, boundedness (4.22) is satisfied for 0 ≤ 𝑘 ′ ≤ 𝑘 + 1. Again, Lemma 8 yields energy
contraction for 0 ≤ 𝑘 ′ ≤ 𝑘 + 1. This completes the induction argument and concludes
that (4.22)–(4.23) hold for all ℓ ∈ ℕ0 and all 𝑘 ∈ ℕ0.
Step 3 (uniform boundedness). Contraction of the algebraic solver (4.12), the straight-

forward estimate from the exact Zarantonello iteration (4.10), ⦀𝑢★
⦀ ≤ 𝑀 ≤ 𝜏 from (4.4),

⦀𝑢𝑘,0
ℓ

⦀ ≤ 𝜏 from (4.22), and the constraint 𝛿 < min{1/𝐿 [5𝜏], 2𝛼/𝐿 [2𝜏]2} which ensures
that 𝛿𝐿 [2𝜏] ≤ 𝛿𝐿 [5𝜏] < 1, yield that

⦀𝑢𝑘 ,★
ℓ

− 𝑢𝑘 ,0
ℓ

⦀ = ⦀Φℓ (𝛿 ;𝑢𝑘 ,0ℓ ) − 𝑢𝑘,0
ℓ

⦀ ≤ 𝛿 ||𝐹 − A(𝑢𝑘 ,0
ℓ

) ||X′
(LIP)≤ 𝛿 𝐿 [2𝜏] ⦀𝑢★ − 𝑢𝑘 ,0

ℓ
⦀ < 2𝜏.

With ⦀𝑢𝑘 ,★
ℓ

⦀ ≤ ⦀𝑢𝑘,0
ℓ

⦀ + ⦀𝑢𝑘,★
ℓ

− 𝑢𝑘,0
ℓ

⦀ ≤ 3𝜏 owing to (4.21), it follows that

⦀𝑢𝑘,𝑖
ℓ
⦀

(4.12)≤ ⦀𝑢𝑘,★
ℓ

⦀ + 𝑞 𝑖alg ⦀𝑢𝑘 ,★ℓ
− 𝑢𝑘 ,0

ℓ
⦀ ≤ 5𝜏 for all (ℓ, 𝑘 , 𝑖 ) ∈ Q.

Step 4 (existence of 𝒌0) Let ℓ ∈ ℕ0 with ℓ ≤ ℓ. As in (4.38) from Step 2, we obtain

⦀𝑢
𝑘 ,𝑖

ℓ
⦀ ≤ 𝑀 + 𝑞𝑘E

(𝐿 [3𝑀 ]
𝛼

)1/2
3𝑀.

Clearly, there exists a minimal integer 𝑘0 = 𝑘0 [𝑞E, 𝛼, 𝐿 [3𝑀 ]] = 𝑘0 [𝛿 ,𝜏, 𝛼, 𝐿 [3𝑀 ],𝑀 ] ∈ ℕ

such that, for all 𝑘 ≥ 𝑘0, it holds that

𝑀 + 𝑞𝑘E
(𝐿 [3𝑀 ]

𝛼

)1/2
3𝑀 ≤ 2𝑀.

In particular, 𝑘0 is independent of themesh level ℓ and ⦀𝑢
𝑘 ,𝑖

ℓ
⦀ ≤ 2𝑀 for all 𝑘0 ≤ 𝑘 ≤ 𝑘 [ℓ].

This concludes the proof. □
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Remark 4.11. (i)According to uniformboundedness (4.24), all involved Lipschitz constants
or stability constants are uniformly bounded by 𝐿 [10𝜏] and𝐶stab [10𝜏], respectively.
(ii)Under the assumption that 0 < 𝛿 < min{ 1

𝐿 [5𝜏 ] ,
2𝛼

𝐿 [2𝜏 ]2 }, energy contraction (4.23) and
the lower bound in the norm-energy equivalence (4.26) are even equivalent, i.e.,

(4.23) ⇐⇒ (4.26).

To see this, recall that the proof of energy contraction (4.23) in Lemma 4.10 exploits (4.26).
The converse implication is obtained as follows: First, energy contraction yields

E(𝑢𝑘+1,★
ℓ

)−E(𝑢★
ℓ ) ≤𝑞2E

[E(𝑢𝑘 ,𝑖
ℓ
)−E(𝑢★

ℓ )
]
=𝑞2E

{[E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢𝑘+1,★

ℓ
)]+ [E(𝑢𝑘+1,★

ℓ
) − E(𝑢★

ℓ )
]}

(4.39)
which gives rise to the a posteriori estimate

0 ≤ E(𝑢𝑘+1,★
ℓ

) − E(𝑢★
ℓ ) ≤

𝑞2E
1 − 𝑞2E

[E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢𝑘+1,★

ℓ
)] . (4.40)

In particular, we note that the energy difference on the right-hand side is nonnegative.
Exploiting uniform boundedness (4.22), the last inequality yields that

⦀𝑢𝑘+1,★
ℓ

− 𝑢𝑘 ,𝑖
ℓ
⦀

2 ≲ ⦀𝑢★
ℓ − 𝑢𝑘+1,★

ℓ
⦀

2 + ⦀𝑢★
ℓ − 𝑢𝑘 ,𝑖

ℓ
⦀

2 (4.10)≤ (1 + (𝑞★
Zar [𝛿 , 2𝜏])2

)
⦀𝑢★

ℓ − 𝑢𝑘 ,𝑖
ℓ
⦀

2

(4.6)
≲

[E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢𝑘+1,★

ℓ
)] + [E(𝑢𝑘+1,★

ℓ
) − E(𝑢★

ℓ )
] (4.40)≤ 1

1 − 𝑞2E
[E(𝑢𝑘 ,𝑖

ℓ
) − E(𝑢𝑘+1,★

ℓ
)] .

This concludes the argument.

Remark 4.12. (i) The stopping criteria (4.16) and (4.17) read schematically

[accuracy criterion] AND [iteration criterion].

(ii) The accuracy criterion in (4.17) is heuristically motivated by the fact that the dis-
cretization error (estimated by𝜂ℓ (·)) shall dominate the linearization error

𝛼

2 ⦀𝑢★
ℓ − 𝑢𝑘+1,𝑖

ℓ
⦀

2 (4.6)≤ E(𝑢𝑘+1,𝑖
ℓ

) − E(𝑢★
ℓ )

(4.23)≤ 𝑞2E
1 − 𝑞2E

[E(𝑢𝑘,𝑖
ℓ
) − E(𝑢𝑘+1,𝑖

ℓ
)] (4.17)≲ 𝜆2lin𝜂ℓ (𝑢

𝑘+1,𝑖
ℓ

)2.
(4.41)

This allows a posteriori error control over the linearization error bymeans of computable
energy differences.
(iii)Theaccuracy criterion (4.16) is satisfied given that thediscretizationand linearization

error dominate the algebraic error in the sense of

⦀𝑢𝑘,★
ℓ

−𝑢𝑘,𝑖
ℓ
⦀

(4.12)≤ 𝑞alg
1 − 𝑞alg

⦀𝑢𝑘 ,𝑖
ℓ

−𝑢𝑘 ,𝑖−1
ℓ

⦀

(4.16)≤ 𝑞alg
1 − 𝑞alg

𝜆alg
[
𝜆lin𝜂ℓ (𝑢𝑘 ,𝑖ℓ )+⦀𝑢𝑘 ,𝑖

ℓ
−𝑢𝑘,0

ℓ
⦀

]
. (4.42)

Once the 𝑖-loop is stopped, the equivalence (4.26) and nested iteration 𝑢𝑘 ,0
ℓ

= 𝑢
𝑘−1,𝑖
ℓ

yield
⦀𝑢

𝑘 ,𝑖

ℓ
− 𝑢𝑘,0

ℓ
⦀

2 = ⦀𝑢
𝑘 ,𝑖

ℓ
− 𝑢𝑘−1,𝑖

ℓ
⦀

2 ≃ E(𝑢𝑘−1,𝑖
ℓ

) − E(𝑢𝑘 ,𝑖
ℓ
).
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4.4 Full R-linear convergence

We prove full R-linear convergence of Algorithm 4.6 by adapting the analysis of [HPSV21;
BFM+23]. The new result extends [ 2 AIL1, Theorem 13], where an exact solve for the Zaran-
tonello iteration (4.10) is supposed. The new proof is built on a summability argument,
but the stopping criteria (4.16)–(4.17) with iteration count criteria require further analy-
sis to prove full R-linear convergence even (and unlike [HPSV21; BFM+23]) for arbitrary
adaptivity parameters 0 < 𝜃 ≤ 1, 𝜆lin > 0 and 𝜆alg > 0.

Theorem 4.13: full R-linear convergence of Algorithm 4.6
Suppose the assumptions of Theorem 4.8. Suppose the axioms of adaptivity (A1)–(A3). Let
𝜆lin, 𝜆alg > 0, 0 < 𝜃 ≤ 1,𝐶mark ≥ 1, and𝑢0,00 ∈ X0 with ⦀𝑢0,00 ⦀ ≤ 2𝑀 . Then, Algorithm 4.6
guarantees full R-linear convergence of the quasi-error

H𝑘,𝑖
ℓ
B ⦀𝑢★

ℓ − 𝑢𝑘 ,𝑖
ℓ
⦀ + ⦀𝑢𝑘 ,★

ℓ
− 𝑢𝑘 ,𝑖

ℓ
⦀ +𝜂ℓ (𝑢𝑘 ,𝑖ℓ ), (4.43)

i.e., there exist constants 0 < 𝑞lin < 1 and𝐶lin > 0 such that

H𝑘 ,𝑖
ℓ

≤𝐶lin𝑞 |ℓ,𝑘 ,𝑖 |− |ℓ′,𝑘 ′,𝑖 ′ |
lin H𝑘 ′,𝑖 ′

ℓ′ for all (ℓ′, 𝑘 ′, 𝑖 ′), (ℓ, 𝑘 , 𝑖 ) ∈ Q with |ℓ′, 𝑘 ′, 𝑖 ′ | < |ℓ, 𝑘 , 𝑖 |. (4.44)

The constant 𝑞lin depends only on 𝜃 , 𝑞red from (A2), 𝑞★
Zar [𝛿 , 2𝜏] from Proposition 4.4, 𝑞E

fromTheorem4.8, and𝑞alg from (4.12). The constant𝐶lin depends only on𝑀 , 𝛼,𝐶Céa [2𝑀 ],
𝑞★
Zar [𝛿 ; 2𝜏], 𝜆lin, 𝑞alg, 𝜆alg,𝐶rel,𝐶stab [10𝜏], and 𝑖min.

Proof of Theorem 4.13. The proof is split into seven steps.
Step 1 (equivalences of quasi-error quantities). Throughout the proof, we approach

H𝑘 ,𝑖
ℓ
from (4.43) after introducing auxiliary quantities such as

H𝑘
ℓ B [E(𝑢𝑘,𝑖

ℓ
) − E(𝑢★

ℓ )]1/2 +𝜂ℓ (𝑢
𝑘,𝑖

ℓ
) for all (ℓ, 𝑘 , 𝑖 ) ∈ Q (4.45)

and

Hℓ B [E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ )]1/2 +𝛾 𝜂ℓ (𝑢
𝑘 ,𝑖

ℓ
) (4.45)≃ H𝑘

ℓ
for all (ℓ, 𝑘 , 𝑖 ) ∈ Q, (4.46)

where 0 < 𝛾 < 1 is a free parameter to be fixed later in (4.51) below. In the following,
we show that H𝑘 ,𝑖

ℓ
≃ H𝑘

ℓ

(4.46)≃ Hℓ . First, note that the equivalence of energy and norm
from (4.6) (with 𝐿 [2𝜏] from boundedness (4.22) and (4.4)) yields that

H𝑘
ℓ ≤ H𝑘

ℓ + ⦀𝑢𝑘,★
ℓ

− 𝑢𝑘,𝑖
ℓ
⦀

(4.6)≃ H𝑘,𝑖

ℓ
for all (ℓ, 𝑘 , 𝑖 ) ∈ Q. (4.47)

The a posteriori estimate (4.42) for the algebraic solver fromRemark 4.12(iii), norm-energy
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equivalence (4.26), and the stopping criterion (4.17) show that

⦀𝑢
𝑘 ,★

ℓ
− 𝑢𝑘 ,𝑖

ℓ
⦀

(4.42)≤ 𝑞alg
1 − 𝑞alg

𝜆alg
[
𝜆lin𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) + ⦀𝑢

𝑘 ,𝑖

ℓ
− 𝑢𝑘 ,0

ℓ
⦀

]
(4.26)
≲ 𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) + [E(𝑢𝑘 ,0

ℓ
) − E(𝑢𝑘 ,𝑖

ℓ
)]1/2 (4.17)

≲ 𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) ≤ H𝑘

ℓ
.

With (4.47), we conclude that Hℓ ≃ H𝑘

ℓ
≃ H𝑘 ,𝑖

ℓ
.

Step 2 (estimator reduction). The axioms (A1)–(A2) and Dörfler marking (4.18) prove
the estimator reduction estimate (cf., e.g., [GHPS21, Equation (52)])

𝜂ℓ+1(𝑢𝑘 ,𝑖ℓ+1) ≤ 𝑞𝜃 𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) +𝐶stab [4𝑀 ] ⦀𝑢𝑘 ,𝑖
ℓ+1 − 𝑢

𝑘 ,𝑖

ℓ
⦀ for all ℓ ∈ ℕ0, (4.48)

where 4𝑀 stems from nested iteration (4.21) from Theorem 4.8. Moreover, the triangle
inequality, the equivalence (4.6), and energy contraction (4.23) give that

⦀𝑢
𝑘 ,𝑖

ℓ+1 − 𝑢
𝑘 ,𝑖

ℓ
⦀ ≤ ⦀𝑢★

ℓ+1 − 𝑢
𝑘 ,𝑖

ℓ+1⦀ + ⦀𝑢★
ℓ+1 − 𝑢

𝑘 ,𝑖

ℓ
⦀

(4.6)≤
( 2
𝛼

)1/2 [E(𝑢𝑘 ,𝑖
ℓ+1) − E(𝑢★

ℓ+1)
]1/2 + ( 2

𝛼

)1/2 [E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ+1)
]1/2

(4.23)≤ (1 + 𝑞𝑘 [ℓ+1]E )
( 2
𝛼

)1/2 [E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ+1)
]1/2

.

Combined with the estimator reduction estimate (4.48) and with 1 + 𝑞E < 2, we obtain
with𝐶1 B 2 (2/𝛼)1/2𝐶stab [4𝑀 ] that

𝜂ℓ+1(𝑢𝑘 ,𝑖ℓ+1) ≤ 𝑞𝜃 𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) +𝐶1
[E(𝑢𝑘 ,𝑖

ℓ
) − E(𝑢★

ℓ+1)
]1/2 for all 0 ≤ ℓ < ℓ. (4.49)

Step3 (tail summabilitywith respect to ℓ). Since1 ≤ 𝑘 [ℓ+1], nested iteration𝑢0,𝑖
ℓ+1 = 𝑢

𝑘 ,𝑖

ℓ

proves that

Hℓ+1
(4.46)
=

[E(𝑢𝑘 ,𝑖
ℓ+1) − E(𝑢★

ℓ+1)
]1/2 +𝛾 𝜂ℓ+1(𝑢𝑘 ,𝑖ℓ+1) (4.23)≤ 𝑞E

[E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ+1)
]1/2 + 𝛾 𝜂ℓ+1(𝑢𝑘 ,𝑖ℓ+1)

(4.49)≤ (
𝑞E +𝐶1𝛾

) [E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ+1)
]1/2 + 𝑞𝜃 𝛾 𝜂ℓ (𝑢𝑘 ,𝑖ℓ )

≤ max
{
𝑞E+𝐶1𝛾 , 𝑞𝜃

} ( [E(𝑢𝑘 ,𝑖
ℓ
)−E(𝑢★

ℓ+1)
]1/2+𝛾 𝜂ℓ (𝑢𝑘 ,𝑖ℓ )) for all (ℓ + 1, 𝑘 , 𝑖 ) ∈ Q. (4.50)

With 0 < 𝑞𝜃 < 1, we choose 0 < 𝛾 < (1 − 𝑞E)/𝐶1 < 1 to guarantee that

0 < 𝑞 B max
{
𝑞E +𝐶1𝛾 , 𝑞𝜃

}
< 1. (4.51)

With the triangle inequality, (4.50) leads us to

𝑎ℓ+1 B
[E(𝑢𝑘 ,𝑖

ℓ+1) − E(𝑢★
ℓ+1)

]1/2 +𝛾 𝜂ℓ+1(𝑢𝑘 ,𝑖ℓ+1)
(4.50)≤ 𝑞

( [E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ )
]1/2 +𝛾 𝜂ℓ (𝑢𝑘 ,𝑖ℓ )) + 𝑞 [E(𝑢★

ℓ ) − E(𝑢★
ℓ+1)

]1/2
C 𝑞 𝑎ℓ + 𝑏ℓ for all (ℓ, 𝑘 , 𝑖 ) ∈ Q.

(4.52)
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By exploiting the equivalence (4.6) and stability (A1) (since all𝑢𝑘 ,𝑖
ℓ

are uniformly bounded
by nested iteration (4.21)), the Céa lemma (4.5), and reliability (A3) prove that
[E(𝑢★

ℓ′) − E(𝑢★
ℓ′′)

]1/2 (4.6)≃ ⦀𝑢★
ℓ′′ − 𝑢★

ℓ′⦀
(4.5)
≲ ⦀𝑢★ − 𝑢★

ℓ ⦀
(A3)
≲ 𝜂ℓ (𝑢★

ℓ )
(A1)
≲ ⦀𝑢★

ℓ − 𝑢𝑘 ,𝑖
ℓ
⦀ +𝜂ℓ (𝑢𝑘 ,𝑖ℓ )

(4.6)≃ [E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ )
]1/2 +𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) ≃ 𝑎ℓ for all ℓ ≤ ℓ′ ≤ ℓ′′ ≤ ℓ with (ℓ, 𝑘 , 𝑖 ) ∈ Q.

(4.53)

Hence, we infer that𝑏ℓ+𝑁 ≲ 𝑎ℓ for all 0 ≤ ℓ ≤ ℓ +𝑁 ≤ ℓ with (ℓ, 𝑘 , 𝑖 ) ∈ Q, where the hidden
stability constant𝐶stab [3𝑀 ] depends on 3𝑀 due to (4.4) and nested iteration (4.21).
The energy E from (POT) (and its Pythagorean identity that leads to a telescoping sum)

as well as theminimization property (4.7) forX𝐻 = X allow for the estimate

ℓ+𝑁 −1∑︁
ℓ′=ℓ

𝑏2ℓ′ ≃
ℓ−1∑︁
ℓ′=ℓ

[E(𝑢★
ℓ′) − E(𝑢★

ℓ′+1)
] ≤ E(𝑢★

ℓ ) − E(𝑢★
ℓ )

(4.7)≤ E(𝑢★
ℓ ) − E(𝑢★)

(4.6)≤ 𝐿 [2𝑀 ]
2 ⦀𝑢★ − 𝑢★

ℓ ⦀
2 (A3)≤ 𝐶 2

rel
𝐿 [2𝑀 ]

2 𝜂ℓ (𝑢★
ℓ )2

(4.53)
≲ 𝑎2ℓ for all 0 ≤ ℓ < ℓ +𝑁 ≤ ℓ,

(4.54)

where the hidden stability constant 𝐶stab depends on 3𝑀 due to (4.4) and nested itera-
tion (4.21).
With (4.52)–(4.54), the assumptions for the tail summability criterion from [BFM+23,

Lemma 6] are met. We thus conclude tail summability of Hℓ+1 ≃ H𝑘

ℓ
≃ 𝑎ℓ , i.e.,

ℓ−1∑︁
ℓ′=ℓ+1

H𝑘

ℓ′ ≲ H
𝑘

ℓ
for all 0 ≤ ℓ < ℓ. (4.55)

Step 4 (quasi-contraction in 𝒌 ).We distinguish three cases.
Case 4.1: Evaluation of (4.17) yields TRUE ∧ FALSE. This gives rise to

2𝑀 (4.17)
< ⦀𝑢

𝑘 ,𝑖

ℓ
⦀ ≤ ⦀𝑢★

ℓ ⦀ + ⦀𝑢★
ℓ − 𝑢𝑘 ,𝑖

ℓ
⦀

(4.4)≤ 𝑀 + ⦀𝑢★
ℓ − 𝑢𝑘,𝑖

ℓ
⦀

and hence, we conclude that𝑀 < ⦀𝑢★
ℓ
− 𝑢𝑘 ,𝑖

ℓ
⦀. Thus,

1 =
𝑀

𝑀
<

⦀𝑢★
ℓ
− 𝑢𝑘 ,𝑖

ℓ
⦀

𝑀

(4.6)≤ 1
𝑀

( 2
𝛼

)1/2 [E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ )
]1/2

(4.23)≤ 𝑞E
𝑀

( 2
𝛼

)1/2 [E(𝑢𝑘−1,𝑖
ℓ

) − E(𝑢★
ℓ )

]1/2
.

(4.56)

We recall from (4.4) that ⦀𝑢★
ℓ
⦀ ≤ 𝑀 and ⦀𝑢★

ℓ
− 𝑢★

0 ⦀ ≤ 2𝑀 independently of ℓ. Moreover,
there holds quasi-monotonicity of the estimators in the sense that

𝜂ℓ (𝑢★
ℓ ) ≤ 𝐶mon𝜂0(𝑢★

0 ) with𝐶mon =
[
2 + 8𝐶stab [2𝑀 ]2(1 +𝐶Céa [2𝑀 ]2)𝐶 2

rel
]1/2; (4.57)

cf. [CFPP14, Lemma 3.6] or [ 2 AIL1, Equation 3.42] for the locally Lipschitz continuous set-
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ting. In particular, estimate (4.57) holds also for the discrete limit
spaceXℓ B closure( ⋃ℓ

ℓ=0Xℓ
) . Additionally, we note that the estimate (4.57) admits

𝜂ℓ (𝑢★
ℓ )

(4.57)≤ 𝐶mon𝜂0(𝑢★
0 )

(A1)≤ 𝐶mon𝜂0(0) +𝐶mon𝐶stab [𝑀 ] ⦀𝑢★
0 ⦀

(4.56)
≲

[E(𝑢𝑘−1,𝑖
ℓ

) − E(𝑢★
ℓ )

]1/2
.

(4.58)
The estimate (4.58), stability (A1) with stability constant𝐶stab [2𝜏] due to (4.22) and (4.4),
and energy contraction (4.23) yield that

𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) (A1)≤ 𝜂ℓ (𝑢★
ℓ ) +𝐶stab [2𝜏] ⦀𝑢★

ℓ − 𝑢𝑘,𝑖
ℓ
⦀

(4.6)
≲ 𝜂ℓ (𝑢★

ℓ ) +
[E(𝑢𝑘,𝑖

ℓ
) − E(𝑢★

ℓ )
]1/2

(4.58)
≲

[E(𝑢𝑘−1,𝑖
ℓ

) − E(𝑢★
ℓ )

]1/2 + [E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ )
]1/2 (4.23)

≲
[E(𝑢𝑘−1,𝑖

ℓ
) − E(𝑢★

ℓ )
]1/2

.

(4.59)

For 0 ≤ 𝑘 ′ < 𝑘 < 𝑘 [ℓ], the definition (4.45), energy contraction (4.23), and (4.59) prove

H𝑘
ℓ

(4.23)
≲ 𝑞E

[E(𝑢𝑘−1,𝑖
ℓ

) − E(𝑢★
ℓ )

]1/2 +𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) (4.59)≲ [E(𝑢𝑘−1,𝑖
ℓ

) − E(𝑢★
ℓ )

]1/2
(4.23)
≲ 𝑞

(𝑘−1)−𝑘 ′
E

[E(𝑢𝑘 ′,𝑖
ℓ

) − E(𝑢★
ℓ )

]1/2 (4.45)
≲ 𝑞𝑘−𝑘

′
E H𝑘 ′

ℓ .

(4.60)

This concludes Case 4.1. ⋄

Case 4.2: Evaluation of (4.17) yields FALSE ∧ FALSE or FALSE ∧ TRUE. For 0 ≤ 𝑘 ′ < 𝑘 <
𝑘 [ℓ], the definition (4.45), the failure of the accuracy condition in the stopping criterion
for the inexact Zarantonello linearization (4.17), energyminimization (4.7), and energy
contraction (4.23) prove that

H𝑘
ℓ

(4.17)
<

[E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ )
]1/2 + 𝜆−1lin [E(𝑢𝑘−1,𝑖

ℓ
) − E(𝑢𝑘,𝑖

ℓ
)]1/2

(4.7), (4.23)
≲

[E(𝑢𝑘−1,𝑖
ℓ

) − E(𝑢★
ℓ )

]1/2 (4.23)
≲ 𝑞

(𝑘−1)−𝑘 ′
E

[E(𝑢𝑘 ′,𝑖
ℓ

) − E(𝑢★
ℓ )

]1/2 (4.45)
≲ 𝑞𝑘−𝑘

′
E H𝑘 ′

ℓ .

(4.61)

This concludes Case 4.2. ⋄

Case 4.3: Evaluation of (4.17) yields TRUE ∧ TRUE. The equivalence (4.26), bounded-
ness (4.22), and energyminimization (4.7) prove that

H𝑘

ℓ

(A1)
≲

[E(𝑢𝑘 ,𝑖
ℓ
) − E(𝑢★

ℓ )
]1/2 + ⦀𝑢

𝑘 ,𝑖

ℓ
− 𝑢𝑘−1,𝑖

ℓ
⦀ +𝜂ℓ (𝑢𝑘−1,𝑖ℓ

)
(4.26)
≲ H𝑘−1

ℓ
+ [E(𝑢𝑘−1,𝑖

ℓ
) − E(𝑢𝑘 ,𝑖

ℓ
)]1/2 (4.7)≤ 2H𝑘−1

ℓ
for all (ℓ, 𝑘 , 𝑖 ) ∈ Q.

(4.62)

Since 𝑘 = 𝑘 [ℓ] − 1 is covered by Case 4.1 or Case 4.2, estimate (4.62) leads to

H𝑘

ℓ

(4.62)
≲

𝑞E
𝑞E

H𝑘−1
ℓ
≲ 𝑞EH𝑘−1

ℓ

(4.60), (4.61)
≲ 𝑞

𝑘 [ℓ ]−𝑘 ′

E H𝑘 ′,𝑖
ℓ
. (4.63)

This concludes Case 4.3. ⋄
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Overall, the estimates (4.60)–(4.61) and (4.63) result in

H𝑘
ℓ ≲ 𝑞

𝑘−𝑘 ′
E H𝑘 ′

ℓ for all (ℓ, 𝑘 , 𝑗 ) ∈ Q with 0 ≤ 𝑘 ′ ≤ 𝑘 ≤ 𝑘 [ℓ], (4.64)

where the hidden constant depends only on𝑀 ,𝐶stab [2𝜏], 𝛼, 𝐿 [2𝑀 ],𝐶Céa [2𝑀 ],𝐶rel, 𝜆lin,
and 𝑞E. Furthermore, we recall from (4.53) that

[E(𝑢★
ℓ−1) − E(𝑢★

ℓ
)]1/2 ≲ H𝑘

ℓ−1. Together
with nested iteration𝑢𝑘 ,𝑖

ℓ−1 = 𝑢
0,𝑖
ℓ

= 𝑢0,★
ℓ
, this yields that

H0
ℓ =

[E(𝑢𝑘 ,𝑖
ℓ−1) − E(𝑢★

ℓ )
]1/2 +𝜂ℓ (𝑢𝑘 ,𝑖ℓ−1) ≲ [E(𝑢★

ℓ−1) − E(𝑢★
ℓ )

]1/2 +H𝑘

ℓ−1 ≤ H𝑘

ℓ−1

and thus

H0
ℓ ≲ H

𝑘

ℓ−1 for all (ℓ, 0, 0) ∈ Q with ℓ ≥ 1. (4.65)

Step 5 (tail summability with respect to ℓ and 𝒌 ). The estimates (4.64)–(4.65) from
Step 4 as well as (4.55) from Step 3 and the geometric series prove that

∑︁
(ℓ′,𝑘 ′,𝑖 ) ∈Q

|ℓ′,𝑘 ′,𝑖 |> |ℓ,𝑘 ,𝑖 |

H𝑘 ′
ℓ′ =

𝑘 [ℓ ]∑︁
𝑘 ′=𝑘+1

H𝑘 ′
ℓ +

ℓ∑︁
ℓ′=ℓ+1

𝑘 [ℓ ]∑︁
𝑘 ′=0

H𝑘 ′
ℓ′

(4.64)
≲ H𝑘

ℓ +
ℓ∑︁

ℓ′=ℓ+1
H0
ℓ′

(4.65)
≲ H𝑘

ℓ +
ℓ−1∑︁
ℓ′=ℓ

H𝑘

ℓ′
(4.55)
≲ H𝑘

ℓ +H
𝑘

ℓ

(4.64)
≲ H𝑘

ℓ for all (ℓ, 𝑘 , 𝑖 ) ∈ Q.

(4.66)

Step6 (contraction in 𝒊 ). For 𝑖 = 0 and𝑘 = 0,we recall that𝑢0,0
ℓ

= 𝑢
0,𝑖
ℓ

= 𝑢0,★
ℓ

bydefinition
and hence H0,0

ℓ

(4.6)≃ H0
ℓ
. For 𝑘 ≥ 1, nested iteration𝑢𝑘 ,0

ℓ
= 𝑢

𝑘−1,𝑖
ℓ

, contraction of the exact
Zarantonello iteration (4.11), and energy equivalence (4.6) imply that

⦀𝑢𝑘,★
ℓ

−𝑢𝑘,0
ℓ

⦀ ≤ ⦀𝑢★
ℓ − 𝑢𝑘 ,★

ℓ
⦀ + ⦀𝑢★

ℓ − 𝑢𝑘−1,𝑖
ℓ

⦀

(4.11)≤ (𝑞★
Zar [𝛿 ; 3𝑀 ] + 1) ⦀𝑢★

ℓ − 𝑢𝑘−1,𝑖
ℓ

⦀

(4.6)
≲ 2H𝑘−1

ℓ .

Therefore, by using the equivalence (4.6) oncemore, we obtain that

H𝑘,0
ℓ
≲ H(𝑘−1)+

ℓ
for all (ℓ, 𝑘 , 0) ∈ Q, where (𝑘 − 1)+ B max{0, 𝑘 − 1}. (4.67)

Let (ℓ, 𝑘 , 𝑖 ) ∈ Q. It holds that

H𝑘 ,𝑖
ℓ

(4.43)
= ⦀𝑢★

ℓ − 𝑢𝑘 ,𝑖
ℓ
⦀ + ⦀𝑢𝑘 ,★

ℓ
− 𝑢𝑘 ,𝑖

ℓ
⦀ +𝜂ℓ (𝑢𝑘 ,𝑖ℓ )

(A1)≤ H𝑘 ,𝑖−1
ℓ

+ (2 +𝐶stab [10𝜏]) ⦀𝑢𝑘,𝑖ℓ − 𝑢𝑘 ,𝑖−1
ℓ

⦀

(4.12)≤ H𝑘 ,𝑖−1
ℓ

+ (2 +𝐶stab [10𝜏]) (𝑞alg + 1) ⦀𝑢𝑘 ,★ℓ
− 𝑢𝑘 ,𝑖−1

ℓ
⦀

(4.43)
≲ H𝑘 ,𝑖−1

ℓ
,

(4.68)

where 𝐶stab [10𝜏] stems from the uniform bound (4.24) from Theorem 4.8. Hence, we
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obtain

H𝑘,𝑖
ℓ
≲ H𝑘 ,𝑖 ′

ℓ
≃ 𝑞 𝑖−𝑖

′
alg H𝑘 ,𝑖 ′

ℓ
for all (ℓ, 𝑘 , 𝑖 ) ∈ Q with 0 ≤ 𝑖 ′ ≤ 𝑖 ≤ 𝑖min.

For all 0 ≤ 𝑖 ′ < 𝑖min ≤ 𝑖 < 𝑖 [ℓ, 𝑘 ], we obtain with an a posteriori estimate based on
the contraction of the Zarantonello iteration (4.11) (where 𝑞★

Zar = 𝑞
★
Zar [𝛿 , 2𝜏] depends on

𝜏 from (4.22)), the a posteriori estimate (4.42) for the algebraic solver, the failure of the
accuracy criterion of (4.16), and the contraction of the algebraic solver (4.12) that

H𝑘 ,𝑖
ℓ

(4.43)
= ⦀𝑢★

ℓ − 𝑢𝑘,𝑖
ℓ
⦀ + ⦀𝑢𝑘,★

ℓ
− 𝑢𝑘,𝑖

ℓ
⦀ +𝜂ℓ (𝑢𝑘,𝑖ℓ ) ≤ ⦀𝑢★

ℓ − 𝑢𝑘 ,★
ℓ

⦀ + 2⦀𝑢𝑘,★
ℓ

− 𝑢𝑘 ,𝑖
ℓ
⦀ +𝜂ℓ (𝑢𝑘,𝑖ℓ )

≤
𝑞★
Zar [𝛿 ; 2𝜏]

1 − 𝑞★
Zar [𝛿 ; 2𝜏]

⦀𝑢𝑘,𝑖
ℓ

− 𝑢𝑘−1,𝑖
ℓ

⦀ +
(
2 +

𝑞★
Zar [𝛿 ; 2𝜏]

1 − 𝑞★
Zar [𝛿 ; 2𝜏]

)
⦀𝑢𝑘 ,★

ℓ
− 𝑢𝑘 ,𝑖

ℓ
⦀ +𝜂ℓ (𝑢𝑘 ,𝑖ℓ )

(4.42)
≲ ⦀𝑢𝑘 ,𝑖

ℓ
− 𝑢𝑘−1,𝑖

ℓ
⦀ + ⦀𝑢𝑘 ,𝑖

ℓ
− 𝑢𝑘,𝑖−1

ℓ
⦀ +𝜂ℓ (𝑢𝑘 ,𝑖ℓ )

(4.16)
≲ ⦀𝑢𝑘 ,𝑖

ℓ
− 𝑢𝑘,𝑖−1

ℓ
⦀

(4.12)
≲ ⦀𝑢𝑘,★

ℓ
− 𝑢𝑘,𝑖−1

ℓ
⦀

(4.12)
≲ 𝑞 𝑖−𝑖

′
alg ⦀𝑢𝑘,★

ℓ
− 𝑢𝑘,𝑖 ′

ℓ
⦀ ≤ 𝑞 𝑖−𝑖

′
alg H𝑘,𝑖 ′

ℓ
, (4.69)

Altogether, the combination of (4.68)–(4.69) proves that

H𝑘,𝑖
ℓ
≲ 𝑞 𝑖−𝑖

′
alg H𝑘,𝑖 ′

ℓ
for all (ℓ, 𝑘 , 𝑖 ) ∈ Q with 0 ≤ 𝑖 ′ ≤ 𝑖 ≤ 𝑖 [ℓ, 𝑘 ], (4.70)

where the hidden constant depends only on 𝑞★
Zar [𝛿 ; 2𝜏], 𝑞alg, 𝜆alg,𝐶stab [10𝜏], and 𝑖min.

Step 7 (tail summability with respect to ℓ, 𝒌 , and 𝒊 ). Finally, we observe that

∑︁
(ℓ′,𝑘 ′,𝑖 ′ ) ∈Q

|ℓ′,𝑘 ′,𝑖 ′ |> |ℓ,𝑘 ,𝑖 |

H𝑘 ′,𝑖 ′
ℓ′ =

𝑖 [ℓ,𝑘 ]∑︁
𝑖 ′=𝑖+1

H𝑘,𝑖 ′
ℓ

+
𝑘 [ℓ ]∑︁
𝑘 ′=𝑘+1

𝑖 [ℓ,𝑘 ′ ]∑︁
𝑖 ′=0

H𝑘 ′,𝑖 ′
ℓ

+
ℓ∑︁

ℓ′=ℓ+1

𝑘 [ℓ′ ]∑︁
𝑘 ′=0

𝑖 [ℓ′,𝑘 ′ ]∑︁
𝑖 ′=0

H𝑘 ′,𝑖 ′
ℓ′

(4.70)
≲ H𝑘,𝑖

ℓ
+

𝑘 [ℓ ]∑︁
𝑘 ′=𝑘+1

H𝑘 ′,0
ℓ

+
ℓ∑︁

ℓ′=ℓ+1

𝑘 [ℓ ]∑︁
𝑘 ′=0

H𝑘 ′,0
ℓ′

(4.67)
≲ H𝑘,𝑖

ℓ
+

∑︁
(ℓ′,𝑘 ′,𝑖 ) ∈Q

|ℓ′,𝑘 ′,𝑖 |> |ℓ,𝑘 ,𝑖 |

H𝑘 ′
ℓ′

(4.66)
≲ H𝑘,𝑖

ℓ
+H𝑘

ℓ

(4.47)
≲ H𝑘,𝑖

ℓ
+H𝑘 ,𝑖

ℓ

(4.70)
≲ H𝑘 ,𝑖

ℓ
for all (ℓ, 𝑘 , 𝑖 ) ∈ Q.

Since Q is countable and linearly ordered, [CFPP14, Lemma 4.9] applies and proves R-
linear convergence (4.44) of H𝑘 ,𝑖

ℓ
. This concludes the proof. □

Given full R-linear convergence fromTheorem4.13, then convergence rateswith respect
to the degrees of freedom coincide with rates with respect to the overall computational
cost, where we recall cost(ℓ, 𝑘 , 𝑖 ) from (4.19). Since all essential arguments are provided,
the proof follows verbatim from [BFM+23, Corollary 16].
Corollary 4.14 (rates =̂ complexity). Suppose full R-linear convergence (4.44). Recall
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cost(ℓ, 𝑘 , 𝑖 ) from (4.19). Then, for any 𝑠 > 0, it holds that

𝑀 (𝑠 ) B sup
(ℓ,𝑘 ,𝑖 ) ∈Q

(#Tℓ)𝑠 H𝑘 ,𝑖
ℓ

≤ sup
(ℓ,𝑘 ,𝑖 ) ∈Q

cost(ℓ, 𝑘 , 𝑖 )𝑠 H𝑘 ,𝑖
ℓ

≤ 𝐶cost𝑀 (𝑠 ), (4.71)

where the constant𝐶cost > 0 depends only on𝐶lin, 𝑞lin, and 𝑠 . Moreover, there exists 𝑠0 > 0
such that𝑀 (𝑠 ) < ∞ for all 0 < 𝑠 ≤ 𝑠0. □

4.5 Optimal complexity

A formalapproach tooptimal complexity relieson thenotionofapproximationclasses [BDD04;
Ste07; CKNS08; CFPP14], which reads as follows: For 𝑠 > 0, define

||𝑢★ ||𝑨𝑠 B sup
𝑁 ∈ℕ0

[(𝑁 + 1)𝑠 min
Topt∈𝕋𝑁

𝜂opt(𝑢★
opt)

]
,

where𝑢★
opt denotes the exact discrete solution associated with the optimal triangulation

Topt ∈ 𝕋𝑁 (T ). For 𝑠 > 0, we note that ||𝑢★ ||𝑨𝑠 < ∞means that the sequence of estimators
along optimally chosenmeshes decreases at least as fast as (𝑁 + 1)−𝑠 ≃ 𝑁 −𝑠 .
Finally, we are in the position to present the thirdmain result of this paper, namely opti-

mal complexity of Algorithm 4.6. Its proof relies, in essence, on perturbation arguments.
More precisely, sufficiently small 𝜃 and 𝜆lin are required to ensure that Algorithm 4.6 guar-
antees convergence rate 𝑠 with respect to the overall computational cost (and time) if the
solution𝑢★ of (4.2) can be approximated at rate 𝑠 in the sense of ||𝑢★ ||𝑨𝑠 < ∞.
Theorem 4.15: optimal complexity

Define 𝜏 B 𝑀 + 3𝑀 ( 𝐿 [3𝑀 ]
𝛼

)1/2 ≥ 4𝑀 with𝑀 from (4.4). Let 0 < 𝛿 < min{ 1
𝐿 [5𝜏 ] ,

2𝛼
𝐿 [2𝜏 ]2 } to

ensure validity of Theorem 4.8. Define

𝜆★lin B min
{
1,

(𝛼 (1 − 𝑞2E)
2𝑞2E

)1/2
/𝐶stab [3𝑀 ]

}
. (4.72)

Suppose the axioms (A1)–(A4). Let 0 < 𝜃 < 1, 0 < 𝜆alg, and 0 < 𝜆lin < 𝜆★lin such that

0 < 𝜃mark B
(𝜃1/2 + 𝜆lin/𝜆★lin)2
(1 − 𝜆lin/𝜆★lin)2

< 𝜃★ B (1 +𝐶stab [2𝑀 ]2𝐶 2
rel)−1 < 1. (4.73)

Then, Algorithm 4.6 guarantees, for all 𝑠 > 0, that

sup
(ℓ,𝑘 ,𝑗 ) ∈Q

cost(ℓ, 𝑘 , 𝑖 )𝑠 H𝑘,𝑗

ℓ
≤ 𝐶opt max{||𝑢★ ||𝑨𝑠 , H0,0

0 }. (4.74)

The constant𝐶opt > 0 depends only on 𝑞E, 𝛼,𝐶stab [10𝜏],𝐶rel,𝐶drel,𝐶mark,𝐶mesh,𝐶lin, 𝑞lin,
#T0, and 𝑠 . In particular, there holds optimal complexity of Algorithm 4.6.

To prove the theorem, we require the following results on the estimator, which relies on
sufficiently small adaptivity parameter 𝜆lin > 0.
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Lemma 4.16 (estimator equivalence). Suppose the assumptions of Theorem 4.8. Recall
𝜆★lin from (4.72). Then, for all (ℓ, 𝑘 , 𝑖 ) ∈ Q with 𝑘 [ℓ] < ∞, it holds that

𝜂ℓ (𝑢★
ℓ ) ≤ (1 + 𝜆lin/𝜆★lin)𝜂ℓ (𝑢

𝑘 ,𝑖

ℓ
), (4.75a)

and, for 0 < 𝜆lin < 𝜆★lin, we furthermore have that

(1 − 𝜆lin/𝜆★lin)𝜂ℓ (𝑢
𝑘 ,𝑖

ℓ
) ≤𝜂ℓ (𝑢★

ℓ ). (4.75b)

For 0 < 𝜆lin < 𝜆★lin, Dörfler marking for 𝑢★
ℓ
with parameter 𝜃mark from (4.73) implies

Dörflermarking for𝑢𝑘 ,𝑖
ℓ
withparameter 𝜃 , i.e., for anyRℓ ⊆ Tℓ , thereholds the implication

𝜃mark𝜂ℓ (𝑢★
ℓ )2 ≤ 𝜂ℓ (Rℓ ;𝑢★

ℓ )2 =⇒ 𝜃 𝜂ℓ (𝑢𝑘 ,𝑖ℓ )2 ≤ 𝜂ℓ (Rℓ ;𝑢𝑘 ,𝑖ℓ )2. (4.76)

Proof. The proof consists of two steps.
Step 1. First, we obtain from Remark 4.12(ii) that

𝛼

2 ⦀𝑢★
ℓ − 𝑢𝑘 ,𝑖

ℓ
⦀

2 (4.41)≤
𝜆2lin 𝑞

2
E

1 − 𝑞2E
𝜂ℓ (𝑢𝑘 ,𝑖ℓ )2.

Exploiting this together with stability (A1), nested iteration (4.23), and boundedness of
the exact discrete solution (4.4), we obtain for anyUℓ ⊆ Tℓ that

𝜂ℓ (Uℓ ;𝑢★
ℓ )

(A1)≤ 𝜂ℓ (Uℓ ;𝑢𝑘 ,𝑖ℓ ) +𝐶stab [3𝑀 ] ⦀𝑢★
ℓ − 𝑢𝑘 ,𝑖

ℓ
⦀

(4.41)≤ 𝜂ℓ (Uℓ ;𝑢𝑘 ,𝑖ℓ ) + 𝜆lin𝐶stab [3𝑀 ]
( 2𝑞2E
𝛼 (1 − 𝑞2E)

)1/2
𝜂ℓ (𝑢𝑘 ,𝑖ℓ )

= 𝜂ℓ (Uℓ ;𝑢𝑘 ,𝑖ℓ ) + 𝜆lin/𝜆★lin𝜂ℓ (𝑢
𝑘 ,𝑖

ℓ
).

(4.77)

The choiceUℓ = Tℓ yields (4.75a). The same arguments prove that

𝜂ℓ (Uℓ ;𝑢𝑘 ,𝑖ℓ ) ≤ 𝜂ℓ (Uℓ ;𝑢★
ℓ ) + 𝜆lin/𝜆★lin𝜂ℓ (𝑢

𝑘 ,𝑖

ℓ
). (4.78)

For 0 < 𝜆lin < 𝜆★lin andUℓ = Tℓ , the rearrangement of (4.78) proves (4.75b).
Step 2. Let Rℓ ⊆ Tℓ satisfy 𝜃1/2mark𝜂ℓ (𝑢★

ℓ
) ≤ 𝜂ℓ (Rℓ ;𝑢★

ℓ
). Then, (4.77)–(4.78) prove

[
1 − 𝜆lin/𝜆★lin

]
𝜃
1/2
mark𝜂ℓ (𝑢

𝑘 ,𝑖

ℓ
) (4.75b)≤ 𝜃

1/2
mark𝜂ℓ (𝑢★

ℓ ) ≤ 𝜂ℓ (Rℓ ;𝑢★
ℓ )

(4.77)≤ 𝜂ℓ (Rℓ ;𝑢𝑘 ,𝑖ℓ ) + 𝜆lin/𝜆★lin𝜂ℓ (𝑢
𝑘 ,𝑖

ℓ
) (4.73)= 𝜂ℓ (Rℓ ;𝑢𝑘 ,𝑖ℓ ) + [

𝜃
1/2
mark

(1−𝜆lin/𝜆★lin) − 𝜃1/2] 𝜂ℓ (𝑢𝑘 ,𝑖ℓ ).

This yields 𝜃1/2𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) ≤ 𝜂ℓ (Rℓ ;𝑢𝑘 ,𝑖ℓ ) and concludes the proof. □

Proof of Theorem 4.15. By Corollary 4.14, it is enough to show

sup
(ℓ,𝑘 ,𝑖 ) ∈Q

(#Tℓ )𝑠 H𝑘 ,𝑖
ℓ
≲ max{||𝑢★ ||𝑨𝑠 ,H0,0

0 }. (4.79)
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Without loss of generality, wemay suppose that ||𝑢★ ||𝑨𝑠 < ∞. The proof is subdivided into
two steps.

Step 1. Let 0 < 𝜃mark B (𝜃1/2 + 𝜆lin/𝜆★lin)2 (1 − 𝜆lin/𝜆★lin)−2 < 𝜃★ B (1 +𝐶stab [2𝑀 ]2𝐶 2
rel)−1

and fix any 0 ≤ ℓ′ ≤ ℓ − 1. The validity of (A4) and [CFPP14, Lemma 4.14] guarantee the
existence of a set Rℓ′ ⊆ Tℓ′ with 0 ≤ ℓ′ ≤ ℓ − 1 such that

#Rℓ′ ≲ ||𝑢★ ||1/𝑠𝑨𝑠
[𝜂ℓ′ (𝑢★

ℓ′)]−1/𝑠 , (4.80)
𝜃mark𝜂ℓ′ (𝑢★

ℓ′) ≤ 𝜂ℓ′ (Rℓ′ , 𝑢
★
ℓ′),

where the hidden constant depends only on (A1)–(A4). By means of (4.76) in Lemma 4.16,
we infer that Rℓ′ satisfies the Dörfler marking (4.18) in Algorithm 4.6 with 𝜃 , i.e.,
𝜃 𝜂ℓ′ (𝑢𝑘 ,𝑖ℓ′ )2 ≤ 𝜂ℓ′ (Rℓ′ ;𝑢𝑘 ,𝑖ℓ′ )2. Hence, since 0 < 𝜃 < 𝜃mark < 𝜃★, the optimality of Dörfler
marking proves

#Mℓ′ ≤ 𝐶mark #Rℓ′
(4.80)
≲ ||𝑢★ ||1/𝑠𝑨𝑠

[
𝜂ℓ′ (𝑢★

ℓ′)
]−1/𝑠

. (4.81)
Moreover, full R-linear convergence (4.44) togetherwith a posteriori error estimates for the
final iterates (4.41) and (4.42) which use the stopping criteria (4.16)–(4.17), norm-energy
equivalence (4.26)m and estimator equivalence (4.75) prove

H0,𝑖
ℓ′+1

(4.44)
≲ H𝑘 ,𝑖

ℓ′
(4.43)
= ⦀𝑢★

ℓ′ − 𝑢
𝑘 ,𝑖

ℓ′ ⦀ + ⦀𝑢
𝑘 ,★

ℓ′ − 𝑢𝑘 ,𝑖
ℓ′ ⦀ +𝜂ℓ′ (𝑢𝑘 ,𝑖ℓ′ )

(4.42), (4.26)
≲ ⦀𝑢★

ℓ′ − 𝑢
𝑘 ,𝑖

ℓ′ ⦀ + [E(𝑢𝑘 ,0
ℓ′ ) − E(𝑢𝑘 ,𝑖

ℓ′ )]1/2 +𝜂ℓ′ (𝑢
𝑘 ,𝑖

ℓ′ )
(4.41), (4.17)
≲ 𝜂ℓ′ (𝑢𝑘 ,𝑖ℓ′ )

(4.75)
≲ 𝜂ℓ′ (𝑢★

ℓ′).

(4.82)

Consequently, a combination of (4.81) and (4.82) concludes that

#Mℓ′
(4.81)
≲ ||𝑢★ ||1/𝑠𝑨𝑠

[
𝜂ℓ′ (𝑢★

ℓ′)
]−1/𝑠 (4.82)

≲ ||𝑢★ ||1/𝑠𝑨𝑠

[
H0,𝑖
ℓ′+1

]−1/𝑠
. (4.83)

Step 2. For (ℓ, 𝑘 , 𝑖 ) ∈ Q, full R-linear convergence (4.44) and the geometric series prove
∑︁

(ℓ′,𝑘 ′,𝑖 ′ ) ∈Q
|ℓ′,𝑘 ′,𝑖 ′ | ≤ |ℓ,𝑘 ,𝑖 |

(H𝑘 ′,𝑖 ′
ℓ′ )−1/𝑠 (4.44)

≲ (H𝑘 ,𝑖
ℓ
)−1/𝑠

∑︁
(ℓ′,𝑘 ′,𝑖 ′ ) ∈Q

|ℓ′,𝑘 ′,𝑖 ′ | ≤ |ℓ,𝑘 ,𝑖 |

(𝑞1/𝑠lin ) |ℓ,𝑘 ,𝑖 |− |ℓ′,𝑘 ′,𝑖 ′ | ≲ (H𝑘 ,𝑖
ℓ
)−1/𝑠 . (4.84)

We recall themesh-closure estimate [BDD04; Ste08; KPP13; DGS23]

#Tℓ − #T0 ≤ 𝐶mesh
ℓ−1∑︁
ℓ′=0

#Mℓ′ for all ℓ ≥ 0, (4.85)

where 𝐶mesh > 1 depends only on T0 and hence in particular on the dimension 𝑑 . For
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(ℓ, 𝑘 , 𝑖 ) ∈ Q, the preceding estimates show that

#Tℓ − #T0
(4.85)
≲

ℓ−1∑︁
ℓ′=0

#Mℓ′

(4.83)
≲ ||𝑢★ ||1/𝑠𝑨𝑠

ℓ−1∑︁
ℓ′=0

(H0,𝑖
ℓ′+1

)−1/𝑠 ≤ ||𝑢★ ||1/𝑠𝑨𝑠

∑︁
(ℓ′,𝑘 ′,𝑖 ′ ) ∈Q

|ℓ′,𝑘 ′,𝑖 ′ | ≤ |ℓ,𝑘 ,𝑖 |

(H𝑘 ′,𝑖 ′
ℓ′ )−1/𝑠 (4.84)

≲ ||𝑢★ ||1/𝑠𝑨𝑠
(H𝑘,𝑖

ℓ
)−1/𝑠 .

Note that 1 ≤ #Tℓ − #T0 yields #Tℓ − #T0 + 1 ≤ 2 (#Tℓ − #T0). Hence, we get that

(#Tℓ − #T0 + 1)𝑠 H𝑘,𝑖
ℓ
≲ ||𝑢★ ||𝑨𝑠 for all (ℓ, 𝑘 , 𝑖 ) ∈ Q with ℓ ≥ 1. (4.86a)

Theorem 4.13 proves that

(#Tℓ − #Tℓ + 1)𝑠 H𝑘,𝑖
ℓ

= H𝑘,𝑖
0

(4.44)
≲ H0,0

0 for all (ℓ, 𝑘 , 𝑖 ) ∈ Q with ℓ = 0. (4.86b)

For all Tℓ ∈ 𝕋 , elementary calculation [BHP17, Lemma 22] shows that

#Tℓ − #T0 + 1 ≤ #Tℓ ≤ #T0 (#Tℓ − #T0 + 1). (4.87)

For all (ℓ, 𝑘 , 𝑖 ) ∈ Q, we thus arrive at

(#Tℓ)𝑠 H𝑘 ,𝑖
ℓ

(4.87)
≲ (#Tℓ − #T0 + 1)𝑠 H𝑘 ,𝑖

ℓ

(4.86)
≲ max{||𝑢★ ||𝑨𝑠 ,H0,0

0 | .}

This concludes the proof of (4.79). □

4.6 Numerical experiments

The experiments are performed with the open-source software packageMooAFEM [IP23].
In the following, Algorithm 4.6 employs the optimal local ℎ𝑝-robust multigrid
method [IMPS23] as algebraic solver. We remark that in our implementation the condi-
tion (4.20) is slightly relaxed to |E(𝑢𝑘 ,0

ℓ
) − E(𝑢𝑘 ,𝑖

ℓ
) | < 10−12 C tol.

Experiment 4.17 (modified sine-Gordon equation [AHW23, Experiment 5.1]). ForΩ =
(0, 1)2, we consider

−Δ𝑢★ + (𝑢★)3 + sin(𝑢★) = 𝑓 inΩ subject to 𝑢★ = 0 on 𝜕Ω (4.88)

with the monotone semilinearity 𝑏 (𝑣 ) = 𝑣3 + sin(𝑣 ), which fits into the locally Lipschitz
continuous framework (cf. [ 2 AIL1, Experiment 3.28]). We choose 𝑓 such that

𝑢★(𝑥) = sin(𝜋𝑥1) sin(𝜋𝑥2).

For𝑇 ∈ T𝐻 , the refinement indicators𝜂𝐻 (𝑇 ; ·) read

𝜂𝐻 (𝑇 ,𝑣𝐻 )2 B ℎ2𝑇 || 𝑓 + Δ𝑣𝐻 − 𝑏 (𝑣𝐻 ) ||2𝐿2 (𝑇 ) + ℎ𝑇 || [[∇𝑣𝐻 · 𝒏]] ||2
𝐿2 (𝜕𝑇∩Ω) . (4.89)
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δ = 0.3 θ = 0.1 θ = 0.2 θ = 0.3

λalg

λlin
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

0.1 1306 650 660 660 660 735 639 347 347 347 724 659 373 373 373

0.3 928 660 660 660 660 545 269 269 269 269 505 333 241 241 241

0.5 654 654 654 654 654 534 274 274 273 273 462 278 262 262 262

0.7 649 617 617 617 617 293 262 262 262 262 420 298 259 259 259

0.9 676 646 646 646 646 268 269 269 269 269 422 321 247 247 247

θ = 0.4 θ = 0.5 θ = 0.6

0.1 807 643 357 357 357 816 658 337 350 350 882 600 332 361 361

0.3 533 375 252 252 252 532 448 266 266 266 663 466 293 293 293

0.5 464 346 253 253 253 572 399 278 278 278 643 389 292 292 292

0.7 487 377 247 247 247 573 427 293 293 293 606 402 296 296 296

0.9 502 390 264 264 264 520 417 288 288 288 563 512 288 288 288

θ = 0.7 θ = 0.8 θ = 0.9

0.1 856 634 361 337 337 985 741 413 375 375 1028 710 466 344 344

0.3 663 457 321 321 321 673 471 328 328 328 735 551 349 349 349

0.5 705 446 299 299 299 638 452 340 340 340 700 542 374 374 374

0.7 630 541 338 338 338 752 518 343 343 343 680 586 352 352 352

0.9 639 518 347 347 347 770 579 373 373 373 722 667 367 367 367

Table 4.1:Theweighted cost (4.90) of the sine-Gordon problem (4.88) for different adaptiv-
ity parameters 𝜆lin, 𝜆alg, 𝜃 ∈ {0.1, 0.2, . . . , 0.9} and fixed damping parameter 𝛿 = 0.3, where
themesh refinement is stopped if𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) < 10−4, where the 𝜃-blockwise minimal values
are highlighted in green and the overall minimal value in red .

For 𝑝 = 2, damping parameter 𝛿 = 0.3, and 𝑖min = 1, we stop the computation as soon as
𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) < 10−4. Table 4.1 depicts the values of the weighted cost

𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) cost(ℓ, 𝑘 , 𝑖 )𝑝/2 (4.90)

to determine the best parameter choice. We observe that the parameters 𝜃 ∈ {0.3, 0.4} and
𝜆lin ≥ 0.5 perform comparably well. The parameter 𝜆algmay be used for fine-tuning, but for
moderate 𝜃 ∈ {0.2, 0.3, 0.4, 0.5, 0.6} and as soon as 𝜆lin is set, the influence is comparably
low.
For the following experiments, we set 𝛿 = 0.3, 𝜃 = 0.3, 𝜆lin = 0.7, and 𝜆alg = 0.3. Figure 4.2

depicts the error ⦀𝑢★ − 𝑢𝑘 ,𝑖
ℓ
⦀ and the estimator𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) over cost(ℓ, 𝑘 , 𝑖 ) (left) and over the

cumulative time in seconds (right) for the displayed polynomial degrees 𝑝 ∈ {1, 2, 3}. In
both plots, the decay rate is of (expected) optimal order 𝑝/2 for 𝑝 ∈ {1, 2, 3}.
Experiment 4.18. We consider a globally Lipschitz continuous example from [HPW21,
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Figure 4.2: Experiment 4.17: Convergence plots of the error ⦀𝑢★ − 𝑢𝑘 ,𝑖
ℓ
⦀ (diamond) and

the error estimator𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) (circle) over cost(ℓ, 𝑘 , 𝑖 ) (left) and over computational time in
seconds (right).

Section 5.3] with Lipschitz constant 𝐿 = 2 and monotonicity constant 𝛼 = 1 − 2 exp(−3
2 )

and hence 𝛿 = 𝛼/𝐿2 ≈ 0.138434919925785 is a viable choice. For 𝑑 = 2 and the L-shaped
domain (−1, 1)2 \ ([0, 1] × [−1, 0]) ⊂ ℝ2, we seek𝑢★ ∈ 𝐻 1

0 (Ω) such that

−div(𝜇( |∇𝑢★ |2)∇𝑢★) = 𝑓 inΩ,

where 𝑓 is chosen such that𝑢★ reads in polar coordinates (𝑟 , 𝜑 ) ∈ ℝ>0 × [0, 2𝜋)

𝑢★(𝑟 , 𝜑 ) = 𝑟 2/3 sin
(2 𝜑
3

)
(1 − 𝑟 cos 𝜑 ) (1 + 𝑟 cos 𝜑 ) (1 − 𝑟 sin 𝜑 ) (1 + 𝑟 sin 𝜑 ) cos 𝜑.

This example has a singularity at the origin. We consider 𝑝 = 1, since stability (A1) in the
quasilinear case remains open for 𝑝 > 1. Moreover, the parameters are 𝜃 = 0.3, 𝜆lin = 0.7,
𝜆alg = 0.3, and 𝑖min = 1.
In Figure 4.3, we plot a sample solution (right) as well as convergence results of various

error components (left) over the degrees of freedom. We observe that after a preasymptotic
phase, optimal convergence rate −1/2 is restored for the exact error (diamond), the quasi-
errorH𝑘 ,𝑖

ℓ
, the linearization errorE(𝑢𝑘 ,0

ℓ
)−E(𝑢𝑘 ,𝑖

ℓ
) (triangle), and the error estimator𝜂ℓ (𝑢𝑘 ,𝑖ℓ )

(circle).
Experiment 4.19 (singularly perturbed sine-Gordon equation). This example is a variant
of [AHW23, Experiment 5.2]. For𝑑 = 2and the L-shapeddomain (−1, 1)2\ ([0, 1]×[−1, 0]) ⊂
ℝ2, let 𝜀 = 10−5 and consider

−𝜀Δ𝑢★ + 𝑢★ + (𝑢★)3 + sin(𝑢★) = 1 inΩ subject to 𝑢★ = 0 on 𝜕Ω,

with the monotone semilinearity 𝑏 (𝑣 ) = 𝑣3 + sin(𝑣 ). In this case, the exact solution 𝑢★ is
unknown. We use the energy norm ⦀ ·⦀2 = 𝜀 ⟨∇· , ∇·⟩ + ⟨· , ·⟩. The experiment is conducted
with damping parameter 𝛿 = 0.1, 𝜆alg = 0.7, 𝜃 = 0.3, and 𝑖min = 1. The refinement
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Figure 4.3: Experiment 4.18: Convergence plots of various error components over the
degrees of freedom (left). Right: Plot of the approximate solution𝑢1,113 onX13 with #X13 =
10209.
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Figure 4.4: Convergence plots of the error estimator𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) over computational time of
Experiment 4.19. Left: Convergence plot for 𝑝 = 1 Right: Convergence plot for 𝑝 = 3.

indicator (4.89) is modified along the lines of [Ver13, Remark 4.14] to

𝜂𝐻 (𝑇 ,𝑣𝐻 )2 B ℏ2𝑇 || 𝑓 + 𝜀Δ𝑣𝐻 − 𝑣𝐻 − 𝑏 (𝑣𝐻 ) ||2𝐿2 (𝑇 ) + ℏ𝑇 || [[𝜀 ∇𝑣𝐻 · 𝒏]] ||2
𝐿2 (𝜕𝑇∩Ω) ,

where the scaling factors ℏ𝑇 = min{𝜀−1/2 ℎ𝑇 , 1} ensure 𝜀-robustness of the estimator.
In Figure 4.4, we plot the error estimator𝜂ℓ (𝑢𝑘 ,𝑖ℓ ) for all (ℓ, 𝑘 , 𝑖 ) ∈ Q against the computa-

tional time for 𝜆lin ∈ {0.1, 0.2, ..., 0.9} and polynomial degrees 𝑝 ∈ {1, 3}. The decay rate is
of (expected) optimal order 𝑝/2. The choice of 𝜆lin does not play amajor role in Figure 4.4
(left) for 𝑝 = 1, but significantly prolongs the preasymptotic phase for 𝑝 = 3; see Figure 4.4
(right). Figure 4.5 showsmeshes with #nDof = 12475 for 𝜆lin = 0.2 and # nDof = 12152 for
𝜆lin = 0.7. We see that 𝜆lin = 0.7 causes refinement in the interior, since less local smoothing
steps are performed. This experiment shows that Algorithm 4.6 is suitable for a setting with
dominating reaction given that a suitable norm onX is chosen. A large choice of 𝜆lin seems
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4.6 Numerical experiments

Figure 4.5:Mesh plot of Experiment 4.19 for 𝑝 = 3. Left: Adaptivity parameter 𝜆lin = 0.2.
Right: Adaptivity parameter 𝜆lin = 0.7.

possible, but pays off only after a long preasymptotic phase.
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