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Abstract The ultimate goal of any numerical scheme for partial differential equations
(PDEs) is to compute an approximation of user-prescribed accuracy at quasi-minimal
computational time. To this end, algorithmically, the standard adaptive finite element
method (AFEM) and goal-oriented AFEM (GOAFEM) must integrate an inexact
solver and nested iterations with discerning stopping criteria balancing the different
error components. The algorithms require several fine-tuned parameters in order to
make the underlying analysis work. We review recent developments in the field, recall
the up-to-date optimal algorithm and investigate the choice of adaptivity parameters
for a prototypical GOAFEM example.
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1 State of the Art

Adaptive finite element algorithms strive to approximate the unknown and possibly
singular exact PDE solution 𝑢★ on the basis of a posteriori error estimation and
adaptive mesh-refinement strategies. With ℓ ∈ N0 denoting the mesh level and
𝑘 ∈ N denoting the inexact solver counter, the adaptive feedback loop with inexact
solver generates a sequence Tℓ of successively refined meshes and finite element
approximations 𝑢𝑘ℓ ≈ 𝑢★ together with error estimators 𝜂ℓ (𝑢𝑘ℓ ) by iterating the scheme
in Figure 1. Over the past three decades, the mathematical understanding of adaptive
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adaptive stopping solution accurate enough?

Fig. 1: Modules of the standard AFEM algorithm with inexact solver.

finite element methods (AFEMs) has matured; see, e.g., [10, 2, 20, 8, 11] and [7]
for an axiomatic framework summarizing the earlier references. In most of the cited
works, the focus is on (plain) convergence [10] and optimal convergence rates with
respect to the number of degrees of freedom [2, 8, 11]. Nevertheless, owing to the
incremental nature of adaptivity (i.e., Tℓ and 𝑢𝑘ℓ depend on all prior computed Tℓ′ and
𝑢𝑘

′
ℓ′ ), the mathematical question regarding optimal convergence rates should instead

pertain to the overall computation cost (or the cumulative computation time). This,
termed as optimal complexity in the context of adaptive wavelet methods [9], was
later adopted in AFEM [20, 6]. In these works, optimal complexity is ensured for
AFEM with an inexact solver, contingent on the condition that the computed iterates
𝑢𝑘ℓ closely approximate the (unavailable) exact discrete solutions 𝑢★ℓ .

Motivated by the interest in AFEMs for nonlinear problems [15], recent works [13,
5, 4] aimed to integrate a combination of linearization and algebraic solver within
a nested adaptive algorithm. Following this approach, the algorithmic decision for
mesh-refinement, linearization, or algebraic solver steps is guided by a-posteriori-
based stopping criteria with suitable stopping parameters. This allows for balancing
the error components and computing inexact approximations 𝑢𝑘ℓ ≈ 𝑢★ℓ . Since an
algebraic solver for the nonsymmetric second-order linear elliptic PDE

−div(𝑨∇𝑢★) + 𝒃 · ∇𝑢★ + 𝑐 𝑢★ = 𝑓 − div 𝒇 in Ω ⊂ R𝑑 subject to 𝑢★ = 0 in 𝜕Ω (1)

that is contractive in the PDE-related energy norm is not available at the moment, we
adapt this strategy for linear but nonsymmetric problems. In the work [5], we have
shown that this leads to contraction in each step of the proposed AFEM algorithm
and, with a geometric series argument, to optimal computational complexity for
sufficiently small adaptivity parameters. Moreover, the recent preprint [4] presents a
new proof strategy for full linear convergence relaxing the parameter bounds.

In many applications, the key focus is not the approximation of the exact PDE
solution 𝑢★ but rather a function value 𝐺 (𝑢★) for a continuous functional 𝐺 (𝑢★). A
naive approach allows to control the goal error by the energy norm of the approximation.
However, a duality approach in the spirit of [14] allows to essentially double the
convergence rates by solving so-called primal and dual problems simultaneously. For
the extension of the adaptive algorithm with nested iterative solver above, it is natural
to apply the inexact solver from [5, 4] to the decoupled problems in parallel together
with a combined marking strategy [12].

The remainder of the work reads as follows. Section 2 introduces the basic notation
and the problem setting, before Section 3 presents the AFEM algorithm of Figure 1
to illustrate the strategy. The main results of this work in Section 4, full linear
convergence and optimal complexity, are followed by a discussion of the difficulties
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for GOAFEM in Section 5. Finally, Section 6 illustrates the theoretical findings with
a numerical study for a variant of the prototypical example from [18].

2 Preliminaries
In this section, we present the model problem, the components of the nested solver,
and the residual-based a posteriori error estimator.

Model Problem. For a bounded Lipschitz domain Ω ⊂ R𝑑 and given data
𝑨 ∈ [

𝐿∞ (Ω)]𝑑×𝑑sym , 𝒃 ∈ [
𝐿∞ (Ω)]𝑑 , 𝑐 ∈ 𝐿∞ (Ω), and 𝑓 ∈ 𝐿2 (Ω), 𝒇 ∈ [

𝐿2 (Ω)]𝑑 , we
seek the solution 𝑢★ ∈ X := 𝐻1

0 (Ω) to (1) in its weak formulation

𝑏(𝑢★, 𝑣) := ⟨𝑨∇𝑢★,∇𝑣⟩+⟨𝒃 ·∇𝑢★+𝑐 𝑢★, 𝑣⟩ = ⟨ 𝑓 , 𝑣⟩+⟨ 𝒇 ,∇𝑣⟩ =: 𝐹 (𝑣) ∀𝑣 ∈ X. (2)

The principal part 𝑎(𝑢, 𝑣) := ⟨𝑨∇𝑢,∇𝑣⟩ induces an equivalent norm |||𝑣 ||| := 𝑎(𝑣, 𝑣)1/2

on X. We suppose that 𝑏(·, ·) fits into the Lax–Milgram framework which guarantees
existence and uniqueness of 𝑢★ ∈ X. For a conforming triangulation T𝐻 into compact
simplices and fixed 𝑝 ∈ N, the Lax–Milgram lemma also applies to the FEM space

X𝐻 := {𝑣𝐻 ∈ X : ∀𝑇 ∈ T𝐻 , 𝑣𝐻 |𝑇 ∈ P𝑝 (𝑇)}

and assures existence and uniqueness of 𝑢★𝐻 ∈ X𝐻 to

𝑏(𝑢★𝐻 , 𝑣𝐻 ) = 𝐹 (𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 . (3)

While (3) corresponds to a linear system, the exact computation of 𝑢★𝐻 would prevent
optimal complexity of the later AFEM algorithm. Since (3) is nonsymmetric, we
cannot apply a PCG or multigrid solver to the associated linear system and use a
nested iterative solver consisting of symmetrization and algebraic solver instead.

Zarantonello Iteration. The Zarantonello iteration stems from the proof of the
Lax–Milgram lemma. For 𝛿 > 0, the iteration function Φ𝐻 (𝛿; ·) : X𝐻 → X𝐻 solves

⟨∇Φ𝐻 (𝛿; 𝑢𝐻 ),∇𝑣𝐻⟩ = ⟨∇𝑢𝐻 ,∇𝑣𝐻⟩ + 𝛿
[
𝐹 (𝑣𝐻 ) − 𝑏(𝑢𝐻 , 𝑣𝐻 )

] ∀𝑣𝐻 ∈ X𝐻 . (4)

We stress that (4) corresponds to a linear system with SPD matrix. Moreover, for
sufficiently small 0 < 𝛿 < 𝛿★, the Zarantonello iteration is contractive [15]. In
particular, there exists 0 < 𝑞sym < 1 depending only on 𝑏(·, ·) and 𝛿 such that

|||𝑢★𝐻 −Φ𝐻 (𝛿; 𝑢𝐻 ) ||| ≤ 𝑞sym |||𝑢★𝐻 − 𝑢𝐻 ||| ∀𝑢𝐻 ∈ X𝐻 . (5)

Indeed, the Banach fixed-point theorem thus proves that (4) admits a unique solution
(being the unique fixed-point of Φ𝐻 (𝛿, ·)) and so proves the Lax–Milgram lemma.

Algebraic Solver. Since large SPD linear systems like (4) are still compu-
tationally expensive, we apply an iterative algebraic solver. More precisely, we
employ a uniformly contractive geometric multigrid [17] with iteration function
Ψ𝐻 (𝑢♯𝐻 ; ·) : X𝐻 → X𝐻 to approximate the solution 𝑢♯𝐻 := Φ𝐻 (𝛿; 𝑢𝐻 ) to the SPD
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system (4), i.e., there exists 0 < 𝑞alg < 1 independent of X𝐻 such that

|||𝑢♯𝐻 − Ψ𝐻 (𝑢♯𝐻 ;𝑤𝐻 ) ||| ≤ 𝑞alg |||𝑢♯𝐻 − 𝑤𝐻 ||| for all 𝑤𝐻 ∈ X𝐻 and all T𝐻 ∈ T. (6)

Here, T is the set of all conforming triangulations intro compact simplices that can be
obtained from a fixed initial triangulation T0 by newest vertex bisection (NVB) [21].

A Posteriori Error Estimation. We assume additional data regularity 𝑨|𝑇 ,
𝒇 |𝑇 ∈ 𝑊1,∞ (𝑇) for all 𝑇 ∈ T0 and use the standard residual error estimator 𝜂𝐻 (·)
defined, for T𝐻 ∈ T, 𝑇 ∈ T𝐻 , and 𝑣𝐻 ∈ X𝐻 , by

𝜂𝐻 (𝑇, 𝑣𝐻 )2 := |𝑇 |2/𝑑 ∥div(𝑨∇𝑣𝐻 − 𝒇 ) − 𝒃 · ∇𝑣𝐻 − 𝑐 𝑣𝐻 + 𝑓 ∥2
𝐿2 (𝑇 )

+ |𝑇 |1/𝑑 ∥ [[(𝑨∇𝑣𝐻 − 𝒇 ) · 𝑛]] ∥2
𝐿2 (𝜕𝑇∩Ω) ,

(7a)

where [[·]] denotes the jump over the (𝑑 − 1)-dimensional faces of T𝐻 . To abbreviate
notation, we define, for all U𝐻 ⊆ T𝐻 and all 𝑣𝐻 ∈ X𝐻 ,

𝜂𝐻 (𝑣𝐻 ) := 𝜂𝐻 (T𝐻 , 𝑣𝐻 ) with 𝜂𝐻 (U𝐻 , 𝑣𝐻 ) :=
( ∑︁
𝑇∈U𝐻

𝜂𝐻 (𝑇, 𝑣𝐻 )2
)1/2

. (7b)

Then, it is well-known that the estimator satisfies standard properties, like (discrete)
reliability, nowadays called the axioms of adaptivity [7].

3 Adaptive Algorithm
The adaptive algorithm embedding a nested iterative solver takes the following form.

Algorithm 1 (AFEM with nested contractive solvers). Given an initial conforming
mesh T0 into compact simplices, the Zarantonello parameter 𝛿 > 0, adaptivity
parameters 0 < 𝜃 ≤ 1 and 𝐶mark ≥ 1, solver-stopping parameters 𝜆sym, 𝜆alg > 0,
and an initial guess 𝑢0,0

0 := 𝑢0,𝐽
0 ∈ X0, iterate the following steps (i)–(iv) for all

ℓ = 0, 1, 2, 3, . . . :

(i) Solve & estimate: For all 𝑘 = 1, 2, 3, . . . , repeat the following steps (a)–(b) until

|||𝑢𝑘,𝐽ℓ − 𝑢𝑘−1,𝐽
ℓ ||| ≤ 𝜆sym 𝜂ℓ (𝑢𝑘,𝐽ℓ ). (8)

(a) Inner solver loop: For all 𝑗 = 1, 2, 3, . . . , repeat the steps (I)–(II) until

|||𝑢𝑘, 𝑗ℓ − 𝑢𝑘, 𝑗−1
ℓ ||| ≤ 𝜆alg

[
𝜆sym𝜂ℓ (𝑢𝑘, 𝑗ℓ ) + |||𝑢𝑘, 𝑗ℓ − 𝑢𝑘−1,𝐽

ℓ |||] . (9)

(I) Compute one step of the contractive SPD solver 𝑢𝑘, 𝑗ℓ := Ψℓ (𝑢𝑘,★ℓ ; 𝑢𝑘, 𝑗−1
ℓ ),

where 𝑢𝑘,★ℓ := Φℓ (𝛿; 𝑢𝑘−1,𝐽
ℓ ) ∈ Xℓ is only a theoretical quantity.

(II)Compute the refinement indicators 𝜂ℓ (𝑇, 𝑢𝑘, 𝑗ℓ ) for all 𝑇 ∈ Tℓ .
(b) Upon termination of the 𝑗-loop, define 𝐽 [ℓ, 𝑘] := 𝑗 ∈ N and 𝑢𝑘,𝐽ℓ := 𝑢𝑘, 𝑗ℓ .

(ii) Upon termination of the 𝑘-loop, define 𝐾 [ℓ] := 𝑘 ∈ N and 𝑢𝐾,𝐽ℓ := 𝑢𝑘,𝐽ℓ .
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(iii)Mark: Determine a set Mℓ ∈ Mℓ [𝜃, 𝑢𝐾,𝐽ℓ ] := {Mℓ ⊆ Tℓ : 𝜃 𝜂ℓ (𝑢𝐾,𝐽ℓ )2 ≤
𝜂ℓ (Uℓ , 𝑢

𝐾,𝐽
ℓ )2} satisfying #Mℓ ≤ 𝐶mark minUℓ ∈Mℓ [ 𝜃,𝑢𝐾,𝐽ℓ

] #Uℓ .

(iv)Refine: Employ NVB to refine at least all marked element Mℓ ⊆ Tℓ to generate
the refined triangulation Tℓ+1 and use nested iteration 𝑢0,0

ℓ+1 := 𝑢0,𝐽
ℓ+1 := 𝑢𝐾,𝐽ℓ .

To formulate convergence, we introduce the index set Q := {(ℓ, 𝑘, 𝑗) ∈ N3
0 :

𝑢
𝑘, 𝑗
ℓ is utilized in Algorithm 1} along with the lexicographic ordering

(ℓ′, 𝑘 ′, 𝑗 ′) ≤ (ℓ, 𝑘, 𝑗) :⇐⇒ 𝑢
𝑘′ , 𝑗′
ℓ′ is defined not later than 𝑢𝑘, 𝑗ℓ in Algorithm 1,

and the total step counter

|ℓ, 𝑘, 𝑗 | := #{(ℓ′, 𝑘 ′, 𝑗 ′) ∈ Q : (ℓ′, 𝑘 ′, 𝑗 ′) ≤ (ℓ, 𝑘, 𝑗)} ∈ N0 ∀(ℓ, 𝑘, 𝑗) ∈ Q. (10)

4 Main Results
The key ingredient in the proof of optimal complexity is full R-linear convergence,
which essentially states contraction in each step of the adaptive algorithm. We note
that Theorem 1 has first been proved in [5, Theorem 4.1], before an alternative proof
from [3] led to sharper constants and weaker assumptions.

Theorem 1 (full R-linear convergence of Algorithm 1, [3, Theorem 13]) Define
the quasi-error

H𝑘, 𝑗
ℓ := |||𝑢★ℓ − 𝑢𝑘, 𝑗ℓ ||| + |||𝑢𝑘,★ℓ − 𝑢𝑘, 𝑗ℓ ||| + 𝜂ℓ (𝑢𝑘, 𝑗ℓ ). (11)

Let 0 < 𝜃 ≤ 1, 𝐶mark ≥ 1, 𝜆sym, 𝜆alg > 0, and 𝑢0,0
0 ∈ X0. Then, there exist 0 < 𝜆★alg

and 0 < 𝜆★ (and we refer to [3] for details) such that, for all 0 < 𝜆alg ≤ 𝜆★alg and
0 < 𝜆sym 𝜆alg < 𝜆

★, Algorithm 1 guarantees R-linear convergence of the quasi-error,
i.e., there exist 0 < 𝑞lin < 1 and 𝐶lin > 0 such that, for all (ℓ′, 𝑘 ′, 𝑗 ′), (ℓ, 𝑘, 𝑗) ∈ Q,

H𝑘, 𝑗
ℓ ≤ 𝐶lin𝑞

|ℓ,𝑘, 𝑗 |− |ℓ′,𝑘′, 𝑗′ |
lin H𝑘′ , 𝑗′

ℓ′ whenever |ℓ′, 𝑘 ′, 𝑗 ′ | ≤ |ℓ, 𝑘, 𝑗 |. ⊓⊔ (12)

Since each module of Algorithm 1 can be realized in linear complexity O(#Tℓ),
see [17] for the optimal geometric multigrid, [19] for marking, and [21] for NVB, the
overall cost of the adaptive algorithm up to the computation of 𝑢𝑘, 𝑗ℓ is given by

cost(𝑢𝑘, 𝑗ℓ ) ≃
∑︁

(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q
|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′ for all (ℓ, 𝑘, 𝑗) ∈ Q.

An important consequence of full R-linear convergence (following with elementary
calculations from the geometric series) is the equivalence of the convergence rates
with respect to the number of degrees of freedom and the overall computational cost.
More precisely, note that 𝑀 (𝑠) < ∞ (with 𝑀 (𝑠) from (13) below) holds if and only
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if H𝑘, 𝑗
ℓ = O ((#Tℓ)−1/𝑠 ) as |ℓ, 𝑘, 𝑗 | → ∞, i.e., the quasi-error H𝑘, 𝑗

ℓ decays with rate
1/𝑠 over the number #Tℓ of elements, which is proportional to dimXℓ .
Corollary 1 (rates = complexity) For 𝑠 > 0, full R-linear convergence (12) yields

𝑀 (𝑠):= sup
(ℓ,𝑘, 𝑗 ) ∈Q

(#Tℓ)𝑠 H𝑘, 𝑗
ℓ ≤ sup

(ℓ,𝑘, 𝑗 ) ∈Q

( ∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′
)𝑠

H𝑘, 𝑗
ℓ ≤ 𝐶cost (𝑠) 𝑀 (𝑠), (13)

where the constant 𝐶cost (𝑠) > 0 depends only on 𝐶lin, 𝑞lin, and 𝑠. Moreover, there
exists 𝑠0 > 0 such that 𝑀 (𝑠) < ∞ for all 0 < 𝑠 ≤ 𝑠0. ⊓⊔

Finally, for sufficiently small adaptivity parameters, Algorithm 1 even guarantees
optimal complexity, i.e., optimal convergence rates with respect to the overall
computation cost (resp. the total computation time).

Theorem 2 (optimal complexity [5, Theorem 4.3]) Recall 𝜆★alg and 𝜆★ from Theo-
rem 1. Then, there exist 0 < 𝜆★sym ≤ 1 and 0 < 𝜃★ < 1 (and we refer to [5] for details)
such that, if 𝜃, 𝜆sym, and 𝜆alg are sufficiently small in the sense of

0 < 𝜆alg ≤ 𝜆★alg, 0 < 𝜆sym < 𝜆★sym, and 𝜆alg 𝜆sym < 𝜆★,

0 < 𝜃opt :=
(𝜃1/2 + 𝜆sym/𝜆★sym)2

(1 − 𝜆sym/𝜆★sym)2 < 𝜃★ < 1,
(14)

then Algorithm 1 has optimal complexity: Suppose that 𝑢★ can be approximated
at rate 𝑠 > 0 (formally stated via approximation classes ∥𝑢★∥A𝑠 < ∞; see [5]),
i.e., there exist (unavailable) optimal meshes T opt

ℓ with corresponding exact solu-
tions 𝑢opt

ℓ and error estimators 𝜂ℓ (𝑢opt
ℓ ) such that 𝜂ℓ (𝑢opt

ℓ ) → 0 as ℓ → ∞ with
supℓ∈N0

(
#T opt
ℓ

)𝑠
𝜂ℓ (𝑢opt

ℓ ) < ∞. Then, Algorithm 1 guarantees that

sup
(ℓ,𝑘, 𝑗 ) ∈Q

( ∑︁
(ℓ′ ,𝑘′ , 𝑗′ ) ∈Q

|ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝑘, 𝑗 |

#Tℓ′
)𝑠

H𝑘, 𝑗
ℓ < ∞, (15)

which can be phrased explicitly as follows: If 𝑢★ can be approximated at rate 𝑠 > 0
with respect to the number of degrees of freedom, then Algorithm 1 approximates 𝑢★
with rate 𝑠 > 0 with respect to the overall computational cost.

5 Extension to GOAFEM

In this section, we discuss the extension of Algorithm 1 to GOAFEM and highlight
the changes and difficulties. Let 𝐺 : 𝐻1

0 (Ω) → R be a linear and continuous
goal functional. Additionally to the so-called discrete primal solution 𝑢★𝐻 from (3),
GOAFEM invokes the discrete dual solution 𝑧★𝐻 ∈ X𝐻 solving
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𝑏(𝑣𝐻 , 𝑧★𝐻 ) = 𝐺 (𝑣𝐻 ) for all 𝑣𝐻 ∈ X𝐻 . (16)

Hence, the Solve & estimate loop in Algorithm 1(i) consists of the parallel treatment
of the primal problem in (3) and the dual problem in (16). Therefore, the index set
Q is the union of the indices coming from both loops and the quasi-error quantities
have to be extended to the full index set Q. Then, for approximations 𝑢𝐻 , 𝑧𝐻 ∈ X𝐻 ,
the error estimator 𝜁𝐻 for the dual problem (16) similar to (7), and the computable
discrete goal 𝐺𝐻 (𝑢𝐻 , 𝑧𝐻 ) := 𝐺 (𝑢𝐻 ) +

[
𝐹 (𝑧𝐻 ) − 𝑏(𝑢𝐻 , 𝑧𝐻 )

]
, we arrive at the goal

error estimate

|𝐺 (𝑢★) − 𝐺𝐻 (𝑢𝐻 , 𝑧𝐻 ) | ≲
[
𝜂𝐻 (𝑢𝐻 ) + |||𝑢★𝐻 − 𝑢𝐻 |||

] [
𝜁𝐻 (𝑧𝐻 ) + |||𝑧★𝐻 − 𝑧𝐻 |||

]
. (17)

Thus, an adaptive algorithm has to reduce the quasi-error product H𝑘, 𝑗
ℓ Z𝑘, 𝑗ℓ rather

than the primal quasi-error H𝑘, 𝑗
ℓ from (11), where the dual quasi-error Z𝑘, 𝑗ℓ is defined

analogously, i.e., Z𝑘, 𝑗ℓ := |||𝑧★ℓ − 𝑧𝑘, 𝑗ℓ ||| + |||𝑧𝑘,★ℓ − 𝑧𝑘, 𝑗ℓ ||| + 𝜁ℓ (𝑧𝑘, 𝑗ℓ ) for some indices
(ℓ, 𝑘, 𝑗).

A possible marking criterion for the estimator product originates from the work [18]
and was enhanced in [12]. First, the marking determines set M𝑢

ℓ ∈ M𝑢
ℓ [𝜃, 𝑢𝐾,𝐽ℓ ] and

M𝑧

ℓ ∈ M𝑧
ℓ [𝜃, 𝑧𝐾,𝐽ℓ ] as in Algorithm 1(iii) and then merges them to Mℓ := M𝑢

ℓ ∪M𝑧
ℓ ,

where M𝑢
ℓ ⊆ M𝑢

ℓ and M𝑧
ℓ ⊆ M𝑧

ℓ satisfy #M𝑢
ℓ = #M𝑧

ℓ = min{#M𝑢

ℓ , #M
𝑧

ℓ }.
Analyzing the proposed GOAFEM algorithm faces two main challenges. First,

there is a complex nonlinear structure due to a combined quasi-error product. This
makes the proofs more involved compared to dealing with the primal problem alone.
The second challenge comes from the marking strategy resulting in a mixed marked
set. Here, only either the primal or the dual estimator ensures the estimator reduction
property. This leads to subtle technicalities as the estimator is part of the quasi-error,
causing a failure of contraction for one of the quasi-errors. While [1] solves this in
the symmetric case, adding a symmetrization loop to handle nonsymmetric PDEs
like (1) leads to further problems due to the lack of a Pythagorean identity (as opposed
to the symmetric case). To overcome these challenges, [4] adapts the innovative
tail-summability criterion from [3], proving full linear convergence (12) and optimal
complexity (13) for the nonlinear quasi-error product, i.e., Theorem 1 and 2 hold
verbatim with H𝑘, 𝑗

ℓ Z𝑘, 𝑗ℓ replacing H𝑘, 𝑗
ℓ .

6 Numerical Experiments

The experiments employ the Matlab object-oriented AFEM software package
from [16] embedding the ℎ𝑝-robust local multigrid solver from [17]. We consider a
nonsymmetric variant of [18, Example 7.3]. On the Z-shaped domain Ω = (−1, 1)2 \
conv{(−1,−1, ), (−1, 0), (0, 0)} ⊂ R2 and 𝑇1 := {𝑥 ∈ Ω : 𝑥1 + 𝑥2 ≥ 1/2}, we seek a
solution 𝑢★ ∈ X to
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⟨∇𝑢★,∇𝑣⟩ + ⟨𝑥 · ∇𝑢★ + 𝑢★, 𝑣⟩ =
∫
𝑇1

(1, 0)⊤ · ∇𝑣 for all 𝑣 ∈ X = 𝐻1
0 (Ω).

The quantity of interest 𝐺 (𝑢★) reads

𝐺 (𝑢★) =
∫
𝑇2

(1, 0)⊤ · ∇𝑢★ d𝑥 where 𝑇2 = {𝑥 ∈ (0, 1)2 : 𝑥1 + 𝑥2 ≤ −1/2}.

In Figure 2, we display a mesh generated by the GOAFEM algorithm and the supports
𝑇1 of the primal right-hand side in blue and 𝑇2 of the dual right-hand side in green.
In particular, the adaptive algorithm captures the singularities induced by the jumps

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Fig. 2: Left: Initial mesh T0 with the support of the right-hand functions. Right: Mesh
T12 generated by the adaptive algorithm with #T12 = 4967.

in the right-hand side as well as the geometric singularity at the reentrant corner.
Since the exact solution 𝑢★ is unknown, we approximate the unavailable goal value
by a computation on a uniform mesh with polynomial degree 𝑝 = 3 resulting in
𝐺 (𝑢★) ≈ 0.0018701367282. Table 1 displays the weighted costs of the GOAFEM
algorithm and suggests that moderate 𝜃 ∈ {0.3, 0.4, 0.5} together with larger solver-
stopping parameters is beneficial. Figure 3 illustrates that the adaptive algorithm
with 𝜃 = 0.3, 𝜆sym = 0.5, 𝜆alg=0.9, and 𝛿 = 0.5 leads to optimal convergence rates −𝑝
both with respect to the number of degrees of freedom and the overall computation
time for the estimator product 𝜂ℓ (𝑢𝐾,𝐽ℓ ) 𝜁ℓ (𝑧𝐾,𝐽ℓ ) (which is, due to the stopping
criteria (8)–(9), equivalent to the quasi-error product H𝐾,𝐽ℓ Z𝐾,𝐽ℓ ) and the goal error
|𝐺 (𝑢★) − 𝐺ℓ (𝑢𝐾,𝐽ℓ , 𝑧𝐾,𝐽ℓ ) |.
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𝜂ℓ (𝑢𝐾,𝐽ℓ ) 𝜁ℓ (𝑧𝐾,𝐽ℓ )∑ |ℓ′ ,𝑘′ , 𝑗′ | ≤ |ℓ,𝐾,𝐽 | time(ℓ′)] (values
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of 𝜆sym, 𝜆alg, and 𝜃. In each 𝜃-block, we mark in yellow the best choice per column,
in blue the best choice per row, and in green when both choices coincide. The best
choices for 𝜆alg and 𝜆sym are observed for 𝜃 ∈ {0.3, 0.4, 0.5}.
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Fig. 3: Convergence history plot of estimator product 𝜂ℓ (𝑢𝐾,𝐽ℓ ) 𝜁ℓ (𝑧𝐾,𝐽 ) indicated by
bullets and goal error from (17) indicated by diamonds with respect to the cumulative
computational work (left) and with respect to the cumulative computational time
(right) for the benchmark problem
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