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Abstract We present an adaptive finite element method for vector-valued semilinear
elliptic PDEs that is rate-optimal with respect to computational cost, i.e., compu-
tation time. To ensure linear complexity of the individual building blocks of the
adaptive algorithm, we adaptively linearize the underlying semilinear PDE and solve
the arising symmetric positive definite system by means of a norm-contractive al-
gebraic solver, e.g., an optimally preconditioned conjugate gradient method or an
optimal geometric multigrid method. To deal with the local Lipschitz continuity of
the problem, we prove that the norm of all computed iterates of the proposed adap-
tive iteratively linearized finite element method (AILFEM) are uniformly bounded.
Owing to an equibalance of discretization, linearization, and algebraic solver errors,
the algorithm guarantees optimal convergences rates with respect to the number of
degrees of freedom, computational cost, and computation time.
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1 Introducing the Main Results

By employing conforming finite elements, we aim at the rate-optimal approximation
of the solution 𝑢★ ∈ 𝐻1

0 (Ω) to the semilinear elliptic model problem

− div(𝑨∇𝑢★) + 𝑏(𝑢★) = 𝐹 in Ω subject to 𝑢★ = 0 on 𝜕Ω, (1)
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with a polygonal Lipschitz domain Ω ⊂ R𝑑 for 𝑑 ∈ {1, 2, 3}, a uniformly elliptic
diffusion coefficient 𝑨 : Ω → R𝑑×𝑑sym , a monotone nonlinearity 𝑏 : Ω → R, and
sufficiently regular data 𝐹 ∈ 𝐻−1 (Ω), where 𝐻−1 (Ω) is the topological dual space
of 𝐻1

0 (Ω). Under the assumption of a smooth 𝑏 with polynomial (and compact)
growth (see [1, Section 3] for the precise statement), the Browder–Minty theorem [2,
Theorem 25.B] proves existence and uniqueness of the weak solution 𝑢★ to (1).

On each mesh level (with mesh index ℓ), the arising discrete nonlinear system
cannot be solved exactly as supposed in standard adaptive FEM. To deal with this
issue, we develop an algorithm coined as adaptive iteratively linearized FEM (AIL-
FEM) (detailed in Algorithm 1 below) that steers the decision to refine the mesh
adaptively, to compute an additional step of linearization, or a further algebraic solver
step instead. More precisely, we follow [3, 4] and consider the so-called Zarantonello
iteration from [3, 5] as a linearization method (with linearization index 𝑘). To ensure
linear complexity of the proposed AILFEM algorithm, we solve the arising symmet-
ric positive definite Zarantonello system with a norm-contractive algebraic solver [6]
(with algebraic solver index 𝑖). The schematic algorithm reads

ITERATIVELY SOLVE & ESTIMATE (ℓ, 𝑘, 𝑖) MARK (ℓ) REFINE (ℓ)

Inherent to semilinear problems is that the Lipschitz constant 𝐿 of 𝑏 depends on
the considered functions 𝑣 and 𝑤 in the sense that for 𝜗 > 0, it holds only that

‖𝑏(𝑣)−𝑏(𝑤)‖𝐻−1 (Ω) ≤ 𝐿 [𝜗]‖𝑣−𝑤‖𝐻 1
0 (Ω) ∀𝑣, 𝑤 ∈ 𝐻1

0 (Ω) with max
{
⦀𝑣⦀,⦀𝑤⦀

} ≤𝜗.

This dependence is passed on to the stability constant of the residual-based a poste-
riori error estimator [7, 8]. By modifying the stopping criteria compared to existing
literature [5, 9, 10, 11], we prove the first main result: All iterates 𝑢𝑘,𝑖ℓ ≈ 𝑢★ that
appear in Algorithm 1 are uniformly bounded (see Theorem 1 below).

Once uniform boundedness is established, we prove full R-linear convergence
(Theorem 2 below) of an appropriate quasi-error quantity H𝑘,𝑖

ℓ that consists of the
discretization error, the linearization error, and the algebraic error. Full R-linear
convergence essentially states uniform contraction in each step of the algorithm
regardless of the algorithmic decision. As a consequence of uniform boundedness
and full R-linear convergence, we prove optimal convergence rates understood with
respect to the number of degrees of freedom and with respect to the overall compu-
tational cost (Corollary 1 and Theorem 3).

Contrary to our work [12] that employs energy arguments for scalar semilinear
PDEs, the arguments in this work are solely based on norm contraction. This allows
for an extension to vector-valued semilinear model problems at the expense of
introducing new technicalities in the form of a mesh-refinement index ℓ0 ∈ N0 such
that R-linear convergence holds only for ℓ ≥ ℓ0 (Theorem 2 below), which also
affects the subsequent optimality results.
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2 Problem Setting
Strong monotonicity and local Lipschitz continuity. Associated to a mesh T𝐻 of

Ω (understood throughout as conforming simplicial triangulation), let X𝐻 ⊂ 𝐻1
0 (Ω)

denote the finite element space of piecewise polynomials of degree ≤ 𝑝. The discrete
formulation of the model problem (1) reads: Find 𝑢★𝐻 ∈ X𝐻 such that

⟨A𝑢★𝐻 , 𝑣𝐻 ⟩ B ⟨𝑨∇𝑢★𝐻 , 𝑣𝐻 ⟩Ω+⟨𝑏(𝑢★𝐻 ) , 𝑣𝐻 ⟩Ω = ⟨𝐹 , 𝑣𝐻 ⟩ for all 𝑣𝐻 ∈ X𝐻 , (2)

where ⟨· , ·⟩Ω is the 𝐿2 (Ω)-scalar product and ⟨· , ·⟩ the dual pairing on 𝐻−1 (Ω) ×
𝐻1

0 (Ω). We use ⦀ ·⦀2 B ⟨𝑨∇· , ∇·⟩ for the equivalent energy norm on 𝐻1
0 (Ω).

We suppose that the model problem (1) (cf. [1, Section 3]) is strongly monotone

𝛼 ⦀𝑣 − 𝑤⦀2 ≤ ⟨A𝑣 − A𝑤 , 𝑣 − 𝑤⟩ for all 𝑣, 𝑤 ∈ 𝐻1
0 (Ω). (SM)

and locally Lipschitz continuous, i.e., for all 𝜗 > 0, there exists 𝐿 [𝜗] > 0 such that

⟨A𝑣−A𝑤, 𝜑⟩≤ 𝐿 [𝜗]⦀𝑣−𝑤⦀⦀𝜑⦀ ∀𝑣, 𝑤, 𝜑∈𝐻1
0 (Ω) : max

{
⦀𝑣⦀,⦀𝑤⦀

} ≤𝜗. (LIP)

The Browder–Minty theorem [2, Theorem 25.B] proves existence and uniqueness
of the exact solution 𝑢★ ∈ 𝐻1

0 (Ω) and its Galerkin approximation 𝑢★𝐻 ∈ X𝐻 to (2).
As in the linear case, there holds a Céa-type best-approximation result of the form

⦀𝑢★ − 𝑢★𝐻⦀ ≤ 𝐿 [2𝑀]/𝛼 min
𝑣𝐻 ∈X𝐻

⦀𝑢★ − 𝑣𝐻⦀ with 𝑀 B ‖𝐹 − A0‖𝐻−1 (Ω) . (3)

Zarantonello iteration. To iteratively linearize the nonlinear problem (2), we
employ the Zarantonello iteration, cf. [1, Sections 2.2–2.4]: For a damping parameter
𝛿 > 0, the Zarantonello mapping Φ𝐻 (𝛿; ·) : X𝐻 → X𝐻 is defined via

⟨∇Φ𝐻 (𝛿; 𝑢𝐻 ),∇𝑣𝐻 ⟩Ω = ⟨∇𝑢𝐻 ,∇𝑣𝐻 ⟩Ω + 𝛿
[
⟨𝐹 − A𝑢𝐻 , 𝑣𝐻 ⟩

] ∀𝑣𝐻 ∈ X𝐻 . (4)

For sufficiently small 0 < 𝛿 < 𝛿★ B 𝛼/𝐿 [8𝑀]2 with 𝑀 from (3), the Zarantonello
iteration is norm-contractive [1, Proposition 4] for all ⦀𝑢𝐻⦀ ≤ 4𝑀:

∃ 0 < 𝑞★Zar < 1: ⦀𝑢★𝐻 −Φ𝐻 (𝛿; 𝑢𝐻 )⦀ ≤ 𝑞★Zar ⦀𝑢
★
𝐻 − 𝑢𝐻⦀. (5)

Algebraic solver. To obtain linear complexity of the AILFEM algorithm, we
solve (4) by a uniformly contractive geometric multigrid method [6]. In abstract
terms, the solver Ψ𝐻 (𝑢𝑘,★𝐻 ; ·) : X𝐻 → X𝐻 approximates 𝑢𝑘,★𝐻 := Φ𝐻 (𝛿; 𝑢𝐻 ), i.e.,

∃ 0 < 𝑞alg < 1: ⦀𝑢𝑘,★𝐻 −Ψ𝐻 (𝑢𝑘,★𝐻 ;𝑤𝐻 )⦀ ≤ 𝑞alg ⦀𝑢
𝑘,★
𝐻 − 𝑤𝐻⦀ ∀𝑤𝐻 ∈ X𝐻 . (6)

A posteriori error estimation. For 𝐹 = 𝑓 − div 𝒇 in (1) with 𝑓 ∈ 𝐿2 (Ω) and
𝒇 ∈ [𝐿2 (Ω)]𝑑 , the residual-based error estimator 𝜂𝐻 (·) reads
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𝜂𝐻 (𝑇, 𝑣𝐻 )2 := |𝑇 |2/𝑑 ‖ 𝑓 + div(𝑨∇𝑣𝐻 − 𝒇 ) − 𝑏(𝑣𝐻 )‖2
𝐿2 (𝑇 )

+ |𝑇 |1/𝑑 ‖ [[(𝑨∇𝑣𝐻 − 𝒇 ) · 𝑛]] ‖2
𝐿2 (𝜕𝑇∩Ω) for 𝑇 ∈ T𝐻 and 𝑣𝐻 ∈ X𝐻 ,

(7a)

where [[·]] denotes the jump across (𝑑 − 1)-dimensional faces of T𝐻 . To abbreviate
notation, we define, for all U𝐻 ⊆ T𝐻 and all 𝑣𝐻 ∈ X𝐻 ,

𝜂𝐻 (𝑣𝐻 ) := 𝜂𝐻 (T𝐻 , 𝑣𝐻 ) with 𝜂𝐻 (U𝐻 , 𝑣𝐻 ) :=
( ∑︁
𝑇 ∈U𝐻

𝜂𝐻 (𝑇, 𝑣𝐻 )2
)1/2

. (7b)

As proven in [8, Proposition 15], the estimator satisfies the so-called axioms of
adaptivity (A1)–(A4) from [13] with a modified stability property (A1). To this end,
for a mesh T𝐻 , let Tℎ denote a mesh that is generated by finitely many steps of newest
vertex bisection (NVB) from the mesh T𝐻 ; see, e.g., [14] for NVB.

(A1) stability: For all 𝜗 > 0 and all U𝐻 ⊆ Tℎ ∩ T𝐻 , there exists 𝐶stab [𝜗] > 0 such
that for all 𝑣ℎ ∈ Xℎ and 𝑣𝐻 ∈ X𝐻 with max

{
⦀𝑣ℎ⦀,⦀𝑣𝐻⦀

} ≤ 𝜗, it holds that��𝜂ℎ (U𝐻 , 𝑣ℎ) − 𝜂𝐻 (U𝐻 , 𝑣𝐻 )
�� ≤ 𝐶stab [𝜗] ⦀𝑣ℎ − 𝑣𝐻⦀. ut (A1)

3 Adaptive Algorithm

Algorithm 1 (AILFEM). Input: Conforming initial mesh T0, marking parameters
0 < 𝜃 ≤ 1, 𝐶mark ≥ 1, solver parameters 𝜆lin, 𝜆alg > 0, minimal number of algebraic
solver steps 𝑖min ∈ N, initial guess 𝑢0,0

0 B 𝑢0,★
0 B 𝑢

0,𝑖
0 ∈ X0 with ⦀𝑢0,0

0 ⦀ ≤ 2𝑀 with
𝑀 from (3), and Zarantonello damping parameter 𝛿 > 0.
Adaptive loop: For all ℓ = 0, 1, 2, . . . , repeat the following steps (I)–(III):

(I) SOLVE & ESTIMATE. For all 𝑘 = 1, 2, 3, . . . , repeat steps (a)–(c):

(a) Define 𝑢𝑘,0ℓ B 𝑢
𝑘−1,𝑖
ℓ and, only for theoretical reasons, 𝑢𝑘,★ℓ B Φℓ (𝛿; 𝑢𝑘,0ℓ ).

(b) For all 𝑖 = 1, 2, 3, . . . repeat steps (i)–(ii):
(i) Compute 𝑢𝑘,𝑖ℓ B Ψℓ (𝑢𝑘,★ℓ ; 𝑢𝑘,𝑖−1

ℓ ) and error estimator 𝜂ℓ (𝑢𝑘,𝑖ℓ ).
(ii) Terminate the 𝑖-loop and define 𝑖[ℓ, 𝑘] B 𝑖 if

⦀𝑢𝑘,𝑖−1
ℓ − 𝑢𝑘,𝑖ℓ ⦀ ≤ 𝜆alg

[
𝜆lin 𝜂ℓ (𝑢𝑘,𝑖ℓ ) + ⦀𝑢𝑘,𝑖ℓ − 𝑢𝑘,0ℓ ⦀

]
AND 𝑖min ≤ 𝑖. (8)

(c) Terminate the 𝑘-loop and define 𝑘 [ℓ] B 𝑘 if
‖𝑢

𝑘,𝑖

ℓ − 𝑢𝑘,0ℓ ‖ ≤ 𝜆lin 𝜂ℓ (𝑢𝑘,𝑖ℓ ) AND ⦀𝑢
𝑘,𝑖

ℓ ⦀ ≤ 2𝑀. (9)

(II) MARK. Find Mℓ ∈ Mℓ [𝜃, 𝑢𝑘,𝑖ℓ ] B {Uℓ ⊆Tℓ | 𝜃 𝜂ℓ (𝑢𝑘,𝑖ℓ )2 ≤ 𝜂ℓ (Uℓ , 𝑢
𝑘,𝑖

ℓ )2} with
#Mℓ ≤ 𝐶mark min

Uℓ ∈Mℓ [𝜃,𝑢𝑘,𝑖

ℓ
]
#Uℓ . (10)

(III) REFINE. Bisect all 𝑇 ∈ Mℓ by NVB to generate the new mesh Tℓ+1 from Tℓ and
define 𝑢0,0

ℓ+1 B 𝑢
0,𝑖
ℓ+1 B 𝑢0,★

ℓ+1 B 𝑢
𝑘,𝑖

ℓ (nested iteration).

Output: Refined meshes Tℓ , discrete approximations 𝑢𝑘,𝑖ℓ , and estimators 𝜂ℓ (𝑢𝑘,𝑖ℓ ).
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We define the countably infinite index set Q and the total step counter |·, ·, ·| by

Q B {(ℓ, 𝑘, 𝑖) ∈ N3
0 : 𝑢𝑘,𝑖ℓ is used in Algorithm 1},

|ℓ, 𝑘, 𝑖 | B {(ℓ′, 𝑘 ′, 𝑖′) ∈ Q | (ℓ′, 𝑘 ′, 𝑖′) < (ℓ, 𝑘, 𝑖)} ∀(ℓ, 𝑘, 𝑖) ∈ Q.

We denote the stopping indices of the mesh level by ℓ ∈ N0 ∪ {∞}, the linearization
by 𝑘 = 𝑘 [ℓ] ∈ N ∪ {∞}, and the algebraic solver by 𝑖 = 𝑖[ℓ, 𝑘] ∈ N; cf. [12,
Lemma 6].

By enforcing at least 𝑖min ∈ N algebraic solver steps, we guarantee that the inexact
Zarantonello iteration is contractive (despite finitely many algebraic solver steps).

Lemma 1 ([15, Lemma 5.1, Corrigendum, Section 2)]) There exist 𝜆★alg > 0 and
𝑖min ∈ N such that 𝑞𝑖min

alg < (1−𝑞★Zar [𝛿, 4𝑀])/(1+𝑞★Zar [𝛿, 4𝑀]) and for all 0 < 𝜆alg ≤
𝜆★alg and 0 < 𝜆lin, there exists 0 < 𝑞per < 1 with

⦀𝑢★ℓ − 𝑢
𝑘,𝑖

ℓ ⦀ ≤ 𝑞per ⦀𝑢
★
ℓ − 𝑢

𝑘−1,𝑖
ℓ ⦀ ∀(ℓ, 𝑘, 0) ∈ Q with 1 ≤ 𝑘 ≤ 𝑘 [ℓ] . ut (11)

We stress that every step of Algorithm 1 is realized in linear complexity, since all
building blocks can be computed in linear complexity:

⊲ SOLVE & ESTIMATE. The algebraic solver is an ℎ𝑝-robust multigrid [6]. On a
mesh Tℓ , each algebraic solver step requires only O(#Tℓ) operations. Moreover,
the simultaneous computation of the standard error indicators 𝜂ℓ (𝑇, 𝑢𝑘,𝑖ℓ ) for all
𝑇 ∈ Tℓ can be done at the cost of O(#Tℓ).

⊲ MARK. The determination of Mℓ ⊆ Tℓ by Dörfler marking is indeed a linear
complexity problem; see, e.g., [16] for 𝐶mark = 1.

⊲ REFINE. The refinement of Tℓ is based on NVB and, owing to the the finite
number of children [17] and the mesh-closure estimate [18, 14], requires only
linear cost O(#Tℓ).

Therefore, the total work until and including the computation of 𝑢𝑘,𝑖ℓ is given by

cost(ℓ, 𝑘, 𝑖) B
∑︁

(ℓ′,𝑘′,𝑖′) ∈Q
|ℓ′,𝑘′,𝑖′ | ≤ |ℓ,𝑘,𝑖 |

#Tℓ′ , (12)

reflecting the adaptive nature of Algorithm 1, since the computation of 𝑢𝑘,𝑖ℓ depends
on the entire computational history of the algorithm. Uniform boundedness of all
iterates 𝑢𝑘,𝑖ℓ follows along the lines of [12, Theorem 6] by use of norm-contraction.

Theorem 1 Suppose thatA satisfies (SM) and (LIP) with 𝑀 from (3). Let𝜆lin, 𝜆alg >

0 and 0 < 𝜃 ≤ 1 be arbitrary. Suppose that ⦀𝑢0,0
ℓ ⦀ ≤ 2𝑀 with 𝑀 from (3) and that

𝑖min ∈ N as in Lemma 1. Then, for any 𝛿 > 0 satisfying 0 < 𝛿 < 2𝛿★ = 2𝛼/𝐿 [8𝑀]2,
all iterates satisfy the uniform bound

⦀𝑢𝑘,𝑖ℓ ⦀ ≤ 4𝑀 for all (ℓ, 𝑘, 𝑖) ∈ Q. ut (UB)
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4 Main Results

Full R-linear convergence is a key improvement to plain convergence and constitutes
the second main result. It states that Algorithm 1 contracts an appropriate quasi-error
H𝑘,𝑖
ℓ (up to a constant) regardless of the algorithmic decisions.

Theorem 2 (full R-linear convergence of Algorithm 1) With the assumptions of
Theorem 1 and the estimator axioms stability (A1), reduction (A2), and reliabil-
ity (A3), Algorithm 1 guarantees full R-linear convergence of the quasi-error

H𝑘,𝑖
ℓ B ⦀𝑢★ℓ − 𝑢𝑘,𝑖ℓ ⦀ + ⦀𝑢𝑘,★ℓ − 𝑢𝑘,𝑖ℓ ⦀ + 𝜂ℓ (𝑢𝑘,𝑖ℓ ), (13)

i.e., there exist constants 0 < 𝑞lin < 1, 𝐶lin > 0, and ℓ0 ∈ N0 such that

H𝑘,𝑖
ℓ ≤ 𝐶lin𝑞

|ℓ,𝑘,𝑖 |− |ℓ′,𝑘′,𝑖′
lin H𝑘′,𝑖′

ℓ′ (14)

for all (ℓ′, 𝑘 ′, 𝑖′), (ℓ, 𝑘, 𝑖) ∈ Q with |ℓ′, 𝑘 ′, 𝑖′ | < |ℓ, 𝑘, 𝑖 | and ℓ, ℓ′ ≥ ℓ0.

Full R-linear convergence from Theorem 2 yields that convergence rates with
respect to the number of degrees of freedom dim Xℓ ' #Tℓ coincide with rates with
respect to the overall computational cost; cf. [11, Corollary 15].

Corollary 1 (rates = complexity) Suppose full R-linear convergence (14). Recall
cost(ℓ, 𝑘, 𝑖) from (12). Then, for any rate 𝑠 > 0, it holds that

sup
(ℓ,𝑘,𝑖) ∈Q

(#Tℓ)𝑠 H𝑘,𝑖
ℓ < ∞ ⇐⇒ sup

(ℓ,𝑘,𝑖) ∈Q
cost(ℓ, 𝑘, 𝑖)𝑠 H𝑘,𝑖

ℓ < ∞. ut (15)

Algorithm 1 equilibrates various error sources captured in the quasi-error H𝑘,𝑖
ℓ

and each step generates computational cost (12) for the iterates 𝑢𝑘,𝑖ℓ .
The subsequent Theorem 3 proves that Algorithm 1 reproduces the best possible

rate 𝑠 > 0 over the computational cost (right-hand side in (16) is finite), if 𝑢★ can
theoretically be approximated at the rate 𝑠 in the sense that the error estimators of
the exact Galerkin solutions along optimal meshes decay at rate 𝑠 with respect to the
number of degrees of freedom (left-hand side in (16) is finite). More precisely, to
tame the cost cost(ℓ, 𝑘, 𝑖)𝑠 that increases with rate 𝑠 in the right-hand side of (16)
below, the quasi-error H𝑘,𝑖

ℓ must decay asymptotically at least with rate 𝑠. Due to the
linear complexity of all its parts, these rates can also be understood (and measured)
with respect to the overall computation time for an optimal implementation.

Theorem 3 (optimal complexity) Suppose the assumptions of Theorem 1 and dis-
crete reliability (A4). Then, there exist 𝜆★lin and 𝜃★ such that, for all 0 < 𝜆lin < 𝜆★lin
and 0 < 𝜃 < 𝜃★, Algorithm 1 guarantees that

sup
𝑁 ∈N0

[(𝑁 +1)𝑠 min
Topt∈T𝑁

𝜂opt (𝑢★opt)
]
<∞ =⇒ sup

(ℓ,𝑘,𝑖) ∈Q
cost(ℓ, 𝑘, 𝑖)𝑠 H𝑘,𝑖

ℓ <∞. ut (16)
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5 Proof of Full R-linear Convergence
To extend [12] to vector-valued semilinear PDEs, we replace energy arguments
that use Pythagorean-type energy identities with quasi-Pythagorean estimates in the
energy norm. The following result is essentially included in [8, Lemma 29] and [15,
Lemma 5.4] and follows from the fact that, by assumption, the nonlinear reaction
term is only a compact perturbation when compared to the linear principal part.

Lemma 2 (quasi-orthogonality) Suppose (SM) and (LIP). Then, for all 0 < 𝜀 < 1,
there exists ℓ0 ∈ N such that for all ℓ0 = ℓ0 (𝜀) ≤ ℓ ≤ ℓ and the discrete limit space
X∞ B closure

( ⋃ℓ

ℓ=0 Xℓ
)

with corresponding Galerkin solution 𝑢★∞, it holds that

1
1+𝜀 ⦀𝑢★∞ − 𝑣ℓ⦀

2 ≤ ⦀𝑢★∞ − 𝑢★ℓ ⦀
2 + ⦀𝑢★ℓ − 𝑣ℓ⦀

2 ≤ 1
1−𝜀 ⦀𝑢★∞ − 𝑣ℓ⦀

2 ∀𝑣ℓ ∈ Xℓ . (QO)

If ℓ < ℓ, the statement holds accordingly with 𝑢★∞ being replaced with 𝑢★ℓ+1. ut
Proof of Theorem 2. The proof consists of three steps, where we prove summability
of the quasi-error H𝑘,𝑖

ℓ from (13) via summability of the simplified quantities

H𝑘
ℓ B ⦀𝑢★ℓ − 𝑢

𝑘,𝑖

ℓ ⦀ + 𝜂ℓ (𝑢𝑘,𝑖ℓ ) for all (ℓ, 𝑘, 𝑖) ∈ Q and (17)

Hℓ B
[
𝛼2
ℓ + 𝛾 𝜂ℓ (𝑢𝑘,𝑖ℓ )2]1/2 for all (ℓ, 𝑘, 𝑖) ∈ Q, (18)

where 𝛼ℓ B ⦀𝑢★ℓ − 𝑢
𝑘,𝑖

ℓ ⦀ and the constant 𝛾 > 0 will be chosen below.
Step 1 (summability of Hℓ). This step is subdivided into two substeps.
Step 1.1. First, we prove the perturbed contraction Hℓ+1 ≤ 𝑞Hℓ+𝑅ℓ with a suitable

remainder 𝑅ℓ . With Aℓ+1 B ⦀𝑢★ℓ+1 − 𝑢★ℓ ⦀, the inexact Zarantonello contraction (11)
with 0 < 𝑞per < 1 and nested iteration 𝑢

𝑘,𝑖

ℓ = 𝑢0,0
ℓ+1 yield

⦀𝑢
𝑘,𝑖

ℓ+1−𝑢
𝑘,𝑖

ℓ ⦀ ≤ ⦀𝑢★ℓ+1−𝑢
𝑘,𝑖

ℓ+1⦀+⦀𝑢★ℓ+1−𝑢
𝑘,𝑖

ℓ ⦀

(11)
. ⦀𝑢★ℓ+1−𝑢

𝑘,𝑖

ℓ ⦀ ≤ Aℓ+1+𝛼ℓ . (19)

With estimator reduction [5, Equation (52)] with 0 < 𝑞𝜃 < 1 depending only on 𝜃
and reduction (A2), the Young inequality with 0 < 𝜇 < 1 verifies

𝜂ℓ+1 (𝑢𝑘,𝑖ℓ+1)2 ≤ (1 + 𝜇) 𝑞𝜃 𝜂ℓ (𝑢𝑘,𝑖ℓ )2 + (1 + 𝜇−1)𝐶stab [8𝑀]2
⦀𝑢

𝑘,𝑖

ℓ+1 − 𝑢
𝑘,𝑖

ℓ ⦀

2

(19)≤ (1 + 𝜇) 𝑞𝜃 𝜂ℓ (𝑢𝑘,𝑖ℓ )2 + 𝐶1𝛼
2
ℓ + 𝐶1 A2

ℓ+1,
(20)

where 𝐶1 depends only on 𝐶stab [8𝑀]2, (19), 𝜇−1, and 𝑞per. The Céa lemma (3),
reliability (A3), stability (A1), and the Young inequality lead us to

A2
ℓ+1

(3)
. ⦀𝑢★ − 𝑢★ℓ ⦀

2 (A3)
. 𝜂ℓ (𝑢★ℓ )2 (A1)

. 𝜂ℓ (𝑢𝑘,𝑖ℓ )2 + 𝛼2
ℓ ' H2

ℓ . (21)

Inequality (20), contraction (11), and the Young inequality for ⦀𝑢★ℓ+1 − 𝑢
𝑘,𝑖

ℓ ⦀

2 prove
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H2
ℓ+1

(11)≤ 𝑞2
per ⦀𝑢

★
ℓ+1 − 𝑢

𝑘,𝑖

ℓ ⦀

2 + 𝛾 𝜂ℓ (𝑢𝑘,𝑖ℓ+1)2

(20)≤ [(1 + 𝜇) 𝑞2
per+𝐶1𝛾] 𝛼2

ℓ + (1 + 𝜇)𝛾𝑞𝜃 𝜂ℓ (𝑢𝑘,𝑖ℓ )2 + [(1 + 𝜇−1) + 𝐶1𝛾] A2
ℓ+1.

(22)

Let 𝜎 > 0 that is fixed below in (24). Define 𝐶2 B (1 + 𝜇−1) + 𝐶1𝛾. By adding
±𝐶2𝜎𝜂ℓ (𝑢★ℓ )2 in (22) and by using 𝜂ℓ (𝑢★ℓ )2 ≤ 2𝜂ℓ (𝑢𝑘,𝑖ℓ )2 + 2𝐶stab [8𝑀]2𝛼2

ℓ , we get

H2
ℓ+1

(22)≤ [(1 + 𝜇)𝑞2
per + 𝐶1𝛾 + 2𝜎𝐶2𝐶stab [8𝑀]2] 𝛼2

ℓ

+ [(1 + 𝜇)𝑞𝜃 + 2𝜎𝛾−1𝐶2] 𝛾 𝜂ℓ (𝑢𝑘,𝑖ℓ )2 + 𝐶2 [A2
ℓ+1 − 𝜎𝜂ℓ (𝑢★ℓ )2]

(21)≤ max{[(1 + 𝜇) 𝑞2
per + 𝐶1𝛾 + 2𝜎𝐶2𝐶stab [8𝑀]2], (1 + 𝜇)𝑞𝜃 + 2𝜎𝛾−1𝐶2}H2

ℓ

+ 𝐶2 [A2
ℓ+1 − 𝜎𝜂ℓ (𝑢★ℓ )2] C 𝑞 H2

ℓ + 𝑅2
ℓ . (23)

To obtain quasi-contraction with remainder of the form (23) with 0 < 𝑞 < 1, choose

• 𝜇 > 0 such that (1 + 𝜇)𝑞2
per < 1 and (1 + 𝜇)𝑞𝜃 < 1;

• 𝛾 > 0 such that (1 + 𝜇)𝑞2
per + 𝛾𝐶1 [𝜇−1] < 1;

• 𝜎 > 0 such that 𝑞 from (23) is contractive, i.e., 0 < 𝑞 < 1.

Step 1.2. In this step, we prove summability of 𝑅2
ℓ from (23) and conclude

summability of Hℓ . To this end, we first choose 0 < 𝜀 < 1 such that

𝑞𝜀 B
1 + 𝜀

1 − 𝜀
𝑞2

per < 1 and
𝜀

1 − 𝜀
(1 + 𝐶Céa)2𝐶2

rel ≤ 𝜎, (24)

which determines the index ℓ0 = ℓ0 (𝜀) ∈ N0 from Lemma 2. Reliability (A3) verifies
𝜀

1 − 𝜀
⦀𝑢★∞ − 𝑢★ℓ ⦀

2 (3)≤ 𝜀

1 − 𝜀
(1 + 𝐶Céa)2

⦀𝑢★ − 𝑢★ℓ ⦀
2 (A3) , (24)≤ 𝜎 𝜂ℓ (𝑢★ℓ )2. (25)

For ℓ0 ≤ ℓ′, quasi-orthogonality (QO) and the Céa lemma (3) prove
ℓ−1∑︁
ℓ=ℓ′

[
A2
ℓ+1 − 𝜎 𝜂ℓ (𝑢★ℓ )2] (QO)≤

ℓ−1∑︁
ℓ=ℓ′

[ 1
1 − 𝜀

⦀𝑢★∞ − 𝑢★ℓ ⦀
2 − ⦀𝑢★∞ − 𝑢★ℓ+1⦀

2 − 𝜎 𝜂ℓ (𝑢★ℓ )2
]

(25)≤
ℓ−1∑︁
ℓ=ℓ′

[ 1
1 − 𝜀

⦀𝑢★∞ − 𝑢★ℓ ⦀
2 − ⦀𝑢★∞ − 𝑢★ℓ+1⦀

2 − 𝜀

1 − 𝜀
⦀𝑢★∞ − 𝑢★ℓ ⦀

2
]

≤ ⦀𝑢★∞ − 𝑢★ℓ′⦀
2 (3)
. ⦀𝑢★ − 𝑢★ℓ′⦀

2 . H2
ℓ′ .

Hence,
∑ℓ−1

ℓ=ℓ′ 𝑅
2
ℓ . H2

ℓ , i.e., the remainder 𝑅ℓ is square-summable. The summability
criterion from [13, Lemma 4.7] concludes (square-)summability of Hℓ .

Step 2 (summability of H𝒌
ℓ over indices (ℓ, 𝒌)). By using the perturbed Zaran-

tonello contraction (11) (instead of energy contraction), we conclude tail summability
of H𝑘

ℓ owing to [12, Step 4–5].
Step 3 (summability of H𝒌,𝒊

ℓ over index (ℓ, 𝒌, 𝒊)). The tail summability for H𝑘,𝑖
ℓ

is a consequence of [12, Step 6–7], and with [13, Lemma 4.9], we conclude R-linear
convergence. This completes the proof. ut
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Fig. 1 Semilinear experiment (26) with 𝑖min ∈ {1, 2, 3}: Left: Convergence plots of the error H𝑘,𝑖

ℓ

(circle) and the algebraic error ⦀𝑢𝑘,★

ℓ − 𝑢
𝑘,𝑖

ℓ ⦀ (diamond) over cost(ℓ, 𝑘, 𝑖) for 𝑝 = 2. Right: We
plot 𝜂ℓ (𝑢𝑘,𝑖

ℓ ) over computation time in seconds for 𝑝 = 2 (circle) and 𝑝 = 3 (diamond).

6 Numerical Experiments

We consider a semilinear problem, where our implementation relies on Moo-
AFEM [19]. On the L-shape Ω = (−1, 1)2 \ [0, 1] × [−1, 0] ⊂ R2, we approximate

−Δ𝑢★ + (𝑢★)3 = 𝑓 − div 𝒇 in Ω subject to 𝑢★ = 0 on 𝜕Ω (26)

with the monotone semilinearity 𝑏(𝑣) = 𝑣3, which is locally Lipschitz continuous
(by the same reasoning as in [1, Experiment 26]). We choose

𝑓 = 0 and 𝒇 (𝑥1, 𝑥2) = (−1, 0)ᵀ
{

1, if ‖(𝑥1, 𝑥2)‖1 > 1,
0, else .

For the computations, we consider a damping parameter 𝛿 = 0.3, the number
of minimal algebraic steps 𝑖min ∈ {1, 2, 3}, and 𝜆lin = 𝜆alg = 𝜃 = 0.5. In Figure 1
(left), we plot the quasi-error H𝑘,𝑖

ℓ and the algebraic error ⦀𝑢𝑘,★ℓ − 𝑢
𝑘,𝑖

ℓ ⦀ over the
computational cost cost(ℓ, 𝑘, 𝑖) from (12) with 𝑝 = 2. We observe the optimal decay
rate 𝑠 = 1 for the quasi-error H𝑘,𝑖

ℓ for all choices of 𝑖min. However, we observe that the
algebraic error is more erratic (and slightly suboptimal) for lower 𝑖min. In Figure 1
(right), we plot the estimator 𝜂ℓ (𝑢𝑘,𝑖ℓ ) for 𝑝 ∈ {2, 3} over the computation time in
seconds. This is justified since H𝑘,𝑖

ℓ ' 𝜂ℓ (𝑢𝑘,𝑖ℓ ) by virtue of the stopping criteria in
Algorithm 1. As before, we also observe optimal convergence rates 𝑠 = 𝑝/2.
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