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ANSGAR JÜNGEL AND MARTIN VETTER

Abstract. A system of degenerate drift–diffusion equations for the electron, hole, and
oxygen vacancy densities, coupled to the Poisson equation for the electric potential, is an-
alyzed in a three-dimensional bounded domain with mixed Dirichlet–Neumann boundary
conditions. The equations model the dynamics of the charge carriers in a memristor device
in the high-density regime. Memristors can be seen as nonlinear resistors with memory,
mimicking the conductance response of biological synapses. The global existence of weak
solutions and the weak–strong uniqueness property is proved. Thanks to the degenerate
diffusion, better regularity results compared to linear diffusion can be shown, in particular
the boundedness of the solutions.

1. Introduction

A memristor is a nonlinear resistor with memory, which may be utilized as an artificial
neuron in neuromorphic computing. Neuromorphic computing aims to create computers
that behave like parts of the human brain [21]. Here, we consider oxide-based memristors
consisting of a thin titanium dioxide layer between two metal electrodes [30]. Besides the
electrons and holes (defect electrons), also the oxygen vacancies act as charge carriers.
When an electric field is applied, the oxygen vacancies drift and change the boundary
between the low- and high-resistance layers. In this way, memristors are able to mimic
the conductance response of synapses. Advantages of these devices are the low power
consumption, short switching time, and its nanosize.

Memristor devices can be modeled by drift–diffusion equations for the densities of elec-
trons n(x, t), holes p(x, t), and oxygen vacancies D(x, t), coupled selfconsistently to the
Poisson equation for the electric potential V (x, t), where x ∈ R3 is the spatial variable and
t ≥ 0 is the time [17, 33]. In low-density regimes, the (scaled) diffusion fluxes are given
by ∇n, ∇p, and ∇D, respectively. However, in the case of high densities, the nonlinear
relation ∇nαn with αn = 5/3 has to be used for the diffusion flux (and similarly for holes
and oxygen densities) [27, Chap. 5].

The existence analysis of the low-density three-species memristor drift–diffusion system
was investigated in [22], and the two-species drift–diffusion equations in the high-density
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regime was studied in [23, 24]. Nonlinear diffusion fluxes were assumed in [13], but the
assumptions do not fit into our framework. Up to our knowledge, the analysis of degenerate
drift–diffusion equations for more than two species is missing in the literature. The work
[22] has proved the global existence of solutions to the low-density memristor drift–diffusion

system with low regularity only, namely
√
n,

√
p,

√
D ∈ W 1,1(Ω). In this paper, we explore

to what extent the degenerate diffusion allows us to improve the regularity of the solutions.

1.1. Model equations. The dynamics of the densities and electric potential is assumed
to be given by the equations

∂tn = div Jn, Jn = ∇nαn − n∇V,(1)

∂tp = − div Jp, Jp = −(∇pαp + p∇V ),(2)

∂tD = − div JD, JD = −(∇DαD +D∇V ),(3)

λ2∆V = n− p−D + A(x) in Ω, t > 0,(4)

where Jn, Jp, and JD are the current densities of the electrons, holes, and oxygen densities,
respectively, λ > 0 is the (scaled) Debye length, and A(x) is the given immobile acceptor
doping density. Following [33], we neglect recombination–generation terms.

When the effective density of states in the conduction band is much larger than the
doping concentration (high-density regime), the drift–diffusion model with Fermi–Dirac
statistics can be approximated by equations (1)–(2) with αn = αp = 5/3 [25]. Since we
want to understand mathematically the gain of regularity, we allow for general exponents
αn, αp > 1. One may argue that the oxygen vacancies evolve not necessarily in a high-
density regime. However, we cannot expect any gain of regularity if αD = 1 (see [22]). For
this reason, we also choose αD > 1. We discuss the case αD = 1 in Remark 12. Fermi–
Dirac statistics need to be used also for the charge transport through ion channels when
the number of states in the channel is of the same order as the particle numbers [29]. Thus,
our results can also be applied to the charged particle transport in confined ion channels.

We impose physically motivated mixed Dirichlet–Neumann boundary conditions,

n = nDir, p = pDir, V = VDir on ΓDir, t > 0,(5)

Jn · ν = Jp · ν = ∇V · ν = 0 on ΓNeu, t > 0,(6)

JD · ν = 0 on ∂Ω, t > 0,(7)

and the initial conditions

(8) n(·, 0) = nI , p(·, 0) = pI , D(·, 0) = DI in Ω.

The boundary part ΓNeu models insulating boundary segments, while ΓDir is the union of
Ohmic contacts for the electron and hole densities and the applied voltage. These boundary
conditions are typically used in the memristor literature [17, 33]. They can be considered as
first-order approximations from the semiconductor Boltzmann equation [31]. According to
[34], a second-order approximation leads to Robin-type conditions. The oxygen vacancies
are supposed not to leave the semiconductor domain, which leads to Neumann conditions.
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1.2. Mathematical difficulty. The misfit of boundary conditions (mixed for the elec-
tron and hole densities and Neumann for the oxygen vacancy density) provides the main
mathematical difficulty. To illustrate the problem, let the hole density be fixed and set
nDir = 0. Then, using log n and logD as test functions in the weak formulations of (1)
and (3), respectively, adding both equations, integrating by parts, and using the Poisson
equation (4), we find that

d

dt

∫
Ω

(
n(log n− 1) +D(logD − 1)

)
dx+ 4

∫
Ω

(|∇
√
n|2 + |∇

√
D|2)dx(9)

=

∫
Ω

∇(n−D) · ∇V dx

= − 1

λ2

∫
Ω

(n−D)(n− p−D + A)dx+

∫
ΓDir

(n−D)∇V · νdx.

The first term on the right-hand side can be bounded by C
∫
Ω
(n+D)dx, since (n−D)2 ≥ 0

removes the quadratic terms, but the second term involves ∇V · ν on ΓDir, which cannot
be easily bounded. Moreover, the monotonicity trick (n −D)2 ≥ 0 cannot be applied for
more than two species.

This issue can be overcome by deriving first some estimates from the free energy (see
below) and then to apply the Gagliardo–Nirenberg inequality; see [5, 6, 15, 16]. However,
this idea only works in two space dimensions. For the three-dimensional situation, the
authors of [6] assumed full elliptic regularity for the Poisson equation to achieve uniform
W 1,∞(Ω) estimates for the potential. This is only possible if the Dirichlet and Neumann
boundary parts do not meet. In [4], no-flux boundary conditions are assumed for the
densities and the Robin condition ∇V · ν + cV = ξ on ∂Ω. Then the boundary term in (9)
can be handled and global existence in three space dimensions could be concluded. Finally,
a combination of local W 1,q(Ω) regularity with q > 1 and the L1 logL1 bound from (9)
has led to a global existence result [22], but with rather low regularity. To deal with the
three-dimensional case and the degeneracy, we assume that there exists r ≥ 3 such that

(10) ∥∇V ∥Lr(Ω) ≤ C∥n− p−D + A∥L3r/(3+r)(Ω) + C

for some constant C > 0 depending on the boundary data. This assumption is satisfied if
the intersection of the Dirichlet and Neumann boundary behaves not “too wildly”; see the
discussion in Section 1.4. Our global existence result holds for r = 3, while we can prove
the boundedness of solutions if r > 3.

1.3. Key ideas. A priori estimates are derived from the free energy. Introduce the internal
energies

hn(n) =
n(nαn−1 − nαn−1

Dir )

αn − 1
, hv(v) =

p(pαp−1 − p
αp−1
Dir )

αp − 1
, hD(D) =

DαD

αD − 1
,(11)

and the free energy as the sum of the internal energies and the electric energy,

H[n, p,D] =

∫
Ω

(
hn(n) + hp(p) + hD(D) +DVDir +

λ2

2
|∇(V − VDir)|2

)
dx,
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where V solves (4) with the boundary conditions in (5)–(6). The additional term DVDir

compensates a contribution coming from the electric energy when computing the energy
dissipation. A formal computation, made rigorous in Section 2 on the level of approximate
solutions, shows the free energy inequality

d

dt
H[n, p,D] +

∫
Ω

(
|Jn|2

n
+

|Jp|2

p
+

|JD|2

D

)
dx ≤ C(nDir, pDir, VDir, T ), t ∈ (0, T ),(12)

which provides a priori estimates for nαn , pαp , and DαD in L∞(0, T ;L1(Ω)) as well as for

Jn/
√
n, Jp/

√
p, and JD/

√
D in L2(0, T ;L2(Ω)). Gradient bounds are derived from the

Gagliardo–Nirenberg inequality and elliptic regularity (10). To highlight here the idea, we
consider the equation for the electron density only, fixing p and D:

∥∇nαn−1/2∥L2(Ω) =
αn

αn − 1/2

∥∥∥∥ Jn√
n
+
√
n∇V

∥∥∥∥
L2(Ω)

(13)

≤ C

∥∥∥∥ Jn√
n

∥∥∥∥
L2(Ω)

+ C∥
√
n∥L6(Ω)∥∇V ∥L3(Ω).

As the first term on the right-hand side is bounded (thanks to (12)), we only need to
estimate the second term. This is done by applying the Gagliardo–Nirenberg inequality
for some θ ∈ [0, 1] and using the bound for n in Lαn(Ω) from (12):

∥
√
n∥L6(Ω) = ∥nαn−1/2∥1/(2αn−1)

L3/(αn−1/2)(Ω)
≤ C∥∇nαn−1/2∥θ/(2αn−1)

L2(Ω) ∥n∥(1−θ)/2
Lαn (Ω) + C

≤ C∥∇nαn−1/2∥θ/(2αn−1)

L2(Ω) + C.

In a similar way, exploiting elliptic regularity and applying the Gagliardo–Nirenberg in-

equality for some θ̃ ∈ [0, 1] again,

∥∇V ∥L3(Ω) ≤ C∥n∥L3/2(Ω) + C = ∥nαn−1/2∥1/(αn−1/2)

L3/(2αn−1)(Ω)
+ C

≤ C∥∇nαn−1/2∥θ̃/(αn−1/2)

L2(Ω) + C.

Inserting both estimates into (13) yields

∥∇nαn−1/2∥L2(Ω) ≤ C∥∇nαn−1/2∥(θ+2θ̃)/(2αn−1)

L2(Ω) + C,

which provides a gradient bound for nαn−1/2 if the exponent on the right-hand side is
smaller than one, which holds if and only if αn > 6/5. Observe that this includes the
physical value αn = 5/3.

We obtain from the gradient bound an a priori estimate for ∇nαn in L1(Ω), from which
we infer a bound for ∂tn in some Sobolev space. This allows us to apply the Aubin–Lions
lemma to conclude the compactness of the sequence of approximate solutions whose limit
is a solution to the original problem (1)–(8).
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1.4. Main results. We impose the following hypotheses:

(H1) Domain: T > 0, Ω ⊂ R3 is a bounded domain with Lipschitz boundary and
∂Ω = ΓDir ∪ ΓNeu satisfies ΓDir ∩ ΓNeu = ∅, ΓNeu is relatively open in ∂Ω, and ΓDir

has positive measure.
(H2) Data: A ∈ L∞(Ω), nDir, pDir, VDir ∈ W 1,∞(Ω) satisfy nDir, pDir ≥ 0 in Ω, and

nI , pI , DI ∈ L2(Ω) satisfy nI , pI , DI ≥ 0 in Ω.
(H3) Elliptic regularity: There exists r ≥ 3 such that for all f ∈ L3r/(3+r)(Ω), there exists

C > 0 such that the weak solution V to

(14) ∆V = f in Ω, V = VDir on ΓDir, ∇V · ν = 0 on ΓNeu

satisfies ∥V ∥W 1,r(Ω) ≤ C∥f∥L3r/(3+r)(Ω) + C. Note that 3r/(3 + r) = 3/2 if r = 3.

Let us discuss Hypotheses (H1)–(H3). Our results are also valid in d-dimensional do-
mains with more restrictive bounds on the exponents αv (v = n, p,D) depending on d ≥ 1.
We consider the case d = 3 because of its physical relevance and to simplify the notation.
Moreover, we may allow for time-dependent boundary data; see, e.g., [7, Sec. 2].

The most restrictive condition is Hypothesis (H3). Indeed, for general elliptic problems
(14) with mixed boundary conditions, we can only expect solutions V ∈ W 1,r(Ω) for some
r > 2 [19]. Under some conditions on the Dirichlet and Neumann boundary parts (in
particular, ΓDir and ΓNeu intersect with an “angle” not larger than π; see [9, Prop. 3.4]),
the regularity improves to r > 3 [9, Theorem 4.8]. If the domain is a two-dimensional
polygon, precise regularity results can be found in [18]. Shamir’s counterexample in [32]
shows that r ≥ 4 cannot be expected, even if the domain and the data are smooth.
Generally, Hypothesis (H3) for some r > 3 is satisfied if ΓDir and ΓNeu do not meet in a
“too wild” manner; see the examples in [20, Prop. 7.1].

We introduce some notation. We set ΩT := Ω× (0, T ) and for q ≥ 1,

W 1,q
Dir(Ω) := {u ∈ W 1,q(Ω) : u = 0 on ΓDir}.

Moreover, we write∑
v=n,p,D

F (v) := F (n) + F (p) + F (D),
∑

v=n,p,D

F (v̄) = F (n̄) + F (p̄) + F (D̄)

for arbitrary functions F . Constants C > 0 in the following computations are generic and
may change their value from line to line.

Theorem 1. Let Hypotheses (H1)–(H3) with r = 3 hold and assume that 6/5 < αn, αp, αD ≤
2. Then there exists a solution (n, p,D, V ) to (1)–(8) satisfying n, p,D ≥ 0 in ΩT and

nαn , pαp , DαD ∈ L∞(0, T ;L1(Ω)) ∩ L2(0, T ;H1(Ω)),

∂tn, ∂tp ∈ L2(0, T ;W
1,4/3
Dir (Ω)′), ∂tD ∈ L2(0, T ;W 1,4/3(Ω)′),

nαn−1/2, pαp−1/2, DαD−1/2 ∈ L2(0, T ;H1(Ω)),

V ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;W 1,3(Ω)).
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The fluxes satisfy the regularity Jv ∈ L2(0, T ;L2αv/(αv+1)(Ω)) for v = n, p,D. Moreover, if

nαn−1
I , p

αp−1
I , DαD−1

I ∈ L2(Ω) holds, then

nαn−1, pαp−1, DαD−1 ∈ L2(0, T ;H1(Ω)).

The upper bound αv ≤ 2 for v = n, p,D is needed to derive a priori estimates for n, p,D
in W 1,αv(Ω) for 3/2 ≤ αv ≤ 2; see the proof of Lemma 11. Solutions to the porous-
medium equation with exponent α in the whole space possess the optimal regularity in
Lα(0, T ;W 1,α(Rd)) under the condition α ≤ 2 [14, Lemma D.1], which indicates that our
upper bound αv ≤ 2 is optimal.

As mentioned before, the proof of Theorem 1 is based on the free energy inequality (12)
and the elliptic regularity assumed in Hypothesis (H3). To make inequality (12) rigorous,
we introduce suitable cutoff functions with parameter k ∈ N that satisfy the chain rule. A
Leray–Schauder fixed-point argument shows the existence of approximate weak solutions
(nk, pk, Dk, Vk). The limit k → ∞ can be performed after deriving the uniform bounds
sketched in the previous subsection, and the limit function turns out to be a weak solution
to (1)–(8).

Theorem 2 (Regularity). Let the assumptions of Theorem 1 hold. If additionally αn, αp,

αD > α∗ := (11 +
√
37)/14 ≈ 1.22 and nI , pI , DI ∈ L∞(Ω) hold, then the weak solution

constructed in Theorem 1 satisfies

n, p,D ∈ L∞(0, T ;Lq(Ω)) for all 1 ≤ q < ∞, V ∈ L∞(0, T ;W 1,3(Ω)).

Moreover, if additionally Hypothesis (H3) holds for some r > 3, the regularity improves to

n, p,D ∈ L∞(0, T ;L∞(Ω)), V ∈ L∞(0, T ;W 1,r(Ω)).

Bounded weak solutions to drift–diffusion systems were obtained in [12] for two species
and in [2] for multiple species, but the technique in the latter work seems to work only
for linear diffusion. In two space dimensions, the solutions to the memristor model (1)–(8)
are bounded [22]; also see [15]. The restriction to two space dimensions comes from the
regularity V ∈ W 1,q(Ω) with q > 2, due to the mixed boundary conditions. Upper bounds
for the densities to a two-species degenerate drift–diffusion model were found in [24] but
under the assumption V ∈ W 2,q(Ω) for q > 3.
The first step of the proof of Theorem 2 is an estimate for n (and p, D) in L∞(0, T ;

L3/2(Ω)). This follows from the energy inequality (12) if αn ≥ 3/2. If αn < 3/2, we use an
iteration argument, which seems to be new in this context. Assuming that n is bounded in
L∞(0, T ;Lγm+1(Ω)), the aim is to derive a bound for n in L∞(0, T ;Lγm+1+1(Ω)) for some
γm+1 > γm. It turns out that (γm) satisfies a linear difference equation, whose solution
satisfies γm+1 → c(αn) as m → ∞ for some c(αn) > 0. The condition αn > α∗ is necessary
to ensure that c(αn) ≥ 3/2, proving the claim n ∈ L∞(0, T ;L3/2(Ω)). The second step of
the proof is the derivation of L∞(0, T ;Lγ+1(Ω)) estimates for any γ < ∞ by choosing (a
cutoff of) nγ − nγ

Dir as a test function and applying the Gagliardo–Nirenberg inequality.
Unfortunately, the Lγ+1(Ω) estimate depends on γ, and we cannot pass to the limit

γ → ∞ in this step. Therefore, we need slightly more regularity for the potential gradient
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in Lr(Ω) with r > 3. This regularity allows us, in the third step, to apply an Alikakos-

type iteration technique [1] which yields estimates for the densities in L2k(Ω) uniformly in
k ∈ N. The idea of the Alikakos method is to derive an estimate of the type

∥D∥Lγ+1(Ω) ≤ C + Cγβ∥D∥L(γ+1)/2(Ω) for some β > 0.

The halved exponent compensates the γ-dependent constant. In the degenerate case, the
exponent is not halved, since we obtain

∥D∥Lγ+1(Ω) ≤ C + Cγβ∥D∥L(γ+αD)/2(Ω), where αD > 1.

We show that the Alikakos technique can be extended to the degenerate case. While the
boundedness of solutions with linear diffusion was shown in two space dimensions, the
degeneracy allows us to prove this result in three space dimensions. Theorem 2 is the most
original part of the paper.

Theorem 3 (Weak–strong uniqueness). Let the assumptions of Theorem 1 hold. Let
(n, p,D, V ) be a bounded weak solution to (1)–(8), satisfying the regularity stated in Theo-
rem 1. Furthermore, let (n̄, p̄, D̄, V̄ ) be a strong solution to (1)–(8) in the sense that there
exists m > 0 such that n̄, p̄, D̄ ≥ m > 0 in ΩT and

n̄, p̄, D̄ ∈ L∞(ΩT ), ∂tn̄, ∂tp̄ ∈ L2(0, T ;H1
D(Ω)

′), ∂tD̄ ∈ L2(0, T ;H1(Ω)′),

h′
n(n̄)− V̄ , h′

p(p̄) + V̄ , h′
D(D̄) + V̄ ∈ L∞(0, T ;W 2,∞(Ω)).

Then (n, p,D, V ) = (n̄, p̄, D̄, V̄ ) in ΩT .

The uniqueness of solutions to drift–diffusion equations is a delicate issue because of
the simultaneous presence of degenerate diffusion and nonlinear drift. Often, uniqueness
results need additional assumptions, like boundedness of the fluxes [11, Theorem 3.2] or,
in case of nonlinear diffusion fluxes, the regularity V ∈ W 1,q(Ω) for q > d with d being
the space dimension; see [10, Theorem 5.1] and [12, Theorem 6.1]. The uniqueness of
weak solutions in two dimensions was proved in [15], using the regularity V ∈ W 1,q(Ω) for
some q > 2. Uniqueness results for degenerate drift–diffusion equations under additional
conditions have been proved in [8, 26]. Therefore, we restrict ourselves to show the weak–
strong uniqueness property. Note that with the higher elliptic regularity r > 3, the weak
solutions constructed in Theorem 2 satisfy the assumptions of Theorem 3.

The proof of this theorem is based on the relative free energy, which is defined by

(15) H[n, p,D|n̄, p̄, D̄] =

∫
Ω

(
hn(n|n̄) + hp(p|p̄) + hD(D|D̄) +

λ2

2
|∇(V − V̄ )|2

)
dx,

where the relative entropy density is given by

(16) hv(v|v̄) = hv(v)− hv(v̄)− h′
v(v̄)(v − v̄) and hv(v) =

vαv

αv − 1
, v = n, p,D.
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Let (n, p,D, V ) and (n̄, p̄, D̄, V̄ ) be two solutions to (1)–(8) as described in Theorem 3. A
computation, detailed in Section 4, shows that

d

dt
H[n, p,D|n̄, p̄, D̄] +

∑
v=n,p,D

∫
Ω

v
∣∣∇(

(h′
v(v)− V )− (h′

v(v̄)− V̄ )
)∣∣2dx

≤ C
∑

v=n,p,D

∫
Ω

hv(v|v̄)dx+ C
∑

v=n,p,D

∥∇(V − V̄ )∥L2(Ω)∥v − v̄∥L2(Ω),

where C > 0 depends on the W 2,∞(Ω) norm of h′
v(v̄)− V̄ . Since (n, p,D) is assumed to be

bounded, the inequality (v − v̄)2 ≤ Chv(v|v̄) holds for v = n, p,D (see (53)). We conclude
from Young’s inequality that

d

dt
H[n, p,D|n̄, p̄, D̄] ≤ CH[n, p,D|n̄, p̄, D̄],

and since (n, p,D) and (n̄, p̄, D̄) have the same initial data, Gronwall’s lemma implies that
both solutions coincide, proving the theorem.

Remark 4. Our results are valid for an arbitrary number of charged particle species, like
in ion transport. In this situation, the equations for the charge densities ui are

∂tui = div(∇uαi
i + uizi∇V ), i = 1, . . . , n, λ2∆V =

n∑
i=1

ziui + A(x),

where zi ∈ R are the ionic charges, the exponents αi > 1 satisfy the conditions imposed
in the theorems, and initial and mixed boundary conditions are chosen. The reason that
the results are valid for such systems is that we use the Poisson equation only through the
Lq(Ω) norm of ∇V so that the drift terms can be handled as in the following sections. □

The paper is organized as follows. Theorem 1 is proved in Section 2. The regularity
results of Theorem 2 are shown in Section 3, and the weak–strong uniqueness property of
Theorem 3 is proved in Section 4.

2. Existence of solutions

The aim of this section is to prove Theorem 1. We solve system (1)–(8) by truncating the
nonlinearities similarily as in [22] but with a slightly different truncation. The existence
of approximate solutions, based on the Leray–Schauder fixed-point theorem, is analogous
to the one in [22]. The approximate free energy inequality, similar to (12), is independent
of the truncation parameter k ∈ N. After deriving further uniform bounds, we apply the
Aubin–Lions compactness lemma to pass to the limit k → ∞ and obtain the existence of
a solution to (1)–(8).

2.1. Truncated system. Let k ∈ N, k ≥ 2, and set

Tk(v) := min{k,max{k−1, v}} ∈ [k−1, k] for v ∈ R.
We consider the regularized problem

∂tnk = div
(
αnTk(nk)

αn−1∇nk − Tk(nk)∇Vk

)
,(17)
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∂tpk = div
(
αpTk(pk)

αp−1∇pk + Tk(pk)∇Vk

)
,(18)

∂tDk = div
(
αDTk(Dk)

αD−1∇Dk + Tk(Dk)∇Vk

)
,(19)

λ2∆Vk = nk − pk −Dk + A(x) in Ω, t > 0,(20)

subject to the initial conditions and mixed boundary conditions

nk(·, 0) = nI , pk(·, 0) = pI , Dk(·, 0) = DI in Ω,(21)

nk = nDir, pk = pDir, Vk = VDir on ΓDir, t > 0,(22)

∇nk · ν = ∇pk · ν = ∇Vk · ν = 0 on ΓNeu, t > 0,(23)

∇Dk · ν = 0 on ∂Ω, t > 0.(24)

Lemma 5. Let Hypotheses (H1)–(H3) hold. Then there exists a weak solution (nk, pk, Dk,
Vk) to (17)–(24) satisfying

nk, pk, Dk, ∈ L2(0, T ;H1(Ω)), Vk ∈ L2(0, T ;H1(Ω)),

∂tnk, ∂tpk ∈ L2(0, T ;H1
D(Ω)

′), ∂tDk ∈ L2(0, T ;H1(Ω)′).

Proof. The proof is analogous to the proof of Lemma 2.1 in [22] with the difference that we
use the strictly positive cutoff Tk(v) ≥ k−1 > 0 and that equations (17)–(19) are nonlinear
in the diffusion term. However, since the truncated diffusion coefficients are strictly positive
and bounded, the proof still applies. Compared to [22], we cannot conclude that nk, pk,
and Dk are nonnegative. □

2.2. Auxiliary functions. For the derivation of uniform estimates, we need some aux-
iliary functions, which preserve the free energy structure and involve the cutoff Tk. Let
γ > 1, v ∈ R and introduce the functions

Sγ−1
k (v) = (γ − 1)

∫ v

0

Tk(y)
γ−2dy, S0

k(v) =

∫ v

0

dy

Tk(y)
, Rγ

k(v) = γ

∫ v

0

Sγ−1
k (y)dy.

These functions are constructed in such a way that the chain rules

(25) ∇Sγ−1
k (v) = (γ − 1)Tk(v)

γ−2∇v, ∇S0
k(v) =

∇v

Tk(v)
, ∂tR

γ
k(v) = γSγ−1

k (v)∂tv

hold for suitable smooth functions v. The functions (Sγ−1
k , S0

k , R
γ
k) approximate (vγ−1, log v,

vγ). They satisfy the following inequalities.

Lemma 6. There exists C > 0 such that for sufficiently large k ∈ N and for all v ∈ R,

Tk(v)
γ ≤ Sγ

k (v) + C for γ > 0,(26)

(Sγ
k (v))

β/γ ≤ CRβ
k(v) + C for β > 1, γ ≥ β/2,(27)

v ≤ CSβ
k (v)

1/β + C for v ≥ 0 and 0 < β ≤ 1.(28)

Furthermore, for any δ > 0, there exists C(δ) > 0 such that for β > 1 and v ≥ 0,

(29) v ≤ δRβ
k(v) + C(δ).
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Proof. The inequalities can be proved by elementary computations using the explicit ex-
pressions

Tk(v)
α = k−α, Sα

k (v) = αk1−αv, Rα
k (v) =

1

2
α(α− 1)k2−αv2

for v ≤ 1/k;

Tk(v)
α = vα, Sα

k (v) = vα + (α− 1)k−α,

Rα
k (v) = vα + α(α− 2)k1−αv − 1

2
(α− 1)(α− 2)k−α

for 1/k ≤ v ≤ k;

Tk(v)
α = kα, Sα

k (v) = αkα−1v − (α− 1)(kα − k−α),

Rα
k (v) =

1

2
α(α− 1)kα−2v2 − (α− 2)(kα−1 − k1−α)

− 1

2
(α− 1)(α− 2)(kα + k−α − 2k2−α)

for v ≥ k. We leave the details to the reader. For instance, inequality (29) follows from

the fact that Rβ
k grows at least like min{2, β} > 1. □

2.3. Uniform estimates. We proceed by deriving some estimates uniformly in k. Let
(nk, pk, Dk, Vk) be a weak solution to (17)–(24) according to Lemma 5. We define the
truncated free energy by

Hk[nk, pk, Dk] =

∫
Ω

(
hn,k(nk) + hk,p(pk) + hk,D(Dk) +DkVDir +

λ2

2
|∇(Vk − VDir)|2

)
dx,

where the approximate internal energies are given by

hn,k(nk) = (αn − 1)−1
(
Rαn

k (nk)− αnS
αn−1
k (nDir)nk

)
,

hp,k(pk) = (αp − 1)−1
(
R

αp

k (pk)− αpS
αp−1
k (pDir)pk

)
,

hD,k(Dk) = (αD − 1)−1RαD
k (Dk).

Lemma 7 (Free energy inequality with cutoff). There exists a constant C > 0, depending
on the initial and boundary data but not on k, such that for t > 0,

Hk[nk(t), pk(t), Dk(t)] +
1

2

∫ t

0

∫
Ω

Tk(nk)

∣∣∣∣∇(
αn

αn − 1
Sαn−1
k (nk)− Vk

)∣∣∣∣2dxds
+

1

2

∫ t

0

∫
Ω

Tk(pk)

∣∣∣∣∇(
αp

αp − 1
S
αp−1
k (pk) + Vk

)∣∣∣∣2dxds
+

∫ t

0

∫
Ω

Tk(Dk)

∣∣∣∣∇(
αD

αD − 1
SαD−1
k (Dk) + Vk

)∣∣∣∣2dxds ≤ C.
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Proof. The chain rule (25) leads to

∂thn,k(nk) =
αn

αn − 1

〈
∂tnk, S

αn−1
k (nk)− Sαn−1

k (nDir)
〉
,

and similarly for hp,k and hD,k. Moreover, we have

λ2

2

∫
Ω

|∇(V − Vk)|2dx
∣∣∣t
0
= −

∫ t

0

〈
∂t(nk − pk −Dk), Vk − VDir

〉
ds.

This implies that

Hk[nk, pk, Dk]
∣∣∣t
0
=

∫ t

0

d

dt
Hk[nk, pk, Dk]ds

=

∫ t

0

〈
∂tnk,

αn

αn − 1

(
Sαn−1
k (nk)− Sαn−1

k (nDir)
)
− (Vk − VDir)

〉
ds

−
∫ t

0

〈
∂tpk,

αp

αp − 1

(
S
αp−1
k (pk)− S

αp−1
k (pDir) + (Vk − VDir)

〉
ds

−
∫ t

0

〈
∂tDk,

αD

αD − 1
SαD−1
k (Dk) + Vk

〉
ds.

Let us consider the first term on the right-hand side. We insert the drift–diffusion equation
(17) and use the chain rule (25) as well as Young’s inequality:∫ t

0

〈
∂tnk,

αn

αn − 1

(
Sαn−1
k (nk)− Sαn−1

k (nDir)
)
− (Vk − VDir)

〉
ds

= −
∫ t

0

∫
Ω

Tk(nk)

∣∣∣∣∇(
αn

αn − 1
Sαn−1
k (nk)− Vk

)∣∣∣∣2dxds
+

∫ t

0

∫
Ω

Tk(nk)∇
(

αn

αn − 1
Sαn−1
k (nk)− Vk

)
· ∇

(
αn

αn − 1
Sαn−1
k (nDir)− VDir

)
dxds

≤ −1

2

∫ t

0

∫
Ω

Tk(nk)

∣∣∣∣∇(
αn

αn − 1
Sαn−1
k (nk)− Vk

)∣∣∣∣2dxds
+

1

2

∥∥∥∥∇(
αn

αn − 1
Sαn−1
k (nDir)− VDir

)∥∥∥∥2

L∞(Ω)

∫ t

0

∫
Ω

Tk(nk)dxds.

By assumption, the W 1,∞(Ω) norms of nDir and VDir are finite, so the factor of the last
integral is bounded. Treating the terms involving ∂tpk and ∂tDk in a similar way, we end
up with

Hk[nk, pk, Dk, Vk]
∣∣∣t
0
≤ −1

2

∫ t

0

∫
Ω

Tk(nk)

∣∣∣∣∇(
αn

αn − 1
Sαn−1
k (nk)− Vk

)∣∣∣∣2dxds(30)

− 1

2

∫ t

0

∫
Ω

Tk(pk)

∣∣∣∣∇(
αp

αp − 1
S
αp−1
k (pk) + Vk

)∣∣∣∣2dxds
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−
∫ t

0

∫
Ω

Tk(Dk)

∣∣∣∣∇(
αD

αD − 1
SαD−1
k (Dk) + Vk

)∣∣∣∣2dxds
≤ C

∫ t

0

∫
Ω

(
Tk(nk) + Tk(pk) + Tk(Dk)

)
dxds,

Notice that we do not need to apply Young’s inequality to the term involving Dk since
the no-flux boundary conditions directly allow for an integration by parts. Therefore, the
dissipation term for Dk has no factor 1/2.

The right-hand side of (30) can be estimated by using Lemma 6. Indeed, we find that

Tk(nk) ≤ Tk(nk)
αn + C ≤ Sαn

k (nk) + C ≤ CRαn
k (nk) + C,

and similar for the other terms. This shows that

Hk[nk, pk, Dk, Vk]
∣∣∣t
0
≤ C

∫ t

0

Hk[nk, pk, Dk, Vk]ds+ C,

and Gronwall’s lemma implies that Hk[nk, pk, Dk, Vk](t) is bounded for all t > 0. We
deduce from this information that the right-hand side of (30) is bounded, thus finishing
the proof. □

The previous lemma implies the following uniform bounds.

Lemma 8. There exists C > 0 independent of k such that

∥Vk∥L∞(0,T ;H1(Ω)) ≤ C,

sup
0<t<T

(
∥Rαn

k (nk(t))∥L1(Ω) + ∥Rαp

k (pk(t))∥L1(Ω) + ∥RαD
k (Dk(t))∥L1(Ω)

)
≤ C,

sup
0<t<T

(
∥Tk(nk(t))∥Lαn (Ω) + ∥Tk(pk(t))∥Lαp (Ω) + ∥Tk(Dk(t))∥LαD (Ω)

)
≤ C,∥∥Tk(nk)

1/2
(
αnTk(nk)

αn−2∇nk −∇Vk

)∥∥
L2(ΩT )

≤ C,∥∥Tk(pk)
1/2

(
αpTk(pk)

αp−2∇pk +∇Vk

)∥∥
L2(ΩT )

≤ C,∥∥Tk(Dk)
1/2

(
αDTk(Dk)

αD−2∇Dk +∇Vk

)∥∥
L2(ΩT )

≤ C.

Proof. The first and the last three bounds follow directly from Lemma 7 by observing that
the chain rules (25) give

∇
(

αn

αn − 1
Sαn−1
k (nk)− Vk

)
= αnTk(nk)

αn−2∇nk −∇Vk.

The bounds on Rk are a consequence of the definition of the approximate internal energies
and Lemma 6. Indeed, by definition of hk,n(nk),∫

Ω

Rαn
k (nk(t))dx = (αn − 1)

∫
Ω

hk,n(nk(t))dx+ αn

∫
Ω

Sαn−1
k (nDir)nk(t)dx.

For nk ≤ 0, the last term is nonpositive so that, by Lemma 7,∫
Ω

Rαn
k (nk(t))1{nk≤0}dx ≤ C.
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On the other hand, for nk > 0, we apply (29) to find, for any δ > 0, that∫
Ω

Rαn
k (nk(t))1{nk>0}dx ≤ C(δ) + δC(nDir)

∫
Ω

Rαn
k (nk(t))1{nk>0}dx,

and for sufficiently small δ > 0, the last term can be absorbed by the left-hand side.
The remaining estimate for Tk(nk) is a consequence of the previous bound and estimate
Tk(nk)

αn ≤ CRαn
k (nk) + C. Similar estimates hold for pk and Dk. □

Next, we derive some gradient bounds for the approximate densities. This is the key
lemma of the existence analysis.

Lemma 9 (Gradient bounds). Let αn, αp, αD > 6/5. Then there exists C > 0 independent
of k such that

∥∇S
αn−1/2
k (nk)∥L2(ΩT ) + ∥∇S

αp−1/2
k (pk)∥L2(ΩT ) + ∥∇S

αD−1/2
k (Dk)∥L2(ΩT ) ≤ C.

In particular, we have a uniform bound for S
αv−1/2
k (vk) in L2(0, T ;H1(Ω)) for v = n, p,D.

Proof. It follows from the chain rules (25) and the energy estimates of Lemma 8 that

∥∇S
αn−1/2
k (nk)∥L2(Ω) =

(
αn −

1

2

)
∥Tk(nk)

αn−3/2∇nk∥L2(Ω)(31)

≤ αn − 1/2

αn

∥∥Tk(nk)
1/2

(
αnTk(nk)

αn−2∇nk −∇Vk

)∥∥
L2(Ω)

+
αn − 1/2

αn

∥Tk(nk)
1/2∇Vk∥L2(Ω) ≤ C + C∥Tk(nk)

1/2∥L6(Ω)∥∇Vk∥L3(Ω).

We estimate the L6(Ω) norm of Tk(nk)
1/2 by using (26) and the Gagliardo–Nirenberg

inequality:

∥Tk(nk)
1/2∥L6(Ω) = ∥Tk(nk)

αn−1/2∥1/(2αn−1)

L3/(αn−1/2)(Ω)
≤ ∥Sαn−1/2

k (nk)∥1/(2αn−1)

L3/(αn−1/2)(Ω)
+ C

≤ C∥∇S
αn−1/2
k (nk)∥θ(αn)/(2αn−1)

L2(Ω) ∥Sαn−1/2
k (nk)∥(1−θ(αn))/(2αn−1)

Lαn/(αn−1/2)(Ω)
+ C,

where

θ(αn) =
(2αn − 1)(3− αn)

5αn − 3
∈ [0, 1]

(this only requires that 1 ≤ αn ≤ 3). We deduce from (27) with β = αn and γ = αn − 1/2
that

sup
t∈(0,T )

∥Sαn−1/2
k (nk(t))∥αn/(αn−1/2)

Lαn/(αn−1/2)(Ω)
≤ C sup

t∈(0,T )

∫
Ω

Rαn
k (nk(t))dx+ C ≤ C,(32)

where the last inequality follows from Lemma 8. This implies that

∥Tk(nk)
1/2∥L6(Ω) ≤ C∥∇S

αn−1/2
k (nk)∥θ(αn)/(2αn−1)

L2(Ω) + C.

Similar estimates hold for Tk(pk) and Tk(Dk):

∥Tk(pk)
1/2∥L6(Ω) ≤ C∥∇S

αp−1/2
k (pk)∥θ(αp)/(2αp−1)

L2(Ω) + C,
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∥Tk(Dk)
1/2∥L6(Ω) ≤ C∥∇S

αD−1/2
k (Dk)∥θ(αD)/(2αD−1)

L2(Ω) + C.

The function α 7→ θ(α) is decreasing for α > 1. Hence, θ(α0) with α0 = min{αn, αp, αD}
is larger than θ(αv) for v = n, p,D, and collecting the previous estimates, we obtain

∥Tk(nk)
1/2∥L6(Ω) + ∥Tk(pk)

1/2∥L6(Ω) + ∥Tk(Dk)
1/2∥L6(Ω) ≤ C

(
∥∇S

αn−1/2
k (nk)∥L2(Ω)(33)

+ ∥∇S
αp−1/2
k (pk)∥L2(Ω) + ∥∇S

αD−1/2
k (Dk)∥L2(Ω)

)θ(α0)/(2α0−1)
+ C.

Next, we estimate the L3(Ω) norm of ∇Vk. We use the elliptic regularity for the Poisson
equation in Hypothesis (H3) to find that

(34) ∥∇Vk∥L3(Ω) ≤ C∥nk − pk −Dk + A(x)∥L3/2(Ω) + C.

If min{αn, αp, αD} ≥ 3/2, the right-hand side is uniformly bounded with respect to k and
time, because of the bounds in Lemma 8. Thus, let αn < 3/2 (similar estimates hold for
αp < 3/2 or αD < 3/2). We conclude from inequality (28) with β = αn − 1/2 < 1, the
Gagliardo–Nirenberg inequality, and estimate (32) that

∥nk∥L3/2(Ω) ≤ C∥Sαn−1/2
k (nk)∥1/(αn−1/2)

L3/(2αn−1)(Ω)
+ C(35)

≤ C∥∇S
αn−1/2
k (nk)∥θ̃(αn)/(αn−1/2)

L2(Ω) ∥Sαn−1/2
k (nk)∥(1−θ̃(αn))/(αn−1/2)

Lαn/(α−1/2)(Ω)
+ C

≤ C∥∇S
αn−1/2
k (nk)∥θ̃(αn)/(αn−1/2)

L2(Ω) + C,

where

θ̃(αn) =
(2αn − 1)(3− 2αn)

5αn − 3
∈ (0, 1]

is decreasing for any αn ∈ (1, 3/2).
Estimating pk and Dk in a similar way, we find from (34) that

∥∇Vk∥L3(Ω) ≤ C
∑

v=nk,pk,Dk

∥∇S
αv−1/2
k (vk)∥θ̃(αv)/(αv−1/2)

L2(Ω) + C

≤ C
∑

v=nk,pk,Dk

∥∇S
αv−1/2
k (vk)∥θ̃(α0)/(α0−1/2)

L2(Ω) + C,

where α0 = min{αn, αp, αD}. We combine this estimate and (33) to infer from (31) after
integration over (0, T ) that∫ T

0

∑
v=nk,pk,Dk

∥∇S
αv−1/2
k (v)∥2L2(Ω) ≤ C +

∫ T

0

∑
v=nk,pk,Dk

∥Tk(nk)
1/2∥2L6(Ω)∥∇Vk∥2L3(Ω)dt(36)

≤ C

∫ T

0

∑
v=nk,pk,Dk

∥∇S
αv−1/2
k (v)∥2θ(α0)/(2α0−1)+2θ̃(α0)/(α0−1/2)

L2(Ω) dt+ C.
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This yields the desired bound if the exponent on the right-hand side is smaller than two
or, equivalently, if

θ(α0)

2α0 − 1
+

θ̃(α0)

α0 − 1/2
=

9− 5α0

5α0 − 3
< 1,

and this is the case if and only if α0 > 6/5, finishing the proof. □

We need a uniform bound for the time derivative of the approximate densities.

Lemma 10. Let αn, αp, αD > 6/5. Then there exists C > 0 independent of k such that

∥∂tnk∥L2(0,T ;W 1,βn
Dir (Ω)′) + ∥∂tpk∥L2(0,T ;W

1,βp
Dir (Ω)′)

+ ∥∂tDk∥L2(0,T ;W 1,βD (Ω)′) ≤ C,

where βv = 2αv/(αv + 1) > 1 for v = n, p,D.

Proof. Because of

∥∂tnk∥L2(0,T ;W 1,βn
Dir (Ω)′) ≤ αn∥Tk(nk)

αn−1∇nk∥L2(0,T ;Lβn (Ω)) + ∥Tk(nk)∇Vk∥L2(0,T ;Lβn (Ω)),

we only need to estimate the two terms on the right-hand side. We know from (36) in the
proof of Lemma 9 that

∥Tk(nk)
1/2∇Vk∥2L2(ΩT ) ≤

∫ T

0

∥Tk(nk)
1/2∥2L6(Ω)∥∇Vk∥2L3(Ω)dt

≤ C

∫ T

0

∑
v=nk,pk,Dk

∥∇Sk(v)
αv−1/2∥2L2(Ω)dt+ C ≤ C,

and similarly for the terms involving Tk(pk) and Tk(Dk). The diffusion term in (17) is
written as

αnTk(nk)
αn−1∇nk = ∇Sαn

k (nk) =
αn

αn − 1/2
Tk(nk)

1/2∇S
αn−1/2
k (nk).

Then the bounds for Tk(nk)
1/2 in L∞(0, T ;L2αn(Ω)) from Lemma 8 and for∇S

αn−1/2
k (nk) in

L2(ΩT ) from Lemma 9 imply that the diffusion term is uniformly bounded in L2(0, T ;Lβn(Ω))

with βn = 2αn/(αn+1). Hence, (∂tnk) is bounded in L2(0, T ;W 1,βn

Dir (Ω)′). Again, the proof
for ∂tpk and ∂tDk is similar, noting that the no-flux boundary conditions for Dk yield a
slightly different space. □

Next, we prove bounds for the gradients of the approximate densities without cutoff.

Lemma 11. There exists C > 0 independent of k such that for v = nk, pk, Dk,

∥v∥L2(0,T ;W 1,2αv/(3−αv)(Ω)) ≤ C if 6/5 < αv ≤ 3/2,

∥v∥L2(0,T ;W 1,αn (Ω)) ≤ C if 3/2 < αv ≤ 2.

Since 2αv/(3− αv) > αv for αv > 1, we have a uniform bound for v in L2(0, T ;W 1,αv(Ω))
for all 6/5 < αv ≤ 2.
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Proof. Let first 6/5 < αn ≤ 3/2. Then, by the chain rule (25),

(αn − 1/2)∇nk = Tk(nk)
3/2−αn∇S

αn−1/2
k (nk).

The first factor on the right-hand side is bounded in L∞(0, T ;Lαn/(3/2−αn)) (see Lemma
8), while the second factor is bounded in L2(0, T ;L2(Ω)) (see Lemma 9). Thus, the prod-
uct, and consequently (∇nk), is bounded in L2(0, T ;L2αn/(3−αn)(Ω)). It follows from the
Poincaré inequality that (nk) is bounded in L2(0, T ;W 1,2αn/(3−αn)(Ω)).
Second, let αn > 3/2. We use S0

k(nk)−S0
k(nDir) as a test function in the weak formulation

of (17). By the chain rule (25),∫
Ω

(
R1

k(nk(T ))− nk(T )S
0
k(nDir)

)
dx−

∫
Ω

(
R1

k(nk(0))− nk(0)S
0
k(nDir)

)
dx(37)

=

∫ T

0

∫
Ω

(
∇Sαn

k (nk)− Tk(nk)∇Vk

)
· ∇(S0

k(nk)− S0
k(nDir))dxdt.

Again by the chain rule (25), we have ∇S0
k(nk) = ∇nk/Tk(nk) and

∇Sαn
k (nk) · ∇S0

k(nk) = αnTk(nk)
αn−2|∇nk|2 =

4

αn

|∇S
αn/2
k (nk)|2,

and we conclude from (37) and similar arguments as in the proof of Lemma 8 that∫
Ω

R1
k(nk(T ))dx ≤ C − 4

αn

∫ T

0

∫
Ω

|∇S
αn/2
k (nk)|2dxdt−

∫ T

0

∫
Ω

∇Vk · ∇nkdxdt.

It remains to estimate the last term. Writing ∇nk = (2/αn)Tk(nk)
1−αn/2∇S

αn/2
k (nk), we

obtain from Hölder’s inequality

−
∫ T

0

∫
Ω

∇Vk · ∇nkdxdt ≤ C

∫ T

0

∥∇Vk∥L3(Ω)∥Tk(nk)
1−αn/2∥L6(Ω)∥∇S

αn/2
k (nk)∥L2(Ω)dt

≤ C∥Tk(nk)
1−αn/2∥L∞(0,T ;L6(Ω))∥∇Vk∥L2(0,T ;L3(Ω))∥∇S

αn/2
k (nk)∥L2(0,T ;L2(Ω)).

We know that the L∞(0, T ;Lαn(Ω)) norm of Tk(nk) is uniformly bounded. Hence, since
αn > 3/2 implies that 6(1 − αn/2) < αn, the L∞(0, T ;L6(Ω)) norm of (Tk(nk)

1−αn/2)
is bounded too. Here, we need the assumption αn ≤ 2 to ensure that 1 − αn/2 ≥ 0.
Furthermore, the L2(0, T ;L3(Ω)) norm of ∇Vk is bounded by the L2(0, T ;L3/2(Ω)) norms
of nk, pk, and Dk, which are bounded in view of estimate (35). We infer that

−
∫ T

0

∫
Ω

∇Vk · ∇nkdxdt ≤ C∥∇S
αn/2
k (nk)∥L2(0,T ;L2(Ω))

and eventually∫
Ω

R1
k(nk(T ))dx ≤ C − 4

α2
n

∥∇S
αn/2
k (nk)∥2L2(ΩT ) + C∥∇S

αn/2
k (nk)∥L2(ΩT ).
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Since the quadratic term dominates the linear one, we obtain a uniform bound for∇S
αn/2
k (nk)

in L2(ΩT ). Then

∥∇nk∥L2(0,T ;Lαn (Ω)) =
2

αn

∫ T

0

∥Tk(nk)
1−αn/2∥L2αn/(2−αn)(Ω)∥∇S

αn/2
k (nk)∥L2(Ω)dt

≤ 2

αn

∥Tk(nk)∥1−αn/2
L∞(0,T ;Lαn (Ω))∥∇S

αn/2
k (nk)∥L1(0,T ;L2(Ω)),

and we conclude by observing that Tk(nk) is bounded in L∞(0, T ;Lαn(Ω)) by Lemma 8.
The arguments for pk and Dk are analogous. □

2.4. Limit k → ∞. In view of Lemmas 10 and 11 and the compact embeddingW 1,αn(Ω) ↪→
Lq(Ω) for 1 ≤ q < 3αn/(3− αn) ∈ (2, 6] for 6/5 < αn ≤ 2, we can apply the Aubin–Lions
lemma to infer the existence of a subsequence that is not relabeled such that

nk → n strongly in Lq(ΩT ) as k → ∞.

In particular, Tk(nk) → n a.e. in ΩT and Tk(nk) ≥ 1/k imply that n ≥ 0 in ΩT . The choice
q = αn is admissible and leads to

|nk|αn−1 → nαn−1 strongly in Lαn/(αn−1)(ΩT ).

The uniform bounds in Lemma 10 and 11 show that, up to subsequences,

∂tnk ⇀ ∂tn weakly in L2(0, T ;W 1,βn

Dir (Ω)′),

∇nk ⇀ ∇n weakly in L2(0, T ;Lαn(Ω)),

recalling that βn = 2αn/(αn+1). Moreover, it follows from the L∞(0, T ;H1(Ω)) bound on
Vk in Lemma 8 that, up to a subsequence,

∇Vk ⇀ ∇V weakly in L2(ΩT ).

These convergences imply that

αnTk(nk)
αn−1∇nk ⇀ αnn

αn−1∇n = ∇nαn weakly in L1(ΩT ),

nk∇Vk ⇀ n∇V weakly in L1(ΩT ).

We know from the energy estimate in Lemma 8 that (Tk(nk)
1/2) is bounded in L∞(0, T ;

L2αn(Ω)) and (Tk(nk)
1/2(αnTk(nk)

αn−2∇nk −∇Vk)) is bounded in L2(ΩT ). Consequently,
its product

αnTk(nk)
αn−1∇nk − Tk(nk)∇Vk

is uniformly bounded in L2(0, T ;L2αn/(αn+1)(Ω)). We can identify the weak limit with
Jn = ∇nαn − n∇V , showing that Jn ∈ L2(0, T ;L2αn/(αn+1)(Ω)). The convergences for pk
and Dk are proved in a similar way. This shows the existence statement in Theorem 1.

Remark 12. We may allow for the case αn, αp > 1 and αD = 1. Consider first the
two-dimensional case. Hypothesis (H3) on elliptic regularity can be replaced by

(38) ∥∇V ∥L3(Ω) ≤ C∥n− p−D + A∥L6/5(Ω) + C.
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To avoid too many technicalities, we consider the original system and compute formally.
The free energy gives a priori bounds for D logD in L∞(0, T ;L1(Ω)) and L2(0, T ;H1(Ω))

as well as for
√
D∇(logD+ V ) in L2(ΩT ). We use D as a test function in (3) to find that

1

2

∫
Ω

D(t)2dx+

∫ t

0

∫
Ω

|∇D|2dxds ≤ C −
∫ t

0

∫
Ω

D∇V · ∇Ddxds(39)

≤ C + C

∫ t

0

∥D∥2L6(Ω)∥∇V ∥2L3(Ω)ds+
1

2

∫ t

0

∥∇D∥2L2(Ω)ds.

The Gagliardo–Nirenberg inequality of [3] shows that for any δ > 0 and q < ∞, there
exists C(δ) > 0 such that

∥D∥Lq(Ω) ≤ δ∥D∥1−1/q

H1(Ω)∥D logD∥1/qL1(Ω) + C(δ)∥D∥L1(Ω) ≤ δ∥∇D∥1−1/q

L2(Ω) + C(δ),(40)

where we have used the Poincaré–Wirtinger inequality and the uniform bounds for D in
L∞(0, T ;L1(Ω)) in the last step. Hence, with q = 6/5,

∥∇V ∥L3(Ω) ≤ C(n, p) + ∥D∥L6/5(Ω) ≤ C(n, p) + C∥∇D∥1/6L2(Ω),

where C(n, p) > 0 is controlled by the estimates in the proof of Theorem 1. It follows from
(39) and (40) with q = 6 that∫

Ω

D(t)2dx+
1

2

∫ t

0

∫
Ω

|∇D|2dxds ≤ C(n, p, δ) + δ

∫ t

0

∥∇D∥5/3L2(Ω)∥∇D∥1/3L2(Ω)ds.

The last term can be absorbed by the left-hand side if δ < 1/2. This gives an a priori
estimate forD in L∞(0, T ;L2(Ω)) and L2(0, T ;H1(Ω)). Because of n, p ∈ L2(0, T ;L3/2(Ω)),
condition (38) yields

∥∇V ∥L3(ΩT ) ≤ C(n, p) +

∫ T

0

∥D∥L6/5(Ω)dt ≤ C(n, p) and

∥D∇V ∥L2(0,T ;L3/2(Ω)) ≤ ∥D∥L∞(0,T ;L2(Ω))∥∇V ∥L3(ΩT ) ≤ C

and consequently uniform estimates for ∂tD = div(∇D + D∇V ) in L2(0, T ;W 1,3/2(Ω)′).
These bounds are sufficient to conclude compactness via the Aubin–Lions lemma.

Alternatively, we may use the approach of [22] to prove the global existence of weak

solutions in three space dimensions; however, the regularity becomes in this case
√
D ∈

W 1,1(Ω) instead of D ∈ H1(Ω) [22, Theorem 1.1]. □

2.5. Additional regularity. It remains to prove the additional regularity.

Lemma 13. Let 6/5 < αn, αp, αD ≤ 2. Then

nαn−1, pαp−1, DαD−1 ∈ L2(0, T ;H1(Ω)).

Proof. We prove the regularity for D only. Using the test function SαD−2
k (Dk) in the weak

formulation of (19), setting α := αD, and using the chain rule (25) leads to

1

α− 1

∫
Ω

Rα−1
k (Dk(t))dx− 1

α− 1

∫
Ω

Rα−1
k (Dk(0))dx
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=
α(2− α)

(α− 1)2

∫ t

0

∫
Ω

|∇Sα−1
k (Dk)|2dxds−

2− α

α− 1

∫ t

0

∫
Ω

∇Sα−1
k (Dk) · ∇Vkdxds,

and similarly if α = 2, for which S0
k(Dk) is logarithmic. We know already that Rα−1

k (Dk)
is uniformly bounded in L∞(0, T ;L1(Ω)). We apply Young’s inequality to the second term
on the right-hand side, leading eventually to∫ t

0

∫
Ω

|∇Sα−1
k (Dk)|2dxds ≤ C

∫ t

0

∫
Ω

|∇Vk|2dxds+ C

∫
Ω

Rα−1
k (Dk(t))dx+ C.

Since the right-hand side is uniformly bounded, we infer that (∇Sα−1
k (Dk)) is bounded in

L2(ΩT ). The pointwise convergence of (Dk) shows that S
α−1
k (Dk) → Dα−1 pointwise a.e.

in ΩT as k → ∞. Thus, ∇Dα−1 ∈ L2(ΩT ), concluding the proof. □

3. Regularity of solutions

In this section, we prove Theorem 2 in three steps. The proof of Lemma 9 shows that
the densities are bounded in Lq(0, T ;L3/2(Ω)) for q = (5α − 3)/(3 − 2α) > 2. First,
we improve this regularity to n, p,D ∈ L∞(0, T ;L3/2(Ω)). Then we show that n, p,D ∈
L∞(0, T ;Lq(Ω)) for any q < ∞ with a bound depending on q. Finally, we prove the final
goal n, p,D ∈ L∞(0, T ;L∞(Ω)).

Lemma 14. Let αn, αp, αD > α∗ := (11 +
√
37)/14. Then

n, p,D ∈ L∞(0, T ;L3/2(Ω)).

Proof. Let (nk, pk, Dk) be a weak solution to (17)–(24). We focus on the estimation of Dk

to avoid the boundary data, but the computations for nk and pk are similar. The statement
follows from the energy estimate in Lemma 8 if αD ≥ 3/2. Therefore, let αD < 3/2. In
the following, we make an iterative argument.

Set γ0 := αD − 1 > 0. Then, by Lemma 8, ∥Rγ0+1
k (Dk)∥L∞(0,T ;L1(Ω)) ≤ C0, where C0 > 0

only depends on the initial data. Assume that

(41) ∥Rγm+1
k (Dk)∥L∞(0,T ;L1(Ω)) ≤ Cm

for some Cm > 0 and γm > αD − 1. We wish to prove that there exist Cm+1 > 0 and
γm+1 > γm such that

∥Rγm+1+1
k (Dk)∥L∞(0,T ;L1(Ω)) ≤ Cm+1.

To simplify the notation, we set α := αD and γ := γm+1. We use the test function
Sγ
k (Dk) in the weak formulation of (19) and apply the chain rule (25):

1

γ + 1

d

dt

∫
Ω

Rγ+1
k (Dk)dx = ⟨∂tDk, S

γ
k (Dk)⟩

= −
∫
Ω

(∇Sα
k − Tk(Dk)∇Vk) · ∇Sγ

k (Dk)dx = − 4αγ

(α + γ)2

∫
Ω

|∇S
(α+γ)/2
k (Dk)|2dx

+
2γ

α + γ

∫
Ω

Tk(Dk)
(γ−α+2)/2∇Vk · ∇S

(α+γ)/2
k (Dk)dx.
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It follows from Hölder’s inequality that

1

γ + 1

d

dt

∫
Ω

Rγ+1
k (Dk)dx+

4αγ

(α + γ)2

∫
Ω

|∇S
(α+γ)/2
k (Dk)|2dx(42)

≤ C∥Tk(Dk)
(γ−α+2)/2∥L6(Ω)∥∇Vk∥L3(Ω)∥∇S

(α+γ)/2
k (Dk)∥L2(Ω).

The first factor in the right-hand side is estimated by means of the Gagliardo–Nirenberg
inequality and estimate (26) to switch from Tk to Sk:

∥Tk(Dk)
(γ−α+2)/2∥L6(Ω) = ∥Tk(Dk)

(α+γ)/2∥(γ−α+2)/(α+γ)

L6(γ−α+2)/(α+γ)(Ω)

≤ C∥S(α+γ)/2
k (Dk)∥(γ−α+2)/(α+γ)

L6(γ−α+2)/(α+γ)(Ω)
+ C

≤ C
(
∥∇S

(α+γ)/2
k (Dk)∥θL2(Ω)∥S

(α+γ)/2
k (Dk)∥1−θ

L2(γm+1)/(α+γ)(Ω)

)(γ−α+2)/(α+γ)
+ C,

where

θ =
(α + γ)(5− 3α + 3γ − γm)

(3α + 3γ − γm − 1)(γ − α + 2)
∈ [0, 1]

holds since α ≥ 1. We deduce from relation (27) between S
(α+γ)/2
k and Rγm+1

k and the
recursion assumption (41) that

∥S(α+γ)/2
k (Dk)∥(γ−α+2)/(α+γ)

L2(γm+1)/(α+γ)(Ω)
≤ C∥Rγm+1

k (Dk)∥(γ−α+2)/(2(γm+1))

L1(Ω) + C

≤ CC(γ−α+2)/(2(γm+1))
m + C =: Km.

This yields (choosing Km ≥ 1 so that K1−θ
m ≤ Km)

∥Tk(Dk)
(γ−α+2)/2∥L6(Ω) ≤ C

(
Km∥∇S

(α+γ)/2
k (Dk)∥(5−3α+3γ−γm)/(3α+3γ−γm−1)

L2(Ω) + 1
)
.(43)

To estimate the second factor in (42), the norm of ∇Vk, we first apply the Gagliardo–
Nirenberg inequality:∫ T

0

∥Dk∥(5α−3)/(3−2α)

L3/2(Ω)
dt ≤ C

∫ T

0

∥Dk∥θ̃(5α−3)/(3−2α)

W 1,2α/(3−α)(Ω)
∥Dk∥(1−θ̃)(5α−3)/(3−2α)

Lα(Ω) dt

≤ ∥Dk∥(1−θ̃)(5α−3)/(3−2α)
L∞(0,T ;Lα(Ω))

∫ T

0

∥Dk∥θ̃(5α−3)/(3−2α)

W 1,2α/(3−α)(Ω)
dt,

where

θ̃ =
6− 4α

5α− 3
∈ (0, 1)

holds since we assumed 1 < α < 3/2. By Lemma 11, the integral on the right-hand side

is uniformly bounded since θ̃(5α − 3)/(3 − 2α) = 2. We observe that we obtain in a
similar way uniform bounds for nk and pk in the space L(5α−3)/(3−2α)(0, T ;L3/2(Ω)). Then
we deduce from Hypothesis (H3) that

(44)

∫ T

0

∥∇Vk∥(5α−3)/(3−2α)

L3(Ω) dt ≤ C,
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which improves the L2(0, T ;L3(Ω)) bound for ∇Vk proved before, since (5α−3)/(3−2α) ∈
(5,∞) for 6/5 < α < 3/2.
Now, inserting estimates (43) and (44) into (42), integrated over time, we infer that

1

γ + 1

∫
Ω

Rγ+1
k (Dk(t))dx+

4αγ

(α + γ)2

∫ t

0

∥∇S
(α+γ)/2
k (Dk)∥2L2(Ω)ds

≤ 1

γ + 1

∫
Ω

Rγ
k(Dk(0))dx+ C

∫ t

0

∥∇S
(α+γ)/2
k (Dk)∥L2(Ω)∥∇Vk∥L3(Ω)

×
(
Km∥∇S

(α+γ)/2
k (Dk)∥(5−3α+3γ−γm)/(3α+3γ−γm−1)

L2(Ω) + 1
)
ds

≤ C + CKm

∫ t

0

(
∥∇S

(α+γ)/2
k (Dk)∥rL2(Ω) + 1

)
∥∇Vk∥L3(Ω)ds,

setting

r = 1 +
5− 3α + 3γ − γm
3α + 3γ − γm − 1

=
4 + 6γ − 2γm

3α + 3γ − γm − 1
> 1.

We apply Hölder’s inequality with q = (5α− 3)/(3− 2α) and then Young’s inequality,

1

γ + 1

∫
Ω

Rγ+1
k (Dk(t))dx+

4αγ

(α + γ)2

∫ t

0

∥∇S
(α+γ)/2
k (Dk)∥2L2(Ω)ds

≤ C + CKm

(∫ t

0

∥∇Vk∥qL3(Ω)ds

)1/q(∫ t

0

(
∥∇S

(α+γ)/2
k (Dk)∥rL2(Ω) + 1

)q/(q−1)
ds

)(q−1)/q

≤ C +
(α + γ)2

αγ
CK2

m

∫ t

0

∥∇Vk∥qL3(Ω)ds+
2αγ

(α + γ)2

∫ t

0

∥∇S
(α+γ)/2
k (Dk)∥rq/(q−1)

L2(Ω) ds.

By (44), the second term on the right-hand side is bounded, while the last term can be
absorbed by the left-hand side if rq/(q − 1) = 2, which is equivalent to

γm+1 = γ =
21α2 − 35α + 12

9− 6α
+

γm
3
.

Our requirement γm+1 > γm is equivalent to

γm <
21α2 − 35α + 12

6− 4α
.

In particular, γm > α−1 has to be satisfied (since γ0 = α−1). This leads to the necessary
condition

α− 1 <
21α2 − 35α + 12

6− 4α
,

which is equivalent to 6/5 < α < 3/2. We define the recursive sequence of exponents for
6/5 < α < 3/2 by

γm+1 =
21α2 − 35α + 12

9− 6α
+

γm
3
, m ∈ N, γ0 = α− 1.
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This recursion has the explicit solution

γm =
21α2 − 35α + 12

6− 4α

(
1− 1

3m

)
+

α− 1

3m
, m ∈ N.

We infer that

1

γ + 1

∫
Ω

Rγ+1
k (Dk(t))dx+

2αγ

(α + γ)2

∫ t

0

∥∇S
(α+γ)/2
k (Dk)∥2L2(Ω)ds ≤ C(1 + γK2

m).

Consequently,

∥Rγ+1
k (Dk(t))∥L∞(0,T ;L1(Ω)) ≤ (γ + 1)C(1 + γK2

m) =: Cm+1.

which is the desired bound. We deduce from Lemma 6 the uniform bound

∥Tk(Dk)∥γm+1+1

L∞(0,T ;Lγm+1+1(Ω))
≤ C∥Rγ+1

k (Dk)∥L∞(0,T ;L1(Ω)) + C ≤ C(Cm+1 + 1),

and the limit k → ∞ leads to a uniform bound for D in L∞(0, T ;Lγm+1+1(Ω)) for all

γm+1 <
21α2 − 35α + 12

6− 4α
.

We wish to reach γm+1 + 1 = 3/2. Hence, we have to guarantee that

1

2
>

21α2 − 35α + 12

6− 4α
,

which yields the restriction α > (11 +
√
37)/14 = α∗. This finishes the proof. □

The bound of Lemma 14 implies, by Hypothesis (H3) with r = 3, that (∇Vk) is bounded
in L∞(0, T ;W 1,3(Ω)). This helps us to improve the regularity of the densities.

Lemma 15. Let αn, αp, αD > α∗. Then

n, p,D ∈ L∞(0, T ;Lq(Ω)) for all 1 ≤ q < ∞.

Proof. We set α := αD and choose an arbitrary γ > 0. Computing as in the previous proof,
inequality (42) (integrated over time) holds in this situation:

1

γ + 1

∫
Ω

Rγ+1
k (Dk(t))dx+

4αγ

(α + γ)2

∫ t

0

∥∇S
(α+γ)/2
k (Dk)∥2L2(Ω)ds(45)

≤ 1

γ + 1

∫
Ω

Rγ+1
k (Dk(0))dx

+ C

∫ t

0

∥Tk(Dk)
(γ−α+2)/2∥L6(Ω)∥∇Vk∥L3(Ω)∥∇S

(α+γ)/2
k (Dk)∥L2(Ω)ds.

We estimate the norm of Tk(Dk)
(γ−α+2)/2 by using the Gagliardo–Nirenberg inequality,

similarly as in the previous proof:

∥Tk(Dk)
(γ−α+2)/2∥L6(Ω) ≤ C∥S(α+γ)/2

k ∥(γ−α+2)(α+γ)

L6(γ−α+2)/(α+γ)(Ω)
+ C

≤ C
(
∥∇S

(α+γ)/2
k (Dk)∥ηL2(Ω)∥S

(α+γ)/2
k (Dk)∥1−η

L2α/(α+γ)(Ω)

)(γ−α+2)/(α+γ)
+ C,
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where

η =
(α + γ)(3γ − 4α + 6)

(γ − α + 2)(2α + 3γ)
∈ (0, 1).

By the energy estimates of Lemma 8 and relation (27), the L∞(0, T ;L2α/(α+γ)(Ω)) norm of

S
(α+γ)/2
k (Dk) is uniformly bounded. Hence,

∥Tk(Dk)
(γ−α+2)/2∥L6(Ω) ≤ C∥∇S

(α+γ)/2
k (Dk)∥η(γ−α+2)/(α+γ)

L2(Ω) + C.

We insert this estimate into (45) and take into account that the L∞(0, T ;L3(Ω)) norm of
∇Vk is uniformly bounded:

1

γ + 1

∫
Ω

Rγ+1
k (Dk(t))dx+

4αγ

(α + γ)2

∫ t

0

∥∇S
(α+γ)/2
k (Dk)∥2L2(Ω)ds

≤ C + C

∫ t

0

∥∇S
(α+γ)/2
k (Dk)∥sL2(Ω)ds,

where

s = 1 + η
γ − α + 2

α + γ
= 2

3γ − α + 3

2α + 3γ
< 2

holds because of α > 1. Therefore, we can apply the Young inequality ab ≤ εac +
ε−1/(c−1)bc/(c−1) for a, b ≥ 0, ε > 0, c > 1 with the choice b = C, ε = 2αγ/(α + γ)2,
and c = 2/s > 1 to find that

1

γ + 1

∫
Ω

Rγ+1
k (Dk(t))dx+

4αγ

(α + γ)2

∫ t

0

∥∇S
(α+γ)/2
k (Dk)∥2L2(Ω)ds

≤ C +
2αγ

(α + γ)2

∫ t

0

∥∇S
(α+γ)/2
k (Dk)∥2L2(Ω)ds+ C2/(2−s)

(
2αγ

(α + γ)2

)−s/(2−s)

.

The second term on the right-hand side can be absorbed by the left-hand side. Then,
writing (2αγ/(α + γ)2)−1 ≤ C(γ + 1), where C > 0 depends on α,∫

Ω

Rγ+1
k (Dk(t))dx ≤ C(γ + 1) + C(2α+3γ)/(3α−3)C(γ + 1)1+(3γ−α+3)/(3α−3).

Thus, we deduce from Lemma 6 the estimate

∥Tk(Dk)∥L∞(0,T ;Lγ+1(Ω)) ≤ C∥Rγ+1
k (Dk)∥1/(γ+1)

L∞(0,T ;L1(Ω)) + C(46)

≤ C(γ + 1)1/(γ+1) + C(γ + 1)(2α+3γ)/((3α−3)(γ+1)).

This provides a uniform bound forDk and, after the limit k → ∞, forD in L∞(0, T ;Lγ+1(Ω))
for any γ < ∞. Unfortunately, the right-hand side of (46) diverges as γ → ∞, and we
cannot conclude a uniform bound in L∞(Ω). □

Finally, we prove the last statement of Theorem 2.

Lemma 16. Let αn, αp, αD > α∗ and let Hypothesis (H3) hold with r > 3. Then n, p,D ∈
L∞(0, T ;L∞(Ω)).
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Proof. The idea of the proof is to perform an Alikakos-type iteration [1]. We know from
Theorem 2 that n, p,D ∈ L∞(0, T ;Lq(Ω)) for any q < ∞. By Hypothesis (H3) with
r = 3 + η > 3, this implies the bound

(47) ∥V ∥L∞(0,T ;W 1,3+η(Ω)) ≤ C + C∥n− p−D + A∥L∞(0,T ;Lq(Ω)) ≤ C

for q = (9 + 3η)/(6 + η) > 3/2. We shall only show the case of pure Neumann boundary
conditions to simplify the presentation. Then, setting α := αD and using Dγ for some
γ > 0 as a test function in the weak formulation of (3), we find that

1

γ + 1

d

dt
∥D∥γ+1

Lγ+1(Ω) +
4αγ

(α + γ)2
∥∇D(α+γ)/2∥2L2(Ω)(48)

=
2γ

α + γ

∫
Ω

D(γ−α+2)/2∇V · ∇D(α+γ)2dx

≤ 2γ

α + γ
∥D(γ−α+2)/2∥L6−µ(Ω)∥∇V ∥L3+η(Ω)∥∇D(α+γ)/2∥L2(Ω)

≤ C∥D(γ−α+2)/2∥L6−µ(Ω)∥∇D(α+γ)/2∥L2(Ω),

where µ = 4η/(1+η) is determined from Hölder’s inequality via 1/(6−µ)+1/(3+η)+1/2 =
1, and we have used the bound (47) which is uniform in γ and t > 0. We estimate the first
factor on the right-hand side, using (γ − α + 2)/(α + γ) < 1:

∥D(γ−α+2)/2∥L6−µ(Ω) = ∥D(α+γ)/2∥(γ−α+2)/(α+γ)

L(6−µ)(γ−α+2)/(α+γ)(Ω)

≤ C(Ω)∥D(α+γ)/2∥(γ−α+2)/(α+γ)

L6−µ(Ω) ≤ C
(
1 + ∥D(α+γ)/2∥L6−µ(Ω)

)
.

We deduce from the Gagliardo–Nirenberg inequality with θ = (30− 6µ)/(30− 5µ) ∈ (0, 1)
that

∥D(α+γ)/2∥L6−µ(Ω) ≤ C∥∇D(α+γ)/2∥θL2(Ω)∥D(α+γ)/2∥1−θ
L1(Ω + C∥D(α+γ)/2∥L1(Ω).

Thus, the right-hand side of (48) can be bounded as

∥D(γ−α+2)/2∥L6−µ(Ω)∥∇D(α+γ)/2∥L2(Ω)(49)

≤ C
(
1 + ∥∇D(α+γ)/2∥θL2(Ω)∥D(α+γ)/2∥1−θ

L1(Ω + ∥D(α+γ)/2∥L1(Ω)

)
∥∇D(α+γ)/2∥L2(Ω)

≤ C∥∇D(α+γ)/2∥1+θ
L2(Ω)

(
1 + ∥D(α+γ)/2∥1−θ

L1(Ω

)
+ C∥∇D(α+γ)/2∥L2(Ω)∥D(α+γ)/2∥L1(Ω).

Next, we apply Young’s inequality ab ≤ δap + bq/(qpq/pδq/p) with

p =
2

1 + θ
, q =

2

1− θ
, δ =

2αγ

(α + γ)2

to the first term and Young’s inequality ab ≤ δa2 + b2/(4δ) to the second term on the
right-hand side of (49). Observe that p and q depend only on µ (and hence on η) but not
on γ. At this point, we need the better regularity of V in W 1,3+η(Ω) instead in W 1,3(Ω),
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since η = 0 would imply that θ = 1 and then the norm of ∇D in (49) is squared and cannot
generally be absorbed. We need 1 + θ < 2 which requires that η > 0. Then (48) becomes

1

γ + 1

d

dt
∥D∥γ+1

Lγ+1(Ω) +
4αγ

(α + γ)2
∥∇D(α+γ)/2∥2L2(Ω)

≤ 2αγ

(α + γ)2
∥∇D(α+γ)/2∥2L2(Ω) +

C

qpq/p

(
(α + γ)2

2αγ

)q/p(
1 + ∥D(α+γ)/2∥1−θ

L1(Ω

)q
+

2αγ

(α + γ)2
∥∇D(α+γ)/2∥2L2(Ω) + C

(α + γ)2

2αγ
∥D(α+γ)/2∥2L1(Ω).

The first and third term on the right-hand side are absorbed by the left-hand side. Then

1

γ + 1

d

dt
∥D(t)∥γ+1

Lγ+1(Ω) ≤
C

qpq/p

(
(α + γ)2

2αγ

)q/p(
1 + ∥D∥(α+γ)(1−θ)/2

L(α+γ)/2(Ω)

)q
+ C

(
(α + γ)2

2αγ

)2

∥D∥α+γ

L(α+γ)/2(Ω)
.

We deduce from q/p = (1 + θ)/(1 − θ) = (60 − 11µ)/µ that there exists C(α) > 0 such
that for γ ≥ 1,(

(α + γ)2

2αγ

)q/p

≤ (C(α)γ)q/p ≤ C(α, µ)γ(60−11µ)/µ,

(
(α + γ)2

2αγ

)2

≤ C(α)γ2.

Moreover, we have (1− θ)q/2 = 1. This shows that

1

γ + 1

d

dt
∥D∥γ+1

Lγ+1(Ω) ≤ C(α, µ)(γ(60−11µ)/µ + γ2)
(
1 + ∥D∥α+γ

L(α+γ)/2(Ω)

)
.

Consequently, since (60− 11µ)/µ > 2 (which follows from µ = 4η/(1+ η) < 4), integrating
the previous inequality over (0, t) and multiplying it by γ + 1, we obtain

∥D(t)∥γ+1
Lγ+1(Ω) ≤ ∥DI∥γ+1

Lγ+1(Ω) + C(α, µ)γβ

∫ t

0

(
1 + ∥D∥α+γ

L(α+γ)/2(Ω)

)
ds

≤ C(Ω)∥DI∥γ+1
L∞(Ω) + C(T )γβ

(
1 + ∥D∥α+γ

L∞(0,T ;L(α+γ)/2(Ω))

)
,

where β = (60−11µ)/µ+1 = 10(6−µ)/µ ∈ (0,∞). We take the supremum over t ∈ (0, T ):

(50) ∥D∥γ+1
L∞(0,T ;Lγ+1(Ω)) ≤ C∥DI∥γ+1

L∞(Ω) + Cγβ
(
1 + ∥D∥α+γ

L∞(0,T ;L(α+γ)/2(Ω))

)
.

The original Alikakos method is based on halving the exponents (which happens if
α = 1), but since we have α > 1, the argument is slightly different. We set γk := γ+1 and
γk−1 := (γ + α)/2. This gives the recursion γk−1 = (γk − 1 + α)/2, which can be solved
explicitly:

(51) γk = 2k(γ0 + 1− α) + α− 1, k ∈ N.

Setting

bk := ∥D∥γkL∞(0,T ;Lγk (Ω)) + ∥DI∥γkL∞(Ω) + 1,
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we can write (50) as

bk ≤ (C + 1)∥DI∥γkL∞(Ω) + C(γk − 1)β
(
1 + ∥D∥2γk−1

L∞(0,T ;Lγk−1 (Ω))

)
+ 1

≤ Cγβ
k

(
∥DI∥2γk−1

L∞(Ω) + ∥D∥2γk−1

L∞(0,T ;Lγk−1 (Ω))
+ 1

)
≤ Cγβ

k b
2
k−1 ≤ Ckγβ

k b
2
k−1,

using γk < 2γk−1. Since γk ≤ 3βk for sufficiently large k, the recursion inequality becomes

bk ≤ C3kβb2k−1 = Mkb2k−1, where M := 3βC.

We solve this recursion by introducing ck := Mk+2bk:

ck ≤ M2(k+1)b2k−1 = (Mk+1bk−1)
2 = c2k−1,

which gives ck ≤ c2
k

0 and consequently,

bk = M−(k+2)ck ≤ M−(k+2)c2
k

0 = M−(k+2)(M2b0)
2k = M2k+1−(k+2)b2

k

0

We conclude that

∥D∥γkL∞(0,T ;Lγk (Ω)) ≤ bk ≤ M2k+1−(k+2)
(
∥DI∥γ0L∞(Ω) + ∥D∥γ0L∞(0,T ;Lγ0 (Ω)) + 1

)2k
and, taking the γk-th root,

(52) ∥D∥L∞(0,T ;Lγk (Ω)) ≤ M (2k+1−(k+2))/γk
(
∥DI∥γ0L∞(Ω) + ∥D∥γ0L∞(0,T ;Lγ0 (Ω)) + 1

)2k/γk .
The exponents on the right-hand side can be bounded independently of k since, by the
explicit formula (51),

1

γk
(2k+1 − (k + 2)) =

2k+1 − (k + 2)

2k(γ0 + 1− α) + α− 1
≤ 2

γ0 + 1− α
,

2k

γk
=

2k

2k(γ0 + 1− α) + α− 1
≤ 1

γ0 + 1− α
.

Hence, we can pass to the limit k → ∞ in (52), which yields the desired bound for D in
L∞(0, T ;L∞(Ω)). □

4. Weak–strong uniqueness

We prove Theorem 3. According to [28, Lemma 2.4], for 0 ≤ m ≤ v̄ ≤ M , there exist
constants R > 0 (depending on m and M) and C1, C2 > 0 (depending on R, m, and M)
such that

hv(v|v̄) ≥

{
C1|v − v̄|2 if 0 < v ≤ R, m ≤ v̄ ≤ M,

C2|v − v̄|αv if v > R, m ≤ v̄ ≤ M,

recalling definition (16) of the relative entropy density. Choosing 0 ≤ v ≤ M and m ≤ v̄ ≤
M , this implies that

(53) hv(v|v̄) ≥ C|v − v̄|2, where C = max{C1, C2(2M)αv−2}.
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We compute the time derivative of the relative free energy, defined in (15):

d

dt
H[n, p,D|n̄, p̄, D̄] =

∑
v=n,p,D

(
⟨∂tv, h′

v(v)− h′
v(v̄)⟩ − ⟨∂tv̄, h′′(v̄)(v − v̄)⟩

)
(54)

− λ2⟨∂t∆(V − V̄ ), V − V̄ ⟩

=
∑

v=n,p,D

(
⟨∂tv, h′

v(v)− h′
v(v̄)− V + V̄ ⟩ − ⟨∂tv̄, h′′

v(v̄)(v − v̄) + V − V̄ ⟩
)
,

recalling definition (11) of the internal energies hv. At this point, we need the property
h′
v(v) ∈ L2(0, T ;H1(Ω)) for v = n, p,D, which holds thanks to Lemma 13. We consider the

case v = n. Inserting the equations ∂tn = div(n∇(h′
n(n)− V )) and ∂tn̄ = div(n̄∇(h′

n(n̄)−
V̄ )) and integrating by parts gives

⟨∂tn, h′
n(n)− h′

n(n̄)− V + V̄ ⟩ − ⟨∂tn̄, h′′
n(n̄)(n− n̄) + V − V̄ ⟩(55)

= −
∫
Ω

n∇(h′
n(n)− V ) · ∇

(
(h′

n(n)− V )− (h′
n(n̄)− V̄ )

)
dx

−
∫
Ω

n̄∇(h′
n(n̄)− V̄ ) · ∇

(
h′′
n(n̄)(n− n̄) + V − V̄

)
dx

= −
∫
Ω

n
∣∣∇(

(h′
n(n)− V )− (h′

n(n̄)− V̄ )
)∣∣2dx

−
∫
Ω

n∇(h′
n(n̄)− V̄ ) · ∇

(
(h′

n(n)− V )− (h′
n(n̄)− V̄ )

)
dx

−
∫
Ω

n̄∇(h′
n(n̄)− V̄ ) · ∇

(
h′′
n(n̄)(n− n̄) + V − V̄

)
dxv

= −
∫
Ω

n
∣∣∇(

(h′
n(n)− V )− (h′

n(n̄)− V̄ )
)∣∣2dx−

∫
Ω

∇(h′
n(n̄)− V̄ )

×
[
n∇(h′

n(n)− h′
n(n̄)) + n̄∇(h′′

n(n̄)(n− n̄))− (n− n̄)∇(V − V̄ )
]
dx.

A computation shows that

n∇(h′
n(n)− h′

n(n̄)) + n̄∇(h′′
n(n̄)(n− n̄)) = (αn − 1)∇hn(n|n̄).

This identity uses the fact that hn is given by a power law; it may not hold for general
(convex) functions. Taking into account that the first term on the right-hand side of (55)
is nonpositive, we obtain, after integrating by parts (observe that hn(n|n̄) = 0 on ΓDir) and
using Young’s inequality,

⟨∂tn, h′
n(n)− h′

n(n̄)− V + V̄ ⟩ − ⟨∂tn̄, h′′
n(n̄)(n− n̄) + V − V̄ ⟩

≤ −(αn − 1)

∫
Ω

∇(h′
n(n̄)− V̄ ) · ∇hn(n|n̄)dx

+

∫
Ω

∇(h′
n(n̄)− V̄ ) · ∇(V − V̄ )(n− n̄)dx
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≤ (αn − 1)∥∆(h′
n(n̄)− V̄ )∥L∞(Ω)

∫
Ω

hn(n|n̄)dx

+ ∥∇(h′
n(n̄)− V̄ )∥L∞(Ω)∥∇(V − V̄ )∥L2(Ω)∥n− n̄∥L2(Ω).

By assumption, h′
n(n̄)− V̄ is bounded in L∞(0, T ;W 2,∞(Ω)). Therefore,

⟨∂tn, h′
n(n)− h′

n(n̄)− V + V̄ ⟩ − ⟨∂tn̄, h′′
n(n̄)(n− n̄) + V − V̄ ⟩

≤ C

∫
Ω

hn(n|n̄)dx+ C∥∇(V − V̄ )∥2L2(Ω) + C∥n− n̄∥2L2(Ω).

We deduce from inequality (53) that the last term is bounded according to

∥n− n̄∥2L2(Ω) ≤
∫
Ω

hn(n|n̄)dx.

Similar estimates are derived for p and D. Summarizing, we conclude from (54) that

d

dt
H[n, p,D|n̄, p̄, D̄] ≤ C

∫
Ω

H[n, p,D|n̄, p̄, D̄]dx.

Gronwall’s inequality and the fact that H(n, p,D|n̄, p̄, D̄) = 0 at t = 0 finish the proof.
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