Theory of Pontryagin
spaces

Geometry and Operators

Michael Kaltenback Harald Woracek






Contents

1 Some linear algebra 1
1.1 ScalarProductSpaces . . . . . . ... ... ... ... . ...... 1
1.2 Orthogonality . . . . . .. ... ... .. ... ... .. .. ..... 8
1.3 Orthocomplemented Subspaces . . . . . .. ... ... ........ 16
1.4 Definiteness Properties . . . . . . ... ... ... ... ....... 21
1.5 Angular Operators . . . . . .. ... .. ... ... .. ....... 25
1.6 Index of Positivity and Negativity . . . . . . .. ... .. ... ... 28
1.7 Neutral Subspaces. . . . . . . . . .. ... ... 36

2 Scalar Product Spaces with Topology 45
2.1 Basic Consequences of Continuity . . . . . ... ... ........ 45
22 GramSpaces . . . . ... 49
23 KreinSpaces . . .. ... o e 56
24 Pontryagin Spaces . . . . . . .. ..o e 63
2.5 Almost Pontryagin Spaces . . . . . ... .. ... ... ... 70
2.6 Completions . . . . . . .. .. e 80
2.7 *Almost Pontryagin Space Completions . . . . . ... .. ... ... 86
2.8 To become part of the Appendix . . .. ... ... .......... 93

3 Linear Relations 95
3.1 Operators as linear relations . . . . . . ... ... .. ........ 95
3.2 Transformations of linear Relations . . . . . ... ... ....... 98
3.3 Mobius-Calculus for Linear Relations . . . . ... ... ... .... 101
3.4 Linear Relations on normed Spaces . . . . . .. ... ........ 105
3.5 Spectrum, resolvent set and points of regulartype . . . . . .. .. .. 106
3.6 Functional Calculus for rational functions . . . . ... .. ... ... 114
3.7 Finite dimensional perturbations of linear relations . . . . . . . . .. 117
3.8 Adjointlinear Relations . . . . ... ... ... ... ......... 122
3.9 Special types of linear relations and their connection . . . .. .. .. 127
3.10 The Potapov-Ginzburg transform . . . . . . .. ... ... ... ... 131
3.11 More on contractiverelations . . . . . . . ... ... ... ... ... 133
3.12 Moving linear relations . . . . .. . ... .. ... ... ... ... 139
3.13 Definitizable linear relations . . . . . . . ... ... ... ... 143
3.14 Functional Calculus for seladjoint definitizable relations . . . . . . . 147



CONTENTS

4 Reproducing kernel spaces
4.1 Kernel functions
4.2 Constructions with hermitian kernels
4.3 Analytic kernels
4.4 Some classes of kernels associated with analytic functions

Analytic mappings between general disks

4.4.2 Hilbert space valued Nevanlinna functions
4.43 De Branges’ spaces of entire functions
4.4.4 Entire J-inner matrix functions
4.5 *Reproducing kernel almost Pontryagin spaces

4.4.1

Bibliography

Index



CONTENTS

NOTATION. ..

Before we start the exposition, let us fix some standard notation.

We denote by Z the set of integer numbers, and by N the set of positive integers,

Z:={..,-1,0,1,2,...}), N:={1,2,3,...}.

We denote by R and by C the fields of real- and complex, respectively, numbers.

We denote by C", n € N, the set of all n-vectors with complex entries. We write an
n-vector as a column of n entries.

We denote by C™", n,m € Ny, the set of all nxm-matrices with complex entries (n
rows and m columns).

For A = (aij)i=1,.n € C™", we denote by A" € C"™" and A* € C"™" the transpose

.....

j=1,...m
and conjugate transpose, respectively, of A. That is,

A*z(%‘j)i:l ,,,,, s ﬂij::y_ﬁ’ i=17'~-7m’.]:17 ,n
Jj=1l,...n

For a subspace M of a linear space V, we denote by span M the linear span of M,
i.e., the smallest linear subspace of V which contains M. If £ and M are linear
subspaces of V such that £ N M = {0} then we denote the direct sum of L and M as

LiM.
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‘alarProductSpaces ‘

Chapter 1

Some linear algebra

Preliminary version Tue 7 Jan 2014 10:33

We lay out the algebraic basics of indefinite scalar product spaces. Topics include:
orthocomplemented subspaces, angular operators, semidefinite subspaces, index
of positivity and negativity, skewly linked neutral subspaces. Much of the material
is standard linear algebra; the experienced reader may skip this chapter and
return when necessary.

§1. Scalar product spaces 1

§2. Orthogonality 8

§2. Orthocomplemented subspaces 16
§4. Definiteness properties 21
§5. Angular Operators 25
§6. Index of positivity and negativity 28
§7. Neutral subspaces 36

1.1 Scalar Product Spaces

Unless explicitly stated, all linear spaces are understood over the scalar field C of
complex numbers.

1.1.1 Definition. Let V be a linear space, and let [.,.] : ¥V XV — C. Wecall [.,.] a
scalar product on V, if

(D) [.,.11s linear in the first argument, i.e.,

lax +By,z]l = alx,z] + Bly,zl, xy,z€V, a,f€C.

2) [.,.]118 hermitian, i.c.,

[yl =[x, xyeV.
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We call a tuple (V, [., .]) a scalar product space, if V is a linear space and [.,.] is a
scalar product on V. ¢

When no confusion may occur, we will often drop explicit notation of the scalar
product [.,.] in (V, [.,.]) and shortly speak of a scalar product space V.

Let us point out that in contrast to most of Functional Analysis’ literature we do not
assume that [x, x] > 0, x € V'\ {0}.

Simple manipulations with the axioms show that each scalar product satisfies
[x,0]=[0,x]=0, xeV.
and is conjugate linear in the second argument, i.e.,
[z,ax + Byl = alz, x] +Blz,y], xy,z€V, a,feC.
Moreover, the polar identity

[x,y] =[x +y,x+y] =[x -y, x =yl +ilx +iy,x +iy] —i[x — iy, x—iy], xyeV,

=33 K[tk x+iky]
(1.1.1)
holds true.

1.1.2 Remark. The polar identity, (1.1.1), also holds true for all sesquilinear forms,
i.e., mappings {.,.) : ¥V x V — C which are linear in the first and conjugate linear in
the second argument.

In fact, [.,.] being a scalar products means exactly that [.,.] is a hermitian sesquilinear
form. Hermitian sesquilinear forms [.,.] always satisfy [x, x] € R, x € V. Conversely,
if [.,.] is a sesquilinear form satisfying [x, x] € R, x € V, then it follows from the

polar identity, (1.1.1), that [.,.] is hermitian. O

As a first example we consider finite dimensional spaces.

1.1.3 Example. Let m € N, and consider the space C". Moreover, let a matrix
G=(yi j);”jzl e C™ with G = G* be given. Here G* denotes the conjugate transpose
of the matrix G. Then

a Bi Biy\* a mo a Bi
M=) e ()= 2 (M) e 0

constitutes a scalar product on C™”, because linearity in the first argument is obvious
and the assumption that G = G* yields that [x,y] = [y, x], x,y € C".

Conversely, any scalar product [.,.] on C” can be obtained in this way. To see this,
denote by ey, ..., e, the canonical basis vectors, i.e., e; := (&_/)’}’:1. Here 0 stands
for the Kronecker-Delta, i.e., 6y; = 1 if k = j and O otherwise. Set

yij:z [ej7e[]7 iyjzl,...,m,
The matrix G := (y;))}',_, then satisfies G = G*, and

[(m )(Zl)] = [zm:ajej,g:ﬂie;] = Z]Zn;][?l lej,eil-aj = (ﬁ;I )*G (m ) )

U j=1 B ¥y
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The matrix G is also called the Gram matrix of [., .].

Denote by (., .) the euclidean scalar product on C™, i.e.,
a B m _
(()»()):Za’lﬂl
U B i=1

Then the relation (1.1.2) can be written in the form

(=60

Thus we may say that the Gram matrix of [., .] realizes the switch from (.,.) to [., .].

o

Our second example is similarly straightforward, but not anymore finite dimensional.
1.1.4 Example. For a nonempty set M we denote by ¥ (M) the linear space of all
finitely supported complex valued functions on M, i.e.,

F(M):={f eC” : {{ € M: f({) # O} is finite}
Let K : M x M — C be a function which satisfies

K,m=Kmd, LneM. (1.1.3)

We set L

[f.81:= D 3@ K& m-fa), f.geF(M). (114) [1.20

¢neM

This expression is well-defined since the sum on the right side contains only finitely

many nonzero summands. It is straightforward to check that [., .] is a scalar product

on ¥ (M). Here linearity in the first argument is obvious and (1.1.3) ensures that [, .]
is hermitian.

We refer to a function K with (1.1.3) as a hermitian kernel on M, and to (¥ (M), [.,.])
where [.,.] is as in (1.1.4) as the scalar product space generated by the kernel K. Let
us notice explicitly that the functions 6 defined for each & € M as

65(4):{(1): e LeM, (1.1.5) [1.50
form a basis of ¥ (M).

This example of scalar product spaces includes the above Example 1.1.3. To see this,
assume a matrix G = (y; j);”jzl with G = G* is given. For

M:={1,....m}, K(n):=vym {,neEM,

the space ¥ (M) is nothing else but C” and the scalar product (1.1.4) coincides with
the scalar product defined by (1.1.2). The basis {dy, ..., 6,,} of F (M) is nothing but
the canonical basis of C™. ¢

1.1.5 Example. Let D C R” be an open set, and denote by C*°(D) the linear space of
all complex valued, infinitely often differentiable functions. Let & be a linear subspace
of C*(D), which is closed under complex conjugation and multiplication.
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If ¢ : & — C s a linear functional such that ¢(f) € R for all real valued f from &, then

[f.8l:=o(f-8),

constitutes a scalar product on &; see Remark 1.1.2.

For example if D = R, & = C)(R) is the space of functions in C*(R) with compact
support, and ¢(f) = ff(x) dx, then (&, [, .]) is a dense subspace of L2(R). o

1.1.6 Definition. Let (V,[.,.]) and (‘W, [.,.]) be two scalar product spaces, and let
¢V — W. Then we call ¢ isometric, if

Tox, oyl = [x,¥], xyeV.

If o : ¥V — W is isometric, we also call ¢ an isometry of V into ‘W. 0

Note that we do not include the requirement that ¢ is linear into the definition of an
isometry.

Let us exhibit an interesting example of an isometric map.

1.1.7 Example. Let r be a rational function with real coefficients, and denote by
M ¢ C the set of all points where r is analytic. Then M is symmetric with respect to
the real axis, i.e., { € M if and only if { € M, and

r@Q)=r(), (eM.
Moreover, C \ M is finite. Consider the function K : M X M — C defined as

ra=r@) =
——==, {#7
K. := { ot Z
rm ., n=¢
Clearly, K is a hermitian kernel, i.e., satisfies K({,n) = K(n,{), {,n € M. Hence, we
may consider the scalar product space (¥ (M), [.,.]) generated by K. We refer to this
kernel K as the Nevanlinna kernel of the function r.

Choose relatively prime polynomials p and g with real coefficients, such that r = p

Then M = {{ € C: g({) # 0}. The polynomial p(1)q({) — p({)q(n) in the two Varlables
{ and 7 vanishes whenever ¢ = 1. Hence, it is divisible by (17 — ¢) in the ring of all
polynomials in two variables with real coefficients and we can write

(m := max{deg p, deg q})

m—1

pmq(d) — p(OHq(n)
y Z]Z;)g 1177

L{,n) = (1.1.6)

with some coeflicients y;; € R. Since L({,n) = L(n,{), we have y;; = v;i,
i,j=0,. — 1. Therefore, we may consider the scalar product space (C™, [[.,.1)
defined as in Example 1.1.3 using the matrix G := (y;;)""

We define the linear mapping 6 : (M) — C" as

z]O

af;:(z J;E—ggf)gl, feFM). (1.1.7)
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This expression is well-defined since the sums on the right side contain only finitely
many nonzero summands, and since g({) # 0, { € M. Clearly, 6 is linear. We are
going to check that 6 is isometric. To this end, let us show that

1 _
K, m)==——L(n, {neM. (1.1.8)
q(Dq(n)

For ) #  this is obvious. Both functions K and L are continuous in ¢ for each fixed 7.
Hence the relation (1.1.8) extends by continuity to all {,n7 € M. Using (1.1.8), we
compute (here [6f]; denotes the i-th component of the vector 6f)

[f.e]= > 2@-K&m-fm= ) (8(5)) LE.m)- (f(n))

L meM e q) q(m)
D)7y (L)% 5 (ED )
:;Ml, g q0) L (q<n>)‘;)”’ MZIM(q@)"V)(q(n>”j)‘

m—1

[gg]z Yij * Qf]] = [[Qf,gg]], f»g € 7:(M)»

i,j=0

i.e., 0 is isometric.

As a conclusion, for a rational function r, the scalar product space generated by the
Nevanlinna kernel of r can be taken isometrically into a finite dimensional space. ¢

Next, we provide some standard constructions which can be carried out with scalar
product spaces. Verification of these facts is straightforward; we leave the details to
the reader.

1.1.8 Proposition. The following constructions can be carried out within the class of
scalar product spaces.

(1) Let (V,[.,.]) be a scalar product space, and let L be a linear subspace of V.
Then (L, [., .llzz) is a scalar product space, where L is endowed with the natural
linear operations inherited from V and where [., ]| s«r denotes the restricton of
[.,.] to vectors from L.

The set-theoretic inclusion map of L into V is linear and isometric.
(2) Foreach je{l,...,n}let (V},[.,.1)) be a scalar product space, and denote by
[.,.] the sum scalar product on ]—[;le Vi ie,

n

(15 3260, 01 syw)] = D Ly

/=

(i) Oy € [ V5 (119)
j=1

Then (H;Zl V;,[.,.]) is a scalar product space, where H;Zl V, is endowed with
the natural linear operations defined in a componentwise manner.

Foreach je{l,...,n}the embedding; : V; — ]—I_';:] V; defined as
tix:=(0,...,x,...,0), xeV;,

1
Jj-th place

I.23
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I.8postps.

is linear and isometric.

() Let (V,[.,.]) be a scalar product space, and let N be a linear subspace of V with
[x,y]=0, xe€V,yeN.
Then a scalar product [[.,.] on V/ N is well-defined by
[x+N,y+ N1 :=[x,y], x,yeV. (1.1.10)

The canonical projectionn : V — V[N, x = x+ N, is linear and isometric.
Here V| N is endowed with the natural linear operations defined via
representants. We refer to [[.,.] as the factor scalar product on V/ xs.

(4) Let“V be a linear space, and let (W, [., .]) be a scalar product space. Moreover,
let ¢ : V — W be a linear map, and set

[x,y] := [ox,oy], x,yeV.

Then [.,.] is a scalar product on V, and ¢ is a linear and isometric map of
V,[.,.D) into (W, [.,.]).

The scalar product [ ., .] is the unique scalar product on V such that ¢ becomes
isometric. We speak of [.,.] as the scalar product defined by requiring isometry of
®.

a

1.1.9 Example. A rather elementary way to obtain isometries is to start with a scalar
product space (V, [., .]). Take any indexed subset {z; : i € I} of vectors from V and
define y : F(I) = V by
uf = f) i,
i€l
which is possible since f(i) # O only for finitely many i € I. By the last assertion in
Proposition 1.1.8 this obviously linear mapping induces a scalar product [.,.] on
F(I). From
Lf.gl = [wf.wel = > 8@ - [z a1 - f()

ijel

we see that by defining K(i, j) := [z}, z;] = [z, z;] the scalar product [., .] coincides
with the one obtained from K as in Example 1.1.4.

Note here, that for I = {1,...,m} and {z1,...,z,} € V we already saw, that for the
initial space of our mapping ¢ we have ¥ (/) = C" and
()7L, BT = (Glap)iiy, BIL,), where G = (K(, /)",y = [z, 2D,y 0

Taking an indexed basis {z; : i € I} of V from Example 1.1.9 we immediately obtain

1.1.10 Corollary. Every scalar product space (V,[.,.]) is isometric, isomorphic to a
space (F (1), ., .1) where [f, gll = X; je1 (D) - K(, J) - f(j) for a certain index set I and
a certain hermitian kernel K on I.

Let us consider again a scalar product space generated by a Nevanlinna kernel as in
Example 1.1.7. But this time we do not use a rational function.
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1.1.11 Example. Let u be a finite real Borel measure on R, and consider the function

00 = [ T ceChsupplal
R I—¢

Here we denote by |u| the total variation of i, and by supp || its support which is the

smallest closed subset of R whose complement is a |u|-zero set. This function is

analytic on C \ supp |u|. To see this, use the bounded convergence theorem to show

that g is continuous and Fubini’s theorem to show that the integral along each

triangular path vanishes. Clearly, the function g satisfies ¢(¢) = g(£), £ € C \ supp |ul.

Let K(Z,n), {,n € C\ supp |u|, be the Nevanlinna kernel of ¢:

q(n)—@ +7
K@,n)::{,n—f e
qgm ., n=¢

Under an additional hypothesis, we can obtain some knowledge on the scalar product
space 7 (C \ supp |u|) generated by K. Namely, let u; and u— be the finite positive
measures in the Jordan decomposition u = u, — u— of y, and assume that

supp i+ Nsuppu— = 0.

Denote by L?(u,) the usual L?-space associated with the measure ., that is the space
of all (equivalence classes of) square integrable functions endowed with the positive

definite scalar product [f, g]+ := (fR fg d,u+)%. Denote by L?(—_) the linear space
L?(u_) endowed with the negative definite scalar product [£, g]_ := —( fR fg d,u_)%.
Now choose continuous functions y, Y- : R — [0, 1] with y; + y— = 1, such that

X+|Supp[l+ =1, X+|supp/1_ =0, X*lsuppy,, =0, X*|suppp_ =1,

and define a map ¢ from (M) into L*(u,) x L*(u_) by linearity and

¢((5f)_( MLy (0 Yy (t)) £ C\ suppll, (1.1.11)

where the basis elements 6¢, £ € M, are as in (1.1.5). In order to show that ¢ is
isometric, by linearity it suffices to check the isometry property for these basis vectors
0¢. Given &,n € C \ supp |u| with ¢ # 17 we compute

~ _a@®-q0 _ 1 L+ 1”’7
[6§’6'7] —K(Tﬁf) - f_ﬁ f( t_é-' )

f 1+ f 1+7 f 1+7
o hTae ™ Limae
= f L0 B duy + f Ly (- Ly () du- =

[ XD, ﬁ)m(f)L [ HE-0. 5 (t)]_'

7[,7

du =

To settle also the case & = 77, we pass to the limit & — 7 in this relation. The leftmost
term tends to [65, 6,1 by analyticity of g. The rightmost sum tends to

[0, B 0]+ [ Ee 00|

by bounded convergence. Alltogether, we conclude that indeed ¢ is isometric. ¢
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1.2 Orthogonality

section--Orthogonality

orthogo. 1.2.1 Definition. Let (V,[.,.]) be a scalar product space.
(1) We call two elements x,y € V orthogonal w.r.t. ., .], for short [., .]-orthogonal, if
[x,y] =0,
and write x[ L]y to express this fact.
(2) We call two subsets M, N C V orthogonal w.r.t. [.,.] or shortly [.,.]-orthogonal, if
x[L]ly, xeM,yeN,
and write M[L]N to express this fact.
(3) For a subset M C V we call
MY = {x eV :x[L]yforally e M}
the orthogonal complement of M in (V, [.,.]).
(4) We call
Yl = Yl = (x eV x[L]yforall y € V)
the isotropic part of V .

(5) The scalar product space (V, [.,.]) is called nondegenerated if ‘V°! = {0}, and
degenerated otherwise. We set

indy(V, [.,.]) := dimV!°! € Ny U {o0},

and call this number the index of nullity of V. Here, and always when talk about
dimensions, unless the contrary is explicitly mentioned, we do not distinguish
different cardinalities of co.

As usual, when no confusion is possible we sometimes drop explit notation of the
scalar product [.,.] under consideration. o

Concerning orthogonal complements, one word of caution is in order: As we see from
the definition, the orthogonal complement M'*! must always be understood w.r.t. a
given scalar product space, and not only w.r.t. the scalar product [., .]. In fact, as M
could be a subset of different scalar product spaces, one should be specific about the
base space. However, to avoid cumbersome notation like “M*@L.0” except from the
following remark we do not indicate the base space explicitly.

subspaceortho. ‘ 1.2.2 Remark. Let L be a linear subspace of a scalar product space (V, [.,.]). For a
subset M of L the orthogonal complement of M with respect to the scalar product
space (L, [., ]l s) is obviously M N £, hence,

Mt = pltn L.

In particular, the isotropic part £1°) of £, which is understood as the isotropic part of
the scalar product space (L, [., .]|z), is given by

- Lo, a2
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where the orthogonal complement on the right is understood w.r.t. the base space V.
Obviously,
LN el ¢ L[O] .

The notation (non-)degenerated and indy L is defined correspondingly viewing £ as a
scalar product space. 1

1.2.3 Example. Let (V,[.,.]) be a scalar product space, and consider any linear
subspace L with
LC{xeV:[x,x]=0}.

According to the polar identity (1.1.1) we obtain

3
[x,y] = Zik[x+iky,x+iky] =0, x,ye L,
k=0

i.e., LI°! = £. Subspaces with this property are called neutral subspaces. Finally, note
that in general the subset {x € V : [x, x] = 0} is not a linear subspace. ¢

The verification of the following statement is immediate; we leave the details to the
reader.

1.2.4 Lemma. Let (V,[.,.]) be a scalar product space.
(1) Let M C V. Then M is a linear subspace of 'V with (span M) = MW and
lel C ML = (M + rvloJ)[J-J .

Here “span” stands for “linear span”, i.e., span M is the smallest linear subspace
which contains M. Moreover,

M+ Ve (L

(2) Let M,N C V. If M C N, then N1 ¢ M,
(B) Let M; CV, i€l Then
()™ = (span ) = (a2,
iel iel iel

(4) For a subspace M of V and a vector x € V \ M the
(span{x} + MY = {(x}I] 0 MW of MW either coincides with MM or
constitutes a hyperplane in MW,

a

Let L, ... L, be linear subspaces of a scalar product space V. If L;[L]1L; fori # j,
then we will write

Li[+].. . [+]L,

for the sum L + ...+ £, and speak of an orthogonal sum. If in addition
LN L;={0}fori # j, then we will write

Lil+].. . [+1L

and speak of an orthogonal and direct sum.
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1.2.5 Remark. We often tacitly identify direct and orthogonal sums and direct
products. Let us make explicit that this is justified. If £,. .., L, are linear subspaces
of a scalar product space V with

LilL1L;, LinL;=1{0}, i#],

Then the map
) L = Lil+]. [+H]L
£ (x1;

Xy B X+ Xy
is linear, bijective, and isometric when H;‘:l L; is endowed with the sum scalar
product.

Conversely, if Vy,...,V, are scalar product spaces, then ¢;(V)),..., ,(V,) are
pairwise orthogonal subspace of [}, V; with pairwise trivial intersection, and (see
Proposition 1.1.8)

u(VolH . [Fen(V) = | | Vi

n
i=1

1.2.6 Lemma. Foreach j € {1,...,n}let (V;,[.,.1;) be a scalar product space, and
consider the space ]—I:le V; endowed with the sum scalar product. For subsets
M;cV;, j=1,...,n we have

() = .
j=1 J=1
In particular,

( 1_[ V) = 1_[ Vi
j=1 j=1

Proof. Since the orthogonal complement of a subset coincides with the orthogonal
complement of the linear span of this subset, we see from

span([1_; M;) = [1’, span(M;), that we may assume the subsets M to be linear
subspaces. In particular, 0 € M, for j = 1,...,n. For (xi;...;x,) € [1, V; we then
have

n

i e ([T & vou e [ [ M Yl =0 o
i =1

i i=1

Vie(l,...,nVy; € M;: [x,3]i =0 & Vie(l,...,n}: x; € M
a

1.2.7 Remark. Either direcktly or as an immediate consequence of Lemma 1.2.6 in
combination with Remark 1.2.5 we see that for any linear subspace L of a scalar
product space V with V = L[+]V!°! the scalar product space £ is nondegenerated.
More general, for a nondegnerated subspace M and a subspace L of V with £ 2 M
and V = L[+]V" we obtain from Lemma 1.2.6 applied to the subspace M x {0} of
L x V' in combination with Remark 1.2.5

M = (M A L[4V (1.2.2)
o
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orthissubspendl. 1.2.8 Lemma. Let (V,[.,.]) be a nondegenerated scalar product space with

dim V < oo and let M be a linear subspace of V. Then
dim M + dim M™) = dimV

and (MUY = M. If in addition M is nondegenerated, then

V= M[F M, (1.2.3) ‘ firstorthocompl

Proof. For M = {0} the assertion is clear, and for M = <V it follows from our
assumption that V! = {0}.

For a nontrivial subspace M of dimension 0 < k < dimV =: mlet{a,,...,a,} bea
basis of V such that {ay, ..., a} is a basis of M. By Lemma 1.2.4 we have

VYVof{a)' o 2ar,..., a2 2Hay,. .., ant = {0},

where {a; : i < j+ 1}I* C {a; : i < j}*! with codimension at most one. If this
codimension were zero at least once in this chain, than {0} would have codimension
strictly less than m in V, which contradicts dim V =: m. Thus, M = {ay, ..., a; )
has codimension k in V, i.e., dimV — dim MM = k = dim M. (M"Y = M now
follows from the general fact that (M*1)*! > M and from a comparison of
dimensions. a

direktsumpost. ‘ 1.2.9 Remark. 1If (V,[.,.]) is finite dimensional and not necessarily nondegenerated
and if M is a nondegnerated subspace, then we can choose a subspace £ of V with
L2 MandV = L[+]V"). Since £ is nondegenerated, (1.2.3) yields
L = M[+](M™*1 N £). Together with (1.2.2) we see that also here

V= MMM,

1.2.10 Definition. Let (V,[.,.]) be a scalar product space with m := dimV < co.
Then a basis {by, ..., by} of V satisfying

[bi,bj1=0, i, jef{l,....myi#j, [b,b]ef{0,+1,-1},i=1,....,m, (1.2.4) I.32
is called an orthonormal basis of V. ¢

In the situation of Definition 1.2.10, we can identity V with span{b;} X - - - X span{b,,};
cf. Remark 1.2.5. Thus, we get from Lemma 1.2.6

V =span{b; : i € {1,...,m},[b;,b;] # O}[+]span{b; : i € {1,...,m},[b;,b;] =0} .

R

In finite dimensional scalar product spaces, one can always choose an orthonormal
basis.

I.15. 1.2.11 Lemma. Let (V,[.,.]) be a scalar product space with m := dimV < co. Then
there exists an orthonormal basis {by, ..., b,} of V, i.e., a basis satisfying (1.2.4).
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Proof. If VI°! = V, then any linear basis of V constitutes an orthonormal basis. The
case VI°l # V will be settled by induction on m. For m = 1 take a nonzero vector
1

x € V and define b; := T From [b}, b;] = sgn[x, x] we see that {b;} is an

orthonormal basis.

Assume the assertion is true for all scalar product spaces with dimension less or equal
m. Let V # VI°! be a scalar product space of dimension m + 1. If V! # {0}, we can
write V = M[+]V! for a proper linear subspace M of V with 0 < dim M < m. By
induction hypothesis we find an orthonormal basis of M. Joining this basis with any
algebraic basis of Vel one easily checks, that the resulting basis is orthonormal.

It remains to deal with a nondegenerated scalar product space V of dimension m + 1.
By the polar identity (1.1.1) there must be an x € V satisfying [x, x] # O; cf.
1

Example 1.2.3. The vector b; := Tt then satisfies [0y, b1] = sgn[x, x]. In

particular, span{b;} is nondegenerated. Due to (1.2.3) we have V = span{b; }[{L]b[l“.
By induction hypothesis we find an orthonormal basis of blllJ which in union with b;
gives an orthonormal basis of V. a

From a computational point of view, it is useful to know how to construct an
orthonormal basis. The following algorithm is a variant of the Gram-Schmidt
orthogonalisation process.

1.2.12 Remark. Let (V,[.,.]) be a scalar product space with m := dim“V < oo and let
{ai,...,ax} be linearly independent vectors in V such that such that
span{ai,...,a;} ={0}, j=1,...,k. By Remark 1.2.9 we have

YV = spanfay, ..., a)[+]span{ay, ..., ),
where span{ay, . . ., a;}*) contains VI°!. If span{a,, ..., a )] # VI, then, by the
polar identity (1.1.1), we find an ay, € span{ay, ..., a}"*! satisfying [ag, 1, ar1] # 0;
cf. Example 1.2.3. Consequently, span{aj, ..., ai, ar+1} is not degenerated. Again
employing Remark 1.2.9 and the polar identity either span{ay, . . ., a, ags 1} = VI
or we find an a4, € span{ay, . .., axs1 M with [ags0, arsa] # 0.
We continue this procedure until spanfay, ..., ax, . .., )" = V. Then {ay,...,a;)

are linearly independent vectors in “V such that such that
span{ay,...,a;} ={0}, j=1,...,land

V = span{ay, .. Lal[+1ve.

Now we are going to provide an algorithm for the construction of an orthonormal
basis {by, ..., b,} such that

span{ai,...,a;} = span{by,...,b;}, j=1,...,1. (1.2.6)
For by, 1, ..., b, we simply take any algebraic basis of VI°l,
Define b; := ———a; which is possible by span{a;}!°! = {0}. According to (1.2.3)

llar.all
for the orthogonal complement b[lu N spanfay, a,} of b; within the nondegenerated

span{ay, a} we have
span{ar, a2} = (b} N span{ay, ax})[+] span(b; } .

The first space on the right hand side is nondegenerated and spanned by

Xy :=as — [az, b1] - [b1, b1]b;. Therefore, we can define b, := T 1 :
X2,X2

T
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Continuing in this way we obtain a basis {by, ..., b;} of span{ay, ..., a;} satisfying
(1.2.4). If j = I, we are finished. Otherwise we have again

spanfai, ..., a1} = (b, ..., b Nspanfay, ..., a1 D[+]spaniby,....b;}.
The first space on the right hand side is nondegenerated and spanned by

J
Xjgl 1= Ajel — Z[aj+l7br] - (b, br1by

r=1

since [xj.1,b,] = [ajs1,b,]1 = [aje1, D01 - by, b/1[Dr, b, ] = 0. Set by = ﬁxj#L
Xjr1sXj+1

Repeating this process until j = I, we end up with an orthonormal basis of V
satisfying (1.2.6). o

There is an alternativ approach to construct an orthonormal basis using the Spectral

Theorem for selfadjoint matrices.
1.2.13 Example. Choose a linear bijection ¢ of C™ onto V, and define a scalar Reference

product [.,.] on C” by requiring isometry of y; see Example 1.1.9. Let G € C"™" be
the Gram matrix of [[.,.], so that (we denote by (., .) the euclidean scalar product on
c™)

) = (G B @)y, B €T

@y

Bi
(a'j)j 17%])71]] (ﬁ ) G (

Clearly, an element a € C™ belongs to the isotropic part of (C™, [., .])) if and only if
Ga = 0. Since y is bijective and isometric,

dimker G = dim (C™M! = dim V! = m —n.

Since G = G*, there exists a basis ay, . . ., a, consisting of eigenvectors of G with
corresponding eigenvalues 4y, ..., 4, € R, i.e.,
C™ = span{ay,...,an,}, Gap=Za, k=1,...,m,

which are pairwise (., .)-orthogonal and normalized by (ax, ax) = 1. We choose the

enumeration such that A;,...,4, # Oand 4,1, ..., 4, = 0. Now we set
1 —
by o= Wt[/ak, k=1,...,n
vay , k=n+1,...,m

Then span{b,,1,...,b,} = V'°, and

1

mr

1
= k( Ag, ])

Vit i

[br,bj] =

1 1
a)] = — ——[anaj] = ———
x/Tk \/_ BN Ny

=i§k_j, k,j=],...,l’l

(Gay,aj) =

=01

Next, we investigate how orthogonal complements and isotropic parts behave when
performing constructions as in Proposition 1.1.8, (3) and (4).
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I.18. 1.2.14 Proposition. The following statements hold.

(1) Let (V,[.,.]) be a scalar product space, let N be a linear subspace of V™, and
consider the the space V| N endowed with the scalar product (1.1.10). For any
M C V we then have

(VIn)" = VN

(2) Let (‘V,[.,.]) and (W, [.,.]) be scalar product spaces, and let ¢ : V — W be a

linear and isometric map. For any M C V we have
M = 7 ).

In particular,

Yl = 7! ([ran ¢]t°1) D kerg. (1.2.7)
Hererang :={y € W : Jx € V with px = y} denotes the range of ¢ and
ker ¢ := {x € V : px = 0} denotes the kernel of ¢.

Proof. First we prove item (2). For x € V we have

xeMt & VyeM:[x,y]=0 & Vye M: [ex, oy =0 &
Vze M) : [lpx,z] =0 & @x € oM

Item (1) now follows from (2) applied to the canoncial projection:

(VIn)" = alx (VIn)) = m v,

a

These facts are supplemented by the following homomorphy theorem; again we skip
the details.

1.22. 1.2.15 Lemma. Let (V,[.,.]) and (W, [.,.]) be scalar product spaces, and
¢V — W a linear and isometric map. Then there exists a unique linear, bijective,
and isometric map ¢ : V/ker ¢ — rang/[ran p|l°l such that the following diagram
commutes:

vV ran ¢

ﬂ'fvl lﬂramp

(V/kercp ...... @ . ran‘;p/[rancp][["]l

where the downwards arrows are the respective canonical projections.

Here we say that a diagram commutes, if the action of any map between two vertices
does not depend on the choice of the path. For the above diagram this just means that

@Oﬂvzﬂran¢°§0- a

Let us revisit the scalar product space generated by the Nevanlinna kernel of a rational
function.

.57
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1.2.16 Example. We use without further notice the notation from in Example 1.1.7.
Since dim F (M) = oo but ran ¢ € C™, certainly ker ¢ # {0}. Hence, also

F (M) £ {0}. In the first part of this example we show that the function 7 can be
reconstructed using isotropic elements of ¥ (M).

Choose g € F(M)!°)\ {0}, and write supp g = {{1, ..., {u}. For 6 as in (1.1.5) we then
have

0=6egl= > 8D - K&moen) = Zgu:, MO-1G)  peu\@ T

meM 6i

Solving for r(¢) gives

e = [2_&@][2@ e

&4 o &4

_ [jr@)g(a) [ e- Z)| [zn“g@;) [ ee- Z,»)]_1 . (128 [L.3
i= Jj=1 i=1 j=1
J#i i

provided that £ € M \ {{, ..., ,) and the second sum is nonzero at £&. The set of zeros
of this sum, however, is finite. This formula shows that r can be fully recovered
knowing a nontrivial isotropic element of (M) and the function values of r at the
points of supp g.

In the second part of the example, we analyse further the space (C™, [[., .]), where
()™ {oF (ﬂ,)i"l]] Zl = 1 B; - vij - @ with the number y;; defined by (1.1.6). Our aim is
to show that it is nondegenerated. To this end we first prove the existence of a right
inverse for the mapping 6 as defined in (1.1.7).

Choose pairwise different points &1, .. ., &, € M. Then the matrix
1 ... 1
fl e é.‘m
A= . .
é‘;ﬂ;—l . é;m.—l
1 m

is invertible. Moreover, the mapping y : C" — ¥ (M), (« J')Tzl - Z:’.’zl @;- 0, is
injective. Thus ¢ : C" — (M) defined by

Ia)i, = v (diag(g(@). ... q€) A (@))Ly)

is also injective. Denoting by [(ﬂj)’;’:l]i the i-th entry of (,Bj)’;’:l € C™ we have

= 9@ @

0019 ~n1 i = —_— =
100 D@l = ), — a4 =

m—1 1 m—
- q(&) - [A™ (@) Ik
& EIAT @)l = [AAT (@)L i = i
v k C](fk) z(; J7j=1 J7j=1
Therefore, 6 o ¥ is the identity map on C", i.e., ¢ is a right inverse von 6. In particular,
6 is onto.
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I.10.

Now assume that (C™, [, .])) were degenerated. Choose a nonzero isotropic vector

a € C™, and set g = ¥a € F (M) so that ¢g = a. By (1.2.7) we have g € VI°l,
Moreover, supp g (C {£1, ..., &n}) contains at most the m points. The polynomials in
the numerator and denominator of the representation (1.2.8) of r both have degree at
most m — 1. Since the representation of a rational function as a quotient of two
relatively prime polynomials is unique up to scalar multiples, we get

degp,degg<m—1.

This contradicts the definition of m, and we see that (C”, [., .]) is nondegenerated.

Finally, let us point out that by the definition of , by 8 o ¢ = idc» and by
(€™l = {0} we have

ran® = rany, kerf = F (M), F(M) = rany[+]F (M),

o
1.3 Orthocomplemented Subspaces
1.3.1 Definition. Let (‘V,[.,.]) be a scalar product space, and let £ be a linear
subspace of V. Then we call £ orthocomplemented in (V, [.,.]), if L + L=

o

Notice that we do not require that £ N L™ = {0} in this definition.

For the notion of orthocomplemented subspaces, the same word of caution applies as
for the notion of orthogonal complements: The property of being orthocomplemented
not only depends on [., .] but also on the base space V.

We call a linear map P : ‘V — V a projection if P> = P, and speak of an orthogonal
projection if in addition ker P[ L] ran P, i.e., ker P C (ran P)!*],

Recall that for any projection one has ker P = ran({ — P), ker({ — P) = ran P and

V = ker P+ ran P. Moreover, P is uniquely determined by its range and its kernel.

1.3.2 Proposition. For a scalar product space (V,[.,.]) the following statements hold
true.

(1) Let L be a linear subspace of V. Then L is orthocomplemented, if and only if
there exists an orthogonal projection P : V — V whose range equals L.

If L is nondegenerated and orthocomplemented, then the orthogonal projection
with range L is unique.
(2) Let L be an orthocomplemented linear subspace of V. Then
@) L°ocVve
(iiy LW is orthocomplemented.
(i) (LENHlT = ptel,
(iv) L+V° = (LHhHH

In particular, for nondegenerated scalar product spaces V all
orthocomplemented subspaces are nondegenerated.
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(3) If L is orthocomplemented, then any subspace M of L with £ = M[+]1L°) is also
orthocomplemented with V = M[+IMWY, where M = L1,

(4) Let Ly, ..., L, be linear subspaces of V with Li[L1L}, i # j, and set
M:=Ly+ -+ L,. Then M is orthocomplemented if and only if each of the
spaces L; is orthocomplemented.

Proof. For the proof of (1) assume first that P is an orthogonal projection with
ran P = L. Then
L+ LY DranP+kerP =7V,

and hence £ is orthocomplemented. Conversely, if £ + £ = <V, choose a linear
subspace M of LI*! with

LY = M+ (Ln L)

—_———
=Ll

Then £ N M = {0} and L+ M = V. Hence, there exists a projection P withran P = L
and ker P = M. Clearly, P is an orthogonal projection.

Assume that £ is nondegenerated and orthocomplemented, and let P be an orthogonal
projection with range £. We have V = £L[+]£L!*], and this sum is direct. On the other
hand, we have the direct sum decomposition V = L[+] ker P. Both sums being direct,
ker P € L already implies ker P = £,

We come to the proof of (2). The inclusion () is a consequence of

L=rn LlJ-] C (LLJ-J)U-] N L[lJ — (LLJ-J + -E)U'] = qtlel
- —
=V

The assertion in (ii) follows from

_ElJ-J + (_ElJ-J)lJ-J ») L[J'J + L=,
To see (iii), note first that

lel C £[l] N (L[l])[l] — (L[L])[O] .
Since by (i) the subspace LI*! is orthocomplemented, the reverse inclusion
(LNl ¢ el holds by (i).
The inclusion “C” in (iv) is obvious. In fact, it holds without any assumptions on .L;
cf. Lemma 1.2.4. For the proof of the reverse inclusion, let x € (L*)* be given.
Since £ is orthocomplemented, we can write x = y + z with some y € £ and z € £+
This gives

I=Xx-y€ LA (_E[L])[L] =(L+ L[L])[L] = qlel ,

and in turn x € £ + VI,
For (3) let £ = M[+]L[°! be orthocomplemented. Then £ = L[+]L = M[+] L.
Moreover, M*1 2 £141. Since M is nondegenerated, we have M) N M = {0}, and in
turn M = £,
Finally, for the proof of (4), first assume that M is orthocomplemented. Any given
x €V can be writtenas x =y +zwithy € Mandze M. Inturn, y = y; +--- +y,
with y; € £;. Consider the decompositions

x:y[+(zn:yj+z), i=1,...,n.
j=1

i
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Since the spaces £; are pairwise orthogonal and since M = ., Ll[.“, the second
summand belongs to le. Thus x € £; + le, and we conclude that £; is
orthocomplemented.

Conversely, assume that each space £; is orthocomplemented, and let again x € V be
given. Then, for each i € {1, ...,n}, we can write x = y; + z; with y; € L; and z; € LE“.
Theny :=y; +---+y, € Mand we have

n
x=y+(a=Dy) i=l.n,
ot
implying
n
x—y=z[—Zyj€.£l[.“, i=1,...,n.

=
JE
Again appealing to M- = 7| L}”, it follows that x — y € M!!. Therefore,
V = M[+IMH, a

For scalar product space V with dim V' < co we saw in Remark 1.2.9 that
nondegenerated subspaces are orthocomplemented. In general it is hard to decide
whether a given subspace is orthocomplemented. As a rule of thumb,
orthocomplemented subspaces are rare.

For finite dimensional subspaces of arbitrary scalar product spaces, however, it can

easily be decided whether the subspace is orthocomplemented. Indeed, the necessary
condition Proposition 1.3.2, (2),(i), turns out to be also sufficient. Remark 1.2.9

1.3.3 Proposition. Let (V,[.,.]) be a scalar product space, and let L be a finite
dimensional linear subspace of V. Then L is orthocomplemented if and only if

Lo cVve.

Proof. As already noted, we only need to establish sufficiency of the stated condition.
Assuming L1°! ¢ VI°! set m := dim £ and n := dim £ — dim £°!. Choose an
orthonormal basis {by, ..., b,} of £ such that span{b,1, ..., by} = LI°; cf.

Lemma 1.2.11 and (1.2.5). Now we define P : V — V by

_xO [x 1]
o l [b;, bi]

Px b, xeV.

Then, using (1.2.4), we obtain Pb; = b;, j = 1,...,n. It follows that
ran P = span{by,..., b,}, P:=P.
Moreover, since {by,.. ., b,} is linearly independent,
ker P = {by,...,b,)*! = span{by,...,b,)H .

Employing Proposition 1.3.2, (1), we see that span{b,, ..., b,} is orthocomplemented.
Finally, since £ € V!, we have
(spaniby, ..., b,DM = (span{by, ..., b,} + LLH = LI of Temma 1.2.4. Hence,

L+ LY D spanfby, ..., by} +(span{by, ..., b)) = V.
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1.3.4 Remark. From the previous proof let us point out the fact that given a finite
dimensional subspace £ of a scalar product space V — the assumption £LI°! € VI°! ig
not necessary — and an orthonormal basis {by, ..., b,} of L such that
span{b,1,...,b,} = L], the linear mapping P : V — V defined by

i=1
constitutes an orthogonal projection with ran P = span{b, ..., b,} and

ker P = (span{by, ..., b )M IF £ is nondegenerated, then due to

ran P = span{by, ..., b,} = L this is a representation of the unique orthogonal
projection onto L. o

If a finite dimensional subspace M of (‘V, [.,.]) does not satisfy M° C V°, then we at
least find a larger subspaces L satisfying £° C V°.

1.3.5 Proposition. Let (V,[.,.]) be a scalar product space, and let M be a finite
dimensional linear subspace of V with M°® & V°. Then there exists a subspace L

satisfying

LOM, L2C M°NV°, dim £ = dim M + (dim M"°! — dim M° N V°).

Proof. First we additionally assume that M N V° = {0} (or equivalently

M N V° ={0}), and prove the assertion by induction on m = dim M. For m = 0 we
are done. Assume that the assertion is true for m, and let M be a finite dimensional
subspace of V satisfying M N VI°! = {0} with dim M! = m + 1.

For any nonzero a € M(°! we have a ¢ V!°!. Thus, there exists a vector b € V such
that [a, b] = 1. Obviously, b ¢ M. Moreover, M = {x € M : [x, b] = 0}[+] span{a}.
Hence,

M :={x e M: [x,b] = O}[+] span{a, b}

is subspace with dimension dim M + 1 containing M.

For aa + b € span{a, b}!*! we have 0 = [awa + 8b,a] = B and 0 = [aa, b] = . Hence,
span{a, b}{°! = {0}, and in turn (see Lemma 1.2.6 in combination with Remark 1.2.5)

M ={xe M:[x,b] =0} = {x e M : [x,b] = 0},

This space is contained in M!°! with codimension one, i.e., dim /\/([]OJ = m. By
induction hypothesis there exists a nondegenerated subspace £ 2 M; 2 M with
dim £ = dim M; + dim M\! = dim M + 1 + dim M - 1.

Finally, if M° N V° # {0}, then we decompose V as V = V'[+](M° N V°) and

correspondingly M = M'[+](M° N V°). Then (M’)° N (V’)° = {0}. From the special

case we infer the existence of a nondegenerated subspace £’ of V' with L' 2 M’ and
dim £’ = dim M’ + dim(M")® = dim M’ + (dim M — dim M° N V°).

With £ := L'[+](M° N V°) we obtain the a subspace with the desired properties. ]

Let us provide two examples of subspaces which are not orthocomplemented. First,
we illustrate the finite dimensional situation.
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1.3.6 Example. Consider the space C? endowed with the scalar product [., .] generated
by the Gram matrix
0 1
o=t )

(G- ()] = a2+ B, (8).(5) €.
As[(l),(})] = 0 the subspace

l

Explicitly, this is

Lo=span(})).
is neutral, i.e., £L°! = £; see Example 1.2.3. However, el = o). According to
Proposition 1.3.2, (2), (i), £ cannot be orthocomplemented.
Of course, in this example, we could just compute the orthogonal complement of £
and observe that £ + L+ # V. In fact, LI = L. O
Second, we bring an example in order to show that for infinite dimensional subspaces
the condition Proposition 1.3.2, (2),(i), is indeed not anymore sufficient.
1.3.7 Example. Consider the linear space of all komplex left-finite two-sided
sequences
V:={(a)jez€C*: AINeN:a; =0, < -N},

and define a scalar product on V by

[(@))jez, (B))jez] := Z ;- B-j1, (@))jez,.B)jez €V.

JEZ

This expression is well-defined since the sum on the right side contains only finitely
many nonzero summands.

Setting ek := (6x;) jez for any k € Z we consider the subspace
L :=spanf{e; + e_—1 : k € Ny},
of V. From [ey, e/] = dx(i—1) we conclude
lex + e_i_1,ep+e_i-1] =201, k,1€Ny. (1.3.1)

Clearly, the set {ex + e_x—1 : k € Ny} consists of linearly independent elements.
Moreover, (1.3.1) implies [x, x] > 0 for all x € £\ {0}. In particular, £ is
nondegenerated.

We are going to determin the orthogonal complement of L. For x = (a;) ez € LI+ we
have
O=[x,ex+e_i_1] =a_j_1 +ax, keNy.

As x is a left finite two-sided sequence this implies that only finitely many terms «;
are nonzero, and in turn that x € span{e; — e_x_1 : kK € No}. By [ex, e;] = 0x—1-1) each
element e; — e_;_1, k € Np, belongs to L1+, We end up with

LM = span{e; — ey 1 k€ Np}.

We see that each element from £ + L] is a two-sided sequence with only finitely
many entries being nonzero. Thus,

L+ LM 2y,
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1.4 Definiteness Properties

1itenessProperties ‘
Scalar products for which the quadratic form [x, x] retains sign play a particular role.

1.4.1 Definition. Let (‘V,[.,.]) be a scalar product space. We call (‘V, [.,.])
— positive definite, if [x,x] > 0, x € V\ {0}.
— positive semidefinite, if [x,x] > 0, x € V.
— negative definite, if [x,x] < 0, x € V \ {0}
— negative semidefinite, if [x,x] <0, x € V.
— neutral, if [x,x] =0, x € V.
— definite, if it is positive- or negative definite.
— semidefinite, if is is positive- or negative semidefinite.

¢

Definiteness properties of a subspace £ of a scalar product space (V, [.,.]) are defined
in the obvious manner as follows. We say that L is a positive definite, positive
semidefinite, negative definite, negative semidefinite, neutral, definite, semidefinite,
subspace of V, if the scalar product space (L, [., .]| ) has the respective property
according to Definition 1.4.1.

1.4.2 Remark. Obviously, £ being a neutral subspace is equivalent to the fact, that £
is positive semidefinite and negative semidefinite. Using the polar identity we already

saw in (1.2.3) that £ being a neutral subspace is also equivalent to [x, y] = O for all
x,ye /L. o

1.4.3 Example. Let M be a set, let K be a hermitian kernel on M, and consider as in
Example 1.1.4 the scalar product space (¥ (M), [.,.]) generated by K, where

[f.81:= ) 8D -K(,m-fa), f.g e F(M).

{neM

If the scalar product space (¥ (M), [.,.]) is positive semidefinite (negative
semidefinite), then we call the hermitian kernel K on M positive (negative).
Explicitely, this means

D K@G.g)-a; 2 (90,

ij=1

for any m € N and any finite samples {1,...,{, € M, ay,...,a, € C. This is the same
as saying that the selfadjoint matrix

(K@ &)

is positive semidefinite (negative semidefinite) for any m € N and any finite sample
{1y slm€M. o

Let us notice explicitly that taking orthogonal sum preserves definiteness properties.
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1.4.4 Lemma. Let (V,[.,.]) be a scalar product space, and let L1, ..., L, be positive
definite linear subspaces of V. If Li[L1L;, i # j, then their sum Ly +---+ L, is
positive definite.

The same statement holds when “positive definite” is everywhere replaced with one of
“positive semidefinite, negative definite, negative semidefinite, neutral”.

Proof. Letx € Ly +---+ L,, and write x = x| + - -- + x, with x; € L;. Due to our
hypothesis £;[L].L;, i # j, we have

[x, x] = [xp, x1] + -+ + [X, X] .

All summands on the right side are nonnegative. Moreover, if x # 0, at least one of the
x; must be nonzero. Hence, at least one of these summands must be positive.

The corresponding assertions for the other listed definiteness properties follow in the
same way. a

Let us observe that if in the previous assertion all spaces L; are positive definite or all
spaces are negative definite, then £;[1]L; yields £; N L; = @ fori # j.

It is a basic fact that in semidefinite scalar product spaces the Schwarz inequality
holds.

1.4.5 Lemma. For a semidefinite scalar product space (V,[.,.]) we have
Iy < [xx]-[y,y], xyeV.

Proof. It is enough to provide explicit proof for the case that V is positive
semidefinite. The case that V is negative semidefinite is reduced to this one by
considering (V, —[., .]).

Let x,y € V be given. Set « := [x, x], 8 := |[x, ]|, and y := [y, y], and let 2 € C,
|[4] = 1 be such that A[y, x] = |[y, x]|. Then we get

0 < [x—é&dy, x —EAy] = [x, x] — EALy, x] — EA[x, y] + E2[y,y], E€R,

i.e. @ —2£8 + &%y > 0 for all £ € R. This inequality yields 8 = 0, in the case that
vy = 0, and with the choice £ := g in the case y > 0, it yields ary — 8% > 0. 4

1.4.6 Corollary. In a semidefinite scalar product space (V,[.,.]) every neutral
element belongs to the isotropic part of V, i.e.,

VP = (x eV :[x,x] =0}.
Proof. By the Schwarz inequality [x, x] = O for an x € V implies

e yIP < [x,x]-[y,y1 =0, yeV.

The set of all linear subspaces of a linear space V is ordered with respect to
set-theoretic inclusion. Hence, also the set of all positive definite (positive
semidefinite, negative definite, etc.) linear subspaces is.
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1.4.7 Definition. Let (‘V,[.,.]) be a scalar product space, and let £ be a linear
subspace of V. Then we call £ maximal positive definite, if it maximal in the set of
all positive definite linear subspaces of V w.r.t. set-theoretic inclusion, i.e., there is no
strictly larger positive definite linear subspaces of V than L.

Terminology maximal positive semidefinite, maximal negative definite, maximal
negative semidefinite, and maximal neutral is defined in the same way. ¢

1.4.8 Remark. Since L + V! is positive semidefinite (negative semidefinite, neutral),
if £ has this property, every maximal positive semidefinite (negative semidefinite,
neutral) subspace contains VI,

Decomposing V as V = V’[+]V!°! with a nondegenerated V’ and correspondingly
L = L'[+]VE with £ C V' the space £’ is maximal positive semidefinite (negative
semidefinite, neutral) in V’. In fact, any prper positive semidefinite (negative
semidefinite, neutral) extension M’ would deliver the proper extension M’[+]V!°! of

L ¢

Zorn’s lemma ensures that maximal elements always exist.

1.4.9 Proposition. Let (V,[.,.]) be a scalar product space, and let L be a positive
definite linear subspace of V. Then there exists a maximal positive definite linear
subspace which contains L.

The same statement holds true when “positive definite” is everywhere replaced with

one of “positive semidefinite”, “negative definite”, “negative semidefinite”, or
“neutral”.

Proof. The set of all positive definite linear subspaces of V which contain L is
nonempty since it contains £ itself. Moreover, the union of an increasing chain of
positive definite linear subspaces is again a positive definite linear subspace. Hence,
each increasing chain has an upper bound. Zorn’s lemma provides us with a maximal
element M. Clearly, M is even maximal among all positive definite linear subspaces
of V.

The word-by-word same argument applies if we substitute “positive definite” by any
other of the stated definiteness properties. a

The set of all positive definite linear subspaces of V is contained in the set of all
positive semidefinite linear subspaces. Hence, each positive definite subspace which is
maximal positive semidefinite is also maximal positive definite. However, not each
maximal positive definite subspace is necessarily maximal positive semidefinite.

1.4.10 Example. Consider C? endowed with the scalar product defined by
[x,¥] :=(Gx,y), x,y € C2, with the Gram matrix

o=l )
L= span{((l))}.

is maximal positive definite but not maximal positive semidefinite, because %41,
is positive semidefinite. ¢

The linear subspace
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1.4.11 Proposition. If L is a maximal positive definite or maximal positive
semidefinite subspace of a scalar product space (V,[.,.]), then LH s negative
semidefinite.

If L is positive definite and maximal positive semidefinite, then L1 is even negative
definite.

The same statements hold true when we replace everywhere “positive” by “negative”
and vica versa.

Proof. For a maximal positive definite or maximal positive semidefinite subspace £
assume on the contrary that x € £ and [x, x] > 0. If we had x ¢ £, then

L + span{x} (2 £) would have the same definiteness property (positive semidefinite or
positive definite) as £, in contradiction to its maximality. Thus x € £I°!. In particular,
[x, x] = O contradicting [x, x] > O.

For a positive definite and maximal positive semidefinite £ we repeat these
argumentation for an x € LU\ {0} with [x, x] = 0. In fact, x ¢ £ would give the
strictly larger positive semidefinite subspace £ + span{x} contradicting the maximality
of £, and x € LI°! would imply [, x] = 0 in contradiction to the definiteness of

L. Q

For orthocomplemented subspaces £ a much better characterization of maximality
can be given.

Since LI°! = £ LY, the assumption V = £;[+]L, with a nondegenerated £, in the
following proposition is equivalent to the fact that £; is orthocomplemented with

£[1°J = {0} and L[]“ = [,. It is also equivalent to the fact that £ is
orthocomplemented with .[:[2“ =L [J}]L[;J.

1.4.12 Proposition. Let (V,[.,.]) be a scalar product space, and let L, L, be
subspaces such that V = L,[+]L, with a nondegenerated L. Then the following
statments are equivalent.

(a) L, is positive definte and L, is negative semidefinite.
(b) L, is maximal positive definte.

(¢) L, is maximal negative semidefinte.

The same is true when we replace everywhere “positive” by “negative” and vica
versa.

Proof. We show (a) = (b). Assume that M is positive definite and M 2 L. Then
M = Li[+](M N L,). The second summand, however, must be equal to {0}, since £,
is negative semidefinite. Hence, £; = M, and £; is maximal positive definite. Almost
the same reasoning shows (a) = (¢).

(b) = (c) follows from Proposition 1.4.11 and L[]“ = L,. By Proposition 1.4.11,
assuming (c) we get that le“ =L [+].£[2°] is positive semidefinite, and hence £ is
positive definite; cf. Corollary 1.4.6. Thus, also (¢) = (a) holds true. a
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1.5 Angular Operators

We start with a result not necessarily dealing with scalar products.

1.5.1 Lemma. Assume that a vector space V is decomposed as V = L1+L, with two
subspaces Ly, L of V, and let P : V — L be the corresponding projection, i.e.,
P2=P ranP = L, andkerP = L.

(1) For a linear subspace M of V with M N L, = {0} the mapping
Py - L = P(M) (C L) is a linear bijection. In particular, dim M = dim P(M).

Moreover, defining the so called angular operator W with respect to the
decomposition V = L1+L, associated with M on dom W := P(M) (C L) by

W:= (- P)(Plp)" :domW — £,
the space M can be recovered from W by

M={x+Wx:xedomW}.

(2) Let W be a linear operator defined on some linear subspace dom W of L, and
mapping into L. Then the linear subspace M defined as

M:={x+ Wx: x € dom W}
satisfies M N L, = {0} and has W as its angular operator.

Proof. Due to M N L, = Mnker P = {0} the mapping P|y : £ — L, is injective.
Hence, P|p : £ = P(M) (C L)) is a linear bijection, and W is well defined. Clearly,
dim M = dim P(M).

For y € M the vector x := Py belongs to dom W and
y=Py+({—-Py=x+Wx. (1.5.1)

Conversely, for x € dom W we have y := (P|p)~! € M, and reading (1.5.1) from right
to left yields x + Wx = y.

For (2), let x € dom W and set y := x + Wx. From x = Px = Py we conclude that

y € L5 = ker P implies x = 0 and, in turn, y = 0. Thus, M N £, = {0}. Moreover,
P{x+ Wx : x € dom W} =domW. For x € dom W and y := x + Wx we have Py = x.
Hence, (PlM)_lx =y and

(I = P)(PIp)"'x = (I - P)y = Wx.
Q

Angular operators are particularly interesting, if (V, [., .]) is a scalar product space
and our decomposition V = L+, is orthogonal, because then definiteness
properties of M can characterized by means of W.

1.5.2 Lemma. Let (V,[.,.]) be a scalar product space such that 'V = Li[+]L,.
Moreover, let M be a linear subspace of V which satisfies

Mn L, ={0},

I.

75
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and let W : dom W — L, be the angular operator of Mw.r.t. V = Li[+]L; as in
Lemma 1.5.1. Then the definiteness properties of M can be characterized by W as
follows:

M is positive definite — [Wx,Wx] > —[x,x], x e dom W\ {0}
M is positive semidefinite < [Wx, Wx] > —[x,x], xedomW
M is negative definite — [Wx,Wx] < —[x,x], x e dom W \ {0}
M is negative semidefinite < [Wx, Wx] < —[x,x], x edom W
M is neutral — [Wx,Wx]=—-[x,x], x€domW

Proof. According to Lemma 1.5.1, M = {x + Wx : x € dom W}. Asran W C mcL,
and dom W = P(M) C £, we can compute

[x+Wx,x+ Wx] =[x, x]+[Wx,Wx], x€domW.
The asserted equivalences easily follow from this equation. a

1.5.3 Example. In order to visualize the action of an angular operator, we consider —
as an exception — a linear space over the scalar field R. Let V := R?, and let V be
endowed with the euclidean scalar product [(Z‘), (ﬁ‘)] = a181 — aB,. Obviously,

2 2

V = Li[+]L, for the positve definite subspace L := span{((l))} and negative definite
subspace £ := span{(?)}. The orthogonal projection of V onto L, is given as

-0

For 9 € (0, %) consider the linear subspace

Mzz{(g)eRZ:,thanﬁ-a/}.

Then M N L, = {0} and P(M) = L;. The angular operator W associated with M acts

as
a 0
(0) - (tanﬂ . a)’ @eR.

For ¢ € [0, Z) we have [Wx, Wx] > 0 > —[x, x], x € £; \ {0}. Hence, the
corresponding space M is positive definite. For i = 7 the space M is neutral, because
[Wx, Wx] = —[x, x], x € L;. For (%, ) the space M is negative definite.

L[lJ
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Starting with a decomposition V = L[+]L, with a definite (semidefinite) £, we can
be even more specific. Indeed, if, for example, £, is positive definte, then obviously
Mn L, = {0} for all negative semidefinite subspaces M.

1.5.4 Corollary. Let (V,[.,.]) be a scalar product space such that 'V = Li[+]Ls.

(1) If L is positive definite, then M N L, = {0}, and hence dim M < dim L, for any
negative semidefinite subspace.

Moreover, M = {x + Wx : x € dom W} constitutes a bijection between all negative
semidefinite (neutral) subspaces and all linear operators W : dom W — L, with
domW C L) and [Wx, Wx] < —[x, x] ([Wx, Wx] = —[x, x]) for all x € dom W.
Hereby, dim M = dim(dom W).

(2) If L, is positive semidefinite, then M N L, = {0}, and hence dim M < dim L; for
any negative definite subspace.

Moreover, M = {x + Wx : x € dom W} constitutes a bijection between all negative
definite subspaces and all linear operators W : dom W — L, withdom W C L,
and [Wx, Wx] < —[x, x], x € dom W\ {0}. Hereby, dim M = dim(dom W).

» o« _»

The same statements hold true with “<”, “<” replaced by “>",“>" and “positive”
replaced by “negative” and vica versa.

By the previous result we can also relate maximal subspaces with maximal angular
operators.

In fact, in the situation of (1), M is maximal negative semidefinite (maximal neutral)
if and only if the corresponding angular operator W : dom W (C L) — £, satisfies
[Wx, Wx] < —[x,x] ([Wx, Wx] = —[x, x]) for all x € dom W and has no proper
extension W’ with the [Wx, Wx] < —[x, x] ([W’x, W x] = —[x, x]) for all

x € dom W’.

In the situation of (2), M is maximal negative definite if and only if the corresponding
angular operator W : dom W (€ L)) — L, satisfies

[Wx, Wx] < —[x, x], x € dom W \ {0} and has no proper extension W’ with the
[Wx,Wx] <—[x,x], x € domW \ {0}.

The same is true with ‘<”, “<” replaced by “>",“>" and “positive” replaced by
“negative” and vica versa.

In particular, dom W = £L; always implies maximality. If dim £; < oo, we can say
even more.

1.5.5 Proposition. Let (V,[.,.]) be a scalar product space such thatV = Li[+]L.

(1) Let L) be finite dimensional and negative semidefinite, and let L, be positive
definite. Then M is maximal negative semidefinite if and only if the corresponding
angular operator W : dom W (C L) — L, satisfies
[Wx,Wx] < —[x,x], x € dom W, anddom W = L;.

(2) Let L be finite dimensional and negative definite, and let L, be positive
semidefinite. Then M is maximal negative definite if and only if the corresponding
angular operator W : dom W (C L) — L, satisfies
[Wx, Wx] < =[x, x], x € dom W \ {0}, and dom W = L;.

» o«

The same statements hold true with “<”,
replaced by “negative” and vica versa.

o«

<” replaced by “>”,“>" and “positive”
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dexOfPositivityAndNegativity

negposdef.

Proof. We already mentioned that in any case dom W = £, implies maximality. For
the converse we consider the cases separately.

ey

@)

Let M be negative semidefinite such that the corresponding W satisfies
dom W # £;. Due to Corollary 1.4.6 we have (dom W)[°! c .Ellc’]. Therefore,
dom W is orthocomplemented, and for any subspace N with

dom W = N[+](dom W)[°! we have

L =N [+ N

=(dom W)[+]

Obviously, (dom W)l ¢ N Take a z € N\ dom W = N1\ (dom W)l°) and
define the extension W’ : span{z}[+]dom W — L, by W’(x) = 0. For
Az + x € dom W’ = span{z}[+] dom W we then have

WAz + x), WAz + x)] = [Wx, Wx] < —[x,x] = =[Az + x, Az + x].

Hence, W’ is the angular operator of a negative semidefinite subspace M’
containing M properly. This menas that M is not maximal.

Let M be negative definite such that the corresponding W satisfies dom W # L.
L being positive definite, dom W is orthocomplemented with

£, = dom W[+](dom W)!! .

Take a z € (dom W)I] and define the extension W’ : span{z}[+] dom W — £, by
W'(x) = 0. For Az + x € dom W’ = span{z}[+] dom W we then have

[W(Az + x), W (Az+ x)] = [Wx, Wx] and — [z +x, Az + x] = —[A*[z, 2] — [x, x] .
From [Wx, Wx] < —[x, x] for x # 0 and [z, z] > 0 we get
[W(Az + x), W (Az + x)] < for Az + x # 0. Hence, W’ is the angular operator of a

negative definite subspace M’ containing M properly. This menas that M is not
maximal.

a

1.6 Index of Positivity and Negativity

1.6.1 Definition. Let (V,[.,.]) be a scalar product space. We set

ind (V,[.,.]) :=sup{dim L : £ positive definite subspace of V} € Ny U {oo},
ind_(V,[.,.]) :=sup{dim L : £ negative definite subspace of V} € Ny U {co},

and call ind.(V, [., .]) the index of positivity of V, and ind_(V, [., .]) the index of
negativity of V.

Again we do not distinguish different cardinalities of co. Moreover, when no
confusion may occur, we drop explicit notation of [.,.] and write ind; V and ind_ V.

¢
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The sets over which the suprema in this definition are taken can be narrowed in two
different ways. First, since an infinite dimensional positive (negative) definite
subspace contains positive (negative) subspaces with arbitrary finite dimension, we
have

ind(V,[.,.]) =sup{dim L : £ positive definite subspace of V, dim L < oo},
ind_(V, [.,.]) =sup{dim L : £ negative definite subspace of V, dim £ < co}.

Second, since each positive (negative) definite subspace is contained in a maximal
positive (negative) definite subspace, we have

ind (V,[.,.]) =sup{dim £ : £ maximal positive definite subspace of V},
ind_(V,[.,.]) =sup{dim £ : £ maximal negative definite subspace of V}.

The next result tells us that when using maximal definite subspaces, taking a
supremum is not necessary at all.

1.6.2 Proposition. Let (V,[.,.]) be a scalar product space. Then for each maximal
positive definite subspace L.

dim £, =ind, V.

In the case that ind, V < oo, a subspace L. is maximal positive definite, if and only if
it is positive definite and dim L, = ind, V. Moreover, L. being maximal positive
definite and taking any subspace L_ with LE}] = (LErlJ)[C’J [+]L-, we have
(L = Yl and
V= L[HVE+L, (1.6.1)
———

_ pldl
=L

with a maximal negative semidefinite .EE] and a maximal negative definite L_.

»

As usual, the same holds when everywhere “positive”, “ind,” and “negative”, “ind_"
are exchanged.

Proof. If all maximal positive definite subspaces of V have infinite dimension, there
is nothing to prove.

Assume that £, is a maximal positive definite subspace with dim £, < co. Then L,
is orthocomplemented and there exists a unique orthogonal projection P with

ran P = L, ; see Proposition 1.3.2. This projection satisfies ker P = LE}I. By
Proposition 1.3.2 we have (£l = /o] Moreover, choosing a subspace £_ with
LL“ = £_+V' we obtain the decomposition in (1.6.1). From Proposition 1.4.12 we
conclude that LE] is maximal negative semidefinite and that £_ is maximal negative
definite.

By Corollary 1.5.4, dim £ < dim £, for any positive definite £, and in turn
ind; V=dimZ/L < .

Knowing that ind, V < co, each maximal positive definite subspace has finite
dimension and, hence, the above argument applied to any maximal positive definite
subspace shows that their dimensions must all equal to ind, V. Finally, if £ is
positive definite and dim £ = ind; V (< o), then any positive definite space M 2 L
must satisfy dim M < ind, V. Hence, M = £ and £ must be maximal.

The assertion concerning the index of negativity is verified analogously, or follows by
considering (V, —[., .]) instead of (V, [., .]). a
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1.6.3 Remark. By (1.6.1) ind; V = 0 (ind- V = 0) means nothing else than the
negative semidefiniteness (positive semidefiniteness) of [.,.] on V. o

1.6.4 Corollary. Let (V,[.,.]) be a scalar product space. Then
dimV =ind, V +ind_V +indy V.

Proof. 1f one of the quantities ind; V, ind_ V, or indy V, is infinite, there is nothing
to prove. Hence, assume that all three of these numbers are finite. Choosing a
maximal positive definite subspace £, of V we have a decomposition like in (1.6.1)
with a maximal negative definite £_. Hence,

dimV = dim £, + dim M + dim V" = ind, V + ind_ V + indy V.

a

1.6.5 Example. Let [.,.] be a scalar product on C™, and let G be the Gram matrix of
[.,.]. Choose an orthonormal basis {ay, . .., a,} consisting of eigenvectors of G, where
orthonormality is understood w.r.t. the euclidean scalar product (., .). Denote the
eigenvalues corresponding to ay, ..., a, by 4;, ..., 4, and set

L, :=spanfa; : 4; >0}, L_:=spania :A; <O0}.
From

[z’“: a;a;, zm:ﬂiai] = (z’”: Aia;a;, zm:ﬂiai) = z”: ;.
-1 -1 im1 im1 in1

we see that £, is positive definite, £_ is negative definite. Hence,
C" = L[+ L [+H(@M.

It follows that £, is maximal positive definite and £_ is maximal negative definite, cf.
Proposition 1.4.12. Thus

ind (C", [.,.)=#ie{l,...,m}: A >0},
ind_(C",[.,.)=#ie{l,...,m}: 2 <0},
indg(C", [.,.D=#ie{l,...,m}: 4, =0}.
Defining for a given selfadjoint matrix G, by ind, G (ind- G) the number of positive
(negative) eigenvalues of G counted according to their multiplicities, and by indy G

the multiplicity of the eigenvalue zero, we have ind.(C™, [.,.]) = ind. G and
indy(C™, [.,.]) = indy G. o

1.6.6 Corollary. Let (V,[.,.]) be a scalar product space. Then for each maximal
positive semidefinite subspace L of V we have

dim L =ind, V+indy V. (1.6.2)

If this equality holds true for a positive semidefinite subspace L with dim L < oo, then
L is maximal positive semidefinite. Moreover,

sup { dim £ : £ positive semidefinite, £ N V!°) = {0} } = ind, V. (1.6.3)

The same statements hold when everywhere “positive” is replaced with “negative”
and “ind,” by “ind_"

I.73

I.74
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Proof. First we establish the inequalities “<” in (1.6.2) and (1.6.3). If ind; V = oo
there is nothing to prove. So we assume ind; V < co. Choose a maximal positive
definite subspace £, of V. Then we have have (1.6.1) with a maximal negative
definite £_. Applying Corollary 1.5.4, with £, = £_ and £; = VI°/[+] L, shows that

dim £ < dim(V[+]1£;) = ind, V +indyV,
for any positive semidefinite subspace £. If in addition £ N VI°! = {0}, then £ is even

positive definite, and hence dim £ < ind, V.

Moreover, if equality holds in in (1.6.2) for a finite dimensional and positive
semidefinite £, then we conclude from Proposition 1.5.5, (1), that £ must be maximal.

The inequality “>" in (1.6.3) is a consequence of the fact that any maximal positive
definite subspace £ satisfies £ N V! = {0}.

Finally, we show “>"in (1.6.2). As mentioned in Remark 1.4.8, we have Yyl c £
and we can write V = V'[+]VI° and £ = L/[+]V°! with a maximal positive
semidefinite subspace L’ of the nondegenerated V”’. Hence, for the verification of
(1.6.2) we can assume that VI°! = {0}. Clearly, we can also assume that dim £ < co.

Take any finite dimensional positive definite subspace N of V with dim N < ind; V.
Due to Proposition 1.3.5 we find a finite dimensional subspace M 2 £ + N with
Ml C Yl = 10}, i.e., M is nondegenerated. According to (1.6.1),

M = M+[+]M— ’

with a maximal positive (negative) definite subspace M, (M_) in M. Clearly, L is
also maximal positive semidefinite as a subspace of M. By Proposition 1.5.5 we have

dim £ = dim M, = ind, M > ind, N.

Since N was arbitrarily chosen, we get dim £ > ind, V.

Next, let us investigate how index of positivity and negativity behave when
performing constructions with scalar product spaces.

1.6.7 Proposition. The following statements hold true.

(1) Let (V,[.,.]) be a scalar product space, and let L be a linear subspace of V
endowed with the scalar product inherited from V. Then

indy £L<ind;V, ind_- L<ind_V.
(2) Foreach je{l,...,n}let (V},[.,.]1)) be a scalar product space, and consider the
space ]—[;le V; endowed with the sum scalar product. Then

n

ind, ]L[q/_,. = zn:ind+ V;, ind_ ﬁq/j = ind_V;.
J=1 ‘ !

J=1 J= J=1

(3) Let (‘V,[.,.]) be a scalar product space, let N be a linear subspace of V', and
consider the the space V| N endowed with the factor scalar product. Then

ind;, V/y=ind, V, ind-V/N =ind_ V.
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4) Let (V,[.,.]) and (W, [.,.]) be scalar product spaces, and let ¢ : V — W be a
linear and isometric map. Then

indy V =ind, ranep, ind-V =ind_rang.
Proof. We establish the assertions concerned with index of positivity. The index of

negativity is treated in the same way.

Item (1) holds since each positive definite subspace of L is also one of V. For (2), let
L, j=1,...,n, be positive definite subspaces of V;. Then

L= ﬁ Lj
J=1

is a positive definite subspace of ]_[;f:1 Vj; cf. Lemma 1.4.4. Hence, the inequality
“>” follow. If one of ind; V;, j = 1,...,n, is infinite, we are done. Otherwise, choose
for each j € {1,...,n} a maximal positive definite subspace L; of V;. Then Lb.“ is

negative semidefinite, and V; = LjH]Lgu. It follows that

[Jv=[Teml]
j=1 Jj=1 Jj=1

The first summand is positive definite, and second is negative semidefinite. By
Proposition 1.4.12 the first summand is maximal positive definite. Consequently,

n n n n
ind, [ [V, =dim[ [ £;=) dim£; =) ind, £;.
J=1 J=1 J=1 J=1
In the next step, we prove (4). If L is a positive definite subspace of V, then ¢| is
injective, and hence dim ¢(£) = dim L. Thus ind, ran ¢ > ind, V. For the converse,
choose a right inverse i of ¢, i.e., a linear map ¢ with ¢ o ¢ = idpp . Clearly, ¢ is
again isometric. Using what we already showed,

ind, rang < ind, rany < ind; V.

Item (3) is now immediate, since the canonical projection 7 : V — V/ A/ is linear,
isometric, and surjective. a

Sometimes it is useful to describe the index of positivity (negativity) with the help of
the mapping ¢ as introduced in Example 1.1.9. Recall from Example 1.6.5 that, for a
given selfadjoint matrix G, ind; G (ind_ G) is the number of positive (negative)
eigenvalues of G counted according to their multiplicities.

1.6.8 Proposition. For any scalar product space (V,[.,.]) we then have

ind.(V,[.,.]) = sup{ind.([zj, z:])]" ;o i m €N, z1,...,zn €V} (1.6.4)
More generally,
ind. (V. [,.1) = supl indu([2j, 5, s m €N, 21,y 2m € M1, (1.6.5)

for any subset M of V such that span M = V.
Hereby, ind.([z;, z;])Z’Fl =mifandonly ifzi, ...,z is the basis of a positive
(negative) definite subspace.

‘ I.8postinddesceql

‘ I.8postinddesceq?2
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Proof. Form e Nand zy,...,z, €V providing C" with the scalar product
[f.81 = [wfwgl = ) 8- [2,21- F()), f.e € F(L,....m},
ij=1

lety : F({1,...,m}) (= C") — V be the isometric mapping ¥ f = 3L, f(j) - z; with
rany = span{zy, ..., Z,}. Considering f, g € ¥ ({1, ..., m}) as vectors we have

[f. 81 = ((Lzj» uD)},-, f 8); see Example 1.1.9.

As discussed in Example 1.6.5, ind.(C, [.,.]) = ind.([z;, )}, and by

Proposition 1.6.7 we have ind.(C, [.,.]) = ind: rany < ind.(‘V, [.,.]). Hence, the
inequality > holds in (1.6.4) and (1.6.5).

If z1,..., 2, is a basis of an m-dimensional positive (negative) definite subspace L,
then ind. ([z;, ZiDTj:l = ind; rany = dim £ = m. Conversely, if

ind.([z;, Zi])Tj:I = ind. rany = ind; span{zy, ..., z,} equals to ind.(V, [.,.]) = m,
then by Corollary 1.6.4 necessarily dim span{z;, ..., z,} = m and, hence, z;,...,2, 1S a
basis of the positive (negative) definite subspace span{zj, ..., z,}; see Corollary 1.6.4.

In order to show equality in (1.6.4) and (1.6.5), it plainly suffices to show equality in
(1.6.5). Choose a maximal positive (negative) definite subspace £ of V, and let M be
a finite dimensional subspace of £. Then there exist zy, ..., 2, € M such that

M C span{zy, ..., z,}. By Proposition 1.6.7 applied to the corresponding mapping ¢
we get ind.([z;, Zi])Tj:I =ind.(C,[.,.]) = ind; rany > ind. M, and in turn

supf ind.([z}, zi])?szl cmeN, z1,...,zn € M} > ind, M.
Since M was arbitrarily chosen, we get equality in (1.6.5). a

We apply Proposition 1.6.8 to the scalar product space generated by a hermitian
kernel.

1.6.9 Example. Let M be a set, let K be a hermitian kernel on M, and consider the
scalar product space (¥ (M), [.,.]) generated by K, cf. Example 1.1.4. Since
[0¢,0,] = K(n, ) for the basis {0 : £ € M} of F (M) defined in (1.1.5), we get from
(1.6.5)
ind; F(M) = sup ind. (K(&;,€)) lezl .
meN, &;,...6neM

¢

We continue our study of the scalar product space generated by the Nevanlinna kernel
of a rational function r = 5 from Example 1.1.7 and Example 1.2.16.

1.6.10 Example. Notation is, without further notice, as in Example 1.1.7. In
particular, m denotes the degree of the rational function r, i.e., the maximum degree of
the polynomials in numerator and denominator of a relatively prime quotient
representation of r.

We have already shown that the map 6 defined as in (1.1.7) is a linear, surjective, and
isometric mapping of (¥ (M), [.,.]) onto (C™, [., .]), and that (C", [., .]) is
nondegenerated. It follows that (see Proposition 1.6.7 and Corollary 1.6.4)

ind, F(M) = ind,(C™, [.,.]), ind_ F(M) = ind_(C", ., .I), (1.6.6)

ind, F(M) + ind_ F(M) = m.

.53
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We will show in this example that given m € Ny and N., N_ € Ny with Ny + N_ =m
there always exists a rational function r of degree m such that such that

ind, ¥ (M) = N, and ind- ¥ (M) = N_. For this purpose we employ the construction
of a rational function as in Example 1.1.11. Choose pairwise different real points

A1, ..., Ay, and consider the measure

N, m
,112225,11— Z 6,1‘.,
i=1 i=N,+1

where b,, denotes the unit point mass, also called the Dirac measure, concentrated at
the point A;. The function built from this measure is

N. m
1+ S 1+ A0 1+ A
Q(§)1=f—dﬂ= — - -
Rt—g ;t—/l[ [:;Fl t—A;
Obviously, g is rational with degree at most m. It has a simple pole at each point A;.
Hence, its degree in fact must be equal to m. We are going to show that the scalar
product space generated by the Nevanlinna kernel of g has index of positivity equal to
N, and index of negativity equal to N_.

The measures in the Jordan decomposition of u are

N, m
My = 26/1[, y Z 6,11 .
i=1

i=N,+1

Thus dim Lz(;1+) = N, and dim L2(—,u,) =m—N; = N_. (1.1.11) provides us with an
isometric map ¢ from ¥ (M) into Lz(;1+) X Lz(—p,). Since 6 : ¥ (M) — C™ is linear
and surjective, we can choose a linear map ¢ : C" — ¥ (M) with 8 o % = idew. In fact,
in Example 1.2.16 we explicitely constructed such a mapping @ : C" — F(M).

Clearly, as a right inverse of an isometry, ¢ is also isometric. The composition ¢ o
thus maps C™ linearly and isometrically into L*(u,) X L*(—u_). Since C™ is
nondegenerated, ¢ o ¥ must be injective; cf. (1.2.7). By equality of dimensions, it is
bijective. Hence,

ind, (C™, [, .I) = ind, (L*(us) X L*(=p-)),
ind_(C™, [., ) = ind_ (L*(us) X L2(~p2)) . (1.6.7)
However, L>(u,) is positive definite and L>(—u_) is negative definite, and
L?(uy) X L*(—p_) is the direct and orthogonal sum of these two spaces. Thus L?(u) is
maximal positive definite, L?(—u_) is maximal negative definite; cf.
Proposition 1.4.12. Therefore,
ind, (L*(uy) x L*(—p_)) = dim L*(uy) = N, ,

1.6.8
ind_ (L2(uy) X L*(—p_)) = dim L*(u_) = N_. (1.08)

Putting together (1.6.6), (1.6.7), and (1.6.8), we see that for r := g we indeed have
ind, F(M) = N, and ind_ ¥ (M) = N_. o

1.6.11 Example. We will show that, contrasting the general case, a neat formula for
indy (M) and ind_ (M) can be given when g = 1, i.e., r is a polynomial

”(5) = /lmgm + /lm—lé‘mi1 st /10 )

.54
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with 4; € R, 4,, # 0. In fact, (here | x] denotes the largest integer not exceeding x)

1, modd, 4,,>0
0, otherwise

ind, F(M) =[§J +{

m 1, modd, 4, <0
ind_F(M) =| —
ind- ¥ (M) L 2 J " {0 , otherwise

To show these formulas, we investigate the Gram matrix G which was used to define
[.,.] on C" in Example 1.1.7 such that

Lf. &l = [6f, 081 = (G 6f.0g), f.g € F (M), (1.6.9)

where 6 : F(M) — C", 0f = (Xrem f({){i);'if)] is isometric and onto; see
Example 1.2.16. For { € M we have 66, = ({ i);’z)'. Since the Nevanlinna kernel of r
computes as

o~ m i =i m—1 i _
[6']’ 6(] _ K(é” 77) _ r(’]) - i(g) — Z /ll(rl _g) — Z /1[+1 Z nk(é«)l*k ,
n-¢ = n—¢ i=0 k=0

we get
[6,,0,1 = (B 65,,00;),

and hence by linearity [f, g] = (B 6f,6g), f,g € ¥ (M), where

/ll /12 e /lm—l /lm
A An 0
B=| : '
/lm—l /lm
/lm 0O ~covvieennn 0

Since 6 is onto, we obtain B = G from (1.6.9). Therefore, G is of Hankel form, i.e.,
has constant entries along each skew-diagonal.

As a subspace of (C™", [[., .]), where [.,.] = (G.,.),

£:=span{ek:k>m+]}

is neutral. It is thus in the same time positive semidefinite and negative semidefinite.
Due to (1.6.2), its dimension does not exceed either of ind, C” and ind_ C™". If m is
even, we have dim £ = 7 and hence ind, C",ind_- C" > 7. However, the sum of
these two number equals m, and it follows that

ind, C" =ind_C" = =
2

If m is odd, we have dim £ = [ 3 |. Moreover, the space L is orthogonal to

M= span{e% }. The space M is positive definite or negative definite, depending on
the sign of 4y = [ex1, €xa]. Hence, with (C”, [, .])) also MU is nondegenerated.
Since £ is a neutral and, hence, a positive and negative semidefinite subspace of
MU (1.6.3) gives | %] = dim £ < min(ind, M ind_ M1, As the dimension of
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MUl is m —1 =2 | 2] and equals to ind, MUY+ ind_ MU it follows that
ind, M = ind_ MIHT = L5 . Hence,

1, dd, 1, >0
ind, V = ind, (", [...]) = ind, MM +ind, M= |2 ] + { o ”

2 0, otherwise

and correspondingly for the index of negativity. o

1.7 Neutral Subspaces

We start the present section with an example which provides us with a procedure to
construct neutral subspaces.

1.7.1 Example. Let (‘V,[.,.]) be a scalar product space, and let £, L_ be two
subspaces with m := dim £, = dim £_ < oo and L, [L]L_ such that L, is positive
and £_ is negative definite. Moreover, let ay, ..., a,, be an orthonormal basis of £,
and by, ..., b, be an orthonormal basis of £_; cf. Definition 1.2.10.

ForAq,...,4, € Cwith[4;|=1,j=1,...,m,ie., A,...,4, € T. Set
M :=span{a; + A1by, ..., ay + by} . (1.7.1)
Clearly, dim M = m, and from
la; + ibi,aj+ A4;bj] = 6;j — 4i4;6;;=0, i,j=1,...,m,

we see that M is neutral.

The construction of this space M can also be viewed with the help of angular
operators. In fact, defining W : L, — L_by W(a;) = 4;b;, j =1,...,m, Mis exactly
the subspace of L, [+]£_ whose angular operator is W; see Lemma 1.5.1. From

|4l = 1 we conclude —[Wx, Wx] = [x, x], x € L,. With the help of Corollary 1.5.4 we
again see that M is neutral. O

The existence of neutral subspaces M of L, [+]L_ with dim M = dim £, = dim £_
is used in the following assertion.

1.7.2 Proposition. Let (V,[.,.]) be a scalar product space. Then for each maximal
neutral subspace M of V we have

dim M = min {ind, V,ind_ V} +indy V.

If this equality holds true for a neutral subspace M with dim M < co, then M is
maximal neutral. Moreover,

sup { dim M : M neutral subspace of 'V with M0 V' = (0} } =
= min {ind, V,ind_ V}.

Proof. Since any neutral subspace is negative and positive semidefinite, the
inequalities “<” here are consequences of (1.6.2) and (1.6.3).

Moreover, for a finite dimensional neutral subspace M with

dim M = min{ind; V, ind_ V} + indy V we obtain from Corollary 1.6.6 in the case
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ind; V < ind_ V that M is maximal positive semidefinite, and hence maximal
neutral. In case ind, V > ind_ V, we argue analogously.

For the converse inequalities “>”, pick m € Ny with m < min {ind, <V, ind- V}. Then
there exists a positive definite subspace £, of V with dim £, = m. We have
V= £+[+]£Er“, and hence ind_ LEJ = ind_ V > m; cf. Proposition 1.6.7. Choose a

negative definite subspace £_ of £ with dim £_ = m.

We saw in Example 1.7.8 that £, [+]£_ contains a neutral subspace of dimension m.
By Corollary 1.6.4 we have dim(£,[+]£-)! = 0. In particular, M N V! = {0}.

Passing to the supremum over m, this readily establishes the inequality “>" in the
second asserted relation. To obtain the corresponding inequality in the first asserted
relation, notice that the subspace M + VIl is neutral and

dim(M + V) = m + indy V. a

1.7.3 Remark. With £, and £_ as in Example 1.7.1 let M be any neutral subspace of
L, [+]L_ withdim M = dim £, = dim £L_ = m. By Corollary 1.5.4 the
corresponding angular operator W : dom W (€ L,) — £_, in fact, satisfies

domW = £, and —[Wx, Wx] =[x, x], x € L,.

Choosing any orthonormal basis ay, ..., a, of L., we define b; := Wa;,
j =1,...,m. Since by polar identity, (1.1.1), we have, —[Wx, Wy] = [x,y], y € L,
by, ...,b, is an orthonormal bases of £_.

Because of M ={x+ Wx:xe€ L.} =span{a; +b;: j=1,...,m}, we are in the
situation of (1.7.1) with Ay, ..., 4, = 1. ¢

Now recall Proposition 1.3.5. In the special case that M is a finite dimensional,
neutral subspace of a scalar product space (V, [.,.]) such that M N V!l = {0} this
result provides us with a nondegenerated subspace £ 2 M of dimension 2 dim M.

Take any nondegenerated subspace L 2 M of dimension at most 2 dim M. According
to Corollary 1.6.4 we have then 2dim M > dim £ = ind; £ + ind_ L. But from
Proposition 1.7.2 we see that dim M < min{ind, £, ind_ £}. Both inequalities are
only possible, if ind, £ = ind_ £ = dim M.

Take any decomposition £ = L, [+]L_ with a positive (negative) definite L, (£_).
We just saw in Remark 1.7.3 that M = span{a; + b; : j=1,...,m} for certain
orthonormal basises ay,...,a, of L, and by,...,b, of L_. Now set

N :=span{a;—b;:j=1,...,m}.

By Example 1.7.8 this is also an m-dimensional, neutral subspace of L. It is easy to
check that M + N coincides with the nondegenerated subspace L. Thus, we verified
the following assertion.

1.7.4 Proposition. Let (V,[.,.]) be a scalar product space, and let M be a finite
dimensional, neutral subspace of V. Assume that M0V = {0}, Then there exists a
subspace N of V, such that

N neutral, dimN =dimM, (M+ N = {0}.
More exactly, if L is a nondegenerated subspace of V containing the neutral subspace

Mwith dim L < 2dim M, then N can be choosen such that L = M + N. In this
situation, in fact, we always have dim £ = 2dim M, ind; £ = ind_ £ = dim M.
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Pairs of neutral subspaces having the property that their span is nondegenerated play
an important role.

1.7.5 Definition. Let (V,[.,.]) be a scalar product space, and let M and N be two
neutral subspaces of V. Then we call M and N skewly linked if

dim M < oo, dim N < oo, M+ N =0}

First, we collect some simple properties of skewly linked subspaces.

1.7.6 Lemma. Let (V,[.,.]) be a scalar product space, let M and N be two skewly
linked neutral subspaces of V. Then we have

MﬂszLdmhbmmszuM+Nh%mmM+NL (1.7.2)
MEIAM+N) =M, NHIM+N)=N. (1.7.3)

Proof. By symmetry, we can assume that dim M < dim N. For £ := M + N the
assumptions on M and £ in the second part of Proposition 1.7.4 are satisfied.
Therefore, dim £ = 2dim M, ind, £ = ind_ £ = dim M. From dim M < dim N and
L = M+ N we then get dim M = dim N and M N N = {0}. This proves (1.7.2).
We come to the proof of (1.7.3). The inclusions “2” are obvious. Assume that

xe M N (M+ N). Write x =y + zwithy € Mand z € N. Since M € MM, it
follows that also z € M. Hence,

ze M NN c M AN = (M + AT

and nondegeneracy of M + N implies that z = 0. Thus x = y € M. The inclusion “C”
in the second relation in (1.7.3) follows in the same way. a

1.7.7 Example. For 8 € C* = {z € C: Imz > 0} und an open subset U of C with
U=U"(={z:z€ U}) and B € U consider the space H(U) of all holomorphic,
C-valued functions defined on U. For f € H(U) the function

[@:=f@,z€eU,
is again holomorphic on U, i.e., f* € H(U). Clearly, (f*)" = f and (fg)* = f*g" for
f.g € H(U). Moreover, (f*)Y) = (f\)* for all degrees of derivation j € Nj.
For given m € N and d, ..., d;-1 € Cwith d,—; # 0

& (d, : d; -
[f.81:= Y |- e)B) + (- e B, f.g € HU),
=AvA J!

satisfies

___mlg __ __
[f,g1=2(7{ <f~g*><f><ﬂ>+7{<f-g*><f><ﬂ>)=

-1
J=0
m—1 (
—0

J

d; S d; A

(B + (S g*)“’)*(ﬂ)) =
& (d L d; 4

(T((f §VB) + 5 g*)*)“)(ﬂ)) =[g.f1.

=0\

I.

71
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Hence, (H(U),[.,.]) is a scalar product space. The mapping 6 : H(U) — C2" defined
by

of = ( AR

— "), f“”([f), o ")

- D! - D!

is clearly linear. By induction on m it is not hard to verify, that 6 maps the space
Clz]<m of all polynomials of degree less than 2m bijectively onto C2"_ Therefore, 6 is
onto. Since

Z (—(f gV (B) + { (f g*)<-f><B>) =
Z. .
=ZO i HZ k,l,f“‘)w) €)(p) + { Z k,l,f“‘)(ﬂ) )" @)
k+l=j k+l:j
11— 1 l—— - 1 _
= 2 780B) dia Y@+ Y 1808 et 5B
kf}lgesgl kf’llsenkkl

we see that 6 is isometric providing C*" with (G., .), where G is the selfadjoint matrix
of the block form

0 B
“(p o)
with
do dl e dm—2 dm—l
dl dm_] 0
B — E o .
dm—2 dm—l
dm_] 0 e 0

If fos oo foet 80 - - - m1 € H(U) such that £ (8) = 0 = g/ (B) for
J,k=0,...,m—1, then we see that span{fy, ..., f,—1} and span{go, ..., g1} are two
neutral subspaces of H(U) which are skewly linked. o

Next, we come to a description of pairs of skewly linked neutral subspaces in the
spirit of Example 1.7.1.

1.7.8 Example. Let (V,[.,.]) be a scalar product space, and let £, £_ be two
subspaces with m := dim £, = dim £_ < oo and L, [L]L_ such that L, is positive

and £_ is negative definite. Moreover, let ay, ..., a,, be an orthonormal basis of £,
and by, ..., b,, be an orthonormal basis of £_.

Againlet A;,...,4, € T,and letay,...,a, € T be a second sample of such numbers.
Set

M= span{a;+41by,...,an+Auby}, N :=spani{a+a1by,...,an+ayby,}. (1.7.4)

IfA; #a;foralli=1,...,m,then M+ N = L, [+]L_. Hence, M+ N is
nondegenerated. Since (i, j = 1,...,m)

[Cli + /libi, a;+ /ljbj] = [a,~ + (I,‘b,‘, a;+ (Ijbj] =0
[a;+/l;b;,aj+ajbj] = (1 —/l,»c"yj)éij, (175)

I.65
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these spaces are always neutral, and the condition 4; # «; foralli = 1,...,m, is not
only sufficient but also necessary for M and N to be skewly linked. o

All skewly linked subspaces can be obtained in this way.

1.7.9 Proposition. Let (V,[.,.]) be a scalar product space, let M and N be two
skewly linked neutral subspaces of V, and set m := dim M.

Let L, be a maximal positive definite subspace of M+ N. Then there exist
orthonormal bases {ay, . ..,ay,} of L. and {by, ..., by} ofLEr“, and numbers

sy Ay € T\ {1}, such that the subspaces defined in (1.7.4) withay = -+ = a,, = 1
coincide with the given spaces M and N.

Proof. We have dim(M + N) = 2m, (M + N)°! = {0}, and

ind,(M+ N) =ind_- (M + N) = m; cf. Lemma 1.7.6. Let £, be a maximal positive
definite subspace of M + N. Then M+ N = L,[+]£_, where £_ = L*] is negative
definite and dim £, = dim £_ = m.

In Remark 1.7.3 we saw that the angular operator W : dom W (€ L,) —» L_
corresponding to M is defined on L,, i.e., dom W = L,. The same is true for angular
operator V : domV (€ £L,) — L_ corresponding to N. The composition

U=V'oW : L, > L,
is thus a bijective linear map. For all x € £, we have
[Ux,Ux] = -[VUx,VUx] = —-[Wx, Wx] = [x, x],

i.e., it is unitary on the finite dimensional Hilbert space (£, [.,.]). Due to the the
Spectral Theorem for unitary matrices (see ) we find an orthonormal basis {ay, . .., a,}
of £, which consists of eigenvalues of U. Set b; := Wa,, then {by, ..., b,,} is an
orthonormal basis of £_.

Let us denote the eigenvalues corresponding to ay, . . ., a,, by Al,..., Ay € T. None of
these eigenvalues can be equal to 1. Assume on the contrary that, say, 4; = 1. Then
we have Wa; = VUa; = Va; and therefore,

a; +Way =a; +Va; e MN N ={0}.

Since a; € L, and Wa, € L_ are linearly independent, we have reached a
contradiction. Finally,

M={x+Wx:xe L,}=span{a;+Wa; :i=1,...,m} =span{a;+b; :i=1,...,m},

and

N={x+Vx:xeL,}=span{a; + VQAQUa):i=1,...,m}=
=spanfa; + AWa; :i=1,...,m} =spanf{a; + 3;b; : i =1,...,m}.

a

There is also another way to describe skewly linked subspaces with the help basises.
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1.7.10 Example. Let (‘V,[.,.]) be a scalar product space. Let m € N and
ai,...,am, by, ...,b, €V be such that

lai,a;] = [bi,b;] =0, [a;,b;] =65, i,j=1,...,m. (1.7.6)
Then it is easy to check that
M :=span{ay,...,a,}, N :=span{by,...,b,},

M and N are skewly linked neutral subspaces of V. o

As an immediate corollary of Proposition 1.7.9 and (1.7.5) we get

1.7.11 Corollary. Let (V,[.,.]) be a scalar product space, let M and N be two
skewly linked neutral subspaces of V, and set m := dim M. Then there exist basises
{ai,...,an}and {by,..., by} of M and N, respectively, such that (1.7.6) holds.

Given a pair of skewly linked neutral subspace M and N, we refer to each pair of
bases {ay,...,ay,} and {by, ..., b,} of M and N, respectively, which satisfy (1.7.6), as
skewly linked bases.

1.7.12 Remark. Any finite dimensional neutral scalar product space (M, [.,.]) can be
viewed as a subspace of a nondegenerated scalar product space (V, [.,.]) with

dim V = 2 dim M. In fact, take a copy N of M and set V := M x N. Now take bases
{ai,...,ay}and {by, ..., b,} of Mand N, respectively, and define [.,.] by linearity on
YV such that these basises are skewly linked. o

Each neutral subspace is at the same time positive semidefinite and negative
semidefinite. Hence, each neutral subspace which is maximal positive semidefinite or
maximal negative semidefinite is automatically maximal neutral. Interestingly, each
maximal neutral subspace must already be maximal in at least one of these larger sets.

1.7.13 Proposition. Let (V,[.,.]) be a scalar product space, and let M be a neutral
subspace of V. Then the following assertions are equivalent.

(1) M is maximal neutral.
(2) MW is semidefinite and M = (M),

(3) M is maximal positive semidefinite or maximal negative semidefinite.

Proof. For the proof of “(1) = (2)” assume that M is maximal neutral. Being neutral
means M € M1, Hence ML € (M and we see that MM is again
neutral. By maximality, thus MM = M. If M were not semidefinite, the second
assertion in Proposition 1.7.2 applied to M) would provide us with a nonzero
neutral subspace N satisfying N N (ML) = (0}. However,

M ME A MUEIT = (MDYl Consequently, M[+]N would again be neutral and
would contain M properly.

Next, we show “(2) = (3)”. For definiteness, assume that M!*! is positive
semidefinite. Let V be a negative semidefinite subspace with M € N. Due to
Corollary 1.4.6, we get M € (N)°l € N and in turn

N c NI c pq]

I.63
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I.28.

ML being positive semidefinitem and A being negative semidefinite yields that NV is
neutral. Consequently,

N C (MlJ-J)[OJ C MlJ-J[lJ =M.

We conclude that M is maximal negative semidefinite.

The implication “(3) = (1)” follows from the fact, that any neutral space containing
M is both, negative and positive semidefinite. a

1.7.14 Remark. Notice that in the proof of “(2) = (3)” we have shown that M
being positive semidefinite (and M = (M*1)I4]) implies that M is maximal negative
semidefinite. The same holds, of course, with “positive” and “negative” exchanged.

O
In view of this result, the following stronger maximality property of a neutral
subspace appears to be natural.
1.7.15 Definition. Let (‘V,[.,.]) be a scalar product space, and let M be a linear
subspace of V. Then we call M hypermaximal neutral, if it is maximal positive
semidefinite and maximal negative semidefinite. o

Clearly, each hypermaximal neutral subspace is maximal neutral. The converse,
however, need not hold. For instance consider the subspace span {((1))} in

Example 1.4.10.

The following characterization of hypermaximality becomes especially appealing

when one remembers that a subspace M is neutral if and only if M € M!*); see
Corollary 1.4.6.

1.7.16 Lemma. Let (V,[.,.]) be a scalar product space, and let M be a linear
subspace of V. Then M is hypermaximal neutral if and only if M = M,

Proof. Clearly, M*! = M yields M1 = M. Moreover, M*! is neutral. By what
we said in Remark 1.7.14, M is maximal positive semidefinite and maximal negative
semidefinite.

Conversely, assume that M is maximal positive semidefinite and maximal negative
semidefinite. Then M is neutral, i.e. M € M. Due to Proposition 1.7.13, M is
semidefinite. By the maximality assumptions on M, we finally get M = M4 a

1.7.17 Remark. Due to Corollary 1.6.6 in combination with Remark 1.4.8,
ind; V = ind_ V is a necessary condition for the existence of hypermaximal neutral
subspaces.

In a space V satisfying ind, V = ind_ V every maximal neutral subspace is
hypermaximal neutral, as can be seen from Proposition 1.7.2 and Corollary 1.6.6. ¢

1.7.18 Example. Let (H,[.,.]) be a Hilbert space, and consider the linear space
H x H. We define

[(x:y), (@; )] == i([x, b] = [y, al), (x;y),(a;b) € HXH.

It is easy to check that [.,.] is a scalar product.

Let T be a bounded linear operator on H and denote by 7* its adjoint, i.e., the unique
bounded linear operator on H which satisfies

[Tx,y] =[x, T*y], x,yeH. (1.7.7)

I.

29
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Consider the graphs

graphT :={(x;y) e HxH : y=Tx}
graphT" :={(x;y) e H X H 1y = T"x}

of these operators. (1.7.7) gives

[Cx; ), (@; b)1 = i([x, b] = [y, al) = i([x, T"a] = [Tx,a]) = 0,
(x;y) € graph T, (a;b) € graphT",

i.e., graph T* C (graph T)I41. Conversely, if (a; b) € (graph T)I*1, then
[x,b] = [Tx,a] = [x,T*al, xeH,
and hence b = T*a, i.e., (a; b) € graph T*. Alltogether, we have
graph T* = (graph T)I+1.

In particular, the operator T is symmetric if and only if graph 7T is a neutral subspace
of (H X H,[.,.1), and T is selfadjoint if and only if graph T is hypermaximal neutral.
¢
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We consider scalar product spaces which in addition carry a topology such that
the scalar product is continuous. Our focus lies on three particular kinds of such
spaces: Pontryagin-, almost Pontryagin-, and Krein spaces. Concerning the
geometric setup, these are the main players throughout the book, and we
investigate them in some detail. A uniformising concept is the notion of Gram
spaces.
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2.1 Basic Consequences of Continuity

Let (A, [.,.]) be a scalar product space, and let O be a topology on ‘A. We are
interested in situations when the scalar product is continuous as a map of AXA into
C, where AxA is endowed with the product topology OxO. To simplify language,

45
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we say that [.,.] is continuous w.r.t. O to express this property. If O is induced by a
positive definite scalar product (.,.) or , more generally, by a norm ||.|| on A, we say

that [., .] is continuous w.r.t. (.,.) or [.,.] is continuous w.r.t. ||.||, respectively. Note that,
if O is induced by a norm ||.||, the product topology is induced by

1 .
e I == ((Ixll* + [[ylI*)2, the maximum norm [|(x; y)|| := max{||x]|, [lyll} or any other

equivalent norm.

To start off, a characterization of continuity in concrete terms.

2.1.1 Proposition. Let (A, [.,.]) be a scalar product space, and let ||.|| be a norm on
A. Then the following assertions are equivalent.

(1) The scalar product [.,.] is continuous w.r.t. ||.||.

(2) There exists a constant C > 0, such that

|lx. 1| < Clixdl - bl x.y € A. 2.1.1)

(3) There exists a constant C > 0, such that

|lx.x]| < ClIxIP, xeA. (2.1.2)

Proof. For “(1) & (2)” assume that the scalar product is continuous w.r.t. ||.||. Then it
is, in particular, continuous at the point (0; 0). Hence, there exists a 6 > 0 such that

eyl < Ll bl < 6.

Set C := 6% If x,y e Awith x =0ory =0, then (2.1.1) holds trivially. If x,y # 0, we
have

1 1)
—X, _y < ] s
|[lell [Ivll ]|
and again (2.1.1) follows.
For the implication “(2) & (1)”, assume that (2.1.1) for some C > 0. The continuity
of [.,.] at any point (xg; yo) € AXA is a consequence of
|, 31 = [0, yol| < |[x = x0, 31| + |[x0, ¥ = Yol <
< Cllx = xoll - [Iyll + Cllxoll - lly = yoll <
< Cllyoll - llx = xoll + Cllx = xoll - lly = yoll + Cllxoll - lly = yoll -

The implication “(2) = (3)” is trivial. In fact, in (2.1.2) we may use the same constant
C > 0 as provided by (2.1.1). For “(3) = (2)” let C > 0 be such that (2.1.2) holds
true. We are going to show (2.1.1) with the constant 4C. By sesquilinearity it is
enough to show that

[yl <4C, Il ibi <1, xyedA.
Let x,y € A with ||x]|, |yl < 1. Using the polar identity, (1.1.1), we have

A0 y]| = [Dx+ o x + 3] = [x =y, x = y] + ilx + iy, x + iy] — ilx — iy, x = iy]| <
< C(llx + IR + lx = I + llx + iyl® + llx = iyl?) < 4C(IIxdl + [Iyl)* < 16C.

a

.2

.3
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We will see a large class of examples for continuous scalar products later on, cf.
Example 2.2.4. Right now let us only observe that not for every scalar product [., .]
there exists a norm ||.|| such that [., .] is continuous w.r.t. ||.]|.

2.1.2 Example. As in Example 1.3.7 consider the linear space of all left-finite
two-sided sequences

(V5={(aj)jez€CZ: AdNeN:q;=0,j<-N},
with the scalar product
[(a,j)jEZ7(ﬂj)j€Z] = Zal ‘,871;1, (a'j)jEZ’ (ﬁj)jez eV.
JEZ

Assume that ||.|| is a norm on V such that [.,.] is continuous w.r.t. ||.||, and let C > 0 be
as in (2.1.1). For e; := (6x;) jez consider the sequence a := () jez defined as

_JG+Dlle—jall » j=0
aj = .
0 , j<0
For each k € Ny,
(k + Dlle—g-1ll = ax = [a, e—k-1]1 < C llall - lle—-11l-
Hence, we get the obvious contradiction k + 1 < C||a|| for all k € N. o

A slight modification of the above argument shows that there exists no locally convex
topology O on V, such that [.,.] is continuous w.r.t. O.

Next, some immediate properties of continuous scalar products.
2.1.3 Lemma. Let (A, [.,.]) be a scalar product space, let ||.|| be a norm on ‘A, and

assume that [.,.] is continuous w.r.t. ||.||. Then the following assertions hold.

(1) Foreachy € A the functional

[.y] :{ ﬂ; e

N
= [xy]
Is continuous.

(2) For each subset M C A, the orthogonal complement MM is a closed subspace.
Moreover, M) = ct(M)'™*, where ct(M) denotes the closure of M w.rt. ||.||.

(3) The isotropic part LI of any closed linear subspace L of A is closed.

(4) Let L be a finite dimensional and nondegenerated linear subspace of A. Then the
orthogonal projection P of A onto L is continuous.

Proof. The first assertion follows from (2.1.1). In fact, the norm of [., y] does not
exceed C|ly||. Item (2) follows from

M = ﬂker[.,y],
yeM

and the fact that, due to continuity [x,y] = 0, y € M implies [x,y] =0, y € cf(M) for
any fixed x € A. Item (3) follows from LI°! = £ n £I4), and (4) from the
representation of P in Remark 1.3.4. a

.
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The following continuity property of the index of positivity (negativity) is less
obvious.

2.1.4 Proposition. Let (A, [.,.]) be a scalar product space, let ||.|| be a norm on A,
and assume that [ ., .] is continuous w.r.t. ||.||. Let L be a linear subspace of ‘A, and
denote by cl(L) the closure of L w.r.t. ||.||. Then ind, c€(L) = ind; L and

ind_ cf(L) = ind_ L.

We give the proof along the ideas presented in Proposition 1.6.8, and use the
determinantal criterion of Sylvester for positive definiteness of a quadratic form; cf. .

Proof (of Proposition 2.1.4). The inequalities “>” is an immediate consequence of

L C cl(L); cf. Proposition 1.6.7. We show the reverse inequality for the index of
positivity. The reverse inequality for the index of negativity is treated in the same way.
Let n € N with n < ind, c€(L), and choose a positive definite subspace M of A with
dim M = n. For any basis {xi, ..., x,} of M by Proposition 1.6.8 we have

ind, ([x;, x,']):.”j:1 = n, i.e., the quadratic form

n
Oar,....a) = Y @ [x),x] @
i,j=1
is positive definite. Sylvester’s criterion gives

D,, := det([xj,xi])?fj:1 >0, m=1,...,n.

Since L is dense in c¢£(L) and D,, depends continuously on xi, . . ., x,, we find
elements xi, ..., x, € £ with

D = det([x_'/,x,’(]):fszl >0, m=1,...,n.
Again appealing to Sylvester’s criterion, ind+([x;, x;]):‘l,’:l = n and hence, the space
span{x/, ..., x,} (€ L) is positive definite. We conclude that n < ind, L. Passing to
the supremum over #, yields ind, cf(£) < ind; L. a

2.1.5 Remark. Since positive (negative) semidefiniteness of a subspace £ can be
characterized by ind_ £ = 0 (ind; £ = 0), we get from Proposition 2.1.4 that the
closure of positive (negative) semidefinite subspaces is again positive (negative)
semidefinite. o

We close this section with a somewhat more specific lemma which is often useful.
Thereby, we call a family ¥ of linear functionals on a linear space A point
separating, if for each x € A \ {0} there exists ¢ € ¥ with ¢(x) # 0. By linearity, this
is equivalent to

Vx,yeA,x#ydpeF : @)+ o) (2.1.3)

2.1.6 Lemma. Let A be a linear space, and let ||.||y and ||.||l» be norms on A which
both turn A into a Banach space. If there exists a point separating family of
functionals on A which are all continuous with respect to both norms, then |.||; and
||.Il> are equivalent.
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Proof. We check that the identity map id# : (A, ||.|l1) = (A, |l.|l2) has closed graph.
Let (x,)nen be a sequence in A such that x, — x w.r.t. ||.||; and x, — y w.r.t. ||.||». Let
¢ be a functional on A which is continuous w.r.t. to both norms. Then we have

e(x) = im0 @(x,) = @(y). By the present assumption, the totality of all such
functionals is sufficiently rich to ensure that x = y.

The closed graph yields the continuity of idg : (A, |.]l;) = (A, |l.ll2). By symmetry
also idg : (A, .Il) = (A, |l.llh) is continuous. a

The significance of this fact at the present stage is the following application. Another
interesting application will be seen later, cf. . Missing
Lokal Ref-

2.1.7 Corollary. Let (A,[.,.]) be a scalar product space, let ||.||; and |||l be norms on
A which both turn A into a Banach space, and assume that [.,.] is continuous w.r.t.
both of these norms. If A1 = {0}, then ||.|l; and ||.|l, are equivalent.

erence

Proof. Since A is nondegenerated, the family {[.,y] : y € A} is point separating. [

2.2 Gram Spaces

Concerning the geometrical setup, the main players in this book are scalar product
spaces whose scalar product is continuous with respect to a well-behaved topology.

Definition and Examples

2.2.1 Definition. Let A be a linear space, and let O be a topology on A. We call O a
Hilbert space topology on A, if there exists a scalar product (.,.) on A such that
(A, (.,.)) is a Hilbert space and the topology induced by (., .) equals O.

Given a Hilbert space topology O on A, we call a scalar product (., .) compatible with
O, if it turns A into a Hilbert space and induces O. o

Of course, given Hilbert space topology O on A, the Hilbert space scalar product (., .)
which is compatible with O is not uniquely determined — only the corresponding
norms are equivalent.

2.2.2 Definition. We call a triple (A, [.,.],0) a Gram space, if

(1) (A,[.,.] is a scalar product space.
(2) O is a Hilbert space topology on A.

3) [.,.]is continuous w.r.t. O.

If it is clear from the context to which topology O and scalar product [.,.] we refer it,
then we will drop the explicit notation of O and [., .], and speak of a Gram space A.



50

CHAPTER 2. SCALAR PRODUCT SPACES WITH TOPOLOGY

The terminology “Gram space” originates from the existence of Gram operators.
Indeed, given a Gram space (A, [., .], O) and a Hilbert space scalar product (.,.) be
compatible with O, by the Lax-Milgram theorem (see ), there exists a unique bounded
and selfadjoint operator G on (A, (., .)), such that

[x,y] = (Gx,y), x,yeA. 2.2.1)

This operator is called the Gram operator of [.,.] w.rt. (.,.).

2.2.3 Remark. Our focus lies on the scalar product [., .], its continuity, and the fact
that the topology O is well-behaved. An actual concrete compatible scalar product
(.,.), and with it, a concrete Gram operator G, is not viewed as an intrinsic object.
Making a choice of a compatible scalar product is often of great help and will be used
heavily, but essential, intrinsic properties of a Gram space should be independent of
this choice. o

The following example is basic. It exhibits a large class of Gram spaces. The spaces
we deal with later on, namely Krein-, almost Pontryagin-, and Pontryagin spaces, are
of this kind.

2.2.4 Example. Let (A, (.,.)+), (A, (.,.)-), and (Ao, (., .)o), be Hilbert spaces. Set

A=A X A_X Ay
[ y:2), s viw)] i= (L u)e — (0, v)-, (Y32, (w;v;w) € A, (2.2.2)
(6 y;2), ;v w)) := (x5, )y + 0, V)- + (z,w)o, (%3 2), (w3 v;w) € A.

Then [.,.] and (., .) are scalar products on A, and (A, (., .)) is a Hilbert space such that
[(x:y:2). iy D] < (32, (13y:2)). (x:y32) € AL

Hence, [.,.] is continuous w.r.t. to (., .). Denote by O the topology induced by (., .).
Then the triple (A, [.,.], O) forms a Gram space.

The spaces A, A_, Ay are naturally embedded in A, and we always think of them as
subspaces of A. In other words, we tacitly identify the direct product A, X A_ X Ay
with the direct sum A, +A_+Ay. As subspaces of A, each of A, A_, and A, is
closed. Moreover, these subspaces are pairwise orthogonal w.r.t. both scalar products
[.,.]and (.,.). We have A = Ay, and (A, [.,.]) and (A_, —[.,.]) are both Hilbert
spaces.

Denote by P, and P_ the projections of A onto A, and A_ with kernel A_ + Ay and
Ay + Ay, respectively. Then the Gram operator G of [.,.] w.r.t. (.,.) is given as
G=P,—-P_. o

2.2.5 Remark. If (A, [.,.]) is a nondegenerated scalar product space, then there exists
at most one topology which turns A into a Gram space, cf. Corollary 2.1.7. Hence, for
nondegenerated spaces, being a Gram space can be seen as a property of the scalar
product alone. o

It is interesting to observe that generically, for a degenerated space the topology is not
unique. This also justifies notating a Gram space as triple (A, [., .], O), rather than as
tuple (A, [.,.]) and requiring mere existence of O.

Missing
Reference
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2.2.6 Example. Let (A, (.,.)+), (A, (.,.)-), and (Ao, (., .)o), be Hilbert spaces, and
assume that

dimA, =0, Ay # {0}.
Let (A,[.,.], O) be the Gram space defined in (2.2.2).

Choose ¢ € Ay with (¢, c)g = 1, and a linear functional ¢ : A, — C which is not
continuous with respect to (., .)+. For the existence of such a functional, simply take a
linearly independent, countable system {b, : n € N} of vectors with

by, b))+ =1, n € N, set ¢(b,) = n, and continue ¢ to a linear functional on A..

The linear mappings @, ¥ : A — A defined by
DO(x;y;2) = (i y; 2+ (X)), P(xy:2) = (i y;z2— (X)), (x1y;2) € A,

satisfy ® o ¥ = ¥ o ® = id 4. In particular, @ is bijective with ¥ as its inverse. Next,
we define a scalar product (.,.) on A by

(06 y; 2), (s v; W) == (O(x; y; 2), P(u; v; W), (x;y;52), (u; v; w) € A.

Then (A, (., .))) is a Hilbert space, and @ is a unitary operator from (A, (., .)) onto
(A, (.,.)). Denote by 7 the topology induced by (., .). Since,

[[(x:y:2). (33 ]| < (1 04 + 3 y)- < (32, (5 y:2)), (y32) € A,

the scalar product [.,.] is continuous w.r.t. 7. Thus (A, [.,.],7") is a Gram space.
However,

((x;050), (0;0;0)) = p(x), x€ A,
yields the continuity of ¢ w.r.t. 7|4, . This shows 7~ # O. o

2.2.7 Remark. Since all norms on a finite dimensional vector space are equivalent, for
finite dimensional Gram spaces (A, [., .], O) the topology O is uniquely determined. In
particular, if [., .] is a nondegenerated scalar product on A and by, ..., b, is a basis of
A, then

n

) = Y [ bllbyy], xyeA,

/=

constitutes a Hilbert space scalar product on A inducing O. o

Properties and Constructions

2.2.8 Proposition. The following constructions can be carried out within the class of
Gram spaces.

(1) Let (A,[.,.],0) be a Gram space, and let L be a closed linear subspace of A.
Then (L, [., g, Oly) is a Gram space.

Let (.,.) be a compatible scalar product, G the Gram operator of [., ] w.rt. (.,.),
and denote by P the (., .)-orthogonal projection of A onto L. Then (., .)| s is
compatible with the subspace topology O|z, and the Gram operator of ., ]| s
w.rt. (., ) is PGly.
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(2) Foreach je{l,...,n}let (A},[.,.1;,0)) be a Gram space, and denote by |., .] the
sum scalar product on H;L] Aj, Le.,

n

[(x15- e 520), 015+ 5 90)] 1= Z[xj,yj]j, Xj,yj € Aj. (2.2.3)
=1
Then (12 A, [, .1, IT}2, O;) is a Gram space.

For je{l,...,n}let (., .); be a compatible scalar product on A, and let G; be
the Gram operator of [.,.]; w.r.t. (.,.);. Then the sum scalar product

(150 O3 0) 5= ) 3y X3,y € Ay,
j=1

is a Hilbert space scalar product on [1’_; A;, and it is compatible with the
product topology H’}:] Oj. The Gram operator of [., .1 w.r.t. (., .) is, written as a
block operator matrix, diag(Gy, ..., Gp).

vielleicht (3) Let (A,[.,.]1,0) be a Gram space, and let B be a closed subspace of AL, Then a
eine art von scalar product [., .] on A/ g is well-defined by

h 5
omomor [x+8,y+8]:=[xy, xyeA. 224

phiesatz

anfuegen Moreover, there is a unique Hilbert space topology O/ B on A| B such that the
canonical projection m : A — A/ B is continous and maps open subsets onto
open subsets, and (A/ B, [., .1, O/ B) is a Gram space.

Let (., .) be a compatible scalar product, G the Gram operator of [., ] w.r.t. (.,.),
and denote by Pg.) the (., .)-orthogonal projection of A onto B™Y). Then

(x+ B,y + B) := (Pguwx, Pguy), x,y€ A, (2.2.5)

constitutes a Hilbert space scalar product on A/ g compatible with O/ g, and the
Gram operator of [[., ] w.rt. (.,.) on A/ R is given by x + B — (Gx) + B.

Proof.
Subspaces: Since L is closed, (L, (., .)| ) is a Hilbert space. Moreover,

[x.y] = (Gx,y) = (PGlx. Vlpe. xy€ L.

Products: 1t is enough to compute

n

(G5 ees0), s s yw)] = Z[xj,y_/]j =

=1

= > G = (Grxis. .3 Gaxa), (153 3w))
=1

Factors: For a compatible scalar product (., .) on A, denote by Pgw) the
(., .)-orthogonal projection of A onto B, Then the factor space A/ g can be
identified with the closed subspace B via the map

Y:ix+8BH Pgux, xeA.
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Consequently, (2.2.5) defines a Hilbert space scalar product inducing the Hilbert space
topology O/ g on A/ B. Since A as a Hilbert space can be identified with B x BWL),
Pgw = o mis continuous and open. Hence 7 also has these properties. The
uniqueness of O/ g with these properties immediately follows from the Open

Mapping Theorem; see . Finally, x + 8 — (Gx) + B is well defined because of Missing
B c Al = ker G, and due to Reference

[x+B,y+ 8] = [x,y] = (Gx,y) = (Gx, Pgwvy) = (PgwGx, Pguy) = (Gx)+B,y+B),
it is the Gram operator of [., .] w.r.t. (.,.) on A/ B. a

2.2.9 Remark. As mentioned in Remark 1.2.5 for linear subspaces £, ..., L, of a
scalar product space V satisfying L[ L]1.L;, L; N L; = {0}, i # j, the scalar product
subspace L[+]...[+]L, of V can be identified in a natural way with the scalar
product space []%, L;.

For Gram spaces a similar identification can be made. Indeed, let (A, [.,.],O) be a
Gram space, and let £y, ..., L, be closed subspaces satisfying

LilL1L;, Lin L;={0}, i# jsuchthat Li[+]...[+]L, is a closed subspace of A.
By Remark 1.2.5 the map

. [T, L — Li[+]...[+]1L,
¢ (x1;

e Xy) B X+t X,

is linear, bijective, and isometric when []}_, £; is endowed with the sum scalar
product. Providing .£; with the subspace topologies O|r,, ¢ is clearly continuous,
when £ [+]...[+]L, carries the subspace topology Ol r,[+]..(+1z,- Since all subspaces
under consideration are closed, and hence carry a Hilbert space topology, by the open

mapping theorem, , the mapping ¢ is also bi-continuous. Thus, ¢ not only retains the Missing
algebraic structure, but also the topological structure. ¢ Reference
2.2.10 Lemma. Let (A, [.,.],0) be a Gram space. Let (., .) be a compatible scalar

product, and G the Gram operator of [.,.] w.r.t. (.,.). For each subset M C A we have

M = Gn) " = 67 (M),

where (MY) denotes the inverse image {x € A : Gx € MY} of MY under G. In
particular, we have ker G = Al°.

Proof. For (1) compute
reA © VyeA: [x,y]=0 & Vye A:(Gx,y) =0 & Gx=0
An element x belongs to M' 41 if and only if [x,y] = O for all y € M. Now we have

VyeM:[x,yl=0 & VYyeM: (x,Gy)=0 & xe (GM)™"
VyeM:[xyl=0 & VyeM:(Gx,y) =0 & Gxe MY o xeG'(MY)

For M = A we get Al°! = A = GH(AWY) = G71({0}) = kerG. Q

One of the great advantages of Gram spaces (A, [., .], 0) is to split up the space A into
subspaces with the help of the spectral measure E of the Gram operator G of [., .]
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w.r.t. a given O-compatible Hilbert space scalar product (.,.) on A. Let us recall in the
following some of the most important details on spectral measures .

A spectral measure on R is a mapping E, which assignes to any Borel subset A of R a
bounded, linear operator E(A) on A with the following properties:

(i) E(A)isa(.,.)-orthogonal projection.
(if) E(0) = 0 and E(R) is the identity mapping on A.
(iii) E(A1 N Ay) = E(A1)E(A) for two Borel subset A, A, of R.
(iv) For any sequence of pairwise disjoint Borel subsets A,;, n € N, of R one has

() = gE(An)

neN

in the strong sense, i.e., E( Uiy A,,)x =Yy E(Ap)xforall x € A.

Given spectral measure E on R for any measureable bounded function ¢ : R —» C
there exists a unique bounded operator E(¢) on A such that

(E(¢)x,X)=f¢(t) dE. (1), xe A,
R

where E, . is the nonnegative measure on R defined by
E.«(A) := (E(A)x,x), A Borel subsetof R.

Denoting by 1, the indicator function of the set A, in particular, E(15) = E(A) for any
Borel subset A of R. The functional calculus ¢ — E(¢) is linear and multiplicative.

It is a well known result in Functional Analysis (see ) that for any bounded selfadjoint
operator G there exists a spectral measure E on R such that E is supported on the
spectrum o (G) of G, i.e., ER \ 0(G)) = 0, and such that E(idg) = G.

Note here that since E(R \ 0(G)) = 0, we have

ftdEx,x(t) = f]l(r(c) “tdE, (1)
R R

Hence, idg can be identified with the bounded function ¢ + 1) - f, which makes it
possible for us to define E(idg).

Finally, recall that if E(U) = 0 for an open subset of R and A € U, then

¢t Ip\y()- ﬁ satisfies E(¢)E(idr —1) = E(1r\v) = E(R) = I. Hence,
A€eR\0(G)andin turn U C R\ 0(G). Thus, R \ o(G) is in fact the maximum of
open subsets U of R with E(U) = 0.

2.2.11 Lemma. Let (A,[.,.],0) be a Gram space. Let (.,.) be a compatible scalar
product, G the Gram operator of [., .] w.r.t. (.,.), and denote by E the spectral measure
of G. For any Borel subset M of R and x € ran E(M) we have

inf(M N o(G)) (x, x) < [x, x] < sup(M N o (G)) (x,x).

If on the left or on the right hand side we have equality, then

x € ran E({inf(M N 0(G))}) or x € ran E{sup(M N o(G))}), respectively. Under the
additional assumption that inf(M N o(G)) ¢ M N o(G) or

sup(M N o (G)) ¢ M N o(G), respectively, we even have x = 0.
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Proof. If M C R is a Borel set and x € ran E(M), then

(x,x) = (E(M)x,x) = f

o

Ly dE,, = f 1dE,, = (EM 0 o(G)x. ).
(G) Mno(G)

t-1y(®)dE, () = f t-1dE, (1).

Mno(G)

[x, 21 = (Gx, %) = (E(M)Gux, x) = f

a(G)

Since inf(M N o(G)) < t < sup(M N o(G)) for t € M N o(G), we obtain the mentioned
inequalities.

If, say, the right inequality is an equality, i.e., [x, x] = T (x, x) with
7 := sup(M N o(G)), then

f (T—-0dE,\(t) = f (T—0dE, () =0.
Mno(G)\{1} Mno(G)

Since (r —t) > 0 on M N o(G) \ {7}, the measure of integration must be the zero
measure on M N o(G) \ {r}. Hence,

(x, x) = (E(M N 0(G))x, x) = (E{tlx, x) = (E{t}x, E{1}x),
showing that x € ran E({r}). In case 7 ¢ M N o(G), we get
X € ran (E(M N o-(G))) Nran E({7}) = {0} .
Equality on the left is treated in the same way. a

2.2.12 Proposition. Let (A, [.,.],0) be a Gram space. Let (.,.) be a compatible
scalar product, G the Gram operator of [.,.] w.r.t. (., .), and denote by E the spectral
measure of G. Then A admits the decomposition

A = ran E(0, o) [+] ran E( — c0,0) [+] ran E{0} . (2.2.6)
———
=ker G=Al°

(1) The spaces in the decomposition (2.2.6) are closed, and the topology O coincides
with the product topology of the subspace topologies Olan E0,00)» Olran E(—0,0), and
O\ o1, where we identify the above direct sum with the corresponding direct
product. Moreover, the sum (2.2.6) is also orthogonal w.r.t. (., .).

(2) The space (ran E(0, 00), [., .]) is positive definite, and (ran E(—c0,0), [.,.]) is
negative definite. Consequently,

ind,(A,[.,.]) = dimran E(0, o),
ind_(A,[.,.]) = dimran E( — 00,0), indy(A,[.,.]) = dimran E{0}.

(3) The space (ran E(0, 00), [., .]) is a Hilbert space if and only if
inf(o(G) N (0, 00)) > 0. This is certainly true, if ind. (A, [.,.]) < co.
The space (ran E(—00,0), —[., .]) is a Hilbert space, if and only if
sup(o(G) N (=0,0)) < 0. This is certainly true, if ind_(A, [.,.]) < 0.



56

CHAPTER 2. SCALAR PRODUCT SPACES WITH TOPOLOGY

Proof. Since (0, o), (—00,0) and {0} constitutes a partition of R, it follows from the
properties of spectral measures that we have

A = ran E(0, ) (+) ran E( — 0,0) (+) ran E{0},

and item (1) follows; see also Remark 2.2.9.

By Lemma 2.2.11 applied to (0, +o0) we see that (ran E(0, o), [.,.]) is positive
definite. Similarly, (ran E( — o0, 0)), [.,.]) is negative definite and (ran E{0}, [.,.]) is
neutral. (2) now follows after a glance at Proposition 1.6.7.

As GlmE((0 ) is the Gram operator of [.,.] on ran E(0, c0) by Lemma 2.2.10
ker Glran £(0.00) = {0}. Similarly, ker Glran E(-w00) = {0}. Therefore,
Al = ker G = E{0}.

We come to the proof of the assertions about ran E(0, o) in (3). The assertions about
ran E(—o0, 0) are verified very similar. If inf((0, o) N 07(G)) > 0 by Lemma 2.2.11 the
norms |[., .]% and (., .)% are equivalent. Since (., .)% turns ran E(0, o) into a Hilbert
space, so does [., .]%.

Assume conversely that [., .]% turns ran E£(0, o) into a Hilbert space. The functionals
[.,y], y € ran E(0, c0) are continuous w.r.t. both norms, [., .]% and (., .)E] , and the family
of all these functionals is point separating. Hence, the norms [., .]% and (., .)% are
equivalent; cf. Corollary 2.1.7. Let € > 0 be such that

[x, x] > &(x,x), xeranE(0, ).

By Lemma 2.2.11 applied to M = (0, &) we infer ran E(0, &) = 0. From
0 (Glran Emy) € (M) applied for M = (—00,0] U [g, +o0) we get (0, &) N o(G) = 0.

Finally, assume that ind_(A, [.,.]) = dimran E((0, 0)) < co. It follows from
E(0,00)x = E[1,0(G)]x + Xy [, 1)x, that

n+1’

ran E(0, 00) = € ( U ran E[%, a(G)]).
neN

Since the left hand side is finite dimensional, the closure is not necessary, and this
union of increasing subspaces, in fact, must concide with one space of the form
ran E[L, o(G)]. This, in turn, yields E(0,1) = 0. Q

The basic difference between the general situation and the situation exhibited in
Example 2.2.4 is now apparent. In fact, every Gram space can be constructed as a
direct and orthogonal sum of a positive definite, a negative definite, and a neutral
space, but the two definite summands need not be complete with respect to the norm
induced by [.,.] or —[., .], respectively.

2.3 Krein Spaces

We specify a subclass of the class of all Gram spaces.
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Definition and Examples

2.3.1 Definition. We call a triple (A, [., .], O) a Krein space, if

(1) (A,[.,.],0) is a Gram space.

(2) There exists a compatible Hilbert space scalar product, such that the
corresponding Gram operator G is bijective, i.e., the point 0 belongs to its
resolvent set p(G).

¢

2.3.2 Example. Let (A, (.,.)) be a Hilbert space and denote by O the topology induced
by (.,.). For any bounded and selfadjoint operator K : A — A we can consider
G:=1+Kand[,.]:=(G.,.). Clearly, (A,][.,.],0) is a Gram space.

Assume in addition that K is finite dimensional, i.e., dimran K < oo or equivalently
ker K = (ran K)™" is of finite codimension in A. In this case we have
ind_(A,[.,.]) < dimran K < oco. In fact, if L is a negative definite subspace, and
x € L NkerK, then

[x, x] = (I + K)x,x) = (x,x),

)(l)

and in turn x = 0. Since ker K = (ran K has codimension dimran K in A, L be of

dimension at most dimran K.

Moreover, for finite dimensional K the Gram operator G is bijective, i.e., (A, [., .], O)
is a Krein space, if and only if ker(/ + K) = {0}, i.e. [.,.] is nondegenerated; cf.
Lemma 2.2.10.

In fact, since ker(/ + K) = (ran({ + K) )(L), the condition ker(/ + K) = {0} is
equivalent to the density of ran(/ + K) in A. But ran(/ + K) always contains the closed
subspace (I + K)(ker K) = ker K. Hence, as a finite dimensional extension of a closed

subspace also ran( + K) is closed; see . Therefore, ker(/ + K) = {0} is necessary and Missing
sufficient for ran(/ + K) = ‘A. o Reference

The first thing to do, is to show that the property of being a Krein space is an intrinsic
property of (A, [.,.],0). Thereby, we denote by (A, O)' the topological dual space of
A with respect to the topology O, i.e.,

(A,0) :={p: A—> C : ¢linear and O-continuous} .

2.3.3 Theorem. Let (A,[.,.],0) be a Gram space. Then the following assertions are
equivalent.

(1) (A,I.,.],0) is a Krein space.

(2) The topological dual space of A is given as

(A,0) ={[.,y]: ye A}. (2.3.1)

(3) The space A admits a decomposition A = A, [+ A_ where A, and A_ are
closed, and (A4, [.,.]) and (A_, —[.,.]) are Hilbert spaces.
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(4) There exists a certain O-compatible Hilbert space scalar product (., .), such that
for the corresponding Gram operator G of [., ] w.rt. (.,.) and its spectral measure
E we have E(—¢, €) = 0 for a certain € > Q.

If (A,[.,.],0) is a Krein space, then the condition formulated in Definition 2.3.1, (2),
and assertion (4) here hold for every compatible Hilbert space scalar product.

Proof. The implication “(1) = (3)” follows from Proposition 2.2.12. Next, assume
that (3) holds. We are going to show (2.3.1). Thereby, the inclusion “2” is clear since
[.,.]1s continuous w.r.t. O. In order to show the reverse inclusion, choose a
decomposition A = A, [+]A_ with the properties stated in (3). Then

(s +xo,y +y) =[x,y — [, y-1, x4, y4 €Ay, x,y- €A

defines a Hilbert space scalar product on A. Because of

B | | U | R ey e A N
X4y Yy € Ay, x_,y- € A,

[.,.] is continuous w.r.t. (., .). Since A is nondegenerated (see Lemma 1.2.6), the
topology induced by (., .) coincides with O; see Corollary 2.1.7. Due to the
Riesz-Fischer Theorem, , for any ¢ € (A, O) there exists a y € A such that ¢ = (., y).
Write y =y, +y_ withy, € A, andy_ € A_. Then

Plxp+x-) = (e +x-,y) = [,y ][, y-1 = [xe +x, ¥ —y-1, x4 € Ay, x- € A,

e, =[,y+—y-]

Finally, for the proof of “(2) = (1)”, assume that (2.3.1) holds. Let (.,.) be a
compatible scalar product, and G the Gram operator of [.,.] w.r.t. (.,.). Fory € A we
have (.,y) € (A,O). Hence, we find 7 € A with (., y) = [., z]. This implies

x,y) =[xz =(xGz), xeHA,

and hence Gz = y. Thus, G is surjective, and from ker G = (ran G*)™ = {0} we even
see that G is bijective.

Finally, “(1) & (4)” follows from the fact that R \ o°(G) is the maximum of all open
subsetes U of R with E(U) = 0. a

2.3.4 Remark. Let (A, [.,.]) be a scalar product space. An obviously necessary
condition for a topology O to exist such that (A, [., .], 0) is a Krein space, is that A is
nondegenerated. Hence, if there exists such a topology, it is unique. Consequently, if
(A,[.,.],0)is a Krein space, we may drop explicit notation of O, and speak of a Krein
space (A, [.,.]). The unique topology O which turns A into a Krein space is called the
Krein space topology of (A, [.,.]). Unless explicitly stated, all topological notions in a
Krein space refer to this topology. o

Of course, also here our usual abuse of language applies, and we speak of a Krein
space A if it is clear from the context which inner product we refer to.

Let (A, [.,.]) be a scalar product space. From the characterization Theorem 2.3.3, (3),
we see that (A, [.,.]) is a positive definite Krein space if and only if (A, [.,.])is a



funddecomptop. ‘

2.3. KREIN SPACES

59

Hilbert space. Similarly, (A, [.,.]) is a negative definite Krein space if and only if
(A, [.,.]) is a anti-Hilbert space. In terms of the Gram operator G w.r.t. a compatible
Hilbert space scalar product this means o(G) C [g, +o0) (0(G) C (—o0, —¢g]) for some
€ > 0; see Proposition 2.2.12.

2.3.5 Remark. Let (A, [.,.]) be a Krein space, (.,.) a Hilbert space scalar product
which is compatible with the Krein space topology, and G the Gram operator of [., .]
w.r.t. (.,.). Since G is invertible, we have

[x,G™'y] = (x, GG™'y) = (x,y) = (GG 'x,y) =[G 'x,)], x,y € A.

Therefore, G™! can be viewed as the Gram operator of (., .) w.r.t. the Krein space
scalar product [., .]. It easily follows from the nondegeneracy of [., .], that G !is the
unique operator H on A satisfying (x,y) = [Hx,y], x,y € A. 1

Each decomposition of a Krein space (A, [.,.], O) as in Theorem 2.3.3, (3), is called a
Sfundamental decomposition of A. As seen in Proposition 1.4.12 for every
fundamental decomposition A = A, [+]A_ the space A, (A-) is maximal positive
(negative) definite. From Remark 2.2.9 and Proposition 2.2.8 we immediately get the
following assertion.

2.3.6 Lemma. If A = A,[+]A_ is any fundamental decomposition of the Krein
space (A, [.,.]), then

p +x,ye +y) =[x,y = [, y-], xp,yr €A, xo,y- € A,

constitutes a Hilbert space scalar product on A inducing the unique Hilbert space
topology on A. The Gram operator of [., ] w.rt. (.,.) thenis G = P, — P_, where P. is
the projection of A onto A, with kernel Ax. These projections are orthogonal w.r.t.
[.,.1and (.,.), are continuous, and satisfy P, =1 — P_.

We should note that a Krein space has many different fundamental decompositions
unless it is positive or negative definite. Still, given a Krein space (A, [, .]), it may be
a hard task to explicitly find a fundamental decomposition.

Let (A4, (.,.)) and (A_, (., .)-) be two Hilbert spaces. Set Ay := {0}, and consider the
space (2.2.2). Then (A, [.,.]) is a Krein space; a fundamental decomposition being
A=A [+]A-.

2.3.7 Example. Let Q be a set, X a o-algebra on Q, and let y; and p_ be two mutually
singular positive measures on Q. Set A, := L>(uy), A_ := L*(u_), and Ay := {0}, and
consider the Krein space (2.2.2). Explicitly (¢ := puy + pu-)

A= L)+ (o) = L (),
[f.g] ::ffgdu+—ffgdu_:ffgdw+—u_>, fige .
Q Q Q

The Krein space topology of A is induced by the usual L?(u)-scalar product.

A particular case of this example are weighted L?-spaces. Denote by A the Lebesgue
measure on the real line, and let w € L!(2) be real-valued. In the above construction
we use

du, = max{w,0}dA, du_ :=—min{w,0}dA.
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Then
A = L2(Iwld),

[f,g]=ffgwdﬁ, f.geA.
R

Properties and Constructions

In a Hilbert space the double orthogonal complement of a linear subspace equals the
closure of this subspace. It is often useful to know that this property also holds in
Krein spaces.

2.3.8 Lemma. Let (A, [.,.]) be a Krein space, and let L be a linear subspace of ‘A.
Then
(L[L])[J-J =cl(L).

Proof. We use the formulas provided in Lemma 2.2.10 to compute orthogonal
complements. Let (.,.) be a compatible scalar product on (A, and let G be the Gram
operator of [.,.] w.r.t. (.,.). Then

(L[l])[l] _ (G_](L(L)))[J-J _ [G(G—I(L(L)))](J.)

= (L) = ctL).
Q

Let us now investigate the constructions of Proposition 2.2.8 within the class of Krein
spaces. First, taking factors is meaningless, since a Krein space is always
nondegenerated. Second, direct products are straightforward.

2.3.9 Lemma. Foreach je{l,...,n}let (A},[.,.1;) be a Krein space, and denote by
[.,.] the sum inner product (2.2.3) on ]—[7:1 Aj. Then (]—[;?:1 A, [.,.]) is a Krein space.

Proof. Choose compatible scalar products (., .); on A;, then the corresponding Gram
operators G; satisfy 0 € p(G;). Thus also 0 € p(diag(G1,...,Gy)). a

Taking subspaces is delicate matter. It is a basic observation that a closed subspace of
a Krein space, though certainly being a Gram space, is not necessarily a Krein space.
The obvious obstacle is that a subspace may be degenerated. However, this is not the
only obstacle, and this fact is responsible for many unpleasant geometric pecularities
of Krein spaces.

2.3.10 Example. Let Q := N and X := P(N), and let u, be the measures (d(;) denotes
the Dirac measure concentrated at the point j)

My 1= Z O M- = Z Oy -

Jjeven jodd
Consider the Krein space constructed as in Example 2.3.7 from these data. Explicitly,
A= N,
[(@))jen, (B))jen] := Z(-U"Q/Fj, (@))ja, (B)) jer € C(N).

JEN
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Consider the linear subspace of A defined as

_E = {(a’j)]EN eA: Qo = O/Zk—lyk € N} .

2k
2k -1
For each k € N the projection of a sequence () jay onto its k-th element « is
continuous. Hence, £ is closed. Because of

(@), (@pjen] = D (=1l = [(%)2 —1]-lazjl >0,

JEN JEN
(@))jew € L\ {0},
L is positive definite.

We are going to show that (£, [.,.]) is not a Krein space. Denote by (., .) the usual
£2(N)-scalar product, and let G be the Gram operator of [., .]| s With respect to
(- )l xe- Then G > 0. Setting 6 := min o(G), we have

[x,x] = (Gx,x) > 6(x,x), xeL.
For n € N let the sequence a,, = (aj,"))_,-eN € L be defined as

2n .
—_162,1’]‘, J € N.

(n)
a;’ =01+
2n-1,j mn

J

Then a, € L, and

2n |2 2n |2 4n -1
s Gn) = 1+ s ns Gl = =1+ = .
(@n, an) (2n—1) Lan, an] (211—1) Qn—1y
Hence,
lim(a,,a,) =2, lim[a,a,]=0.
We conclude that § = 0, i.e., 0 € (G). ¢

Although primarily interested in Krein spaces, we state the the following definition in
the context of Gram spaces for practical reasons.

2.3.11 Definition. Let (A, [.,.], O) be a Gram space, and let L be a linear subspace of
A. Then we call L a Krein subspace of (A, [.,.],0), if L is closed w.r.t. O and
(L, [.,.]D is a Krein space. ¢

A Krein subspace of a Gram space naturally carries its Krein space topology. It is a
simple but important fact that this topology coicides with the subspace topology
inherited from the Gram space.

2.3.12 Lemma. Let (A,[.,.],0) be a Gram space, and let L be a Krein subspace of
A. Then the Krein space topology of L is equal to O|.

Proof. With both topologies the space £ is a nondegenerated Gram space. Hence,
Corollary 2.1.7 yields the assertion. a

It is a natural task to geometrically characterize the Krein subspaces of a Krein space
(or of a Gram space). This task can be completed in several ways; we give one of
them.
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existprojection.

orthgramproj.

2.3.13 Proposition. Any Krein subspace L of a Gram space (A, [.,.],0) is
orthocomplemented. In fact, we have A = L[+] L.

For a Krein space (A, [.,.]) a subspace L of A is a Krein subspace, if and only if L is
orthocomplemented.

Proof. Let (.,.) be a compatible scalar product (.,.) on A, let G be the Gram operator
of [.,.] w.r.t. (., .), and denote by Q the (., .)-orthogonal projection of A onto L.
Moreover, denote the Gram operator of the subspace L by G, i.e., Gz := Q G|z; see
Proposition 2.2.8.

Assume that £ is a Krein subspace. Then L is closed and 0 € p(G ). Define
P:A—->Aas
Px:=G;QGx, xeA,

where G21 in this formula has to be considered as a mapping from £ into A. Then
(see Lemma 2.2.10)

P*=G;(QGG;)0G=P
N———
=l'dL'

ker P = ker (G;'Q G) = ker(Q G) = G ' (ker Q) = G (L) = LI,

and
L=ran(G/(QGly)) Cran(G;/QG) G/ (L) = L.
N——

=G

Thus, P is a projection with range .£ and kernel £+, and it follows that
A = L[+]LH]; see Proposition 1.3.2. Due to {0} = L] this sum is direct.

For the second part, assume that (A, [., .]) is a Krein space, and that £ is an
orthocomplemented subspace. Then £I° ¢ Al°! = {0} and LI = £+ Al = L£; cf.
Proposition 1.3.2. Consequently, L is closed, and thus, (£, [., .]| s, Olz) is a Gram
space. We check condition (2) of Theorem 2.3.3:

For ¢ € (L,0lz), ¢ o Q : A — C is a linear extension of ¢, and hence belongs to
(A,0). (A,[.,.]) being a Krein space yields the existence of an element y € A with
@oQ=1[,y]. Write y = u + v with u € L and v € LX), Then

e(x) =¢o Q) =[xyl =[xul, xeL.
Hence, ¢ = [.,u] withu € L. a
2.3.14 Remark. We’d like to point out from the proof of Proposition 2.3.13, that
Px:=G;QGx, xeA, (2.3.2)

is the uniquely determined (see Proposition 1.3.2) [., .]-orthogonal projection from a
Gram space (A, [., .], O) onto the Krein subspace £, where G is the Gram operator of
[.,.] on A w.r.t. to a given, O-compatible Hilbert space scalar product, where Q is the
(., .)-orthogonal projection onto .£, and where G := Q Gl is the Gram operator of

[., Jlgxgon L wrt. to (., )lrxe- o
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We know that the direct and orthogonal sum of two orthocomplemented subspaces of
a scalar product space is again orthocomplemented; cf. Proposition 1.3.2. Hence, by
Proposition 2.3.13 the direct and orthogonal sum of two Krein subspaces of a Krein
space is again a Krein subspace. Let us show that this is true also for Krein subspaces
of a Gram space.

2.3.15 Proposition. Let (A, [.,.],0) be a Gram space. If L and M are Krein
subspaces of A with L[ LIM, then L[+]M is a Krein subspace of A.

Proof. Let P, and P, be the [., .]-orthogonal projections of A onto £ and M,
respectively. Then
ranP; = LC MY =kerPy, ranPpy=MC L =kerP,,
and hence PPy = PpP, = 0. Consequently,
P:=P;+ Py

is a projection with ker(/ — P) = ran P = L[+]M. According to (2.3.2) P, P, and
hence P are continuous. Hence, ker(I — P) = L[+]M is closed.

We saw in Remark 2.2.9 that for the closed subspaces £, M, and L[+]M of the Gram
space A the product space .L X M provided with the sum scalar product and the
product topology of the respective subspace topologies is isomorphic (as a Gram
space) to the subspace L[+]M provided with the scalar product inherited from A and
the subspace topology. Therefore, with £ X M (see Lemma 2.3.9) also L[+]Mis a
Krein space. a

2.4 Pontryagin Spaces

Definition
2.4.1 Definition. We call a triple (A, [.,.], O) a Pontryagin space, if

(1) (A,I.,.],0)is a Krein space.
(2) ind_(A,[.,.]) < oo.

The following equivalent characterizations of Pontryagin spaces can be given.

2.4.2 Theorem. Let (A,[.,.],0) be a Gram space. Then the following are equivalent.

(1) (A,[.,.],0) is a Pontryagin space.

(2) The space A admits a decomposition A = A, [+]A- where A, is closed,
(A4, [.,.]) is a Hilbert space, and A_ is finite dimensional and negative definite.

(3) There exists a certain O-compatible Hilbert space scalar product (., .), such that
for the corresponding Gram operator G of [., ] w.rt. (.,.) and its spectral measure
E we have dimran E(—o0,0) < oo and E[0, €) = 0 for a certain € > 0.
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If (A, [.,.],0) is a Pontryagin space, then (4) is true for every compatible Hilbert
space scalar product.

Proof. The equivalences of (1) to (3) immediately follow from Theorem 2.3.3 and
Proposition 2.2.12. a

As for a Krein space, the topology of a Pontryagin space (A, [., .], O) is uniquely
determined by its inner product. Hence, we may again drop explicit notation of O. If
(A,[.,.]) is a Pontryagin space, we refer to its Krein space topology also as its
Pontryagin space topology. Unless explicitly stated, all topological notions refer to
this topology.

If the scalar product [., .] is clear from the context, we again just speak of a Pontryagin
space A.

Clearly, a Pontryagin space (A, [., .]) is a Hilbert space if and only if

ind_(A,[.,.]) =0.

2.4.3 Remark. Let (A, [.,.]) be a Pontryagin space. Given any fundamental
decomposition A = A.[+]A-, we clearly have dim A_ = ind_(A, [., .]), i.e., A_ is
maximal negative definite.

Moreover, as seen in Lemma 2.3.6 every such fundamental decomposition gives rise
compatible Hilbert space scalar product (., .) on A such that the Gram operator of [., .]
w.r.t. (,.) is of the form G = I — 2P_ where P_ is the projection of A onto A_ along
A,. In particular, G is a finite dimensional perturbation of the identity. o

These considerations give raise to the following characterization of Pontryagin spaces.

2.4.4 Theorem. A Gram space (A, [.,.],0) is a Pontryagin space if and only if there
exists a certain O-compatible Hilbert space scalar product (., .), such that the
corresponding Gram operator G of [., I w.rt. (.,.) is of the form G = I + K fora
bounded, (., .)-selfadjoint and finite dimensional K : A — A with ker(I + K) = {0}.

Proof. As mentioned in Remark 2.4.3 this condition is necessary for A being a
Pontryagin space. Sufficency follows after a glance at Example 2.3.2. a

Properties and Constructions

Let us investigate the basic constructions of Proposition 2.2.8. As for Krein spaces,
taking factors with respect to subspaces of A°! is meaningless. Direct products are
straightforward to treat.

2.4.5 Lemma. Foreach j€{l,...,n}let (A},[.,.];) be a Pontryagin space, and
denote by ., .] the sum inner product (2.2.3) on ]—I;Ll A;. Then (]—I;Ll Al Disa
Pontryagin space.

Proof. We know that (]—[7:1 Aj, [.,.]) is Krein space (see Lemma 2.3.9), and that (see

Proposition 1.6.7)
ind_ [ [A; = > ind A; < e
j=1 1

J=
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a

As the class of Krein spaces, also the class of Pontryagin spaces is not closed w.r.t.
taking subspaces. Unlike for Krein spaces, the obvious obstacle that £ may be
degenerated is the only one. This obstacle however is in some sense not as bad as in
Krein spaces since due to Proposition 1.7.2 the index of nullity of (£, [.,.]) is bounded
from above by ind_(A, [., .]).

2.4.6 Proposition. Let (A, [.,.]) be a Pontryagin space, and let L be a closed linear
subspace of A. Then (L, [., lg) is a Pontryagin space if and only if £1°) = {0}. In
this case, the Pontryagin space topology of (L, [., .llsxr) coincides with the restriction
to L of the Pontryagin space topology of (A, [.,.]).

Proof. Clearly, in order that (L, [., .]| s) is a Pontryagin space, it is necessary that £
is nondegenerated.

Assume that £1°! = {0}. We saw in Theorem 2.4.2 that the Gram operator of [.,.] on A
w.r.t. a certain O-compatible Hilbert space scalar product (., .) is of the form G = I + K
with a selfadjoint and finite dimensional operator K. Hence, the Gram operator

G = PG|z of [., .]llgxg With respect to (., .)| zx, coincides with

Gr=1+PK|s;

see Proposition 2.2.8. Here P is the (., .)-orthogonal projection onto L. PK|s is a
finite dimensional operator in £. Due to ker G, = £LI°! = {0} we see that
(L, [., -1zxs, Olr) is a Pontryagin space; cf. Theorem 2.4.2.

The fact that the Pontryagin space topology of £ equals O|, follows from
Lemma 2.3.12. a

The next assertion is often useful.

2.4.7 Lemma. Let (A,[.,.]) be a Pontryagin space. Then the following assertions
hold true.

(1) A closed subspace L of A is nondegenerated if and only if L is
orthocomplemented, i.e.,

A= LI+H]LH (2.4.1)

(2) If L and M are closed and nondegenerated subspaces of A with L[ LIM, then
L[+]M is closed and nondegenerated.

Proof. For (1) apply Proposition 2.3.13, and for (2) Proposition 2.3.15. ]

The following result continues the discussion of fundamental decompositions of
Pontryagin spaces; see Remark 2.4.3.

2.4.8 Corollary. Let (A,[.,.]) be a Pontryagin space. Then any maximal negative
definite subspace A_ is of dimension ind_(A, [., .]), and gives raise to a fundamental
decomposition A = A [+]A_, where A, := A
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If D is a dense linear subspace of A, then every maximal negative definite subspace
A_ of D is maximal negative definite in A. Moreover, for the corresponding
Sfundamental decomposition A = A,[+]A_ we have

D= A ND)[+A-,

where A, N D is densely contained in the Hilbert space (AL, |.,.]).

Proof. Given a maximal negative definite subspace A_ we know from

Proposition 1.6.2 that ind_(A, [.,.]) and that A = A, [+]A- with a positive definite
and closed A, = AL Asa positive definite Pontryagin space (A,, [.,.]) is a Hilbert
space. Cleary, (A, —[.,.]) is also a Hilbert space; see Remark 2.2.7. Therefore,

A = A [+]A_ is a fundamental decomposition.

For a dense linear subspace D of ‘A we know from Proposition 2.1.4 that

ind_(D, [.,.]) = ind_(A, [.,.]) < 0. Hence, any maximal negative definite subspace
A_ of D is maximal negative definite in A. D = A_[+](A;+ N D) follows from a
simple algebraic argument, and for the density of A, N D in A, see

Lemma 2.8.2. Q

With the help of Corollary 2.4.8 convergence in a Pontryagin space (A, [.,.]) can be
characterized only by means of [.,.]. The analogous statement in Hilbert spaces is
well-known.

2.4.9 Corollary. For a Pontryagin space (A, [., .]) the following assertions hold true.

(1) A subset B of A is bounded w.r.t. any norm inducing the unique Hilbert space
topology O on A if and only if the sets {[x, x] : x € B} and {[x,y] : x € B} are
bounded in C for all y € M, where M C A with
ind_(span M, [.,.]) = ind_(A, [., .]).

(2) A sequence (x,)nen converges in A to an x € A w.r.t. the unique Hilbert space
topology O if and only if lim, e[ x,, x,] = [x, x] and lim,,_,c[x,,, y] = [, y] for all
y € M, where M C A with c(span M) = A.

Proof. Since [.,.] is O-continuous, the necessity of the condition for boundedness
follows from Proposition 2.1.1. The O-continuity of [.,.] also yields the necessity of
the condition for the convergence of (x;,),en.

To prove sufficency in (1) and (2), the respective assumptions on M yield the
existence of a negative definite subspace A_ C span M of dimension ind_(A, [., .]).
For (1) this follows from Proposition 1.6.2 and for (2) this follows from

Corollary 2.4.8. In any case we have the fundamental decomposition

A=A[+A,,

where A, = A, Recall that the projections P, onto the respective components are
continous. Let (., .) be the Hilbert space scalar product introduced in Lemma 2.3.6.

In the situation of (1) by linearity

{[x,y] : xe B} ={[P-x,y] : x€ B}
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is bounded for all y € A_. Since the norm induced by (., .) on A_ is equivalent to the
norm induced by the Hilbert space scalar product in Remark 2.2.7 we have
—[P_x,P_x] = (P_x,P_x) < C, x € B, for a certain C > 0. Boundedness of B now
follows from

(x,x) =[x, x] =2[P_x, P_x] < sup [x,x] +2C < +oc0, x€B.
x€B
Finally, we turn to the sufficency in (1). By linearity lim,—[x,, y] = [x, ¥] for all
y € A_ C span M. Again employing Remark 2.2.7 yields lim,_,oc P_x, = P_x.
Consequently,

(P1xp, Pixp) = [X, Xp] = 2(P_Xy, P_x,) — [x,x] = 2(P_x, P_x) = (P.x, P, X),

and
(P+xn7y) = [xnay] il [X,Y] = (P+x’y)’ for a'll y € ﬂ+ m@'

Due to Corollary 2.4.8 the space A, N D is dense in A,. By the classical Hilbert
space version of (2) (see ) we get lim,_,., P+ X, = P,x, and hence Missing

) ) Reference
lim x, = lim P.x, + P_x, = P,x+ P_x=x.

n—oo n—oo

oder Ap-
pendix

a

If £ is a degenerated subspace of a Pontryagin space, of course, £ cannot be
orthocomplemented. In the next statement we give an analogue of the decomposition
(2.4.1) which is valid for degenerated subspaces.

2.4.10 Theorem. Let (A, [.,.]) be a Pontryagin space, and let L be a closed linear
subspace of A. Then the following hold true.

(1) Let M and N be closed subspaces of A with
L=M+HL, L = ML (2.4.2)

Then there exists a subspace W of A which is skewly linked with L1}, such that
A = MIH(LEHW)HIN . (2.4.3)

(2) Let ‘W be a subspace of A which is skewly linked with £1°!. Then there exist
unique closed subspaces M and N of A such that (2.4.2) and (2.4.3) hold.

Note that, since £l is a closed subspace of the closed subspace £, closed subspaces
M and N as in Theorem 2.4.10, (1) always can be found; simply take, for example,
the (., .)-orthogonal complement of £{°! within .£ for any Hilbert space scalar product
(.,.). Since .L°! is finite dimensional and neutral, due to Proposition 1.7.4 also a
subspace W as in Theorem 2.4.10, (2), can be found. Indeed, given a closed
subspace, there always exist many corresponding decompositions of ‘A.

Proof (of Theorem 2.4.10). For the proof of (1), let M and N be given with the
properties stated in (1). Then M and N are nondegenerated and M[L]N. Hence, the
space

C = M[+IN
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is closed and orthocomplemented. The space C!*! is nondegenerated and contains
L1°1. Hence, there exists a subspace W C Cl*! which is skewly linked with £1°!; see
Proposition 1.7.4.

The space LI°)+W is finite dimensional, and hence the sum
D := Cl+I(L"+W)

is closed; see Lemma 2.4.7. In order to establish the equality (2.4.3), it is thus enough
to show that DI*! = {0}; cf. Lemma 2.3.8. To this end, let x € D*! be given. Then
x[LJM + L) = £. Hence x € L1, and we may write x = x; + xo with x; € N and
xo € L1, We have x, xo[ L]N and thus x; = 0. We conclude that x € £°!, and now
x[L]W implies x = 0.

We come to the proof of (2). Let a subspace ‘W, which is skewly linked with £, be
given. Set
M= L LW N = L A (L w)
Then M and N are closed. Since M, N[L]'W, we also have
Mn Ll = NN Ll = {0}.

Next we show the equalities (2.4.2). To this end, notice that the space LI°V+W is
finite dimensional and nondegenerated, and therefore orthocomplemented. Hence,
every element x € A can be written as x = x; + x, with

x; € LW, x, e (L4 w)H

Assume x € £. Then we have x, x,[ L] £, hence also x;[L] L. Since ‘W is skewly
linked with £1°!, we get x; € £1°!, and in turn x, = x — x; € £. Thus x, € M. We see
that x € £I°1 + M, and this is the first equality in (2.4.2). To show the second, we
argue similarly. If x € L%, then x, x,[ L] £!°), hence x;[.L]£!°! and in turn x; € L.
Now we have x; = x — x; € L4, Hence, x, € N.

Applying the already proved item (1) with the spaces M and N just constructed,
provides us with a space ‘W’ which is skewly linked with £1°! such that A
decomposes as in (2.4.3). Hence,

dim (M[+]N)™ = dim £ + dim W’ = 2dim £1°),

We know that LI14+W c (M[+]N)H], and due to the equality of dimensions, in this
inclusion equality must hold.

It remains to show the uniqueness part of (2). Assume that M’ and N’ are closed
subspaces with (2.4.2) and (2.4.3), and let M and N be the subspaces constructed
above. We have

ML, N LM MHEN = (L wy,

It follows that M’ € M and N’ € N. Due to (2.4.2), in these inclusions equality must
hold. a

2.4.11 Example. For v € R let D, be the set of all sequences (a,),en such that

o
2 v+ mladl’ <o,
n=1



2.4. PONTRYAGIN SPACES 69

and let O, be endowed with the scalar product

[(an)nEN, (bn)nEN]V = Z(V + n)anb_n, (an)neN, (bn)nEN € Z)v .

n=1
We call the space D, obtained in this way the generalized Dirichlet space.

Set e := (0 jn)nen, and

Ay = {(@n)nen € Dy 1> —v}
A = {(a)nen € Dy 1 < —v}
ﬂO = {(an)neN € Z)v n= _V}

The space A, is naturally isomorphic to the space L*(u) with (6, denotes the Dirac
measure concentrated at the point n)

o= Z(v + n)o) -

neN

n>-v
Hence, A, is a Hilbert space. The space A_ is finite dimensional and negative
definite, and the space A is (at most) one dimensional and neutral.

The space D, decomposes into the direct and orthogonal sum
D, = Af+]A_[+] A, .

In the case v > —1 we have A_ = Ay = {0}, and hence (D,, [.,.]) is a Hilbert space.

Forv < —1,v ¢ Z still Ay = {0}, but dim A_ = |—v]. Providing A. with the Hilbert
space scalar product £[.,.] and D, = A, [+]A_ = A, X A_ with the corresponding
product Hilbert space topology, according to Theorem 2.4.2, (2), (D,,[.,.])isa
Pontryagin space.

It remains to deal with D, in the case v € {—1,-2,-3, ...}, where dimA_ = |-v] — 1
and dim Ay = 1. Like in the previous case (A.[+]A-, [.,.]) is a Pontryagin space, but
since DI = Ay # {0}, D, cannot be provided with a Hilbert space topology such that
it becomes a Pontryagin space.

Despite the fact that the construction of these Dirichlet spaces may seem artificial,

these spaces appear naturally in complex analysis; we will see some more details later

in . Therefore, it is disirable to provide O, with a Gram space structure also in the Missing

caseve{-1,-2,-3,...}. Lokal Ref-
erence

One way to do this, is to view Ay as a neutral subspace of a two dimensional
nondegenerated scalar product space V as mentioned in Remark 1.7.12. As a finite
dimensional space V carries a unique Hilbert space topology. Considering

A= A, X A X Ay as a closed subspace of A, X A_ X V, where the latter space is
equipped with the sum scalar product, we see that D, can be identified as a closed and
degenerated subspace of a Pontryagin space. It is the aim of the next section, to study
such subspaces of Pontryagin spaces and to characterize them independently from the
Pontryagin superspace. ¢
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2.5 Almost Pontryagin Spaces

Definition and Examples

We alraedy saw that subspaces of Krein spaces are not necessarily Krein spaces. The
same is true for Pontryagin spaces, which are a special kind of Krein spaces. But in
contrast to the Krein spaces case, whether a subspace £ of a Pontryagin space is a
Pontryagin space or not, can be decided just by the algebraic condition £I°! = {0}; see
Proposition 2.4.6.

2.5.1 Definition. We call a triple (A, [., .], O) an almost Pontryagin space, if

(1) (A,[.,.],0) is a Gram space.

(2) There exists a Pontryagin space (?, [., .]), such that (A, [., .], O) is a subspace in
the sense Gram spaces, i.e., [.,.] on A is the restriction of [.,.] on P to A and O is
the subspace topology on A induced by the unique Pontryagin space topology on
P; see Proposition 2.2.8.

If the topology O and scalar product [.,.] is clear from the context, we shall again just
speak of an almost Pontryagin space A. Nevertheless, as the spaces in Example 2.2.6
can be identified with the help of Theorem 2.5.2 as almost Pontryagin spaces, we see
that the topology O of an almost Pontryagin space (A, [.,.], O) is generically not
uniquely determined by the scalar product.

By Proposition 2.4.6 an almost Pontryagin space is a Pontryagin space if and only if it
is nondegenerated. Therefore, the class of Pontryagin spaces is the intersection of the
classes of Krein- and almost Pontryagin spaces. Moreover, an almost Pontryagin
space (A, [.,.], O) is a Hilbert space if and only if indy(A, [.,.]) = 0 and

ind_(A,[.,.]) =0.

Almost Pontryagin spaces can be characterized without reference to the Pontryagin
space P.

2.5.2 Theorem. Let (A,][.,.],0) be a Gram space. Then the following are equivalent.

1) (A, [.,.],0) is an almost Pontryagin space.

(2) There exists a certain O-compatible Hilbert space scalar product (., .), such that
for the corresponding Gram operator G of [, .] w.rt. (.,.) is of the form G =1 + K
for a bounded, (., .)-selfadjoint and finite dimensional K : A — A.

(3) There exists a closed subspace L of A with finite codimension in A, such that
(L, [., llgxp) is a Hilbert space.

(4) We have indy(A, [.,.]) < oo, and the space A admits a decomposition
A = A[FA_[FAC where A, is closed, (A, [.,.]) is a Hilbert space, and A
is finite dimensional and negative definite.
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If (A, [.,.],0) is an almost Pontryagin space, then there always exists a Pontryagin
space (P, [.,.]), which contains (A, [., .],0) as a Gram subspace of codimension

indo(A, [., .]).

Proof. Assume (1), and we will show (2) very much along the arguments given in the
proof of Proposition 2.4.6. Indeed, by Theorem 2.4.2 applied to (%, [.,.]) we have
[.,.] = (G.,.) with a certain Hilbert space scalar product (., .) and the corresponding
Gram operator of the form G = I + K with a finite dimensional K. Denoting by P the
(., .)-orthogonal projection from ¥ onto the subspace A we infer from

Proposition 2.2.8 that the Gram operator of [.,.] on A w.r.t. (.,.) is

GﬂZPG|ﬂ=I+PK|g[,

where P is the (., .)-orthogonal projection onto A. This gives (2) because PK|4 is a
finite dimensional operator in A.

Assuming (2) we consider the closed subspace £ := ker K, which has finite
codimension in A. As (.,.) and [., .] coincide on £, we get (3).

Assuming (3) we know from Proposition 2.3.13 that A = L[+1LH, where

dim L < co. Hence, L1V = £, [+]A_[+]A, with positve definite, negative definite
and neutral subspaces £, A_, A.; see Proposition 1.6.2. Clearly, A, = Al°!. L,
being finite dimensional shows that A, := L[+] L, is closed and, provided with [., .],
constitutes a Hilbert space. Therefore, (4) hold true.

If we can decompose L as in (4), then (AL [.,.]) can be viewed as a neutral subspace
of a nondegenerated space (C, [., .]) with two times the dimension of AL see
Remark 1.7.12. Providing C with the unique Hilbert space topology (see

Remark 2.2.7), A°) becomes a Gram subspace of C. Hence, the product Gram space
A, x A x Al is a closed subspace of the product Gram space A, X A_ x C; see
Proposition 2.2.8. As seen in Remark 2.2.9, the former as a Gram space can be
identified with A.

Writting C as C = C.[+]C- with positive (negative) definite C.. (see

Proposition 1.6.2) we infer from Theorem 2.4.2, (3), applied with the Hilbert space
A, x {0} x C, and the finite dimensional anti Hilbert space {0} X A_ X C_, that

Ay X A_ X C is a Pontryagin space. Thus, (1) holds true. a

A decomposition of an almost Pontryagin space (A, [., .], O) as in Theorem 2.5.2, (3),
is called a fundamental decomposition of A.

There is also a characterization involving spectral properties of the corresponding
Gram operator.

2.5.3 Proposition. A Gram space (A, [.,.],0) is an almost Pontryagin space if and
only if there exists a certain O-compatible Hilbert space scalar product (., .), such that
for the corresponding Gram operator G of [., ] w.r.t. (.,.) and its spectral measure E
we have dimran E(—o00, 0] < oo and E(0, €) = 0 for a certain € > 0.

In this case this condition holds for every O-compatible scalar product.

Proof. For any O-compatible Hilbert space scalar product (., .) and the corresponding
Gram operator G let E be the spectral measure of G. dimran E(—c0, 0] < oo is the
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same as saying dimran E{0} < oo together with dimran E(—o0,0) < co. But then due
to Proposition 2.2.12, the assumption dimran E(—c0, 0] < co and E(0, €) = 0 imply the
validity of Proposition 2.5.3, (3).

Conversely, if (A, [., .],0) is an almost Pontryagin space, then due to

Proposition 2.2.12, ind_(A, [., .]) < oo and indy(A, [.,.]) < co imply

dimran E(—o0, 0] < co. Moreover, ran E(0, o) being a positve definite and closed
subspace of the almost Pontryagin space A, due to Proposition 2.4.6,

(ran E(0, 00), [., .]) is a positve definite Pontryagin space, i.e., a Hilbert space. By
Proposition 2.2.12 we then have E(0, ) = 0 for a certain € > 0. a

2.5.4 Example. A first, admittedly very simple example of almost Pontryagin spaces
are finite dimensional spaces as treated in Example 1.1.3, where for a hermitian
nXxn-matrix G we defined a scalar product on C" as

*

X1y (N M X1 Xr) (M
L=t el | e ]ee
xn n yn xn le n
Moreover, let O be the euclidean topology on C". Then (C", [.,.], O) is an almost
Pontryagin space. The positive index (negative index) of this space equals the number
of positive (negative) eigenvalues of G counted according to their multiplicities. The

degree of degeneracy equals the multiplicity of the point O as an eigenvalue of G; see
Example 1.6.5. ¢

2.5.5 Example. Let (A, (.,.)) be a Hilbert space, and let x, ..., x, € A. We define a
new scalar product [.,.] on A as

[ry] = (63) = D (5 x)(,y), %y €A,
i=1
Denote by O the Hilbert space topology of A. Since
|0 y1 < (14 D IlP) - Il - I, .y € A,
i=1

(A,[.,.],0) is a Gram space. The Gram operator G of [.,.] w.r.t. (.,.) is given as

G=1- zn:(.,x;)x[.
i=1

By Theorem 2.5.2 (A, [., .], O) is an almost Pontryagin space. o

2.5.6 Example. Let us instanciate Example 2.5.6 in a concrete situation. Denote by

T L2(R) — L2(R) the Fouriertransform, i.e., the unitary operator obtained as the
extension of

f@ - fa= \/% fRf(T)e’iT"dT, neR

from the dense subspace L' (R) N L2(R) to all of L*(R). For each a > 0, we define the
Paley-Wiener space PW,, as the Fourier image of the set of all functions in L*(R)
which are supported on the interval [—a, a]. Since

{f € L*(R) : supp f C [~a, a}
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is a closed subspace of L*(R), and " is unitary, PW, is a closed subspace of L*(R).
Hence, when endowed with the L*(R)-scalar product, PW, becomes a Hilbert space.

If f € L*(R) is compactly supported, then f € L'(R) N LA(R). Its Fouriertransform f is
thus given by the formula

N 1 A 1 A
f)=— ff('r) eMdr = — f(me™dr, neR. (2.5.1)
V2r Jr V2r Jupp £
Obviously, the integral on the right side makes sense also if 7 is nonreal. In fact, it
represents a function defined and analytic on all of C. Consequently the space PW,,
originally being a subspace of L?>(R) can be considered as a space of entire functions
on C:

PW, = {f:C > C: 3ge L*(R) with
1 ‘
suppg C [-a,al, f(n) = \/? fdg(T) e dr,n € (C}.
T J-a

In particular, we naturally have the point evaluation functionals

'{PWL, - C
T g = g

Let us show that y,, is continuous. To this end notice that, since the Fouriertransform
is isometric, we can compute for each g € L>(R) with supp g C [~a, a] ((.,.) denotes
the L2(R)-scalar product)

80 = \/%7 j: : g(r) e Mdr = (f (1), \/%_ﬂ]l[—a,a](‘r) e”7’) =

- (7, T[\/%]l[_a,a](r) &), gec.

Clearly, the element

ka(n, ) = ?[\/%nlm(r) ]

belongs to PW,. The above formula says that point evaluation is represented as inner
product with k,(7, .), hence, x,, is continuous. In fact, we have

| xalow, || = 1l kaGr. ) ligw, -
Explicitly,
sina(d —n)
ka(n, ) = ————
e n({-m
sinh(2a Imn)
ka LI 2 = ka B = T A T
Il ka(a, ) 1l (n,m) 2Imy

Thereby, for { = 77 or Im 7 = 0, respectively, the expression on the right are interpreted
in the naturally way (both have a continuous extension to such points).

Let y € C, and apply Example 2.5.5 with the Hilbert space W, and
“n=1,x1 = yk,(0,.)”. The scalar product [., .] defined there computes explicitly as

f.g] = fR FDgaD dn— WEFOFO),  fog € PW,.
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The space (PW,, [., .1, O), where O is the Hilbert space topology induced by the
L?(R)-scalar product (., .), is an almost Pontryagin space. The spectrum of the Gram
operator of [.,.] w.r.t. (,.) consists of the point 1 and one simple eigenvalue A. Hence,
depending on the location of A, one of the following alternatives takes place:

(1) ind_(PW,, [.,.]) = indg(PW,, [.,.]) = 0 and hence PW, is a Hilbert space.
(2) ind_(PWy, [.,.]) = 0, indo(PW,, [.,.]) = 1.
(3) ind_-(PW,, [.,.]) = 1, indo(PW,, [.,.]) = 0 and hence PW, is a Pontryagin space.

We have [f, f1 = (f, /) — WPIf (), f € PW,, and hence

in [£, f1= 1 = yPllka(0, )P = 1= 22 .
f?éﬁ,[f /1 YI7lIka(0, Il v
1A I=1
Thus,
M
alternative { (2)  takes place = |y

3)

vV iA
N

Properties and Constructions

It is an important structural property that in contrast to Pontryagin spaces the class of
almost Pontryagin spaces is closed with respect to taking subspaces.

2.5.7 Proposition. The following constructions can be carried out within the class of
almost Pontryagin spaces.

(1) Let (A,[.,.],0) be an almost Pontryagin space, and let L be a closed linear
subspace of A. Then (L, [., 1|z, Olg) is an almost Pontryagin space. In the case
of a nondegenerated L it is even a Pontryagin space.

(2) Foreach je(l,...,n}let (A},[.,.1;,0)) be an almost Pontryagin space, and
denote by [.,.] the sum scalar product (2.2.3) on ]—I_';:] Aj. Then
(IT}=; A [, 1,112, O)) is an almost Pontryagin space.

Proof. The assertions about subspaces immediately follows from Definition 2.5.1. In
combination with the fact that the class of Pontryagin spaces is closed under the
formation of finite product spaces as shwon in Lemma 2.4.5, Definition 2.5.1 also
yields the assertion about the finite product of almost Pontryagin spaces. a

The following assertion yields that almost Pontryagin spaces are closed under the
formation of factor spaces.

2.5.8 Lemma. Let (A,[.,.],0)and (B,].,.1,T) be a Gram spaces, and assume that
¢ : A — Bis a bounded linear and surjective mapping which is isometric with
respect to [., .].

If (A, [.,.],0) is an almost Pontryagin space, then (8, [.,.],T) is also an almost
Pontryagin space. The converse is true, if we additionally assume that dimker ¢ < co.
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Proof. For an O-compatible Hilbert space scalar produt (., .) on A and for the closed
subspace C := (ker ¢)* the restriction ¢|c : C — B is linear, isometric, bijective and,

by the open mapping Theorem , continuous in both directions, i.e., as Gram spaces C Missing
and B are isomorphic. Reference

If (A, [.,.],0) is an almost Pontryagin space, so is C. For example from
Theorem 2.5.2, (3), it then easily follows that the isomorphic copy B of C is an almost
Pontryagin space, too.

Conversely, if 8 is an almost Pontryagin space, so is C. Moreover, since by (1.2.7),
ker ¢ is contained in Al € CY), A is isomorphic to the product Gram space

C X ker ¢; cf. Remark 2.2.9. In case dimker ¢ < oo, (ker¢, [., .]) clearly constitutes an
almost Pontryagin space; see Example 2.5.4. By Proposition 2.5.7 also C X ker ¢, and
hence A, is an almost Pontryagin space. a

Applying Lemma 2.5.8 to the factor mapping we immediately get

2.5.9 Corollary. Let (A, [.,.],0) be an almost Pontryagin space, and let M be a
subspace of Al°!. Denote by [., ] the scalar product (2.2.4) on A/ A and by O] M
the Hilbert space topology defined as in Proposition 2.2.8. Then (A/ M, [., .1, O/ M)
is an almost Pontryagin space. For M = AP it is in fact a Pontryagin space.

If (A, [.,.],0) is an almost Pontryagin space with A = {0}, then it is a Krein space,
and hence its topological dual is equal to {[.,y] : y € A}. If Al° £ {0}, this cannot be
true anymore as we certainly have A°! C ker[., y], y € A, and hence {[.,y] : y € A} is
not point separating whereas the dual space A’ is.

2.5.10 Lemma. Let (A,[.,.],O) be an almost Pontryagin space. Then

dim (A, O0)/{[.,y] : y € A} = indo(A, [, .]).

Proof. As we already noticed above, the asserted equality holds if A is
nondegenerated. Hence, assume that A" # {0}.

Let (.,.) be a compatible scalar product on A, and denote by G the Gram operator of
[,.]wrt. (.,.). If o € (A,0), we find z € A with ¢ = (.,z). Write z = 79 + z; with
20 € Al and 71 € (ﬂIOJ)(l).

Since Al = ker G = ran GV, the Gram operator of [.,.] on (A)™) is G| ey, and
as a nondegenerated subspace (A°))*) is a Pontryagin space. Hence,

Gliaenw @ (ACHE — (APHE) s bijevtive, and we may choose y € A with Gy = z;.
Then

e(x) = (x,2) = (x,21) + (x,20) = (x,Gy) + (x,20) = [x,y] + (x,20), x€A.

Clearly, functionals of the forms [.,y], y € A, and (., z9), zo € A, belong to (A, Q).
It follows that

(A,0) ={[..y] 1y € A} +{(., 20) : 290 € A}

In order to show, that this sum is direct, let y € A, zo € AL, and assume that
[.,¥] = (.,z0). Then
(x,20) = [x,y]1 =0, xeA°,
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and hence zo = 0. It follows that
dim(A,0) /{[.,y] : y € A} = dim{(..20) : 20 € A} = dim AT

a

2.5.11 Lemma. Let (A,[.,.],0) be an almost Pontryagin space, and let [ ., .]] be
another O-continuous scalar product on A such that ALY has finite codimension in
A. Setting {.,.) :=[.,.]+ [., .1 also (A, ., .), O) constitutes an almost Pontryagin
space.

Proof. By Lemma 2.1.3, Al°l is O-closed. If £ is an O-closed subspace of A of finite
codimension, such that (£, [.,.]) is a Hilbert space as in Theorem 2.5.2, (3), then also
L n AT is O-closed and of finite codimension. Since [.,.] and (., .) coincide on

LN AP, due to Theorem 2.5.2, (A, {.,.), O) is an almost Pontryagin space. Q

The following assertion in particular shows that any almost Pontryagin space scalar
product can be obtained as in Example 2.5.5. For this we are going to employ
Lemma 2.5.11 in the case when (., .) is positive definite. Recall that then (A, (., .), O)
becomes a Hilbert space.

2.5.12 Proposition. Let (A, [.,.],0) be an almost Pontryagin space, and let ¥ be a
point separating family of continuous linear functionals on A; see (2.1.3). Then there
exist N € Ny, linearly independent functionals ¢, . ..,¢n € F, and a number yy € R,
such that for each vy > vy the scalar product defined as

N
@V i= [0y +7 D 609,00, %y A, 252)
.

J

is a compatible Hilbert space scalar product on A.

Proof. According to Theorem 2.5.2 there exists an O-compatible Hilbert space scalar
product (., .) on A, such that the Gram operator G of [.,.] w.r.t. (.,.) is of the form

G = I + K for some bounded, (., .)-selfadjoint K with d := dimran K < co. By the
Spectral Theorem for selfadjoint matrices we have

d
K= Al,a)-a, 2.5.3)
k=1
for x € ran K with an (., .)-orthogonal basis aj,...,a; of ranK and 4;,...,4; € R.

From ker K = (ran K)™ the validity of (2.5.3) follows for all x € A.

For ¢ € F let b(¢) € A be the element which represents ¢ as ¢ = (., b(¢)). Since F is
point separating, we have

[span (@) : 0 € 7] = (| 1b@)™ = [ kers = (0).
¢eF PeF

This means that span{b(¢) : ¢ € F}is dense in A. For cy,...,cq € span{b(¢) : p € F}
let K; : A — Abe defined by K := ZZZI(., cr)ck. Clearly, Kj is (., .)-selfadjoint.
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Comparing K and K yields (||.|| denotes the norm induced by (., .))

d
ICK = Kl < (|06 aidar = ei) + (x ax = e <

d(l + max ||Ck||) max [l = cll - [l

..........

Due to span{b(¢) : ¢ € F}’s density we can choose cy,...,cq such that |[K — Kj|| < 1,
and hence

[x, x] — (K1x, %) = (x,x) + (K = K)x,x) > 0, x € A\ {0}. (2.5.4)

Choose functionals ¢y, ...,¢x € F, such that ¢, € span{b(¢,), ..., b(dn)},
k=1,...,d, and let ;; be coeflicients with

N
Ckzza'kjb((pj)» k=],...,d.

J=1

‘We then have

d
(Kix,3) = Y (%, c0)(ci) =
k=1

N
2 @ (b)), ) i = Z 0

1i,j=1 i,j=1

M&

d
) > @ aw ¢i(x).
k=1

———
=Bij

>~
1l

Clearly, the N x N-matrix (8;;); ; is selfadjoint. If —y, denotes the smallest eigenvalue
of (8;))i j» then we know from Example 1.6.5 that (8;;); ; + ¥I is the Gram matrix of a
positive definite scalar product on CV w.r.t. the euclidean scalar product whenever

v > vo. Thus, together with (2.5.4) we have

N N
(@) = 6 xl+y ) 600 @500 = [x,21 = (Kix, %) + (Kix, 0 +y | () 6,00 =
j=1 j=1

N
L, x] = (Kix, x) + ) $i0) (B + 6ij) 6(6) > 0, x € A\ {0).

i,j=1

As already mentioned, Lemma 2.5.11 shows that (A, (., .);) is a Hilbert space. a

2.5.13 Remark. The functionals ¢;, j = 1,..., N, in Proposition 2.5.12 can be Ist das
represented as ¢; = [.,b;], j=1,..., N, with some b; € A if and only if (A, [.,.])isa notwendig
Pontryagin space. In fact, if (A, [., .]) is nondegenerated, then this follows from u wenn ja
Lemma 2.5.10. was davon?

On the other hand, x € span{b; : j=1,... , N}l yields

(x,x); =[x, x] + yZ?’:, [x,b;][bj, x] = 0, and hence x = 0. Beacuse of

span{b; : j=1,. }[c’J 2 A!°! our A must be a Pontryagin space, where in addition
L:=span{b;: j= 1 N} is nondegenerated.
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Moreover, assuming the Pontryagin space case, we have

N N
V) = oyl +y Dl bl byl = [x+y D [6bjl by, x,y € A.
j=1

J=1

This means that / +y 2?;1 [.,D;1b; is the unique Gram operator of (.,.), w.r.t. [.,.] as
discussed in Remark 2.3.5. Hence, it coincides with G~! if G denotes the Gram
operator of [.,.] w.r.t. (,,.);+. Since £ is nondegenerated, and hence A = L[+ LM
G'=1I+ yZ'}’:, [.,b;]1b; has diagonal form w.r.t. this decomposition. Thus, the same
ist true for G. In particular, considering a basis of £, which is a subset of

{bj: j=1,...,N}, G can be written in the form

N
G=1+ Z (Ijk[.,bj]bk
Jk=1

with Qi ZWJEC. o

If M and N are linear subspaces of Hilbert spaces A and B, respectively, and

¢ : M — N is alinear and isometric map, then ¢ is continuous and has an extension
to a bi-continuous of cf/(M) onto cf(N). In the indefinite setting this statement does
not remain true in general. For instance in Example 2.2.6 the identity map

id: (Al,.],0) = (A,l.,.],7) is an isometric bijection, but is not continuous. We
will meet another instance later in Example 2.6.11. There the map ¢’ o ¢™! is an
isometric and linear bijection between dense subspaces of two Krein spaces.
However, again, it cannot be extended in a bi-continuous way.

In the following theorem and its corollaries we provide a condition when an analogue
of the mentioned fact from Hilbert space theory does hold true. For the sake of ease in
application, we choose a rather general formulation readily anticipating the language
of linear relations which we will introduce in Chapter .

For the following recall the notion of the graph of a map. Let M and N be two sets,
and let ¢ : M — N. Then we denote

graph¢ := {(x;x) : x e M} C M X N .

For subsets M and N of normed spaces A and B, respectively, and for a bounded,
linear ¢ : M — N it is straight forward to check that graph ¢ is a closed linear
subspace of M X N; see .

If L is a linear subspace of a A X B we introduce the notation

dom(L):={xeA: Iye B:(x;y) e L},
ran(L):={yeB: Axe A: (x;y) € L},

It is easy to check that dom £ and ran £ are indeed linear subspaces.

2.5.14 Theorem. Let (A,[.,.],0)and (B, [.,.1, T) be two almost Pontryagin spaces,
and let L be a linear subspace of A X B with

x,xX1=Dn.y1, xy,&;y)eL. (2.5.5)

Then (2.5.5) is true even for all (x;y), (x';y") € cl(L).
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Moreover, there exist closed subspaces domR,&E C A, ranR, F C B and a linear,
isometric and bi-continuous bijection R : dom R — ran R such that

& C ct(dom L)' and F C cl(ran L)I°V,

domR+E = cf(dom L) and ranR+F = cl(ranL), (2.5.6)
and

cl(L) = graphR + ({0} X F) + (E x {0}). (2.5.7)

Proof. The validity of (2.5.5) for all (x;y), (x';y") € cf(£L) is an immediate
consequence of the continuity of the scalar products and the projections from A X B
onto A and onto B.

Since closed subspaces of almost Pontryagin spaces are almost Pontryagin spaces and
since £ C cf(L) C cf(dom L) X cf(ran L), for the remaining assertions we can replace
A by cf(dom L) and B by cf(ran L) in order to ensure that dom £ (ran £) is densely
contained in A (B).

Take Hilbert subspaces (C, [.,.]) of (A, [.,.],0) and (D, [, .]) of (B, [., .1, O) of finite
codimension; see Theorem 2.5.2. Since C X D is contained in A X B with finite
codimension, for

L =LNn(CxD)

we have cf(L") = (L) N (C X D), where cf(L’) is contained in c£(L) with finite
codimension; see Lemma 2.8.2.

L’ is the graph of an injective, linear and isometric map L’ : dom £ — ran £L’. In
fact, for (x;y), (x’; ") € L’ we conclude from (2.5.5)

x=xX ox-xX,x-xX]=0ey-y,y-yY1=0y=y".
It is a standard result in Functional Analysis (see ) that L’ : dom £’ — ran £’ admits Missing
an isometric, linear, continous and bijective extension S : cf(dom £’) — cf(ran L'). Reference
Since S is continous, its graph is closed. Since S extends L', we have
cl(L') = ct(graph L) C graphS. Again using that S is a continuous extension of L',
the fact that dom £’ is dense in cf(dom £L’) implies graph S C cf(graph L") = c{(L').

Thus,
graphS = cl(L)(CC X D).

Now we consider the subspaces & and ¥ defined by
A LHN{0}xB) = {0} xF and cl(L)N (Ax{0}) =: Ex{0}.

Due to (2.5.5) we have 0 = [x, 0] = [y, z]l for all (0; z) € (L) N ({0} x B) and
arbitrary (x;y) € £. Hence, z [ L] ran £, and by ran £’s density, z € B[°l. Thus,

FcBll gcA,

where the second inclusion is seen in the same way. From A°l N C = {0} and
Bl n D = {0} we conclude that

(L) + ({0} x F) + (Ex {0}
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is in fact a direct sum. With c£(L’) also this subspace is contained in c£(£) with finite
codimension. Hence, we find a finite dimensional extension R of ¢f(L") such that

cl(L) =R+ ({0} x F) + (Ex {0} = R+ (cl(L) N (AX{OD) + (L) N (10} x B)).

This sum being direct implies that R is the graph of an injective linear operator

R : dom R — ran R which extends S. Since graph R = R (domR, ran R) is a finite
dimensional extension of graph S = c¢f(L’) (dom S, ran §), all these spaces are closed;
see Lemma 2.8.3. By the closed graph Theorem (see ), R and its inverse are
continuous linear mappings. From graphR = R C c¢f(L) we conclude that R is
isometric.

We have dom R N & = {0}, since (x;y) € R and (x; 0) € cf(L) yields (0; y) € c€(L), and
inturn (x;y) € RN (( cl(L) N ({0} x B))+(cl(L) N (A X {O}))) = {(0;0)}. Similarly,
ranR N F = {0}. Finally, as a finite dimensional extension of dom R (ran R) also

dom R+E& (ran R+%) is closed. On the other hand this space contains the dense
subspace dom £ (ran £). Hence, dom R+& = A and ran R+F = 8. a

A comparison of (2.5.6) and (2.5.7) immediately gives the following corollary.

2.5.15 Corollary. With the notation and assumptions of Theorem 2.5.14 we have
domct(L) = cb(dom L) and rancf(L) = cl(ran L). (2.5.8)

In particular, dom L and ran L are closed, if L is closed.

2.5.16 Corollary. With the notation and assumptions of Theorem 2.5.14 assume in
addition that cf(ranlL) is nondegenerated. Then c€(L) is the graph of an isometric,
continuous, linear and surjective mapping T : ct(domL) — cf(ranL).

If ct(ranL) and c€(domL) are nondegenerated, then T is bijective and bi-continuous.

Proof. If cf(ranL) is nondegenerated, then we have ¥ C cf(ran L)I°! = {0} in
Theorem 2.5.14. Hence,

ct(L) = graphR + (E x {0}), (2.5.9)

with ran R = cf(ranL) and a closed dom R such that cf(domL) = dom R+&E. According
to Lemma 2.8.1, dom R+E& is algebracically and topologically isomorphic to

domR x &. Consequently, 7 : dom R+E — cf(ran L) defined by

T(x+y) :=Rx, xedomR, y € &, is linear and continuous such that

ranT =ranR = cf(ranL). Its graph, obviously, coincides with (2.5.9). (2.5.5) for all
(x;y), (x';¥") € (L), finally yields the fact that T is isometric.

If cf(ranL) and cf(domL) are nondegenerated, then also & C cf(ran L)!°) = {0}. Hence,
R =T, and bijectivity and bi-continuity follow from Theorem 2.5.14. a

2.6 Completions

It is a basic and standard fact that a positive definite scalar product space £ has an
essentially unique Hilbert space completion. By this we mean that there exists a
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Hilbert space which contains £ as a dense subspace, and that this Hilbert space is
unique up to isomorphisms which leave £ pointwise fixed. When passing to the
indefinite setting, the corresponding fact is not true in general. A scalar product space
neither necessarily possesses a completion, cf. Example 2.6.5, nor has a unique
completion, cf. Example 2.6.11. In view of this it becomes important to see that scalar
product spaces with finite negative index behave well concerning completions.

First of all, let us make precise what means “completion” and “essentially the same”
when considering two completions.

2.6.1 Definition. Let (L, [.,.]) be a scalar product space. We call a tuple
{t, (A [.,.],0)) a completion of (L,[.,.]), if

(1) (A,I.,.1,0) is a Gram space.

(2) tis alinear and isometric map of £ onto a dense subspace of A.

If (¢, (A, [., .1, 0)) is a completion of (L, [.,.]) with (A, [., .], O) being a Krein (almost
Pontryagin, Pontryagin, or Hilbert) space, then we speak of a Krein (almost
Pontryagin-, Pontryagin-, or Hilbert-) space completion of (L, [., .]). o

2.6.2 Remark. Notice that in Definition 2.6.1 we do not assume ¢ to be injective.
However, if (£, [., .]) is nondegenerated, then it always is, because then
ker: C L°T = {0); see (1.2.7). o

2.6.3 Definition. Let (£, [.,.]) be a scalar product space, and let (¢, (A, [., .], O)) and
W, (A, L.,.]',0)) be two completions of L. We say that these two completions are
isomorphic, if there exists a linear, bijective, isometric, and bi-continuous operator T
from A onto A’, suchthat T ot = (/.

L

T A

A

¢

It is immediate that isomorphy of completions is an equivalence relation on the set of
all completions of a given scalar product space.

2.6.4 Remark. In Definition 2.6.3 the assumption that 7 is isometric, is not necessary.
In fact, T o« = ¢ yields
[ex, vl = [x,y] = [/ x, ' = [T (), T, x,y € L.

By continuity the fact that ¢ £ is dense in (A yields the isometry of 7.

Also note, that by the open mapping theorem, in the above definition it would be
enough to assume that 7' : A — A’ is linear, bijective, isometric, and continuous,
because then the continuity of 7~ automatically follows. ¢

Let us provide an example of a scalar product which does not have a completion. In
fact, we already met such a space earlier.
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2.6.5 Example. We start with a general observation. Let (£, [.,.]) be a nondegenerated
scalar product space, and assume that £ has a completion, say (¢, (A, [., .1, 0)).
Choose a compatible Hilbert space scalar product (., .) on A, and define

xy) = (), xyel.

Then (., .) is a positive definite scalar product on L. As mentioned in Remark 2.6.2, ¢
is injective. Since [.,.] is continuous w.r.t. (., .), we find C > 0 with

|[x,y]| = |[[Lx,ty]]| < Clx,vy) = C(x,y), x,y€ L.

Hence, [.,.] is continuous w.r.t. (., .).

Consider the scalar product space (L, [.,.]) defined in Example 2.1.2. This space is
obviously nondegenerated, however, its scalar product is not continuous w.r.t. any
norm. From the above we conclude that it does not possess a completion. o

In the next statement we provide a large class of scalar product spaces which do have
a completion.

2.6.6 Proposition. Let (L, [.,.]) be a scalar product space, and assume that L can be
decomposed as a direct and orthogonal sum

L= L,[+L[+1LM (2.6.1)

with L, positive definite and L_ negative definite. Then L has a Krein space
completion.

Proof. Choose Hilbert space completions {t., (H, (., .)+)) and {t—, (H_, (., .)-)) of
(L, [ Jexe,) and (Lo, —[., ]l xc_), respectively. Then the space A := H, X H_
endowed with the scalar product

[Cesx0), sy = e y)s = oy ), (s x0), s Y )H X H,

and the product topology is a Krein space; cf. Theorem 2.3.3. Moreover, a scalar
product compatible with its Krein space topology is given as

(s x2), (43 y2) 1= (e, yo)e — (o, y )y (3 x0), (Vs y ) Hy X H- .
Set
N { LIHLHLY > A

Xy +Xx_+x9 B (Lyxetx0)

Then, for each two elements x, + x_ + xo,y+ + y- + yo € L, we have

[eCrs + x- + x0), t(ys +y- +y0)]| = (Lexy, t4y1) = (xo ey ) =
= [,y ] + [, -1 = [xe + xo, y4 +y-1 = [x4 + x- + X0, ¥+ + Y- + o],

i.e., ¢ is isometric. Since A carries the product topology and
ran¢ = rant, +rant_,

the range of ¢ is dense in A. a
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As a consequence of continuity passing to completions preserves positive and
negative index of the space.

2.6.7 Lemma. Let (L,[.,.]) be a scalar product space, and let {t, (A, [.,.],0)) be a
completion of L. Then

ind+ (L, [.,.]) =inde (A, [.,.]), ind_(L[.,.]) =ind_(A,[.,.]I).

Proof. By Proposition 1.6.7 we have
ind. (L, [.,.]) =ind, (L, [.,.]), ind_(L,[.,.]) =ind_-(L,[.,.]).

Since ¢L is dense in A, the assertion follows from Proposition 2.1.4. a

The condition ind_(L, [.,.]) < oo suffices, to be sure that there are completions.
2.6.8 Proposition. Let (L, [.,.]) be a scalar product space. Then the following are
equivalent.

(D) ind_(L,[.,.]) < 0.

2) (L, [.,.]) has a Pontryagin space completion.

3) (L, [.,.]) has an almost Pontryagin space completion.

Proof. Assume that ind_ £ < oo. Then £ can be decomposed as in (2.6.1), cf.

Proposition 1.6.2. Thus there exists a Krein space completion ‘A of £. However,
ind- A = ind_ £ < oo, and hence A is in fact a Pontryagin space.

Since each Pontryagin space is also an almost Pontryagin space, the implication
“(2) = (3)” is trivial. Finally, assume that £ has an almost Pontryagin space
completion, say A. Then ind_ £ = ind_ A < oo. a

It turns out that a space £ with finite negative index always has nonisomorphic almost
Pontryagin space completions. We defer a detailed treatment to Section 2.7*; right
now let us only mention that nonuniqueness originates from presence of degeneracy
as one can guess after a glance at the following result.

2.6.9 Proposition. Let (V,[.,.]) be a scalar product space with ind_ V < co. Then
each two Pontryagin space completions of ‘V are isomorphic.

Proof. Let (i1, (AL [.,.1,0)) and {12, (As, [, .2, O2)) be two completions of
(V,[.,.]). Consider

L:={tx;0x): xeV}CA XA,.
Then £ is a linear subspace and we have
[ax, ayll = [x,y] = [2x, 0y, xyeV.
Moreover,

domL:={xeA : A, e Az : (x;x2) € L} = 11(V),
ranL:={xnp e Ay: Axe A : (x;x2) € L} = 12(V),
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and hence cf(dom £) = A, and cl(ran L) = A,. Since A, and A, are
nondegenerated, by Corollary 2.5.16 we obtain a linear, isometric, bijective, and
bi-continuous map 7 : A; — A, with graph T = c(L). a

2.6.10 Example. Let g be a function which is meromorphic in the open upper half
plane C*, and denote its domain of homolorphy by p(q). For zi, ..., z, € p(g) set
qz) — g\
PZ[ yyyyy ZYI :: (——]) b
Zi—Zj i,j=1

and denote by ind_ P, . the number of negative eigenvalues of this matrix counted
according to their multiplicities; cf. Example 1.6.5.

We say that the function g belongs to the indefinite Nevanlinna class N<w, if

sup ind_P;, . <oo.
neEN, z1,...z,€p(q)

With each function ¢ € N, a Pontryagin space A, is naturally associated. We will
see that this space reflects a big amount of the properties of ¢, cf. . For M = p(q) and

k@m=10"99 ' ng).

consider the space ¥ (M) = ¥ (p(q)) provided with the scalar product

f.81g:= . 8@ -K&m)- fo),  fg€ Flplq)

{neM

as in Example 1.1.4. The condition that g € N, implies ind_(¥ (o(¢9)), [, .1g) < o0}
see Example 1.6.9. In fact,

ind_(F (p()), [, .1y = sup ind-Fy ., .

neN, zj,...2,€p(q)

Hence, there exists an, up to isomorphism, unique Pontryagin space completion A, of

F (o(q)) o

It is interesting to see an example of a scalar product space which has two non
isomorphic Krein space completions.

2.6.11 Example. Let V be the space all komplex double-finite two-sided sequences
V:={(@)jez€C”: @;€C,ANeN:a; =0,|j| > N},

and define a scalar product on V as

[@)jez. Bjez) = Y ;- Bi= ) a;-Bis (@jez (Byjez €V

Jj20 Jj<0

This expression is well-defined since each of the sums on the right side contains only
finitely many nonzero summands.

Set e, := (0n) jez, and consider the subspaces

V, :=spanfe, : n >0}, V_:=spanfe,:n <0}.
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Then V. is positive definite and V_ is negative definite. Moreover, V. [L]V_ and
Vi+V_ =V. Let (¢, (A, [, .1)) be the Krein space completion of V as constructed in
the proof of Proposition 2.6.6 starting from the decomposition V = V., [+]V_.
Moreover, denote by (., .) the compatible Hilbert space scalar product on A specified
in this construction.

Consider the sequence (a,)xen in A defined as

), neN.

a, = i1(—
R
Then a, € «(V,), and hence

D, =1, = o

(@n. ) = (o= NN~

) (=

NN

Thus lim, e a, = 0.

Set f,, == e, + i ‘Hlle_n, n € Z, and consider the subspaces

V', = span{f, :n >0}, V. :=span{f,:n<0}.
A computation gives
nl_p 2l
n| + 1 (Inl + 1)?

and we conclude that V. + V. = V. Another computation gives

fn_

nez,

2n|+1

T I? n=mz2>0
2 1

[ﬁl»fm] = _(‘rlrJlrJ;)z’ n:m<0
0 , n#Em

and we conclude that V", is positive definite, V"’ is negative definite, and V', [L]V".
Consequently, V.. N V" = {0}, and in turn V = V' [+]V". Let (', (A, [.,.])) be the
Krein space completion constructed from this decomposition as in the proof of
Proposition 2.6.6, and denote by (., .)’ the compatible Hilbert space scalar product
specified in this construction.

Consider the sequence (b,) ey in A’ defined as

€n

anZL(\/E), neN,.
We can write )
 mED
= GiD e £ = — )]

Since (' (f,) € (V%) and /' (f-,) € /' (V"), we have

(n+1)?

(buba) = | i) \f] | fon o), 1)2( L ()] =
1?2 n
-[W] JIE AR +1)2fn,f A=
[ I’l+]) ] 2n+1 [ nz ]
Qn+1)yn!l  (n+1)2 (n+ 121
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Thus limy_eo(bn, by)’ = 1.

Assume now that (¢, (A, [., .])) and (', (A’, [., .]')) were isomorphic, and let T be as
in Definition 2.6.3. Then

e e
by=U(—=)=(To)(—=%)=T(a,), neN.
( \/ﬁ) (T o 0)( \/ﬁ) (an)
Since T is continuous, we would arrive at the contradiction lim,,_, (b, b,)" = 0. o

2.7 *Almost Pontryagin Space Completions

In this section we give a detailed description of the totality of all almost Pontryagin
space completions of a given scalar product space V. It turns out that these
completions are in a one-to-one correspondence with certain subspaces of the
algebraic dual space V* of V, i.e., of

YV :={feC”: fislinear }.

In order to formulate the definition of the map which turns out to establish this
connection, let us recall the concept of the algebraic dual map. For two linear spaces
V and ‘W and a linear map f : V — ‘W this is the linear mapping defined by
f { WV
' g = pof
In particular, for a completion (¢, (A, [, .], O)) of a scalar product space (V, [.,.]) we

have * : A* — V*. Since the topological dual space (A, O)’ of A is contained in A*
the following definition makes sense.

2.7.1 Definition. Let (V,[.,.]) be a scalar product space, let (¢, (A, [.,.], O)) be a
completion of V. Then we set

(e, (A, [.,.1.0)) = ((A,0)).

We will apply the usual abuse of language, and write (¢, A) if no confusion
concerning inner product and topology can occur.

2.7.2 Remark. If *(¢1) = *(¢2) for @1, 3 € (A, O), then @1 (1(x)) = ¢2(1(x)) for all

x € V. Due to the density of «(V) in A this yields ¢; = ¢,. Thus, (* acts injectively on
(A,0). o
The correspondence given by ¥ will be seen to respect a certain order structure.

2.7.3 Definition. Let (V,[.,.]) be a scalar product space, and let (¢1, (A1, [., .11,01))
and (¢, (A;z, [, .12, O2)) be two completions of V. Then we write

(t1, (AL, 11, 01) = (1, (A [, 12, 02)),

if there exists a linear, isometric, surjective, and continuous map @ : A, — Aj, such

that w o 1, = (;.
%
2N

Als—— Ay
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For short we will use (¢1, Ay) < (1, Ay) for
(t1, (AL, T, 01) £ (12, (A ., .12, 02)) if no confusion can occur.

2.7.4 Lemma. Let (V,[.,.]) be a scalar product space. The relation “<” defined

between completions of ‘V is reflexive and transitive. Moreover,

0, A) = (0, Fo) and (0, F) < (11, A, @2.7.1)

if and only if (11, (A1, [, .11, O1)) and (2, (As, [, .12, O2)) are isomorphic.

Proof. Reflexivity and transitivity is obvious. Assume that (2.7.1) holds true, and let
@ Ay > A and ¥ : A; — A, be linear, isometric, surjective, and continuous maps,
with

wol =1, UVou =1t.

Then, for each x € V,
(@ o ) (11x) = w(px) = yx, (Fo@)(2x) = H1x) = trx.

Hence, (w o ¥)|,,y = id,,y and (¥ o @)|,, = id,,. Since ¢;V is dense in A, 1,V is
dense in A, and w and ¢ are both continuous, we get

wol=idg, Vow=idg, .

This shows that @ and ¢} are mutually inverse bijections, and hence bi-continuous.
Thus, (¢1, (A1, [, .11, O1) and (12, (A2, [, .12, O2)) are isomorphic. The converse is
clear. a

2.7.5 Lemma. Let (V,[.,.]) be a scalar product space, and let (11, (A4, [., .J1,01))
and (i, (A3, [., .12, 02)) be two completions of V. Then (11, A1) < (1o, Ay) implies
W, A € Y2, Ar).

Proof. By definition we have @ o, = (; for some linear, isometric, surjective, and
continuous map @ : A, — A;. This gives

[ =(@on) =G0,
and in turn
W1, A = (A = 13 0@ (A)) C 15(A) = P2, Ar).

a

In the following example we shall show, how to construct from a given completion
another completion, which is larger w.r.t. <.

2.7.6 Example. Let (t1, (A1, [.,.T1,01)) be a completion of V, and let £ be a

subspace of V* which contains W¥(¢;, A;) with finite codimension n € N. We shall
construct a completion (¢, (As, [, .12, O2)) such that (¢, Ap) < (1, Ap) and
lP(Lz, ﬂz) = .E

Choose a linearly independent set {¢1, ..., ¢,} with

L =", A+ span{gi, ..., @) .
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Let (.,.); be a compatible scalar product on A;, and set

Ay = A xC",
[Coans. .50, 361382 =[xy,

((ans...san), (y;,Bl;.-.;ﬁn))2 =y + Z%‘E‘»

i=1
2= (5015 . 0.(2), z€V
(X, a1;...;a,) = X.
(.,.)2 is a Hilbert space scalar product on A, and the topology O, induced by (., .), is

the product topology of O; and the euclidean topology on C". Obviously, [., .] is
continuous w.r.t. O,. Thus, (A, [., .12, O>) is a Gram space.

Moreover, the mapping @ : A, — A is isometric and surjective, and the mapping
L .V — A, is isometric and satisfies 1, o @ = ¢;. Let us show that (V) is dense in
Aj. For this assume that (y;81; . ..;8,) € (rant;)2. Then

0= (Lze@:;-..; 0u), (y;,Bl;...;ﬁn))2 =y + Zsoi(z)ﬁi, eV, 272)
i=1

and hence

D Bigid) =~z = GGy @, zeV.
i=1

Consequently, ;" Bigi € ¥(11, Ay). By our choice of the functionals ¢;, we get
Bi1=...=B,=0.Inturn, (2.7.2) implies y € (ran (1)1, and hence y = 0. Thus,
(t2, (A, [, .12, 05)) is a completion of V such that (¢1, Ay) < (12, Ay).

For the verification of W(¢;, Ay) = L note that from Lemma 2.7.5 we immediately get
W, Ar) € ¥, Ay). If we take (y; B1;...;8,) € Ay withy = 0 and §; = ¢;;, then

5@ B3 B2 = ¢ilz), z€ V.

Hence, ¢; € Y(1p, Ap) fori = 1,...,n. Thus, L C VY(1p, Az).

On the other hand, by the Riesz-Fischer Theorem (see ) any element of ¥(,, A,) is of
the form ¢(2) = (t2z, ;B3 - - -3 Bn)),s 2 € V, for some (y;Bi;...58,) € Ay, ie.,

0@ = Mz + ). @iDB = 1@ + ). ¢il2)B:.
i=1 i=1

Therefore, ¢ € Y(¢1, Ay) + {¢1, ..., 0.} = L, and we have also shown that
Yo, Ar) € L.

Finally note that if (‘V, [., .]) admits almost Pontryagin space completions, i.e.,
ind_(V, [.,.]) < oo (see Proposition 2.6.8), then (A, [., .11, O1) is an almost
Pontryagin space completion if and only if (Ay, [, .12, O2) is an almost Pontryagin
space completion. This is a consequence of Lemma 2.5.8 together with the fact that
dimkerw = n < oo. o

In Proposition 2.7.7 we will see that W(¢;, A;) = Y(1p, Ay) imlpies that (¢1, A;) and
(tp, Ay) are isomorphic. In order to motivate the verification of this result, let us pause
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and revisit the proof of Proposition 2.6.9, where we showed that each two Pontryagin
space completions are isomorphic. The relation T o ¢; = ¢, means nothing else but

graph T 2 {(¢1x;10x) - x € V).

In the proof of Proposition 2.6.9 we applied Corollary 2.5.16 with the subspace on the
right side, and obtained 7 as an extension by continuity; the source of continuity being
isometry. This is not possible in the present situation. Indeed for degenerated A, not
even the hypothesis of the first part of Corollary 2.5.16 is fullfilled. In the present
situation, the source of continuity shall be the assumed relation W(¢;, A;) = Y(t2, Ap).

2.7.7 Proposition. Let (V,[.,.]) be a scalar product space. Two completions
(t1, (AL L, 11, 01) and (12, (A, [., .12, O2)) of V are isomorphic if and only if
(e, Ay = Yo, Ap).

Proof. By Lemma 2.7.4 and Lemma 2.7.5 it remains to show that
Y(, Ar) = Yo, Ay) implies that (¢, A;p) and (1, A) are isomorphic. For this
consider the linear subspace (again we anticipate the language of linear relations)

R:={(:0) € A\ X Ay : b = L) (2.7.3)

of the Banach space A| X A,. R is closed, because if (f,; ¢,), n € N, is a sequence in
R with

Lim (Y3 0n) = (U1 9) € A X Ay
then

GO = P = lim g0 = lim ¢,020) = ¢ = GO, xeV,

ie., (W;¢) €R.

We saw in Remark 2.7.2 that the restrictions ¢} A and 4| , act injectively. Hence,
(0;¢) € R implies ¢ = 0 and (¢; 0) € R implies = 0, and R turns out to be the graph
of an injective mapping again denoted by R. Since the subspace defining R is linear,
this map is linear. Its domain and range are given by

domR = {y € A, : Jp € Ay, Y = o),
ranR ={p € A, : Wy € A, Y = o).

By our assumption ¢(A) = ¥(¢1, Ar) = P2, Az) = 15(A;z), thus dom R = A} and

ran R = A,. The closed graph Theorem (see ) yields the by-continuity of the bijection Missing
R: A — A, Reference

Since A; and A, carry Hilbert space topologies, they are reflexiv, i.e., their bidual
spaces A" and A can be identified canonicallly with A; and A», respectively. In
turn, the conjugate mapping R’ : A; — A} of R can be viewed as a bijective,

bi-continuous, linear mapping R’ : A, — A such that (see ) Missing
Reference

Y(R'y) = RY)(y), forall ye A, €A

Since by definition Ry is the element from A satisfying (Ry)(12x) = (11 x) for all
x € V, we obtain

Y(R' (12x)) = (RY)(12x) = Y(u1x), forall xeV, y e A;.
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Due to 12(V)’s density we get R’ o1y = ;. Setting T := R’ we obtain a bijective,
bi-continuous, linear mapping from A, onto A; satisfying T o 1, = ¢;. As we saw in
Remark 2.6.4, T is automatically isometric. Therefore, the completions

(L] 5 (.7{1 5 [[., ]] 1» O] )) and (Lz, (ﬂz, [[., .]]2, 02)) of V are isomorphic. D

2.7.8 Remark. If we only have ¥(¢1, A;) € ¥(1a, Ay) for two completions
(1, (AL, .T1,01)) and (2, (A2, [, -T2, O2)) of V, the proof of Proposition 2.7.7 also
works up to a certain extent.

In fact, we can again consider the subspace R of A} x A}, as in (2.7.3). As above, R is
closed, and is the graph of an injective linear mapping. Our assumption

(¢, Ap) € Y(1o, Ap) now gives us information only about the domain of R. In fact,
domR = A|. Thus, R : A} — A is a continous, linear operator, and therefore has a
conjugate operator T := R’ : A, — A, which is continuous, linear and satisfies

T o1, = 1;. The latter fact also yields the density of ran T. Applying the arguments in
Remark 2.6.4 we see that T is isometric. ¢

2.7.9 Corollary. Let (V,[.,.]) be a scalar product space with ind_V < oo, and let
(t1, (AL L 11, O1)) and (2, (A, [, 12, O2)) be almost Pontryagin space completions
of V. Then (11, Ay) = (1, Ap) if and only if ¥(t1, Ay) € ¥(2, Ar).

Proof. By Lemma 2.7.5 it remains to show that ¥(¢;, A;) € Y(1p, Ay) implies that
(t1, Ay) = (12, A).

As mentioned in Remark 2.7.8 there is exists continous, linear and isometric

T : Ay — A, satisfying T o1, = ¢1. We also know thatran 7T is dense in A;. Applying
Corollary 2.5.15 to the graph of 7', which is closed, we see that ran T is closed, and
hence coincides with A;. Thus, (¢, A1) =< (12, Ay); cf. Definition 2.7.3. a

For all almost Pontryagin space completions of a given space V we can be even more
precise.

2.7.10 Theorem. Let (V,[.,.]) be a scalar product space with ind_ V < co. Then the
following hold true.

(1) The set
{ Y, A) : (AL, .1, 0)) almost Pontryagin space completion of V } 2.7.4)

of subspaces of V* has a minimum V* w.r.t. “C”. In fact, V* = ¥(1, A) for any
Pontryagin space completion (¢, (A, [., .1, 0)) of V, and

V* = (({[.y1:y € A}, (2.7.5)
for any almost Pontryagin space completion (i, (A, [, .1, O)) of V.

(2) Let (t, (A, [.,.1,0)) be an almost Pontryagin space completion of V. Then
Y(i, A) contains V*, and

dim ¥(e, A)/p+ = indo(A) . (2.7.6)
(3) The map ¥ induces an order isomorphism of the set of all isomorphy classes of

almost Pontryagin space completions of ‘V onto the set of all linear subspaces of
V* which contain V* with finite codimension (ordered by inclusion).

minimbeschr

almostbeschr
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Let (¢, (A, [., .1)) be an almost Pontryagin space completion of V. From (2.3.1)
we known that A’ = {[., y] : y € A}. Therefore,

Y@, A) = L., y] : y € A}.

Since, according to Proposition 2.6.9, each two Pontryagin space completions of
V are isomorphic, this space does not depend on the particular choice of A; see

Proposition 2.7.7. We set V* := ¥(i, A) for the moment, and shall prove (2.7.5)
and the fact that V* is the minimum of (2.7.4).

For an almost Pontryagin space completion (¢, (A, [, .], O)) of V consider the
Pontryagin space (A/ Alel, [, .] at1); cf. Corollary 2.5.9. Denote by

7w A — A/ ALl the canonical projection. Then r is linear, isometric, surjective,
and continuous. In particular, 7 maps dense subsets of A onto dense subsets of
Al Alel. Thus (7 o ¢, (A/ Alel, [.,.])) is a Pontryagin space completion of V.
Here [, .] denotes the scalar product on A/ #Al°l defined as in (2.2.4).

Fory € Aand x € V we have

(L, yI() = [ex, yT = [(r 0 )(x), a1 = (o (L., ayl)(x) ,

and hence
L*({[[.,y]] 1y € ﬂ}) =(mo L)*({[[.,Z]] 1z € ﬂ/g{I[O]]}) =V,

Finally, from {[., y] : y € A} € A’ we conclude that V* is indeed the minimum
of (2.7.4).

Let (¢, (A, [, .1, O)) be an almost Pontryagin space completion of V. We know
that A’ contains {[., y] : y € A} with codimension indy A, cf. Lemma 2.5.10.
Since by Remark 2.7.2, t*| 4 is injective, *(A’) = dim P(¢, A) contains V* with
codimension indg A.

By Proposition 2.7.7 the mapping ¥ maps the set of all isomorphy classes of
almost Pontryagin space completions of ‘V injectively into the set of all subspaces
of V*, where, according to Corollary 2.7.9, (1, A;) < (12, Ap) if and only if

P, Ar) € ¥z, Ar).

In (2) we saw that ¥ actually maps into the set of all linear subspaces of V*
which contain V* with finite codimension. It remains to show that for any
subspace L of V*, which contains V* with finite codimension there exists an
almost Pontryagin space completion (¢, (A, [., .], O)) such that ¥ (¢, A) = L.

For this we simply apply the construction in Example 2.7.6 to any Pontryagin
space completion (¢, (A, [., .11, O1)) of V and to our subspace L of V*, which
is possible since V* = ¥(¢1, A;). The resulting almost Pontryagin space
completion (¢, (A, [, .12, O2)) satisfies W(ip, Az) = L.
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2.7.11 Example. We revisit the Paley-Wiener spaces PW,, cf. Example 2.5.6.
Consider the scalar product space

Y = U PW,
0<a<1
ogl = fR Fanem dn - nfO)g0). fgeV. 27.7)

For each a € [0, 1) the space (PW,, [.,.]) is a Hilbert space. In particular, (V,[.,.]) is
positive definite.

Consider the space W, endowed with the inner product defined by the formula
(2.7.7) and with the Hilbert space topology induced by the usual L*(R)-scalar product
(.,.). Then (PW, [.,.], O) is an almost Pontryagin space with

ind_(PW, [.,.]) =0, indo(PW},[.,.])=1.

Denote by ¢ the set-theoretic inclusion map of V into PW,. Since

|J {f e L2®) s supp f € [—a.al} = {f € L*(R) : supp f € [-1. 11},

0<a<l

and the Fouriertransform is unitary, V is dense in $W;. Hence,
L, (PW, [, .1,0)) (2.7.8)
is an almost Pontryagin space completion of (V, [., .]).

Of course, since (V, [.,.]) is positive definite, it also has a Hilbert space completion.
However, the completion (2.7.8) is much more natural. Indeed, the space V is a space
of functions defined on C, and therefore for each 7 € C we naturally have the point
evaluation functionals y,, : f = f(17), f € V. These are continuous w.r.t. the topology
O|; the completion (2.7.8) is again a space of functions and point evaluation is
continuous.

Let us show that for 7 ¢ nZ \ {0} the point evaluation functional y,, is not continuous
w.r.t. the topology induced on V by a Hilbert space completion. To this end, we
compute those elements h,(n,.) € PW,, a < 1,1 € C, with

fa) =[f ham, )], f€PW,, a<lpeC. (2.7.9)

The Gram operator G, of [., .Jlpwyew, W.I.L (., )lpwsew, 1S given as (notation k,(1, .) as
in Example 2.5.6)
G, =1-n(., ki, )ka(n,.).

A computation shows that for each a < 1 (actually for each a # 1) the element

1 sinan
l1-a

satisfies G,h,(n, .) = kq(7,.). Hence, (2.7.9) holds. We have

ha(rh ) = ka(n» ) +

kq(0,.)

sinan

1
a,(n) = [ha(n, ), ha(, )] = ha(, 1) = ka7, 1) + 12 ka(0,1) =

_ sinh(2aImp) 1 1 (sin an )2

El

2nImn l—an‘ g
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and see that

| xa(ha@.)) | = NaaD - ((ha(n. ). han, ))?, a<1lyecC.

Let (¢, (8B, (., .))) be a Hilbert space completion of (V,[.,.]). All elements (1, .)
belong to V. If p ¢ nZ\ {0}, then lim, ~; @4(17) = o0, and hence the functional y;, is not
bounded w.r.t. (., .).

Interestingly, if n € 7Z \ {0}, then y,, is bounded w.r.t. (.,.): Let € 7Z \ {0}, then
a,(n) remains bounded. Hence, for an appropriate sequence a, /1, the limit
hi(n,.) := lim,_, hg, (1, .) exists in the weak topology of 8. Let f € V, and choose
ap < 1 with f € PW,,. Then

J) =1f ha®m, )], a€lao, 1),

and hence

O = Hm [f, ha, (1,91 = (f i n,))
Let us finally compute ¥(¢, PW;). We certainly have
V* CV* +spanly, : n € C} C P, PW).
Since x, ¢ V* forn ¢ nZ \ {0}, the first inclusion is proper. However,
dim ¥, PWi)/p+ = indo(PW1. [, = 1,

and hence in the second inclusion equality must hold. o

2.7.12 Remark. It is interesting to review Example 2.7.11 from a slightly different
perspective. Say, we are given a scalar product space (V, [., .]) and a family & of
linear functionals on V (in the concrete example Example 2.7.11 this would be the
family of all point evaluation maps). Now we want to complete (V, [.,.]) in such a
way that functionals from ¥ become well-defined continuous functionals on the
completion. To this end, consider the space

L=V "+F CV*.

Provided that dim £//* < oo, we find an almost Pontryagin space completion

(t, (A, [, .],0)) such that ¥(¢, A) = L. This is then the minimal completion to which
functionals in 7 extend continuously. Thereby, of course, we understand a functional
Y € A with "y = ¢ as an “extension” of ¢. o

2.8 To become part of the Appendix

(In den Appendix J

2.8.1 Lemma. Let (A, ||.||) be a normed space. If B is a finite dimensional subspace
of A, then B is closed. Moreover, it is complemented, which means that that for some

closed subspace C of A we have A = B4+C.

Moreover, for any such closed subspace C the linear bijection (b; c) — b + c from
B % C onto A is bi-continuous.
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2.8.2 Lemma. Let (A, ||.||) be a normed space, and let C be a closed subspace of
finite codimension. If D is any linear subspace of A, then

A DNC)=c(D)NC and (D) =cl(DNC)+ D,

where ct(D N C) is of finite codimension in cf(D). In particular, D N C is dense in C,
if D is dense in A.

Proof. Letb;, i € I, be an algebraic basis of D N C, and continue this basis to a basis
b;, i € J, of D, where J 2 I. Clearly, the linearly independent vectors b;, i € J \ I, do
not belong to C. By the assumption on the codimension of C, J \ I is finite. Let 8 be a
finite dimensional subspace of A containing b;, i € J \ I, such that A = B+C. Finally,
due to Lemma 2.8.1 we have

(D) =ct(DNC)+cl(span{b; :ie J\I}) = cl(DNC)+spanib; :ie J\I}.

a

2.8.3 Lemma. Let (A, ||.||) be a normed space. If B is a finite dimensional subspace
of A and N is a closed subspace of A, then also B + N is a closed subspace of A.
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Chapter 3

Linear Relations

3.1 Operators as linear relations

An elegant way to study not necessarily everywhere defined operators or even
multivalued operators between spaces X and X and their closures is to consider their
graphs as a linear subspace of X X Y. This leads to the concept of linear relations.

3.1.1 Definition. Given two vector spaces X and Y we call any linear subspace T of
X x Y alinear Relation between X and Y. For such a linear subspace T we call

—domT ={xeX : Aye Y : (x;y) € T} the domainof T,

ranT ={yelY : Axe X : (x;y) € T} the range of T,
—mul7 ={yel : (0;y) € T} the multivalued part of T,

—kerT ={xe X : (x;0) € T} the kernel of T

Finally, we denote by Ix the identity operator on X, i.e. Ix = {(x; x) : x € X}. If it is
clear from the context, what space is under consideration, we will write [ for short.
¢

It is easy to check that all these subsets are in fact linear subspaces of X and Y,
respectively. The size of the subspace mul 7 measures how far away a linear relation
is from being an operator.

3.1.2 Lemma. Let T be a linear relation between vector spaces X and Y. For any
(x;y) € T one has

{zeV: (x;20e€T}=y+mul(T).

In particular, T is the graph of a not necessarily everywhere defined linear operator if
and only if mul T = {0}.

@® Preliminary version Mon 02 June 2014 17:08
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Proof. 1f (x;y) and (x; z) belong to T, then also (x; z) — (x;¥) = (0; z — y) does. Hence,
z—y € mul(T). Conversely, a € mul T implies (0; a) € T and further
(x;y+a)=(x;y)+(0;a)eT. a

As in the operator case we can define operations on the class of linear relations.

3.1.3 Definition. Let ‘W, X, Y, Z be vector spaces, S, T C XX Y,0 C W x X be
linear relations and let @ € C. Then we define

- S+T :={(x;y)eXxY: AuveY :y=u+v, (x;u) €S, (x;v) T}
— ol ={(x;ay) e XxY: (x;y) €T}

— Tl i={yn)eYxX: () eT)

— SO ={wy)eWxY:AxeX: w;x)€Q,(x;y) €S}

¢

3.1.4 Remark. In order to distinquish the sum S + 7T as defined in Definition 3.1.3 and
the sum S and 7 as linear subspaces of X x Y we will write S & T for the sum § and
T as linear subspaces. o

It is easy to verify that with S, 7, Q also S + T, aT, T-! and S Q are linear relations.
Also the proofs of the assertions in Lemma 3.1.5 are straight forward.

3.15Lemma. Let R, S, T C XX Y, QCWxX, UCY X be linear relations and
a, B € C. Then the following assertions hold true.

(i) '+’ is associative. More exactly,
R+ S+T)=R+S)+T=R+S+T := (3.1.1)
{(x;)eXxY: uv,wel:
y=u+v+w, (x;u)€R, (x;v) €S, (x;w)eT}.
(it) '+’ is kommutative, i.e. S + T =T + S.
@iy a(S +T) =(aS) + (aT).

(iv) dom(S +T) =domS Ndom 7, mul(S +7) =mulS + mul 7,
ran(§S + T) CranS +ranT andker S NkerT C ker(S + 7).

(v) The relational product is associative, i.e.
UGS Q)=(US)Q=USQ := (3.1.2)
(W) eWxZ: dxeX,yeY:(w;x) €0, (x;) €S, (v;2) € U}.
sex|  (vi) (aly)S = aS and IyS = S = Slx.
vii) (aB)S = a(BS).
iii) (S Q) = (aS)Q. Ifa # 0, then also a(S Q) = S (aQ).

assocplus

assocmal
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(ix) dom(S Q) € dom Q, ran(S Q) C ranS and mul S C mul(S Q), ker Q C ker(S Q).
W Q' =075
(xi) (S™Hl=s5.

(xii) domS~! =ranS andkerS~' = mulS.

Proof. In order to get a feeling for linear relations, let us verify for example
a(S Q) = (aS)Q and a(S Q) = S(aQ) if @ # 0. By (vi), a(S Q) = (aS)Q follows from
(3.1.2).

For a # 0 the inclusion (w;y) € a(S Q) is equivalent to a(w; éy) = (aw;y) € S Q.
Hence, (w;y) € a(S Q) if and only if (aw; x) € Q and (x;y) € § for some x € X. Since
(aw; x) € Q is the same as (w; x) € aQ, we showed the equivalence of (w;y) € a(S Q)

and (w;y) € S(aQ). a

3.1.6 Example. If @ = 0, then (S Q) = S (@Q) is no longer true for arbitrary linear
relations S and Q. In fact, if mul S 2 {0}, then mul S (0Q) 2 mul S 2 {0}, whereas

0(S Q) € W x {0}, and hence mul 0(S Q) = {0}. o
3.1.7 Remark. If R, S, T are the graphs of operators, then it is easy to see that a7 is
the graph of the mapping x — a7 x defined for all x € dom(aT) = dom7T, that S + T
is the graph of the mapping x +— S x + T'x defined for all

x € dom(S + 7T) = domS Ndom7, and that RS is the graph of the composition
mapping x — R(S x) defined for all dom RS = {x e dom S : Sx € domR}.

If S is an operator and T a linear relation, then we can write
S+T :={(x;y+Sx)eXxY:AyeY:(x;y)eT, xedomS} .
In the case that X = Y and that S = alx with @ € C,
T+aly ={(x;y+ax) e XxX: AyeX:(xy)eT}.
For this expression we also write T + « for short. o

In general the relational product is not distributive. However, the following inclusions
hold true.

3.1.8 Lemma. For linear relations S, T CX XY, QC W x X, U C Y x Z we have

(i) S+T)0CSQ+TQ
(i) US + UT C U(S +T)

Proof. (w;y) € (S + T)Q means (w; x) € Q and (x;y) € S + T for some x € X. The
latter inclusion yields (x;y;) € S and (x;y;) € T for some y;,y, € Y with y = y; + y».
By the definition of the relational product we get (w;y;) € SU and (w;y,) € TU, and
finally (w;y) = W;y1 +y2) e SU+TU.

For the second inclusion take (x;z) € US + UT. Hence, (x;z;) € US and (x;20) € UT
for some 71,2, € Z with z = z; + z5. In turn we get (x;y1) € S, (y1;21) € U and
(x;y2) € T, (y2;22) € U for some yy,y, € Y. Since U is a linear subspace and due to
the definition of "+, we get (y; + y2:21 + 22) = (1 + y252) € U and

(x;y1 +y2) €S + T. Finally, (x;2) € (S + T)U. a
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3.2 Transformations of linear Relations

Consider a linear relation 7 C X X Y. If X, and Y, are two more vectore spaces and
if 7: X1 XY — X, X Y, is a linear mapping, then obviously, 7(7) is a linear relation
between X, and Y. Likewise, if S C X, X Y, is a linear relation, then the inverse
image 7'(S) = {(x;y) € X1 x Y : 7(x;y) € S} of S is a linear relation between X
and Y. We will see later on that expressions like 7 + S and (T - @)~ can be
expressed as the images of 7 under certain transformations 7.

3.2.1 Remark. Let X;,Y;, j = 1,2 be vector spaces. A lineare mapping
T: X1 x| > Xa xY,

can be represented in block operator form

7= (é g), (3.2.1)

where
14271',\/20‘1'OLXI 2X1 —>X2, BZHXZOTOLy] 2Y1 —)Xz,

C=7T‘yZO‘I'OL,\/l 2X1 —>y2, DZHyZOTOLy] Zyl —>\y2.
Here 7x, and 7y, denote the projections from X, x Y, onto X, and Y, respectively.
tx, : X1 = X1 x Y andwy, : Y1 — X X Y act such that tx, (x) = (x;0) and
Ly, () = (05 ).
Writting the elements of X X Y1 and X, X Y3 as two vectors, i.e. (x;y) = (;‘) we see
that 7 acts like a matrix vector multiplication:

)= (e 2l0)-(en)

We are going to consider some examples of such thransformations, which shall be of
interest later on.

¢

3.2.2 Example. Let X, Y be vector spaces.

1. For @ € C define the linear mapping y, : X X Y — X x Y by its block operator
representation
(Ix O
Ho = (0 (I[y) ’

The nice thing about this linear mapping is that the image 1, (7) of any linear
relation T € X x Y is nothing else but o7

Moreover, for @ # 0 the transformation y, is bijective, where (1)~ = 1.
2. For a linear operator B : X — Y defineag : X XY — X X Y by
_(Ix O
ap = B Iy .

If T € X x Y is a linear relation, then it is easy to check that ag(T) = T + B. ag
is also bijective with (ap)™! = a_g.
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3. We define tysy : X XY — Y X X by

0 I
TX‘:y:(IX Oy)

Then txy(T) = T~! for any linear relation T € X X Y. Ty is bijective with
Tysx - Y x X — X x Y as its inverse.

For transformations of diagonal form we have the following assertion.

323 Lemma. Let7: X X Y| — Xy X Y3 be a linear mapping with a block operator
representation of the form

T=(A><D):=(6‘ g),

where A : X1 —» Xy and D : Y| — Y, are everywhere defined linear operators. Then
we have

(T) = DTA™" and v7'(S)=D"'SA

for linear all relations T € X, X Y, and S C X» X Y». Hereby, in DTA™" and D™'S A
the operators A and D have to be understood as linear relations A C X; X X, and

D C Y| xY,.

Proof. By the definition of products of relations

o(T) ={(Ax;By) : (x;y) € T} =
() eXox Yy Axe X,y e Y, (x;u) €A, (y;v) €D, (x;y) € T} = DTA™".

Similarly,

THS) =iy € Xy x Y1 (A Dy) € T} =
{(oy)e Xy xY,:JueXy,vel,, (x;u)eA,(y;v)eD, (u;v)eT) = D'TA.
a
3.2.4 Lemma. With the notation from Lemma 3.2.3 we have
dom(A x D)~'(§) € A”'(dom S).

In case ran S C ran D equality prevails.

Proof. dom(A x D)™'(S) € A”'(dom §) is straight forward.

If ran(S) C ran D and if x € A~!(dom S), then (Ax;v) € S for some v € ranS C ran D.
Hence, v = Ay for some y € Y, and, in turn, (x;y) € (A X D)~'(S). Thus,
x € dom(A x D)™1(S). a
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3.2.5 Corollary. With the same notation as in Lemma 3.2.3 and @ € C we have
1(aT) = at(T) and for a # 0 also ™' (aS) = at~'(S). Moreover,
(D x AT = o(T)" and (D x A" (S™) = (+71(S))"", where T = (A x D).

For linear relations T1,To C X1 X M1 and 1,52 C Xy X Y, we have
(T +T2) Co(T) +1(T2) and v (S ) + 71 (S2) S TS| + S)).

Finally, if X; =Y, j=1,2, and if A = D, then 7(T\T,) € ©7(T1)7(T>) and
IS ) T(S2) CT(S182) for Ti, T2 € Xy x Xy and 1,82 € Xy X X».

Proof. The assertions on scalar multiplictions and inversions are easy to check.

For (x;y) € T| + T, we have (x;u) € T, (x;y —u) € T, for some u € Y.
Consequently, (Ax; Dy) = (Ax; Du) + (Ax; D(x — u)) € 7(T1) + ©(T>). Thus,
(T + T2) € o(T1) + 7(T2).

For (x;y) € IS+ T’I(S 2) we get (Ax; Du) € S| and (Ax; D(y — u)) € S, for some
u € Y. Hence, (Ax; Dy) € S| + S, which yields (x; y) € TS| +8)).

Finally, by I C A~'A
T(TiTy) = AT\ LA™ € (AT\A™Y) (AT, A™") = «(T)7(T>)
andby AA™' C T
TS DTS2 = (A71S1A) (A71S14A) CATIS 15,4 = 1771(81S)).

a

3.2.6 Corollary. Let X1, X2, M1, Y, be vector spaces, let A : X1 —» X», D: Y| > Y,
be linear mappings and let T C X1 X Y| and S C X, X Y, be linear relations. Then
we have

DT C SA ifandonlyif (AXD)T)CS .

Proof. Clearly, (A x D)(T) C S is equivalent to T C (A x D)"(S). If we apply D from
the leftin 7 C (Ax D)~'(S) = D"'SA, we get DT C DD'SA C S A, because
DD™! = {(Dy; Dy) : y € Y1} C Iy,. Conversely, applying D~! from the left in
DT C SAyields T € D™'DT € D'SA = (A x D)'(S), because Iy, € D' D. Q

3.2.7 Remark. Inthe special case that X := X, =X, =Y, =Y, A=DandS =T
by the previous assertion the commutativity relation AS C S A is equivalent to the
invariance property (A X A)(S) C S.

By the way, if S is an everywhere defined operator, then AS C S A automatically
yields AS = S A, because domAS = X and AS C S A implied that SA were
multivalued, i.e. mul SA # {0}. o

328 Lemma. IfA,S : X — X are linear, everywhere defined operators such that
AS = SA, then
(AxA)1(S)=5 B (kerA x kerA).

Proof. AS = SA can be expressed as (A X A)(S) €S oras S C (A X A)"(S). As
obviously (ker A x ker A) C (A x A)~!(S), we have S @ (ker A x kerA) C (A X A)~(S).
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If (x; y) belongs to the right hand side, then (x; S x) € S C (A x A)~"!(S). Hence,
(0;y—Sx) e (AxA)~'(S), and in turn (0; A(y — Sx)) € S. From mul S = {0} we
conclude y — S x € ker A. Thus, (x;y) = (x;Sx)+ (0;y—Sx) € S m(kerA xkerAd). O

Finally, we bring yet another type of linear transformations for linear relations, the

so-called Potapov-Ginzburg transform; compare .

3.2.9 Example. Let My, My, N1, N be vector spaces. Denote by Reference
7pG  (Mi X N1 X (Mo X N2) = (M X Na) X (M X N1)

the mapping defined by

Tpg((m1: n1); (ma;np)) = ((my;no); (Mo ny)).

Setting X := M; X N1, Y := My X Ny and X3 := My X Na, Y, := My X N the
mapping 7pg : X1 X Y1 — Xy X Y, has the block matrix structure

(o) (Bw.)

00 Ip, 0
(Bm) (%)
Clearly, Tp¢ is a linear bijection. Its inverse is nothing else but the Potapov-Ginzburg
transform from (M X N3) X (M, x N1) onto (M X N1) X (Mo X N>). o

PG =

3.3 Mobius-Calculus for Linear Relations

In the present section we shall study very particular transformations from
X X X = X x X which was studied for example in . Missing

Ref :
3.3.1 Definition. Let X be a vector space. For any M = ( A e €2 define SlEEeE

Ty : X X X = X x X via its block structure
(ol yI
= (ﬂl 51) :

Tm(x;y) = (0x + yy; Bx + ay) forall (x;y) e X x X.

dijksma
Snoo

¢

3.3.2 Example. For M = (§ ) with & € C we have ty(x;y) = a(x; ), i.e. Tal, s the

(o2

identity operator Ixxx on X X X multiplied with a.
For M = (9 1) we calculate Ty/(x;y) = (v; X) = Txsx(x;y), i.e. Ty = Txsx. Similarly,

for @ # 0 we can verify (see Example 3.2.2)

() = He () = e

3.3.3 Remark. For M = ($%) € C*2 and A € C we have
Tam(x;y) = A0x +yy; Bx + ay) = Aty (x;Y), 1.e. Tay = ATy But this implies that for a
linear relation 7 C X X X and for A # 0 we have 7(T) = (7). o
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3.3.4 Lemma. Let X be a vector space and matrices M = ((; LN =(9b)ec?

Then Ty © Ty = Tay. For invertible M € C?2 we have (ty)~" = Ty-1.

Proof. For (x;y) = (’:) € X x X we have

X ox+yy d(0x +vyy) + c(Bx + ay)
TN O Ty =TN = =
y X + ay b(6x +yy) + a(Bx + ay

(do + cf)x + (dy + ca)y\ X
(b6 + aB)x + (by + aa)y - M )

For invertible M € C?*? we then have Ty-1 © Tay = Lxwx = Tar © Tp-15 S€€
Example 3.3.2. Therefore, (7)™ = 7)5-1. Q

3.3.5 Example. For a linear relation T between X and X we obtain from Lemma 3.3.4

(ﬂ+aT)=T((1);1f)°T(<é ?)(T):T(g‘f)(T)’ 3.3.1)
1= o = =
T+ = T((])(])) T((]) /]1)(T) T((])(]))((]),})(T) T(?J{)(T)’ 3.3.2)
-1 _ _
B+a(T +A)" = T((l)llf)(% 0)(0 i)(T) = T(/lf Qt{lﬁ)(T). (3.3.3)
%

3.3.6 Lemma. Let M = (Z?), N = (%) e C*>?andlet T be as linear relation
between X and X. Assume that (a,b) = (y,0), i.e. a =y and b = 8. Then the following
equality for the relation product of Tn(T) and Ty(T) is valid:

™m(T) wn(T) = T(a B)(T) 8 ({0} x mul 74(T))
cd

= T(a g)(T) A (ker tn(T) x {0}) .

Proof. The elements of 7x(T) are of the form

(dx1 +cyr;bxy +ay)), (xi;y) €T, (3.3.4)
and due to a = y, b = ¢ those of 7y(T) are of the form

(bxy + ayy; Bxz + ayz), (x23y2) €T. (3.3.5)
For (x1;y1) = (x2;y2) we see that all elements of the form

(dxy + ey pxi +ayr), (xiy)eT,
belong to 7y/(T) 5 (T'). Therefore, T((Z 5)(T) C tyu(T) ™n(T).
If z € mul 74(T), then z = Bx, + ay; for (x2;y2) € T, where bx; + ay, = 0. With
(x15y1) = (0; 0) we get from (3.3.4) and (3.3.5) that
0;2) = (0; 8Bx2 + ayz) € Tj;(T) - n(T). Thus,

T(a 5)(T) B ({0} x mul 7y (T)) C ty(T) - ™(T).
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If, conversely, (k;m) € Ty (T) - Tn(T), i.e. (k; 1) € T§(T) and (I; m) € T4(T) fopr some
[ € X, then because of (3.3.4) and (3.3.5) we get

(k; ) = (dx) + cyr; bxy + ayr), (;m) = (bxy + ay:; Bxo + ay2)

with bx; + ay; = bx, + ay, for certain (x1;y1), (x2;y2) € T. Employing (3.3.5) again
we obtain

(bxy + ayy; Bxy + ayr) — (bxy + ay1;8x1 + ayy) = (0;8(x2 — x1) + a(y2 — 1)) € Ti(T) ,

and, hence,
(kym) = (dx) + cy1;8x2 + ayy) =

(dx1 +cy1; Bx1 + ayr) + (0; B(x2 — x1) + a(y2 —y1)) € T(a B)(T) 8 ({0} x mul 7 (T)) .
cd

We verified 74,(T) ™n(T) = ‘r(a [;)(T) # ({0} x mul 74(T)). The second equality can be
cd

shown similarly. a
Recall the concept of Mébius transformation; see . For an invertible M = (§ Fyec™  (Missing
by Reference
al+p
A):=——,1eCuU
dm() AT o {oo}

a mapping ¢, from C U {oo} onto itself is well-defined. Here ¢),(c0) has to be
interpreted as % if y # 0 and as oo if y = 0. Moreover, if y # 0, then ¢M(—$) = oo,

¢p : CU {oo} - CU {oo}is, in fact, a bijection. If we equip C U {oo} with the chordale

metric (see ), then ¢, is bi-continuous. Finally, it is elementary to check that for Missing

invertible M, N € C*? and 1 € C \ {0} Reference
am = dum, @1, = idcuieo)s G © PN = dun, b3 = burr -

Formally, these properties of the Mobius transformatoion reminds us to the properties
of 7j7; see Lemma 3.3.4. But there is also a less formal connection.

3.3.7 Theorem. Let T be a linear relation between X and X, and let M € C*? be
invertible. For 1 € C U {co} we then have in the case that ¢ () # oo

T - +sI 1# o0

(twu(T) = gu(D)™" = { (3.3.6)

1T + sl A=o00

for some t,s € Cwitht # 0. In the case ¢y (1) = co we have

-1
23/(T) = {’(T —A) sl Ao (3.3.7)

1T + sl =00

for some t,s € Cwitht # 0.

Proof. For M = (‘;g) we have M~ = 1-( %, 7).

Assume first that ¢p(2) # 0, i.e. A # ¢ (00) = —%, where —% = 00,if y = 0.
According to (3.3.2) we have

(1) = u())™" =7 M=7 s (). (3.3.8)

0 1
U g M =Gy B-du(DS
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If A # oo, then yA + & # 0 because otherwise ¢(1) = 0. As @ — py()y = det M (e

yA+6
get
(TM(T)—¢M(/1))_ v oo (T) =7 STZE R R (7)),
detM detM det M ( )
YA+o | Briasd

det M

Comparing with (3.3.3) we see that (7y,(T) — ¢M(/l))’1 =T - /l)’1 + sI with

_ YyA+d) _ S(yA+6) _ (yA+6)?
— detM and 7 = As + detM — “detM # 0.

If 2 = co, then (co #) ¢y () = <. Consequently, y # 0 and as 8~ $u(1)6 = ﬁy 2 we
have

(M) = (D)) =75 5 YD =7 2 0 (D).

0 B=pm()o detM "~ detM
Comparing with (3.3.1), we get (ty(T) — (D)) =T + sl with t = detM # 0 and
yo
5= det M

Now we come to the case ¢,(1) = co, which means that A = —%. If additionally
A # oo, then y # 0 and, hence,

M) =7 o (T)zT(s t—rs)(T)zt(T—r)_] + s,
(73 e
Ly
Withs:gund[:rs+é=_de+M £ 0.
¥ by p

Finally, if ¢ /(1) = oo = A, theny = 0. From det M # 0 we infer 6 # 0. Hence,

TM(T) = T(% /g)(T) = T(t s)(T) =1tT + sl s
e 01
where s = § andt = % # 0, because otherwise we would have det M = 0. a

3.3.8 Remark. In order unify the cases in Theorem 3.3.7 it is convenient to set
(R—oc0)':=R
for any linear relation R € X X X. Then the asserted equalities in Theorem 3.3.7 can
be written in one formula as
(1) = py(D) =T =)~ + 1

for all 1 € C U {oo} an certain s, ¢ € C, t # 0. Considering the respective domains /
multivalued parts this equality implies

ran(ty(T) — ¢p()) = ran(T — A) ker(ty(T) — dpp(A)) = ker(T — 2), (3.3.9)
where ran(R — o) / ker(R — o) has to be interpreted as dom(R) / mul(R) for any linear
relation R C X X X. o

3.3.9 Remark. Let us return to transformations of the kind we studied in Lemma 3.2.3
and their interplay with the Mobius type transformations. In fact, if V, ‘W are vector
spaces, A : V — ‘W is an everywhere defined linear operator, and if M € C¥, then
for(AxA)oty : VXV o> WxWandryo(AXA): VXV - WxW we have

(AxA)oty =(AxA)o (ﬂ alq/) (ﬂT QT)_

Olw  YIW) (A x A) =10 (AxA).
[rW (I[rw

dgwutf122
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From this one gets (A X A)(ty(T)) = T ((A X A)(T)) for any linear relation 7 on V,
and for invertible M and any linear relation S on ‘W also

i ((AxA)'S) = (AxA) oty 1) (S) =

(ty 0o (AX A (T) = AxA) " (tp(T)) . (3.3.10)

¢

3.4 Linear Relations on normed Spaces

3.4.1 Definition. Let (X, ||.]|x) and (Y, ||.]|ly) be two normed spaces. We call a linear
relation T between X and Y closed , if T is closed as a subset of X x Y where X x Y
is equipped with the product topology. The closure c¢{(T') of a linear relation T’
between X and Y is simply the closure of T as a subset of X x Y. o

Here the product topology on X X Y is the croasest topology such that both
projections from X X Y onto X and onto Y are continuous. It is a well known fact,
that this topology coincides with the topology induced by the norm

llCe; I = lixllx + llylly or by the norm [|(x; y)Il = max(llxlx, [Iylly) on X X Y; see . Itis | Missing
also a well-known fact that the closure of a linear subspace of a normed space is a Reference
linear subspace again. In particular, the closure of a linear relation is a linear relation.

For a linear relation 7 C X x Y the kernel and the multivalued part can be written as
kerT = ax(T N (X x{0})) and mulT = my(T N ({0} x Y)),

where 7y (my) denotes the projection from X x Y onto X (). Since
Txlxxqoy 1 X X {0} = X (myloyxy : {0} X Y — Y) constitutes a bi-continuous linear
mapping we arrive at the following assertion.

3.4.2 Lemma. The kernel and the multivalued part of any closed linear relation are
closed.

Clearly, the domain and the range of linear relations are not closed,in general.

3.4.3 Proposition. Let X and Y be normed spaces, M C X a linear subspace and let
B : M — Y be a linear operator.

(i) If B is continuous and M is closed, then (the graph of) B is closed in X X Y.

(i) If ¥ is a Banach space and if B is continuous, then the closure c¢f(B) of (the
graph of) B in X X Y coincides with the unique lineare and bounded

continuation of B to cC(M); see . In particular, the continuity and the closedness Missing
of B implies the closedness of M. Reference

(iii) For Banach spaces X and Y the closedness of M and B implies the continuity of
B.

Proof.
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(i) If a sequence ((x,; Bx,))new in B € X X Y converges to (x; y), then x,, — x and
Bx, — y. For a closed M we conclude x € M = dom(B). Because of the
assumed continuity of B we get Bx, — Bx and by the uniqueness of limits
y = Bx. Thus (x;y) belongs to the graph of B.

(ii) Let C : ct(M) — Y be the unique linear and bounded continuation of B to the
closed subspace cf(M) C X. (i) immediately yields c¢f(B) C C.

Conversely, if x € cf(M) and if (x,)qen 1s a sequence in M with x, — x, then
Bx, = Cx,, — Cx and further (x,; Bx,) — (x; Cx), i.e. (x; Cx) € cf(B). Hence,
also ¢f(B) 2 C holds true.

(iii) This assertion is an immediate consequence of the closed graph theorem; see .

a

3.4.4 Remark. If X;,Y;, j= 1,2 are normed spaces and a transformation

7: X1 XY - Xy X Y, as in Remark 3.2.1 is given, then 7 is easily checked to be
continuous, or equivalently bounded, if and only if all four operators A, B, C, D are
bounded, where A, B, C, D are the block operator entries in (3.2.1). In this case 77!(S)
is closed for any closed S C X, X Y,.

Moreover, if 7: 7: X1 X Y1 — X, X Y, is bijective and bi-continuous, then

7(cl(T)) = cb(r(T)) for any S C X; X Y. In particular, T is closed if and only if 7(T)
is closed. o
3.4.5 Example. The transformations u, for @ # 0, ag for any bounded B : X — Y and
Txsy : X XY — Y x X as in Example 3.2.2 are all bijective and bi-continuous.

The diagonal transformation 7 = (A x D) from X; X Y to X, X Y, as in Lemma 3.2.3
is bounded if and only if A and D are bounded, and they are bijective and
bi-continuous if and only if A and D have these properties.

The Potapov-Ginzburg transform is always bijective and bi-continuous provided that
the underlying spaces are normed.

Finally, for M € C2<2 also the transformation 7, as in Definition 3.3.1 is continuous,
if X' is a normed space. It is bijective and bi-continuous, if M is a regular matrix. o

Combining Example 3.2.2, Example 3.4.5 and Remark 3.4.4 we get the following
assertion.

3.4.6 Corollary. If X and Y are normed spaces, « € C\ {0} and B: X — Y is
continuous, then cf(aT) = o cl(T), cl(T + B) = cl(T) + B and ct(T™") = ct(T)™! for
any linear relation T C X X Y. In particular, the closedness of T is equivalent to the
closedness of any of the relations oT, T + Band T~'.

Moreover, for any linear relation T C X x X and any regular M € C**? one has
cl(ty(T)) = Ty(cl(T)). In particular, the closedness of T is equivalent to the
closedness of Ty(T) for some M € C,

3.5 Spectrum, resolvent set and points of regular type

In contrast to Definition 3.5.2 the following definition also makes sense in general
vector spaces.
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3.5.1 Definition. Let V be a vector space, and let 7' C V X V be a linear relation.
Define the point spectrum by

op(T) ={1€ CU {oo} : ker(T — A) # {0}},

where ker(T — co) = mul T'. The elements of o,(T) are called eigenvalues of T, and
for A € 0, (T) the vectors in ker(T — A) are called eigenvectors of T corresponding to
the eigenvalue A.

More generally, for A € 0,(T) we call the elements from
E(T) = U ker(T — 1)
veN
the root vectors of T, where ker(T — c0)” = mul 7. ¢
Here (T — A)” is (T — A) v-times (linear relation) multiplied with itself. If
ker(T — 1) = {0}, then it is straight forward to see that ker(T — 1)® = {0}, n € N.

Hence, setting E (T) := |, ker(T — 2)” for any A € CU {co} we have E (T) = {0} if
and only if A ¢ o ,(T).

3.5.2 Definition. Let X and Y/ be normed spaces. By B(X, V) we denote the space of
all bounded linear mappings from X into Y. In the case that X = Y we write B(X) for
it.

For a linear relation T C X x X define

—e the set of points of regular type by

HT)={1eCU oo} : (T =)' € Bran(T - 1), X)} .

—e the resolvent set by
o(T) = {/l eCU{oo}: (T-1)"€ B(X)} ,

—e the spectrum by
a(T) = (CU{eo)\p(T),
where (T — c0)~! := T and ran(T — o) = dom(T). o

3.5.3 Example. If T = {0} x {0}, then (T — 2)~' = {0} x {0} for all A € C U {co}. Hence,
r(T) = C U {oo}.

Since in finite dimensional spaces all operators are continuous, we have o<(T') = o ,(T)
in case that dim X < oo. o

It is elementary to check that
p(T)Cr(T) S (CU{ooh\op(T).

Concerning the point co note that co ¢ o,(T) just means that 7 is a not necessarily
everywhere defined operator, that co € r(T) means that T is a not necessarily
everywhere defined bounded operator and that oo ¢ o°(T) (or equivalently co € p(T))
just means that 7 is a bounded linear mapping defined on all of X.
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3.5.4 Lemma. IfT C X X X is a linear relation, then r(T) = r(c€(T)) and
dom(ct(T) — )" = cl@xan(T — Q) for any A € r(T).

Proof. By Corollary 3.4.6 we have (cf(T) — )™! = cf((T — )™). If 2 € r(cf(T)), then
(c€(T) — )" and, hence, its linear subspace (T — 2)~' is a linear operator

(mul(T — 2)~! = {0}) which is bounded, because the restriction of a bounded operator
is bounded.

Conversely, A € #(T) means that (T — 2)~! is the graph of a bounded linear operator.
According to Proposition 3.4.3 its closure (c¢f(T) — 2)~! is nothings else but the unique
linear and bounded continuation of the operator (7' — D to

cl(dom(T — D)™ = cl(ran(T — Q). a

In particular, we see that for a closed T the space dom(T — A1)~ = ran(T — Q) is closed
for all 4 € CU {oo}. If we are working in Banach spaces, there is some kind of
converse of this fact.

Indeed, if R € X X VY is a closed linear relation between Banach spaces X and Y, then
according to Proposition 3.4.3 the fact that R is the graph of a linear and continuous
operator defined on a linear subspace M of X is equivalent to mul 7 = {0} and

ct(M) = M. Applying this fact to (T — 1)~ — recall that mul(7 — 1)~ = ker(T — A)-
foraclosed T € X x X yields

3.5.5 Lemma. If X is a Banach space and if T C X X X is a closed linear relation,
then for any A € C U {co} we have
1er(T) e ker(T — ) ={0} and ran(T — A) = cl(ran(T — 1)),
Aep(T) e ker(T — ) =1{0} and ran(T — 1) =X,

where ker(T — co) = mul 7.

3.5.6 Theorem. Let T C X x X be a linear relation, and let M € C*2 be invertible.
Then we have

r@u(T)) = pu (1)), p(tmu(T)) = ¢u(p(T)), o (tm(T)) = pu(o(T)),

where ¢y denotes the Mobius transform related to M.

Proof. For A € CU {eo} we obtain from Theorem 3.3.7 together with Remark 3.3.8
that (ty(T) — pp(A))™! = (T — A)~! + sI for certain 5,1 € C, t # 0. In particular,
(tm(T) = d(2))~! is a bounded (bounded and everywhere defined) operator if and
only if (T — 2)~! is a bounded (bounded and everywhere defined) operator. This
shows r(ty(T)) = ¢p(r(T)) (o(ty(T)) = du(p(T))). Taking complements the fact
that ¢y : C U {oo} — C U {oo} is bijective yields o(ty(T)) = ¢pu(o(T)). a

In order to get a similar result as Theorem 3.5.6 for the point spectrum, we need a
little lemma.

3.5.7 Lemma. Let V be a vector space, let R €V X V be a linear relation and let
t,s €C, t #0. For any v € N we have

mul RY = mul(zR + sI)”.
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Proof. 1t suffices to show that mul R” € mul(tR + sI)”, because equality then follows

by applying this inclusion to the linear relation fR + sI and the scalars %, -

Since mul of a linear relation is a linear subspace, the assertion for v = 1 easily
follows from the definition of tR + sI. Assume the assertion is true for v € N. We will
show that mul R"*! C mul(tR + sI)**!.

x € mul R"*! menas that (0;y) € R” and (y; x) € R for some vector y. By induction
hypothesis y € mul(tR + sI)”, i.e. (0;y) € (tR + sI)”. Moreover, (y; tx + sy) € (tR + sI).
Hence, (0;tx + sy) € (tR + sI)"*! or tx + sy € mul(tR + sI)"*'. But from

y € mul(tR + sI)” C mul(tR + sI)**' we also get x € mul(tR + sI)"*!. a

3.5.8 Theorem. Let “V be a vector space, let T €V XV be a linear relation, and let
M € C*2 be invertible. Then we have o ,(ty(T)) = ¢um(c,(T)). Moreover, for any
v € N we have

ker(ty(T) — ¢y (1)) = ker(T — )", 2 € CU {oo}.
In particular, Ex(T) = Eg,,1)(tu(T)), A € CU {oo}.
Proof. We know from Theorem 3.3.7 together with Remark 3.3.8 that

(tu(T) = pp(D))™' = T — )~ + sI. By Lemma 3.1.5 and Lemma 3.5.7 we get

v

ker(ry(T) = ()" = mul (ty(T) = pus (1))
mul (T = )™+ s1) = mul (T - D7) = ker(T - )"
o

3.5.9 Lemma. Let V, W be vector spaces, A : V — ‘W an everywhere defined
linear operator, and let T be a linear relation on ‘W. Then we have

ker ((A x A)N(T) - /l) =A"ker(T - 1),
forall A € CU {oo}.
In particular, o,((A X A)NT)) ¢ o ,(T) if A is injective.
Proof. We have y € mul(A X A)~Y(T) if and only if (0;y) € (A X A)~(T). This is the

same as (0; Ay) € T, or as Ay € mul 7. Hence, mul(4 x A)"'(T) = A~' mul 7. This
proves the assertion for A4 = co.

For the general case we set M = ({ !). Due to (3.3.10) we then have

ker((A x A)™N(T) = ) = mul 7y ((A x A)™N(T)) =
mul(A X A) 7 (T)) = A (mul 7 (T)) = A ker(T = 2).

For injective A we have o, ((A X AT c o (T) because A~ ker(T — 1) # {0}
implies ker(T — 2) # {0}. d

On the resolvent set p(T') of a linear relation T C X X X we can consider the so-called
resolvent function A — (T — A)~! as a mapping from p(7T) into B(X). For the rest of
the present section let aus assume that X is a Banach space. Due to Lemma 3.5.4 this
is no essential restriction.
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T-"'"-T-p'=Q-p@-D"T-np", (3.5.1)

holds true. In particular, (T — 1)~ and (T —n)~' commute.

Moreover, p(T) is open as a subset of C U {co} equipped with the chordal metric. In
fact, n € p(T) N Cimplies U___ (1) C p(T), and oo € p(T) yields

- =T
(CU {coh) \ Kyjry(0) < p(T).
Proof. By (3.3.2) we have (T —n)~! = T 1 )(T), which is an everywhere defined
]

operator for 7 € p(T), i.e. ran(T — 1) = dom(T — n)~! = X and
ker(T — n) = mul(T — 1)~! = {0}. As by (3.3.3)

I+ @=m)(T =) =71 5)(T)
1 —
we conclude from Lemma 3.3.6

T = U+@=m(T -7 =
(0 _1n)(T) T(} :3)(T) = T((l) —IA)(T) =(T-)". (352
Since this equation only involves bounded and everywhere defined operators, we
obtain (3.5.1).
If co € p(T), i.e. T € B(X), then for || < ||T|| by considering the absolute convergent

Neumann series
=1
n
Z nn+1 T ’
n=0

whose limit in B(X) turns out to be ( — T)~', we obtain
{ze CU{oo}: |l > |IT|]} € p(T). Thus, with co also a neighbourhood of it belongs to

o(T).

For A € p(T) N C and nj € C satisfying [4 — 7| - ||[(T — A7 < 1 the absolute convergent
Neumann series

D =T =)
n=0

tends to the inverse of I + (1 —n)(T — A7 Vin B(X). In particular,
(I + (A =n)(T = )Y is an everywhere defined operator. Moreover, due to the
associativity of the relational product (T —17)~" as a linear relation satisfies

T-p ' =T-p =T -~ U+Q-nT - U+QA-n(T-H"H™". (3.5.3)
Because of ker(I + (1 — n)(T — 1)) = {0} we get from Lemma 3.3.6 again relation
(3.5.2). Therefore, the right hand side of (3.5.3)is (T —= )~ - (I + (A —p)(T — H~H!
and, hence, the product of two operators from B(X), i.e. (T —n)~! € B(X). a

3.5.11 Remark. The mapping A — (T — A)~! as a function from the open subset
o(T) N C of C into the Banach space B(X) is holomorphic (see for the definition of
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holomorphy). Indeed, for A € p(T) we get from (3.5.1) that

-l (T )
lim(T D -T-n

=(T -2,
n—Aa /1—7’] ( )

If 0o € p(T), then

00

_ 1
T-m'==> e T for Il > I,
n=0

shows that A — (T — % -lis holomorphic on U .t (0) with value O for 2 = 0, which

means that 1 — (T — 1)~ is holomorphic on all of p(T) with value zero for A = co.

In order to verify that also #(T) is open in C U {0} we need the following result.

3.5.12 Lemma. Let X be a Banach space and let M < X be a linear subspace. If
A : M — Xis a bounded lineare operator satisfying

A (= sup [lAxI) <1,
xeMx<]

then ker(I + A) = {0} and with N := (I + A)(M)

I+A- M- N

is a bijective and bi-continuous mapping with ||(I + A)~'|| < —L_ Moreover, N is

1-[lAll*
closed subspace of X if and only if M is closed.

Proof. For x € M we have
I + A)xll = llx = (A0 = |Ixll = |Ax]] = (1 —[IAID) - [IxI].

From this relation we see that (I + A)x = 0 implies x = 0, i.e. ker({ + A) = {0} and,
hence, I + A : M — N is linear and bijective. Moreover, for y € N the above
inequality yields

Iyl = 17 + AT + A"yl > (1= [IAID - I +A) I,

which proves the boundedness of (1 + AN > Mwith ||([+ A7 < The

boundedness of / + A : M — N is clear anyhow.

1
1-llAll"

Finally, the boundedness of I + A : M — X and the closedness of M C X yield by
Proposition 3.4.3 the closedness of the graph of / + A as a subset of X X X. According
to Corollary 3.4.6 (I + A)~! C X x X is closed, too. Employing Proposition 3.4.3 once
more, we see that N = dom(/ + A)~! is closed, because (I + A)™' : N - M C X is
continuous. As these arguments can be reversed, also the closedness of N implies the
same property for M. a

3.5.13 Theorem. For a linear relation T € X X X the set r(T) is an open subset of
C U {o0}.
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Proof. For A € (T)NC, (T —A)~" : ran(T — 1) — X is a bounded linear operator. For
anyn € C\ {1} with [ — 4| < m we can apply Lemma 3.5.12 to

A=@-n)(T-2)"and M = dom(T — 2)~! and get that
U+Q=n)(T =" :dom(T =)' = ran(l + (A = )T = D)7H)
is a linear and bi-continuous bijection with an operator norm less or equal to
W. Hereby
ran(T — A) = dom(T — )~! = dom(/ + A=) (T — )7,
and as by (3.3.3)
U+ @=m(T =7 =71 p)(T)

we also have

ran(I + (A —n)(T - )7 =
= ranT(l ,,,)(T) ={y-nx:(x;y) €T} =ran(T —n) = dom(T — n)’l . (354
1 -4

Because of ker(I + (1 — )(T — A)~") = {0} we get from Lemma 3.3.6
(= A+ Q=T =) =70 1)) 71 (D) =79 1)(T) = (T =)

as an equality of linear relations. Together with (3.5.4) this equation gives

T =" =T =" lgomr—yr =
T-'"d+@A-DT-DHUT+Q@=-n(T -1 =
T-D'"U+QA=-pT -, 355)

is a bounded operator as a product of two bounded operators. Thus, we verified, that

the opendisc {n e C:|np— 4| < T A) H} is contained in #(T).

Finally, if A = co € #(T), then for || > ||T|| we can apply Lemma 3.5.12to A = —%T
and M = dom T in order to see that

1
T-n=-n—--=T):domT — ran(T — 1) (3.5.6)
n

is a linear and bi-continuous bijection. Thus, the neighbourhood
{n e CU{oo} : |n| > ||T||} of oo is contained in r(T). a

3.5.14 Remark. We’d like to use the previous proof in order to show that
n = ||(T —n)~"|| is bounded on any compact subset of #(T). In fact, from (3.5.5)

together with the estimate ||(/ + A7l =4 oy ”A” from Lemma 3.5.12 we get

(T =7l
— A =ql (T =71
forall ninthe disc U__1 () € r(T), where A € r(T). Clearly, on any closed disc

IT=07Ti
around A with strictly smaller radius |[(T — 1)~'|| is bounded. A compactness argument

then shows that 7 — [|((T — 77)’1 || is bounded on any compact subset of (7)) N C.

T —mil < ]

Moreover, from (3.5. 6) together with the estimate from Lemma 3.5.12 we conclude
that ||(T — 77)’1|| < —= T ”T” for co € r(T) and |n| > ||T||. In particular, ||(T —n)~ I — 0 for
| — co. 0

firiuzr
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3.5.15 Corollary. With the assumtptions and notation from Theorem 3.5.13, p(T) is
closed and open in r(T) wrt. to the relative topology.

Proof. For ug € r(T) N cl(p(T)) N Clet (u,)qen be a sequence in p(T) N C converging

to wo. Fix A € p(T). In the previous proof we saw that

T+QA=w T =D =71, )(T) maps ran(7 — 1) = X bijectively onto ran(7 — u,,)
1 -2

for all n € N U {0}. Clearly, lim,_,co(/ + (A = (T = )" = I + (A — po)(T — )7 ) in

B(X) wrt. the operator norm. Moreover,

0y (T) = (I + (= (T —pm)h.

U+ @=p)T =7 =71 -

For n € N this operator has domain ran(7 — u,) = X. Due to the resolvent identity
(3.5.1) we get (m,n € N)

I+ (= (T = )™ =+ G = DT = )™ DIl <
= il (ICT = 1) ™I+ gt = AT = )™ (T = ) ™) -

Since {u, : n € N U {0}} is a compact subset of r(T"), we obtain from Remark 3.5.14,
that this expressen is arbitrarily small for m, n sufficiently large, i.e.

(I + (tn — (T — u,)~") is a Cauchy-sequence in B(X). If C € B(X) denotes its limit,
the continuity of composition in B(X) wrt. the operator norm gives

CU+A-pu)T - =1=U+ (- pu)T - )~HC, which yields

ran(T — po) = ran(l + (A — uo)(T — A)™") = X. Thus, g € p(T).

If 0o € r(T) N cl(p(T)), then 0 € (T~ N cf(p(T’l)) by Theorem 3.5.6. Hence,
0 € p(T™") or, equivalently, co € p(T). Q

3.5.16 Example. If T is a contractive linear relation a Banach space X, i.e. |[y|| < ||x]|
for all (x;y) € T, then T is an operator. Clearly, co € #(T). By Lemma 3.5.12 applied
to —%T we see that all 4 € C with || > 1 also belong to #(T'). Thus,

(C U {oo]) \ ct(D) C HT).

If domT = X or ran(T — 1) = X for at least one A with |4] > 1, then by
Corollary 3.5.15 we even have (C U {oo}) \ c€(D) C p(T). o

3.5.17 Example. Let us apply our results to not necessarily everywhere defined
isometric operators V on a Hilbert space (H, (.,.)),i.e. V : dom V — ranV with
domV,ranV C H and (Vx, Vy) = (x,y), x,y € dom V.

Clearly, oo € (V). By Lemma 3.5.12 the operator (I — %V) and hence V — 1 has a
bounded inverse on its range for |4] > 0. Hence, (C U {oo}) \ (DU T) C (V).

Since with V also V~! is an isometric operator, we also get (CU c0) \ (DU T) C r(V™1).
If we apply Theorem 3.5.6 with M = (9 ), with the convention % = oo, é =0 we get
(CU)\@UT) C (VY =ru(V) = pu(r(V)) = {1 : 1€ r(V)} and in turn

(CU\@UD)UDCHV).
If V:domV — ranV is isometric and in addition dom V = H, then oo € p(V). Since

by Corollary 3.5.15 p(V) is a closed and open subset of r(V), co € p(V) implies
(CU{ooh)\ (DUT)C p(V). Indeed, the contrary would given an accumulation point
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of p(V)in r(V) \ p(V). Similarly, if V : dom V — ran V is isometric and in addition
ran V = H, then 0 € p(V). Consequently, D C p(V).

For a unitary V : dom V — ran V — this means dom V = H =ranV and
(Vx,Vy) = (x,y), x,y € domV — we then have

(Cu)\(DUD)UDCp(V). 3.5.7)

Note also thatif V : dom V — ran V is isometric and if p(V) N ID # 0 and
p(V)N(CU )\ (DUT) # 0, then using Corollary 3.5.15 similar as above we derive
(3.5.7). In particular, 0, co € p(V), and therefore, V is unitary. o

3.5.18 Example. Consider the Hilbert space H = £,(N) provided with

((Enerts Mn)nen) = Yooy Endln and the operator V : H — H defined by

V(&Dnen = (€n-1)nen, Where &y := 0. It is elementary to show that V is isometric. We
have dom V = H but ran V # H, because (1,0,0,...) # ran V. By the deliberations in
Example 3.5.17 we have p(V) = (CU o) \ (DU T) and

r(V) =((CU o)\ (DUT))UD. o

3.6 Functional Calculus for rational functions

In this section X is always a fixed Banach space, and T is a fixed linear relation on X.
We assume that p(T') # 0. By C,r)(z) we denote the set of all rational functions with
poles in p(T) (C C U {oo}). Recall that oo is a pole of the rational function s(z) = % if
the polynomial u(z) is of great degree than v(z).

Moreover, also recall that by considering limits we can evaluate any rational s(z) at
any point { € C U {oo} and get an element s({) € C U {co}. Clearly, { is a pole if and
only if 5({) = 0.

By partial fractional decomposition any rational function s(z) can be represented in

the following way:
m  n(k)

ij
s(z) = p(z) + _ 3.6.1 fracdec
(@) = p(2) ;;@—aw (3.6.1)
where s(z) is a polynomial, ¢x; € C with ¢,y # 0, and where a4, . . ., @, are the finite

poles of s(z). Clearly, s(z) € Cyr)(2) if and only if @1, ..., € o(T) and degp > 0
only if co € p(T).

3.6.1 Definition. For s € C,7)(z) given in the form (3.6.1) we set

m  n(k)

S(T) = p(T) + > )" efT — ).

k=1 j=1

As p(z) is non-constant only for bouded and everywhere defined 7', s(T) is a
well-defined element in B(X).

3.6.2 Theorem. The mapping s — s(T) is an algebra homomorphism from Cy1)(2)
into B(X). If R € B(X) satisfies (R X R)(T) C T, then R commutes with all
S(T), s € Cp(T)(Z)-
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Proof The constant one-function together with the rational functions

rem /D/ , 1€p(T)NC, jeN,together with z/, j € N in the case that co € p(T), form an
algebraic basis of C,7)(z). Since a linear mapping is uniquely determined by its action
on a basis, s — s(7T') is indeed linear.

In order to show (s1 - $2)(T) = s1(T) s2(T) by linearity it is enough to check this
relation for elements sy, s, from the above mentioned basis. If 5; or 5o is the constant

one-function, then this relation is clear. Also if s;(z) = m, $2(2) = oy a)j for some

@ € p(T) orif s1(z) = 7', 52 = 7/ (in case that co € p(T)), then
(s1-8)T) = sl(T) s2(T) trivially holds true.

Let s1(z) = rem a)l and $5(z) = ey ,B)/ for distinct @, 8 € p(T) and i, j € N U {0}. Fori =0
or j = 0 the function s; or s, coincides with the constant one-function. Hence,
(s1 - $2)(T) = s1(T) so(T) holds true.

Suppose that (s1 - $2)(T) = 51(T) s2(T) is true for i, j € N U {0} with i + j < k for some
k € N. Suppose i + j = kand i, j € N. Then we have

1 1 1 1
(s152)(2) = z—az—ﬂ(z—a’)’q (Z—ﬂ)ﬁl =
1 ( 1 1 B 1 1 )
a-B\z-a) z-B)" - @-B))

By linearity, by induction hypothesis and by (3.5.1)

(s152)(T) = (T -y (T =By 7' = (T =) (T - B))

=T -y (T-p (T -y (T =)y = s1(T) 52(T).

—ﬁ

In case that co € p(T') we use the identity - zf = W (1 + Z(Tla) z/~! in order to
verify (s1 - $2)(T) = s1(T) s5(T) for s1(z) = (My, 5$2(z) = 7/ or for

s1(2) =7, s2(2) = ﬁ by induction very similar to the above considerations. We
omit the details.

Finally, R € B(X) with (R X R)(T) € T yields (R X R)(ty(T)) € ty(T) for all regular
M € C**?; see Remark 3.3.9. By Remark 3.2.7 R commutes with 7(T) for M such

that 74,(T) is a bounded operator, and hence with (T — 2)~!, A € p(T); see (3.3.2). In
turn, R commutes with with all s(T), s € Cy7)(2). a

3.6.3 Remark. Our functional calculus is compatible with Mobius type
transformations. In fact, if N € C**? is regular such that the pole of ¢y belongs to
p(T), then it easily follows from (3.3.1) and (3.3.3), that 5(T") = ¢n(T). Since

s — s(T) is compatible with multiplication, we even have

(T = ¢n(TY, jeNU{0}, (3.6.2)
for all regular N € C**? such that the pole of ¢y belongs to o(T). ¢

3.6.4 Lemma. Let T be a linear relation on the Banach space X with non-empty
resolvent set, and let M € CP? be regular. Then s — s o ¢y constitutes an algebra
isomorphism from Cyz,,)(z) onto Cy1)(2). Moreover,

so¢y(T) = s(tu(T)), s € Copayyry)(@).
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Proof. According to Theorem 3.5.6 we have p(7y(T)) = ¢ (o(T)). Hence, the
bijection ¢y : CU {00} — C U {oo} maps p(T") onto p(7(T)). Consequently, the poles
of the rational functin s o ¢, are contained in p(T') if and only if those of s are
contained in p(ty(T)) for any rational s(z). Obviously, s > s o ¢y is a
homomorphism. Since s - 50 ¢/ is its inverse, s — s 0 ¢y is an algebra
isomorphism from Cyr,,(7))(2) onto Cy(ry(2).

It is easy to verify that the functions of the form ((;)N(z))j where j € N U {0} and
N € C»? is regular with the pole of ¢y belonging to p(Ty(T)) span Cpr,,1)(2)-
Clearly, the images of these function under s — s o ¢y are

(¢N(Z))] oy = (¢NM(Z))] € Cyr)(2). By (3.6.2) and Lemma 3.3.4 we then have

(¢NM(Z))]‘(T) = tym(T) = tn(ru(T)) = ¢y (Tm(T)).
Linearity finally gives s o ¢pp(T) = s(ty(T)) for all s € Cpr,, (1)) (2) 4

3.6.5 Proposition. For any s € Cy1)(2) we have o(s(T)) = s(o(T)).

Proof. By Lemma 3.6.4 and Theorem 3.5.6 we have o(q(ty(T))) = 0((q o pm)(T))
and g(o(tmu(T))) = g o pm(o(T)) for g € Cpr,(1y)(2). Since g o ¢y runs through all of
Co(1)(2), in order to prove o (s(T)) = s(c (7)), it is enough to show that

o(q(ty(T))) = g(o(y(T))) for an appropriate M. Choosing M so that 7,(T) € B(X)
and replacing 7(T) by T we can, therefore, assume that T € B(X).

For a fixed s € Cy7y(z) note that due to s(T) € B(X) we always have co ¢ o(s(T')) and
due to s € Cyr)(z) also oo ¢ s(o(T)).

Suppose A ¢ s(o(T)), A # oo. Since the equation s(z) — A =0, z € CU {0} yields
z € p(T), the rational S(zif ~ belongs to Cyr)(z). By the above verified homomorphism
property

1 1 1
@Uj—bﬂﬁ_ﬂaj=“@_ﬂUXKT%wD=(ﬂ@—ﬂ)“@_ﬂyTﬁ=L

Hence, s(T) — A is invertible, i.e. A ¢ o (s(T)).

Now suppose oo # s({) € s(o(T)) for some ¢ € o(T). Due to our additional
assumption T € B(X) we have { # co. Consider the rational g(z) := %2@) € Cyr)(2).

If we had s({) ¢ o(s(T)), then by the homomorphism property and by our additional
assumption T € B(X)

[a(T)(s() = s) '] (T =0 = (T - ) [a@)(s(T) - 5)'] =

[q(z) B (z— {,’)} (T)=1.

1
(2) = 5(2)

Therefore, ¢ also lies in p(T), which contradicts ¢ € o(T). a

3.6.6 Proposition. For s € Cy7(z) we have ker(T — ) € ker(s(T) — s(1)) and
ran(s(T) — s(1)) € ran(T — A).
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Proof. Assume first that T € B(X). In this case ran(T — o0) = dom 7T = X and
ker(T — o0) = mul T = {0}, and the desired inclusions hold true. For A € C consider
again the rational ¢(z) := @ € Cy1)(z). By the above verified homomorphism
property we have '

g(IT)T =) = (T = )q(T) = s(T) - 5(4),
which immediately gives the desired inclusions.

For T ¢ B(X) choose a regular M € C2*2 with Ty(T) € B(X) we employ Lemma 3.6.4
and (3.3.9) in order to obatin

ker(T — A) = ker(tp(T) — dpm(2)) C
ker (5 © @y (T () = s © st (Gua (D)) = ker(s(T) = s()..

The second inclusion is shown in the same way. a

3.7 Finite dimensional perturbations of linear
relations

Especially in Pontryagin spaces linear relations can be seen as finite dimensional
extensions of linear relations on Hilbert spaces. In the present section we want to
study r(T) and p(T), when T is a finite dimensional extension of a relation S, where
r(S) and p(S) is known.

3.7.1 Remark. Recall the follwoing fact. Let X, Y be normed spaces, N, M be closed Oder in
subspaces with N C M C X and with codimp( N < +c0, and let A : N — Y be linear den Ap-
and bounded. Then any linear operator extension B : M — Y of A is automatically pendix?
bounded. This is an immediate consequence of the fact that M = N+.L for a finite
dimensional £, and hence, that there exists a bounded projection P : M — N. In fact,
we then can write B as AP + B(I — P), where B(I — P) is bounded due to dim £ < co.
o

3.7.2 Lemma. Let (A, (.,.)) and (B,(.,.)) be Hilbert spaces and let f : G —» B(A, B)
be holomorphic for some region G C C such that f(.)|pm = C for some closed subspace
M of A with finite codimension m and some constant C € B(M, B) where

C : M — C(M) is bijective and bi-continuous.

Then there exists some discrete subset D of G and some k € {0, . .., m} such that
dimker f(2) = k for A € G\ D and dimker f(1) > k for A € D.

Moreover, for any u € G \ D there exists a holomorphic function h : G — B(CK, A)
with ran h(1) C ker f(Q) for A € G with equality for all 1 € G \ D’ with a certain
discrete subset D' 2 D of G with u ¢ D'.

Proof. We write f(A) in the block structure

_(c D
=5 2

according to the decompositions A = M & M* and B = C(M) & C(M)*. Obviously,
x +y € M@ M* belongs to ker f(2) if and only if y € ker E(1) and x = —C~'D(2)y.
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In particular, dim ker f(1) = dimker E(1). Set k := min, e dimker (1) € {0, ..., m}.
By the rank theorem from Linear Algebra we have dimran E(1) < m — k for all 1 € G.

If k = m, then E(1) = 0 for all A € G and chosing a basis xi, ..., x,, of M* the
holomorphic B(C™, A)-valued mapping

h:de (@, 60" B Q&) - CTIDO) £x)).
j=1 Jj=1

satisfies ran (1) = ker f(A).

For k < m let 4 € G be any point such that k = dimker f(u) = dimker E(u). Then we
have dimran E(u) = m — k > 0 by the rank theorem from Linear Algebra. If we denote
by P the orthogonal projection from 8 onto ran E(u), then

M : G > A PE(1) € BOM* Nnker E(u)*, ran E(u))

is a holomorphic mapping. As dim M* Nker E(u)* = m — k and dimran E(u) = m — k
we can interprete this mapping as an (m — k) X (m — k)-matrix valued function whose
value is invertible for A = y, i.e det M(u) # 0.

Since A +— det M(A) is holomorphic, there is a discrete subsete D’ of G such that
det M(A) # 0 for A € G\ D’. This means that m — k = dimran PE(A1) and hence
m—k < dimran E(1) < m —k for 2 € G \ D’. Consequently,

dimker E(1) = dimker PE(A) = k and, hence, ker E(1) = ker PE(1) forA € G\ D’.

Moreover, choosing a basis x, ..., x; of ker E(u) for 1 € G\ D’ and (¢, ...,&)" € C
the vector

k k
g, .., 80T = (O &%) = M) PEQ)() &x))
j=1 j=1

belongs to ker PE(1). As g(A) is injective we have ran g(1) = ker PE(A1) = ker E(1).
Since A — det M(1) M(A1)~! has a holomorphic continuation to G, also

A = det M(4) g(1) has a holomorphic continuation to all of G. Hence, the mapping
h: G — B(CF, A) defined by

W@, En)" = det MO)(D(Er, ..., &) = CT' D) g(D)(&rs .., £)")

is also holomorphic and satisfies ran 4(1) = ker (1) for 1 € G \ D’. By continuity we
have ran i(1) C ker f(1) for 1 € D'.

Of course, the equality dim ker f(1) = k may be true for a larger set G \ D, where
D C D’ is necessarily discrete, too. a

For linear relation S, T on A such that S € T we obviously have r(T") C r(S ), because
if (T — 2)~! is the graph of a bounded linear operator, then also its restriction (S — 1)~!
is the graph of a bounded linear operator. Concerning the converse inclusion the
following result is valid.

3.7.3 Theorem. Let S, T be linear relation on a Hilbert space (A, (.,.)) such that

S CT.IfS is closed and has finite codimension in T and if G C r(S) is open and
connected, then either G C 0 ,(T) or G\ D € (T) and D C o ,(T) for some discrete
DcG.
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In the first case that G C o ,(T) there also existst a discrete subset D of G such that
dimker(T — 2) = k forall A € G\ D and dimker(T — 1) > k for A € D.

Moreover in the first case, for any u € G there exists an open neighbourhoud
O(u) C G of u and a holomorphic mapping h : O(u) — B(CK, T) such that

ran h(A) = {(x; Ax) : x € ker(T — A)} 3.7.1)

for any A € O(u) \ {u}, where (x; Ax) has to be interpreted as (0; x) for 1 = oco. If
u € G\ D, then (3.7.1) also holds for A = .

Proof. Obviously,C > A+ ) € B(AX A, A) is holomorphic, where
Ya(x;y) =y — Ax. By definition A € r(S') just means that

Yals + S — ran(S — 1) = ¢¥,(S) is bijective and bi-continuous. Moreover,
kery, = {(x; Ax) : x € ker(§S — D)}

Forue GNC C r(S) let R(u) 2 S be such that u € p(R(u)). For R(u) take for example
(ct((S — )™y P)~! + p, where P is a bounded projection with range cfran(S — y).
With e(u) > 0 small enough we have Ug,) (1) € p(R(u)) € (S) and, hence,

Yalrw : Rw) - A
is a linear bijection for any A € U, (). With A — Yalry) € B(R(1), A) also

A z//4|1;(1#) € B(A, R(w)) is holomorphic . Consequently, for a closed T 2 S the Missing
mapping Reference

¢ = Yalply o Yalr : T — R(w)
is continuous and U,y (1) 3 A = ¢*(4) € B(T, R(u)) is holomorphic. Obviously,
PH(Dls = ids.

Hence, for a closed S such that codimg 7 = m < oo it follows from Lemma 3.7.2 that
dimker(T — 1) = dimker |7 = dimker ¢*(1) = k, for all 1 € Ug,)(u) \ D, and

m > dimker ;|7 = dimker ¢#(1) > k, for A € D,,, where D,, is discrete in U, (1)
and k, € {0,...,m}.

Thus, defining f : G N C — R by f(u) = k, we get continuous function with values in
N U {0}. Since G N C is connected, f(G N C) € N U {0} is connected in R and, hence,

constantly equal to k € {0, ..., m}. The set {4 € G : dimker(T — A1) > k} does not have
an accumulation point ¢ in G N C, because otherwise D, would have an accumulation
point in Uy (u).

Applying the above arguments to S ~! € T~! by Theorem 3.5.6 and Theorem 3.5.8 we
see that dimker(T — 1) = dim(T~! — %) = [forall 1 € G\ {0} up to a discrete subset of
A’s. For such exceptional 4 € G \ {0} we have dimker(T — A) > [.

Combining the previous two paragraphs showes that for a certain dicrete subset D of
G we have
dimker(T — ) =k forall Ae G\ D

and
m > dimker(T — 1) > k forall 1€ D

for some k € {0, ..., m}.

If k = 0, then (T — 2)~! is an operator extension of (S — A)~! for any A1 € G \ D; see
Remark 3.7.1. Thus, G\ D € #(T). For A € D the mapping dimker(T — 1) > 0, i.e.
D C o,(T).
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If k > 1, then ker(T — 1) has a non-trivial kernel for all A € G. This means that
G Co,(T).

Moreover, for u € G N C consider the open neighbourhood U, () of . According to
the final assertion in Lemma 3.7.2 applied to ¢*(2) (for the G in Lemma 3.7.2 take
Ugy(u) and for ¢ in Lemma 3.7.2 take the present p if 4 € Ugy() \ D and take any
other point from Uy, (1) \ D if our u belongs to D) there exists a holomorphic function

h: Uey(u) = B(CK,T)

such that ran (1) C ker ¢*(1) = kery|r = {(x; Ax) : x € ker(T — A)} for all

A € Ug (1) with equality for A ¢ D’ for a certain discrete subset of U, (u). Hence,
we finde an open neighbourhood O(u) € U, (1) of p such that O(u) N D’ contains u
if € D and such that O(u) N D" = 0 if u € Ugy(u) \ D.

Finally, for 4 = oo € G in view of Theorem 3.5.6 and Theorem 3.5.8 we can use the
same arguments just applied to S ~! and T~! in order to settle this case. a
In order to have a grip on the root spaces, we bring

3. 7.4 Lemma. Let T be a closed linear relation on a Hilbert space (A, (., .)), let
O C C be open and let h : O — B(Ck, T) be holomorphic such that
ran () C{(x;Ax) € T : x € A} forall 1 € O.

Then for g(A) = mr o h(1) : C¥ — A we have
" Wx;ng" V(x) e T -2, xeC, (3.7.2)

for alln € N U {0}, where ng™V(1)x := 0 for n = 0. In particular,
ker(T — )" 2 rang(d) + - - - + ran g(”’l)(/l)for alln € N.

Forall A € O withran h(1) = {(x; Ax) € T : x € A} we even have
ker(T — A" =rang(d) + - -- + ran g" V() (3.7.3)

foralln e N.

Proof. For (y;z) € T* and A € O we obtain
(8(Dx, 2) = (Ag(Dx, y) .
Taking the n-th derivations we get from the Leibniz formula (see )
(& (Dx,2) = (48" (Dx + ng" V(D) y).

As this is true for any (y; z) € T* we conclude that
(™ ()x; ng" V(D)x + g™ ()x) € T and in turn that (3.7.2) holds true.

For 1 € O withran h(4) = {(x; Ax) € T : x € A} the relation (3.7.3) is clearly true for
n = 1. Assume now that (3.7.3) holds true for 1, ..., n. We will show that it is true for
n+1.

The inclusion ker(T — A)"*! D ran g(A) + - - - + ran g" (1) is a consequence of (3.7.2).
Let a € ker(T — A)"*!. Then (a;b) € T — A for some b € ker(T — 1)". By induction
hypothesis b € ran g(1) + - - - + ran g”~D(1). Hence,

b =gx; +---+g" V)x,
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for some xy, ..., x, € CX. By (3.7.2) applied for 1, ...,n we get
1
(& Dx1 + -+ —gPx; g Dx; + -+ g Px) e T -2,
n

and further |
@ Dx1+ -+ —g"Wx, —a,00 €T - 1.
n
According to our assumption we have ran g(1) = ker(7 — 1). Consequently,
g xy + -+ + 1e™()x, — a = g(A)xo and, hence,
1
a=-gDxg+ g WDx; +... —g(”)(/l)x,, erang(d) + -+ +ran g(”)(/l)
n

for some xo € CX. Qa

3.7.5 Corollary. With the notations from Theorem 3.7.3 assume that

dimker(T — A1) =k > 0 for all A € G\ D. Then we have ct(Ex(T)) = cl(E,(T)) for all
n € Nandalln,A € G\ D. Moreover, ct(Ex(T)) C cl(E,(T))foralln e N, A€ G\ D
and alln € G.

Proof. Takeapu € GNCandlet O(u) C G\ Dand h : O(u) — B(C*, T) be as in
Theorem 3.7.3. For a sufficiently small € > 0 we have Usc(u) C O(w). If ¢ € Uc(w),
then due the the triangle inequality y € Use(€) € Use() and € € Upe(1) € Use().
Expanding g(A) := m; o h(1) around u and around & we get

gD = > (A= p"g" (W), Ae Usew),
n=0

and

g = Y (A= £)'8"(©), L€ Unlé).
n=0
In particular,
) = Y (- p'g” () and g = > (u-&"g"(©).
n=0 n=0

More generally, for k € N U {0} we have

n!
(n—k)!

= n! n— n - n— n
@) = Z; TG k() and g® () = Z; (- & g™ @).

Asrtanh(é) = {(x;éx) € T : x € A}, using (3.7.3) and (3.7.2) we obtain from the first
relation that E¢(T) C cl(E,(T)). If u € G\ D, then E,(T) C cf(E¢(T)) by the second
relation.

In particular, we showed that cf(E¢(T)) C c¢f(E,(T)), and in the case that u € G\ D,

CUELT)) = cUE,(T)) (3.7.4)

for all € € Uc(w).
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In case that u = co € G we consider 7~ instead of T. By the above arguments in
combination with Theorem 3.5.8 there exists a neighbourhood U(c0) C G of co such
that cl(Eg(T)) € ct(E,(T)), and in the case that u = co € G \ D, (3.7.4) for all

§eUc(.
Now fix n € G \ D and define

A:={1€G\D: cl(ExT)) = cl(E,(T))}, B:={1€G\D:cl(ExT)) # ct(E,(T))}.

Obviously,n € A#0,AUB =G\ Dand AN B = (. According to (3.7.4) forall § ina
certain sufficiently small neighbourhood of u € G \ D, A and B are open. Since G \ D
is connected, we necessarily have A = G \ D. a

3.7.6 Corollary. If in the situation of Lemma 3.7.4 E,(T) is finite-dimensional for at
least one u € G, then we even have

ENT) C ET)

forallA e G\ Dandalln e CU {co}.

Proof. By Corollary 3.7.5 the assumption implies that the linear space B := E (T)
does not depend on A € G \ D and is also finite dimensional. Obviously, 8 contains all
eigenvectors and, more generally, all root vectors corresponding to the eigenvalues
A€ G\ D. Hence, the eigenspaces and the root spaces of B := T N (B x B) and those
of T coincide for eigenvalues 1 € G \ D.

Moreover, B is a finite dimensional extension of the zero relation {0} X {0} in 8. Since
r({0} x {0}) = C U {oo} and since {0} # ker(T — A1) = ker(B— ) for1 e G\ D # 0 we
can apply Theorem 3.7.3 and Corollary 3.7.5 to {0} x {0} and its extension B with

G := C U {oo} as the connected, open subset of ({0} x {0}).

According to Corollary 3.7.5 we obtain E;(B) C E,(B) forall n € CU {oo} and all
A € (CU{co}) \ E for a discrete subset E of CU {0}, i.e. E is finite. If 1 € G\ (DU E),
E,(B) is nothing else but 8. E,(B) is always contained in E,(T). a

3.8 Adjoint linear Relations
In scalar product spaces it is possible to defined adjoint linear relations, which
correspond to the adjoint of an operator in the Hilbert space case.

3.8.1 Definition. Let (V,[.,.]9), (W, [., .]w), be scalar product spaces, and let
T €V x ‘W be a linear relation. Then

TH = {(y;x) e WXV : [y,wlw = [x,v]y forall (v;w)e T}

is called the adjoint relationto T'.

As usual, when no confusion is possible we sometimes drop explit notation of the
scalar product [.,.] under consideration, and write 7" instead of T, o
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3.8.2 Remark. Clearly, providing V X ‘W with the scalar product
[(a; D), (c;d)] := [a,c] + [b,d], (a;b),(c;d) € W x V (see Proposition 1.1.8) we have
(v; x) € T™ if and only if

y.w] = [ v] = (3.0, (0 =0)] = 0. ¥ (i) € T . (3:8.1)

{(w; —v) : (u; v) € T} is nothing elese, but the image of 7 under the transformation
poroTysw - VX W - WXV, (v;iw) = (w; —v); see Example 3.2.2. Therefore,

(3.8.1) shows
T = (o 0 Ty = (-T7HH, (3.8.2)

where the orthogonal complement on the right hand side is taken in ‘W X V wrt. [, .].
Since (y; x) € T!*! can also be characterized by
[x,v] = [y, w] = [(x; =y), (v;w)] = 0, ¥ (v;w) € T, we also have

T = tygay o (10 = (T, (3.8.3)

where the orthogonal complement on the right hand side is taken in V X ‘W wrt. to
the sum scalar product.

Finally, the characterization of (y; x) € T"! via (3.8.1). Can be seen from a slightly
different point of view. In fact, defining the scalar product
(x5 ), v w)) = [x,v] = [y, w] = [u-1(x;y), (v; w)] on V X W (3.8.1) or (3.8.3) show

that
T = e (TV) = (T (3.8.4)

¢

3.8.3 Lemma. We have (T~H¥ = (T~ (@) = (@)s sH1QM  (0S)* and
St 47U (S + TY™ for linear relations Q C U XV, S, T €V x ‘W and a scalar
a € C\ {0}.

Proof. Clearly, (x;y) € (T~ if and only if [x, v] = [y, w] for all (v;w) € T~!, or
[x,v] = [y, w] for all (v;w) € T, which is equivalent to (y; x) € T, Also
(@S)* = (@)S™™ can be checked in such a straight forward manner.

(a;c) € S™1QM yields (a; b) € Q™ and (b; ¢) € S for some b € V. For any
(u;w) € 0§, i.e. (u;v) € S, (v;w) € Q for some v € V, we have

[c,u] = [b,v] = [a,w],
which shows (a; ¢) € (QS)*].
Applying SO € (08)*1 to Q = al,S and to Q = él, as gives (aS)" = (@)St.

For (b; ¢) € ST + T we have (b;d) € S and (b; ¢ — d) € T™! for some d € V. For
any (v;w)e S +T,i.e. (v;x) €S and (v;w — x) € T for some x € W, we get

[b,w] = [b, x] + [b,w—x] =[d,v]+[c—d,v] =[c,V],
and therefore, (b, ¢) € (S + T)I*1. Q

3.8.4 Lemma. Let (A,][.,.]) and (B,[.,.]) be scalar product spaces both provided
with a norm such that on ‘A and on B the respective scalar product [ ., .] is continuous
with respect to the respective norm. Moreover, let T C A X B be a linear relation.

Then the adjoint TH C B x A is a closed linear relation. Moreover, T™! coincides
with the adjoint of the closure of T.
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Proof. Because of (3.8.2) the assertion immediately follows from Lemma 2.1.3 in
combination with that fact that yu_{(T) o T4y is a bi-continuous bijection from
A x Bonto B X A; see Example 3.4.5. a

In Krein spaces we can say much more about the properties of the adjoint linear
relation as in general scalar product spaces.

3.8.5 Remark. Let (K, (.,.)) be Hilbert spaces, and let T' : H; — H be an

everywhere defined, bounded linear operator viewed as a linear relation by identifying
T with its graph. Let T™ be the adjoint of T in the sense of Definition 3.8.1 and just
in the present remark let 7™ be the adjoint of T in the classical sense of, i.e.

(Tu,y) = (u, TPy), u € H,y € Hy; see . We are going to verify that T*) = T,
Reference From (Tu,y) = (u, T™y), u € H, for all u € H, we obtain (y; T®y) € T® for all

y € H, and, hence, T € T™ identifying T with its graph. Conversely, if

y;X) € , then (u, y) = ({u,y) = (u,x) torall u € H;. Hence, x = y or
(y:x) € T®, then (u, T®y) = (Tu, y) = (u, x) for all u € H,. H T

(v; x) € T™ again identifying T with its graph. O

adungeigkrein. ‘ 3.8.6 Proposition. Let (A, [.,.]q) and (B, [.,.1g) be Krein spaces, and let T C AX B
be a linear relation. Then we have:

(i) (T = c/(T).
(i) mulTM = (dom 7)™ and ker T™ = (ran 7).

@iii) If (., )z is a compatible Hilbert space scalar product on A and (., .)g is a
compatible Hilbert space scalar product on B (see Definition 2.2.1 and
Remark 2.3.4) and if G # and Gg denote the respective Gram operators, then the
adjoint T of T with respect to (A, (., )a), (B, (., )s) and the adjoint T"! of T
with respect to (A, [., .]a), (B, [., .18) are related as follows:

™ = G, T"Gg.

(iv) If B : A — B is an everywhere defined, bounded linear operator, then so is B,
Moreover,
(BUIM)H7 = B () (3.8.5)

for any subset M C B.
) If B: A — B is an everywhere defined, bounded linear operator, then
(T + B = T 4 B,
Proof.

(i) According to (3.8.2), (3.8.3), Lemma 2.3.8 and by the fact, that Tg7 o p_; is a
bi-continuous bijection, we have
[+1y[+] _ iy _
(TN = 1507 0 (ot © Tass(TH™) ) =
g0 pii( by © Tass(T))) = c(T).
(ii) For x € A we have y € mul Tt if and only if (0; x) € T™¥. The latter fact means

that [x, u] = [0, v] for all (u;v) € T, which is clearly equivalent to x € (dom T)*/.
ker T! = (ran T)!*! is proved in the same way.
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(iii) For (y; x) € B X A we have
;%) € TH & (Ggy, w)g = (Gax,u)a, (u;w) € T & (Ggy;Gax) € TY,
which gives T") = G/ TG g; see Lemma 3.2.3.

(iv) According to Remark 3.8.5 B! = G/ B¥G 3 is everywhere defined and
bounded. For x € A we have

xe (BYM)M & [x, B¥b) 4, be M & [Bx,blg, be M & x € B (M*s)

(v) Apply " + T ¢ (S + T)*! from Lemma 3.8.3 gives
BY+ 1M c(B+ T = (B+ T + (-B)" + B c T 4 B,

a

In the previous proof we used that B*! — Bl = (0, where 0 stands for the
zero-mapping defined on all of B, i.e. for 8 X {0}. Note that for relations S € B x A
with mul S # {0} or withdomT # B, T — T # B x {0}.

3.8.7 Lemma. For j=1,2let (Aj,[.,.]) and (B,[.,.]) be Krein spaces. Let
A: A > Ayand D : By — B, be bounded and linear. For linear relation
T C A, X B, we have (see Lemma 3.2.3)

(AW % DHD) ™ = D x Ay (Tt
In particular, (D x AN (T" Y is the closure of (A x DIY(T).

Proof. Firstly, it is easily checked that A x D : A; X B — A, x B, has AP x DI is
its adjoint when the respective product spaces are equipped with the sum scalar
product; see Lemma 2.3.9.

Applying (3.8.5)to A X D and T yields

("% D)™ = ax Dy T

By (3.8.3) and Corollary 3.2.5 we obtain

* -1
(4" x D)) = (_ (4 Dl*J)(T))[“) -
(~ax Dy (@) = XA (- TH) ) = x4y (@),
The final assertion follows from Proposition 3.8.6. a

3.8.8 Lemma. Let (V,[.,.]y) be a scalar product space, and let T €V XV be a
linear relation. For a regular M = (%) € C¥2 e then have (see Definition 3.3.1)

(M) = 7T,

where M = (

).

<_xp A
SR
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Proof. The elements from 7;(T'*)) are of the form (6u + yv; Bu + @v) where
(u;v) € T, and those from 7,(T) look like (6x + yy; Bx + ay) with (x;y) € T. For
such elements we calculate

[6x + yy, Bu + @v] = 6BLx, ul + Salx,v] + yBly, ul + yaly,v] =
8B8Lx, u] + daly, u]l + yBlx,v] + yaly, vl = [Bx + ay, du + yv],
and conclude that 7 (T"*1) C 74,(T)™*). This fact applied to 74/(T)™* and M~ yields

T o (TM(T)[*J) C Ty (TM(T))[*J = 7k

Applying 7; on both sides and keeping in mind that (M)~' = M~! also gives
(DM € Ty (T1), 0

For M = (9 !,) we have 7)/(T) = (T - A)~!; see Example 3.3.5. Hence, Applying

Lemma 3.8.8 gives
(T =) Y = (- . (3.8.6)
3.8.9 Corollary. Let (V,[.,.]lvy) be a scalar product space, and letT €V XV be a

linear relation. For p, A € C U {oo} with fi # A we have E(T)[L1E,(T™)).

Proof. Let M € C**2 ve regular such that ¢,;(1) = co and ¢(it) = 0. By
Theorem 3.5.8 we have (r, s € N)

mul ty(T)" = ker(ty(T) — ()" = ker(T — )"
and by ¢u(f1) = ¢;(u) together with Lemma 3.8.8 also
ker(rp (1)) = ker(rp (T = pp()* = ker(ryy(T™) = ¢z ())* = ker(T™ — p)° .

Therefore, in order to verify the assertion, it is enough to show that

mul R"[ L] ker(R*1)* for any 7, s € N and any linear relation R € V x V. Setting

mul R? := {0} =: ker(R[*)? we shall now prove mul R"[ L] ker(R™)*, r, s € N U {0} by
induction on min(r, s). For min(r, s) = O the assertion is clear.

For min(7, s) > 0 and x € mul R, y € ker(R[*1)* we have (x'; x) € R and (y;y’) € Rl
with some x’ € mulR™™" and y’ € ker(RM!)*~!. Hence, [x,y] = [x’,’] = 0 by induction
hypothesis. a

3.8.10 Corollary. For a Krein space (A, [.,.1a) and a linear relation T C A X A we
have p(T™¥) = p(T), o(T™) = o(T).

Proof. p(T™) = p(T) and consequently o-(T™) = o(T) follow from (3.8.6) and the
fact, that the adjoint of an everywhere defined and bounded operator is also
everywhere defined and bounded; see Proposition 3.8.6. a

Another corollary deals with the functional calculus introduced in Definition 3.6.1.
For that corollary we define s*(z) = s(Z) for any rational function s. Note that for

5(z) = pm(z) we have s*(2) = ¢(2).
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3.8.11 Corollary. Let T be a linear relation on a Krein space (A, [., .]a) with
non-empty resolvent set. Then s +— s* constitutes an conjugate linear isomorphism
Sfrom Cy)(2) onto Cpry(2) which is compatible with multiplication. Moreover,

sHTHY = (T, s € Cory(2) .

Proof. s+ s" is easily checked to be a conjugate linear bijection on the space of all
rational functions, which is compatible with multiplication. Moreover, the poles of s*
are contained in p(T*1) = m if and only if those of s are contained in p(T').
Therefore, s — s* maps Cory(2) onto Cppi-1)(2).

Finally, since the functions of the form ¢y (z)’ for j € N U {0} and regular N € Cc2x2
such that the pole of ¢y is contained in p(T") span C,(7)(z) and since (see (3.6.2) and
Lemma 3.8.8)

(owr)" = () = (r5(71) = ™).

we get s*(T1) = s(T)!! for all s € Cor)(2). Q

3.9 Special types of linear relations and their
connection

3.9.1 Definition. Let (V,[.,.]v), (W, [.,.Jw), be scalar product spaces, and let
T C V x W be a linear relation.

The linear relation T is called isometric (unitary ) if T~' € TU (77! = TH). T is
called contractive, if
[y,y] < [x,x] forall (x;y)eT.

If we have V = ‘W and T C TH (T = TI), then we call T symmetric (selfadjoint ).
T is called dissipative if

Im[y,x] >0 forall (x;y)eT.

¢

3.9.2 Remark. If for an isometric 7 we have ran T = ‘W and (dom 7)1 = {0}, then T
is unitary. In fact, 7~' ¢ Tl and dom 7-! = ‘W would give
(dom 7)1 = mul T £ {0).

In Krein spaces the condition (dom 7)*! = {0} just means that dom T is dense; see
Lemma 2.3.8. 0

3.9.3 Remark. Isometric linear relations between scalar product spaces are extremal
contractive linear relations. Indeed, being isometric means 7~! C T!*1, or equivalently,

[y,b] = [x,a] forall (x;y),(a;b)eT.

Due to the polar identity (1.1.1) this is the same as [y, y] = [x, x] for all (x;y) € T. In
particular, T is isometric if and only if T and T-! are contractive. This, is in turn,
equivalent to 7~! being isometric.
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Similarly, T € V x V is symmetric if and only if
[y.al = [x,b] forall (x;y),(a;D)€T,

Again due to the polar identity this time applied to {((x;y), (a; b)) := [y, a] — [x, b] the
symmetry of T can also be characterized by [y, x] = [y, x] for all (x;y) € T. In
particular, T is symmetric if and only of 7 and —T are dissipative. This, is in turn,
equivalent to —7 being symmetric. o

In order to somewhat unify these characterizations consider for (x;y) € V x V the
2 X 2-matrix
v, y] [y, x]
x;y)] = .
[(x2)] ([x, ¥ xad

The contractivity of a linear relation 7 C V X V can then be characterized by

Bt

e lsyler —efl(xyler 20, () €T,
whereas T € V x V being dissipative means

(=Dei [ )]e2 — ey [(s9)]en) 2 0, () €T
An equality sign instead of > here means that the respective relation is isometric or
symmetric.

A straight forward calculation shows that for M = (;{i ) € C?*? and any
y)eVxYVY
[tp( )] = M [(x; )] M™. 3.9.1)

Consequently,

et y)ler — el [ru(x; y)ler =
(P = la)el [(x; y)ler + (61 = 18X [(x; y)]ea+
(67 - Ba)es [(x;y)]er + (&y — Ba)el [(x;y)le2.  (3.9.2)

and

(el [tm(x;y)]es — e [tu(x; y)ler) =
(@y — @y)e] [(x;y)]er + (B3 — BS)es [(x; )]er+
(B — ad)e; [(x;Y)]er + (ad — yB)el [(x;y)]ea. (3.9.3)

Using these equalities we can consider special matrices M. But before recall that for a
regular M the Mobius transform ¢, maps C* bijectively onto itself if a certain scalar
multiple of M belongs to R**? and has positive determinant, whereas ¢, maps D
bijectively onto itself if it is of the from ¢( ") for some ¢ € T,w € D; see .

3.9.4 Theorem. Let M = ((;g) € C>2 be regular and let T €V x V be a linear
relation. If ¢y maps D (C*) bijectively onto itself, then T is contractive (dissipative),
if and only if Ty(T) is contractive (dissipative).

numwerttrans

numwerttrans2

numwerttrans3
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If ¢ maps D bijectively onto D or onto (C U {oo}) \ c€(D), then T is isometric
(unitary) if and only if Ty(T) is isometric (unitary).

If pps maps C* bijectively onto C* or onto C™, then T is symmetric (selfadjoint) if and
only if Ty(T) is symmetric (selfadjoint).

Proof. Assume first that ¢); maps D bijectively onto itself. Then we can assume that
M = (L ) for some w € D. (3.9.2) then gives

S Tru(x:)lex - ef [ty y)ler = (1= wi) (€3 [(xsy)lea — e] [(x:y)er ) -
Thus T is contractive (isometric) if and only if 74,(T) is.

Similarly, if ¢5(C*) = C*, then we can assume that M € R?>*? with det M > 0. By
(3.9.3) we have

(=i)ef [tm(x; y)lex = €3 [Tu(x; ler) = (=i)(det M)(e] [(x;y)]ez — €3 [(x; y)]er) -
We see that T is dissipative (symmetric) if and only if 7,(T) is.

If ¢» maps D bijectively onto D or onto (C U {oo}) \ cf(ID), then then we can assume
that M = (L ") orthat M = (7 ! ). Hence, M = (9 })M( }). According to
Lemma 3.8.8 we have

(M = 7T = Ty (@7H7

Therefore, T being isometric (unitary) implies that 7, is isometric (unitary). As
()™ =7y with M=1 = (9 D)M71(9 1) also the converse holds ture.

If pp(C*) = C* or ¢4 (C*) = C~, then we can assume that M € R>*%. According to
Lemma 3.8.8 we then have 7, (T)™! = 7,(T™). Therefore, T being symmetric
(selfadjoint) implies that T is symmetric (selfadjoint). As (ty)~! = 751 with a
regular M~! € R¥? also the converse holds ture. Q

We can also consider a regular M € C**? such that ¢ maps C* bijectively onto D. It
is easy to check that the M appearing in the following definition has this property.

3.9.5 Definition. For y € C* and M = ( } :ﬁ) the transformation C, := 7y is called

the Cayley transform (with base u). Its inverse ¥, := C;l is called the Inverse-Cayley
transform. ¢

According to Lemma 3.3.4 we have ¥, = Ty-1, where M = ( % ) and hence
M= ﬂ%ﬂ(’l‘ ~1). If we apply (3.9.2) to the current M, we get

el ltu(x; e — ef [tu(x; y)ler = 2 Imp)(—=i) (] [(x; y)ler — e} [(x;)]er) . (3.9.4)
3.9.6 Theorem. Let M = (;g) € C»2 be regular and let T €V x V be a linear

relation. If ¢y maps C* bijectively onto D, then T is dissipative, if and only if Ty (T)
is contractive. In particular, T is dissipative (symmetric,selfadjoint), if and only if
C.(T) is contractive (isometric,unitary).

If o5 maps D bijectively onto C*, then T is contractive (isometric), if and only if
7n(T) is dissipative (symmetric). In particular, T is contractive (isometric, unitary), if
and only if F,(T) is dissipative (symmetric,selfadjoint).
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Proof. For M = ( i :Z) the Mobius transformation ¢, maps C* bijectively onto D. In
this case we immediately get from (3.9.4) that T is dissipative, if and only if
u(T) = Cu(T) is contractive. By Lemma 3.8.8 we have (M = (| =0 6)M)

(D = (T = (T

Therefore, T is symmetric (selfadjoint) if and only if 7,,(T) is isometric (unitary).
Substituting T by F,(T) we see that T is contractive (isometric, unitary) if and only if
Fu(T) is dissipative (symmetric, selfadjoint).
-1

1 —
(1)

bijectively onto C*. According to Theorem 3.9.4 T(l ,ﬂ)_IM(T) = Fu(ty(T)) is
1 —f

For a general M mapping C* bijectively onto D, clearly, ¢ o ¢y maps C*

dissipative (symmetric, selfadjoint), if and only if 7 has this property. By the first
paragraph this is equivalent to 7,,(T) being contractive (isometric, unitary). Finally,
for a ¢y mapping D bijectively onto C* we substitute 7 (7") for T and get for

M = N7" that T = 7,(tn(T)) is contractive (isometric, unitary) if and only if 7y (T) is
dissipative (symmetric, selfadjoint). a

3.9.7 Example. We can use this result in order to obtain the well-known shape of r(T")
and p(T') for a symmetric or selfadjoint relation on a Hilbert space (H, (., .)). In fact,
for a symmetric 7 by Theorem 3.9.6 the relation V := C,(T) is an isometric relation
on H. Being on a Hilbert (see the forthcoming Remark 3.11.2) implies that

V :domV — ranV is in fact an isometric operator.

Therefore, by the considerations in Example 3.5.17 and by Theorem 3.5.6, (T
contains C* U C~. For selfadjoint 7 we have p(T) 2 C* U C~. Moreover, a symmetric
relation is selfadjoint if only p(7) N C* # 0 and p(T) N C™ # 0.

Since for a closed relation S by Proposition 3.4.3 the space ran(S — 1) = dom(S — )~
is closed for any A € #(S) and since ran(S — )& = ker(S® — 2), for a closed
symmetric relation S its selfadjointness is equivalent to

C* ¢ o,(S™) and C” ¢ 0)(S™),

and it is also equivalent to
op(S™) SR U (oo},

¢

Concerning selfadjoint and unitary relations in Krein spaces we state an easy corollary
of Corollary 3.8.10. Note that in general Krein spaces the spectrum of selfadjoint or
unitary relations can be empty.

3.9.8 Corollary. Let (A,[.,.]) be a Krein space and let T C A X A be a linear
relation. If T is selfadjoint, then o-(T) symmetric wrt. the real line, i.e.

A€ o(T) & A€ o(T). If T is unitary then o(T) is symmetric wrt. the unique circle,
ie. le(T) & L eo(T)

Proof. The assertion about selfadjoint T is clear from Corollary 3.8.10, and for
unitary 7 we have o(T) = (T~ = oo(T-1) = {% : e o(T)); see
Theorem 3.5.6. a
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3.10 The Potapov-Ginzburg transform

Recall from Example 3.2.9 the definition of the Potapov-Ginzburg tranform:
7pG + (M XN X My X Np) = (Mi X No) X (Mo x Nv)

Tpc((mi;m); (m2; n2)) = ((my;n2); (M3 ny)) .

If all the vector spaces are provided with a scalar product, then this transform has an
interesting property.

3.10.1 Lemma. Let (M, [.,.]), j=1,2, (N;,[...]), j= 1,2, be scalar product

spaces. For j = 1,2 we provide M; x N; with the scalar product

[(x; ), (a; b)] = [x, yIm, + [a, bln; and for distinct i, j € {1, 2} we provide Mi x Nj
with the scalar product {(x;y), (a; b)) = [x,yIm, — [a, D]n,; see Proposition 1.1.8.
Then for ((a1; b1); (az; b)), ((my;n1); (m2; n2)) € (M X N1) X (Ma X Na) we have

(tpg((ar; by); (az; b2))y, T ((my; ny); (Mo o)), )—
(tpc((ar; b1); (az; b2)),, Tpc((my; ny); (ma; n2)),) = (3.10.1)
[(a1; b1), (my;n1)] = [(az; b2), (m2; mo)],

where Tpg((ay; by); (az; bz))j, Jj = 1,2, is the j'th entry of Tpc((ay; b1); (az; b)), i.e.
tpc((ar; b1); (a2; b2)); = (mi3n2), Tpc((ar; by);(az; ba)), = (ma;my).
Proof. The left hand side of the asserted equality is

{(a1; b2), (m1;n2)) — {(az; b1), (ma;ny)) = [ay, mi] = [b2, m2] — [az2, m2] + [b1,m1],
and the right hand side equals

[(a1; b1), (m1;n1)] = [(az; b2), (m2; m2)] = [ar, my] + [by, n1] — ([a2, ma] + [b2, n2]) .

a

The Potapov-Ginzburg transform is a useful tool, in order to handle contractive
relations.

3.10.2 Proposition. With the notation from Lemma 3.10.1 we have

7p6(T)* = 1pg (T for any linear relation T between M x Ny and My x Na. The
transform tpg on the right hand side of this equation is the Potapov-Ginzburg
transform from (My X N2) X (My X N1) onto (My X N1) X (M X Na).

Moreover, Tpg constitutes a linear bijection, which maps all contractive (isometric)
linear relations between My X N\ and My X N, both provided with [., .] bijectively
onto all contractive (isometric) linear relations between M; x Ny and My X N1 both
provided with (., .).

Proof. To check 7pg(T) = pc(T!) let
((a2; b2); (a1; b1)) € (Ma X No) x (M X Np). Then

((a2; b1); (a1 b2)) € Tp6(TH) © ((a2; b2); (ar; b)) € T &
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[(a2; b2), (ma;n2)] = [(ar1; b1), (m1;nq)] forall ((my;m);(my;m))eT &

=laz,ma]+[b2,n2] =[ay,m]+[b1,n]
[(a2; b1), (masnp)] = [(a1; b2), (my;mp)] forall ((my;ny);(masm)) €T &
=laz,ma]-[b1,n1] =[ay,m]-[ba,n2]

((a2; b1); (a1 b2)) € TpG(T) .

T € (M; X N1) X (M x N>) being contractive (isometric) just means that the
expression on the right hand side of (3.10.1) is > 0 (= 0). According to (3.10.1) this
happens if and only if the left hand side is > 0 (= 0), which means that 7pg(T) is
contractive. a

3.10.3 Lemma. Let M;, j=1,2, Nj, j= 1,2, be vector spaces, let
T € (My X N1) X (Ma x N>) be a linear relation. Assume that there is a linear
bijection S : N1 = N, such that S C T. Then we have

domtpg(T) = (dom T N M) X N>, and
domT = (domtpg(T)N M) X Ny. (3.10.2)

Moreover, T is an operator if and only if Tpc(T) is an operator. In this case we have

T = (P myxni My TPG (TP pt ey M, +
S Pt N = Py N TGP axenim)) ldomr s (3.10.3)
where Py xnim; (P mixnin, ) denotes to projection from M X Ny onto the first

(second) component.

If the involved spaces carry a norm such that S is bi-continuous, then T is a bounded
operator if and only if Tpc(T) is a bounded operator.

Proof. Formje Mjandn;€ N;for j=1,2byS C T we have
((mi;n1);(masnp)) €T &

((mizn1 = S™'n2); (ma; 0)) = ((my; my); (ma; n2)) = ((0;8 ~'m2); (O;m)) € T &
((my; 0); (ma;ny — S ~'n2)) € Tpa(T). (3.10.4)
Thus, dom 7pg(T) N My = Ppxny m, dom T. Because of Nj € domS C dom T the
latter coincides with dom 7T N M;, and dom T = (dom 7T N M;) X N;. From

Nz CranS C domtpg(T) we get dom7pg(T) = (dom 7pg(T) N M) X N,. This show
the first relation in (3.10.2). The second follows from this one and the fact that

Tp6(Tpc(T)) = T.

If 7pg(T) is an operator, then (3.10.4) is the same as
Pptyxny my (mis ny) = (my30) € dom 7p6(T) and 7p(T)(m13 0) = (mo; my — S ~'ny) or —
the latter written component wise —

ma = Pptysny My TPG(T)P pysenvy m, (M5 11)

2 = S (Paticnvi Ny = Proscnvi v TG (TP ptysenvy M ) my s )

Consequently, (0;y) € T implies y = 0,1i.e. T : dom T — M, X N is an operator, and
(3.10.3) holds true. This representation of T also shows that the boundedness of
7pg(T) implies the boundedness of 7.

The converse again follows from the fact that 7pg(7pg(T)) = T. a
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3.11 More on contractive relations

Brauchen

wir folgen-
3.11.1 Lemma. For a a contractive linear relation T between scalar product spaces des Resul-
V,[.,.D) and (‘W,[.,.]) we have tat?

T'nTH = ((v; ) : [y,y] = [x,x]},

and this linear relation is isometric.

Proof. First note that T being contractive means that 7 is a positive semidefinite
subspace of V x W provided with the Krein space scalar product
{(a;b), (c;d)) = [a,c] — [b,d]. By Corollary 1.4.6 we have

TATY =T ={(xy) € T: ((xy),(x59)) =0} = {(x;y) € T : [y,y] = [x,x]}.

It is easy to check that
T = {(c;d) € VX W : [(¢; =d); (a; )] = 0, (a;b) € T} = p_y(T™)). Hence,
according to (3.8.3) we have

TN T = 2qpcap(T N (THY) = 7psap(T) = {(y;x) € T = [y, y] = [x, x]}..

Finally, in Remark 3.9.3 we saw that {(y; x) € T : [y, y] = [x, x]} is isometric. a

In the case of positive definiteness contractive (isometric) relation are well-known
objects.

3.11.2 Remark. If the scalar products of (‘V,[.,.]) and (‘W, [., .]) are both positive
definite — this is clearly the case for Hilbert spaces — and if 7 is a contractive linear
relation between V and ‘W, then [y, y] < [x, x] for all (x;y) € T implies mul 7 = {0},
ie. T : domT — ‘W is an operator, which is bounded with operator norm < 1 wrt. to
the norms induced by the products [.,.] on V and ‘W.

If only the scalar product space (‘W, [.,.]) is positive definite and if (V, [.,.]) is in fact
a Gram space (V, [., .], 0), then also all contractive linear relation between V and ‘W
are continuous operators, when V is provided with O and ‘W is provided with the
norm induced by [.,.]. Choosing a compatible Hilbert space scalar product (., .) and
denoting the Gram operator of [.,.] wrt. (.,.) by G this immediately follows from

[y, y] < [x, x] = (Gx, x) < G| (x, %), () €T

If (V,[.,.]) and (‘W, [.,.]) are both of finite index of negativity and both of finite index
of nullity, then we can write V := V,[+]V_[+]V and W = W, [+ W_[+] W]
where the respective second and third components are finite dimensional; see (1.6.1).

If T is a linear relation between V and ‘W, then T, := T N (V. x ‘W,) is a linear
relation between the positive definite spaces V., and ‘W.. Hence, for contractive T’
we have T = T, +R, where T, : dom T (C V,) — W, is a bounded linear operator
and where dimR < ind_ V + ind_ ‘W + indy V + indy W (< o). o

The following result is taken from . Missing
Reference
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3.11.3 Lemma. Let (A,[.,.],0) be a Gram space, and let B : A — A be an
everywhere defined, bounded, linear and contractive operator, i.e.

[Bx, Bx] < [x, x], x € A. If the spectrum of B is contained in D, then [., .] is positive
semidefinite.

In case that in addition [Bx, Bx] < [x, x], x € A\ {0}, [., .] is positive definite.

In case that in addition (A, [., .]) is a Krein space or in case that
[Bx, Bx] + 6(x, x) < [x, x], x € A for some 6 > 0 and some compatible Hilbert space
product (., .), [.,.] is indeed a Hilbert space scalar product compatible with O.

Proof. Let G be the Gram operator of [.,.] with respect to a compatible Hilbert space
scalar product (.,.) on A. The contractivity of B means that

(GBx, Bx) < (Gx, x), x € A, or equivalently G — BYGB > 0,i.e. G - B¥GBis a
positive operator. By induction on m one easily checks that

G - (B™)VGB"™" = 3 (B)*(G - BYGB)B’.
J=0

By the condition on the spectrum the spectral radius r(B) (see ) is less than one. Since
m

r(B) coincides with lim,, .. [|B"||, we get |B"]| < (“&*)" for all sufficiently large

m. Hence, lim,,_,., B” = 0 and in turn

G= i(B-f)(*)(G - BYGB)B’.
j=0

Finally, it is easy to check that the sum of a series with positive operator summands is
a positive operator. This shows that [, ., ] is positive semidefinite.

The stronger assumption [Bx, Bx] < [x, x], x € A\ {0} yields G — B'GB > 0, and
further G > 0, which is equivalent to the positive definiteness of [.,.]. The even
stronger condition [Bx, Bx] + 6(x, x) < [x, x], x € A for some ¢ > 0 gives

G — BYGB > 1. Hence, G > 61, which means that [., ] is in fact a Hilbert space
scalar product compatible with O; see 56. We get the same conclusion if we assume
that (A, [., .]) is a Krein space, because G > 0 and 0 ¢ o(G) also yields G > 61 for
some ¢ > 0; see Proposition 2.2.12, (3). a

Concerning spectral properties of contractive relations we have

3.11.4 Theorem. Let T CV XV be a contractive linear relation, where (V,[.,.]) is
a scalar product space. Moreover, let L.; (L-1) be the subspace of ‘V spanned by all
root vectors of T corresponding to eigenvalues with modulus smaller than one
(greater than one possibly including ), i.e.

L = span|_| E(T),

AeD
L1 = span U ENT).
A€(CUfeoHh\cl(D)

Then L1 (L-1) is positive (negative) semidefinite, and
dim L.y <ind (V,[.,.]) + indo(V, [.,.]) (dim L.y < ind_(V,[.,.]) + indo(V, [., .])).
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Proof. Let x; € ker(T — ;)" for j=1,...,kand i, ..., € op(T) N D. Choose
v(1),...,v(k) € N minimal with € ker(T — /Jj)v(j). Let y? =0,

ylj € ker(T — p;)', [ =1,...,%(j), such that y;(j)
m = 35 v())

Define ¢ : C" = x*_ OV — Vby

= x; and (ylj;ylj") € (T - u;). Set

k. v())
H(EDI) = D D€
=1 =
Define the linear operator B := C" — C™ by B(((f;),vg))ljzl) = (& +p jfﬂ),ﬁ{))’jzl,
where £} := 0.

It is easy to check that ( X ¢)(B) € T. Providing C" with the scalar product
(x,y) := —[¥(x),¥(y)] we get for x € B that

(Bx, Bx) = —[y/(Bx), y(Bx)] < —[y(x), y(x)] = (x,x),

since (Y(Bx); ¥(x)) belongs to our contractive T. Therefore, B is a contractive
operator on (C™, (., .)) with eigenvalues yj, ...,y € D.

From Lemma 3.11.3 we infer that (., .) is positive semidefinite. x; € y(C™) yields the
negative semidefiniteness of [.,.] on the span of the vectors xy, ..., x;. Since any
element form L. is contained in this span for an appropriate choice of x1, ..., xx, Ls1
is negative semidefinite.

The inequality dim L. < ind.(V,[.,.]) + indo(V, [., .]) follows from Corollary 1.6.6.

The assertion for £ follows, if we consider the contractive relation 77! in the scalar
product space (V, —[., .]) and recall from Theorem 3.5.8 that
ker(T~' = )" = ker(T — 1)” forall 1 € CU {oo} and all v € N. Q

Using the ideas from the last paragraph of Remark 3.11.2 we obatin the following
assertion on the resolvent set of contractive operators.

3.11.5 Corollary. Let (A, [.,.]) be a Pontryagin space, and let T : A — A be an

everywhere defined, bounded linear and contractive operator. Then we have
o(T)\ ct(D) = op(T) \ ct(D), and this set contains at most ind_(A, [., .]) points.

Proof. Asnoted in Remark 3.11.2 T 2 S with finite codimension, where S is a
contractive relation on a Hilbert space. Hence, r(§) 2 (C U {oo}) \ c€(D); see
Example 3.5.16.

By Theorem 3.7.3 either (C U {oo}) \ ¢f(D) € o ,(T) or
((CU{co) \ (D)) \ D € 1(T), D C 0,(T), where D is discrete in (C U {oo}) \ c€(D).

As oo € p(T) € r(T) the second assertion is true, and by Corollary 3.5.15 we even

have ((C U {co}) \ cf(D)) \ D € p(T) with D C ¢ ,(T). Due to Theorem 3.11.4 and the
well-known fact, that eigenspaces of operators are linearly independent, D contains at
most ind_(A, [., .]) points. a

The proof of the following result stems from deliberation in . Missing
Refer-
ence,iohvidoykreinlanger
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immernichnegew. ‘ 3.11.6 Lemma. Let A be a Pontryagin space with ind_- A > 0, and let T : A — A be

a bounded linear contraction. Then T has always an eigenvalue 1 € C\ D and a
corresponding eigenvector x # 0 such that [x, x] < 0.

Proof. Take a fixed fundamental decomposition A = A, [+]A- and denote by (., .)
the corresponding Hilbert space scalar product.

For ¢ € (0,1) define S5 : A — Aby Ss(xy +x-) := VI =6 x4 + VI + 6 x_. Clearly,
S s 1s a bi-continuous linear bijection with ||S s|| < 2. The operator 7'S s satisfies

[TSsx, TSsx] < [Sesx,Ssx] =1 =[x, x: ]+ (A +0)[x_, x_] =[x, x] = 6(x, x).

As |[x, x]| < (x, x) we have [TSsx, TS sx] < (1 - 8)[x, x]. Hence, ﬁTsﬁ is also

contractive. By Corollary 3.11.5 we then get
a(TSs) € K =(0)UM,

where M is a discrete subset of C \ K ;7=5(0) consisting only of eigenvalues. If M
where empty, then Lemma 3.11.3 would imply the positive definiteness of [.,.], which
1

contradicts our assumption ind_ A > 0. By Theorem 3.11.4 applied to ﬁTS(; the

eigenvectors of T'S s corresponding to the eigenvalues A € M are non-positive.

Applying this to a zero sequence (6, )nen from (0, 1) gives rise to eigenvalues A, with
[, € (V1 =6,r(TSs)] € (V1 —6,2||T|]] and a corresponding eigenvectors x,, with
[x, x,] < 0. We can normalize x, such that (x,_, x,_) = 1. Clearly, then

(Xn4, Xpy) < 1. In terms of linear relations we have (x,; 4,x,) € T'S 5 or equivalently

1 1
(—— X, + —— X (X + x,_)) ET. 3.11.1 folgeigvec
VI=36, = ~T+o, * ( ) [folgeigvec]

Since ((x,H; X /ln)) o is bounded in the Hilbert space A, X A_ X C and since

. )

Missing closed balls are weakly compact (see ) there, it has at least one accumulation point
Reference (x4; x_; A) wrt. the weak topology. Hence, x, is a weak accumulation point of {x,},
which satisfies (x4, x;) < 1 by the weak closedness of the unit ball in A,. By
dim A- x C < oo the vector x_ and the scalar A are norm accumulation points of {x,_}
Missing and {4,}, respectively; see . In particular, |1 > 1 and (x_,x_) = 1.
M/ Since T is closed, and hence, weakly closed (see ), (3.11.1) yields (x; Ax) € T with
Missing x=x; +x_ #0and [x, x] = (x4, x:) — (x_,x_) <0. a

Reoforanca
elemeontprop—| 3.11.7 Lemma. Let T be a contractive linear relation between scalar product spaces
(V,[.,.Dand (W, [.,.]). If N1 is a negative linear subspace of dom T of dimension n,
if {x1,...,x,} is a basis of Ny and if y1,...,y, € W are such that (xi;yi) € T for
k=1,...,n then Ny := span{yy, ..., y,} is a negative subspace of dimension n.

Moreover, the mapping S : N1 — N, defined by S (x;) = y;for j=1,...,n,isa
linear bijection whose graph is contained in T.

Proof. Fory € N>\ {0} we have y = ¥ 4;y;, where A; # 0 for at least one j. Setting
x:= Y0 Ayxj we get (xy) = Xy A;(x;5y)) € T. Hence, [y, y]2 < [x,x]1 < 0. We
conclude that y # 0 and, therefore, dim N, = n. Moreover, N, is a negative subspace.
The statement about S is obvious by construction. a
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3.11.8 Corollary. For a contractive linear relation T between scalar product spaces
V,[.,.D) and (‘W,[.,.]) we haveind_ranT > ind_domT.
3.11.9 Theorem. Let (Py,[.,.]) and (P2, [.,.]) be Pontryagin spaces satisfying
ind_P; =ind_P». If T : Py — P, is a contractive linear operator, i.e.
[Tx, Tx] < [x, x] for all x € Py, then the adjoint operator TU P, — P (see
Proposition 3.8.6) is a contraction, too.
Proof. Let N| be a maximal negative subspace of ;. By Lemma 3.11.7 the space
N, := T(N)) is a negative subspace of £, with dim V| = dim NV,. By our assumption
ind_ P; = ind_ P, the space N, is maximal.
Setting M; := Nlm within £, and M, := sz within , we get two Hilbert spaces;
see Corollary 2.4.8. Applying Proposition 3.10.2 we see that R = 7pg(T) is a
contractive linear relation between (M; X N;) provided with
((m1;n2), (a1, b)) = [my1, a1] — [n2, ba] and (M X N)) provided with
{(ma; m), (a2, b1)) = [ma, ax] — [n1, by1].
By (3.10.2) dom T = #; implies dom R = (M; X N;). Since —[., .] is positive definite
on N and NV,, these two product spaces are Hilbert spaces. As mentioned in
Remark 3.11.2 R : M; X N, = M, X N is then an everywhere defined bounded
linear operator with ||R|| < 1.
Its adjoint R is in fact a Hilbert space adjoint. Therefore,
R™ . My x N1 — M x N> is a linear and bounded operator with ||[RI*|| = ||R|| < 1,
i.e. Rl is a contraction. But by Proposition 3.10.2 RI*! = 7p5(T™!) is a contraction if
and only if T is. a
3.11.10 Example. Eventuell Beispiel aus rosenblum ravnyak mit verallgem dirichlet
spaces. % Oder ins
) o o Kapitel ue-
The following assertion is a generalization of Theorem 2.5.14. ber RKPS?
3.11.11 Theorem. Let T be a contractive linear relation between Pontryagin spaces oder. RKPS
(P1,1...]) and (P, [.,.]). Ifind_ran T = ind_ dom T and if ct(ran(T)) is Kapitel als
non-degenerated, then T is (the graph of) a continuous, linear and contractive Kapitel 3.

operator T : domT — P».

Zhe closure of T in Py X P, is a linear, bounded and contractive
T :cl(T)=ct(domT) — P>.

Proof. As we assume that cf(ran(7T)) is a Pontryagin subspace of $,, we can view T
as a linear relation between #; and cf(ran(7’)). Obviously, the fact that

T : domT — P, is a continuous operator, and the fact, that 7 : dom 7T — cf(ran(T)) is
a continuous operator, are equivalent. Therefore, we can assume that P, = cf(ran(7)).

Let NV; be a maximal negative subspace of dom 7. By Lemma 3.11.7 there is a linear
bijection S (C T') from N onto a negative subspace N, of $,. By Proposition 2.1.4

ind- P, =ind_ cf(ranT) = ind_ran7T = ind_dom T .

Hence, N, is maximal negative definite.

Setting M; := NlllJ within £ and M, := NZ[lJ within P, due to Lemma 2.4.7 and
Proposition 2.4.6 we get two Pontryagin spaces where M, is in fact a Hilbert space;
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see Corollary 2.4.8. Applying Proposition 3.10.2, 7pg(T') is a contractive linear
relation between (M; X N;) and (M; X Np).

Since the latter space is a Hilbert space and the former is a Pontryagin space, and
hence a Gram space, we saw in Remark 3.11.2 that then

R :=1pg(T) : domR (C M; X N3) — M, x N is a bounded operator with norm < 1.
According to Lemma 3.10.3 this is the case if and only if 7 is a bounded linear
operator. The final assertion is an immediate consequence of the following
Proposition 3.4.3. a

3.11.12 Corollary. Let T be a contractive linear relation between Pontryagin spaces
P, [.,.D) and (P, [.,.]). If ind_(P1, [.,.]) = ind_(P>, [.,.]) and dom T is dense, then
the closure of T in P1 X P, is a linear, bounded and contractive

cl(T) : cb(T) =P, — Ps.

Proof. By Proposition 2.1.4 we have ind_dom7 = ind_ #; = ind_ $,, and according
to Corollary 3.11.8 ind- P, > ind_ranT > ind_ dom 7. Hence,

ind_ranT = ind- dom 7. Moreover, by (1.6.3) applied to the sum of a ind_ P,
dimensional negative definite subspace of cf(ran(T)) and of cf(ran(T))'°) shows that
cf(ran(T))!) = {0}. Thus, we can apply Theorem 3.11.11. Q

3.11.13 Theorem. Let T : A — A be a bounded contractive operator on the
Pontryagin space (A, [.,.]). Then there exists a polynomial p(z) € C[z] of degree less
or equal to ind_(A, [., .]) such that

[p(T)x, p(T)x] > 0, forall x € A.

Proof. We prove the assertion by induction on ind_(A, [., .]). For ind_(A, [.,.]) =0,
clearly, p(z) = 1 satisfies [p(T)x, p(T)x] > 0.

Assume the assertion is true for any Pontryagin space with index of negativity less or
equal to k € N U {0}, and suppose ind_(A, [.,.]) = k + 1. From Lemma 3.11.6 and
Theorem 3.11.9 we know that the contractive T has an eigenvalue 1 € C \ D and a
corresponding eigenvector x # 0 with [x, x] < 0. Hence, ind_ K = k; see

Lemma 2.4.7 and Proposition 1.6.7 in case that [x, x] < 0 and Theorem 2.4.10 and
Proposition 1.6.7 in case that [x, x] = 0. For y € ‘A we then have

(T = )y, x] = [y, (T = Dx] = 0.
We derive (T — )(A) C x*1. Hence, (x,y) := [(T — A)x, (T — )y] defines a scalar
product on A with ind_(A, (., .)) < k. Since
(Tx, Ty) = [(T-D)Tx,(T-)Tx] = [T(T=)x, T(T-)x] < [(T-D)x, (T-A)x] = (x, ),

T is contractive wrt. (., .). By Proposition 2.6.8 (A, (., .)) has a Pontryagin space
completion (8, (., .)), i.e. there is an ., .)-isometric mapping ¢ : A — B with dense
range. Clearly, (¢ X ¢)(T) is a contractive linear relation with dense domain ¢(A) in B.
By Corollary 3.11.12 the closure R of (¢ X ¢)(T) is a continuous contraction defined on
B. Moreover, Rot =10 T (see Remark 3.2.7), and hence RF ot = 1 o T¥, k e N U {0).

By induction hypothesis there exists a polynomial g(z) of degree less or equal to «
such that (¢(R)z, g¢(R)z) > 0, z € B. For p(z) := (z — 1)q(z) and x € A we then have

[p(T)x, p(T)x] = {g(T)x, q(T)x) = {tq(T)x, 1q(T)x) = {g(R)tx, g(R)tx) = 0.
a
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3.12 Moving linear relations

In this section we consider two Krein spaces (A, [.,.]) and (B, [., .]) which are linked
by a bounded linear mapping A : A — B. We shall study linear relations of the form
(A x A)(S) on A, where S is a linear relation on B; see Lemma 3.2.3. Mostly,
(A,[.,.]) is indeed a Hilbert space so that we can study (A x A)~!(S) instead of S in
the more familiar Hilbert space setting.

3.12.1 Proposition. Let A : A — B be a bounded and linear mapping between the
Krein spaces A and B. If S is a closed linear relation on B, which satisfies

(AAM x AAMD(SHhy c s,

then (A x A)~1(S)™ is the closure of (A" x APNYS ), and it is a symmetric linear
relation on A.

In the special case that A is injective, that A is a Hilbert space and that C \ o, (S)
contains points from C* and from C~, the relation (A x A)~'(S) is selfadjoint.

Proof. The assumption (AA"! x AAU)(ST) = (A x A) (A x AT € § implies
(A x AFY(S ) € (A x A)~1(S). Thus, also the closure (A x A)~'(S)™ of

(AT x AP (S ) (see Lemma 3.8.7) is contained in the closed (4 x A)~!(S); see
Remark 3.4.4. Hence, (A x A)~'(S)M is symmetric.

If A is a Hilbert space, then (A x A)~'(S)™*! not being a selfadjoint relation on A by
what was said at the end of Example 3.9.7 implies that the point spectrum of its
adjoint (A x A)~'(S) contains all points from the upper halfplane or all points from the
lower halfplane. But due to Lemma 3.5.9 we have o ,((A X A)'(S)) C o p(S). Hence,
(A x A)~1(S)I must be selfadjoint if C \ o,(S) contains points from C* and from

C. u

3.12.2 Remark. We can extract a little more information from the previous proof in
the case of A being a Hilbert space and A being injective. For the adjoint of the
symmetric relation (A x A)~'(S)*! by Lemma 3.5.9 we have

ker((A x A)"'(S) — 1) = A" ker(S — ), and hence,

dimker((A x A)~(S) — ) < dimker(S — 1) for any 1 € C U {co}. ¢

3.12.3 Lemma. Let (H,(.,.)) be a Hilbert space and let A, C € B(H) such that C and
AC are selfadjoint and such that C > 0. Then we have
I(ACx, 0)| < [|A]l (Cx, x), x € H.

Proof. Using the functional calculus (see ) for the selfadjoint operator C we see that

C + € is boundedly invertible for any € > 0, and C(C + €)~! has norm
— _lci
SUPreo(c) Fre = Teee-

Since for the spectral radius we have spr(FG) = spr(GF) for all bounded operators
F? G’

Spr((C + 6)_%AC(C + 6)_%) = Spr(AC(C + 6)_]) < ”A” ”C” )
ICII + €
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For selfadjoint operators spectral radius and norm coincide. Hence, due to the
Cauchy-Schwarz inequality

[(ACx, x)| = |((C + €) 2AC(C + €)% (C + €)7x, (C + €)7x)| <
[IC]|
IC|| + €

I(C + €& 2AC(C + &) 2|/ |I(C + )2 x> < A (C +ex,x).

The desired inequality follows for € | 0. a

3.12.4 Lemma. Let (H,(.,.)) be a Hilbert space, ¢ € [0, +c0) and let B be a
selfadjoint operator. If |(Bx, x)| < c(x, x) for x € dom B, then B is bounded with
IBIl < c.

The ideas in the subsequent lemma are take from .

3.12.5 Lemma. With the notation and assumptions from Proposition 3.12.1
additionally suppose that A is injective, that A is a Hilbert space and that S : B — B
is bounded. Then (A x A)™1(S) is a bounded linear and selfadjoint operator on A with

I (Ax A S)I<ISI. (3.12.1)

Here ||.|| on the right is the operator norm with respect to any Hilbert space scalar
product (.,.) on B compatible with [, .].

Proof. Lemma 3.5.12 implies C \ Kjg;(0) C r(S) € (C U {oo}) \ 0,(S). In particular,
C\ 0p(S) contains points from C* and from C™.

By Lemma 3.5.12 the relation (A x A)~!(S) is selfadjoint and coincides with the
closure of (Al x A1) (§1*]). According to Lemma 3.5.9 applied with 1 = oo,
(A x A)~!(S) is indeed an operator.

By Corollary 3.2.6 the assumption (AAM! x AAP) (ST C S is equivalent to

AAPISH ¢ § AAM, Since the expressions on the left and on the right of this
inclusions are everywhere defined linear operators, in fact equality prevails. Denoting
by G the Gram operator of [.,.] with respect to (., .) we get

AAWS G = AAIST = SAAM! = §AAMG, where A is the Hilbert space adjoint of
A:(AL,.D = (B,(,.). Consequently, (SAA)® = AAWFH = §AA® s
selfadjoint.

For (x;y) € (A" x A (S ) € (A x A)~'(S) we have x = Ay for some u € B. We
conclude that (AA™u; Ay) € S or S (AA™u) = Ay, and hence

Iy, 11 = Iy, Al = [[Ay, u]| = I[S AA™u, u]| = |((SAAY'Gu, Gu)) .
By Lemma 3.12.3 this expressions is less or equal to
IS Il (AA'Gu, Gu) = IS 1| TAAM u, u] = 1IS| [, x].
(A x A1 (S1*]) being dense in (A x A)~1(S) implies [y, x]| < ||S]| [x, x] for all

(x;y) € (A x A)~'(S). Therefore, according to Lemma 3.12.4, (A x A)~'(S) is a
bounded and selfadjoint operator with norm less or equal to ||S||.

a

contranspoeq
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3.12.6 Theorem. Let A : A — B be a bounded and injective linear mapping from the
Hilbert space (A, [.,.]) into the Krein space (8B, [.,.]). Then

O:CH AxA O

constitutes a *-algebra homomorphisms from (AA™Y C B(B) of all bounded linear
operators on B, that commute with AAY, into (A¥1AY C B(A) with ||©|| < 1. Hereby,
O = I and O(AA™) = AMA, and

ker® = {C € (AA"Y : ranC C ker A"} .

Moreover, (A" x A" (C) is densely contained in @(C) for all C € (AAMY, and we
have A¥IC = ®(C)A. Finally,

Z: D ADAM

constitutes an injectiv, bounded linear mapping from (A¥1AY (C B(A)) into
(AAYY (C B(B)), which satisfies (C,€ (AA™Y, D, Dy, D, € (AAY)

(D) = 2D, E(D ©(C)) = E(D)C,
2(D\D> A A) = E(D)) E(D,), E00(C) = AA™ € = C AAM,

and Z(D) commutes with all operators from (AA™VY if D commutes with all operators
from (AM1AY.

Proof. First of all it is easy to check that (AA™) C B(8B) and (A*1A) € B(A) are
closed Banach-* algebras when provided with !, For any seladjoint C € (AA"!) we
have (AA™ x AAP)(CM) = (AAT! x AATN)(C) C C due to Remark 3.2.7. Thus, we
can apply Lemma 3.12.5 and see that (A X A)~!(C) is a bounded seladjoint linear
mapping on A containing (A"! x A*1)(C) densely. Hence,

(AMA x AMA) (A x A1) c (A x AMNY(C) c (A x A)7HC).

Again by Remark 3.2.7 this means (A X A)~'(C) € (A"AY. Clearly,
AxA) U =A""A =Tand (A x A)'(AAM) = A7TAAMIA = AMA; see
Lemma 3.2.3..

For a not necessarily selfadjoint C € (AA™) we also have C™* € (AA™Y, and in turn

[¥] _
ReC=C+2C Cmc=52¢

€ (AAMY .

Consequently, (A x A)~'(Re C) and (A x A)~!(Im C) are selfadjoint elements from
(A1AY . Moreover, by Corollary 3.2.5

AxA)NC)=(AxA) ' ReC+iImC) 2D (AxA) '(ReC) +i(Ax A)'(ImC),

AxAC") = AxA)  ReC—-iImC) 2 (AxA) ' (ReC)-i(AxA) ' (ImC),

where the right hand sides have domain A and the left hand sides are operators; see
Lemma 3.12.5. Consequently, equalties prevail, and we obtain (A x A)~'(C) € (Al*1AY
and (A x A)~(C*) = (A x A)~(C)*]. Therefore, ® : (AAM)Y — (AAY is
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well-defined and respects [*!. Using Corollary 3.2.5 two more times shows that @ is in
fact linear and multiplicative. Using (3.12.1) we get for all x € A, [x, x] = 1,

[O(C)x, B(C)x] = [O(CHIC)x, x] < |O(CHO)| < |IC*Cll < IICII?,
and conclude that ® is a contraction. From Lemma 3.8.7 we infer
(A x AH©) ™ = (A x A) () = (A x A (O

showing that (A*] x A"1)(C) is densely contained in (A x A)~!(C). In particular,

(A x A)"I(C) = O(C) = 0 is equivalent to the fact that (a; b) € (Al*! x A1) always
implies b = 0, i.e., A[*]y = 0 for all (x;y) € C. This just means that ran C is contained
in ker APl

We have [AAYICu, v] = [A¥ICu, Alv] = [@(C)Au, A1V] for any u, v € B because
of (A"u; A¥1Cu) € ®(C). From this equality we obtain AAIC = A®(C)A™ which, in
turn, implies A!C = ®(C)A! by A’s injectivity.

Z : D — ADA" is clearly linear, bounded by ||A||> and satisfies 2(D)!*! = Z(D'). Tts
injectivity follows from A’s injectivity and from cf(ran A"!) = ker Al*) = A.

For D € (AMAY we have Z(D) AAF! = ADAM AAP = A AFIADAY = AAL 2(D),
i.e. 2(D) € (AA™Y . For C € (AA™Y, D € (A™A)Y we have

Z(DO(C)) = ADO(C)AY! = ADAIC = Z(D)C, and D, D, € (A" A yields

2(D D> AYA) = AD DAY AA™ = AD, A" A DAY = 2(D)) E(D»),

and AMIC = O(C)AM implies Z 0 O(C) = AB(C)AM! = AAM C = C AAM,
Finally, assume that D commutes with all operators from (A*]A), and let
C € (AAMY. Then A"'CA = ®(C) € (A" AY. Hence,

Z(D)C = E(D O(C)) = E(O(C)D) = AA"'CADA™ c CADA™ = CE(D).
The fact, that here only everywhere defined operators are involved, gives
E(D)C = CE(D). a
3.12.7 Remark. The fact that ® from Theorem 3.12.6 is an algebra homomorphism
yields p(O(C)) 2 p(C). o
3.12.8 Remark. For C € (AA*Y we can apply Lemma 3.2.8, and obtain

A" x AMYT1O(C) = (AAM! x AAM)1(C) = C B (ker AA™ x ker AAD),
where ker AA"! = ker A"l by A’s injectivity. 0

3.12.9 Corollary. Let A : A — B be a bounded and injective linear mapping from
the Hilbert space (A, [., .]) into the Krein space (B, [.,.]). If S is a linear relation on B
satisfying p(S) # 0 and (AA¥! x AAU1(S) C S (or equivalently AAY S € S AA;
see Remark 3.2.7), then O(S) := (A x A)™1(S) satisfies p(O(S)) 2 p(S) (# 0) and
(AMA x AF1A)(O(S)) € O(S).

Moreover, we have s(S) € (AA™Y for any rational s € Cos)(2) and
s(O(S)) = O(s(S)) € (AFMy.

Finally, p(S"1) # 0, (AAF! x AAUN (ST € S gnd ©(S ) = ©(S)!.
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Proof. Take aregular M € C2*2 such that 744(S) € B(B). Since Ty commutes with
AA" x AA (see Remark 3.3.9), we have (AA™ x AAF)(144(S)) € 74(S) which by
Remark 3.2.7 means that 74,(S) € (AA"!Y'. According to Theorem 3.12.6 we then
have @(14(S)) € (AAY, or equivalently

(AMA x AP AY(O(T41(5))) € O(Ty(S)) . (3.12.2)

By (3.3.10) we have O(14/(S))) = (A X A) ' (141(S)) = T3 ((A X A)~'(S)). Therefore,
applying ) to (3.12.2) gives (A"A x AA)((A x A)71(S)) C (A x A)7I(S).
p(O(S)) 2 p(S) follows from

due((Ax A (S))) = p(ru((A X A)T'(S))) = p(@(Tu(S))) 2 p(ru(S)) = pum(p(S))

By Lemma 3.6.4 for any rational s € Cy(5)(2) € Cpa(s))(2) we have
50 @yt € Cpiryyisy(@) and (s 0 ¢y )(Ty(S)) = s(S). Since Ti(S) € (AAMY and since
® in Theorem 3.12.6 is a homomorphism, we get

O(s($)O((s © dp-)(Tu(S))) = (5 0 Pp-1)(O(T(S))) =
(50 g )(Tm((A X A)(S)) = s(A X A)(S)).

The assertion about S *1 follows from 7;(S ™) = 7,,(S)™ € (AAMY (see
Lemma 3.8.8) and the fact that O(t(S)I*)) = O(ty(S)"; see Theorem 3.12.6. [

3.13 Definitizable linear relations

3.13.1 Definition. Let (B, [.,.]) be a Krein space. We call a linear relation C on 8
satisfying p(C) # 0, definitizable , if [q(C)x, x] > 0, x € B, for some rational

q € Cy)(2). Any rational g € Cy(c)(z) satisfying this condition is called definitizing
rational function for C. o

3.13.2 Remark. With the notation from Definition 3.13.1 (., .) := [¢(C)., .] defines a
positive semidefinite hermitian sesquilinear from on B. Let (A, (., .)) be the Hilbert
space completion of (8/8(), and denote by ¢ : B — A the canonical embedding.
Because of (tx, tx) = [q(C)x, x] < ||g(O)|| (x, x), ¢ is bounded. Here (.,.) is a
compatible Hilbert space scalar product on 8 as in Lemma 2.3.6. Hereby, clearly
A = {0} if and only if g(C) = 0.

For g(C) # 0 let A : A — B be the adjointof ¢ : (B,[.,.]) = (A, {,.),i.e. A= By
definition the range of ¢ = Al is dense, and therefore, A is injective. Moreover, due to

[AAM x, y] = (A x, Ay = (x,y) = [¢(C)x,¥], x,y € B,

we have AA"! = ¢(C). For a regular M € C>? with 7,,(C) € B(8) by Remark 3.2.7
711(C)q(C) = q(C)ty(C) just means (AA™ x AAU )7y, (C) C 74(C). Applying 7
gives (AAl! x AAMNC C C; cf. Remark 3.3.9.

Thus, we can apply Corollary 3.12.9 and Theorem 3.12.6 to S := C. In particular,
B(q(0)) = O(AAP) = AT A, Moreover, if C is selfadjoint, then the same is true for
B(0). o
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3.13.3 Theorem. Let (B,[.,.]) be a Krein space and let C be a definitizable linear
relation on B with p(C) # 0. If q is are definitizing rational function for C and
D = 5q (€ Cyc)(2)) for some s € Cyc)(2), then

T(O(C)) € o(C) € p~' (p(e(®(C)) U {0}),

where o(O(C)) has to be interpreted as 0 for g(C) = 0. Here © is the mapping as in
Corollary 3.12.9 applied in the setting of Remark 3.13.2 on base of the definitizing
rational function q.

Proof. The left inclusion immediately follows from Corollary 3.12.9. For p(C) = 0,
which is in particular the case if g(C) = 0, the assertion immediately follows from the
spectral mapping theorem, Proposition 3.6.5. Hence, we can assume that

s(C)q(C) = p(C) # 0 and hence g(C) # 0.

Assume that A ¢ p~!'(p(a7(@(C))) U {0}). Then p(1) # 0 and
p(D) & p(a(O(C))) = o(B(p(C))); see Proposition 3.6.5 and Corollary 3.12.9.

In particular, for M = (i —po(/l))

B(tu(p(C))) = Tu(O(p(C))) =
1+ AO(p(C)) — p()™" = B(PCO))O(P(C)) - p()™" (3.13.1)

is an everywhere defined and bounded linear operator on (A whose range is contained
in ran O(p(C)). According to Remark 3.12.8 we then have

A" x AMYT1O(14(p(0))) = T (p(C)) B (ker AA™! x ker AAM) .

From (3.13.1) and p(C) = g(C)s(C) = A¥1A s(C) we derive
ran T4(@(p(C))) C ran O(p(C)) C ran A A C ran A™. Therefore, by Lemma 3.2.4

dom(A! x AMN) ' O(T4(p(C))) = (A" dom ti(B(p(C))) = B,

and in turn we get

B = dom 1y (p(C)) @ (ker AAX! x ker AAM) = ran(p(C) — p(1)) + ker AAP,

ker AAl! = ker p(C) C ran(p(C) — p(1)) for p(A) # 0 yields ran(p(C) — p(1)) = B. By
Proposition 3.6.6 we derive ran(C — 1) = B.

Finally, 0 # x € ker(C — 1) C ker(p(C) — p(2)) (see Proposition 3.6.6) yields

(Al x; A p(D)x) € (AM x AN p(C) € B(p(C)); see Theorem 3.12.6. Since the
intersection of ker A"l = ker AAl"! = ker ¢(C) with

ker(p(C) — p()) = ker(s(C)q(C) — p(Q)) is just the zero vector, we get the
contradiction 0 # Alx € ker(®(p(C)) — p(1)) = {0}. Thus we showed A € p(C). a

If for bounded C the assumptions from the previous theorem are satisfied for
p(2) = q(z) = z, then O(C) = O(s(C)) = O(AAP) = AFIA (see Theorem 3.12.6) is
selfadjoint in a Hilbert space. Hence, o(®(C)) € R, and we obtain the following

3.13.4 Corollary. Let (B,][.,.]) be a Krein space and assume that C : B — Bis a
bounded, linear operator, such that [Cx, x] > 0 for all x € B, i.e., C is positive. Then
o(C) CR
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3.13.5 Corollary. With the assumptions and notation from Theorem 3.13.3 assume in
addition that C is selfadjoint. Then 0(C) CR U {oco} U {z € C: g(z) = 0}, where
a(C)N{z € C: q(z) = 0} is symmetric with respect to R. Moreover,

@) Co(C)Co@B)U{zeC:q(z)=0}.
Here O is the mapping as in Corollary 3.12.9 applied in the setting of Remark 3.13.2
on base of the definitizing rational function q.
Proof. By assumption g(C) is a positive and bounded operator. Hence, by
Corollary 3.13.4 g(c(C)) = o(q(C)) CR.

For any co # u € p(C) = p(C) (see Corollary 3.8.10) consider

su@) = L, sh2) = ﬁ € Cp(0)(2). As C = C* we get from Theorem 3.6.2 and

Corollary 3.8.11
[(qsﬂsﬁ)(C)x, x] = [g(C) 5,(C)x, s,(C)x] 20, x € B.

Hence, we also have (qsﬂsﬁ)(a(C)) = o-((gsﬂsz)(C)) cR.
Assume that z € 07(C) \ R and ¢(z) # 0. From ¢(z) € R we conclude

1
e erpe-p?® =
1 (2 2 . 290
N SN 1/ B .
lz — uPlz - a2 (Z Z Re u(z Z)) R _mz(z 2)(Rez —Rep)

For Re u # Re z this term does not vanish, i.e., (qsﬂsz)(z) ¢ R. Since p(C) is open, this
can always be achieved by perturbing Re i a litte, and we obtain the contradiction to
(qsﬂsz)(a(C)) CcR.

Forw € o(C) N {z € C : g(z) = 0} from C = C"! we infer
w e o(C) CRU {0} U{z € C: g(z) = 0}; see Corollary 3.8.10. Hence,
weoa(C)n{zeC:q(z) =0}

Finally, assume that 1 ¢ 0(®(C)) U {z € C : g¢(z) = 0} but 4 € o(C). Hence,

A € R U {oo}. Let U(1) be a compact neighbourhood of A with U(2) = U(4) and
UQ) N (0(B(C))U{z e C:q(z) =0}) = 0. Since g(c(O(C))) = o(q¢(B(C))) is
bounded in C, the same is true for

| @sushio@©n <

uel(d)

1 1
F@0) U @) _uw HeE.

On the other hand, for any sequence y,, € U(1) \ (R U {oo}) C p(C), n € N, with

lim,,—,c p, = A we have

q()
|/l - ,un|2

— 400

s

(qsy, $5 )0 (C)) 3 (gsusp)(A) =
which contradicts the boundedness of

|J@sust )o@ < J@sush)e@omuiorc | @sshio@ey uiol,

neN neN petd)

where the first inclusion follows from Theorem 3.13.3. Qa
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3.13.6 Remark. According to Corollary 3.13.5 the zeros of g, that lie in o(C), are
symmetric with respect to R. If we consider s := ¢ + ¢*, then s* = s and

$(C) = g(C) + ¢*(C) = g(C) + g(C)"! = 2¢(C). Hence, with g also s := g + g* is a
definitizing rational function. The latter is real, i.e. st =s. o

3.13.7 Example. If (8, [.,.]) is a Pontryagin space and U : 8 — B is a unitary
bounded linear operator, then U is definitizable. To see this recall Theorem 3.11.13.
Thus, we have [p(U)* p(U)x, x] = [p(U)x, p(U)x] > 0 for all x € B and a certain
polynomial p € C[z]. By Corollary 3.8.11 we have

p(UHpU) = pH (UM p(U) = p*(U)p(U) = q(U), where g(z) := p*(2) p(z)is a
rational functions with poles at most in {0, oo} C p(U); see Corollary 3.9.8. Thus,

g € Cou)(2). o

3.13.8 Example. If S is a selfadjoint linear relation on the Pontryagin space (8, [.,.])
with p(S) # 0, then taking ¢ € p(S) = p(S) with strictly positive imaginary part we
know from Theorem 3.9.6 that the Cayley transform C,(S ) is unitary. Choosing M as
in Definition 3.9.5 we obtain from Theorem 3.5.6 that ¢, (1) = 0 and ¢ (j1) = oo
belong to p(C,(S)). As we saw in Example 3.13.7 g(C,(S)) is positive for some

q € Cpc,(s)(2)- Since by Lemma 3.6.4 g 0 ¢ (S) = q(C(S)) with g o ppr € Cps5)(2),
S is definitizable. o

Similar arguments as in Example 3.13.8 show that all unitary linear relations in a
Pontryagin space with non-empty resolvent set are definitizable.

3.13.9 Lemma. Let (B,[.,.]) be a Krein space, assume that C is a selfadjoint and
definitizable linear relation on B, and fix some definitizing q € Cy(c)(z) with g(C) # 0.
We denote by F the spectral measure of the selfadjoint linear relation ®(C) on A,
where the Hilbert space A and the mapping © is as in Remark 3.13.2. For any
bounded and Borel measurable function g : o(O(C)) — C we define

G(g):=A f g dF A" (e B(B)).
a(0(0))

Then G depends linearly on g and G(g) commutes with all R € B(B) which satisfy
(RXR)(C) € C. G(g) =0 ifand only iffu'(@(C)) g dF = 0. Moreover,

G =G(3), (3.13.2)
G(sleo@cy) = s(C) q(C), (3.13.3)
G (sl - 8) = G(g) s(C) = 5(C) G(g), (3.13.4)
and
G(g) G(h) = G(qlroec) - & h), (3.13.5)

for any s € Cc)(2) and any bounded and Borel measurable function
g, h:0(OC)) - C

Proof. Recall that A A = ©(¢(C)) = g(®(C)) and ¢(C) = AAL]. Moreover, for
s € Cy(c)(z) we have (see Corollary 3.12.9)

f s dF = s(0(C)) = O(s(C)) = (A X A)~'(s(C)) = A7 's(C)A € (AMAY,
a(O(C))

Geig0®

Geigl

Geig2

Geig3
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Since L@(C» g dF commutes with g(®(C)), we have L(G(C)) g dF € (A"AY . Hence,
G(g) is nothing else but E(fa(e(c» g dF), where E is as in Theorem 3.12.6. Hence,
G(g) = 01if and only if L@(C)) gdF =0.

By the properties of the functional calculus for selfadjoint linear relations in Hilbert

spaces (see ) linearity and (3.13.2) follow from E’s linearity and its compatibility with Missing
taking adjoint. Moreover, (3.13.3) follows from Z(@(s(C))) = s(C) AA™, the first Reference
equality of (3.13.4) follows from Z(DO(s(C))) = E(D)s(C), and (3.13.5) from

E(DH AMA) = E(D)E(H) with D = [gdF, H = [hdF.

If R satisfies (R X R)(C) C C, then by Theorem 3.6.2 R commutes with g(C) = AA],

i.e. R € (AA"Y. By Theorem 3.12.6 R commutes with G(g) = E(fa(e(c» g dF) since

fa(@(C)) g dF commutes with all operators of the from (®(C) — DL e p(O(C)), and

hence with (A*)A) = (¢(®(C)))'. Finally, for R = s(C) we get the second equality in

(3.13.4). a

3.14 Functional Calculus for seladjoint definitizable
relations

We start this section with a little algebra.

3.14.1 Remark. Consider the ring C[z] of polynomials with complex coefficients. Its BESSER
elements shall be written in the form p(z) = 3y, @.2", where only finitely many a, und schner
do not vanish. By C[z].,, we denote the m-dimensional subspace of all polynomials
with degree less than m, and we denote by n,, : C[z] — C[z]<,, the projection

2nel, AnZ" > Zq:_o1 anz".

As (pq)(2) = X e, (Xeo @kbn-1)z" for two polynomials

P(2) = Ypen, @nZ"s q(2) = Yinen, bu2" the n-th coefficient of pg only depends on
ao, . ..,ay and by, . . ., b,. Therefore, by 7,,(p) - 7,,(p) := 7,,(pg) a mapping

-1 Clzl<am X Clzl<m — Clz]<m is well-defined.

Since multiplication on C[z] is bilinear and associative, the same is true for
-1 Clz]<m X Clzl< — Clz]<m. Moreover, the constant polynomial 1 is the
multiplicative neutral element.

More generally, if p(z) = ¥, j axz" € Clz]>; (polynomials of the form 7/ - r(z)) and
q = Yus0an € Clz], then also },5 ; ¢,2" := (pg)(z) € Clz]s;, where ¢, = ZZZJ. agb,—i
for n > j. Hence, for m > j the coeflicients ¢;,...,c,-1 only depend on aj, . .., a1
and b(), ey bm_]_j.

Therefore, also by 7,,(p) - 71— j(p) := m,u(pg) a bilinear mapping

<1 (Clzl<m N Clzlz)) X Clzl<m—j — Clz]<m N C[z]; is well-defined, and this mapping
is associative in the sense that (p - q) - r = p - (g - r) for

p € Clzl<w N Clzlsj, g, 7 € Clz]l<m—; and that p - (g - r) = q - (mu—;)(p) - 1) for

p € Clzl<m, q € Clz]l<m N Clz]>; and r € Clz]<p-;.

Since for any m € N by Z;”;OI a,Z" — (ag,...,an-1) the spaces C[z],, can be

identified with C", we thus defined a multiplication - on C™, such that C" provided
with the componentwise scalar multiplication and addition and with - constitutes an
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einbett2.

algebra with unit, where the unit is given by (1,0, ..., 0). Moreover, for j < m we also
defined a bilinear - : ({0} x C"~/) x C"/ — C™, where {0} x C"~/ c C". o

We fix now a seladjoint definitizable linear relations C on a Krein space (8, [., .]) with
p(C) # 0. By Remark 3.13.6 there is a real definitizing rational function g € Cy(c)(2),
i.e. ¢* = q. Let’s fix this ¢, and denote by d : 0(C) — N the function, which assigns
to w € o(C) ¢’s degrees of zero at w. g* = g then implies d(w) = d(W), w € o (C).

3.14.2 Definition. By M(q, C) we denote the set of functions f : o(C) = |J,,enC”
such that £(1) € C**! and provide M(q, C) pointwise with scalar multiplication,
addition + and multiplication -, where the operations on C*"*! are given as in
Remark 3.14.1.

For f € M(g, C) we define f* € M(g, C) by f#(1) = f(2), A € o(C), where this
conjugation is ment componentwise.

By My(g, C) we denote the set of all function f € M(g, C) such that for all w € o(C)

all entries of f(w) with the possible exception of the last one vanish, or equivalently

that f(w) € {0} x C! (€ C*™*1) for all w with d(w) > 0.

If g: 0(C) - C,ie. g € C7© and f € My(q,C), we define also g - f € M(q, C)

pointwise, where the multiplication on the components is the multiplication

< ({0} x CHxC! - C*W*1 a5 defined in Remark 3.14.1. 0
————

g(ch( w)+1

With these operations M(g, C) becomes an *-algebra, My(g, C) is an ideal in
M(g, C), and - : My(g, C) x C7© — My(q, C) is also bilinear.

3.14.3 Remark. For rational functions s € Cyc)(z) we define ¢,(s) € M(q, C) by
L4(5)(2) := s(2) for d(2) = 0 and by 1,(5)(D) := (sV(Q), ..., s®D(2)) otherwise. By
the Leibniz rule ¢, : Cyc)(2) — M(q, C) is an algebra homomorphism. Moreover,
Lq(S#) = Lq(S)#.

Clearly, in the same way it is also possible to define ¢,(f) for any f which is
holomorphic on an open superset of o(C).

Note also that for all A € o(C) exactly the last entry of ¢,(¢)(1) € C***! does not
vanish because A is a zero of degree exactly d(w). In particular, ¢,(q) € Mo(g, C). ¢

3.14.4 Lemma. For any f € M(q, C) there exists a s € Cy(c)(z) such that
J = 4(s) € Mo(g, C).

Proof. For p € p(C) and m := },c;(c)ng-1 0y D(w) consider the linear subspace

p(2)

Ri={——F"=
e

: p € Clz], p is of degree < m}

of Cp(c)(2). If s(2) = (Z_”If;)n,l € R satisfies ¢,(s) € Mo(gq, C), then s and in turn p has

zeros at all w € o7(C) N g~'{0} with multiplicity at least d(w). For p(z) # O this gives
the contradiction that p(z) is of degree greater or equal to m.

Therefore, the linear mapping s = (oaw)tq($)(W))wer(c)ng 0y from R into
, 10y C™ s injective. Here my, : CXM*1 — C*™) denotes the projection
wea(C)ng~1{0} ] (W) proj
onto the first d(w) entries. Since the dimension of both spaces is m, this mapping is
p pping
also onto.
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In particular, for any f € M(g, C) we find a s € C¢)(2) such that
Ty tq(S)W) = My f(w) forallw € o(C) N q’l{O}. This just means that
I = q(s) € Mo(q, O). a

3.14.5 Proposition. Any function f € M(q, C) admits a decomposition of the form
f=1®)+g 4@,

where s € Cyc)(z) and g : 0(C) — C.

Proof. By Lemma 3.14.4 there exists a rational s € C,¢)(2) such that

h = f—14(5) € Mo(q,C).

We define g : 0(C) —» Cfor A € o(C) \ q’l{O} by g(1) := %.

For A € o(C) \ ¢'{0} we have t,(q)(Dow) = ¢**(1) # 0 since A is a zero of g of
degree exactly d(1). Hence, we can define

h( D
g() = AR
tg(@) (Do
It is then easy to verify that f = 1,(s) + g - 14(g). a

3.14.6 Lemma. Let f € M(q, C) satisfy f = 14(s) + g - 15(q) with s € Cp(c)(z) and
g 1 0(C) — C. Then the Borel measurability of g is equivalent to the Borel
measurability of f|ycpg10)- Moreover, g is bounded if and only if flycpg10) is
bounded and

1 d(w)—1 ) '
A= wpm J) - Z f(;)’(/l—w)f s AEwW, (3.14.1)

J=0

is bounded on a certain neighbourhood of w for any non-isolated w € o<(C) N g~'{0},
ie.w € cl(o(C)\ {w)).

Proof. Any r € C,)(z) is continuous on the compact set o(C). Hence,
tg(Nlaeng 110y = To(c)\g-' 0} 18 measurable and bounded.

Since g does not vanish on o-(C) \ g~'{0}, it follows from

floeng101 = Slong 1101 + 8long 110y dloong 10y that flo(cyg-10) is measurable if and
only if glyc)\4110; has this property. As g~'{0} is finite, and hence a Borel set, this is
equivalent to the Borel measurability of g.

Concerning boundedness note first that f — ¢,(s) € Mo(g, C). Hence,
fw)j=sPw), j=0,...,0(w)— 1 for any w € g_'{0}. s being holomorphic and
using Taylor expansion around w gives

. 1 d(w)-1 f(W)j ) S(D(W))(W)
}anlv A= s(D) - ]Z:(; 0 A-wy|= S

Hence, this expression is bounded on a neighbourhood of w. Since g has a zero of

¢ (Ao
T and 20

degree exactly d(w) at w, the same is true for

For any non-isolated w € o(C) N q’l{O} and for A ¢ g~'{0} we have

g(l) D) =9
- W)b(w) 8() = - W)b(w) -
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zerlgeigrem.

mcFeig.

calculwohldef. |

| WO fw), ‘ ; MO Ly A
— | f() - 1-=w) T A—wy — sl
(A — w)y) f ,Z(; 7 A-w |+ ™ jz(; i (A=w) —5()

Hence, g is bounded on a certain neighbourhood U(w) of w if and only if the same is
true for the expression in (3.14.1). Note that this also implies the boundedness of f on
Uw).

If we choose U(w) = {w} U ((C U {o0}) \ o(C)) for isolated w € o<(C) N g~'{0}, then for
A € 0(O) \ Unerong10y Uw) we have (1) — s(4) = g(Dg(A).

0 < infaeacnU, v 191 < SUPeaeny, v gl + o0 shows that f — s is bounded on
o(C)\ U,, U(w) if and only if g is bounded there. Since s is bounded on o (C), this is
also equivalent to the fact that f is bounded on o<(C) \ |J,, Uw). a

3.14.7 Remark. Note that if for f € M(q, C) (3.14.1) is bounded on a certain
neighbourhood U of w for a non-isolated w € o(C) N q’l{O}, then the entries
FW)o, ..., f(W)yw)-1 are uniquely determined by the values of f on U \ {w}. o

3.14.8 Definition. By &(g, C) we denote the set of all f € F(g, C) which satisfy the
measurability and the boundedness condition from Lemma 3.14.6. o

3.14.9 Lemma. $(q, C) is a =-subalgebra of M(q, C).

Proof. Since (3.14.1) is linear in f, (g, C) is a linear subspace. Considering (3.14.1)
also shows that §(g, C)* = ¥(q, O).

For f1, f> € &(q, C) choose s1, 52 € Cy(c)(z) and g1, g2 : 0(C) — C such that
fi=t4(sj) +gj-14(q), j=1,2. Then

Ji = (s152) + g 14(q),
where g = g182g + 5182 + $2€1 is bounded and measurable. a

3.14.10 Lemma. Assume that for f € M(q, C) we have
S =1tq(s1) + 81 14(q) = 14(52) + 82 - 14(q) for s1, 52 € Cp(c)(2) and bounded,
measurable g1, g> : 0(C) — C. Then with the notation from Lemma 3.13.9 we have

51(C) + G(gilr@cy) = 52(C) + G(galoe(c)) s

where we set G(g) = 0 in case that g(C) = 0.

Proof. We have to show that ¢,(s1 — 52) = (g2 — g1) - t4(g) implies

(s1 = 52)(C) = G(g2lr0(C)) — &1lr@(C)), Or equivalently, that ¢,(s) = g - 1,(g) implies
s(C) = G(glr@(cy) for s € Cy(c)(z) and bounded, measurable g : o(C) — C..

Clearly, 14(s) = g - 14(g) yields g() = 34, 1 € (C) \ ¢~'{0}.

For w € o(C) N ¢~ '{0} we get

sOmw) = tg(5)Yw)o =0,..., sCOI=D () = tg(8)W)row)—1 = 0 and

s(b(w))(w) = 14(S)W)awy = q(h(w))(w)g(w). Since also q(o)(w) =0,..., q(b(w)’l)(w) =0,
we obtain

S(D(W))(W) L s()

gw) = ——— = lim .
g™ (w) ~ 1= g(d)

Hence, any w € o<(C) N g~'{0} is a zero of s with degree greater or equal to the degree
of zero of w for ¢, and g is the rational function 2 restricted to o°(C). If g(C) = 0, then
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s(C) = q(C) g(C) = 0 by Proposition 3.6.5. For g(C) # 0 we get from (3.13.3) and
Theorem 3.6.2 s
G(glrecy) = E(C) q(C) = s(C).

a

3.14.11 Definition. Let C be a seladjoint definitizable linear relations on the Krein
space (8, [.,.]) with p(C) # 0. Moreover, let g € Cy(c)(z) be a real definitizing rational
function for C. Then we define

E:¥F(q,C) > B(B)

by E(f) := s(C) + G(glr@(cy), where f is decomposed as ¢4(s) + g - t4(q). o

By Lemma 3.14.10 is well-defined.

3.14.12 Theorem. The mapping E is a x-homomorphism from ¥ (q, C) into B(B)
which continues the calculus for rational functions, i.e. E(14(s)) = s(C) for
s € Cy0)(2). Moreover, E(f) commutes with all R € B(8B) such that (R x R)(C) € C.

Proof. E(14(s)) = s(C) for s € Cyc)(z) immediately follows from Definition 3.14.11
and the fact that E(f) is well-defined.

For A € Cand fi, o € F(q,C) with f; = 1,(s;) + g; - t4(q), j = 1,2, we have
Si+Af = 14(s1 + As2) + (g1 + Ag2) - 4(¢), and in turn

E(fi + Af2) = (51 + A52)(C) + G((g1 + 1g2)lo0(c)) =
51(C) + G(gilr@cy) + 452(C) + AG(g2l0@(cy) = E(f1) + AE(f2) .

Moreover, fi - fo = 1,(s152) + g - 1,(q), where g = g182g + 5182 + 5281. Hence,
E(fi - f2) = (5152)(C) + G(gloo(cy) =

51(C)52(C) + G(g1lro(c))G(g2lr@c))+
s1(O)G(g2lo(0y) + 520C)G(g1lo@ccy) = E(f1) E(f2)

by Theorem 3.6.2 and Lemma 3.13.9. From f# = ,(s%) + g% - 1,(¢) we conclude (see
Corollary 3.8.11 and Lemma 3.13.9)

E(ff) = 510 + G(gilwecy) = 51O + G(giloec)™ = E(f).

By Theorem 3.6.2 any R € B(8) with (R X R)(C) € C commutes with all
s(C), s € Cyc)(z) Theorem 3.6.2. Together with Lemma 3.13.9 we then see that R
commutes with E(f). a
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Chapter 4

Reproducing kernel spaces

Preliminary version Tue 7 Jan 2014 10:32

We give a systematic treatment of reproducing kernel spaces of Hilbert space
valued functions, and corresponding kernel functions. Special attention is paid to
spaces of analytic functions; we discuss several particular classes of kernels
induced by analytic functions in some detail (Nevanlinna kernel, a J-matrix kernel,
de Branges kernel). Moreover, we study some general constructions which can be
carried out with kernel functions, among them, sums of kernels. With exception of
§1 and §5*, we focus on the Pontryagin space setting.

§1. Kernel functions 153
§2. Constructions with hermitian kernels 165
§3. Analytic kernels 169
§4. Some classes of kernels associated with analytic functions 172
§5. *Reproducing kernel almost Pontryagin spaces 185

4.1 Kernel functions

We have already met (scalar) hermitian kernels, and scalar product spaces of (scalar
valued) functions generated by such. Remember the sequence Examples 1.1.4, 1.1.7,
and 1.1.11 and its continuations. Now we develop this topic further. We are also
slightly more general, and consider Hilbert space valued functions instead of scalar
valued ones. The principles, however, remain the same.

153
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4.1.1 Definition. Let M be a nonempty set, and let (#, (.,.)) be a Hilbert space. We
call a function K : M x M — B(H) an ‘H-valued hermitian kernel on M, if

Kn.{)" = K(.m), LneM. 4.1.1)

Here, .* denotes the adjoint in the space B(H) of bounded linear operators on H. ¢

If H = C (endowed with the euclidean scalar product), we can consider K as a
function with values in C in the usual way. Namely, by identifying T € B(C) with
T(1) € C. In this situation, we speak of a scalar hermitian kernel. Similarly, if

H = C", we may think of K as a n X n-matrix valued function. Then we speak of a
n X n-matrix valued hermitian kernel.

Hermitian kernels arise from, and give rise to, spaces whose elements are functions.

4.1.2 Definition. Let M be a nonempty set, and let (#, (.,.)) be a Hilbert space. We
call a triple (A, [.,.], O) a reproducing kernel Gram space of H-valued functions on
M, if

(1) (A,[.,.],0)is a Gram space.

(2) The elements of A are H-valued functions on M, and the linear operations of A
are given by pointwise addition and scalar multiplication.

(3) For each np € M the point evaluation functional

.{?l - H
Xn g = g

is continuous (where H is endowed with its Hilbert space topology).

We speak of a reproducing kernel Krein (almost Pontryagin, Pontryagin, or Hilbert)
space of H-valued functions on M, if in addition (A, [.,.], O) is a Krein (almost
Pontryagin, Pontryagin, or Hilbert) space. o

4.1.3 Remark. In Definition 4.1.2, (3), we specified that continuity is understood w.r.t.
the norm topology 7 .y of H. It follows from the closed graph theorem that we may
have replaced this by the (a priori weaker) requirement that y;, is continuous w.r.t. the
weak topology 7~ of H. To see this, note that O-to-7 — continuity of y,, implies that
graphy, C A X H is closed w.r.t. O X 7. Since 7 is coarser than the Hilbert space
topology 77, of H, it follows that graph y,, is also closed w.r.t. O X 7 . O

As we saw in Example 2.2.6 the topology of a Gram space (A, [., .], O) need not be
uniquely determined by its scalar product alone. For reproducing kernel Gram spaces,
however, it is unique. This is an immediate consequence of Lemma 2.1.6.

4.1.4 Corollary. Let (A, [.,.]) be a scalar product space of H-valued function on M
(with linear operations given pointwise). Then there exists at most one Hilbert space
topology on A which turns A into a reproducing kernel Gram space.

Proof. The family {(x,(.),a) : a € H,n € M} is point separating. Hence, we may
apply Lemma 2.1.6 a
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Due to this fact, we may drop explicit notation of the topology O, and speak of a
reproducing kernel Gram space (A, [., .]).

4.1.5 Proposition. Let M be a nonempty set, let (H, (., .)) be a Hilbert space, and let
(A, [.,.]) be a Krein space whose elements are H-valued functions on M (with linear
operations defined pointwise).

D) If (A, L., .]) is a reproducing kernel Krein space, then there exists a unique
function K : M x M — HH | such that

Kmn,)ae A, aeH,neM,
(4.12) [111.17]
n(f).a)=[f. K@, )al, feAaecH,neM.
This function K is an H-valued hermitian kernel on M. It is called the

reproducing kernel of the reproducing kernel Krein space (A, [.,.]).

(2) If there exists a function K : M X M — HM with (4.1.2), then (A, [.,.]) is a
reproducing kernel Krein space.

Proof. Since A is a Krein space, its dual space is equal to the collection of all
functionals [., y], y € A. Hence, if point evaluations are continuous, there exist
elements k(n,a), a € H, n € M, with

(X?](f)’a):[f’k(r]’a)]y fEﬂ,ae?{,I]EM.
Now define a map K(n,¢) : H — H as
K(n,{a = [k(n, 1), ac€H,n{eM,

then (4.1.2) holds. Since the scalar product [., .] is nondegenerated, the function X is
uniquely determined by (4.1.2).

If a,b € H and « € C, then (using the fact that K is unique)

K. 0)(a+b) = K, H)a+ K@, b, K, )(aa) = aK(@, da.

Moreover, we have

(K(m,O)a,b) =K, .)a, K, )b] = [K(, )b, K(1, )a] =
= (K(g’ n)b’a) = (a’ K(§7n)b)7 a7b€7-{’ n’geMa
ie., K(n,{)" = K(£,n). It remains to show that each operator K(7, {) is bounded.
Choose a compatible scalar product (., .)# of A (with corresponding norm ||.|| %), and

denote by ||yl the operator norm of y, w.r.t. ||.||# and the norm of H, and let G be the
Gram operator of [.,.] w.r.t. (.,.)#. Then we have

|(F. K1, )a) 4| = |IG7 £ K. dal| = |G ). @)] < lgyll - 1G™ 1l - lal,
feAaeceH.
Hence, the family {K(7, .)a : ||al| < 1}, considered as a subset of the dual space of the

Hilbert space (A, (., .)#), is pointwise bounded. The principle of uniform
boundedness implies

C := sup{IIK(, Jalla : llall < 1} < 0. (4.1.3)
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It follows that (with some appropriate C’ > 0)
(K1, 0)a. b)| = |[K(r. Ja, K(Z, )b]| < €'~ C* - llall - Ibll,  a.beH.
Thus K(1, ) is bounded, in fact, ||[K(, ¢)|| < C’'C?.

For the converse part stated in item (2) it is enough to remember Remark 4.1.3. a

As a first example, let us revisit Example 2.5.6.

4.1.6 Example. Let a > 0 and consider the Paley-Wiener space PW, as introduced and
studied in Example 2.5.6. There we have already shown that PW, is a Hilbert space
whose elements are entire functions, and that all point evaluation functionals are
continuous. Moreover, we have computed the reproducing kernel of PW,. With the
present notation,

sin a({-n)
-1 > § i
K(.0) = {;“’ R

T >

= 3|

Also our second example origins from function theory.

4.1.7 Example. Denote by D the open unit disk, and let H(DD) be the set of all
functions defined and analytic in D.

The Hardy-space on the unit disk is the linear space

f(n)(()) |2 - Oo}.

n!

HD):=(f cHD): ) |
n=0
Observe that H>(D) can be naturally identified with £2(Np). Namely, consider the map
@p: H*(D) — £3(Np) which is defined as
70

n!

o) i= (=), feHD).

Then, clearly, ¢ is linear and injective. Assume that a sequence (@), , € £2(Np) is
given. Then (a,);”, is in particular bounded, and hence the radius of convergence of
the power series

FQ) =) anl”
n=0
is at least 1. Thus the function f may be considered as an element of H(D). Clearly,

feH D) and ¢(f) = (@), -

We see that ¢ is also surjective.

Let (., .) be the scalar product on H*(D) defined by requiring that ¢ is isometric (where
£2(Ny) is endowed with its usual scalar product). Then (H*(D), (.,.)) is a Hilbert
space. Let p € D, then

f(")(O) , b f(”)(())
D=y, .

n

PRGENOEDY
n=0

= (f.o (@) feHAD).
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This shows that each point evaluation functional y,, is continuous, and that the
reproducing kernel of H*(D) is given as

_ = 1
KO.0) =[¢  (@00N0) = 2 7¢ = Tz &neM.
n=0 7

It is interesting to observe that the scalar product of H>(D), which we defined above
somewhat artificially by pulling back the scalar product of £2(Ny), has an intrinsic
function theoretic meaning. To see this, let us compute the integral fozn f(re™g(reit) dt
for 0 < r < 1 (exchanging integration and summations in the below computation is
justified by uniform convergence):

1 21 — 1 2r (n) 0 ) m) (0
Z 0 f(relt)g(rE”)dt = ﬂ jo\ (ZO f n'( )r"e””)(z_;) 8 m(' )i"m tmt)d
5 SO 8O L[ e
=ZO P ( . )r+ ﬂ\fo‘ oln=mt gy —
’ =6um
2y F(0) g™ (0)y
:Z;fn!( )(g ns ))an‘ @14

By the Schwarz inequality in £2(Ny), the sequence (f <">(0)(gw>(0))) belongs to ¢! (Np).
=0

Hence, we may apply the bounded convergence theorem to obtain the (in some sense

more intrinsic) formula

™ (0) ,g™(0)y
<f,g>=(¢<f>,so<g>)—zf nf it nf )=

n=0

1
im o . f(re”)g(re”) dr.

Also the formula

1
fan = (1@, qﬁ), neD (4.1.5)

which we proved above, has an intrinsic function theoretic explanation. In fact, it is
just (a limiting case of) the Cauchy integral formula. To see this, let 7 € D be given.
For each r € (0, 1) the point 727 lies in the open disk with radius r centered at the
origin, and hence we obtain

Qo o1 it g
f@?n) = 95; - d¢ = 7 Jo f(re™ ”_rznre dt =
)dt

12"<1 1

- it _ dt — it
21 Jo fire )1 —rne " 2n f(re )(

ell‘n
Passing to the limit » — 1 we reobtain (4.1.5).

Let us observe explicitly that each function f which is analytic and bounded in D
belongs to H*(D). This follows from (4.1.4). Namely, for each r € (0, 1) we have

b M0 .
Z 'f ( ) - _f |f(re")[* dt < [sup |f(O*.
o (eD
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By the Fatou Lemma, thus

2) ‘f(n)!m) < 11131/1an2 1@@ < [SUp O

n

In general it is difficult to decide whether a given hermitian kernel is the reproducing
kernel of some reproducing kernel Krein space. In the below Theorem 4.1.9 we give
two characterisations of this property; but in practice this result is hard to apply. In
order to formulate this result, we introduce one more notation.

4.1.8 Definition. Let M be a nonempty set, (#, (.,.)) a Hilbert space, and K an
JH-valued hermitian kernel on M. Then we denote

F(M,H):={f : M - H: (€ M: f() # O} is finite},

[f.8lk = D (KOLOFQ),80)),  frg € FIM,H).

{neM

Using (4.1.1), it is easy to check that [., .]k is a scalar product on F (M, H). We set
ind, K := ind.(F (M, H),[f. glx), ind-K :=ind_(F (M, H),[f, glk),
and speak of the positive and negative, respectively, index of the kernel K.

Remember that we already have discussed the space ¥ (M, C) is some detail in
Example 1.1.4, 7THM? 2??, and Example 1.6.9.

4.1.9 Theorem. Let M be a nonempty set, let (H, (.,.)) a Hilbert space, and let K be

an H-valued hermitian kernel on M. Then the following are equivalent.

(1) There exists a reproducing kernel Krein space which has K as its reproducing
kernel.

(2) The scalar product space (M, H) generated by K has a Krein space completion.

(3) There exists a Krein space D andamap V : M — B(H, D), such that

K.0) = V@'V, &neM,  cs(| Jranvan) = D.

nemM

A pair (D, V) with the properties stated in (3) is called a Kolmogoroff decomposition
of K.

Proof. We are going to show “(1) = (2) = (3) = (1)”. First, one notation. Let
Ona € F (M, H) be the function defined as

Gyal0) = {“’ £=n

0, otherwise



4.1. KERNEL FUNCTIONS 159

Then, clearly,

6n,a+b = 67],6! + 67],17» 67],044 = aéq,a, a,beH,aeC, (4.1.6)
F (M, H) = span{6,, : a € H,n € M}. 4.1.7)

For the proof of “(1) = (2)”, assume that D is a reproducing kernel Krein space with
kernel K. Consider the linear relation

¢ :=span{(6yq.; K, Ja) :ac Hone M} S F(M,H)xD.

By the definition of [., .]p, this relation is isometric. Its range equals

span{K (1, .)a : a € H,n € M}, and hence (ran ¢)*)x = {0}. This implies that Tan: = D,
and hence is nondegenerated. We thus may apply Theorem 2.5.14, and conclude that ¢
is (the graph of) an isometric map of (M, H) onto a dense subspace of D. Thus

(t, D) is a Krein space completion of F (M, H).

Next, for “(2) = (3)”, assume that a Krein space completion (¢, D) of F (M, H) is
given. Define, for eachn € M,

H - D

a = (opq)

V() : {
Due to (4.1.6), V(n) is linear. Moreover, we have
[V(ma, V(Oblp = [Udy.a), U p)]D =

= [6y.0>Oc0lk = (K, Oa,b), a,be H,p,l e M. (4.1.8)

From this it follows that V(#) has closed graph: Assume that a, — a and V(p)a, — c.
Using that K(7, ) is bounded, we obtain

[, 6@z)Ip = lim [VODa,, «6»)]p = lim (K, Oar, b) =
= (K@, Da,b) = [VODa, 1) -

By (4.1.7) and the fact that ran ¢ is dense in D, it follows that ¢ = V(7)a. Thus, indeed,
V is a map of M into B(H, D). The above computation (4.1.8) now implies that

[V(O)*V(ma, bly = [V(ma, V(Oblp = (K1, a, b),

ie. V(O)*'V(n) = K(n, ). Finally, we have

cls ( U ran V(1)) = cls ({6, : a € H.n € M) =Tant = D.

nemMm

Finally, assume that a Kolmogoroff decomposition consisting of a Krein space D and
amap V: M — B(H, D) is given. Consider the map

0./ P - HM
x = (VY

Clearly, @ is linear (linear operations on H™ are defined pointwise). Moreover,

ker® = ﬂ ker[V(0)"] = ﬂ[ran V(1! = [ span U ran V(g)][” = {0},

leM leM leM
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i.e., @ is surjective. Let ¥ : ran ® — D be the inverse of @, and let [, .] be the scalar
product defined on ran @ by requiring that ¥ is isometric. Then (ran @, [, .]) is Krein
space whose elements are /H valued functions on M. We have

O(V(pa) =V()'V(pa=Kn,)a, neM,

and hence the functions K (1, .)a belong to ran @. Let f € ran @, and write f = ®(x)
with some x € D. Then

Lf. K(n, Jall = [®(x), (V(ma)] = [x, V(palp =
= (V" x,a)g = ([P, @)y = (fF(), At -

This shows that (ran @, [, .]) is a reproducing kernel Krein space with kernel K. [

The proof of Theorem 4.1.9 not only gives existence, but a somewhat more refined
information.

4.1.10 Remark. Assume that one (and hence each) of Theorem 4.1.9, (1)—(3), holds.
Then:

(1) Each reproducing kernel Krein space with kernel K is a Krein space completion
of ¥ (M, H).

(2) For each Krein space completion D of # (M, H) there exists a Kolmogoroff
decomposition with the space D as auxiliary space.

(3) For each Kolmogoroft decomposition (D, V) there exists a reproducing kernel
Krein space with kernel K which is isometrically isomorphic to D.

As usual, matters are easier to handle in the Pontryagin space case.

4.1.11 Theorem. Let M be a nonempty set, let (H, (., .)) a Hilbert space, and let K be

an H-valued hermitian kernel on M. Then the following are equivalent.

(1) There exists a reproducing kernel Pontryagin space which has K as its
reproducing kernel.

(2) We have ind_ F (M, H) < 0.

(3) There exists a Pontryagin space D and amap 'V : M — B(H, D), such that

K0, =Vm'V), {neM.

If one (and hence each) of these conditions holds, the reproducing kernel Pontryagin
space D with reproducing kernel K is unique, and ind_ D = ind_ F (M, H). We
denote this space by K(K) and speak of the reproducing kernel Pontryagin space
generated by K.
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Proof. Again we show “(1) = (2) = (3) = (1)”. If there exists a reproducing kernel
Pontryagin space A with kernel K, then A is a Pontryagin space completion of

F (M, H). It follows that ind_ F (M, H) < oco. If ind_ F (M, H) < oo, then F (M, H)
has a Pontryagin space completion. Thus we find a Kolmogoroff decomposition of K
with a Pontryagin space as auxiliary space, in particular (3) holds.

Assume (3). Set
B = cls( U ran V(§)), A = B/ glel,

leM

Then A is a Pontryagin space. Let 7 : 8 — A be the canonical projection, and
consider the map
VilQ) =mnoV): H - A, (eM.

We have, for each x € B,a € H,. € M,

(Vi(Q)'n(x),a)yy = [m(x), (w0 V()al 4 = [x, V(Dalp = (V(I)'x, @)y -
Hence Vi({)" o = V({)*|g, and it follows that

ViOVim) = [Vi(Q) el o V() = V(O)'V(m) = K(n.) .

Since m maps dense subsets of B to dense subsets of A, the linear span
span | Jzep ran Vi(£) is dense in A. We conclude that (A, V) forms a Kolmogoroff
decomposition of K.

To show uniqueness, assume that (Aj, [.,.];) and (Ay, [., .]») are reproducing kernel
Pontryagin spaces which both have the reproducing kernel K. Set

B:=span{K(n,.)a:aecH,ne M}.

Then B is a dense subspace of A; as well as of A,. Moreover, the scalar products
[.,.]1 and [.,.]» coincide on B. This just says that the identity map

id:BCA — BT A,

is a linear and isometric bijection between dense subspaces of the Pontryagin spaces
Ay and A,. It extends to a linear, isometric, and bicontinuous bijection ¢ of A; onto
Ay, cf. Theorem 2.5.14. Since point evaluations are continuous in both spaces, B is
dense, and

Xnopla =xyla, neM,

it follows that y,|a, © ¢ = xy»la,, 7 € M. This shows that ¢ acts as the identity map,
and hence that A; = A, and [.,.]1 = [, .]2.

Finally, since the reproducing kernel Pontryagin space A with kernel K is a
completion of ¥ (M, H), we must have ind_ A = ind_ F(M, H), cf.
Proposition 2.1.4. a

4.1.12 Remark. The positive and negative indices ind. F (M, H) can be expressed via
certain matrices built from K. Namely, eigenvalues are counted according to their
multiplicities,

ind, (M, H) = sup #{positive eigenvalues of ((K(fj, &a;, aj))’? A } ,
neN, &,...6EM i,j=1
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ind.F (M, H) = sup #{negative eigenvalues of ((K(fj,fi)ai, aj))}jl ) } .
neN, &,...6.eM ij=1

To see this, apply Proposition 1.6.8 with the set
M :={6p,:aecH,ne M},
cf. (4.1.7). 0

We close this section with one general result which is technical in its nature but often
useful.

4.1.13 Proposition. Let (A, [.,.],0) be an almost Pontryagin space, and let ¥ be a
point separating family of continuous linear functionals on A.

(1) There exist N € Ny, linearly independent functionals ¢1,...,¢n € F, and a
number yy > 0, such that for eachy > vy the scalar product defined as

N
@Y = 631 +y ) 408,00, xy €A, (4.1.9)

=1
is a compatible Hilbert space scalar product on A.

(2) Let ¢; and yq be as in (1), and assume that ¢ ; can be represented as ¢; = [., bj],
j=1,...,N, with some b; € A. Then there exists 'y > o, such that for each
vy > vy, the following statement holds: There exist ay,...,ay € C, such that for
each a € A we have ((.,.)+ defined using y)

N
[x,a]l = (x,a.)y, x€A, with a,=a+ Za_/bj. (4.1.10)
=1

Proof. If A is a Hilbert space, we can choose N = 0 and all assertions are trivially
fulfilled. Hence, assume throughout the following that A is not a Hilbert space.

Choose a compatible Hilbert space scalar product (., .) on A, and let G be the Gram
operator of [.,.] w.r.t. (.,.). Moreover, denote by E the spectral measure of G, and set

Aso :=ran E((0, )), A< :=ran E((—o0,0]).

Then d := dim A<y = ind_ A + indy A < oo, and we find a (., .)-orthonormal basis
ai,...,aqg of A< which consists of eigenvectors of G, say

Gg[:/l[ai, i=1,...,d.

The action of G on A is then given as

d

Gla,, = Z A, apa; .

i=1

Choose § > max;=1, 4|4, and set 6_ := § — max;=
T = Zﬁlzl(., a;)a;, we thus have

414i|. Denoting

,,,,,

(G+pD)la, 2 06-id|a, -
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Since the point O either belongs to the resolvent set of G or is an isolated eigenvalue,
we can choose 6, > 0 such that (0,6,) € p(G). Obviously, ker T = A and
ranT = A, and it follows that

G + BT > min{6,,6_}-id|#. (4.1.11)
=10
For ¢ € 7 let b(¢) € A be the element which represents ¢ as ¢ = (., b(¢)). Since F is

point separating, we have

[span (@) : 0 € 7] = () 1bt@)™ = [ kers = (0}

PEF PeF
This means that span{b(¢) : ¢ € F} is dense in A. Choose elements cy, ..., ¢y in this
linear span which are sufficiently close to ay, ..., ay, namely such that (||.|| denotes the

norm induced by (., .))

0
<2, lai—cll<——, i=1,...,d.
lleill lla; — cill 6dp i

Denoting T := Zf’zl(.,ci)ci, we have

d
ITx = Toxll < D [l aia; = ) + (i = eed| <

i=1

o
<d(1 + max |lcill) max |la; — ¢l - lxl| < =Ixll, x€A.
i=1,.d i=1,ed 28

Together with (4.1.11), this implies that
0.
G+pT, > Eldlﬂ.

Choose linearly independent functionals ¢, ..., ¢y € F, such that
c¢; € span{b(¢1),...,b(¢n)}, i =1,...,d, and let o;; be the coeflicients with

N
CiZZ(I,‘jb((ﬁj), i=],...,d.
J=1
Then, for each x € A,
N 5 N 2 N N
e el = | 2 @5 b )| < (Dl 106b@I) < (D) D Ie, @)
J=1 Jj=1 Jj=1 Jj=1
Denoting 75 := £, (., b(¢,))b()), thus

N
T, < d( Z |a'ij|2)T2'

ij=1

Set yg := ﬂd( ?]j=1 |a[j|2). Then, for each y > vy,
il 5
Go:=G+yT22 G +Bd( Y layP)T2 2 G+ BTy 2 S ida.

i,j=1
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Consider the scalar product (., .), defined by using G as a Gram operator w.r.t. (., .),
ie.,
X, y)+ = (Gyx,y), x,yeA.

This scalar product is a Hilbert space scalar product on A which is equivalent to (., .),
and hence also compatible. From its definition, we compute

N
)+ = (Gx,y) +y(Tax,y) = [x, ] +7y Z(x, b(9))(b()),y) =

j=1
N _
= [x)1+7 ) 608,00, xyeA.
j=1

This finishes the proof of (1).

For the proof of (2) we make the ansatz a, := a + ZQ’:, ay by to satisfy the required
equality [x, a] = (x,a+)+, x € A. By (4.1.9), we have

N
(a0, =lxal+y ) ¢i0pa) =

J=1

N N N
=lx,al+ Y @l bd +y Y % bl(¢j@) + D awlbi, b)) =
k=1 k=1

J=1

N N
1
=Lxial +y 3800 (505 + [bus b+ (@)
j=1 k=1

If
g€ (0, min {|4] : A nonzero eigenvalue of ([by, b_/])kN’jzl}) R

the matrix &l + ([by, b;] f{v =1 is invertible. Hence, for each sufficiently large y, the
choice of ay, ..., ay can be made such that

A
> ((;5_,.,( + [be.bDay + ¢(@) =0, j=1,....N.
k=1

In the context of reproducing kernel spaces, the significance of this result is the
following.

4.1.14 Corollary. Let (A,[.,.]) be a reproducing kernel almost Pontryagin space of
H-valued functions on M, and let My C M be such that

FEA f)=0,ne M = f=0.
Then there exist N €N, ny,...,ny € My, ay,...,ay € H, and yy > 0, such that for

eachy > vy the scalar product defined as

N
(£« = .81 +7 D (f), apu(0n), apm,  f.g € A, (4.1.12)

=1
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is a compatible Hilbert space scalar product on A. The space (A, (.,.)+) is a
reproducing kernel Hilbert space.

Assume in addition that (A, [.,.]) is a Pontryagin space, and let K be its reproducing
kernel. Then there exists y| > o, such that for each vy > 7y, the following statement
holds: There exist ay,...,an € C, such that the reproducing kernel K, of (A, (.,.)+) is
given as

N
K.(n,0a=K(p0a+ Y ;K@ da, acH.LneM. (4.1.13)
j=1

Proof. Our present hypothesis just says that (),ey, ker x; = {0}, i.., the family

F = {(xy(.), @) : a € H,n € My} is point separating. Existence of N, 1;, a;, and g
now follows from Proposition 4.1.13, (1). The required relation (4.1.12) is nothing but
(4.1.9).

If A is a Pontryagin space, the functionals (y,(.), a)4 are represented as
Xy = [., K(n, .)a]. Existence of y; and a; now follows from Proposition 4.1.13, (2).
The required formula (4.1.13) for K, is relation (4.1.10) applied with K(7, .)a. a

4.2 Constructions with hermitian kernels

In this section we study some constructions that can be carried out with reproducing
kernels. Namely: composition and multiplication with functions, and sums of kernels.
The first mentioned are elementary, whereas sums of kernels behave in a more
involved way.

4.2.1 Definition. Let L and M be nonempty sets, H a Hilbert space, K an H-valued
hermitian kernel on M, and A a function A : L — M. Then we denote

(K@D, = K@Am, ), nleL,

and speak of the composition of the kernel K with A. o

4.2.2 Proposition. Let L and M be nonempty sets, H a Hilbert space, K an
H-valued hermitian kernel on M, and A a function A : L — M.

Then K © A is an H-valued hermitian kernel on L. Composition with A, i.e., the
mapping rule f — f o A, induces an isometric map of

span{K(n, .)a : a € H,n € A(L)} € Fx(M, H) onto Fxga(L, H). In particular, we
have ind_(K @ ) < ind- K.

Ifind_ K < oo, then composition with A induces a continuous and isometric map of
cls{K(n,.)a:a € H,n € AL)} € K(K) onto K(K [ Q).

Proof. Clearly, we have

(K& D@, O] = KA, AD)" = KA, Am) = (K@ ), n), {neL.

Thus, K [© A is an HH{-valued hermitian kernel on L.
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Letn € A(L) and a € H. Choose 1’ € L with n = A(17’), then

[K(n, )a o A1) = K(A(n), AD)a = (KB D1, {)a.

We see that the restriction to span{K(n, .)a : a € H,n € A(L)} of composition with A
maps into Fxga(L, H). Starting with " € L and setting r7 := A(17’), we see that the
range of this map is all of Fggi(L, H). Isometry is established by computation. Let
a,beH,n,¢ e AL), and choose 17/, ¢’ € L withy = A1), { = A(L’). Then

(K, )a, K(Z, )by = (K, D)a,b)y, = (K@ D', {a, b)y, =
= [(K @ D7, Ja, (K@ D, Iblgga = [K@, Jao 4, K, )b o Ay,

Since composition with A is isometric, we have

ind- K @ A = ind_ Fxga(L, H) = ind_ span{K(n, .)a : a € H,n € A(L)} <
<ind_-Fx(M,H)=ind_K.

Assume now that ind_ K < oco. Then also ind_ K @ A < co. Composition with A is an
isometric map between dense subspaces of

A:=cls{K(n,.)a:a e H,ne AL)} € K(K) and K(K @ ). Applying

Theorem 2.5.14 provides us with a continuous, surjective, and isometric extension
D:A—- KK@ A of f— fod Wehave (y, denoting point evaluation)

X @) =xe(f o) =xap(f),  f€span{K(n, Ja:aeH,neAL)}),{cL.

Since point evaluations in both spaces K (K) and K (K [ 1) are continuous, it follows
that

X (O =xa0(f), feEALEL.
This just says that ®(f) = fo 4, f € A. Qa

The particular case that L € M and A is the set-theoretic inclusion map occurs
frequently and deserves seperate notation.

4.2.3 Definition. Let M be a nonempty set, H a Hilbert space, and K an H-valued
hermitian kernel on M. Let L be a nonempty subset of M, and let 1 : L — M be the
set-theoretic inclusion map. Then we denote

Klp:=K@ 2,

and speak of the restriction of the kernel K to L. o

The second operation with hermitian kernels being under investigation is
multiplication of a kernel with a function.

4.2.4 Definition. Let M be a nonempty set, H and K Hilbert spaces, K an H-valued
hermitian kernel on M, and % a function & : M — B(H,K). The we set

(hm K)@1,0) := h(OKm, Oh(m)", 1.0 €M,

and speak of the multiplication of the kernel K with h. o
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4.2.5 Proposition. Let M be a nonempty set, H and K Hilbert spaces, K an
H-valued hermitian kernel on M, and h a function h : M — B(H, K).

Then h & K is a K-valued hermitian kernel on M. Pointwise composition with h, i.e.,
the mapping rule f(.) — h(.)f(.), induces an isometric map of

span{K (5, Yh(n)*a : a € K,n € M} C Fx(M, H) onto Frex(L, K). In particular, we
haveind_(h@ K) <ind_ K.

Ifind_ K < oo, then pointwise composition with h induces a continuous and isometric
map of cIs{K(n, Yh(n)*a : a € K,n € M} C K(K) onto K(h@ K).

Proof. Letn,{ € M, then

[(ha K)a. O = [k K. OAO]" = k()" K& mh(p) = (ho K)(,m) .

Thus, 2 @ K is a K-valued hermitian kernel on M.

Leta € K and 5 € M. We have h(.)[K(n, .)h(n)*a] = (h@ K)(n, .)a, and hence
pointwise composition with 4 maps span{K(n, .)a(n)*a : a € K,n € M} onto
Frak (L, K). Isometry follows by computation. Let a,a’ € K and i, € M, then

[A(O[K(n, Yh() al.h()K (', Yh(7) a' ] 0k =
=[(ha K)(1, )a,(ha K)(7', )d|jax =
=((hv K)(m, Ja,a')g = (h() K@, n)h(m)*a, a’)ge =
=(K(n,n"Yh(p)a, h(y')* a’)g; = [K(n, Yh(p) a, K(7', V(') a' | -

Since pointwise composition with /% is isometric, we have
ind_h@ K = ind_ Frex(M, K) = span{K(n, Ya(n)’a:a € K,ne M} <
<ind- Fx(M,H) =ind_K .

Assume now that ind- K < co. Then also ind_ 2 @ K < oo. Pointwise composition
with % is an isometric map between dense subspaces of

A = cls{K(n, Yh()*a:a € K,ne M} C K(K) and K(h =@ K). Applying
Theorem 2.5.14 provides us with a continuous, surjective, and isometric extension
D:A— KK @A) of f— hf. We have (x, again denoting point evaluation)

X (D) = xe(hf) = h(Oxe(f).  f € span{K(n, Jh(m)'a:ae K.ne M},L e M.

Since point evaluations in both spaces K(K) and K (h @ K) are continuous and A(() is
bounded, it follows that

X)) = hx(f), feALeEM.
This just says that ®(f) = hf, f € A. 0

‘We turn to sums of kernels.

4.2.6 Definition. Let M be a nonempty set, H a Hilbert space, and let K;, K, be
H-valued hermitian kernels on M. Then we denote

(Kl + KZ)(U? g) = Kl(r/’ g) + K2(’77 g)’ T],§ € M’

and speak of the pointwise sum of K, and K. o
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Clearly, when K; and K, are H-valued hermitian kernels on a set M, then also their
pointwise sum is an H-valued hermitian kernel on M.

It is not difficult to see how negative indices behave.

4.2.7 Lemma. Let M be a nonempty set, H a Hilbert space, and let K| and K, be
H-valued hermitian kernels on M. Moreover, let K be their pointwise sum. Then

ind_K <ind_K; +ind_ K.

Proof. Denote by ¥ the map taking pointwise sums, i.e.,

(f;9) » f+g

Then, by definition, Y(K (7, .)a, K»(n, .)a) = K(n, .)a, a € H,n € M. Moreover,

l{,:{(HMX(HM - HM

[K(T], ')ay K({’ )b]K = (K(T], _{)Cl, b)’H = (Kl (77» g)av b)(H + (Kz(f], _{)Cl, b)’H =
= [Ki(n, Ja, Ki(&, )bk, + [Ka(n, Ja, Ka(S, )bk, -

Hence, when the direct product Fx, (M, H) X Fx,(M, H) is endowed with the sum
scalar product, ¥ maps the space

L := span{(K;(n, .)a; Ka(n, )a) € Fx,(M, H) X Fx, (M, H) : a € H,n € M}
c TK] (M’ 7-{) X ?Kz(M7 7—{)
isometrically onto Fx(M, H). It follows that

ind_ K, +ind_ K, = ind_ Fx, (M, H) X F,(M, H) > ind_ £ = ind_ Fx(M, H).

a

The geometric relation between the reproducing kernel spaces generated by two
kernels K| and K, and by the space generated by their sum, however, is not
straightforward.

4.2.8 Proposition. Let M be a nonempty set and H a Hilbert space. Let K| and K
be H-valued hermitian kernels on M with ind_ K, ind_ K, < oo, and denote by K
their pointwise sum. Moreover, set

C = K(K)) N K(K>), D:={(g;—g) e HY x HM : g e C},
8_1‘ = ‘K(Kj)[—]j’W, j=12, 8= (7(([(1) X 7(([(2))[_]+D7

where the orthogonal complement in the definition of B are understood within the
scalar product K(K ), and in the definition of 8 within the space K(K;) x K(K)
w.r.t. the sum scalar product. Finally, let ¥ : HY x HM — HM be the map taking
pointwise sums.

Then the following statements hold.

(1) Y|g maps B continuously, isometrically, and surjectively onto K(K).
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(2) We have ker P|g = D°, and ¥|g maps closed subspaces of B onto closed
subspaces of K(K).

(3) We have B, + B, C K(K), and each of By, By, By + B, is closed in K(K).
Moreover,

Bi[L]Bs, BiNB, = C[O]l N C[O]z ,
(f.gl;=1f.8l, f.geB; j=12,
and the space C!°V' + Cl°V is [, .]-neutral.

(4) Assume additionally that

[f.gh = ~1f.gh. figeC. “2.1)

Then D is [., .]+-neutral, and (note that under the assumption (4.2.1) certainly
Clel = C[O]z)
B + B, = K(K)[-]CV .

s a

Tt

sk sk sk sk stk sk sk sk skoskokotkokokokoskokoskokoskokoskok

4.3 Analytic kernels

In this section we study reproducing kernel Pontryagin spaces of analytic functions.
The main result is the below Theorem 4.3.2, which shows that analyticity of the
elements of a space is characterised by analyticity of its kernel.

4.3.1 Definition. Let Q be an open subset of C, H a Hilbert space, and
K : QxQ — B(H) an H-valued hermitian kernel on Q. We say that K is an analytic
kernel, if for each n € Q and a € H, the function

Q - H
{ » K@ )a

is an analytic #-valued function on Q. I

4.3.2 Theorem. Let Q be an open subset of C, H a Hilbert space, and A a
reproducing kernel Pontryagin space of H-valued functions on Q. Moreover, let
K : QxQ — B(H) be its reproducing kernel. Then the following are equivalent.

K(n,.)a : {

(1) All elements of A are analytic H-valued functions on Q.
(2) K is an analytic kernel.
(3) Foreach a € H, the function

k—'{{feC:EeQ} - A
& o K¢ a

is an analytic A-valued function on Q.
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Proof. The implication “(1) = (2)” is obvious, since for each € Q and a € H the
function K(1, .)a belongs to A. The equivalence of (1) and (3) is easy to see: Due to
the reproducing kernel property of K, we have

LA — ,a); 1 1
GO = GO _ 1o ooy 1
{-n {-n {-n
_ ([k_a@,f] — k(). f1
{=n
Hence, the function (f({), a)¢ is differentiable at a point 7, if and only if the function
[k.(€), f]is differentiable at 7.

[fs k(D) — ka()] =

) {meQi#EnacH. (43.1)

The involved part is the the proof of “(2) = (1)”. Assume that (2) holds. Choose a
compatible Hilbert space scalar product (., .); of the form (4.1.12) with y sufficiently
large so that (4.1.13) applies. Since each function K(7,.)a, n € Q, a € H, is analytic,
so is each function K, (1, .)a,n € Q,a € H.

SetQ :={eC: E € Q}, and consider for a, b € H the function

s _{Q’XQ - C
ab .0 — (Ke(@)a,b)y

As we just observed, the function f, ,(n, {) is, for each fixed n € ', analytic in { € Q.
Moreover, we have

f;‘l,b(z’ /l) = (b’ KJr(g? /l)a)’H = (KJr(/L g)b’ a)7~{ = fb,ﬂ(z’ 5)7 g € Q? /l € Q .

Hence, for each fixed A € Q’, the function f;(£, A) is analytic in & € Q'. By Hartogs
Theorem, cf. ?THM? 2?2, the function f, is analytic as a function of two complex
variables. In particular, thus, the function

- [Q - C
f;‘l,b(g’g)‘{ é’ [ (K+(§7€)a’b)7{

is locally bounded. Applying twise the principle of uniform boundedness, yields that
the function (here ||.|| denotes the operator norm in B(H))

Q — [0,00)
¢ = IK( DI

is locally bounded.

We have (here ||.||+ denotes the norm induced by (., .);)

K+ (. Jallt = (Ko (¢, Da, Ki(Z, Da), = (K& Oa, adye <
<K& Ol llallyy. (€ QaeH.

Hence, for each a € H and each compact subset L of Q,

sup [|K+ (¢, all+ < llallgc - sup K+ (£, DIl
lel lel
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Now we obtain the estimate

sup [(f(0), @)p| = sup|(f, Ko (£, Da),| < Iflls - llallf - sup 1K (2 DIl
el lel lel

Passing to the supremum over ||all¢y < 1, yields that

Sup [l @)k < Ifll - suplIKL(C. Oll - L€ Q compat. (4.3.2)
(e (e

We conclude that convergence in the norm of A of a sequence (f;)nen, f1 € A, to an
element f € A, implies that the functions f, converge to f locally uniformly w.r.t. the
norm of H. Hence, A N H(Q, H) is a closed linear subspace of A.

By our hypothesis (2), we have {K(n, .)a: n € Q,a € H} C ANH(Q, H), and hence
also cls{K(n, .)a : 7 € Q,a € H} = A where the closure understands w.r.t. the norm of
A. However,

(K, )a:neQ,aecHMW = ﬂ ker(y,(.), @)g = {0},

neQ,acH

and hence cls{K(15, )a: n € Q,a € H} = A. Qa

Let us point out the following properties of a reproducing kernel Pontryagin space of
analytic functions which we have actually seen in the proof of Theorem 4.3.2.

4.3.3 Corollary. Let Q be an open subset of C, H a Hilbert space, and A a
reproducing kernel Pontryagin space of H-valued functions on Q. Then the following
statements hold.

(1) Convergence in the norm of A implies locally uniform convergence w.r.t. the norm

of H.

(2) The unit ball of A is a normal family.

(3) Foreachn € Q, a € H, and n € N, the function [%E]lf:ﬁ belongs to A and

[ ekl | = G, @)y, S e A

Proof. Item (1) was already stated in the proof of Theorem 4.3.2, as a consequence of
(4.3.2). Item (2) is also an immediate consequence of (4.3.2). The case “n = 1” of
item (3) is immediate from (4.3.1), and the general case follows by straightforward
induction on n. a

It is an interesting consequence of analyticity that the negative index is fully
determined already on small subsets of €.

4.3.4 Proposition. Let Q be an open and connected subset of C, H a Hilbert space,
and K an analytic H-valued hermitian kernel with ind_ K < co. Moreover; let M be a
subset of Q which has an accumulation point in Q. Then ind_- K = ind_ K|.
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Proof. Consider the reproducing kernel Pontryagin space A generated by the kernel
K. All elements of A are analytic functions on Q.

By the identity theorem, we have

(K, )a:neM,ae HM = ﬂ ker(y,(.), @)y = {0}. (4.3.3)

neM.acH

Hence B := span{K (1, .)a : n € M,a € H} is dense in A. It follows that
ind- A =ind_ B.

By Proposition 4.2.2, the restriction map f +— f|y maps B isometrically into
Fx,, (M, H). It follows that

ind_ K = ind_ A = ind_ B < ind_ Fk,,(M, H) = ind_ K| .

The reverse inequality “ind_- K > ind_ K]),” holds by Proposition 4.2.2. a

The relation (4.3.3) has another immediate consequence. Namely, that a reproducing
kernel Pontryagin space of H-valued analytic functions is separabel provided H is.
To see this notice that, in order to have the second equality in (4.3.3), it is enough to
take the intersection over all a belonging to some dense subset of H.

4.4 Some classes of kernels associated with analytic
functions

In this section we present some concrete types of reproducing kernel Pontryagin
spaces of analytic functions. At the present stage, it is not our aim to go deeply into
the theory of any of them. They rather serve as examples and provide what is
necessary for the following chapters.

4.4.1 Analytic mappings between general disks

We call a subset Q of C a general disk, if it either a nonempty open disk (# C), or an
open half-plane.

4.4.1 Definition. Let €, and € be general disks. We denote by S(Qy, Q) the set of
all functions f € H(Q;) which map Q; into Q,. If Q; is a half-plane, we formally
include the function f({) = oo into S(Q;, Qy). 0

According to the historic development of the topic, the class S(Q;, Q,) is usually
named in particular ways for particular cases of €2; and Q,:

(1) The class S(D, D) is called the Schur-class, and is denoted by S.

(2) The class S(C*,C") is called the Nevanlinna-class, and is denoted by N.
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(3) The class S(D, —iC") is called the Caratheodory-class, and is denoted by C.

4.4.2 Remark. A function f € S(Q1, Q;) may assume a value on the boundary of Q,.
However, since f(Q;) is open unless f is constant, this may happen only if f is
constant. ¢

Each choice of general disks Q; and Q, gives rise to a certain type of hermitian
kernels. This is based on the fact that a general disk can be described by a quadratic
polynomial in £ and {. The proof of this fact is elementary; we omit it.

4.4.3 Lemma. Let Q C C. Then Q is a general disk, if and only if there exist @ < 0,
B €C,andy € R, with |B]* > ay, such that

Q={leC:all+BL+BL+y>0}. 4.4.1)

A general disk Q is a half-plane, if and only if in one (equivalent, in each)
representation of the form (4.4.1), the number « equals zero.

If Q is a general disk, the choice of a, 8,y can be made such that a € {0, —1} and
|8l = 1 if @ = 0. With these normalisations, the numbers a, 3,y are uniquely
determined by Q. a

4.4.4 Definition. Let Q; and Q, be general disks, and let (a1, 81,y1) and (a2, B2,72)
be numbers from the respective representations (4.4.1). For a function f € S(Q;, ),
we set

(O @) + Bof () + Bof () + 72
K (0= 2LOI@ P WTY rneqy. (44.2) [111.41]
. AV fQOF@) +B1fQ) +BLfan + 71 '

Obviously, Kifl] o is a hermitian kernel.

The classes S(€1, ;) and the corresponding kernel types for different choices of Q,
and Q, are closely related.

4.4.5 Lemma. Let Q1,Q; and ), Y, be general disks, and let ¢1 and ¢, be
fractional linear transformations with ¢;(Q;) = Q., i = 1,2. Then the mapping rule
A f o @ o f oy establishes a bijections of S(Q1, Q) onto S(Q;, QY,). There
exists a zerofree function h € H(C,), such that

Af — f
KQ;,Q; *gr=heKky .

In particular, the mapping rule g — h(g o ¢~ ') establishes a bijective isometry
between F s (1) and Frnr ().
1.9y Q’I \Q’z

ot a

The connection between the class S(€21, £2) and the corresponding kernel type Kf}; o
is made as follows. This theorem is a basic result.
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4.4.6 Theorem. Let Q| and Q, be general disks, and let f € H(Q,). Then
f € 8(Q1,Qy), if and only if the kernel Kf}; o, IS positive semidefinite.

Due to Lemma 4.4.5 it is enough to consider the case that Q; = D and Q, = —iC*.
The proof for this case is based on the Riesz-Herglotz integral representation of
functions in the Caratheodory class. Since it is not our aim to go into harmonic
function theory, we present a short proof based on the Cauchy-integral formula.

IIT.46. 4.4.7 Proposition. Let f € C. Then there exists a positive and finite Borel measure on
the unit circle, such that

f(Q) =ilm f(0) + f — dp({) leD. (4.4.3)

Proof. Fix R € (0, 1), and set fz({) := f(R{). Then f; € H(%D). We have

§+§_1+ ~ o
E-C 1-¢ ’

iy
1 3

RN RN EaN
\o)

and hence (¢ = re® € D)

1 Tl z¢+§ it T 2 fR(ei¢)+fR(€i¢) ~
" fr(e?) " fr(e) 1 (" 0
= e s, 1 o=, | Resuterdo.

We apply the Cauchy-integral formula and the calculus of residues to evaluate the

integrals:
" fr@) L RO,
w1 T g P %= RO,
‘ lél=1
id 1
2_ ™ Jr(e _?ﬂ _ _ii fR(f)f dé = 1fR(0) ). %0,
Tl o €= ¢

1
3 [ serao= 5o D ae = fon.
i lé=1 f

It follows that

1 (" +
_f : RefR(el¢)d¢ fr(@) + fz(0) = Re fz(0), ¢ #0,

2

1 T olP + i 1 i
= [ G Re futeyda = 5 f Re fi(e) dg = Re fe(0), ¢ =0.
T J_x e — {: 2n -

Together, we thus have

e+

1 T
fi(© = i1 fy(0) + - f S SRefileyds, €D (4Ad)

-¢
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Now we let R increase to 1. For each fixed { € D, clearly, limgy1 fz({) = f({). The
measure Re fz(e*®)d¢ is positive. Hence, its total variation computes as Re f(0), and
thus is independent of R € (0, 1). By the Banach-Alaoglu Theorem, we may choose a
sequence R, € (0, 1) which increases to 1, such that lim,_,., Re fz(e®)d¢ =: v exists in
the w*-topology. Passing to the limit also on the right hand side of (4.4.4), we obtain

. 1 e+
f(()—llmf(0)+ﬂf(m lan cen.

It remains to define i as the image measure of v under the bijection ¢ — ¢ of (-, 1

onto T. a

Notice that each function of the form (4.4.3) clearly belongs to the class C.

Proof (of Theorem 4.4.6). a

‘ Nevanlinna-function representation ‘

4.4.8 Remark. Let f € S(Q1, ). Clearly, the kernel Kél o, is analytic in { € Q; for

each fixed n7 € Q;. Hence, the reproducing kernel Hilbert space generated by Kél o
consists of functions analytic in ;.

Now the following indefinite analogue of the classes S(Q2;, Q>) comes naturally.

4.4.9 Definition. Let Q; and Q, be general disks, let f be a function meromorphic in
Q;, and denote by p(f) its domain of analyticity in Q;. Then we write

f € S<eo(Qq, Qy), if the hermitian kernel Ké defined as in (4.4.2) for n, { € p(f)
has a finite number of negative squares.

1,$2)

If f € S.eo(Q4,Q7), we denote ind_ f := ind_ K{h Q- Moreover, we set

Sk(Ql, Qz) = {f € S<oo(Ql,Qz) s ind_ f = K}, K € No .

Let us point out explicitly that Sp(Q1, Q;) = S(Q1, ), i.e., that the notion of

S0 (Q1,Qy) indeed naturally includes the notion of S(Qy, Q,). Thereby, the inclusion
“2” is clear from Theorem 4.4.6. For the reverse inclusion, a short argument is
necessary. Namely, that a function f € So(Q1, 2,) is automatically analytic in Q,. To
show this, assume without loss of generality that Q, = D. This can be done due to
Lemma 4.4.5. If stz,,D is positive semidefinite on p(f), in particular, we have

If (D] <1, ¢ € p(f). From this it follows at once that f cannot have any poles in Q.

‘ extend by Schwarz-reflection
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4.4.2 Hilbert space valued Nevanlinna functions

4.4.3 De Branges’ spaces of entire functions

LetQ C Cand f: Q — C. Then we denote by f* the function

[ WeC:teq) — c
f#'{ { e fQ)

Note that, if Q is open, the function f is analytic in Q if and only of f* is analytic in
its domain.

III.49. 4.4.10 Definition. Let e be an entire function. Then we write e € HB ., and term e
an indefinite Hermite-Biehler function, if e and e* have no common nonreal zeros, and
the hermitian kernel

i et @) — HQe@
2 {-7 ’

has a finite number of negative squares.

K.(1,4) := {ineC’,

If ¢ € HB ., we denote ind_ e := ind_ K,. Moreover, we set

HB, :={e € HB.w : ind_e = k}.

III.50. 4.4.11 Lemma. Let e € H(C), k € Ny, and denote

e+e' b e—¢
a:= =1
2’ 2

Then the following are equivalent.

(1) The function e belongs to the HB,.
(2) The functions e and e* have no common nonreal zeros and %|C+ € S, (C*, D).

(3) The functions e and e* have no common nonreal zeros and §|c+ € N..

Proof. The kernel K, can be rewritten as

~

Ko(p.0) = L eOED = el _ @M«

2 (-7 \2 (-1 A2

oM

This shows that K, = % ° KCE D and hence that

e#
ind_ K, = ind_ KCQJD .

The equivalence of (1) and (2) follows.
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Unfolding the definitions of a and b gives

w_(w)

b - b —al a
K, = 200D G 20— ),
ie,K,=ae K(%:+,c+' This gives “(1) & (3)”. a

Using ?THM? ??, we obtain that the class HByj coincides with what is classically
called the Hermite-Biehler class (or de Branges-class).

4.4.12 Corollary. Let e € H(C). Then e € HBy if and only if either e and e* are
linearly dependent, or

le(Q)] < le(?)l, (eC*.

Let e € H(C). The kernel K, has a continuation to an analytic kernel on all of C
(which we again denote by K, ). Namely,

i e(g“)e#(ﬁ)—i#(f)e(ﬁ) T
{-n

sle et - (@Y ©e)], (=7

|

Ke (777 g) =

Provided that e € HB., thus, the kernel K, generates a reproducing kernel
Pontryagin space of entire functions. We denote this space as (K(e), [., .].). Note that
K(e) = {0}, if and only if the kernel K, (7, {) vanishes identically, which is the case if
and only if e and e* are linearly dependent.

It is a central result that spaces of the form % (e) can be characterised axiomatically.

4.4.13 Theorem. Let (A, [.,.]) be a reproducing kernel Pontryagin space of entire
functions. Then there exists e € HB.w, such that (A, [.,.]) = (K(e), [., .1¢), if and only

if

(1) If f € A n € C\R, and f(1) = 0, then £} € A

(@) If f.g € A n e C\R, and f(n) = g@ =0, then
¢

(=Lr0.0) = [0, @) (44.5)

g_

Q) If f € A, then f* € A. We have

[f.81=1g".f"]. f.geA. (4.4.6)

N(zte that, in conjunction with (1), the condition (4.4.5) is meaningful: Since

E%Z =1+(@n- ﬁ)ﬁ, validity of (1) implies that %T’If(g) e Aifnpe C\R and
f() = g() = 0. The same argument applies with 7 and g in place of i and f.

In the proof of this theorem we use the following elementary consequence of
analyticity.
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4.4.14 Lemma. Let Q be a nonempty, open and connected subset of C, set
QO :={{eC:eQ} andlet f : Q' x Q — C be an analytic function. Moreover, let
Qg be a nonempty open subset of Q.

If f(£,0) =0, ¢ € Qo, then f vanishes identically.

Proof. Fix & € Q. The function f admits a power series expansion in some
neighbourhood of the point (£; ¢) € Q' X Q. Say, we have

0.0 =Y ain-8'C -9, m-Ef<RIK-&<R, @447
i,j=0

where @;; € C and where R > 0 is chosen such that the polydisk
{1; ) eCxC:|n- El < R,|{ - €] < R} is contained in Q) X Qo (here
Q) :={eC:{eQ).

Assume that a;; # 0 for some (i; j) € Ny x Ny, and set
n:=min{i+ j: i, j € No,a;; # 0}.
Then we can write
fa 0 =m=-8( Y, D ey - - )+
i=n j=0

+ 2 =M= D i O, m-B<RI-E<R. (448)
k=1

J=k

For 6 € R and r € (0, R), set /+(6) := & + re. For all such values of 6 and , we have
ri,,f(gr(ﬁ), £-(0)) = 0. Passing to the limit » | 0 and using (4.4.8) gives

n
0= eimga'no + Z e"(7"+2k)‘9a/n,k,k, feR.
k=1

Note here that the series (4.4.7) converges absolutely and locally uniformly.

Since the functions /™29 [k =0, ..., n, are linearly independent, it follows that
ap0 = Ap-1,1 = ... = Qon =0.
This contradicts our choice of .

It follows that @;; = 0 for all 7, j € Ny, i.e., the function f vanishes identically on the
polydisk {(17;) € ' x Q: |n — & < R, | — & < R}. By the identity theorem it thus
vanishes identically on Q" x Q. Q

Proof (of Theorem 4.4.13). In the first half of the proof we establish sufficiency.
Assume that (1)—(3) holds; we have to construct e € HB.., such that A = K(e).
Equivalently, we have to find e € HB.., such that K(n,{) = K.(17,¢), 1, ¢ € C. Here,
and in the following, we denote by K : C x C — C the reproducing kernel of A.
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If A = {0} there is nothing to proof. In fact, in this case, we have ‘A = K'(e) whenever
e is chosen such that e and e* are linearly dependent (e.g., for e := 1). Hence, we may
assume that A # {0}. As a consequence, we know that the set { € C : K(1,.) = 0} has
no finite accumulation point.

Before we define e, let us provide some simple consequences of the axioms (1)—(3).
— We show that, for no n € C \ R, the function K(7, .) vanishes identically. Choose

f € A\ {0}, and denote by n the multiplicity of n7 as a zero of f. By (1), we have
g8 == —-m™"f(Q) € A. Since y,(g) # 0, it follows that K(n, .) # 0.

— We show that, foreachn € C\Rand o, € C,

[F=L10.80] = [£0. 52E5@)) fxe A 0 =5 = 0. G449)

To see this, write

(-n  n-ndl{-n n-7n° (-7 7-

al+f _am+fL-N _aq+f @ +P _an+pi-n _an+p
né-n n-n
It follows from the argument brought after the statement of the theorem and

condition (2) that %ﬁ ), i»‘_;f g(¢) € A and that (4.4.9) holds.

— We show that K(i3, )* = K(77, .), n € C. To see this, it is enough to use (3) to
compute

xi(f) = f@) = ffap = [f£. K@, )] = [£. K@, )], feA.

The function (17;¢) + K(77, () is analytic on C~ x C*. Hence, we may apply
Lemma 4.4.14, and obtain a point & € C* with K(¢,&) # 0. We have

K, = Km,0) = K(,0), 1, € C. Setting = &, { = £, gives K(€,€) = K(£,€). By
passing from £ to £ if necessary, we thus obtain a point

£eC\R with K(&&€IméE>O.

Set (the required function e(Z) will be a scalar multiple of this one)
()= (¢ -HKE D, (eC.

We have €f() = ({ - ©)K(£, {), and hence can compute

eo(Q)ef ) — e§(eo() _

Keo (T], () = é, _ ﬁ
1 _ _ _ _
=7 (€ -DKE - G-HKED - (- OKE O - (- HKE D] =
1 >, = — sl e —
=7 |7 - £€ - &7 + 1EDKE OKE. ) — ({7 - L€ - &1 + |EDK(E DK E )| =

= (%)
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Using
G-k -ne+o il
& (-1 ’
(-G -G+l _ G1-TE+9) + Ul -
(-7 (-7 ’

we further rewrite

()

K& OKE M - KEOKED)]-
— €K& OK(ET) — EKE OKET) -

zﬁ—a%fngq
(-7

It follows that, for each f € A with f(n) =0,

m@%@—%@m@y_
(-7
zﬁh—m5+®+wﬁ
é‘_
—EfOKEN + EFEKEN) =

— £ 2 — Zn— z 2
_én n(§_+)§7-‘)+lfl f@K(&ﬁ)_é—‘n n(gé::rj)ﬂfl FORET)-

|F),

FO,KEOKET - KEDKE D]~

—Ef(OKED +EFEOKET =0,
ie., K, (1,.) € (kery,)*. Since dim(ker y,,)*! € {0, 1}, we find y : C — C such that
Ke,(n,0) = ymK(mn, ), n{eC.

Thereby, the number () is uniquely determined if ker y;,, # A since then
(ker y,)) = span{K (7, .)}, and arbitrary if ker y,, = A since then
K., (n,.)=K(n,.)=0.

Since K,, and K are both hermitian, we have

YK, Q) = Koy(1,0) = Koo (1) = YOK(E, 1) = Y(OK®,{), n,{eC

Let 51,2 € C be such that ker y,, # A, i = 1,2. Then we may choose { € C with
K(n:,0) #0,i=1,2. It follows that

ym) = y(0) = y(p) .

We see that y(7) is constant on {5 € C : ker y,, # A}. On the complement of this set
the choice of y(n) is arbitrary, and we conclude that (with y := y(n), ker x,, # A)

Keo (Tlv g) = ’}/K(Tlv §)7 TI? § € C .
Setting 7 = £ = £ in this this relation gives y = K(&, &)™ K, (&, £). Since

ileo@P —lef@F _ ¢ -DKEH _ |meP - k&P

Ka(&:8) =3 £-Z 4Im¢é Imé
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and we made the choice of & such that K(¢, &) Im & > 0, it follows that

=|Im¢&] - |[K(£,6)]>0.

Now we define

d@:%@m cec,

and obtain
K.(n,{) = Keo(rh{) K(n,0), ndeC.

Thus, we readily obtain that md_ K, < o0 and K(K,) = A. Letn € C\ R. Then
K.(7,.) does not vanish identically (since K(7j, .) does not). If we had e(;7) = *(17) = 0
however, it would follow that K.(77,{) = 0, { € C. We conclude that indeed ¢ € HB .

In the second half of the proof we deal with necessity. Assume that e € HB, that e
and e* are not linearly dependent, and consider the space A := K(e). As a first step
towards the proof of properties (1) and (2), we show the identity

KA&OmeS”Z—E

Ke(g’ g)Ke(TL E))ﬁ - E
Ke(fv f) g - ‘f

K& 'm-¢
(€C, néeC e+7, KEEO 0. (4.4.10)

(Ko, 0 - = (K. 0) -

The proof is elementary, but somewhat tedious. The left side is an analytic function of
{, and hence it is enough to check (4.4.10) for £ # £. We have

C-ME-E-L-HE-N+L-EE-7 =0

and hence

(-OE-M - -EE- m
C-ME-

1=

(4.4.11)

Set
L1, ) = (& = MK, 0) = e(Qe* @) = (e
The following relation is checked by unfolding the definition of L:
L(p. OLE 6 = LE OL(.E) + LE DL €) = 0. (4.4.12)
Using (4.4.11), (4.4.12), and dividing by ({ — &)(¢ — 77) yields
MmOL@fwf—E_E—ﬁ)_f—guéoLmé)+L@¢7Mn@§
(-7 g-¢ (=& &= (-&¢-¢ &-1 (-§ g-q7&-
Since K, (&,&) = K, (&, &), the relation (4.4.10) follows.

7
7

Now fix € € C\ R with K, (¢, €) # 0. Such a choice is possible by Lemma 4.4.14.
Then ker y, and ker yz are closed and nondegenerated subspaces of A. We have the
decompositions

A = Ker yg[+] span{K. (&, )} = ker yz[+] span{K. (£, )}

The orthogonal projections P of A onto ker y; and Q of A onto ker yz act as

K& ono = fo - 1o K&

PHE =FO - % =5 &) K.(£,6)
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Set L :=span{K(7,.) : n € R}. Then L is dense in A, and hence P(L) is dense in
ker yz and Q(ZL) is dense in ker Xz Consider the linear subspace

U\
‘f‘f\- |

={(fi9) e AXA: f €WL). Q) = T—2 D)}

{-

m

Then, by (4.4.10),

Vo = span{(PKe(n, DR gQKe(n, .)) ‘ne R}.

Moreover, dom Vy = P(£) and ran Vy = Q(£). Again using (4.4.10), we can check
that Vj is isometric:

E-7 E-1f
o, ), ——=0K, K.(n,.), K, =
£ ek, Lokl )] [Q L1, K )] =
E-né-n , Ke(f,n)Ke(n,f) (4.4.10) . K&K (n,€)
= = K.(n, - — = = K.(n, - =
E-TZ- (Kt K.(Z.®) )= (Kew) K(&.6) )

:[PK(Z(U’ ')» Ke(n/» )] = [PKe(T], -)7 PKe(r],7 )] .

Now we apply Theorem 2.5.14. This provides us with a linear, isometric, surjective
and continuous map V' of ker y¢ onto ker yz with graph V = Vj. Since point
evaluations are continuous, V acts as ’

VAHQ) = g—gm fekerye.

Clearly, V is injective and V! : ker Xz — ker x¢ acts as

VPO = i gf(f) f ekery;.

The required properties (1) and (2) readily follow for the base point &:

g% = (V0= 10). 1 e,
in particular, ’(C(‘g € A. Moreover,
E L=Ero, §] = VAV ] = 11Vl = |10, 5=2000)].
{-=¢ (—&

fekeryg, g €keryg.

In order to transfer this knowledge to other base points € C \ R, we proceed with an
operator theoretic argument. For convenience, we reduce to the Hilbert space case.
Since (,er ker x;, = {0}, we may choose points 771, ..., 7y € R and y > 0 such that

N
(£, = [fgl+y ) fa)@m),  figeA,

J=1
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is a compatible Hilbert space scalar product, cf. Corollary 4.1.14. Since |$| =1 for
{ € R, the operator V is also isometric w.r.t. (., .)4.

~
O

The inverse Cayley transform S := (¢V — £I)(V — I)~! is closed, symmetric, and

ran(§ — &) =domV =kery, ran(§ —¢)=ranV = kery;. (4.4.13) |1II.63
We have _ _
=& 2y{—¢& !
&= -1) =¢,
e =) =«

and hence (S f)({) = {f({), f € domS. Clearly, thus, ran(S — 1) € ker y,, n € C. For
n € C\ R the spaces ran(S — n) are closed and dim [A/ ran(S — 1)] is constant on the
half-planes C* and C~. In view of (4.4.13) we thus have dim [A/ ran(S —n)] = 1,

n € C\ R. It follows that

ran(S —n) = kery,, ne€C\R.

Denote by V,, the Cayley transform of S w.r.t. the base point 1, i.e.,
V=S =S - 7)~". Then V), is isometric, acts as (V, )({) = %Zf(g), and

domV, =ran(S —1n) =kery,, ranV,=ran(S —7) =keryjz.
It follows that (1) and (2) hold with the base point 7.

It remains to show (3). The method is the same, but less difficult. Set
L :={K(n,.) : n € C}. Since, obviously, K,(n,.)* = K.(7},.), n € C, the mapping rule
£+ f* maps £ onto itself. The map

TO . { ? _>'_)£ f#

is conjugate linear. Since

(K., ), K., )] = [K.(, ), K.(GT, )] = K., 77) =
= Ke(r/’ 77/) = [Ke(r//’ ')’ Ke(r/’ )]’ n, 77, eC >

it satisfies

[TOf»TOg]:[g7f]7 f’geﬁ.

The space £ is dense in K(e). Let B be the linear space K(e) endowed with the
conjugate linear operations and scalar product. Theorem 2.5.14 applied with the map
Ty considered as a map of L C K{(e) onto L C B, provides a conjugate linear
continuous extension T : K'(e) — K(e) of Ty which again satisfies [T f, Tg] = [g, f],
f> & € K(e). Since point evaluations are continuous, this extension acts as

(TH)() = f#(¢). The required property (3) follows. Q

4.4.15 Definition. We refer to (A, [.,.]) as a de Branges-Pontryagin space (or
dB-Pontryagin space, for short), if (A, [., .]) is a reproducing kernel Pontryagin space
of entire functions and possesses the properties (1), (2), (3) of Theorem 4.4.13.

If A is a Hilbert space subject to these conditions, we speak of a de Branges-Hilbert
space (or dB-Hilbert space, for short). o
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By Theorem 4.4.13, each dB-Pontryagin space can be realized as K(e) with some
e € HB . As it is apparent from the construction in the proof of Theorem 4.4.13, this
function e is not unique. However, what can be said is the following.

4.4.16 Lemma. Assume that e, e; € ?{B@C with K(e1) = K(ep), and there exists
£ € C\Rwith e|(€) = ex(¢) = 0. Then £ is a unimodular constant.

Proof. Observe that

— = i /(&)
K(,0) = K,(§,0) = ei(d) - 2( ¢ i=12.
Hence, the quotlent is constant. Evaluating K (&, &), yields
KE.8) = i |€(§)|2 i=1.2.
2¢e-¢
and hence this constant is unimodular. a

As a first example, let us again revisit the Paley-Wiener spaces W, which were
introduced in Example 2.5.6 and further studied in Example 4.1.6.

4.4.17 Example. Let a > 0, and consider the Paley-Wiener space PW,. We already
saw that PW, is a reproducing kernel Hilbert space of entire functions. Moreover, we
have computed its reproducing kernel; which turned out to be (for { = 77 this formula
is understood appropriately as a derivative)

sina(d —1)
Kn,{)=——F——, n{cC.
m({ -1
As a short computation shows, we have K(n, {) = K,(n, {) with the function
e() := —e‘“‘( Clearly, this function belongs to the Hermite-Biehler class. We

conclude that PW, is a dB-Hilbert space.

It is interesting to directly check the axioms Theorem 4.4.13, (1), (2),(3), proceeding
via our original definition of PW, as the Fourier image of L>(—a, a). In fact, if

f € L*(-a,a),n € C\R, and f(n) = 0, then we can compute

(F(r) = [, f(o)e " dor)

10 L ("0 e L [ e S
- DAyt iy -3 B ALy

[F(T) —it({-n) | q

1 ] 1
\/_ {=n Ale=—a” g J-
:E f iF(1)e™ - e dr = [iF(1)ei™]({).

F(T)( e "¢ dr =

This shows that ’;(T‘;; € PW,. Moreover, we have

1 a - 1 “____ . _
o = Ej‘ f(me @ dr = Ej‘ f@e“ dr = [f(-D]Q),
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and hence (f)* € PW,.

The Fourier transform is an isometry of L?(—a, a) into L>(R) and, by definition, an
isometry of L*(—a, a) onto PW,. Hence, the scalar product of PW, can be computed as
an integral along the real line, namely as

(f.9) = f fOg@dr, f.gePW,.

From this the relations (4.4.5) and (4.4.6) follow immediately. ¢

example: bessel?

4.4.4 Entire J-inner matrix functions

4.5 *Reproducing kernel almost Pontryagin spaces

Examples:

adjoint of
multiplica-
tion,composition
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