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Preface

The transparent definition of the Riemann integral admits an easy extension of the integral to
Banach space-valued functions, which was first studied by Graves [11] in 1927. On the other
hand, in 1933 Bochner [4] gave a natural extension of the Lebesgue integral to functions which
take values in Banach spaces. The Bochner integral inherits most of the good properties of
Lebesgue integral (a.e. dominated convergence theorem), whereas the definition is not as
simple as the one of the Banach space-valued Riemann integral due to the requirement of
measure theory.

In an attempt to remedy the technical deficiencies of the Riemann integral while being
devoted to its simple definition at the same time, a real-valued integration theory based
on the concept of generalized Riemann integral sums was initiated by Kurzweil [15] and
independently by Henstock [12] around 1960. The generalized Riemann integral obtained
in this way—the so-called Henstock-Kurzweil integral (which is equivalent to the narrow
Denjoy integral, the Luzin integral and the Perron integral)— has the properties that it

~~ integrates all functions that have primitives,
~~ integrates all improper Riemann integrable functions,
~~ integrates all Lebesgue integrable functions,

~— generalizes the monotone convergence theorem and the dominated convergence
theorem,

~= requires no knowledge about measure theory or topology,

and hence is more general than the Lebesgue integral.

In 1969 McShane [18] proposed a slight modification in the definition of the Henstock-Kurzweil
integral, which leads to an integral that is equivalent to the Lebesgue integral for real-valued
functions—the McShane integral.

When investigations of the Banach space-valued versions of Henstock-Kurzweil and McShane
integrals started around 1990 by the work of Gordon [9], it was somewhat surprising that
the equivalence of Bochner (as natural extension of the Lebesgue integral) and McShane
integrability does not hold for general Banach spaces. In fact, the class of Bochner integrable
functions is very restrictive.

This text presents a short survey on the differences in the concepts of Riemann, McShane,
Henstock-Kurzweil and Bochner integrability for functions f : I — X, where I is a compact
interval in R and X denotes a Banach space.

In Chapter 1 an elementary introduction to the Riemann sum type integrals of Riemann,
McShane and Henstock-Kurzweil is given.

Chapter 2 is devoted to a short presentation of the Bochner integral.

Finally, in Chapter 3 the interrelations of the those integrals is investigated: It is shown that
every Bochner integrable function is McShane and hence also Henstock-Kurzweil integrable
and that the converse assumption is not true for infinite-dimensional Banach spaces. More-
over an example of a function, which is Henstock-Kurzweil integrable but neither McShane
nor Bochner integrable, is presented.
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Banach Space-Valued Riemann Sum Type Integrals

Systems, partitions and gauges

Definition Let a compact interval I C R be given®.
We call a pair (t,J) of a tagt € R and a compact interval J C R a tagged interval.
Two compact intervals J, L C R are called non-overlapping, if J° N L° = ().
Let J be a finite index set. Then a finite collection
{(t,15) 5 €3}
of pairwise non-overlapping tagged intervals is called an M-system in I if I; C I for all
jEJ.

—— Notation
For notational simplicity we will omit the always finite index set J, £ etc. in expressions
like (1.1) and simply write {(¢;,1;)},{(s;, L)} etc. insofar as it is clear that j € J,l € £1in
expression like sums or integrals.

We call an M-system {(¢;,1;)} in I, for which ¢; € I; for all j € J holds, a K -system in I.

We denote an M-system, respectively K-system {(¢;,1;)} in I as M -partition, respectively
K -partition if

U =1
JEJ
We call a function § : I — RT gauge on I, and say a tagged interval (¢,J) is d-fine if

J C Bs(t), where By (t) denotes the open ball in (R, |-|) centered at ¢ with the radius
0(t). Moreover, M-systems or K-systems are called J-fine if all tagged intervals (¢;, ;) are
d-fine with respect to the same gauge §.

We observe that every K-system is also an M -system in I; analogously, every K-Partition
is also an M -Partition of I.

The following lemma will give rise to the definitions of integrals in the next section. We
follow the proof of Kurtz, Kurzweil and Swartz in [14].

Lemma (Cousin) For every gauge 0 : I — R there exists a §-fine K -partition of I.
Proof  Assume that a compact interval I = [a,]] is given and define
E :={t € (a,b] : [a,t] has a d-fine K-partition}.

Hence, it suffices to show b € E.

At first, we notice that Bs(q)(a) N (a,b) is not empty. Thus {(a,[a,z])} with any x €
Bsay(a) N (a,b) C E is a é-fine K-partition of [a,z] and E cannot be empty.

Next we show that ¢y = sup F is an element of E: As 0 is defined at tyax € [a,b], we can
choose © € Bs,,,..)(tmax) on the assumption t.x > 2 € E. Now let {(t;,1;)} be a J-fine
K -partition of [a,z]. Then {(¢;,1;)} U {(tmax, %, tmax])} is & 0-fine K -partition of [a, tmax];
we infer ta. € F.

L I may consist of only one point, i.e. I = [a,a] for a € R.
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Finally suppose tmax < b. Then we can choose w € By,,..)(tmax) N (tmax, ). For any
0-fine K-partition {(¢;,I;)} of [a,tmax] we know that {(¢;,1;)} U {(tmax, [tmax,w])} is a
d-fine K-partition of [a,w]. As tmax < w is a contradiction to the definition of F, we infer

tmax = b.

Definitions of Banach Space-Valued Riemann Sum Type Integrals

Definition Let a function f : I — X be given where X is a Banach space with the norm

||l ¢ and the compact interval I is endowed with the Lebesgue measure .

f is said to be Riemann integrable and x € X its Riemann integral if for every € > 0 there
exists a constant gauge § € R such that for every d-fine K-partition {(¢;,I;)} of I the
inequality

<e
X

€T

holds.

f is said to be McShane integrable and y € X its McShane integral if for every € > 0 there
exists a gauge ¢ : I — R such that for every -fine M -partition {(¢;, I;)} of I the inequality

D FEINT) —y

€T

<e
X

holds.

f is said to be Henstock-Kurzweil integrable and z € X its Henstock-Kurzweil integral if for
every € > 0 there exists a gauge 6 : I — R™ such that for every d-fine K-partition {(;, I;)}

of I the inequality

<e€
X

D FEIMI) =

€T

holds.

If a subset E C [ is given, a function f : I — X is called integrable over E if the function
1g - f is integrable.

—— Notation
We denote the set of all Riemann integrable functions with R, the set of all McShane
integrable functions with M and the set of all Henstock-Kurzweil integrable functions with

HK.
The Riemann integral, the McShane integral and the Henstock-Kurzweil integral of a func-

tion f are denoted by
]é I, ]A f and % f respectively.
I I I

(1.3)
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The following result immediately follows from the definition above:

Proposition The inclusions R C HK and 9 C HIX hold and if the corresponding integrals
of f: I — X exist, they do coincide.

Proof  To show R C HK we notice that the Riemann integral is a restriction of the
Henstock-Kurzweil integral by assuming the gauge to be constant in RT.

Next we show M C HK: When compared to an M -partition of I, a K-partition of I imposes
a greater restriction by assuming the tag to be in the corresponding interval of the partition.
Thus the number of d-fine partitions in Definition 1.2.1 of the Henstock-Kurzweil integral
is decreased which results in the Henstock-Kurzweil integral being more general than the
McShane integral, i.e. M C HK.

Clearly, if the Riemann or the McShane integrals exist, they do coincide with the Hen-
stock-Kurzweil integral. [ ]

In Chapter 3 we will even observe that the inclusions R C HK and M C HK are proper.

Elementary Properties of Banach Space-Valued Riemann Sum Type In-
tegrals

In this section we will start with a Cauchy criterion for the existence of the McShane integral:

Proposition A function f : I — X is McShane integrable iff for every € > 0 there exists a
gauge 0 : I — R™T such that for every §-fine M -partitions {(t;,I;)} and {(s;,J;)} of I the

inequality

Do FEIAE) = Y f(s)A;)

€T JEJ

<e (1.5)

holds.

Proof  Let be f € M. According to Definition 1.2.1 for every ¢ > 0 there exists a gauge
§ : I — RT such that for every d-fine M-partition {(¢;, I;)} of I the inequality

S HEAE) ~ ] <=
i€ Ty
holds. Thus we obtain
D FEIAT) =Y Fs)Ap)] <
i€t JEJ X
< [ feoMm) — o 1} + |30 ) — o o] <22
et 1 x V&3 1 x

and (1.5) holds for any 6-fine M-partitions {(¢;,I;)} and {(s;,J;)} of I.

On the other hand, to prove the converse statement, denote

S(6) = {Z FEANT;) = {(t;, I;) : it € T} is a 0-fine M -partition of I} cX
€T

and by F the set of all S(d), 6 : I — R*. Every set S(§) € F is nonempty because for

every gauge d there exists a d-fine M -partition {(¢;, I;)} of I due to Lemma 1.1.2. Moreover,
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for any two gauges 1,02 on I the function i, = min{d;,d2} : I — R defines again a
gauge on I and clearly each dyin-fine M-partition {(¢;,1;)} of I is also d;-fine and do-fine.
Thus the intersection of any two sets S(d1), S(d2) € F contains again a set S(dmin) € F, i.e.
S(0min) € S(01) N S(2). We infer that F is a Filter base on (X, || x)-

According to our premise, for every € > 0 there is an S(J§) € F such that diam S(d) < e
since (1.5) holds for any two d-fine M-partitions {(t;,1;)}, {(sj,J;)} of I; hence the filter
base F is Cauchy.

Due to the completeness of the Banach space X, F converges to a single point s € X, i.e.

> FE)AL) —s| <e
€T b's
and > f(t;)A(L;) € S(6) whenever {(¢;,1;)} is an arbitrary §-fine M-partition of I. We
€T
conclude f € M by Definition 1.2.1. [ ]

Corollary Assume that f : I — X is McShane integrable and let J C I be a compact
interval. Then f is McShane integrable over J.

Proof By Proposition 1.3.1 for any given ¢ > 0 there exists a gauge 6 : I — R™ such that
for every d-fine M -partitions {(¢;, ;) } and {(s;, J;)} of I inequality (1.5) is satisfied.

Let {(m%, K%)} and {(o7, L;)} be arbitrary §-fine M -partitions of the interval J. The compact
complement I\ J° can be expressed as a finite union of compact intervals contained in I. By
taking an arbitrary d-fine M -partition of each of those intervals we obtain a finite collection

{(pm, M)} of tagged intervals which together with {(7x, Kx)} or {(oy, L;)} form two 0-fine
M -partitions of the interval I.

Taking the difference of the integral sums corresponding to these two §-fine M -partitions of
I, we can see that its value is

D FEIANER) = fle)AL)
ker leg

because the remaining Y f(pm)A(My,) is the same for both of them. Whence by (1.5) we

meMN
obtain
D FEIMER) = Y flo)ML)| < e.
keR lee X
By Proposition 1.3.1 this implies the McShane integrability of f on J. [ ]

Proposition Assume that J, K C R are non-overlapping compact intervals such that JUK
is again an interval in R. If a function f : JU K — X is McShane integrable on each of the

intervals J and K, then f is McShane integrable on the interval J U K and

fo=fire s (1.6)

JUK J
Proof  Denote by {w} = J N K the common face of both intervals J and K in R.

By assumption, there is a gauge d; on J and a gauge d2 on K such that for every d;-fine
M -partition {(¢;,J;)} of J we have

<e

S HEA) o f

i€T g

X
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and for every d,-fine M-partition {(s;, K;)} of K we have

S F(s))A(K;) - f 7

JEJ K

<E.

X

Define § : JUK — R* by

min{dq (¢), dist(¢, w)} if te J\{w}
0(t) == < min{d; (), 52(¢)} if t=w
min{ds(t), dist(t, w)} if t € K\ {w}.

Let {(¢;,1;)} be a d-fine M-partition of J U K. Note that by definition of §, we have
I; € B,y (t:)NJ € J\{w} whenever t; € J\{w}, and similarly I; C Bsq,)(t;)NK C K\{w}
whenever t; € K \ {w}. Hence there exists at least one tagged interval (t;,I;) € {(t;,;)}
with ti =w.

Consider the tagged intervals (t;,I;) for which t; = w. Then (¢;,I; N J) is d;-fine and
(t;, I; N K) is da-fine while for the corresponding term in the integral sum we have

FEIANL) = fFEINL N T) + fFt)ANL N K).

The system of tagged intervals {(¢;, I;) : t; € JYU{(t;, ,NJ) : t; = w} is a §;-fine M -partition
of J and the system of tagged intervals {(¢;,I;) : t; € K} U{(¢;, ;N K) : t; = w} is a da-fine
M -partition of K.

Now we have

Lo fi- -

= HZ FEINI) + > FEDMD) + Y ft)AUL) — f f- f fl=
J K

= i€ i€ X

tie\{w} ti=w t, €K \{w}

ML)+ fE)MELNT) + ML NK)) + Y f(t) f f
t eJ\{w} %Ze:Tw teeK\{w} J K X
<D FEDAE) + 0 FEIAT N T) — f HID D FEIALNE) Y (M) - ff <
fe\ (w) = 7o I NS, oK\ (w) K X
< 2e.
Hence f is McShane integrable on J U K and (1.6) holds.

1.3.4 Facts Let functions f,g: 1 — X and ¢ € R be given.

~>  Let f,g € HK; then the integral sums for c¢f equal ¢ times the integral sums for f and
the integral sums for f + g are the sum of integral sums for f and g. Thus c¢f + g is
Henstock-Kurzweil integrable and

%(c]ﬂ—g) :C%f—k'%ig.

Analogous statements also hold for the Riemann and the McShane integral.

~~  Following the proof of Proposition 1.3.1 with the replacement of arbitrary gauges by constant
gauges § € Rt and M -partitions by K -partitions yields the analogous result for the Riemann
integral:
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f is Riemann integrable iff for every e > 0 there exists a constant gauge 6 € R™ such that
for every -fine K -partitions {(t;, I;)} and {(s;,J;)} of I inequality (1.5) holds.

If we replace M -partitions by K-partitions in the proof of Proposition 1.3.1, then f is

Henstock-Kurzweil integrable iff for every € > 0 there exists a gauge 6 : I — R such that
for every §-fine K -partitions {(t;, I;)} and {(s;,J;)} of I inequality (1.5) holds.

Similarly Corollary 1.3.2 and Proposition 1.3.3 can be adapted:

If f : I - X is Henstock-Kurzweil (Riemann) integrable, then f is Henstock-Kurzweil
(Riemann) integrable over every compact subset J C I.

If J, K C R are non-overlapping compact intervals such that JU K is again an interval and

f is Henstock-Kurzweil (Riemann) integrable on each of the intervals J and K, then f is
Henstock-Kurzweil (Riemann) integrable on J U K and

%fz?fffwff or ffzjfﬂéf.

JUK JUK

Let a gauge d : I — RT be given. Then for every d-fine K -partition {(¢;,I;)} of I the value

of the integral sum > f(t;)A(I;) remains unchanged if we assume that either all of the tags
€%

of {(t;,I;)} occur as endpoints or each tag of {(¢;,I;)} occurs only once since every tagged

interval (ti, Iz) = (t,‘, [Ci, dz]) is o-fine iff the K—system {(tz’, [Ci, ti]), (ti, [ti, dz])} of I is 0-fine

and f(t)A([ci, di]) = f(t)A([eis ti]) + f(t)A([t:, d;]) for each ¢ € F.

Note that this statement does not hold for arbitrary d-fine M -partitions of I.
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The Bochner Integral

Simple Functions and Measurability

Definition Let X again be a Banach space endowed with the norm |-| .

A function f:I — X is called simple if it is of the form

f = Z ]lEmmm

meM

where (Ep,)meom is a finite set of Lebesgue measurable subsets of I such that x,, € X,

E,.NE =0form#Il, mmneMand I = Ep,.
meM

The integral of a simple function f is defined by

[7=X M),

meM

A function f : I — X is called measurable if there exists a sequence (f,)nen of simple

functions with
lim [ fn(t) = f()|x =0
n—roo

for almost all t € 1.

—— Notation

Denote by J the set of all simple functions defined on 1.

Facts

Clearly J is a linear space and if f : I — X is a simple function then also |f|y : I — RZ

is a simple function.

The integral of simple functions is a linear mapping [: J — X.

I

Let f be a simple function as in (2.1). By virtue of (2.2) and

1

A

> MANEp)zm,

meM

X meM

< / 1flx
X A

X

we gain the inequality

lf

for every measurable A C I.

Obviously every f € J is measurable.

Let (fn)nen be a sequence of simple functions corresponding to a measurable f :

Since

1F2 @ x = 1FOlx| < 1Fa(®) = FO)]x

for all t € I, we infer

lim || £ ()] x = [F®)] x
n—oo

almost everywhere in I; therefore | f||, is measurable.

< Z)‘(A N Em) |2m]x =

J
A

(2.1)

(2.2)

(2:3)
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The space J can be equipped with a seminorm:

Definition The mapping

||||1 : j—>R3_
f%/llf\\x
I

is called the L-seminorm on the space of simple functions 7.

Using the fact that, given any two measurable finite partitions (Ep,)mem, (Fn)nem of I,
(Em 0 Fp) (m,nyesmxm constitutes again such a finite partition, it is easy to see that [-|; has
indeed the properties of a seminorm on J:

lefly = lel - | fl; for every f e J and ¢ € R,

If +gly < 1fly + gl for every f,g € J.

For f = lypa with t € I, x € X such that |z]y # 0, the implication | f|, =0 = f =0

does not hold. Henceforth |-|; is not a norm on J.

Sequences of Simple Functions

Let us now consider sequences of simple functions equipped with the L-seminorm |-|; given
in the previous section.

Definition Let sequences (f)nen, (gn)neny With fi,, g, € J be given.
(fn)nen is called L-zero if

lim ”an1 =0.
n— oo

(fn)nen and (gn)nen are called equivalent if their difference f,, — g, is L-zero.

(fn)nen is called L-Cauchy if for every € > 0 there is an N, € N such that |f, — f|, <€
for any ¢,r > N¢.

Facts

Using (JN1) and (JN2) it is easy to show that the set of L-Cauchy sequences of simple
functions has the structure of a linear space.

For a given L-Cauchy sequence (f,,)nen of simple functions we have
1Ol ~ 15Ol < 1ol = Ol forgreN ter

and thus

1 = 10 = [ 14201 - 15014 <

I

< / 1) = £ Ol = 1fs = ol -

This means that the sequence (| f,| ) of real-valued simple functions is L-Cauchy.

neN
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Lemma Let (f,)nen be an L-Cauchy sequence of simple functions defined on I. Then
there is a subsequence (fy, )ken Of (fn)nen, which converges pointwise almost everywhere
to some function f : I — X and for every € > 0 there is a measurable E C I with A\(E) < ¢

such that this subsequence converges uniformly on I \ E.

Proof  As the sequence (f,)nen is L-Cauchy, for every k € N there exists an N € N such
that if n,r > N, then

1
”fn - frH1 < 2%
Without loss of generality we can assume Ny < Ni41 for every k € N. Then for m > n we
have
1
I, — Il < Jan -

Next we define the series

i+ Y (Frv (0 = far, (8)) = lim £, (1 (2.4)

neN n— oo

for t € I and show that it converges absolutely almost everywhere in I to an element in X
and that this convergence is uniform except for a set with arbitrary small measure.

For n € N set

ALN:{tG[ﬂUMHAﬂ—jNAUWXZ2&}. (2.5)
Then
A(M,, 1
G = [ g [ Um0 — w0l <

My My

1

< U@ = @ = Vo = Il < 5z
I

and we infer

AM,) < —.
Define

Zn::LJAL.

i>n
Then Z,,+1 C Z,, for all n € N and
1 1
TPRES ST p
i>n i>n
By (2.5) we obtain for t ¢ Z,, and k > n the estimate
1
"ka+1 (t) - ka (t)"X < 27

Therefore, the series
Z (ka-H (t) - ka (t))
k>n

and hence also the series in (2.4) converges absolutely and uniformly on I\ Z,.
Let € > 0 be be given. Setting N = Z,,, we have for sufficiently large n € N

AMN) =X2Z,) < % <e.
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Henceforth the series (2.4) converges absolutely and uniformly on I \ N. Clearly, also
(fn,, )nen converges absolutely and uniformly on I\ N.

If we take
M =2,
neN

then A\(M) = 0. Furthermore, if ¢ ¢ M, then ¢t ¢ Z,, for at least one n € N. Thus, the series

in (2.4) converges for t ¢ M, and therefore lim fy, (¢) exists for almost all ¢t € I. [ ]
n—oo

Lemma Consider the L-Cauchy sequences (fn)nen, (gn)nen of X -valued simple functions.
Then the following statements hold:

The limits lim [f, and lim [g, exist in X.
n—oo | n—oo [

If (fn)nen and (gn)nen are equivalent then lim [ f, = lim [g,.
n—oo | n—oo |

If (fr)nen and (gn)nen converge almost everywhere to a function f: I — X, then (fn)nen
and (gn)nen are equivalent.

Proof  First we show (CS1):
For simple functions f,, € J, n € N using (2.3) we have

[1.- [5|=] ]
I I X I

for ¢, € N. This means that the sequence of integrals ( I f")n ey 182 Cauchy sequence and
T

>s/m—mu:m—ﬂm
X I

hence, convergent, i.e. the limit lim [ f, exists.
n—oo [

Next we prove (CS2):

Given € > 0, by (CS1) and the equivalence of the L-Cauchy sequences (fy)nen and (gn)nen
there exists an NV € N such that for every r e N, r > N

/f7_hm fn g, ”/QT_hm <g,
n—oo n— 00
X X
Im—wh=/Mfmh<a
I
This gives
lim /fn—hm < [ lim /fn*/r /fr*/grvL
n—oo n—oo n—yoo

I 1 X

+

/g'r’ — lim In
n— 00 T

<2s+/||f,«—gr||X < 3e.
I I

X

Finally we show (CS3):

For h, = f, — gn, we have limh,(t) = 0 for almost all ¢ € I and the sequence (hp)nen
n—oo

is L-Cauchy, i.e. for given € > 0, there is an N € N such that for r,¢ > N we have
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|hg — hr|, < €. Thus the sequences of integrals (fh")neN is convergent. Due to Facts 2.2.2,
1
([ ) nen is also L-Cauchy and therefore ([ |k ”X)neN convergent.
T
It remains to prove lim [|hy]y = 0.
oo I
We define M :={t € I : hx(t) # 0} C I. For n > N we have
Jihall = [V bl < /nh — byl = I =y <&
M M
since hy(t) =0fort € I\ M.
As a consequence of Lemma 2.2.3 there exists a measurable subset Z C M with
€
AMZ) <
D < ST Ol 1
tel
and a subsequence (h,_)sen which converges to 0 uniformly on the set M \ Z. Hence, there
exists an sgp € N with s9 > N such that for s > s and for t € M \ Z we have
€
b, (t — .
H b()||X< )\(I)
Therefore, for all s > sq we have
MM\ Z)
101 < <e.
)
M\Z
Moreover, for all s > sy we obtain
J 1Ol < [1ha,® = b0l + [0l <
z z z
S P, = Ay A+ sup [hn (B)]x A(2) <
€
€
<e+ sup |~y < 2e.
G A
tel
Henceforth
oI / Vo, Ol = [ Ve (O + [ Tho, ()] + / Vo (O <
M M\Z
<e4e+2=A4e,
and we infer lim [|h,, |y = 0. As (f||h Ix), e converges, we conclude lim [|hy]y =0. W

s—roo [ n—oo [

Definition of the Bochner Integral

By virtue of (CS1) on page 13 we can assign a value (s, ., € X to every L-Cauchy
sequence (fn)nen of simple functions by the relation

L(fa)nex'= i /fn~
1
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Moreover, by using (CS2) we can assure that the same value x(y, ) € X belongs to all

L-Cauchy sequences which are equivalent to the sequence (f,)nen-

neN
Henceforth the following definition makes sense.

Definition Consider a function f: [ — X.

We say that the L-Cauchy sequence (f,,)nen of simple functions determines f if it converges
to f almost everywhere in I, i.e.

lim [ fn(t) = f®)]x =0
n—oo
for almost all t € 1.

f is said to be Bochner integrable and = € X its Bochner integral if there is an L-Cauchy
sequence (fn)nen of simple functions which determines f and

r=1m [ fp.
n—o0o T

—— Notation
We denote by B the set of all Bochner integrable functions. The Bochner integral of a
function f is denoted by

/s

I

Elementary Properties of the Bochner Integral

Facts

The set B forms a linear vector space of measurable functions because
cj![f+fg=lim<0/fn+/gn>=1im (Cfn+gn):7[6f+g ceR
n— oo n—>o00
I I I I I I
for every Bochner integrable functions f and g determined by (f,)nen and (gn)nen respec-
tively.

Let f € B be determined by a L-Cauchy sequence ( f,,)nen of simple functions. In Facts 2.2.2
we observed that then (| fn|x),cy is an L-Cauchy sequence of real-valued simple functions.

Furthermore lim | £, (t)[ = [ f(¢)[ yx holds for almost all t € I. We infer that | f|y : I — R

n—>00

is integrable by Definition 2.3.1.

Applying Definition 2.3.1 to our considerations above we obtain

J1s1x =t [gly =tim s, (26)
T n—roo T n—roo

for f € B determined by (f,,)nen.
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Using Definition 2.3.1, (2.3) and (2.6) on f € B determined by (f,)nen We obtain
H / f” i [l <im [150c= [155
n—>00 n—>o0o
1 x 1 Ux I I

Thus we have the inequality

[4= [ (27)

1 x T
If f: I — X is 0 almost everywhere in I, then the L-Cauchy sequence of simple functions
from Definition 2.3.1 can be chosen as functions which are identically 0. Thus f € B with
[ f=o.
1
Let functions f € Band g: I — X be given such that f(¢) = g(t) for almost all t € I. Then
g — [ = 0 almost everywhere in I and hence g = g — f + f is Bochner integrable.
By Lemma 2.2.4 and Facts 2.4.1 we know that lim | f,|,; does not depend on the choice of

n— oo
the L-Cauchy sequence (fy)nen which determines the same f; therefore the L-seminorm
[-|; defined for simple functions f € J can be extended to functions f € B:
Definition The mapping
Iy : B—— R<T
fr—r f 11 =limlzl,
n— oo
I
where f is determined by the L-Cauchy sequence (f,,)nen of simple functions is called the
L-seminorm on the space of Bochner integrable functions B.
The properties (JN1) and (JN2) for (7, ]-|;) on page 13 are directly carried over to (B, |-|,):
leflly = lel - | fl for every f € Band a € R,
If +gly < Ifly + lgl, for every f,g € B.
Lemma If f € B and (f,)nen is an L-Cauchy sequence in J determining f, then
lim [ fn — f; = 0.
n—>00
Thus the space J of simple functions is dense in B with respect to the L-seminorm |-|;.
Proof  Let (fn)nen be an L-Cauchy sequence in J which determines f. According to
Definition 2.2.1 for every € > 0 there is an N. € N such that | f,. — fq|, <& forall r,q¢ > N..
Let us fix r > N, and put g == f, — fy € J. Then limg,(¢t) = f-(t) — f(¢t) for almost
q—r o0
all t € I. Since |g1 — gkl; = |fi — fxl; for I,k € N, the sequence (gq)qen is L-Cauchy and
determines f,. — f € B. Hence
If = felly = limggly, = lim [ fg = frl, <e.
—r o0 q—r o0

Thus we have lim | f, — f[; = 0. ]

r—>00
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2.4.4 Proposition The space (B, |-|,) is complete.
Proof  Assume that (gn)nen is a Cauchy sequence in (B, |-|,). By Lemma 2.4.3 for every
n € N there exists a simple function f,, € J such that

1
”gn - fn”l < g

Hence we gain a sequence (fy,)nen of simple functions for which
1 1
Ifa = Frly < Ufa = 9ally + 19q = gelly lgr = frlly < s rt lgq — 9014

for all r,q > N holds. Therefore (f,)nen is L-Cauchy. By Lemma 2.2.3 the sequence
(fn)nen contains an L-Cauchy subsequence (f,,)seny which converges almost everywhere in
I to a certain function f : I — X. For this subsequence we have

”gns - f“l < ”gns = fn.

and thus the subsequence (gn,)sen Of (gn)nen converges in the seminorm |[-|; to f. As
(gn)nen is a Cauchy sequence, (gn)nen converges with respect to |-|;. This implies that
(B, |-];) is complete. n

1 1 fn, = £l for s e N

The following statement allows us to give another definition of the Bochner integral which
is equivalent to Definition 2.3.1:

2.4.5 Corollary A function f : I — X belongs to B iff there is a sequence (f,,)nen in J such that
lim f,,(t) = f(t) for almost all t € I and lim | f, — f[; = 0.

n n—oo

Proof  Assume f € B; then we have lim || f,, — f[; = 0 for an arbitrary L-Cauchy sequence

n— oo
(fn)nen in J which determines f, due to Lemma 2.4.3. By Definition 2.3.1 such a sequence
does exist.
Conversely, every sequence of simple functions which converges with respect to ||, is also
L-Cauchy. |

2.4.6 Remark Due to (2.7) in Facts 2.4.1, we have

f -9

I

< f\\f*gllx —1f — gl
X I

for functions f,g € B. This estimate makes it possible to define an equivalence relation ~
on B (or J) that identifies functions f, g which |f — g|; =0, as it is usual in the Lebesgue
theory. Then |-|; defines a norm on the factor space B/~ and (B/~,|-|,) is a Banach space
due to Proposition 2.4.4.

As a consequence we obtain the result that the Bochner integral is equivalent to the Lebesgue
integral for (X, |-|) = (R, |:]), i-e. for functions f : I — R. To comprehend this, we use the

fact that the factor space of real-valued simple functions [J/~ is dense in the Banach space
L' of Lebesgue integrable functions with respect to the norm |-|,. Hence both L' and B/~
are Banach space completions of 7/~ and therefore isometrically isomorphic.

Now consider f is Lebesgue integrable with [ fdA € R. Then we can write f = f* — f~,
I

where fT = max{f,0} € L' and f~ = max{—f,0} € L!. Thus is suffices to consider
Lebesgue integrable functions f: I — Ry .

By definition (cf. i.e. [8], Definition 122K) we have a sequence ( f,)nen of non-negative simple
functions which f,,  f. Hence for every € > 0 there exits an N € N such that

/fd)\—/fn<5 forn > N.
I I
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Therefore, we also have

/|fq fAdA—/( ~ fydr<

g/(f—fr)dA: [fd)\—Zﬂd)\<s

I

for ¢ > r > N and the sequence fn nen is L-Cauchy. By Definition 2.3.1 we conclude

fd)\—hm fn j[feR

n—oo

and the isometric isomorphism between L' and B/~ is canonical, i.e. L1 = J/rv"'ul = B/~.

The considerations given above allow us to give an alternate approach to the Lebesgue
integral via L-Cauchy sequences of simple functions. For instance the textbooks [2], [5] or
[17] follow this approach.

Absolute Integrability of the Bochner Integral

Remark 2.4.6 provides a convenient way to transfer several results from the Lebesgue theory
to the Bochner integral. We will show this exemplarily for two major results.

Proposition A function f : I — X is Bochner integrable iff f is measurable and |f]y :

I— Rar is Bochner integrable.

Proof Let f € B; then f is measurable and |f|y : I — Ry is Bochner integrable by Facts
2.4.1.
Conversely, let f be a measurable function satisfying

/ I£lx < oo
I

By Definition 2.1.1 there is a sequence (fy)nen in J such that lim | f(t) — fn(¢)| = 0 almost

n—oo
everywhere in I. Define Ay == {t € I : | fn(t)|x < 2| f(t)|x} for n € N. Clearly, every A,
is Lebesgue measurable. Hence every f,,(t) := 14 (£)fa(t) is a simple function of the form
(2.1) and lim | f(¢) — fn(t)] x = 0 almost everywhere in I.
%

n—roo ,

As both f and f,, n € N are measurable, we observe that every real-valued function
1fn(®) — f#)|x : I — R is measurable by Facts 2.1.2. Therefore | f,(t) — f(t)|y is also
measurable in the sense of Lebesgue theory for every n € N.

Since | f(t)] x is Lebesgue integrable by Remark 2.4.6 and ||fn(t)HX < 2| f(t)| x point-wise in
I, the dominated convergence theorem from Lebesgue theory can be applied by the estimate
[fn(t) — f(O)]x < 3]f(t)]x point-wise in I for every n € N. Thus

tim o 1,0 = F@)] = tim / IFa®) = £ dA =0
n—yoo
T
and we conclude that f is Bochner integrable by Corollary 2.4.5. [ ]

Results from the theory of Lebesgue integration do not carry over to the Bochner integral
if there are non-negativity assumptions involved. For instance, there are no analogues of
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Fatou’s lemma or the monotone convergence theorem. Nevertheless we do have the following
analogue of the dominated convergence theorem:

2.5.2 Proposition (Dominated convergence theorem) Let (f,)nen be a sequence of Bochner inte-
grable functions f, : I — X which converges to f : I — X almost everywhere in I.
If there exists a Bochner integrable functions g : I — R such that | f,(t)| < |g(t)| almost
everywhere in I for every n € N, then f is Bochner integrable and we have

tim f 140 = 7O =0 and  tm f f=f £
I

n— oo n— oo
I I

Proof  As every f, is measurable, by Definition 2.1.1 there exists a simple function fn for

every n € N such that || f,(t) — f,(8)] < s almost everywhere in I. Since

[£a(8) = FOI < 1) = Fa®lx + 1£() = F(B)lx,

we infer that lim |f,(t) — f(£)] = 0 almost everywhere in I for the sequence (f)nen of
n—yoo

simple functions. Hence f is measurable.

We observe that every real-valued function | f,(t) — f(¢)] y : I — R{ is measurable by Facts

2.1.2. Therefore | f,(t) — f(t)| x is also measurable in the sense of Lebesgue theory for every
n c N.

Since g(t) is Lebesgue integrable by Remark 2.4.6, the dominated convergence theorem from
Lebesgue theory can be applied by the estimate || f,(t) — f(t)] x < 2]g(t)| almost everywhere
in I for every n € N. We conclude

tim f 14,00 = SO = [ 15,00~ FO] A =0
n—oo |

n—yoo
I
and
lim / (Fa—=£)] < T of [fult) = )]y = 0. .
n—roo " % n—roo T
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3.1

3.1.1

Comparison of Banach Space-Valued Integrals

In this chapter we compare the concepts of Bochner and Riemann type sum integrals intro-
duced in the previous chapters.

McShane Integrability and the Bochner Integral

Lemma Assume that f: I — X is Bochner integrable and let € > 0 be given. Then there
is a gauge w : I — R* and n € (0,¢) such that the following statement holds:

If {(tm, Hpm)} is an w-fine M -system for which > A(H,,) < 7, then
meM

Do)l A(Hm) <

meM
Proof  Let us set

Ej={tel:j—1<|ft)yx <j} for j € N.

Since | f]y is integrable by Facts 2.4.1, the sets £}, j € N are measurable and F; N E; = ()
for i # j, while |J E; = I. Moreover we have

jJEN
SO( - DAE)) < / 1F®)]x
I

JjEN
and therefore
S IAE) /nf M+ SAE) = [1£Ol + 7D < oc
JEN JEN T

Since A is a regular measure on I, for every j € N, there exists a relatively open set G; C I
for which F; C G; and

MGj) < AME )+2%

Together with (3.1), this yields
3G < i) + Y L <
JEN jEN JGN
Assume that €9 > 0 is given. Then there is an r € N such that
Z])\ < €0-
j>r

For t € I there is exactly one j(t) € N such that ¢ € Fj). Let us choose a gauge w on [
such that I N B, (t) € Gy

If {(tm,Hm)} is an w- ﬁne M -system with Z)\( H,,) < 7, then we have t,, € Ejq,.),

Hy, € By, (tm) € Gjg,,) and | f(t )HX < j( m) for every tagged interval (t,,, H,,)
of {(tm, Hm)}. Henceforth we infer

Y AFE)lx AHR) < D ()N Hpn) + > j(tm) A Hin) <

meM meM meM

J(tm)<r J(tm)>r

< TZ)‘(Hm) +Zj(tm)>\(Gj(tm)) <rn-+¢&p.
meM meM
j(tm)ST j(tm)>’r'

Finally, by taking g9 < § and 7 < 57 we obtain the desired result.
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Theorem If f: I — X is Bochner integrable, then f is McShane integrable and

fr=fi. (3.2)

Proof = Suppose that € > 0 is given. Moreover, assume that £ C [ is an arbitrary mea-
surable set. For E¢ =T \ E, we apparently have I = F U EC, and both E and EC are
A-regular sets. In this situation there exist open sets G C R and H C R such that £ C G,
E€ C H and

MG) < MNE)+¢ AH) < ME®) +¢.

Let us define a gauge § : I — RT such that the implications

tEE:Bg(t)(t)ﬂIgG teEC:>B(;(t)(t)ﬂI§H
hold true.
Let {(¢;, J;)} be an arbitrary §-fine M -partition of I; then
S Apt)AL) =D AJ) S MG) < ME) +¢ (3.3)
=

and similarly

D Ape(t)AT) =D M) < AMH) < ME) +e.
e ngC

Further we have

Z]ll(ti)/\(Ji) = Z AJi) = A(I)

€T €T

and also 1; = 1g + 1gc. This yields

Z]lE(ti)/\(Ji) = Z]ll(ti))‘(Ji) - Z]lEC(ti)A(']i) >

€T i€ET €T
> A1) = (AME€) +¢) = A(E) —¢.

This inequality, together with (3.3) and the fact that 7( 1g = A(E), implies
I

D 1p(t)A() — f 1g
f

€T

> Ap(t)A() - )\(E)l <e. (3.4)

€T

As € > 0 was arbitrary, we get f 1 = j( 1g.

T I
Next assume y € X; then the function 1y : I — X belongs to B and

f]lEy:)\(E)y:yf]la

I I
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Starting again with € > 0 and choosing the gauge § as above, we obtain

> 1s(t)yA(i) 7[11” ‘(ZlE fm)

i€T T (AS8Y I
| 1A f LIl <<lulx
ieT T

for every ¢-fine M-partition {(¢;,J;)} of I, due to (3.4). Hence f]lEy = f]lE y. This
I I
immediately yields JI[ g= f g for an arbitrary simple function g : I — X, by the linearity

I I
of both integrals.

Now let ( fq)qu be a sequence of simple functions which determines f € B. Set A, = {t €
I:|f, )y < 1f(#)]x + 1} for ¢ € N and observe that each A, is Lebesgue measurable.

Hence (fy)qen is a sequence of simple functions fq(t) = 14, (t) fq (t) which also determines
f and satisfies the inequality | f,(¢)|y < [ f(t)]x + 1.

Since
/- 1:

lim =0,

r—>00

there exists an NV, € N such that

<e for ¢ > N..

fr-fs

I 1

X

Due to Lemma 3.1.1, there is a gauge wy : I — R and 7 € (0,¢) such that

D 1 m)lx A(Hi) < e

meM

whenever {(t,,, Hp)} is an wy-fine M-system of I, for which Y A\(H,,) < 7.
meM
Moreover, fix an integer ¢ > N. and assume a gauge wo on I such that

S tN) = f fo] = [ £at0A) = of

€T T x liex I

<e€

X

for the simple function f, and every ws-fine M -partition {(¢;, J;)} of I. The function d(t) =
min{w; (¢t),wa(t)} : I — X defines again a gauge on I. Clearly, every d-fine M -partition of

I is also wy-fine and wy-fine. For such a d-fine M-partition {(¢;,J;)} we infer

IONOE S E
i€ Ty
< f(ti))‘(Ji>_ fq(tZ) fq fq f - fl <
ieZT ZEZ(’{ X ; f b'e { ‘{ X
<D FEINT) =D folt) + 2. (3.5)
IS €T X




23 COMPARISON OF BANACH SPACE-VALUED INTEGRALS

We need an estimate for the sum in (3.5). To this aim take « € (0, min {%(1), %}) Then,
due to Lemma 2.2.3, the sequence (fy)qen can be chosen in such a way that there exists a
measurable set Z, C I with A\(Z,) < &, for which the sequence (fq)qen converges to the
function f uniformly on I\ Z,.

For the measurable and A-regular set Z, there is a relatively open set G, C I such that
Zo € G, and A(G,) < a.

Define the closed set GS :== I\ G, C I'\ Z,. Henceforth A\(I \ GS) = A\(G,) < o and there
is an N, € N such that | f,(t) — ()| x < @ for ¢ > o and t € GS.

As f, is a simple function for fixed ¢ > N¢, it is of the form

fq = Z ]lEqm Yqom »

meM

where (E,,, )meon is a finite set of measurable sets E,  C I such thaty,, € X, E, NE; =0
forallm #1, m,l € Mand I =JE,,,.

meM
By A-regularity of the Lebesgue measurable sets E
with F,, C E,, and

qm =

m € M, there exist compact sets Fy,

qm >

ANE, \F, )< —2—  formeM

2[m

Therefore we have

MUE N\ Fo)) <Y ﬁ -1

meM meM

Moreover, we set A, = GSNF, for every m € M. These sets A, are compact and
A, NAg =0 for m#1, m,l € M. Therefore the distance of any two different sets A,,, is
positive, i.e. there is a p > 0 such that if ¢t € A,,,, s € Ay, and m # | for m,l € M, then
dist(t, s) > p.

qm

From
meM meM meM meM meM
= J(Bq, \ Fy, ) U T\ GS),
meM
we derive

)\(I\UAQ"”> S Z)\<EQ7H \Fvn) +)\(I\GOC¢) < % +a< n.
meM meM

Assume now the gauge ¢ on I, defined by
min {dist (¢,J A, ), 0(t)}  if te I\UA,,,
19(.%‘ = meM

meM
o(t) otherwise

and note that By (t) NI C I\ (JA,, aslongastec I\JA,,, because the set I\ |J A,
meM meM meM
is relatively open in I. Hence, for each tagged interval (¢;,J;), t; ¢ |JAq,, of an arbitrary

meM
Y-fine M-partition {(¢;, J;)} of I, that
Ji € By, (t:) N T C T\ |JA,,.,
meM

ie JiNAg, =0 forall meM.
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From

U c\JA4..,

€T meM
tigU Ag,,
meM
we conclude
A7) <A@\ Ag,) <. (3.6)

€T meM
ti¢ U Aer

meM
Now we can split the sum in (3.5) into two parts, one with ¢; € J A4, and the other with
meM
ti g_ﬁ LJAqm7 i.e.

meMN
D () = Fa@)A) = D (F(8:) = FaEDAT) + Y (f(t) = falta)) AT

€T €T €T
ti€ Agp, ti¢U Agm
mem mem

Ift; ¢ UAqm, then A(UJJ;) <n due to (3.6) and
€T

titU Agp,
meM
STt — Falt) ML) <Z||f Mx AT + ST 1ot AT <
€T 1€T €Y
tifUAQm 123 éUA‘hn ti gUAqm
meM meM meM
< @Iy + D)AT) < 25+ < 3e (3.7)
i€
tiEU Ag,,
meM
by Lemma 3.1.1, since A(J Ji) <7
zlegu A(hn
meM
On the other hand, if t; € JA,,, € GS C I\ Z,, then (f,)nen converges to f uniformly
meM

on I\ Z, according to our assumptions above. As N, € N was chosen such that for every
q > No we have | f(t;) — fo(t:)] y < a, we get

STt — £ <ad M) <ad A <e. (3.8)

1€ET X 1€ET €T
ti€U Agp, ti€lU Aqp,
mem mem

Putting together all these estimates (3.5), (3.7) and (3.8), we ultimately obtain

> F(E)A) —j(f

i€T T

< 2e+3c+¢e=06¢

X

for every ¥-fine M-partition {(¢;,.J;)}. This finally implies the existence of ]A f e X and
our desired equality of both integrals in (3.2). [ ]
By Theorem 3.1.2 the inclusion B C M prevails. We will show that the converse inclusion

M C B is not true for an infinite-dimensional Banach space. For this purpose we will need
the concept of unconditional convergence:
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3.1.3 Definition A series >z of elements z; € X, k € N of a Banach space X is said to be

keEN
unconditionally convergent to an s € X if for every € > 0 there is a finite subset &, of N
such that
s — Z TEl <€
kegue,. lx

for all finite subsets £ of N.

From basic analysis we know the Riemann series theorem (cf. i.e. [1], Theorem 8.9) which

states that a series Y xy of elements x; € R, k € N is unconditionally convergent iff > xy
kEN kEN
is absolutely convergent.

The following example shows that this equivalence does not need to be true in infinite-di-
mensional Banach spaces:

3.1.4 Example Fork € Nset z; = (0,...0,+,0,...) € fo. We have lzxle, = 1 and Y lzkll,, =
keN

> % = o0; thus the series is not absolutely convergent.

kEN
On the other hand, the series Y | x) converges unconditionally to s = (1, %, %, e %, .. ) €l
keN
with [[s]7, = 3 77 < 0. «q
kEN

Moreover, the well-known Dvoretzky-Rogers theorem asserts that in every infinite-dimen-
sional Banach space there exists an unconditionally but non-absolutely convergent series (cf.
[7], Theorem 13.38).

3.1.5 Lemma Given ¢ > 0, suppose that (c;, z;);cx Is a finite set of elements ¢; € [0,1], z; € X.

Assume
Dz <e
g€ lx
for each subset 9 of T. Then
Zcizi < eE.
i€T X
Proof ~ With no loss of generality we can assume that 0 < ¢; < ... < ¢ < 1, where

T ={1,2... k}. Then

Zcizi =ci(z1+...+z2)—c1(za+ ...+ 21) +Zcizi =

ies ieT\{1}
=c(z1+...+zk)tealza+ ..o+ 2) —
—cl(zg—&—...—&—zk)—02(23+...+zk)+Zcizi =

i€T\{1,2}

:c1(21+...+zk)+(02—cl)(z2+...+zk)+
+(eg—co)(z3+ ...+ 2k)+ ...+ (& — ch—1)2k-

This gives
ch-zi <¢ ZZZ + (c2 — 1) Zzz + oot (e — o) |2kl x <
€% X €Y X i€T\{1} I x
<e(cr4 (c2—c1)+(c3—c2) +...+ (e — ch—1)) = emaxc; <e. |

€T
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Proposition If X is an infinite-dimensional Banach space then there exists a function
f I — X which is McShane integrable but not Bochner integrable.

Proof  Assume that )~ z; is an unconditionally convergent series for which ) |z;] = oo.
JEN jEN

Such a series exists in every Banach space with dim X = oo due to the Dvoretzky-Rogers

theorem (cf. [7], Theorem 13.38).

Let (K;) en be a sequence of open intervals K; C I such that K;NK; =0 fori # j;4,j € N.

Then we have

D> AK;) < M) < oo
jEN
Additionally, denote K = |JK; and K¢ := I \ K. Apparently the set K C I is open.
JEN
Moreover, set
Zj

PTNE)

for j e N

and note that the series s := Y y,;A(K,;) = >_ z; € X is unconditionally convergent according
JEJ JE€J
to our premise, while ) |y;]  AM(K;) = co.
JEJ
Thus for given € > 0 there is a finite subset €. of N such that

s =Y yiAK;)

< % (3.9)
jeLue,

X

for every finite subset £ of N.
Put N, := max &; for every finite subset Q C N\ {1,...N.} C N\ &, we infer

D UMED| = | Do wAE) =Y MK < (3.10)
jen x ljeaue. jee. X
€
< | D ouAIE) = s+ s = D yME)| < 3
JEQUE, X JEC, X
Moreover, by (3.9) we have
€
5 —Azyj/\(Kj) <5 (3.11)
J<Ne X
Define
Yj ifteK;,jeN
£t) = e
0 if te K*~.

Let n > 0 be such that

3(1+ 2 lysly)
J<N:

and by regularity of the Lebesgue measure on I let G C I be a relatively open set for which
K€ C G and \(G) < A(K®) +1.
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Define a gauge 6 : [ — R™ by

dist(¢, I\ K;) if te K;\G,jeN

min (dist(¢, 1\ K;), dist(¢, 1\ G)) ifte K;,NG,jeN
0= g1\ @) if te G\ K

1 otherwise

and note that By (t) NI € K; whenever t € Kj, j € N, and By (t) NI € G whenever

t € G, in particular for t € K.
Let {(t;, J;)} be a d-fine M-partition of I; then by (3.11) we have

€
> FEIAT) — 5| < 6t D FEIAT) =Yy E)
€T X i€ J<N.
Moreover, denote Ky = J K; and Ky = |J K}, and split the sum
J<Ne j>N.
D L)AL = D F(E)AC)
i€ i€
t;eK

into two parts

D OFEDAT) = D FEIAT) + Y FE)AT) =

€T €T €Y

ti €K N ti €K
=D D FEINT) + DD FEIA
J<Nc €T j>Nc i€¥
ti €K ti €K
=Dy Y AT Dy > A,
j<N. €% j>N: €%
ti€K; ti€K;

Then we obtain

D FEDAT) = D MK <
€T J<N. X
< Zyj(ZMJi)—A(Kj)) ; Zyj<zx<<m)
N Ne x R Ne

The right term

> Z;‘:(J )

X

consists of a finite number of nonzero terms only since ¢; € K; just for i € T and |T] < oo.

Hence, we have

€T
ti€EK;

X

i) =

X

(3.12)

(3.13)

forjeQ={jeN:j>N,JieT: ¢ € K;}. Ast;, € K; implies I; C Kj, the index set Q is

finite. Define ¢; € [0, 1] for j € Q such that

0< Y AJi) = ¢AK).
€T
t;cK;
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Now we can apply Lemma 3.1.5 and get from (3.10) that

Zw(ZA(L)) = Z%(Z)\(Ji)) =D o (wiAK))) <§. (3.14)
j>m zegK x ljea zegK x ljen x

It remains to give an estimate for the remaining term

ze,

X

n (3.13). Hence, by definition of the relatively open set G O K and the gauge J, we obtain

AEN\|J ) = ME) = A7) = AT A7) =

€T €T €T
tiEKj t:EK: tiGKj
=AMU7) = A& = A7) =AU T) - MEC) < MG) = MKC) <
€T €T €T
t; €K tiGKC
We infer
0 <AK;) = > ML) = AE\ L) <MK\ JL) <n forj< N..
€T €T €T
tiEKj tieKj tiEKj
Henceforth
S
5 (200 - 2)| < Sl (M) = ) <03 sl < 5. (319
J<Ne ing‘ X J<Ne QEGTK_ J<Ne

Finally, by combining the estimates (3.12), (3.13), as well as (3.14) and (3.15) we conclude

S FEIACL) -

€T

s <E+E+E<E
6 3 3 '
X

Thus the McShane integral % f exists and

I

ff—s—zyg Kj).

JjEN

On the other hand, since the series ) y;A\(K;) does not converge absolutely according to

jeEN
our premises, we have
/ 1flx = f 1 = 3 Il M) =
JjEeN
and the Bochner integral 7[ f does not exist due to Facts 2.4.1. [ ]

3.1.7 Remark By Proposition 3.1.6 we infer that the inclusion B C M is proper for infinite-dimen-
sional Banach spaces X. The situation is different for the Euclidean space (R, |-]). In fact,
the real-valued McShane integral is equivalent to the Lebesgue integral (cf. [10], Theorem
10.13) and therefore, by Remark 2.4.6, also to the Bochner integral.
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Note that the approach via the McShane integral—as opposed to the Lebesgue or Bochner
theory—does not require any knowledge of measure theory at all, as one could write A([a, b])
for (b — a) in Definition 1.2.1.

3.2 The Integrals of McShane and Henstock-Kurzweil

It is not clear from Definition 1.2.1, how the two types of tagged partitions yield the different
integrals of McShane and Henstock-Kurzweil. Obviously, these two integrals share sev-
eral common properties (cf. Facts 1.3.4). The following example, which is due to Gordon
in [10], consists of a Henstock-Kurzweil integrable function f : [0,1] — R, which is not

Lebesgue/Bochner /McShane integrable.

3.2.1 Example Let s := > a, be a conditionally convergent series and define the sequence
neN
(Kp)nen of non-overlapping compact intervals K, = [27",27"*!] C [0,1]. Note that

UK, = (0,1] and for a > 0 there is an N, € N such that A(K,,) < « for every n > N,.
neN
Furthermore define

f:00,1] — R

T — E ]lKo )2"ay,.
neN

To show that f € HK, assume that M > 1 is a bound for the sequence (a,),en and let a

positive € < 1 be given. Choose N, € N such that |a,| < ¢ and | ax| < ¢ for all n > N..
k>n

Set K. :=[0,1]\ K,, n € N and define a gauge § : [0,1] — R* by

dist(z, K.°) if x e KJ
€
={ — if x =277t
o(x) YEYi if
2~ Ne if z=0.

Clearly, Bs(,(x) N[0,1] € K, whenever z € K7, n € N.

Now suppose that {(t;,J;)} is a d-fine K-partition of [0,1]. Due to the last statement in
Facts 1.3.4, we can assume that each tag t; occurs as an endpoint of the corresponding
interval J; with no loss of generalization. Therefore, 0 must be a tag by choice of the gauge
0. Moreover, if t; € K7 then J; C K7, and if ¢; = 27 7+1 then Jj CKyorJj CKpyr. As
a result each tagged interval (¢;,J;) with ¢; # 0 is contained in a certain K,.

Apparently, there is a tagged interval (0, [0, 8]) € {(;,J;)} with 0 < 8 < 2=N=_ by choice of
the gauge §. Hence there is exactly one integer ¢ > N such that 3 € 279,279 = K.
For each n € N, 1 <n < g, let {(t]',J]") : j € Jn} be the subset of {(;,J;)} that has
intervals in K,.

Supposed that 1 < n < ¢, both 27" and 27 """ are tags of the K-system {@7,J7) :j € 3Jn}
as each tag ¢]' occurs as an endpoint of the corresponding interval J;*, according to our
assumption above. Moreover f(27") = f(27"*1) = 0 by choice of f.

Now we have

S 2mA(p) = (ZA ) ZA(Jjn)) >
JEIn JEIn tref{27", 27"y
trA2T"
S R
>2n(27m —6(27") — 6(27"H)) > 2 (27 —20(27 M) =1 — 23;4

for every K-system {(t]',J]") : j € Jn}.
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According to this estimate, we can choose k,, 1 = M < k, < 1 such that

T2
Zf tAJ]) =2"a, (Z)\ (J7) Z)\(Jj")) = kpap for every n < q.
JEIn JEIn trefam, 27ty

It follows that

2e |an| 2¢

:]_— Ay
(1= k) anl < S0 < =2

S FEMNI) - an

j637l

for n < g. Thus

D FEDAT) —

IPIIUNEOED SIS PPN =

JEJ n<q jE€JIn n<q n>q
< S I ] + [ | <
n<qlj€In n>q

2e
< Z2n+|aq|+5<46

n<q

Hence f is Henstock-Kurzweil integrable on [0, 1] and 7—% f=s.
(0,1]
On the other hand, note that f is not Lebesgue Integrable on [0, 1] because

Flax=>" [ If1dA = fan| =
/ /

[0,1] neN neN

By Remark 2.4.6 and Remark 3.1.7 we conclude that f is neither Bochner nor McShane
integrable.
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