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Abstract in English
This thesis is a careful and detailed introduction to the basic concepts of inner
model theory. We start with developing the construction of ultrapowers and
iteration trees. The first main result is the (ω1 + 1)-iterability of nice iteration
trees and weak iterability. We then discuss genericity iterations and some useful
variants. They are used in the last main result which is that L(R) is a model of
the Axiom of Determinacy.

Abstract auf Deutsch
Diese Arbeit ist eine sorgfältige und detailreiche Einführung in die Grundkonzepte
der inneren Modelltheorie. Wir beginnen mit der Entwicklung der Konstruktion
von Ultrapotenzen und Iterationsbäumen. Das erste Hauptresultat ist die (ω1+1)-
Iterierbarkeit von schönen Iterationsbäumen und die schwache Iterierbarkeit.
Anschließend diskutieren wir Generizitätsiterationen und nützliche Varianten
davon. Diese werden im letzen Hauptresultat verwendet. Dort zeigen wir, dass
L(R) ein Modell des Axioms der Determiniertheit ist.
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1 Introduction

This thesis is a report of my first steps in inner model theory. It can be a good
source for someone who is interested in inner model theory and wants to start
with basic concepts. I included a lot of details, so it is a slow start into the topic.

Organization of the thesis. Section 2 is about introducing the tools. We
start with ultrafilters and how to build ultrapowers from ultrafilters in chapter
2.1. We can take an ultrapower of an ultrapower, which leads to linear iterations.
Those are discussed in chapter 2.2. Extenders are introduced in chapter 2.3.
They are a generalization of ultrafilters and can also be used to build ultrapowers.
We can form linear iterations using extenders, see chapter 2.4. Chapter 2.5
consists of three parts. In the first part, we define iteration trees and discuss
some basic facts. The second part is about (ω + 1)-iterability of nice iteration
trees. The third part is about weak iterability. The last chapter 2.6 introduces
Woodin cardinals and its characterization in terms of extenders. In section 3 we
use iteration trees. Chapter 3.1 is about a method called genericity iteration.
We use this method in chapter 3.2, where we prove that L(R) is a model of the
Axiom of Determinacy.

Acknowledgement. I am very thankful for Sandra’s support. She is very
encouraging and motivating. She organized a desk for me at the TU Wien,
included me into her team and creates a great working environment. I had the
chance to be part of the Young Set Theory Workshop 2023 in Münster, the TU
Wien Mini Workshop in Set Theory, the Sixth workshop on generalised Baire
spaces at TU Wien and the ESI Set Theory Workshop 2022 in Vienna. I am
also very thankful for the help of my co-supervisor Takehiko Gappo. He invested
a lot of time for my thesis. Also Andreas Lietz and Lukas Koschat helped me
out more than one time. TU Wien gave me a position for the last 4 months. It
was within the scope of encouraging female master students in mathematics to
get to know the academic world and get a taste of an academic career. The last
months were very intense and I am looking forward to starting my PHD with
Sandra in this great environment.

Conventions and Notation. Every elementary embedding that appears is
not the identity map. Let ZFC− be the theory obtained by removing the Axiom
of Power Set from ZFC and strengthening the Axiom of Replacement to the
Axiom of Collection1. M,N are always models of ZFC− which are transitive

1Read more about why it is important to strengthen Replacement in [GHJ15].
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and therefore wellfounded, i.e. there is no strictly ∈-decreasing sequence in V

consisting of elements of M . κ is always a cardinal.
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2 Ultrapowers and Iteration Trees

This chapter is based on Steel’s paper An Introduction to Iterated Ultrapowers
[Ste15]. I also used Jech’s book Set Theory [Jec03] and Kanamori’s book The
Higher Infinite: Large Cardinals in Set Theory from Their Beginnings [Kan08]
as references. Kasum’s Master’s Thesis Projective Determinacy [Kas21] was very
helpful for figuring out details.

2.1 Ultrapowers from Ultrafilters

Definition 2.1.1. U ⊆ P(κ)M is a filter on κ for M iff the following hold:

• ∅ ̸∈ U , κ ∈ U ,

• A ∈ U,B ∈ P(κ)M , A ⊆ B ⇒ B ∈ U and

• F0, F1 ∈ U ⇒ F0 ∩ F1 ∈ U .

U is an ultrafilter on κ for M iff it additionally satisfies

• A ∈ P(κ)M ⇒ A ∈ U or κ \A ∈ U .

We say that a property holds for U-almost every α (U-a.e. α for short) iff
the set of α < κ which have the property is in U . The critical point of U is
crit(U) := κ.

Definition 2.1.2. Let U be an ultrafilter on κ for M .

• U is nonprincipal iff U doesn’t contain singletons.

• U is M-normal iff for each function f ∈ M with dom(f) = κ and f(α) < α

for U -almost every α, there is some β < κ such that f(α) = β for U -almost
every α.

• U is M-κ-complete iff for each sequence ⟨Aα | a < β⟩ ∈ M of length
β < κ, where Aα ∈ U for each α < β, we have

⋂
α<β Aα ∈ U .

From now on, let U be a nonprincipal ultrafilter on κ for M .

Lemma 2.1.3. Let j : M → N be an elementary embedding. Let κ := crit(j),
i.e. κ is the least ordinal α such that j(α) ̸= α. Define Uj ⊆ P(κ)M by setting

A ∈ Uj iff κ ∈ j(A)

for each A ∈ P(κ)M . Then Uj is a nonprincipal ultrafilter on κ for M which is
M -κ-complete and M -normal. We call Uj the ultrafilter derived from j.
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Proof. Uj is an ultrafilter: j(∅) = ∅ ̸∋ κ, so ∅ ̸∈ Uj and κ = crit(j), so κ ∈ j(κ)
hence κ ∈ Uj . If A ∈ Uj and A ⊆ B ∈ P(κ)M , then κ ∈ j(A) ⊆ j(B) and
thus B ∈ Uj . We also have j(A0) ∩ j(A1) = j(A0 ∩ A1), so A0, A1 ∈ Uj

implies that A0 ∩ A1 ∈ Uj . Finally Uj is an ultrafilter since κ ̸∈ j(A) implies
κ ∈ j(κ) \ j(A) = j(κ \A).
Uj is nonprincipal: For every α < κ we have j({α}) = {j(α)} = {α} ̸∋ κ.
Uj is M -κ-complete: Let ⟨Aα | α < β⟩ ∈ M with β < κ and Aα ∈ Uj for each
α < β. Then

j(
⋂

α<β

Aα) =
⋂

α<β

j(Aα)

since β < crit(j) and we have κ ∈ j(Aα) for each α < β. So

κ ∈ j(
⋂

α<β

Aα) and
⋂

α<β

Aα ∈ Uj .

Uj is M -normal: Let f ∈ M with dom(f) = κ and

A := {α < κ | f(α) < α} ∈ Uj .

Set β := j(f)(κ). Then β < κ since

κ ∈ j(A) = {α < j(κ) | j(f)(α) < α}.

Also
κ ∈ {α < j(κ) | j(f)(α) = β} = j({α < κ | f(α) = β}).

Therefore {α < κ | f(α) = β} ∈ Uj .

Definition 2.1.4. Define an equivalence relation on the functions of M with
domain κ by:

f ∼ g iff {α < κ | f(α) = g(α)} ∈ U

and denote the equivalence class of f by [f ] or [f ]U if we want to emphasize the
ultrafilter. We define another relation on the equivalence classes:

[f ]∈̃[g] iff {α < κ | f(α) ∈ g(α)} ∈ U.

Now we set

Ult(M,U) := ({[f ] | f function in M,dom(f) = κ}, ∈̃)

and define the map

iMU : M → Ult(M,U), x 7→ [constx],
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where constx : κ → M,α 7→ x. We collapse the wellfounded part of Ult(M,U).
So if (Ult(M,U), ∈̃) is wellfounded then this yields a transitive model. We denote
it by (Ult(M,U),∈) and call it the ultrapower of M by U .

Remark 2.1.5. Ult(M,U) has the same cardinality as M . In particular, if M
is countable then Ult(M,U) is also countable.

Lemma 2.1.6. If U is M -κ-complete then U does not contain bounded subsets
of κ. In particular, the interval (β, κ) := {α < κ | β < α} ∈ U for each β < κ.

Proof. It suffices to show that β ̸∈ U for each β < κ. Fix some β < κ. Note
that κ \ {α} ∈ U for each α < β since U is nonprincipal. Therefore

κ \ β = κ \
⋃

α<β

{α} =
⋂

α<β

κ \ {α} ∈ U

by M -κ-completeness.

Lemma 2.1.7. (Properties of Ult(M,U)) Assume that (Ult(M,U), ∈̃) is well-
founded. Let f, fα be functions in M with domain κ for each α < κ. Denote the
identity function on κ by id and i := iMU .

(i). Łoś Theorem: Let φ(v0, . . . , vn) be an L∈-formula and n < ω. Then

Ult(M,U) |= φ([f0], . . . , [fn]) iff

M |= φ(f0(α), . . . , fn(α)) for U -a.e. α.

(ii). i is elementary. In particular Ult(M,U) |= ZFC−.

(iii). If U is M -κ-complete then κ = crit(i).

(iv). [f ] = i(f)([id]).

(v). Let A ∈ P(κ)M . Then A ∈ U iff [id] ∈ i(A).

(vi). If U is M -normal and M -κ-complete then [id] = κ.

(vii). If ⟨fα | α < κ⟩ ∈ M then ⟨[fα] | α < κ⟩ ∈ Ult(M,U).

Proof. (i). We show this by induction on the complexity of φ. If φ = (v0 ◦ v1)
with variables v0 and v1 and ◦ ∈ {=,∈} then

Ult(M,U) |= φ([f0], [f1]) iff {α < κ | M |= f0(α) ◦ f1(α)} ∈ U

by definition of Ult(M,U). The cases φ = ¬ψ,ψ1 ∧ψ2, ψ1 ∨ψ2 follow from
the ultrafilterness of U . We have to be a little bit more careful in the case
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φ = ∃ y ψ(y). We abbreviate [f0], . . . , [fn] by ⃗[f ] and f0(α), . . . , fn(α) by
⃗f(α). We have that

Ult(M,U) |= ∃ y ψ( ⃗[f ], y)

⇔ there is g ∈ M such that Ult(M,U) |= ψ( ⃗[f ], [g])

⇔ there is g ∈ M such that {α < κ | M |= ψ( ⃗f(α), g(α))} ∈ U

⇔ {α < κ | M |= ∃ y ψ( ⃗f(α), y)} ∈ U.

Here, the forward direction in the last implication is obvious. For the other
direction, we need to find a function g ∈ M with dom(g) = κ such that
g(α) is a witness for M |= ∃ y φ( ⃗f(α), y) for U -almost every α. This is the
point where we use the Axiom of Collection and the Axiom of Choice in
M . In order to see that the witnesses for M |= ∃ y φ( ⃗f(α), y) form a set,
we use the Axiom of Collection2. Then we can use the Axiom of Choice to
find a g with the desired property.

(ii). Let a1, . . . , an ∈ M and suppose that M |= φ(a0, . . . , an) for some L∈-
formula φ(v0, . . . , vn) with variables v0, . . . , vn. Then

{α < κ | M |= φ(consta0(α), . . . , constan
(α))} = κ ∈ U

and by Łoś Theorem

Ult(M,U) |= φ(i(a0), . . . , i(an))

since i(ak) = [constak
] for each k ≤ n.

(iii). We claim that i(α) = α for each α < κ. Suppose not and fix γ < κ minimal
with γ < i(γ). Let f be such that γ = [f ]. Then

A := {α < κ | f(α) < γ} = {α < κ | f(α) < constγ(α)} ∈ U.

This implies that⋂
β<γ

κ \ {α < κ | f(α) = β} = κ \A ̸∈ U.

So by M -κ-completeness, there is some β < γ with {α < κ | f(α) = β} ∈ U .
Hence γ = [f ] = i(β) = β by the minimality of γ and this is a contradiction.

2Here, we need really need the Axiom of Collection rather than the Axiom of Replacement.
Read more about this issue in [GHJ15].
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For each α < κ we have

{x < κ | constα(x) < id(x)} = (α, κ) ∈ U

by Lemma 2.1.6. So α = i(α) < [id] for each α < κ and therefore κ ≤ [id].
Since {α < κ | id(α) < constκ(α)} = κ ∈ U , [id] < i(κ). Hence κ < i(κ).

(iv). i(f)([id]) = [constf ]([id]) = [f ◦ id] = [f ].

(v). We have

A = {α < κ | α ∈ A} = {α < κ | id(α) ∈ constA(α)}.

So by Łoś Theorem,

A ∈ U ⇔ Ult(M,U) |= [id] ∈ [constA] = i(A).

(vi). “⊇” Let β < κ. From (iii), we know that β = i(β) = [constβ ]. So

{α < κ | constβ(α) ∈ id(α)} = {α < κ | β < α} = (β, κ) ∈ U

by 2.1.6. Then β ∈ [id].
“⊆” Let [f ] ∈ [id]. Then {α < κ | f(α) < id(α)} ∈ U . Since we assume
that U is M -normal, there is β < κ such that

U ∋ {α < κ | f(α) = β} = {α < κ | f(α) = constβ(α)}.

So by Łoś Theorem, we have [f ] = i(β) = β ∈ κ.

(vii). We have

⟨i(fα) | α < κ⟩ = i(⟨fα | α < κ⟩) ↾ κ ∈ Ult(M,U)

and [id] ∈ Ult(M,U). So by (iv), we have

⟨[fα] | α < κ⟩ = ⟨i(fα)([id]) | α < κ⟩ ∈ Ult(M,U).

Corollary 2.1.8. If U is M-normal and M-κ-complete then the ultrafilter
derived from iMU is U itself.

Proof. Let A ∈ P(κ)M . We saw that crit(iMU ) = [id] in Lemma 2.1.7 and by
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definition iMU (A) = [constA]. Therefore

A ∈ UiM
U

iff [id] ∈ [constA] iff {α < κ | id(α) ∈ constA(α)} ∈ U

and {α < κ | id(α) ∈ constA(α)} = A.

Let j : M → N be elementary. We cannot expect to get j back from Uj , but
we can capture part of the information.

Lemma 2.1.9. Let j : M → N be an elementary embedding with crit(j) = κ.

Then k : Ult(M,Uj) → N, [f ] 7→ j(f)(κ) is an elementary embedding such that

M N

Ult(M, Uj)

j

i
k

commutes for i := iMUj
and k ↾ P(κ)Ult(M,Uj) = id.

Proof. k is welldefined: Let f, g ∈ M with domain κ. Then

[f ] = [g] ⇔ {α < κ | f(α) = g(α)} ∈ Uj

⇔ κ ∈ j({α < κ | f(α) = g(α)}) = {α < j(κ) | j(f)(α) = j(g)(α)}

⇔ j(f)(κ) = j(g)(κ).

So k does not depend on the representatives of the equivalence classes.
k is elementary: Let φ be a formula and assume that φ has only one free variable
for simplicity. Let [f ] ∈ Ult(M,Uj). Then

Ult(M,Uj) |= φ([f ])

⇔ {α < κ | M |= φ(f(α))} ∈ Uj

⇔ κ ∈ j({α < κ | M |= φ(f(α))}) = {α < j(κ) | N |= φ(j(f)(α))}

⇔ N |= φ(j(f)(κ)) ⇔ N |= φ(k([f ])).

The diagram commutes: For a ∈ M , we have that

k(i(a)) = k([consta]) = j(consta)(κ) = constj(a)(κ) = j(a).

k ↾ P(κ)Ult(M,Uj) = id: Uj is M -κ-complete by Lemma 2.1.3 hence crit(i) = κ

by Lemma 2.1.7. crit(j) = κ so crit(k) ≥ κ. Uj is M -normal therefore

k(κ) = k([id]) = j(id)(κ) = κ.
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Let A ∈ P(κ)Ult(M,Uj). Then

Ult(M,Uj) |= A ⊆ κ iff N |= k(A) ⊆ k(κ) = κ

by the elementarity of k. Now α ∈ A iff α = k(α) ∈ k(A) for each α < κ. Hence
k(A) = A.

Corollary 2.1.10. Let j : M → N be elementary with κ := crit(j). Then
Ult(M,Uj) is wellfounded.

Proof. Follows directly from the existence of the elementary embedding

k : Ult(M,Uj) → N

which we discussed in Lemma 2.1.9 and the wellfoundedness of N .

Definition 2.1.11. U is ω1-complete iff An ∈ U for each n < ω implies⋂
n<ω An ̸= ∅.

Remark 2.1.12. Note that ω1-completeness is the same as V -ω1-completeness.
Clearly V -ω1-completeness implies ω1-completeness. Assume that U is ω1-
complete. Let ⟨Aα | α < β⟩ ∈ V , where β < ω1, and Aα ∈ U for each α < β.
Then there is a surjection φ : ω → β. Set A′

n := Aφ(n) for each n < ω. We
have that

⋂
α<β Aα =

⋂
n<ω Aφ(n) =

⋂
n<ω A

′
n ̸= ∅ since we assumed that U is

ω1-complete.

Lemma 2.1.13. If U is ω1-complete then Ult(M,U) is wellfounded.

Proof. Suppose that Ult(M,U) is not wellfounded. Then there are [fn] ∈
Ult(M,U) for each n < ω such that [fn] ∋ [fn+1] for each n < ω. So we
have that An := {α < κ | fn(α) ∋ fn+1(α)} ∈ U for each n < ω. By the
ω1-completeness there is an α ∈

⋂
n<ω An. But then

f0(α) ∋ · · · ∋ fn(α) ∋ fn+1(α) ∋ . . .

contradicts the Axiom of Foundation in V .

Lemma 2.1.14. Assume U ∈ M . Then the following are equivalent:

(i). U is ω1-complete and

(ii). for every countable, transitive N and every elementary map π : N → M

with π(W ) = U there is an elementary embedding σ : Ult(N,W ) → M

9



such that
M

N Ult(N, W )

π

iN
W

σ

commutes. The map σ is called π-realization.

Proof. “(i) ⇒ (ii)”: Fix some N,W and π as in the statement. Note that iNW is
meaningful because W is a nonprincipal ultrafilter on N by the elementarity of
π. Set κ′ := crit(W ). Then κ = π(κ′).

⋂
B∈W π(B) is a countable intersection

since N is transitive and countable. So by the ω1-completeness of U , there is
some γ ∈

⋂
B∈W π(B). Define

σ : Ult(N,W ) → M, [f ] 7→ π(f)(γ).

This is welldefined since [f ] = [g] implies

B := {α < κ′ | f(α) = g(α)} ∈ W.

Hence π(f)(γ) = π(g)(γ) because γ ∈ π(B). In order to show that σ is elemen-
tary, let [f1], . . . , [fn] ∈ Ult(N,W ) and let φ be an L∈-formula such that

Ult(N,W ) |= φ([f1], . . . , [fn]).

Then B := {α < κ′ | N |= φ(f1(α), . . . , fn(α))} ∈ W.

Since γ ∈ π(B) and σ([fl]) = π(fl)(γ) for l = 1, . . . , n, we have that

M |= φ(σ([f1]), . . . , σ([fn])).

The diagram commutes since every x ∈ N satisfies

σ(iNW (x)) = σ([constx]) = π(constx)(γ) = π(x).

“(ii) ⇒ (i)”: Let An ∈ U for every n < ω. Set

N := mos(HullM ({U} ∪ {An | n < ω}))

and let π : N → M be the anti-collapse embedding34. Find W,κ′, Bn ∈ N such
3HullM ({U} ∪ {An | n < ω}) is the Skolem Hull of {U} ∪ {An | n < ω} in M which is a

countable elementary submodel of M .
4mos stands for Mostowski collapse which turns a wellfounded model into an isomorphic
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that π(W ) = U , π(κ′) = κ and π(Bn) = An for each n < ω. Then N and W

satisfy the conditions of (ii). So there is an elementary map

σ : Ult(N,W ) → M such that σ ◦ iNW = π.

We claim that σ([id]) ∈ π(B) for every B ∈ W . Then, in particular,

σ([id]) ∈ π(Bn) = An for each n < ω

and therefore
⋂

n<ω An ̸= ∅. Let χB be the characteristic function of B as
a subset of κ′ in N and χπ(B) the one for π(B) ⊆ κ in M . Observe that
χπ(B) = π(χB) = σ(iNW (χB)) since π is elementary and the diagram commutes.
Now we have

χπ(B)(σ([id])) = σ(iNW (χB))(σ([id])) by the observation

= σ
(
iNW (χB)([id])

)
since σ is elementary

= σ([χB ]) by 2.1.7(iv)

= σ([const1]) since [χB ] = [const1] is witnessed by B ∈ W

= σ(iNW (1)) = π(1) = 1 since the diagram commutes.

This proves the claim and concludes the proof.

A proof of the next lemma can be found in Chapter 10 in [Jec03].

Lemma. Every measurable cardinal is inaccessible.

Lemma 2.1.15. Let U be M -κ-complete. Then U ̸∈ Ult(M,U).

Proof. U witnesses that κ is measurable in M . Since i := iMU is elementary
we have that i(κ) is measurable and therefore inaccessible in Ult(M,U). If
U ∈ Ult(M,U) then also the function

Φ : κκ → Ult(M,U), f 7→ [f ]

is an element of Ult(M,U). We claim that im(Φ) = i(κ).
“⊆”: For f ∈ κκ we have that

{α < κ | f(α) < constκ(α)} = {α < κ | f(α) < κ} = κ ∈ U

so [f ] ∈ i(κ).
“⊇”: Let [g] ∈ i(κ). Then A := {α < κ | g(α) ∈ constκ(α)} ∈ U. Define f ∈ κκ

transitive model.
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by

f(α) :=

g(α), α ∈ A

0, α ∈ κ \A.

Then [g] = [f ] since {α < κ | g(α) = f(α)} ⊇ A ∈ U . So [g] ∈ im(Φ).
But now Ult(M,U) |= κκ ≥ im(Φ) = i(κ) > κ, which is a contradiction to

i(κ) being inaccessible in Ult(M,U).

2.2 Iterated Ultrapowers

In Chapter 2.1 we discussed how to extend a model by an ultrafilter. Since this
extension is a model itself, we can use the same method again and so on. But
we saw in the first chapter that the ultrafilter U is never in Ult(M,U), so we
can’t use the same ultrafilter again.

Definition 2.2.1. Let Y ⊆ M . We say that (M,Y ) is an amenable structure
iff x ∩ Y ∈ M for each x ∈ M . An M-nuf U is a nonprincipal ultrafilter for M
which is M -normal and M -crit(U)-complete. A pair (M,U) is called a good
pair iff (M,U) is an amenable structure and every element of U is an M -nuf.

Definition 2.2.2. Let U be an M -nuf and let (M,Y ) be an amenable structure.
The ultrapower of (M,Y ) by U is defined as

Ult((M,Y ), U) := (Ult(M,U), YU ),

where [f ]U ∈ YU iff {α < κ | f(α) ∈ Y } ∈ U

for each function f ∈ M with dom(f) = κ.

Remark 2.2.3. Note that asking for {α < κ | f(α) ∈ Y } ∈ U in Definition
2.2.2 makes sense since

{α < κ | f(α) ∈ Y } = f−1[ran(f) ∩ Y ].

f−1[ran(f) ∩ Y ] ∈ P(κ)M since f ∈ M and ran(f) ∩ Y ∈ M because (M,Y ) is
an amenable structure.

Lemma 2.2.4. Let U be an M-nuf and let (M,Y ) be an amenable struc-
ture. Assume that (Ult(M,U), ∈̃) is wellfounded. Then Ult((M,Y ), U) =
(Ult(M,U), YU ) is an amenable structure.

Proof. Fix some x ∈ Ult(M,U). We need to show that x∩YU ∈ Ult(M,U). Set
i := iMU .

We claim that there is a transitive y ∈ M such that x ∈ i(y). Pick any f ∈ M

with [f ] = x and set y := trcl({ran(f)}). This is transitive by definition and

12



y ∈ M . We have that {α < κ | M |= f(α) ∈ y} = κ ∈ U . So by Łoś Theorem,
Ult(M,U) |= [f ] ∈ [consty] = i(y).

(M,Y ) is amenable by the assumption, hence there is some u ∈ M such that
u = y ∩ Y . This implies that

i(u) = i(y) ∩ Y

because i : (M,Y ) → (Ult(M,U), YU ) is elementary. Note that i(y) is transitive
since y is transitive, so x ∈ i(y) implies that x ⊆ i(y). We compute that

x ∩ YU =
(
x ∩ i(y)

)
∩ YU = x ∩

(
i(y) ∩ YU

)
= x ∩ i(u).

Hence x ∩ YU ∈ Ult(M,U).

From now on, let (M,U) be a good pair.

Lemma 2.2.5. Let U be an M-nuf and assume that (Ult(M,U), ∈̃) is well-
founded. Then Ult((M,U), U) is a good pair.

Proof. We know that Ult((M,U), U) is an amenable structure from Lemma 2.2.4.
We need to show that every element of UU is an Ult(M,U)-nuf. Let [W ]U ∈ UU .
Then {α < κ | W (α) ∈ U} ∈ U . Since every element of U is an M -nuf, we have
that W (α) is an M -nuf for U -a.e. α. Then Łoś Theorem implies that [W ]U is
an Ult(M,U)-nuf.

Definition 2.2.6. Let β be some ordinal. We call I = ⟨Uα | α < β⟩ a linear
iteration of (M,U) of length β iff there are ⟨Mα,Uα | α < β⟩ and elementary
embeddings ⟨iα,γ : Mα → Mγ | α < γ < β⟩ such that

(i). M0 = M and U0 = U ,

(ii). for each α < β:
Mα is a transitive model of ZFC− and Uα ∈ Uα,

(iii). for successors α+ 1 < β:
(Mα+1,Uα+1) = Ult((Mα,Uα), Uα),
iα,α+1 = iMα

Uα
and

iγ,α+1 = iα,α+1 ◦ iγ,α for each γ < α,

(iv). for limit ordinals λ < β:
(Mλ,Uλ) is the direct limit of ⟨(Mα,Uα), iα,γ | α < γ < λ⟩ and iα,λ are the
direct limit embeddings.

13



We also write U I
α,M

I
α, i

I
α,γ and κI

α for Uα,Mα, iα,γ and crit(Uα). We associate
the “last model” M I

∞. If β is a limit ordinal, then

M I
∞ is defined as the direct limit of ⟨M I

α, i
I
α,γ | α < γ < β⟩

with direct limit embeddings iIα,∞ for each α < β.

If β = β′ + 1, then M I
∞ := M I

β′ .

Remark 2.2.7. • (M,U) is a good pair and U0 ∈ U . In particular, U0 is
an M -nuf. Lemma 2.2.5 yields that (M1,U1) is a good pair. Therefore
U1 ∈ U1 is an M1-nuf and (M2,U2) = Ult((M1,U1), U1) is welldefined. The
same applies to every successor step.

• We will sometimes suppress the Uα’s in favor of the readability.

• The models ⟨Mα | α < β⟩ and elementary embeddings ⟨iα,γ | α < γ < β⟩
from Definition 2.2.6 are unique. Therefore we call them the models and
the elementary embeddings of I.

• If β ≤ ω1, then every Mα with α < β has the same cardinality as M .

Definition 2.2.8. Let θ be an ordinal. We call (M,U) <θ-linearly iterable5

iff M I
∞ is wellfounded for every linear iteration I of (M,U) of length less than θ.

If (M,U) is <θ-linearly iterable for every ordinal θ then we call (M,U) linearly
iterable.

The goal for the rest of this chapter is the following theorem:

Theorem 2.2.9. If every U ∈ U is ω1-complete then (M,U) is linearly iterable.

The proof uses a characterization of linear iterability which is discussed in
Lemma 2.2.12. The following lemma is important for the proof of Lemma 2.2.12.
It shows how to pull back linear iterability through an elementary embedding.

Definition 2.2.10. Let (M,U) and (N,W) be amenable structures. We write
“π : (N,W) → (M,U) is an elementary embedding ” iff π : N → M is an
elementary embedding and in addition x ∈ W ⇔ π(x) ∈ U for each x ∈ N .

Lemma 2.2.11. (Pull Back Linear Iterability) Let (M,U) be <θ-linearly iterable
for some ordinal θ. Let (N,W) be a good pair and let π : (N,W) → (M,U) be
an elementary map. Then (N,W) is <θ-linearly iterable, too.

Proof. Let β < θ and fix some linear iteration J = ⟨Wα | α < β⟩ of (N,W)
with models ⟨Nα | α < β⟩ and embeddings ⟨jα,γ | α < γ < β⟩. We recursively

5Usually this is called θ-linearly iterable but I prefer this version because it is less ambiguous.
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construct good pairs (Mα,Uα) and elementary maps πα : (Nα,Wα) → (Mα,Uα)
for each α < β such that

• I := ⟨Uα | α < β⟩ is a linear iteration of (M,U), where Uα := πα(Wα) for
each α < β, and

• πα+1 ◦ jα,α+1 = iα,α+1 ◦ πα for each α with α+ 1 < β.

Assume that we already constructed πα for each α < β. We define an
elementary map π∞ : NJ

∞ → M I
∞. If β = β′ + 1 for some ordinal β′ then π∞ is

constructed as in the successor step below as πβ′+1. If β is a limit ordinal then
π∞ is constructed as in the limit step below. In both cases π∞ is an elementary
map. We know that M∞ is wellfounded because (M,U) is <θ-linearly iterable.
Hence N∞ is wellfounded, too. We have the following diagram:

M M1 . . . Mα Mα+1 . . . M∞

N N1 . . . Nα Nα+1 . . . N∞

i0,1 i1,2 iα,α+1

π

j0,1

π1

j1,2

πα

jα,α+1

πα+1 π∞

Let’s build the recursion.
α = 0:

Set (M0,U0) := (M,U)

and π0 := π.

α+ 1 < β:
Set (Mα+1,Uα+1) := Ult((Mα,Uα), Uα)

and define πα+1 : Nα+1 → Mα+1 by [f ]Wα
7→ [πα(f)]Uα

.

We need to show that this is welldefined. Pick f, g ∈ Nα such that [f ]Wα
= [g]Wα

,
i.e. {x < κJ

α | f(x) = g(x)} ∈ Wα. The elementarity of πα implies that

{x < κI
α | πα(f)(x) = πα(g)(x)}

= πα

(
{x < κJ

α | f(x) = g(x)}
)

∈ πα(Wα) = Uα.

Hence [πα(f)]Uα
= [πα(g)]Uα

. The elementarity of πα+1 follows from Łoś
Theorem and the elementarity of πα. We claim that πα+1 : (Nα+1,Wα+1) →

15



(Mα+1,Uα+1) is elementary. In order to show that, pick [g]Wα
∈ Nα+1. Then

[g]Wα
∈ Wα+1 = (Wα)Wα

⇔ {x < κJ
α | g(x) ∈ Wα} ∈ Wα

⇔ πα({x < κJ
α | g(x) ∈ Wα}) ∈ πα(Wα)

⇔ {x < κI
α | πα(g)(x) ∈ Uα} ∈ Uα

⇔ πα+1([g]Wα
) = [πα(g)]Uα

∈ (Uα)Uα
= Uα+1.

The definition of πα+1 directly implies that πα+1 ◦ jα,α+1 = iα,α+1 ◦ πα.
γ limit ordinal: Let (Mγ ,Uγ) be the direct limit of ⟨(Mα,Uα) | α < γ⟩. For
x ∈ Nγ , there is some α < γ and x′ ∈ Nα such that jα,γ(x′) = x. Set

πγ(x) := iα,γ(πα(x′)).

It is easy to check that (Mγ ,Uγ) that πγ : (Nγ ,Wγ) → (Mγ ,Uγ) is an elementary
map which commutes with the j′s and i′s.

Lemma 2.2.12. (Characterization of Linear Iterability) The following are
equivalent

(i). (M,U) is <ω1-linearly iterable.

(ii). If (N,W) is a good pair, N is countable and transitive and π : (N,W) →
(M,U) is an elementary map. Then (N,W) is <ω1-linearly iterable.

(iii). (M,U) is linearly iterable.

Proof. “(i) ⇒ (ii)” is a special case of Lemma 2.2.11.
“(ii) ⇒ (iii)” Suppose that (M,U) is not linearly iterable. Fix some linear
iteration I such that M I

∞ is illfounded. By the Reflection Principle, there is an
ordinal θ such that Vθ |= “M I

∞ is illfounded”. Set

H := mos(HullVθ
({M,U , I}))

and let σ : H → Vθ be the anti-collapsing embedding. Then there are N,W, J ∈
H such that σ(N) = M,σ(W) = U and σ(J) = I. Since H is countable and
transitive, we know that N is countable and transitive, J is of length < ω1 and
π := σ ↾ (N,W) : (N,W) → (M,U) is a welldefined elementary embedding. So
by the assumption, (N,W) is <ω1-linearly iterable and NJ

∞ is wellfounded. But
on the other hand, the elementarity of σ implies

H |= “NJ
∞ is illfounded”.
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“NJ
∞ is illfounded” is a Σ1 statement and therefore upwards absolute. Hence we

have that NJ
∞ is illfounded which is a contradiction to the above.

“(iii) ⇒ (i)” follows from the definition.

We have all the ingredients to prove Theorem 2.2.9.

Proof of Theorem 2.2.9. Fix some good pair (N,W) with N countable and
transitive and an elementary map π : (N,W) → (M,U). By Lemma 2.2.12, it
is enough to show that (N,W) is <ω1-linearly iterable. Fix a countable linear
iteration J = ⟨Wα | α < β⟩ for β < ω1 on (N,W) with associated models
⟨Nα | α < β⟩ and associated embeddings ⟨jα,γ | α < γ < β⟩. We need to show
that N∞ is wellfounded. We recursively define elementary embeddings

⟨πα : (Nα,Wα) → (M,U) | α < β⟩

and π∞ : N∞ → M such that the following diagram commutes:

M

N N1 . . . Nα Nα+1 . . . N∞

π

j0,1

π1 πα

jα,α+1

πα+1 π∞

Then N∞ embeds into the wellfounded model M . Hence N∞ is wellfounded.
α = 0: Set π0 := π.
α → α+ 1: Nα is countable by Remark 2.2.7. Wα ∈ Wα hence πα(Wα) ∈ U ,
so by assumption, πα(Wα) is ω1-complete. Set πα+1 to be the πα-realization
described in Lemma 2.1.14, i.e.

πα+1 : Ult(Nα,Wα) → M, [f ]Nα

Wα
7→ πα(f)(γ),

where γ is any element of
⋂

B∈Wα
πα(B). We claim that

πα+1 : (Nα+1,Wα+1) → (M,U) is elementary.
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We have that

[f ]Nα

Wα
∈ Wα+1 = (Wα)Wα

⇔ B := {x < crit(Wα) | f(x) ∈ Wα} ∈ Wα

⇔ γ ∈ πα(B) = {x < πα(crit(Wα)) | πα(f)(x) ∈ U}

⇔ πα+1([f ]Nα

Wα
) = πα(f)(γ) ∈ U .

γ limit ordinal: We define πγ : Nγ → M as follows. For x ∈ Nγ , there is some
α < γ and y ∈ Nα such that x = jα,γ(y). Set πγ(x) := πα(y). It is easy to check
that πγ : (Nγ ,Wγ) → (M,U) is elementary.

If β = β′ + 1 is a successor ordinal, then define π∞ as in the successor case.
Otherwise β is a limit ordinal and we define π∞ as in the limit case.

2.3 Extenders and Ultrapowers from Extenders

We want to generalize the idea of extending a model via an ultrafilter from
Chapter 2.1. We are going to use extenders which allow us to extend a model
by a lot of ultrafilters at the same time. From now on, let λ be an ordinal.

Definition 2.3.1. For a set of ordinals a, we denote the i-th smallest element of a
by ai. Let n < m, a ∈ [λ]n, b ∈ [λ]m with b = {b1, . . . , bm} and a = {bi1 , . . . , bin}.
For X ⊆ [κ]n, set

Xab := {u ∈ [κ]m | {ui1 , . . . , uin
} ∈ X} ⊆ [κ]m.

If f : [κ]n → M , set

fab : [κ]m → M,u 7→ f({ui1 , . . . , uin
}).

Definition 2.3.2. ((Pre-)Extender) A set E ⊆ [λ]<ω × P([κ]<ω) is called a
(κ, λ)-pre-extender over M (or M-pre-extender) iff for every a, b ∈ [λ]<ω

with a ⊆ b

(i). The set Ea := {X ∈ P([κ]<ω) | (a,X) ∈ E} is an M -κ-complete ultrafilter
on [κ]|a| for M .

(ii). (Compatibility) If X ∈ M then X ∈ Ea iff Xab ∈ Eb.

(iii). (M -normality) If f ∈ M with dom(f) = [κ]|a| and f(u) < ui for Ea-a.e. u.
Then there is ξ < ai such that fa,a∪{ξ}(u) = uk for Ea∪{ξ}-a.e. u, where k
is such that ξ = (a ∪ {ξ})k.

We call κ =: crit(E) the critical point of E and λ =: lh(E) the length of E.
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Remark 2.3.3. Note that the definition of an M -pre-extender only depends
on P(κ)M . If Q |= ZFC− is transitive and P(κ)Q = P(κ)M . Then E is a
Q-pre-extender iff E is an M -pre-extender.

Lemma 2.3.4. Let j : M → N be an elementary embedding with crit(j) = κ

and λ ≤ j(κ). Set

E(j, λ) := {⟨a,X⟩ | a ∈ [λ]<ω, X ∈ [κ]|a|, a ∈ j(X)}.

This is a (κ, λ)-pre-extender over M which we call the (κ, λ)-pre-extender
derived from j.

Proof. Let a, b ∈ [λ]<ω with a = {bi1 , . . . , bin
}. E(j, λ)a is an M -κ-complete

ultrafilter on [κ]|a| for M by the same arguments as in Lemma 2.1.3. In order to
check that E(j, λ) is compatible, let X ∈ M . Note that

j(Xab) = {u ∈ [j(κ)]|b| | {ui1 , . . . , uin} ∈ j(X)}.

So X ∈ E(j, λ)a ⇔ a ∈ j(X)

⇔ b ∈ j(Xab)

⇔ Xab ∈ E(j, λ)b.

For M -normality, let f ∈ M with dom(f) = [κ]|a| and f(u) < ui for Ea-a.e. u,
i.e.

a ∈ j({u ∈ [κ]|a| | f(u) < ui}) = {u ∈ [j(κ)]|a| | j(f)(u) < ui}.

Hence j(f)(a) < ai. Set ξ := j(f)(a) and k such that ξ = (a ∪ {ξ})k. Then

j(fa,a∪{ξ})(a ∪ {ξ}) = j(f)a,a∪{ξ}(a ∪ {ξ}) = j(f)(a) = ξ = (a ∪ {ξ})k.

Therefore fa,a∪{ξ}(u) = uk for Ea∪{ξ}-a.e. u.

Definition 2.3.5. Let E be a (κ, λ)-pre-extender over M . For functions f, g ∈ M

with dom(f) = [κ]|a| and dom(g) = [κ]|b|, where a, b ∈ [λ]<ω, we define an
equivalence relation by

⟨a, f⟩ ∼ ⟨b, g⟩ iff fa,a∪b(u) = gb,a∪b(u) for Ea∪b-a.e. u

Denote the equivalence class of ⟨a, f⟩ by [a, f ] or [a, f ]ME . We also define the
relation ∈̃ by

[a, f ]∈̃[b, g] iff fa,a∪b(u) ∈ gb,a∪b(u) for Ea∪b-a.e. u.
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Let Ult(M,E) := ({[a, f ] | a ∈ [λ]<ω, f function in M,dom(f) = [κ]|a|}, ∈̃)

and iME : M → Ult(M,E), x 7→ [{0}, const1x]

where constnx : [κ]n → M,u 7→ x for each n < ω. Again (Ult(M,E), ∈̃) does not
have to be wellfounded, but we collapse its wellfounded part. If (Ult(M,E), ∈̃) is
wellfounded then this yields a transitive model and we denote it by (Ult(M,E),∈)
and call it the ultrapower of M by E.

Lemma 2.3.6. (Properties of Ult(M,E)) Let E be a (κ, λ)-pre-extender over
M . Fix some n < ω. Let a, ak ∈ [λ]<ω and f, fk be functions in M with
dom(f) = [κ]|a| and dom(fk) = [κ]|ak| for each k ≤ n. Denote the identity
function on [κ]n by idn for each n < ω and i := iME . Then the following
properties hold:

(i). Łoś Theorem: Let φ(v0, . . . , vn) be a formula, n < ω and b :=
⋃

i≤n a
i.

Then

Ult(M,E) |= φ([a0, f0], . . . , [an, fn]) iff

M |= φ(fa0,b
0 (u), . . . , fan,b

n (u)) for Eb-a.e. u.

(ii). i is elementary. In particular, Ult(M,E) |= ZFC−.

(iii). κ = crit(i).

(iv). Let ε : [κ]1 → κ, {β} 7→ β and εn,i : [κ]n → κ, u 7→ ui for each i ≤ n < ω.
Then every β in the wellfounded part of Ult(M,E) satisfies

(a) [{β}, ε] = β if β < λ,

(b) [a, ε|a|,i] = ai for 0 < i ≤ |a| and

(c) a = [a, id|a|].

(v). [a, f ] = i(f)(a).

Proof. (i). Works exactly the same as in Lemma 2.1.7.

(ii). Works exactly the same as in Lemma 2.1.7.

(iii). Works exactly the same as in Lemma 2.1.7.

(iv). (a) Define a function

F : λ → Ult(M,E)

β 7→ [{β}, ε].
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This is an order preserving map. For β1 < β2 < λ, we have
ε{βi},{β1,β2}(u) = ui for i = 1, 2 and every u ∈ [κ]2. u1 < u2 holds by
definition. By Łoś Theorem, F (β1) = [{β1}, ε] ∈ [{β2}, ε] = F (β2).
We claim that for every β < λ and [b, f ] ∈ F (β) there is ξ < β such
that [b, f ] = F (ξ). We may assume that β ∈ b, say β = bi. By defi-
nition, {u ∈ [κ]|b| | f(u) < ui} = {u ∈ [κ]|b| | f(u) ∈ ε{β},b(u)} ∈ Eb.
By the M -normality of E, there is some ξ < bi = β such that
{u ∈ [κ]|b∪{ξ}| | f b∪{ξ}(u) = uk} ∈ Eb∪{ξ}, where k is such that
(b ∪ {ξ})k = ξ. Therefore [b, f ] = [{ξ}, ε] = F (ξ). The fact that F
is order preserving and the claim imply that F (β) is an ordinal for
each β < λ. The claim also implies that im(F ) is an initial segment
of the ordinals hence im(F ) is an ordinal itself. This shows that F
is an order preserving bijection between λ and some ordinal. Hence
F = idλ.

(b) Fix i ≤ |a|. We have ε|a|,i = ε{ai},a. So by Łoś Theorem, [a, ε|a|,i] =
[a, ε{ai},a] = [{ai}, ε] = ai by (iv)(a).

(c) We have id|a|(u) = {u1, . . . , u|a|} = {ε|a|,1(u), . . . , ε|a|,|a|(u)} for every
u ∈ [κ]|a|. Again by Łoś Theorem,

[a, id|a|] = {[a, ε|a|,1], . . . , [a, ε|a|,|a|]} = {a1, . . . , a|a|} = a

using (iv)(b).

(v). i(f)(a) = [{0}, const1f ](a) = [a, const|a|
f ](a) = [a, const|a|

f ]([a, id|a|]) =
[a, f ◦ id|a|] = [a, f ].

We can perfectly recover the extender from the ultrapower embedding.

Lemma 2.3.7. Let E be a (κ, λ)-pre-extender over M . Then E(iME , λ) = E.

Proof. Let a ∈ [λ]<ω and X ∈ [κ]|a|.

⟨a,X⟩ ∈ E(iME , λ)

⇔ a ∈ iMU (X) = [{0}, const1X ] by the definition of E(iME , λ)

⇔ a ∈ [a, const|a|
X ] since [{0}, const1X ] = [a, const|a|

X ]

⇔ [a, id|a|] ∈ [a, const|a|
X ] by Lemma 2.3.6(iv)

⇔ {u ∈ [κ]|a| | id|a|(u) ∈ const
|a|
X (u)} ∈ Ea

⇔ X = {u ∈ [κ]|a| | u ∈ X} ∈ Ea ⇔ ⟨a,X⟩ ∈ E.
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It doesn’t work exactly as good in the other direction, but if we have the
derived extender then we can recover at least a part of j.

Lemma 2.3.8. (Recovering j) Let j : M → N be an elementary embedding with

crit(j) = κ and λ ≤ j(κ). Then k : Ult(M,E(j, λ)) → N, [a, f ] 7→ j(f)(a) is an

elementary embedding with crit(k) ≥ λ and

M N

Ult(M, E(j, λ))

j

i
k

commutes for i := iME(j,λ).

Proof. This proof is exactly the same as the proof of Lemma 2.1.9. We use
Lemma 2.3.6(iv)(a) to compute that crit(k) ≥ λ.

In Chapter 2.2, we iteratively used ultrafilters and we want to do the analogous
construction with pre-extenders. So far, we established that Ult(M,E) is a model
of ZFC−. But we assumed that M is a wellfounded model. So if we want to
extend Ult(M,E) again then we need to make sure that Ult(M,E) is also
wellfounded. We simply add this as a condition to the definition of being a
pre-extender.

Definition 2.3.9. Let E be a (κ, λ)-pre-extender over M . If Ult(M,E) is
wellfounded then we call E a (κ, λ)-extender over M (or M-extender).

Remark 2.3.10. Note that being an M -extender does not only depend on
P(κ)M . If Q |= ZFC− with P(κ)Q = P(κ)M and E is an M -extender, then we
know that E is a Q-pre-extender but it is not necessarily a Q-extender.

Our definition of extenders is not a first order property. But analogous to
the ultrafilter case there is a first order property called ω1-completeness, which
implies wellfoundedness of ultrapowers.

Definition 2.3.11. Let E be a (κ, λ)-pre-extender over M . E is ω1-complete
iff for every ⟨an ∈ [λ]<ω | n < ω⟩ and ⟨Xn ∈ Ean | n < ω⟩ there is an order-
preserving map Φ :

⋃
n<ω a

n → κ such that Φ”[an] ∈ Xn for each n < ω.

Corollary 2.3.12. Let E be a (κ, λ)-pre-extender over M and assume that E
is ω1-complete. Then Ea is an ω1-complete ultrafilter for every a ∈ [λ]<ω.

Proof. Let An ∈ Ea and set an := a for each n < ω. Since E is ω1-complete,
there is a map Φ :

⋃
n<ω a

n → κ such that Φ”[an] ∈ An for each n < ω. We
have that

⋃
n<ω a

n = a and thus Φ”[a] ∈
⋂

n<ω An.
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Lemma 2.3.13. Let E be an M-pre-extender. If E is ω1-complete then
Ult(M,E) is wellfounded.

Proof. Suppose that Ult(M,E) is not wellfounded. Then there are [an, fn] ∈
Ult(M,E) such that

[an+1, fn+1] ∈ [an, fn] for each n < ω.

We can assume that an ⊆ an+1 for each n < ω. Then

Xn+1 := {u ∈ [κ]|a
n+1| | fn+1(u) ∈ fan,an+1

n (u)} ∈ Ean+1 .

Set X0 := [κ]|a0| ∈ Ea0 . E is ω1-complete by assumption, so there is an
order-preserving map

Φ :
⋃

n<ω

an → κ such that Φ”[an] ∈ Xn

for each n < ω. We set yn := fn

(
Φ”[an]

)
for each n < ω and claim that

⟨yn | n < ω⟩ is an infinite descending chain in V . Fix some n < ω. Note that

yn = fan,an+1

n

(
Φ”[an+1]

)
since Φ is order-preserving. By the definition of Xn+1 and Φ, we have that
yn+1 = fn+1(Φ”[an+1]) ∈ fan,an+1

n (Φ”[an+1]) = yn. This shows that ⟨yn | n < ω⟩
is a descending chain which is a contradiction.

The following Lemma is the analog of Lemma 2.1.14:

Lemma 2.3.14. Let E ∈ M be an M-pre-extender. Then the following are
equivalent:

(i). E is ω1-complete,

(ii). For every N and F with π : N → M elementary, N countable, transitive

and π(F ) = E there is an elementary embedding σ : Ult(N,F ) → M such

that
M

N Ult(N, F )

π

iN
F

σ

commutes.

Proof. “(i) ⇒ (ii)”: Fix N , F and π as in the statement. Then F is a (κ′, λ′)-
pre-extender, where π(κ′) = κ and π(λ′) = λ. We define Xb :=

⋂
Y ∈Fb

π(Y ) for
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every b ∈ [λ′]<ω. Since N is countable, Corollary 2.3.12 implies that Xb ∈ Eπ(b).
Enumerate [λ′]<ω = ⟨cn | n < ω⟩. We can do this because λ′ ∈ N and therefore
λ′ is countable. E is ω1-complete by assumption, i.e. there is an order-preserving
map Φ :

⋃
n<ω π(cn) → κ such that Φ”[π(cn)] ∈ Xcn . Set

σ([b, g]NF ) := π(g)(Φ”[π(b)]).

Note that π(b) ∈ [π(λ′)]<ω and thus Φ”[π(b)] ∈ κ. π(g) ∈ M is a function with
domain π(κ′) = κ. Therefore π(g)(Φ”[π(b)]) ∈ M . In order to show that the map
is welldefined and elementary, let φ be a formula and let [b0, g0], . . . , [bk, gk] ∈
Ult(N,F ) such that

Ult(N,F ) |= φ([b0, g0], . . . , [bk, gk]).

Set b := b0 ∪ · · · ∪ bk. By Łoś Theorem, we have that

Y := {u ∈ [κ′]|b| | N |= φ
(
gb0,b

0 (u), . . . , gbk,b
k (u)

)
} ∈ Fb.

The construction of Xb and Φ imply that Φ”[π(b)] ∈ Xb ⊆ π(Y ) and thus
Φ”[π(b)] ∈ π(Y ). We have that

π(Y ) = {u ∈ [κ]|b| | M |= φ
(
π(g0)π(b0),π(b)(u), . . . , π(gk)π(bk),π(b)(u)

)
}.

Note that

π(gl)π(bl),π(b)(Φ”[π(b)]) = π(gl)(Φ”[π(bl)]) = σ([bl, gl])

for l ≤ k because Φ is order-preserving. Hence

M |= φ
(
σ([b0, g0]), . . . , σ([bk, gk])

)
.

“(ii) ⇒ (i)”: Fix ⟨an ∈ [λ]<ω | n < ω⟩ and ⟨Xn ∈ Ean | n < ω⟩. Set N :=
mos(HullM ({E} ∪ {Xn | n < ω}) and let π : N → M be the anti-collapsing
embedding such that π(F ) = E, π(Yn) = Xn and π(bn) = an. For every α ∈ an,
there is β ∈ bn such that π(β) = α. Set Φ(α) := σ(β) = σ([{β}, ε]NF ), where the
second equality holds by Lemma 2.3.6(iv)(a). Ψ is order-preserving because π and
σ are elementary. In order to show that Φ”[an] ∈ Xn, we compute χXn(Φ”[an]),
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where χXn
is the characteristic function of Xn as a subset of [κ]|an|.

χXn
(Φ”[an]) = π(χYn

)(Φ”[π(bn)]), since an = π(bn) and Xn = π(Yn)

= σ
(
[{0}, const1χYn

]
)
(σ(bn)), because π = σ ◦ iNF

= σ
(
[bn, const|b

n|
χYn

]
)(
σ([bn, id|bn|)

)
, by Lemma 2.3.6(iv)(c)

= σ
(
[bn, const|b

n|
χYn

]([bn, id|bn|)
)
, follows from the elementarity of σ

= σ([bn, χYn
])

= σ([bn, const
|bn|
1 ]), since Yn ∈ Fbn

= σ([{0}, const11]) = σ(iNF (1)) = 1.

Corollary 2.3.15. If j : M → N and N is wellfounded then E(j, λ) is an
M -extender.

Proof. In Lemma 2.3.8, we showed that Ult(M,E(j, λ)) embeds into the well-
founded model N . In particular, Ult(M,E(j, λ)) is wellfounded.

Definition 2.3.16. Let Q and Q′ be any models and θ an ordinal. We say that

• Q and Q′ agree up to θ iff Q ∩ Vθ = Q′ ∩ Vθ

• Q and Q′ agree well beyond θ iff they have the same first inaccessible
cardinal µ above θ and agree up to µ.

Let j : Q → P and j′ : Q′ → P ′ be elementary embeddings for some models P
and P ′. We say that

• j and j′ agree up to θ iff Q and Q′ agree up to θ,

j ↾ (Q ∩ Vθ) = j′ ↾ (Q′ ∩ Vθ) and j(θ) = j′(θ).

• j and j′ agree well beyond θ iff Q and Q′ agree well beyond θ and

j ↾ (Q ∩ Vµ) = j′ ↾ (Q′ ∩ Vµ),

where µ is the first inaccessible above θ in both Q and Q′.

Proposition 2.3.17. Let E be a (κ, λ)-pre-extender over M and suppose that
M and N agree up to κ+ 1. Then

(i). E is an N -pre-extender,

(ii). iME and iNE agree up to κ+ 1 and
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(iii). Ult(M,E) and Ult(N,E) agree up to iME (κ) + 1.

Proof. (i). M and N agree up to κ+ 1 so in particular PM (κ) = PN (κ).

(ii). Let x ∈ M ∩ Vκ+1. Then const1x ∈ M ∩ Vκ+1 = N ∩ Vκ+1 and therefore

iME (x) = [{0}, const1x]ME = [{0}, const1x]NE = iNE (x).

In particular, iME (κ) = iNE (κ) and thus iME (κ+ 1) = iNE (κ+ 1).

(iii). Set κ′ := iME (κ). It is enough to show that

Ult(M,E) and Ult(M ∩ Vκ+1, E) agree up to κ′ + 1.

Note that E is an (M ∩ Vκ+1)-pre-extender by (i). On the one hand,

Ult(M ∩ Vκ+1, E) ∩ Vκ′+1 ⊆ Ult(M,E) ∩ Vκ′+1

by construction. On the other hand, let [a, f ]ME ∈ Ult(M,E)∩Vκ′+1. Then

Ult(M,E) |= [a, f ]ME ∈ ViM
E

(κ)+1.

Łoś Theorem implies that

Af := {u ∈ [κ]|a| | M |= f(u) ∈ Vκ+1} ∈ Ea.

Define g : [κ]|a| → Vκ+1 by

g(u) :=

f(u), u ∈ Af

0, otherwise.

Then [a, g]ME = [a, f ]ME and g ∈ M ∩ Vκ+1, so

[a, f ]ME = [a, g]M∩Vκ+1
E ∈ Ult(M ∩ Vκ+1, E).

Definition 2.3.18. Let E be an M -extender. The strength of E in M ,
strM (E), is the largest ordinal α such that M ∩ Vα ⊆ Ult(M,E). We say that
E is nice in M iff strM (E) = lh(E) is inaccessible in M .

Proposition 2.3.19. Let E ∈ M be a (κ, λ)-extender over M . Then

(i). κ+ 1 ≤ strM (E),

(ii). E ̸∈ Ult(M,E) and
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(iii). strM (E) ≤ λ.

Proof. (i). We know that iME ↾ (M ∩ Vκ) = id because κ = crit(iME ). Therefore
every A ∈ M ∩ Vκ+1, i.e. A ⊆ Vκ, satisfies A = iME (A) ∩ Vκ ∈ Ult(M,E) ∩
Vκ+1. So M ∩ Vκ+1 ⊆ Ult(M,E) and strM (E) ≥ κ+ 1.

(ii). In the ultrafilter-case, we used the fact that the image of κ is inaccessible
in the ultrapower. We will also use it here. We write κ+ for (κ+)M .
Note that we can code functions from κ to κ+ in M as elements of Vκ+1.
Since E ∈ M , we have that Ult(M,E) ⊆ M . Therefore (i) implies that
M ∩ Vκ+1 = Ult(M,E) ∩ Vκ+1 and thus

(κ(κ+))Ult(M,E) = (κ(κ+))M .

If we assume that E ∈ Ult(M,E) then

iME (κ+) is the order type of {[a, f ] | a ∈ [λ]<ω, f ∈ κ(κ+)}.

κ+ ≤ iME (κ) because κ < iME (κ). So inside Ult(M,E), we have

|iME (κ+)| ≤ |λ| · |κ(κ+)| ≤ |iME (κ)|

which is a contradiction.

(iii). We have that E ∈ M ∩ Vλ+1 so by (ii) M ∩ Vλ+1 ̸⊆ Ult(M,E). Hence
strM (E) < λ+ 1.

Lemma 2.3.20. (Shift Lemma) Let π : M → N and σ : M ′ → N ′ be elementary
embeddings, where M ′, N ′ |= ZFC−. Assume that π and σ agree up to κ + 1.
Let E ∈ M ′ be a (κ, λ)-extender over M ′. Then

(i). F := σ(E) is a (σ(κ), σ(λ))-pre-extender over N .

(ii). τ : Ult(M,E) → Ult(N,F ), [a, f ]ME 7→ [σ(a), π(f)]NF is an elementary
embedding and τ ◦ iME = iNF ◦ π.

(iii). If F is an N-extender then E is an M-extender, i.e. if Ult(N,F ) is
wellfounded then Ult(M,E) is wellfounded.

(iv). σ ↾ λ = τ ↾ λ.

(v). If π and σ agree well beyond κ and E is nice in M ′, then σ and τ agree
up to λ.
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N F ∈ N ′ Ult(N, F )

M E ∈ M ′ Ult(M, E)

iN
F

iM
E

π σ τ

Proof. First of all we show that N and N ′ agree up to σ(κ) + 1. We compute

N∩Vσ(κ)+1 = N∩Vπ(κ)+1 = V N
π(κ)+1 = π(V M

κ+1) = σ(V M ′

κ+1) = V N ′

σ(κ)+1 = N ′∩Vσ(κ)+1

where the first equality holds because π is elementary and σ(κ) = π(κ). The last
one holds because σ is elementary and the middle one because M and M ′ agree
up to κ+ 1.

(i). F is an N ′-pre-extender by the elementarity of σ. So F is an N -pre-
extender by Proposition 2.3.17. κ is definable from E since κ is the
critical point of the ultrafilters of E. Therefore σ(κ) = crit(F ). λ is also
definable from E since formally E = {⟨a,X⟩ | a ∈ [λ]|a|, X ∈ Ea}, so
λ =

⋃
{a | ∃X (a,X) ∈ E}. Hence σ(λ) = lh(F ).

(ii). First we show that formulas true in Ult(M,E) transform to formulas true
in Ult(N,F ).

Claim. Let φ(x0, . . . , xn) be a formula and let [a0, f0]EM , . . . , [an, fn]EM ∈
Ult(M,E) such that

Ult(M,E) |= φ([a0, f0]EM , . . . , [an, fn]EM ).

Then
Ult(N,F ) |= φ([σ(a0), π(f0)]FN , . . . , [σ(an), π(fn)]FN ).

Proof of Claim. For simplicity and readability, we assume that n = 1. Set
b := a0 ∪ a1 and X := {u ∈ [κ]|b| | M |= φ(fa0,b

0 (u), fa1,b
1 (u))}. Then

Ult(M,E) |= φ([a0, f0]EM , [a1, f1]EM ) ⇔ (b,X) ∈ E.

By the elementarity of π,

X = {u ∈ [κ]|b| | N |= φ
(
π(fa0,b

0 (u)), π(fa1,b
1 (u)))

)
}.
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For simplicity, assume that a0 is an initial segment of b and let |a0| =
k, |b| = k +m. Then for any u ∈ [κ]|b|, we have

π(fa0,b
0 (u))

=π(fa0,b
0 (u1, . . . uk, uk+1, . . . , uk+m))

=π(f0(u1, . . . uk))

=π(f0)(π(u1), . . . π(uk))

=π(f0)(σ(u1), . . . σ(uk))

=π(f0)σ(a0),σ(b)(σ(u1), . . . σ(uk), σ(uk+1), . . . σ(uk+m))

=π(f0)σ(a0),σ(b)(σ(u)).

Therefore

X = {u ∈ [κ]|b| | N |= φ(π(f0)σ(a0),σ(b)(σ(u)), π(f1)σ(a1),σ(b)(σ(u)))}

and

σ(X)

={σ(u) ∈ [σ(κ)]|σ(b)| | N |= φ(π(f0)σ(a0),σ(b)(σ(u)), π(f1)σ(a1),σ(b)(σ(u)))}

={t ∈ [σ(κ)]|σ(b)| | N |= φ(π(f0)σ(a0),σ(b)(t), π(f1)σ(a1),σ(b)(t))}

Now we have

(b,X) ∈ E ⇔ (σ(b), σ(X)) ∈ F

⇔ Ult(N,F ) |= φ([σ(a0), π(f0)]FN , [σ(a1), π(f1)]FN )).

■

The claim implies that τ is a welldefined elementary embedding. The
diagram is commuting by construction.

(iii). It follows directly from the existence of the elementary embedding τ .

(iv). We want to use Lemma 2.3.6. Note that Ult(M,E)∩ViM
E

(κ)+1 is wellfounded
because Proposition 2.3.17 implies that

Ult(M,E) and Ult(M ′, E) agree up to iME (κ) + 1

and Ult(M ′, E) is wellfounded because E is an M ′-extender. The same
argument shows that Ult(N,F ) ∩ ViN

F
(σ(κ))+1 is wellfounded.

Let β < λ. Then β is in the wellfounded part of Ult(M,E), so by Lemma
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2.3.6 β = [{β}, ε]ME . We compute

τ(β) = τ([{β}, ε]ME ) = [σ({β}), π(ε)]NF = [{σ(β)}, {γ} 7→ γ]NF = σ(β)

because σ(β) < σ(λ) is in the wellfounded part of Ult(N,F ).

(v). In Proposition 2.3.17, we showed that Ult(M,E) and Ult(M ′, E) agree
up to iME (κ) + 1. Since E is nice in M ′, Ult(M ′, E) and M ′ agree up to
λ. So Ult(M,E) and M ′ agree up to λ. Now take some x ∈ M ′ ∩ Vλ =
Ult(M,E) ∩ Vλ. Since x ∈ ViM

E
(κ), there is some f : κ → Vκ in M and

some a ∈ [λ]<ω such that x = [a, f ]ME . Note that the rank of f is below
the first inaccessible above κ in M and we assumed that σ and π agree
well beyond κ. Therefore σ(f) = π(f). Proposition 2.3.17 implies that
[a, f ]ME = [a, f ]M ′

E and [σ(a), σ(f)]NF = [σ(a), σ(f)]N ′

F . We compute

σ(x) = σ([a, f ]ME ) = σ([a, f ]M
′

E ) = [σ(a), σ(f)]N
′

F

= [σ(a), σ(f)]NF = [σ(a), π(f)]NF = τ([a, f ]ME ) = τ(x).

In order to show that σ(λ) = τ(λ), notice that λ ∈ Ult(M,E) because
i(κ) ∈ Ult(M,E) and λ < i(κ). In particular, λ ∈ Ult(M,E) ∩ Vi(κ)+1, so
there is some g : κ → Vκ+1 in M and some b ∈ [λ]<ω such that λ = [b, g]ME .
As before, the rank of g is below the first inaccessible above κ in M

and therefore σ(g) = π(g). The same computation as above shows that
σ(λ) = τ(λ).

Definition 2.3.21. Let M,M ′, N,N ′, σ, π and E be as in Lemma 2.3.20. We
call the (σ(κ), σ(λ))-extender σ(E) over N from Lemma 2.3.20(i) the shift of E
to N via ⟨π, σ⟩ and the elementary embedding τ : Ult(M,E) → Ult(N, σ(E))
from Lemma 2.3.20(ii) the shift map of ⟨π, σ⟩ via E.

2.4 Linear Iterations via Extenders

In Chapter 2.2, we iteratively extended a model by ultrafilters. In this chapter,
we are going to do the same with extenders. The following definitions and
results are exactly the same as in Chapter 2.2, where we exchange “M -nuf” by
“M -extender”.

Definition 2.4.1. Let E be any M -pre-extender and let (M,Y ) be an amenable
structure. The ultrapower of (M,Y ) by E is defined as

Ult((M,Y ), E) := (Ult(M,E), YE),
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where [a, f ]E ∈ YE iff {u < [κ]|a| | f(u) ∈ Y } ∈ Ea

for every a ∈ λ<ω and each function f ∈ M with dom(f) = [κ]|a|.

Lemma 2.4.2. Let E be any E-pre-extender and let (M,Y ) be an amenable
structure. Assume that (Ult(M,E), ∈̃) is wellfounded. Then Ult((M,Y ), E) is
an amenable structure.

The proof is analogous to the proof of Lemma 2.2.4.

Definition 2.4.3. A pair (M, E) is a good pair iff (M, E) is an amenable
structure and every E ∈ E satisfies M |= “E is an M -pre-extender”. It will
always be clear from the context whether it is about a good pair in the ultrafilter
sense or a good pair in the extender sense.

From now on, let (M, E) be a good pair.

Lemma 2.4.4. Let E be an M -pre-extender and assume that (Ult(M,E), ∈̃) is
wellfounded. Then Ult((M, E), E) is a good pair.

The proof is analogous to the proof of Lemma 2.2.5.

Definition 2.4.5. Let β be some ordinal. We call I = ⟨Eα | α < β⟩ a linear
iteration of (M, E) of length β iff there are ⟨Mα, Eα | α < β⟩ and elementary
embeddings ⟨iα,γ : Mα → Mγ | α < γ < β⟩ such that

(i). M0 = M and E0 = E ,

(ii). for each α < β:
Mα is a transitive model of ZFC− and Eα ∈ Eα,

(iii). for successors α+ 1 < β:
(Mα+1, Eα+1) = Ult((Mα, Eα), Eα),
iα,α+1 = iMα

Eα
and

iγ,α+1 = iα,α+1 ◦ iγ,α for each γ < α,

(iv). for limit ordinals λ < β:
(Mλ, Eλ) is the direct limit of ⟨(Mα, Eα), iα,γ | α < γ < λ⟩ and iα,λ are the
direct limit embeddings.

We also write EI
α,M

I
α and iIα,γ for Eα,Mα and iα,γ . We associate the “last

model” M I
∞ which is defined as the direct limit of ⟨M I

α, i
I
α,γ | α < γ < β⟩.

Remark 2.4.6. • Lemma 2.4.4 yields that the construction is welldefined.

• We will sometimes suppress the Eα’s in favor of the readability.
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• The models ⟨Mα | α < β⟩ and elementary embeddings ⟨iα,γ | α < γ < β⟩
from Definition 2.4.5 are unique. Therefore we call them the models and
the elementary embeddings of I.

• If β ≤ ω1 then every Mα with α < β has the same cardinality as M .

Definition 2.4.7. Let θ be an ordinal. We call (M, E) <θ-linearly iterable
iff M I

∞ is wellfounded for every linear iteration I of (M, E) of length less than θ.
If (M, E) is <θ-linearly iterable for every ordinal θ then we call (M, E) linearly
iterable.

We have the same theorem as Theorem 2.2.9, where we used M -nuf’s instead
of M -extenders.

Theorem 2.4.8. If every E ∈ E is ω1-complete then (M, E) is linearly iterable.

The proof works exactly the same as the proof in Chapter 2.2 using Lemma 2.4.9
and Lemma 2.4.10.

Lemma 2.4.9. (Pull Back Linear Iterability) Let (M, E) be <θ-linearly iterable
for some ordinal θ. Let (N,F) be a good pair and let π : (N,F) → (M, E) be an
elementary map. Then (N,F) is <θ-linearly iterable, too.

Lemma 2.4.10. (Characterization of Linear Iterability) The following are
equivalent

(i). (M, E) is <ω1-linearly iterable,

(ii). If (N,F) is a good pair, N is countable and transitive and π : (N,F) →
(M, E) is an elementary map. Then (N,F) is <ω1-linearly iterable.

(iii). (M, E) is linearly iterable.

2.5 Iteration Trees

In the previous chapter, we iterated ultrapowers by always using the last model
for the next ultrapower. But we saw that a pre-extender E over one model is
also a pre-extender over another model whenever the two models agree up to
crit(E) + 1. Therefore we could also apply E to an earlier model in the iteration.
This process creates an iteration tree.
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Definitions and the Agreement Property

Definition 2.5.1. Let β be an ordinal. T is a tree order on β iff

(i). T an order on β, i.e. T is irreflexive, antisymmetric and transitive,

(ii). T is coarser than the usual ordering on the ordinals, i.e. µTξ ⇒ µ < ξ,

(iii). {µ < β | µTξ} is linearly ordered by T for each ξ < β,

(iv). ξ + 1 is a successor in T for each ξ < β with ξ + 1 < β. We denote the
T -predecessor of ξ + 1 by predT (ξ + 1) and

(v). {µ < β | µTγ} is cofinal in γ for γ < β limit ordinal.

Definition 2.5.2. Let T be a tree order on β. For µ, ξ < β, set

• (µ, ξ)T := {α | µTαTξ},

• [µ, ξ)T := {µ} ∪ (µ, ξ)T ,

• (µ, ξ]T := (µ, ξ)T ∪ {ξ} and

• [µ, ξ]T := {µ} ∪ (µ, ξ)T ∪ {ξ}.

Let (M, E) be a good pair throughout this chapter.

Definition 2.5.3. Let β be an ordinal. T = (T, ⟨Eξ | ξ + 1 < β⟩) is an
iteration tree of length β on (M, E) iff there are ⟨Mξ, Eξ | ξ < β⟩ and
elementary embeddings ⟨iµ,ξ : Mµ → Mξ | µTξ < β⟩ such that
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(i). T is a tree order on β and

(ii). M0 = M, E0 = E .

(iii). For each ξ with ξ + 1 < β:
Mξ is a transitive model of ZFC− and Eξ ∈ Eξ.

(iv). For successors ξ + 1 < β, η := predT (ξ + 1):
Mη and Mξ agree up to crit(Eξ) + 1,
(Mξ+1, Eξ+1) = Ult((Mη, Eη), Eξ),
iη,ξ+1 = i

Mη

Eξ
and

iµ,ξ+1 = iη,ξ+1 ◦ iµ,η for each µTη.

(v). For limit ordinals γ < β:
(Mγ , Eγ) := dirlim⟨(Mξ, Eξ), iµ,ξ | µTξTγ⟩ and iξ,γ is the direct limit
embedding for each ξTγ.

Remark 2.5.4. • The condition that Mη and Mξ agree up to crit(Eξ) + 1
in (iv) implies that Eξ is a Mη-pre-extender. Lemma 2.4.4 yields that
(Mη, Eξ) is a good pair. Therefore Ult((Mη, Eη), Eξ) is welldefined.

• We will sometimes suppress the E ′
ξs in favor of the readability.

• The models and embeddings from Definition 2.5.3 are unique. Hence we
call them the models and embeddings of T and denote them by MT

ξ

and iTµ,ξ. Whenever the iteration tree is clear from the context, we simply
write Mξ and iµ,ξ.

Definition 2.5.5. Let T = (T, ⟨Eξ | ξ + 1 < β⟩) be an iteration tree on (M, E).
We say that T is

• non-overlapping6 iff for each ξ with ξ+ 1 < β, we have that predT (ξ+ 1)
is the minimal η such that Mη and Mξ agree up to crit(Eξ) + 1.

• length-increasing iff lh(Eµ) < lh(Eξ) for every µ < ξ + 1 < β (not only
for µTξ).

• nice iff Eξ is nice in Mξ, i.e. strMξ (Eξ) = lh(Eξ) is inaccessible in Mξ, for
every ξ + 1 < β and T is non-overlapping and length-increasing.

Definition 2.5.6. A branch through an iteration tree T is a set which is
linearly ordered by T and closed under predT . Assume that the length of T is a
limit ordinal. For a cofinal branch b, i.e. sup(b) = lh(T ), we define the direct
limit along b as

(MT
b , ET

b ) := dirlim⟨(Mξ, Eξ), iµ,ξ | µTξ ∈ b⟩
6In Remark 2.5.13 we will see why this property is called non-overlapping.
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and iTξ,b : Mξ → Mb as the direct limit embeddings. Write iTb for iT0,b. We call a
cofinal branch b wellfounded iff MT

b is wellfounded.

Definition 2.5.7. The iteration game of length β on (M, E) is the following
two-player-game of length β:
The beginning: (M0, E0) := (M, E).
(ξ + 1)-th stage: Player I plays an extender Eξ ∈ Eξ and chooses η ≤ ξ such that
Mη and Mξ agree up to crit(Eξ) + 1. We set (Mξ+1, Eξ+1) := Ult((Mη, Eη), Eξ).
If Mξ+1 is illfounded, the game is over and Player I wins.
γ limit stage: Player II plays a cofinal branch bγ ⊆ γ. We set (Mγ , Eγ) :=
(Mbγ , Ebγ ). If Mγ is illfounded, the game is over and Player I wins.
The end: If they went through all the stages before β and Player I did not win
at those stages then Player II wins.

Note that Player II only influences the iteration game at limit stages. So a
winning strategy for him doesn’t influence what’s happening in the successor
steps. It it not enough for Player II to make sure that Mλ is wellfounded. He
also has to care about every possible Mλ+1,Mλ+2, . . . This is a very hard job!

Definition 2.5.8. We say that (M, E) is β-iterable iff Player II has a winning
strategy in the iteration game of length β on (M, E). We call such a winning
strategy a β-iteration strategy for (M, E). We say that (M, E) is (fully)
iterable if (M, E) is β-iterable for every ordinal β.

Lemma 2.5.9. (Pull Back Iterability) Let (M, E) be β-iterable for some ordinal
β. Let (N,F) be a good pair and let π : (N,F) → (M, E) be an elementary map.
Then (N,F) is β-iterable, too.

Sketch of proof. The proof is analogous to the proof of pulling back linear iter-
ability, see Lemma 2.2.11 and Lemma 2.4.9. For an iteration tree S = (S, ⟨Fξ |
ξ + 1 < β⟩) on (N,F), we construct an iteration tree T = (T, ⟨Eξ | ξ + 1 < β⟩)
on (M, E) and elementary embeddings πξ : Nξ → Mξ for every ξ < β. Since
(M, E) is β-iterable, we know that Mξ is wellfounded for every ξ < β. Hence Nξ

is wellfounded for every ξ < β.

We define a weakening of iterability which often suffices.

Definition 2.5.10. The nice iteration game of length β on (M, E) is the
iteration game of length β on (M, E), where Player I can only play extenders
which give rise to a nice iteration tree. She has to choose an extender Eξ which
is nice and has length above the previous extenders. She has only one option in
choosing the model Mη because η is already determined by the non-overlapping
property. We say that (M, E) is β-iterable for nice trees iff Player II has a
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winning strategy in the nice iteration game of length β on (M, E) and we say
that (M, E) is (fully) iterable for nice trees if (M, E) is β-iterable for nice
trees for every ordinal β.

Lemma 2.5.11. Let T be an iteration tree of length β on (M, E), which is nice
except for the non-overlapping condition. Fix ξ be such that ξ + 1 < β. We
assume that T is non-overlapping below ξ, i.e. for each ξ′ with ξ′ + 1 < ξ,
we have that predT (ξ′ + 1) is the minimal µ such that Mµ and Mξ′ agree up to
crit(Eξ′) + 1. Then every µ < ξ (not only µTξ) satisfies:

(i). Mµ and Mξ agree up to lh(Eµ) and

(ii). Mµ and Mξ do not agree up to lh(Eµ) + 1.

Moreover, if ξ is a successor ordinal, say ξ = ξ′ + 1, then

(iii). predT (ξ′+1) is the minimal µ such that Mµ and Mξ′ agree up to crit(Eξ′)+
1 if and only if predT (ξ′ +1) is the minimal µ such that crit(Eξ′) < lh(Eµ).

Proof. We show (i), (ii) and (iii) simultaneously by induction on ξ.
ξ = 0: There is nothing to prove here.
successor ξ + 1: We differentiate two cases for proving (i) and (ii).
Case 1 (µ = ξ): Ult(Mξ, Eξ) and Mξ+1 agree up to i

Mξ

Eξ
(crit(Eξ)) + 1 by

Proposition 2.3.17. Since Eξ is nice in Mξ, we know that Mξ and Ult(Mξ, Eξ)
agree up to lh(Eξ). By Proposition 2.3.19, we know that Mξ and Ult(Mξ, Eξ)
do not agree up to lh(Eξ) + 1. Now i

Mξ

Eξ
(crit(Eξ)) + 1 > lh(Eξ). Hence Mξ and

Mξ+1 agree up to lh(Eξ) and not up to lh(Eξ) + 1.
Case 2 (µ < ξ): The induction hypothesis together with Case 1 immediately
solves this case.
In order to prove (iii), set η := predT (ξ′ + 1) and assume that η is the minimal
µ such that Mµ and Mξ′ agree up to crit(Eξ′) + 1 and set η := predT (ξ′ + 1).
We have that Mη and Mξ′+1 do not agree up to lh(Eη) + 1 by (ii). Therefore
crit(Eξ′)+1 < lh(Eη)+1 so crit(Eξ′) < lh(Eη). If α < η then by the assumption
Mα and Mξ′ do not agree up to crit(Eξ′) + 1 but by (i), they agree up to lh(Eα)
hence crit(Eξ′) + 1 > lh(Eα) so crit(Eξ′) ̸< lh(Eα). On the other hand, assume
that η is the minimal µ such that crit(Eξ′) < lh(Eµ). Then Mη and Mξ′ agree
up to crit(Eξ′) + 1 by (i) and for each α < η, we have that Mα and Mη do not
agree up to crit(Eξ′) + 1 because crit(Eξ′) ≥ lh(Eα) and (ii).
ξ limit ordinal:
Take some α > µ+ 1 such that αTξ. We can do this because [0, ξ)T is cofinal
in ξ. We claim that every ε with ε+ 1 ∈ (α, ξ)T satisfies crit(Eε) ≥ lh(Eµ+1).
Suppose that there is some ε such that ε+ 1 ∈ (α, ξ)T and crit(Eε) < lh(Eµ+1).
The induction hypothesis yields that Mµ+1 and Mε agree up to lh(Eµ+1). So by
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assumption, Mµ+1 and Mε agree up to crit(Eε)+1. T is non-overlapping below ξ,
hence predT (ε+1) ≤ µ+1. But on the other hand, predT (ε+1) ≥ α > µ+1 which
is a contradiction. The claim implies that crit(iα,ξ) ≥ lh(Eµ+1) ≥ lh(Eµ) + 1
and therefore Mα and Mξ agree up to lh(Eµ) + 1. By the induction hypothesis,
Mµ and Mα agree up to lh(Eµ) but not up to lh(Eµ) + 1. Hence Mµ and Mξ

agree up to lh(Eµ) but not up to lh(Eµ) + 1.

Corollary 2.5.12. (Agreement property of nice trees) Let T be a nice iteration
tree of length β on (M, E). Then

• Mµ and Mξ agree up to lh(Eµ) and

• Mµ and Mξ do not agree up to lh(Eµ) + 1

for each µ < ξ < β.

Remark 2.5.13. Lemma 2.5.11 (iii) says that we can exchange the non-
overlapping condition in the definition of a nice iteration tree by the condition
that predT (ξ + 1) is the minimal µ such that crit(Eξ) < lh(Eµ). This is the
reason why this property is called non-overlapping. Consider (η + 1)T (ξ + 1),
i.e. the extenders Eη and Eξ were used on the same branch. By the definition of
predT (ξ + 1), we have that µ := predT (ξ + 1) > η. Therefore crit(Eξ) ≥ lh(Eη),
i.e. Eξ is above Eη and they do not overlap.

Definition 2.5.14. (nSBH) The nice Strategic Branches Hypothesis
(nSBH) asserts that every countable model which embeds into a rank initial
segment of V is iterable for nice trees.

A proof of nSBH from ZFC, if it exists, would constitute a substantial
breakthrough in the study of large cardinals, particularly in inner model theory.
It is hard to find a proof of nSBH because the complexity of canonical inner
models, i.e. the amount of large cardinals they can accommodate, directly
influences the complexity of their iteration strategy. We are going to prove two
special cases of nSBH. The first one is Theorem 2.5.15, where only nice iteration
trees of length ω are considered. The second one is Corollary 2.5.25, where we
replace iterability for nice trees by weak iterability.

(ω + 1)-iterability of nice iteration trees

This subsection is based on the second chapter of Neeman’s article Determinacy
in L(R) [Nee10]. The proof in [Ste15] is slightly different. The goal is to prove
the following theorem.
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Theorem 2.5.15. Fix an ordinal θ. Let M be countable, let π : M → Vθ

be an elementary embedding and let T be a nice iteration tree of length ω on
(M, E). Then there is a cofinal branch b through T and an elementary embedding
σ : Mb → Vθ such that σ ◦ ib = π. In particular, b is a wellfounded cofinal branch
through T .

For the proof of Theorem 2.5.15, we are going to use a special kind of nice
iteration tree of length ω.

Definition 2.5.16. Let T be a nice iteration tree of length ω on (M, E) with
models ⟨Mn | n < ω⟩ and embeddings ⟨ik,n | kTn⟩. We say that T is continu-
ously illfounded iff there is a sequence of ordinals ⟨αn | n < ω⟩ with αn ∈ Mn

such that Mn |= αn < ik,n(αk) for each kTn < ω.

Proposition 2.5.17. If T is a continuously illfounded iteration tree then there
is no wellfounded cofinal branch through T .

Proof. Fix a witness ⟨αn | n < ω⟩ for T being continuously illfounded and
a cofinal branch b through T . For every k, n ∈ b with kTn, we have that
Mn |= in,n(αn) = αn < ik,n(αk). Since Mb is the direct limit of ⟨Mn | n ∈ b⟩,
we also have that Mb |= in,b(αn) < ik,b(αk). So ⟨in,b(αn) | n < ω⟩ is a strictly ∈-
decreasing. Therefore Mb is not wellfounded and hence b is not wellfounded.

Let M be a countable model which embeds into some Vθ. If there would be
a continuously illfounded iteration tree on (M, E) then this would contradict
Theorem 2.5.15 by the previous proposition. We are going to show that every
counterexample to Theorem 2.5.15 gives rise to a continuously illfounded iter-
ation tree on V in Lemma 2.5.20. The next step is to show that there are no
continuously illfounded iteration trees on V . This is done in Lemma 2.5.21.

Lemma 2.5.18. (Copy Construction) Let T = (T, ⟨En | n < ω⟩) be a nice
iteration tree of length ω on (M, E) with models ⟨Mn | n < ω⟩ and embeddings
⟨im,n | mTn⟩. Let (N,F) be a good pair and let π : (M, E) → (N,F) be an
elementary embedding. Then there is a nice iteration tree S = (T, ⟨Fn | n < ω⟩)
of length ω on (N,F) with models ⟨Nn | n < ω⟩ and embeddings ⟨lk,n | kTn⟩.
Furthermore there are elementary embeddings ⟨πn : (Mn, En) → (Nn,Fn) | n <
ω⟩ such that

(i). π0 = π,
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(ii). Fn = πn(En) for each n < ω,

(iii). lk,n ◦ πk = πn ◦ ik,n for each kTn,

(iv). πk and πn agree up to lh(Ek) for each k < n.

Proof. We define ⟨Nn, Fn, πn | n < ω⟩ by recursion on n < ω.
n = 0: Set π0 := π.
n → n+ 1: Set m := predT (n+ 1) and κ := crit(En). Let Fn := πn(En) be the
shift of En to Nm via ⟨πm, πn⟩. Set Nn+1 := Ult(Nm, Fn) and lm,n+1 := iNm

Fn
.

T is a nice iteration tree, so Mm and Mn agree up to lh(Em) by Lemma 2.5.12.
Since m ≤ n, we constructed πm and πn such that they agree up to lh(Em). By
the non-overlapping property, κ < lh(Em). We have that Em is nice in Mm,
hence lh(Em) is inaccessible. So in particular, πm and πn agree well beyond κ

and we can use the Shift Lemma 2.3.20. Set πn+1 to be the shift map of ⟨πm, πn⟩
via En. Then πm+1 : Mn+1 → Nn+1 is an elementary embedding and

lm,n+1 ◦ πm = πn+1 ◦ im,n+1.

This and the induction hypothesis imply that

lk,n+1 ◦ πk = lm,n+1 ◦ lk,m ◦ πk = lm,n+1 ◦ πm ◦ ik,m

= πn+1 ◦ im,n+1 ◦ ik,m = πn+1 ◦ ik,n+1

for every kTm. Hence (iii) holds. The Shift Lemma also yields that πn and πn+1

agree up to lh(En). So πk and πn+1 agree up to lh(Ek) for every k < n by the
induction hypothesis and because T is length-increasing. This shows (iv). S
is an iteration tree of length ω and what is left to show is that S is nice. S is
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length-increasing because every k < n satisfy

lh(Fk) = πk(lh(Ek)) = πn(lh(Ek)) < πn(lh(En)) = lh(Fn),

where we use that T is length-increasing for the inequality. In order to show that
S is non-overlapping, set m := predT (n+ 1). We will use the characterization of
non-overlappingness from Remark 2.5.13 in the following arguments. We have
that

crit(Fn) = πn(crit(En)) = πm(crit(En)) < πm(lh(Em)) = lh(Fm),

where we use that crit(En) < lh(Em) in the second and third step. For every
k < m, we have that

crit(Fn) = πn(crit(En)) ≥ πn(lh(Ek)) = πk(lh(Ek)) = lh(Fk).

This shows that m is the least n′ such that crit(Fn) < lh(Fn′). Finally,

Nn |= “Fn is nice”

because πn is elementary and Mn |=“En is nice”.

Definition 2.5.19. Let (M, E), (N,F), π and T be as in the previous lemma.
We call S from above the copy of T to N along π, denoted by πT , with
associated copy maps ⟨πn | n < ω⟩.

Lemma 2.5.20. Let M be countable and let π : M → Vθ be an elementary
embedding. Suppose that T is a counterexample to Theorem 2.5.15. Then πT is
a continuously illfounded nice iteration tree of length ω on V .

Proof. By Lemma 2.5.18, πT is a nice iteration tree of length ω on V . We need
to show that πT is continuously illfounded. Denote πT = (T, ⟨Fn | n < ω⟩) and
let ⟨Nn | n < ω⟩ be the associated models and let ⟨lm,n | mTn⟩ be the associated
embeddings. M is countable, hence Mn is countable for every n < ω and we
enumerate Mn by ēn := ⟨en

k | k < ω⟩. Set Mn ↾ l := {en
k | k < l} and if σ is a

function with dom(σ) = Mn then σ ↾ l := σ ↾ (Mn ↾ l). We built the tree R of
attempts to create a cofinal branch through T and to create a commuting system
of embeddings realizing the models along this branch into V in the following
way:
⟨a, ⟨σk | k ∈ a⟩⟩ ∈ R ⇔

(i). a is a finite branch in T and l := |a|,

(ii). σk : Mk ↾ l → V for each k ∈ a,
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(iii). σ0 = π ↾ l and

(iv). if k,m ∈ a with kTm and x ∈ Mk ↾ l such that ik,m(x) ∈ Mm ↾ l

then σm(ik,m(x)) = σk(x).

If R had a cofinal branch then its first coordinate b would be a cofinal branch
of T . The direct limit of the embeddings in its second coordinate would be an
elementary embedding Mb → V . Therefore b would be a wellfounded cofinal
branch of T which does not exist by the assumption. Hence R has no infinite
branch. This implies that there is a rank function φ : R → Ord, i.e. if s, t ∈ R

are such that s properly extends t then φ(s) < φ(t). For n < ω, set

sn := ([0, n]T , σ̄n)

where

• [0, n]T = ⟨0 = n0, n1, . . . , nl−1 = n⟩,

• σ̄n = ⟨σn
i | i < l⟩ and

• σn
i = πn ◦ ini,n ↾ l for each i < l.

Claim 1. sn ∈ l0,n(R).

V = N0 Nni
Nni′ Nn

M = M0 Mni Mni′ Mn

l0,n

i0,n

π

ini,n
i′

ini,n

in
i′ ,n

πn

Proof of Claim 1. Since T ⊆ ω × ω, l0,n(T ) = T , and therefore [0, n]T is a finite
branch in l0,n(T ). For every i < l, we have that

σn
i = πn ◦ ini,n ↾ l : Mni

↾ l → Nn.

Condition (iii) is also satisfied because

σn
0 = πn ◦ i0,n ↾ l = π ◦ i0,n ↾ l = (l0,n ◦ π) ↾ l.
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For the last condition (iv), let x ∈ Mni
↾ l such that ini,ni′ (x) ∈ Mni′ ↾ l. Then

σn
i′(ini,ni′ (x)) = (πn ◦ ini′ ,n ↾ l)(ini,ni′ (x))

= πn((ini′ ,n ◦ ini,ni′ )(x))

= πn(ini,n(x)) = σn
i (x).

■

Claim 2. Let nTn′. Then sn′ properly extends ln,n′(sn).

Proof of Claim 2. We have that ln,n′(sn) = ⟨[0, n]T , ⟨ln,n′ ◦ σn
i | i < l⟩⟩. Clearly

[0, n′]T properly extends [0, n]T and

ln,n′ ◦ σn
i = ln,n′ ◦ πn ◦ ini,n ↾ l

= ln,n′ ◦ lni,n ◦ πni ↾ l

= lni,n′ ◦ πni
= πn′ ◦ ini,n′ ↾ l = σn′

i .

■

Set αn := l0,n(φ)(sn). Note that αn is welldefined since φ is a function in
V = N0 with domain R so l0,n(φ) is a function in Nn with domain l0,n(R) and
sn ∈ l0,n(R) by Claim 1. This also shows that αn ∈ Nn. φ is a rank function,
so by Claim 2, we have that φ(sn′) < φ(ln,n′(sn)). This implies that

αn′ = l0,n′(φ(sn′)) < l0,n′(φ(ln,n′(sn))) = (ln,n′ ◦ l0,n)(φ(ln,n′(sn)))

= (ln,n′ ◦ l0,n)((ln,n′ ◦ φ)(sn))

= ln,n′(l0,n(φ(sn)))

= ln,n′(αn).

Hence ⟨αn | n < ω⟩ witnesses that πT is continuously illfounded.

Lemma 2.5.21. Let S = (T, ⟨Fn | n < ω⟩) be a nice iteration tree of length ω
on V . Then S is not continuously illfounded.

Proof. Let ⟨Nn | n < ω⟩ be the models of S and ⟨lk,n | kTn⟩ be the embeddings of
S. Suppose towards a contradiction that S is continuously illfounded with witness
⟨β∗

n | n < ω⟩. Choose η large enough such that S ∈ Vη. First of all, we manipulate
the witness for continuously illfoundedness to get some extra properties. Let
βn be the β∗

n’th regular cardinal above l0,n(η) in Nn for each n < ω. Then
⟨βn | n < ω⟩ witnesses that S is continuously illfounded. Take k < n. Then
lk,n(βk) is the lk,n(β∗

k)’th regular cardinal above lk,n(l0,k(η)) = l0,n(η) in Nn by
the elementarity of lk,n. β∗

n < lk,n(β∗
k) by assumption, so βn < lk,n(βk). Now we
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have that βn > l0,n(η) and that βn is regular for every n < ω. Choose θ large
enough such that S, ⟨βn | n < ω⟩ ∈ Vθ. Set H := HullVθ

({S, ⟨βn | n < ω⟩}) and
M := mos(H). Note that M is countable. Let π : M → Vθ be the anti-collapse
embedding. Set

T = (T, ⟨En | n < ω⟩) := π−1(S)

and ⟨αn | n < ω⟩ := π−1(⟨βn | n < ω⟩).

Then T is a nice iteration tree of length ω on M which is continuously illfounded
and ⟨αn | n < ω⟩ is a witness. We also have that αn is regular in Mn, where
⟨Mn | n < ω⟩ are the models of T . En ∈ Mn ∩Vαn because S ∈ Vη and therefore
Fn ∈ Vi0,n(η) ⊆ Vβn . The plan is to produce models Pn and embeddings σn for
each n < ω such that

(i). σn : Mn ∩ Vαn
→ Pn is elementary,

(ii). σn ∈ Pn and Pn |=“σn is countable”,

(iii). σk and σn agree up to lh(Ek) for k < n and

(iv). Pn+1 ∈ Pn.

If we find such models and embeddings then ⟨Pn | n < ω⟩ is an infinite ∈-
decreasing sequence in V which is a contradiction. We construct the models and
embeddings by recursion on n < ω.
n = 0: Set P0 := Vβ0 and σ0 := π ↾ (M ∩ Vα0). Note that σ0 ⊆ Vβ0 and σ0 is
countable because M is countable. β0 is regular, so in particular, cof(β0) > ω

and hence σ0 is a bounded subset of Vβ0 . Therefore σ0 and all bijections between
σ and ω are elements of Vβ0 = P0.
n → n+ 1: Let m := predT (n + 1). Then Mn+1 = Ult(Mm, En) and we have
the following situation.

Pm Pn ?

Mm ∩ Vαm En ∈ Mn ∩ Vαn Mn+1 = Ult(Mm, En)
im,n+1

σm σn

We would like to shift En to Pm via ⟨σm, σn⟩. But this is not possible since
σm and σn are only partial maps. What we can use is that

Ult(Mm ∩ Vαm
, En) = Mn+1 ∩ Vγ ,
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where γ := im,n+1(αm) and Mm ∩Vαm
,Mn ∩Vαn

agree up to λn := lh(En). Let

• Gn be the shift of En (considered as an (Mn ∩ Vαn
)-extender) to Pm via

⟨σm, σn⟩,

• P ∗
n := Ult(Pm, Gn) and

• σ∗
n : Ult(Mn+1) ∩ Vγ → P ∗

n be the shift map of ⟨σm, σn⟩ via En.

There are two major problems with P ∗
n and σ∗

n namely P ∗
n ̸∈ Pn and σ∗

n ̸∈ P ∗
n .

Claim. τ := σ∗
n ↾ (Mn+1 ∩ Vλn) ∈ P ∗

n .

Proof of Claim. First of all λn ≤ γ, since En ∈ Vαn implies

λn ≤ αn < jm,n(αm) < jn,n+1(jm,n(αm)) = jm,n+1(αm) = γ.

By the Shift Lemma 2.3.20, σn and σ∗
n agree up to λn. Therefore

τ = σn ↾ (Mn+1 ∩ Vλn).

By the induction hypothesis, σn ∈ Pn. λ′
n := σn(λn) is inaccessible in Pn because

En is nice and σn is elementary. Therefore τ ∈ Pn ∩ Vλ′
n

= P ∗
n ∩ Vλ′

n
, where we

use that strPn(Gn) = λ′
n. ■

Claim. There is an elementary embedding σ∗∗
n : Mn+1 ∩ Vαn+1 → P ∗∗

n , where
P ∗∗

n := P ∗
n ∩ Vσ∗

n(αn+1) such that

• σ∗∗
n ↾ (Mn+1 ∩ Vλn

) = τ ,

• σ∗∗
n (λn) = λ′

n and

• σ∗∗
n ∈ P ∗

n and P ∗
n |= “σ∗∗

n is countable”.

Proof of Claim. First of all, En+1 ∈ Vαn+1 implies that λn < lh(En+1) ≤ αn+1,
so the restriction of σ∗∗

n to Mn+1∩Vλn
makes sense. Let R be the tree of attempts

inside P ∗
n to construct such a σ∗∗

n . We can do this because τ ∈ P ∗
n according to

the first claim. Then R has an infinite branch in V given by σ∗
n ↾ (Mn+1 ∩Vαn+1)

because αn+1 < im,n+1(αm) = γ and σ∗
n(λn) = σn(λn) = λ′

n by the Shift Lemma
2.3.20. σ∗

n ↾ (Mn+1 ∩ Vαn+1) is countable since Mn+1 is countable. Then by
absoluteness, there is also an infinite branch inside P ∗

n . ■

P ∗∗
n and σ∗∗

n satisfy the first three conditions of the plan:

(i). σ∗∗
n is elementary by construction.
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(ii). This is essentially the same arguing as in the case n = 0. We have
that σ∗∗

n ⊆ Vσ∗
n(αn+1). Mn+1 is countable so σ∗∗

n is countable. σ∗
n(αn+1)

is regular in P ∗
n . Therefore σ∗∗

n is a bounded subset of Vσ∗
n(αn+1) and all

bijections between σ∗∗
n and ω are elements of Vσ∗

n(αα+1). By the construction
of σ∗∗

n , we know that σ∗∗
n ∈ P ∗

n and there is some bijection φ : σ∗∗
n → ω in

P ∗
n . Hence σ∗∗

n ∈ P ∗∗
n and φ witnesses that P ∗∗

n |=“σ∗∗
n is countable”.

(iii). σn and σ∗∗
n agree up to lh(En) = λn by construction. Let k < n. Then

σk and σn are constructed such that σk and σn agree up to lh(Ek). Since
T is length-increasing we have that lh(Ek) < λn. Therefore σk and σ∗∗

n

agree up to lh(Ek).

We manipulate P ∗∗
n and σ∗∗

n a little bit more such that they satisfy (iv), too.
σ∗

n(αn+1) ∈ P ∗
n so P ∗∗

n = P ∗
n ∩Vσ∗

n(αn+1) ∈ P ∗
n and P ∗∗

n is a strict initial segment
of P ∗

n . Set

• H := HullP ∗∗
n

((P ∗∗
n ∩ Vλ′

n
) ∪ {λ′

n, σ
∗∗
n }) and

• Pn+1 := mos(H).

• Let Φ : Pn+1 → H be the anti-collapse embedding and

• set σn+1 := Φ−1(σ∗∗
n ).

Then Pn+1, σn+1 satisfy all the conditions that we wanted:

(i). Note that G0 is a nice extender over Vβ0 and λ′
0 = str(G0) > crit(G0).

crit(G0) is measurable so in particular uncountable hence λ′
0 is uncountable.

T is length-increasing so

λ′
n = σn(lh(En)) > σn(lh(E0)) = σ0(lh(E0)) = λ′

0.

Therefore λ′
n is uncountable. αn+1 ∈ Mn+1 is countable because Mn+1 is

countable. Hence αn+1 < λ′
n ≤ crit(Φ) and

dom(σn+1) = Φ−1(dom(σ∗∗
n )) = Φ−1(Mn+1 ∩ Vαn+1) = Mn+1 ∩ Vαn+1 .

We also know that the codomain of σn+1 is Pn+1. Therefore σn+1 is an
elementary embedding Mn+1 ∩ Vαn+1 → Pn+1.

(ii). σ∗∗
n ∈ H and H is an elementary submodel of P ∗∗

n . Therefore H |=“σ∗∗
n is

countable” and Pn+1 |=“σn+1 is countable”.

(iii). We have that σ∗∗
n (λn) = λ′

n ∈ H and crit(Φ) ≥ λ′
n. This implies that σn+1

and σ∗∗
n agree up to λn and we saw before that σn and σ∗∗

n agree up to λn.
Hence σn and σn+1 agree up to λn.

45



(iv). Since P ∗∗
n , σ∗∗

n ∈ P ∗
n , we have that P ∗

n |= |H| = λ′
n. Therefore Pn+1

can be coded by some c ∈ P(λ′
n)P ∗

n . We will show that c ∈ Pn. Re-
call that P ∗

n := Ult(Pm, Gn). Mm and Mn agree well beyond crit(En)
since crit(En) < lh(Em). Therefore Pm and Pn agree well beyond
crit(Gn) and by Proposition 2.3.17 P ∗

n and Ult(Pn, Gn) agree well be-
yond iPn

Gn
(crit(Gn)). λ′

n = lh(Gn) ≤ iPn

Gn
(crit(Gn)) so c ∈ P(λ′

n)P ∗
n =

P(λ′
n)Ult(Pn,Gn). Ult(Pn, Gn) can be computed inside Pn since Gn ∈ Pn.

Therefore P(λ′
n)Ult(Pn,Gn) ⊆ Pn and in particular c ∈ Pn.

Proof of Theorem 2.5.15. The proof follows directly from Lemma 2.5.20 and
Lemma 2.5.21 as discussed before.

Weak Iterability

A weak iteration is a linear composition of iteration trees of length ω and looks
like this:

The formal definition is as follows.

Definition 2.5.22. Let β be an ordinal. ⟨Tξ, bξ | ξ < β⟩ is a weak iteration
on (M, E) of length β iff there are ⟨Mξ, Eξ | ξ < β⟩ and elementary embeddings
⟨iµ,ξ : Mµ → Mξ | µ < ξ < β⟩ such that

(i). (M0, E0) = (M, E).

(ii). For each ξ < β:
Tξ is a nice iteration tree of length ω on (Mξ, Eξ),
bξ is a cofinal branch through Tξ,
(Mξ+1, Eξ+1) is the direct limit along bξ and
iξ,ξ+1 is the direct limit embedding along bξ.

(iii). For each λ < β limit:
Mγ = dirlim⟨Mξ, iµ,ξ | µ < ξ < γ⟩ and
iξ,γ is the direct limit embedding.

(iv). The remaining embeddings iµ,ξ are obtained by composition.

Note the upper indices for the M ’s and i’s so that one does not confuse Mn

with MT0
n .
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As before, there is also a game corresponding to the construction of a weak
iteration.

Definition 2.5.23. The weak iteration game on (M, E) is the following
two-player-game of length ω1:
The beginning: (M0, E0) := (M, E).
ξ-th stage: Player I yields a nice iteration tree Tξ of length ω on (Mξ, Eξ). Player
II chooses a cofinal branch bξ through Tξ. We set (Mξ+1, Eξ+1) to be the direct
limit along bξ. If Mξ+1 is illfounded then the game is over and Player I wins.
γ limit: Set Mγ := dirlim⟨Mξ, iµ,ξ | µ < ξ < γ⟩. If Mγ is illfounded, the game
is over and Player I wins.
The end: If they went through all the stages before ω1 and Player I did not win
at those stages then Player II wins.

Definition 2.5.24. We say that (M, E) is weakly iterable iff Player II has a
winning strategy in the weak iteration game on (M, E).

Lemma 2.5.25 is another weakening of nSBH, where iterability is replaced by
weak iterability.

Lemma 2.5.25. Let M be countable and π : M → Vθ be an elementary
embedding. Then (M, E) is weakly iterable.

Proof. We need to find a winning strategy for Player II in the weak iteration
game. Construct wellfounded branches ⟨bξ | ξ < ω1⟩ and elementary embeddings
πξ : Mξ → Vθ by recursion on ξ < ω1:
ξ = 0: M0 := M,π0 := π.
ξ → ξ + 1: Player I chooses some nice iteration tree Tξ of length ω on Mξ. πξ

is elementary and Mξ is wellfounded and countable. We can use Theorem
2.5.15 which yields a wellfounded cofinal branch bξ trough Tξ and an elementary
embedding

πξ+1 : Mξ+1 → Vθ,

where Mξ+1 := (Mξ)bξ
. So Mξ+1 is wellfounded and countable.

γ limit: Mγ is set to be the direct limit of the system ⟨Mξ, iµ,ξ | µ < ξ < γ⟩
which is countable. We set πγ := dirlim⟨πξ | ξ < γ⟩. This is an elementary
embedding Mγ → Vθ hence Mγ is wellfounded.

2.6 Woodin Cardinals

Definition 2.6.1. Let j : V → N be an elementary embedding. Let A be a
set and let α be an ordinal. We say that j is α-strong for A iff α > crit(j),
Vα ⊆ N and j(A) ∩ Vα = A ∩ Vα.
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A V -extender E is α-strong for A iff iVE is α-strong for A.

The next lemma says that if j is α-strong for A then there is a V -extender
which is α-strong for A.

Lemma 2.6.2. Let j : V → N with crit(j) = κ and let α > κ be such that
Vα ⊆ N and j(A) ∩ Vα = A ∩ Vα. Let λ := |Vα|+ and set E := E(j, λ). Then E

is α-strong for A.

Proof. Write i for iVE . We first show that Vα ⊆ Ult(V,E).
Use the factor map

k : V → Ult(V,E), [a, f ] 7→ j(f)(a)

from Lemma 2.3.8. Set β := |Vα|, fix a bijection Ψ : β → Vα and define the
relation

R := {(x, y) ∈ β × β | Φ(x) ∈ Φ(y)}.

Since α, β < λ and crit(k) ≥ λ by Lemma 2.3.8, we know that α, β ∈ rng(k).
Now R ⊆ β2 so R = k−1(R) ∈ Ult(V,E) and therefore (β,R) ⊆ Ult(V,E).
Hence Vα ⊆ Ult(V,E). In order to show that i(A) ∩ Vα = A ∩ Vα, we use that
crit(k) ≥ λ again:

i(A) ∩ Vα = k(i(A) ∩ Vα) = k(i(A)) ∩ V N
k(α) = j(A) ∩ Vα = A ∩ Vα.

The last two equalities holds because j is α-strong for A.

Definition 2.6.3. Let κ < δ for some ordinals κ and δ and let A ⊆ Vδ. We
say that κ reflects A in δ iff for every α < δ above κ, there is an α-strong
embedding for A with critical point κ.
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Definition 2.6.4. Let δ be inaccessible. δ is called Woodin iff for each A ⊆ Vδ

there is some κ < δ which reflects A in δ.

Remark 2.6.5. Assume that δ is Woodin. By the previous Lemma 2.6.2, all
the witnesses for δ being Woodin can be chosen as extenders. They can even
be chosen in Vδ since δ is inaccessible. This is very useful because it yields a
formalization of Woodinness as a first order property. So if δ is Woodin in M

then there is a set E ∈ M witnessing that δ is Woodin in M and we have that
(M, E) is a good pair.
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3 Using Iteration Trees

So far, we established the basic theory of iteration trees. The first part of this
chapter is about developing the method of genericity iteration which heavily
uses iteration trees. We will use this method in the second part to show that
L(R) is a model of the Axiom of Determinacy. We will work with ZFC instead
of ZFC− in this chapter just to be extra safe. So M will always be a model of
ZFC which is transitive and hence wellfounded.

3.1 Genericity Iterations

The results in this chapter are due to W. Hugh Woodin and their presentation
here is based on Farah’s paper The extender algebra and Σ2

1-absoluteness, see
[Far16]. δ is an ordinal from now on. We identify R, ωω and P(ω) as usual in
set theory.

Definition 3.1.1. Let W be a forcing notion and let a be a set. We say that
a is W-generic over M iff there is some g which is W-generic over M and
a ∈ M [g].

Woodin’s Genericity Iteration is a construction which makes a previously
fixed real generic over a sufficiently iterable countable structure which has a
Woodin cardinal. It uses a specific forcing notion called Extender Algebra which
is based on an infinitary propositional logic.

Definition 3.1.2. Let δ be an infinite regular cardinal. Lδ is the infinitary
propositional logic with countably many variables {vn | n < ω} and standard
connectives ∧,∨,¬,→,↔. The additional connectives are conjunctions and
disjunctions of length less than δ denoted by

∨
ξ<β and

∧
ξ<β for each β < δ.

Besides the usual axioms and rules for classical propositional logic, we have

• ⊢
∨

ξ<β ¬Φξ ↔ ¬
∧

ξ<β Φξ,

• ⊢
∧

ξ<β Φξ then ⊢ Φξ for all ξ < β and

• if ⊢ Φξ for every ξ < β then ⊢
∧

ξ<β Φξ.

For a set a ⊆ ω, and n < ω we set a |= vn iff n ∈ a. a |= Φ for arbitrary Φ ∈ Lδ

is defined by recursion as expected. We code an Lδ-formula Φ as a set in Vδ by
AΦ := {a ∈ R | a |= Φ}. This language is usually denoted by Lδ,ω, where the
second index indicates the number of variables. We will always have countably
many variables and therefore omit the second index.

We define a theory in this language which depends on a Woodin cardinal
and its witnesses. This theory yields a Boolean algebra which can be used as a
forcing poset.

50



Definition 3.1.3. Let E be a set of extenders witnessing that δ is a Woodin
cardinal. We define the Lδ-theory Tδ(E):
If E ∈ E , crit(E) = κ, Φ⃗ = ⟨Φξ | ξ < δ⟩ ⊆ Lδ such that Φ⃗ ↾ κ ⊆ Vκ and E is
λ-strong for Φ⃗. Then ∨

ξ<κ

Φξ ↔
∨
ξ<λ

Φξ ∈ Tδ(E).

Tδ(E) is the deductive closure of those sentences in Lδ. Note that∨
ξ<λ

Φξ = iE(
∨
ξ<κ

Φξ) ↾ λ

since E is λ-strong for Φ⃗.
The Lindenbaum algebra of Tδ(E) is defined in the following way:
Let ∼ be the equivalence relation on Lδ, where

Φ ∼ Φ′ iff Tδ(E) ⊢ Φ ↔ Φ′.

Denote the equivalence classes by [Φ]. Set

0 := [⊥], 1 := [⊤], [Φ] ∧ [Φ′] := [Φ ∧ Φ′], [Φ] ∨ [Φ′] := [Φ ∨ Φ′], and ¬[Φ] = [¬Φ].

This yields a Boolean algebra

Wδ(E) :=
(
{[Φ] | Φ ∈ Lδ}, 0, 1,∧,∨,¬

)
which we call the extender algebra. Whenever the set of witnesses E is
understood from the context, we will write Wδ instead Wδ(E). We often interpret
Wδ(E) as a forcing notion using the following partial order on the non-zero
elements:

[Φ] ≤ [Φ′] iff Tδ(E) ∪ {Φ} ⊢ Φ′.

Lemma 3.1.4. Wδ has the δ-c.c.

Proof. Let Φ⃗ = ⟨Φξ | ξ < δ⟩ ⊆ Lδ such that [Φξ] ̸= 0 for each ξ < δ. We want to
show that {[Φξ] | ξ < δ} is not an antichain. Set

C := {β < δ | Φ⃗ ↾ β ⊆ Vβ}.

We claim that C is club in δ. That C is closed is immediate from its definition.
In order to see that C is unbounded, we fix α0 < δ and we will find some β ≥ α0

such that β ∈ C. Note that Φ⃗ ⊆ Vδ and Φ⃗ ↾ α0 is a bounded subset of Vδ since
α0 < δ. δ is regular, so we can find some α1 < δ such that Φ⃗ ↾ α0 ⊆ Vα1 . We
cannot use this α1 for β because there might be some ξ < α1 such that Φξ ̸∈ Vα1 .
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But we can “catch our tail” by repeating this. Let 1 ≤ n < ω and assume that
αn < δ is already defined such that Φ⃗ ↾ αn−1 ⊆ Vαn

. Since αn < δ and δ is
regular, there is some αn+1 such that Φ⃗ ↾ αn ⊆ Vαn+1 . Set β := supn<ωαn.
If ξ < β then there is some n < ω such that ξ < αn and by the construction
Φξ ∈ Vαn+1 ⊆ Vβ . This shows that β ∈ C and hence C is club in δ.

E witnesses that δ is a Woodin cardinal, so we can pick an extender E ∈ E
such that E is λ-strong for ⟨C, Φ⃗⟩ and [κ, λ) ∩ C ≠ ∅, where κ := crit(E) < δ.
We use E to show that κ ∈ C. It is enough to show that for every α < κ, there
is some β ∈ C such that α < β < κ because C is closed under limits. Set i := iVE .
We have that

Ult(V,E) |= ∃β
(
α < β < i(κ) ∧ β ∈ C ∩ λ

)
because every element of [κ, λ) ∩ C is a witness. E is λ-strong for C, i.e.
i(C) ∩ Vλ = C ∩ Vλ. In particular, i(C) ∩ λ = C ∩ λ. Therefore

Ult(V,E) |= ∃β
(
α < β < i(κ) ∧ β ∈ i(C)

)
.

We use the elementarity of i and α < κ = crit(i) to see that

V |= ∃β
(
α < β < κ ∧ β ∈ C

)
.

So we have that Φ ↾ κ ⊆ Vκ. By the definition of the theory,

(
∨
ξ<κ

Φξ ↔
∨
ξ<λ

Φξ), (Φκ →
∨
ξ<λ

Φξ) ∈ Tδ(E).

Therefore (Φκ →
∨

ξ<κ Φξ) ∈ Tδ(E) and [Φκ] ≤ [
∨

ξ<κ Φξ]. We claim that
there is some ξ < κ such that [Φξ] and [Φκ] are compatible. Suppose toward
a contradiction that [Φξ] and [Φκ] are not compatible for every ξ < κ. Then
T ∪ {Φξ ∧ Φκ} ⊢ ⊥ (otherwise we would have 0 ̸= [Φξ ∧ Φκ] ≤ [Φξ], [Φκ]).
Compute that

T ∪ {Φξ ∧ Φκ} ⊢ ⊥ for each ξ < κ,

⇒ T ∪ {Φκ} ⊢ ¬Φξ for each ξ < κ,

⇒ T ∪ {Φκ} ⊢
∧
ξ<κ

¬Φξ and

⇒ T ∪ {Φκ} ⊢ ¬
∨
ξ<κ

Φξ.

But we showed that [Φκ] ≤ [
∨

ξ<κ Φξ], i.e. T ∪ {Φκ} ⊢
∨

ξ<κ Φξ, which is a
contradiction.
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We have all the ingredients to formulate Woodin’s Genericity Iteration.

Theorem 3.1.5. (Woodin’s Genericity Iteration) Let a ∈ R. Suppose that M is
countable and (M, E) is a good pair such that E witnesses that δ is Woodin in M .
Assume that (M, E) is (ω1 + 1)-iterable and every extender in E is nice in M .
Then there is a countable iteration i : M → M∗ such that a is i(Wδ(E))-generic
over M∗.

The next lemmas will be very useful for the proof of Theorem 3.1.5.

Lemma 3.1.6. Let a, (M, E) and δ be as in Theorem 3.1.5. If a |= Tδ(E)M

then a is Wδ-generic over M .

Proof. Set ha := {[Φ] ∈ Wδ | a |= Φ} ⊆ Wδ. We claim that ha is M -generic. If
this is true then a = {n < ω | [vn] ∈ ha} ∈ M [ha]. It is easy to see that ha is a
filter, so we only need to show that ha meets every maximal antichain in Wδ.
We know that Wδ has the δ-c.c. from Lemma 3.1.4, so it suffices to consider
antichains of size less than δ. Let A = {[Φξ] | ξ < β} ∈ M be an antichain in
Wδ for some β < δ. Then Tδ(E) ⊢

∨
ξ<β Φξ since otherwise A ∪ {[

∧
ξ<β ¬Φξ]}

would be an antichain in Wδ. By the assumption, we have that a |= Tδ(E).
Therefore a |=

∨
ξ<β Φξ and there is some ξ < β such that a |= Φξ. Hence

[Φξ] ∈ ha ∩A.

Lemma 3.1.7. Let (M, E) be a good pair and let M be countable. Suppose that
T = ⟨T,Mξ, Eη | ξ ≤ ω1, η < ω1⟩ is an iteration tree on (M, E) with cofinal
branch b. Assume that H is a countable elementary substructure of Vθ, where θ is
large enough and T ∈ H. Let H̄ := mos(H) and π : H̄ → Vθ be the anti-collapse
embedding. Set α := H ∩ ω1. Then

(i). α ∈ b,

(ii). π and iTα,ω1
agree on Mα ∩ H̄ and

(iii). crit(iTα,ω1
) = α.
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Proof. Let T̄ ∈ H̄ be such that π(T̄ ) = T . Note that π does not move countable
ordinals, i.e. π(β) = β for each β < α. But π(α) = ω1 because α is the set of
countable ordinals in H̄. Hence crit(π) = α, α = ωH̄

1 and π(α) = ω1.

(i). We know that T ↾ α = T̄ ↾ α and [0, α)T̄ = b ∩ α. α is a limit ordinal,
hence [0, α)T̄ is cofinal in α by the definition of a tree order. Therefore
b ∩ α is cofinal in α. Since any branch of an iteration tree is closed below
its supremum, we have that α ∈ b.

(ii). Let x ∈ Mα ∩ H̄. α is a limit ordinal, so Mα = dirlim⟨Mξ, i
T
µ,ξ | µTξTα⟩.

Pick some ξ < α and y ∈ Mξ such that x = iTξ,α(y) = iT̄ξ,α(y), where the
last equality holds because T ↾ (α+1) = T̄ by (i). Mξ is countable because
M is countable. Therefore π(y) = y. We compute

π(x) = π(iT̄ξ,α(y)) = i
π(T̄ )
π(ξ),π(α)(π(y)) = iTξ,ω1

(y) = iTα,ω1
(iTξ,α(y)) = iTα,ω1

(x).

(iii). α+ 1 ⊆ Mα ∩ H̄ and crit(π) = α. Hence (ii) implies that crit(iTα,ω1
) = α.

Proof of Theorem 3.1.5. The idea is to let Player I and Player II play a round
of the nice iteration game of length ω1 + 1 on (M, E) with resulting embedding
i : M → M∗. Player II uses his (ω1 +1)-iteration strategy, so we know that M∗ is
wellfounded. We let Player I use a special strategy which assures that a |= i(T)M∗ ,
where T := Tδ(E)M . We have that i(T)M∗ = i(Tδ(E)M ) = Ti(δ)(i(E))M and
therefore Lemma 3.1.6 implies that a is i(Wδ)-generic over M∗. In the end, we
will prove that the construction actually stopped at a countable stage.
Let’s start with the strategy for Player I. Let M0 := M . Assume that α < ω1

and
⟨T ↾ α,Mξ, Eµ | ξ ≤ α, µ < α⟩

have already been constructed. Let

⟨iµ,ξ | µTξ ≤ α⟩

be the associated embeddings. If a |= i0,α(T)Mα then I stops the construction.
Otherwise there is a counterexample, i.e. there is

• an extender E ∈ Eα with κ := crit(E) and

• a δα-sequence of Lδα-formulas Φ⃗, where δα := i0,α(δ),

such that

• Φ⃗ ↾ κ ⊆ Vκ,

54



• E is λ-strong for Φ⃗,

• a |= iMα

E (
∨

ξ<κ Φξ) ↾ λ and

• a ̸|=
∨

ξ<κ Φξ.

Let λ be minimal such that there is a δα-sequence Φ and an extender E which
is λ-strong for Φ and every condition of being a counterexample is satisfied. Let
Eα be any such E.

Now let the two players play the nice iteration game of length (ω1 + 1)
on (M, E). Player I uses the strategy described above and Player II uses his
(ω1 + 1)-iteration strategy. Let

T := ⟨T,Mξ, Eµ | ξ ≤ β, µ < β⟩

be the resulting tree. Note that β ≤ ω1. Suppose towards a contradiction
that β = ω1 and let b be a cofinal branch in T . Fix a countable elementary
substructure H of Vθ for a large enough θ such that H contains everything
relevant. Let H̄ := mos(H) and let π : H̄ → Vθ be the anti-collapse map. Set
α := H ∩ ω1. α is countable since H is countable. By Lemma 3.1.7, we know
that α ∈ b and since α < ω1, there is some ξ ≥ α such that Mξ+1 = Ult(Mα, Eξ).
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Lemma 3.1.7 also shows that crit(Eξ) = crit(iMα

Eξ
) = crit(iα,ω1) = α. Player I

used her strategy to find Eξ, so there is a δξ-sequence of Lδξ -formulas Φ⃗ ∈ Mξ

with Φ⃗ ↾ α ⊆ Vα and Eξ is λ-strong for Φ⃗ such that

a |= iMα

Eξ
(

∨
ξ<α

Φξ) ↾ λ and (3.1)

a ̸|=
∨

ξ<α

Φξ. (3.2)

Since
∨

ξ<α Φξ ∈ Mξ ∩ Vα+1 = Mα ∩ Vα+1, we know that

iMα

Eξ
(

∨
ξ<α

Φξ) = iα,ω1(
∨

ξ<α

Φξ).

Therefore

iMα

Eξ
(

∨
ξ<α

Φξ) ↾ λ = iα,ω1(
∨

ξ<α

Φξ) ↾ λ = π(
∨

ξ<α

Φξ) ↾ λ, (3.3)

where we use Lemma 3.1.7 for the last equality. Now (3.1) and (3.3) imply that

a |= π(
∨

ξ<α

Φξ) ↾ λ

and since π(
∨

ξ<α Φξ) is a disjunction, also

a |= π(
∨

ξ<α

Φξ).

a is a real, so a = π(a) and therefore the elementarity of π implies that

a |=
∨

ξ<α

Φξ,

which is a contradiction to (3.2). This shows that the length β of the iteration
tree T is strictly below ω1. So Player I stopped the construction at a countable
stage and she would only do that if a |= i0,β(T)Mβ . Therefore, we can use
i := i0,β and M∗ := Mβ and we are done by the argument in the beginning of
the proof.

The result of Woodin’s Genericity Iteration 3.1.5 can be slightly improved.
We want to be able to use it while preserving another forcing extension which
“happens below” the Genericity Iteration. Additionally, we can replace the forcing
Wδ by Col(ω, δ).

Definition 3.1.8. Let E be a set of extenders. A forcing notion Q is called
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small relative to E iff there is an ordinal ν such that Q ∈ Vν and crit(E) > ν

for every E ∈ E .

Corollary 3.1.9. (Improved Genericity Iteration 1) Let a ∈ R. Suppose that
M is countable and (M, E) is a good pair such that E witnesses that δ is Woodin
in M . Suppose that (M, E) is (ω1 + 1)-iterable. Let Q ∈ M be a small forcing
relative to E and let G ⊆ Q in V be M-generic. Then there is a countable
iteration i : M → M∗ such that a is i(Wδ(E))-generic over M∗[G].

Proof. The critical point of i will be above the rank of Q because i will be
built with the extenders in E and those have critical points above the rank of Q.
Therefore G ⊆ Q is also generic over M∗. The property that Q is small relative
to E also yields that every extender E ∈ E defines an extender in M [G] which has
the same strength as E. We will abuse the notation and denote this extender by
E, too. Then E witnesses that δ is Woodin in M [G]. These results are discussed
in [HW00]. Then the proof is almost the same as the proof of Theorem 3.1.5.
The only difference is that in the strategy for Player I she computes the extender
E and the sequence Φ⃗ in M [G] instead of M . G ∈ V so this is still a strategy
for Player I. Note that this produces an iteration tree on (M [G], E). Since Q is
small relative to E , this iteration tree is also an iteration tree on (M, E).

Corollary 3.1.10. (Improved Genericity Iteration 2) Let a ∈ R. Suppose that
M is countable and (M, E) is a good pair such that E witnesses that δ is Woodin
in M . Suppose that (M, E) is (ω1 + 1)-iterable. Fix q ∈ Col(ω, δ). Let Q ∈ M

be a small forcing relative to E and let G ⊆ Q in V be M -generic. Then there is
a countable iteration i : M → M∗ and there is some H ⊆ Col(ω, i(δ)) which is
generic over M∗[G] such that i(q) ∈ H and a ∈ M∗[G][H].

Proof. Let i : M → M∗ be the countable iteration from Corollary 3.1.9, set
δ∗ := i(δ), and let h ⊆ Wδ∗ be generic over M∗[G] such that a ∈ M∗[G][h]. J.
Cummings describes in Chapter 14 of [Cum10] how to absorb a forcing of size
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at most δ∗ into Col(ω, δ∗). We know that Wδ∗ has size exactly δ∗. Therefore
Wδ∗ can be completely embedded into Col(ω, δ∗). Set q∗ := i(q). We have that
Col(ω, δ∗)/q∗ is isomorphic to Col(ω, δ∗). Hence there is a complete embedding

k : Wδ∗ → Col(ω, δ∗)/q∗.

Choose h′ ⊆ Col(ω, δ∗)/q∗ such that M∗[G][h] ⊆ M∗[G][h′]. Every M∗[G]-
generic in Col(ω, δ∗)/q∗ corresponds to some M∗[G]-generic in Col(ω, δ∗) con-
taining q∗, i.e. there is some H ⊆ Col(ω, δ∗) such that q∗ ∈ H and M∗[G][H] =
M∗[G][h′]. H also satisfies that a ∈ M∗[G][H] because a ∈ M∗[G][h] ⊆
M∗[G][H].

3.2 AD in L(R)

In this chapter we will use genericity iterations to prove the consistency of the
Axiom of Determinacy. The statement is that L(R) is a model of the Axiom
of Determinacy under large cardinal assumptions. The presented proof is a
variation of the last section in [Nee10]. We identify R with ωω and P(ω).

Definition 3.2.1. (Axiom of Determinacy) For a set A ⊆ R we define the game
Gω(A) in the following way. Player I chooses a natural number x0 ∈ ω. Then
Player II chooses y0 ∈ ω. It’s Player I’s turn again and she chooses x1 ∈ ω and
so on. We end up with

Player I x0 x1 ...
Player II y0 y1 ...

We say that Player I wins iff (x0, y0, x1, y1, . . . ) ∈ A and otherwise Player
II wins. A strategy for Player I is a function σ :

⋃
k∈ω ω

2k → ω. Set

σ ⋆ y := (σ(∅), y0, σ(σ(∅), y0), y1, . . . )

for y = (y0, y1, . . . ) ∈ ωω. The strategy tells I what she should do in every
step based on the previous choices of I and II. σ is a winning strategy iff
σ ⋆ y ∈ A for every y ∈ ωω, i.e. whenever Player I plays according to σ, she will
win. (Winning) strategies for Player II are defined analogously. We say that A is
determined iff there is a winning strategy for one of the players. The Axiom
of Determinacy (AD) says that every set of reals is determined.

Definition 3.2.2. Let Q be any model. We say that a set X ⊆ Q is definable
over Q iff there is an L∈-formula φ and elements a1, . . . , an ∈ Q for some n < ω

such that
X = {x ∈ Q | Q |= φ[x, a1, . . . , an]}.
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Set

L0(R) := R,

Lα+1(R) := {X ⊆ Lα | X is definable over Lα} and

Lγ(R) :=
⋃

α<γ

Lα(R) for every limit ordinal γ.

L(R) :=
⋃

α∈On Lα(R) is the smallest model of ZF which contains R ∪On.

This Axiom of Determinacy came up in the early 60’s and it implies regularity
properties for sets of reals, e.g. the Baire property, perfect set property or
Lebesgue measurability. A lot of machinery was developed until Woodin showed
in the mid 80s that L(R) is a model of AD under large cardinal assumptions. I
am going to prove a similar result using Woodin’s Genericity Iterations.We need
a slightly stronger iterability assumption than (ω1 + 1)-iterability.

Definition 3.2.3. Let E ∈ M . We say that (M, E) is (2, ω1 + 1)-iterable iff
(M, E) is (ω1 + 1)-iterable and every iteration i : M → M∗ on (M, E) of length
< ω1 satisfies that (M∗, i(E)) is also (ω1 + 1)-iterable.

Theorem 3.2.4. Suppose that M is countable, δ⃗ = ⟨δn | n < ω⟩ is a strictly
increasing sequence of ordinals of M and κ > sup(δ⃗) is an ordinal in M . Suppose
that ⟨En | n < ω⟩ ∈ M , where En witnesses that δn is Woodin in M for
each n < ω and U ∈ M witnesses that κ is measurable in M . Assume that
(M,

⋃
n<ω En ∪ {U}) is (2, ω1 + 1)-iterable. Then L(R) |= AD.

We will make use of the fact that the statement AD is of a very specific form.

Definition 3.2.5. Let R ⊆ R. A Σ1(R)-statement is a statement of the form

(∃A ⊆ R)ψ[A, x1, . . . , xn]

for some x1, . . . , xn ∈ R and some ∆0-formula ψ, i.e. ψ only has ∀x ∈ R, ∃x ∈ R

as quantifiers.

Proposition 3.2.6. ¬AD is a Σ1(R)-statement.

Proof. ¬AD says (∃A ⊆ R)“A is not determined”. Note that a strategy for
Gω(A) can be coded as a real. “A is determined” can be expressed as the
following ∆0-statement:

∃σ ∈ R ∀ y ∈ R (σ ⋆ y ∈ A).
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Hence “A is not determined” is also a ∆0-statement.

Definition 3.2.7. Let R ⊆ R. We say Lα(R) is an R-initial segment of
Lβ(R) iff α ≤ β and RLα(R) = RLβ(R) = R.

It it easy to see the following.

Proposition 3.2.8. (“Σ1(R) goes up”) If Lα(R) is an R-initial segment of
Lβ(R) and φ is a Σ1(R)-statement such that φ is true in Lα(R). Then φ is also
true in Lβ(R).

We will often use collapse forcing and introduce abbreviations for better
readability.

Definition 3.2.9. For a finite sequence of ordinals S = ⟨s0, . . . , sk⟩ we let
QS be the product Col(ω, s0) × · · · × Col(ω, sk). If S = ⟨sn | n < ω⟩ is a
countable sequence of ordinals then QS denotes the finite support product
Col(ω, s0) × Col(ω, s1) × . . .

Note that for an elementary embedding j we have that j(QS) = Qj(S) for
finite and countable sequences S.

Definition 3.2.10. Let δ⃗ = ⟨δn | n < ω⟩ be a strictly increasing sequence
of Woodin cardinals in M . Let G = ⟨gn | n < ω⟩ ⊆ Qδ⃗ be generic over
M . Set G ↾ d := g0 × . . . gd−1 ∈ Q⟨δ0,...,δd−1⟩ for each d < ω. Define
(R∗)M [G] :=

⋃
n<ω RM [G↾n] called the symmetric reals of M induced by G

and Der(M,G) := LM∩On

(
(R∗)M [G]) called the derived model of M induced

by G.

Remark 3.2.11. Let δ⃗ and G be as in the previous definition. Let x⃗ be a finite
sequence of elements of M [G ↾ d] for some d < ω and fix an L∈-formula φ. The
forcing notion Q⟨δd,δd+1,... ⟩ is homogeneous. So if φ[x⃗] holds in M

(
(R∗)M [G]),

i.e. the minimal model containing M and (R∗)M [G], then φ[x⃗] is forced to hold
in M

(
(R∗)M [G]) by the the empty condition in Q⟨δd,δd+1,... ⟩ over M [G ↾ d].

So if A ⊆ M [G ↾ d] is definable in M [G] from parameters in M [G ↾ d], then
A ∈ M [G ↾ d].

Proposition 3.2.12. Let δ⃗ and G be as in Definition 3.2.10. Then RDer(M,G) =
(R∗)M [G].

Proof. (R∗)M [G] ⊆ RDer(M,G) follows from the definition of Der(M,G). In
order to show the other inclusion, let A ∈ RDer(M,G). A is definable in
LM∩On

(
(R∗)M [G]) from parameters in (R∗)M [G] ∪ (M ∩On). LM∩On

(
(R∗)M [G])

is definable in M [G]. So there is some d < ω such that A is definable in M [G]
from parameters in M [G ↾ d]. By the previous remark, A ∈ M [G ↾ d]. Therefore
A ∈ RM [G↾d] ⊆ (R∗)M [G].
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Lemma 3.2.13. Suppose that M is countable and δ⃗ = ⟨δn | n < ω⟩ is a strictly
increasing sequence of ordinals of M . Suppose that ⟨En | n < ω⟩ ∈ M , where En

witnesses that δn is Woodin in M for each n < ω. Assume that (M,
⋃

n<ω En) is
(ω1 + 1)-iterable. Let G = g0 × g1 × g2 × · · · ⊆ Qδ⃗ be generic over M . Let φ[x⃗]
be a Σ1(R)-statement, where x⃗ is a finite sequence of elements of (R∗)M [G]. If
Der(M,G) |= φ[x⃗] then L(R) |= φ[x⃗].

Proof. Fix d < ω such that x⃗ ⊆ M [G ↾ d]. We start with some preparation. Let
θ be a large enough ordinal. Fix a countable substructure X of Vθ containing
everything we need. Let P be the transitive collapse of X with anti-collapse
embedding π : P → Vθ. Note that π−1(M) = M and π−1(x⃗) = x⃗. We will show
that L(R)P |= φ[x⃗]. Then by the elementarity of π we have that L(R)Vθ |= φ[x⃗].
Since L(R)Vθ is an R-initial segment of L(R) and φ[x⃗] is an Σ1(R)-statement,
Lemma 3.2.8 implies that L(R) |= φ[x⃗]. The plan is to find a wellfounded iterate
M ′ of M and a set H such that

(1) M ′ has ω-many Woodin cardinals δ⃗′ = ⟨δ′
n |< ω⟩,

(2) H is Qδ⃗′-generic over M ′,

(3) (R∗)M ′[H] = RP ,

(4) M ′ ∩On ⊆ P ∩On and

(5) Der(M ′, H) |= φ[x⃗].

We get that Der(M ′, H) is an RP -initial segment of L(R)P :
Both models are of the correct form since

L(R)P = LP ∩On(RP ) and

Der(M ′, H) = LM ′∩On(RP ) by (3).

They have the same reals because

R(L(R)P ) = RP and

RDer(M ′,H) = (R∗)M ′[H] = RP by Proposition 3.2.12 and(3).

So Der(M ′, H) is an RP -initial segment of L(R)P , since M ′ ∩On ⊆ P ∩On by
(4). By the assumption, φ[x⃗] is a Σ1(R)-statement and thus Proposition 3.2.8
and (5) imply that L(R)P |= φ[x⃗].

Let’s start with the construction. First of all we make all the reals of P
generic. Fix a Col(ω,RP )-generic enumeration ⟨an | d ≤ n < ω⟩ of RP in V .
From now on, we work in P [⟨an | d ≤ n < ω⟩].
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We will recursively construct models ⟨Mn | n < ω⟩ and elementary embed-
dings ⟨ik,n : Mk → Mn | k < n < ω⟩ such that crit(ik,n) > i0,k(δk−1) for each
k < n < ω. We will denote

δ⃗k := i0,k(δ⃗) = ⟨δk
n | n < ω⟩

for each k < ω. Furthermore, we will find generics ⟨hn ⊆ Col(ω, δn
n−1) | n < ω⟩

such that an ∈ Mn+1[h0 × · · · × hn] for each n ≥ d.
We do nothing in the first d-many steps, i.e. for m < k ≤ d set Mk := M ,

im,k := id : Mm → Mk and hm := gm.
Fix n ≥ d. Assume that ⟨Mk | k ≤ n⟩, ⟨ik′,k : Mk′ → Mk | k′ < k ≤ n⟩,

and ⟨hk | k < n⟩ are already constructed. We want to use Woodin’s Improved
Genericity Iteration 2 from Corollary 3.1.10 for an, Mn, δn, and En

n := i0,n(En)
with intermediate forcing extension by h0 ×· · ·×hn−1 ⊆ Q⟨δ1

0 ,δ2
1 ,...,δn

n−1⟩. We will
specify the choice of qn ∈ Col(ω, δn

n) later. The assumption that Q⟨δ1
0 ,δ2

1 ,...,δn
n−1⟩

is small relative to En
n is not necessarily satisfied. We can arrange that by

removing every extender E ∈ En
n with crit(E) ≤ δn

n−1 from En
n . En

n still witnesses
that δn

n is Woodin in Mn because δn
n−1 < δn

n . The Genericity Iteration yields
a countable iteration in,n+1 : Mn → Mn+1 and hn ⊆ Col(ω, δn+1

n ) generic over
Mn+1 such that an ∈ Mn+1[h0 × · · · × hn−1][hn] and in,n+1(qn) ∈ hn. We have
that crit(in,n+1) > δn

n−1 because only extenders with critical point above δn
n−1

were used in the iteration.
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Define ik,n : Mk → Mn for the remaining k < n < ω such that the maps
commute. Set

M ′ := dirlim⟨Mn, ik,n | k < n < ω⟩

and let in,ω : Mn → M ′ be the direct limit embeddings. Set

i := i0,ω,

δ⃗′ := i(δ⃗) = ⟨δ′
n | n < ω⟩,

and H := h0 × h1 × . . . .

We claim that M ′ is wellfounded. Fix n ≥ d. We constructed in+1,n+2 : Mn+1 →
Mn+2 as an iteration on (Mn+1, En+1

n+1 ), where En+1
n+1 = in,n+1(En

n+1). We know
that the iteration in,n+1 : Mn → Mn+1 happens below δn+1

n and we arranged
that En+1

n+1 is above δn+1
n . Therefore in,n+1 and in+1,n+2 can be “glued together”

to an iteration in+1,n+2 ◦ in,n+1 on (Mn+1, En
n ∪ En

n+1). We can repeat this
ω-many times and get that i is an iteration on (M,

⋃
n<ω En). This iteration is

of countable length since the individual steps are all of countable length. We
assumed that (M,

⋃
n<ω En) is (ω1 + 1)-iterable, hence M ′ is wellfounded.

Note that δn
k = δ′

k whenever k < n. We know that i is an elementary
embedding from M to M ′. Therefore δ⃗′ is a strictly increasing sequence of
Woodin cardinals in M ′ and condition (1) is satisfied.
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But H is not necessarily Qδ⃗′ -generic over M ′. We specify the (qn)’s to achieve
that. We have to assure that H meets every dense open subset of Qδ⃗′ in M ′. Take
such a dense open subset D. Since M ′ = dirlim⟨Mn, ik,n | k < n < ω⟩ there is
some k < ω and a dense open subset Dk ∈ Mk of Qδ⃗k such that ik,ω(Dk) = D.
The idea is that M ′ has only countably many dense open subsets of Qδ⃗′ and we
can take care of one dense open subset in each step of the construction. Since we
are constructing H in countably many steps, we can use some book-keeping to
arrange that in the end we took care of each dense open subset. For simplicity
and readability, we assume that d = 0 from now on. Otherwise we have to shift
all the indices by +d. We fix a bijection

φ : ω × ω → ω with φ(k, l) ≥ k.

We start with the 0-th step. Fix an enumeration

ψ0 : ω → {D ∈ M0 | D is dense open in Qδ⃗}.

There is such a ψ0 ∈ P because M0 is countable. Let φ−1(0) = (0, l) and set
D := ψ0(l). Pick any p′

1 ∈ D ⊆ Qδ⃗ and set

q0 := (p′
1)0 ∈ Col(ω, δ0) and

p1 := i0,1(p′
1) ∈ Qδ⃗1 .

We used Corollary 3.1.10 to find h0 ⊆ Col(ω, δ1
0) such that h0 ∋ i0,1(q0) = p1 ↾ 1.

Fix an enumeration ψ1 : ω → {D ∈ M1 | D is dense open in Qδ⃗1} in P .
In the (n+ 1)-st step of the construction assume that we already constructed

(i). an enumeration ψk : ω → {D ∈ Mk | D inside P is dense open in Qδ⃗k } for
each k ≤ n,

(ii). pn ∈ Qδ⃗n and

(iii). pn ↾ n ∈ h0 × · · · × hn−1.

Set φ−1(n) := (k, l). Then k ≤ n. We want to take care of D := ψk(l) and need
to find qn+1, pn+1 and ψn+1. Choose p∗

n ∈ Qδ⃗n such that

• p∗
n ≤ pn,

• p∗
n ∈ ik,n(D) and

• p∗
n ↾ n ∈ h0 × · · · × hn−1.
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Why does such a p∗
n exist? Set

En := {r ∈ Q⟨δn
0 ,...,δn

n−1⟩ |

r ≤ pn ↾ n and ∃ p ∈ Qδ⃗n(p ≤ pn, p ∈ ik,n(D), p ↾ n = r)}.

En is dense in Q⟨δn
0 ,...,δn

n−1⟩ below pn ↾ n. Since pn ↾ n ∈ h0 × · · · × hn−1 by
assumption, we can find some r ∈ En ∩ h0 × · · · × hn−1. Take p∗

n to be the
witness for r ∈ En and set qn := (p∗

n)n. Fix pn+1 := in,n+1(p∗
n) ∈ Qδ⃗n+1 . We

claim that pn+1 ↾ (n+ 1) ∈ h0 × · · · × hn−1 × hn. Compute that

pn+1 ↾ (n+ 1) = in,n+1(p∗
n)

= in,n+1(p∗
n ↾ n)⌢⟨in,n+1(

(p∗
n)n

)
⟩

= p∗
n ↾ n⌢⟨in,n+1(qn)⟩ ∈ (h0 × . . . hn−1) × hn,

where in,n+1(p∗
n ↾ n) = p∗

n ↾ n because crit(in,n+1) > δn
n−1 and p∗

n ↾ n ∈
Q⟨δn

0 ,...,δn
n−1⟩ ⊆ Vδn

n−1
. We have that p∗

n ↾ n ∈ h0 × . . . hn−1 by assumption and
in,n+1(qn) ∈ hn since we used Corollary 3.1.10 to find hn. Fix an enumeration

ψn+1 : ω → {D ∈ Mn+1 | D is dense open in Qδ⃗n+1}.

Such an enumeration exists because Mn+1 is countable and we can choose
ψn+1 ∈ P since every finite initial segment of the process is happening inside P .
This shows that H is Qδ⃗′ -generic over M ′. Hence H satisfies (2).

We can also show that (3) holds for M ′ and H. Let n ≥ 1. We made sure
that the extenders in En

n have critical points above δn
n−1 = δ′

n−1. Therefore
crit(in,ω) = crit(in,n+1) > δ′

n−1. This implies that Mn and M ′ agree up to
δ′

n−1 and in particular RM ′[H↾n] = RMn[H↾n]. We have that Mn and H ↾ n

belong to P . Therefore RM ′[H↾n] = RMn[H↾n] ⊆ P and since n is arbitrary, we
have that (R∗)M ′[H] ⊆ RP . On the other hand, an−1 ∈ RMn[H↾n] implies that
an−1 ∈ (R∗)M ′[H]. Again n is arbitrary, hence RP = {an | n < ω} ⊆ (R∗)M ′[H].

Condition (4) is also satisfied. All the ordinals of M ′ belong to P because
M ′ belongs to P [⟨an | n < ω⟩].

In order to verify the last condition (5), we have to show that Der(M ′, H) |=
φ[x⃗]. Set RG := (R∗)M [G] and R′

H := (R∗)M ′[H]. Let ψ(v0, v1) be the statement
“φ(v0) holds in L(v1)”. By the assumption, Der(M,G) |= φ[x⃗] and we have that

Der(M,G) = L(RG)M ∈ M(RG).

Therefore M(RG) |= ψ[x⃗, RG]. Recall that x⃗ ⊆ M [G ↾ d]. Remark 3.2.11 implies
that ψ[x⃗, RG] is forced to hold in M(RG) by the empty condition in Q⟨δd,δd+1,... ⟩
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over M [G ↾ d]. By the construction, we have that M [G ↾ d] = M [H ↾ d],
H ↾ d ⊆ Q⟨δ0,...,δd−1⟩ and crit(i) > δd−1. Therefore i : M → M ′ extends to an
elementary embedding i∗ : M [H ↾ d] → M ′[H ↾ d]. i∗ does not move x⃗ because
x⃗ ⊆ R. This implies that ψ[x⃗, R′

H ] is forced to hold in M ′(R′
H) over M ′[H ↾ d].

Therefore Der(M ′, H) = L(R′
H)M ′ |= φ[x⃗].

Another important ingredient of the proof of AD in L(R) is a simplified
version of the Derived Model Theorem. The crucial step in the proof of the
Simplified DMT is using universally Baire sets.

Definition 3.2.14. Let T be a tree on ω × ω. We define the projection of T
as p[T ] := {x ∈ R | ∃y ∈ R such that (x, y) is a branch in T}.

Definition 3.2.15. Let T0 and T1 be trees on ω × ω and let α be a regular
cardinal. The pair ⟨T0, T1⟩ is α-absolutely complementing iff whenever
g ⊆ Col(ω, α) is V -generic then V [g] |= “p[T0] = R \ p[T1]”. A set A ⊆ R is
called α-universally Baire iff there is a α-absolutely complementing pair of
trees ⟨T0, T1⟩ with A = p[T0].

The following lemma can be found in Chapter 6 of [Nee10].

Lemma 3.2.16. (Neeman) Let δ be a Woodin cardinal. Every δ-universally
Baire set of reals is determined.

Theorem 3.2.17. (Simplified DMT) Suppose that δ⃗ is a strictly increasing
sequence of cardinals in V . Let ⟨En | n < ω⟩ ∈ V be such that En witnesses that
δn is Woodin in V . Assume that (V,

⋃
n<ω En) is (ω1 + 1)-iterable. Let H be

Qδ⃗-generic over V . Then Der(V,H) |= AD.

Proof. Set R := (R∗)V [H]. Suppose that there is some A ⊆ RDer(V,H) = R which
is not determined in Der(V,H) = L(R). By definition, there is a parameter
a ∈ R, ordinals γ, ζ and a formula φ such that

x ∈ A ⇔ Lγ(R) |= ψ[x, a, ζ].

We may assume that a ∈ V = V [H ↾ 0]. Otherwise replace V by V [H ↾ n], where
n is such that a ∈ RV [H↾n]. We may also assume that ⟨γ, ζ⟩ is <lex-minimal
such that

{x | Lγ(R) |= ψ[x, a, ζ]}

is non-determined. Fix θ large enough. Working in V let Tin ⊆ ω × Vθ be the
tree of attempts to construct a real x and a sequence ⟨⟨en, fn⟩ | n < ω⟩ ∈ (Vθ)ω

such that

• {en | n < ω} is an elementary substructure of Vθ.
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Set Mx := mos({en | n < ω}) and let πx : Mx → Vθ be the anti-collapse
embedding.

• e0 = a, e1 = δ⃗, e2 = Qδ⃗, e3 = Ṙ the canonical name for R, e4 = γ, e5 = ζ

and e6 is a name for a real in R and

• the empty condition in Qδ⃗ forces that Lγ̌(Ṙ) |= ψ(e6, ǎ, ζ̌).

Set ẋ := π−1
x (e6) and δ⃗x := π−1

x (δ⃗).

• Gx := {π−1
x (efn) | n < ω} forms a Qδ⃗x

-generic filter over Mx and

• ẋ[Gx] = x.

Tout ⊆ ω × Vθ has the same definition except that the empty condition in Qδ⃗

forces that Lγ̌(Ṙ) ̸|= ψ(e6, ǎ, ζ̌).
For x ∈ R let φin[a, x] be the statement “there is a non-determined set

definable from a and ordinal parameters and x belongs to the least such set”
and let φout[a, x] be the statement “there is a non-determined set definable from
a and ordinal parameters and x belongs to the complement of the least such set”.
Note that φin[a, x] and φout[a, x] are Σ1(R)-statements. The definitions of Tin

and Tout imply that

x ∈ p[Tin] ⇒ Der(Mx, Gx) |= φin[a, x]

x ∈ p[Tout] ⇒ Der(Mx, Gx) |= φout[a, x]

Let x ∈ RV and assume that x ∈ p[Tin]. Set Fn := π−1
x (En) for each n < ω.

Then πx : (Mx,
⋃

n<ω Fn) → (V,
⋃

n<ω Fn) is an elementary embedding and
Lemma 2.5.9 implies that (Mx,

⋃
n<ω Fn) is (ω1 + 1)-iterable. Use Lemma 3.2.13

for Mx, δ⃗x, ⟨Fn | n < ω⟩, Gx ⊆ Qδ⃗x
and φin[a, x]. It yields that

Der(Mx, Gx) |= φin[a, x] ⇒ L(R) |= φin[a, x].

Analogously for x ∈ p[Tout]:

Der(Mx, Gx) |= φout[a, x] ⇒ L(R) |= φout[a, x].

Together with the above, we have

x ∈ p[Tin] ⇒ L(R) |= φin[a, x]

x ∈ p[Tout] ⇒ L(R) |= φout[a, x].

Claim. ⟨Tin, Tout⟩ is δ0-absolutely complementing.
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Proof of Claim. We show that V |=“p[Tin] = R \ p[Tout]” first. Fix x ∈ RV

and assume that x ∈ A. In this case, we have that Lγ((R∗)V [H]) |= ψ[x, a, ζ]
holds in V . Therefore we can find a countable elementary substructure M of
Vθ containing δ⃗ and H such that Lγ((R∗)M [H]) |= ψ[x, a, ζ] holds in M . Set
Mx := mos(M) with anti-collapse embedding πx : Mx → Vθ. Find Gx such
that πx(Gx) = H. Then Mx and Gx witness that x ∈ p[Tin]. If x ̸∈ A, then
by the analogous argument, x ∈ p[Tout]. Hence R = p[Tin] ∪ p[Tout] in V .
Clearly p[Tin] ∩ p[Tout] = ∅ because otherwise there would be a real x such
that L(R) |= φin[a, x] ∧ φout[a, x]. Now take some g ⊆ Col(ω, δ0) which is
V -generic. Note that there is some H∗ ⊆ Col(ω, δ0) which is V [g]-generic such
that V [H] = V [g][H∗] because Col(ω, δ0) is absorbed into Qδ⃗. Therefore the
exact same argument as for V works for V [g]. ■

On the one hand, this implies that p[Tin] is δ0-universally Baire. Hence p[Tin]
is determined by Lemma 3.2.16. On the other hand, we have that x ∈ p[Tin]
implies that x is in the least non-determined set definable from a and ordinal
parameters in L(R). Call this set LNS. If x ̸∈ p[Tin] then x ∈ p[Tout] by the
claim and hence x ̸∈ LNS. Therefore LNS = p[Tin]. In particular, p[Tin] is
non-determined which is a contradiction.

We are ready for the proof of Theorem 3.2.4.

Proof of Theorem 3.2.4. We start with some preparation. Let θ be a large
enough ordinal. Fix a countable substructure X of Vθ containing everything
we need and let P be the transitive collapse of X with anti-collapse embedding
π : P → Vθ. We will show that L(R)P |= AD. Then, by the elementarity of π,
we have that L(R)Vθ |= AD. Since θ can be arbitrarily large, L(R) |= AD holds.
The plan is to find a model N of ZFC and a set H such that

(1) N has a strictly increasing sequence δ⃗′ = ⟨δ′
n |< ω⟩ and a sequence

⟨Fn | n < ω⟩ such that Fn witnesses that δ′
n is Woodin in N for each

n < ω and (N,
⋃

n<ω Fn) is (ω1 + 1)-iterable.

(2) H is Qδ⃗′-generic over N ,

(3) (R∗)N [H] = RP and

(4) P ∩On ⊆ N ∩On.

If we find such N and H then (1) and (2) allow us to use the Simplified DMT
3.2.17 to conclude that Der(N,H) |= AD. We also get that L(R)P is an RP -
initial segment of Der(N,H):
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Both models are of the correct form since

L(R)P = LP ∩On(RP ) and

Der(N,H) = LN∩On(RP ) by (3).

They have the same reals because

R(L(R)P ) = RP and

RDer(N,H) = (R∗)N [H] = RP by Proposition 3.2.12 and (3).

So L(R)P is an RP -initial segment of Der(N,H) by (4). We saw that ¬AD is a
Σ1(R)-statement in Proposition 3.2.6. We know that Σ1(R)-statements go up
from Proposition 3.2.8. Therefore Der(N,H) |= AD implies that L(R)P |= AD.

In the first step we make exactly the same construction as in the proof of
Lemma 3.2.13 with d := 0. This yields a countable iteration i : M → M ′ where
M ′ is wellfounded. Set δ⃗′ := i(δ⃗) and ⟨Fn | n < ω⟩ := i(⟨En | n < ω⟩).

Since i is a countable iteration on (M,
⋃

n<ω En) and (M,
⋃

n<ω En) is (2, ω1 + 1)-
iterable by assumption, we have that (M ′,

⋃
n<ω Fn) is (ω1 + 1)-iterable. The

construction also produces H ⊆ Qδ⃗′ generic over M ′ such that (R∗)M ′[H] = RP .
Therefore M ′ and H satisfy the conditions (1), (2), and (3).

But M ′ and H do not necessarily satisfy the last condition (4). In fact, we
know that M ′ ∩ On ⊆ P ∩ On. We make another iteration to fix the ordinal
height of M ′ by using the ultrafilter U ∈ M witnessing that κ > sup(δ⃗) is
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measurable in M . Set U ′ := i(U), κ′ := i(κ) and ξ := P ∩On ≤ ω1. Let

⟨M ′
α, jα,β : M ′

α → M ′
β | α < β ≤ ξ⟩

be a linear iteration on (M ′, U ′). Set N := M ′
ξ, j := j0,ξ : M ′ → N and

⟨Fn | n < ω⟩ := (j ◦ i)⟨En | n < ω⟩.

j elongates the iteration i because i is a countable iteration and κ′ > sup(δ⃗′). We
have that ξ ≤ ω1, so j ◦ i is an iteration of length ≤ ω1 on (M,

⋃
n<ω En ∪ {U}).

Again by the (2, ω1 + 1)-iterability and since crit(j) > sup(δ⃗′), we have that
(N,

⋃
n<ω Fn) is (ω1 + 1)-iterable.

Note that
κ′ < j0,1(κ′) < j0,2(κ′) < · · · < j0,ξ(κ′)

are different ordinals in N . Therefore ξ ≤ N ∩On and N satisfies (4). κ′ is the
critical point of j and κ′ > δ′

n for every n < ω. Thus H is not touched by j and
the conditions (2) and (3) still hold in N .

Remark 3.2.18. Theorem 3.2.17 (Simplified DMT) and Theorem 3.2.4 are
not optimal. In fact, Neeman proved in [Nee10] that if there are ω many
Woodin cardinals and a measurable above those in V then AD holds in L(R).
This can be shown by replacing Woodin’s Genericity Iteration by Neeman’s
Genericity Iteration. This Genericity Iteration doesn’t need (ω1 + 1)-iterability.
The construction is very different and more complicated. This is why I used
Woodin’s Genericity Iteration in this thesis.
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