Lniversitat
wien

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

Jteration Trees and Genericity lterations"

verfasst von / submitted by

Lena Wallner

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2023 / Vienna, 2023

Studienkennzahl It. Studienblatt / UA 066 821
degree programme code as it appears on
the student record sheet:

Studienrichtung It. Studienblatt / Masterstudium Mathematik UG2002
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Assoc. Prof. Dr. Sandra Miller






Abstract in English

This thesis is a careful and detailed introduction to the basic concepts of inner
model theory. We start with developing the construction of ultrapowers and
iteration trees. The first main result is the (w; + 1)-iterability of nice iteration
trees and weak iterability. We then discuss genericity iterations and some useful
variants. They are used in the last main result which is that L(R) is a model of
the Axiom of Determinacy.

Abstract auf Deutsch

Diese Arbeit ist eine sorgfaltige und detailreiche Einfithrung in die Grundkonzepte
der inneren Modelltheorie. Wir beginnen mit der Entwicklung der Konstruktion
von Ultrapotenzen und Iterationsbdumen. Das erste Hauptresultat ist die (wy+1)-
Iterierbarkeit von schonen Iterationsbdumen und die schwache Iterierbarkeit.
Anschlieflend diskutieren wir Generizitatsiterationen und niitzliche Varianten
davon. Diese werden im letzen Hauptresultat verwendet. Dort zeigen wir, dass
L(R) ein Modell des Axioms der Determiniertheit ist.
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1 Introduction

This thesis is a report of my first steps in inner model theory. It can be a good
source for someone who is interested in inner model theory and wants to start

with basic concepts. I included a lot of details, so it is a slow start into the topic.

Organization of the thesis. Section [2]is about introducing the tools. We
start with ultrafilters and how to build ultrapowers from ultrafilters in chapter
We can take an ultrapower of an ultrapower, which leads to linear iterations.
Those are discussed in chapter 2.2] Extenders are introduced in chapter 23]
They are a generalization of ultrafilters and can also be used to build ultrapowers.
We can form linear iterations using extenders, see chapter Chapter [2.5
consists of three parts. In the first part, we define iteration trees and discuss
some basic facts. The second part is about (w + 1)-iterability of nice iteration
trees. The third part is about weak iterability. The last chapter introduces
Woodin cardinals and its characterization in terms of extenders. In section [B] we
use iteration trees. Chapter [3.1]is about a method called genericity iteration.
We use this method in chapter where we prove that L(R) is a model of the

Axiom of Determinacy.

Acknowledgement. I am very thankful for Sandra’s support. She is very
encouraging and motivating. She organized a desk for me at the TU Wien,
included me into her team and creates a great working environment. I had the
chance to be part of the Young Set Theory Workshop 2023 in Miinster, the TU
Wien Mini Workshop in Set Theory, the Sixth workshop on generalised Baire
spaces at TU Wien and the ESI Set Theory Workshop 2022 in Vienna. I am
also very thankful for the help of my co-supervisor Takehiko Gappo. He invested
a lot of time for my thesis. Also Andreas Lietz and Lukas Koschat helped me
out more than one time. TU Wien gave me a position for the last 4 months. It
was within the scope of encouraging female master students in mathematics to
get to know the academic world and get a taste of an academic career. The last
months were very intense and I am looking forward to starting my PHD with

Sandra in this great environment.

Conventions and Notation. Every elementary embedding that appears is
not the identity map. Let ZFC~ be the theory obtained by removing the Axiom
of Power Set from ZFC and strengthening the Axiom of Replacement to the
Axiom of Collectiorﬂ M, N are always models of ZFC~ which are transitive

IRead more about why it is important to strengthen Replacement in [GHJ15).



and therefore wellfounded, i.e. there is no strictly €-decreasing sequence in V'

consisting of elements of M. k is always a cardinal.



2 Ultrapowers and Iteration Trees

This chapter is based on Steel’s paper An Introduction to Iterated Ultrapowers
[Stel5]. T also used Jech’s book Set Theory [Jec03] and Kanamori’s book The
Higher Infinite: Large Cardinals in Set Theory from Their Beginnings |Kan0§|
as references. Kasum’s Master’s Thesis Projective Determinacy [Kas21| was very

helpful for figuring out details.

2.1 Ultrapowers from Ultrafilters
Definition 2.1.1. U C P(k)M is a filter on « for M iff the following hold:
e U, rkeU,
e« AcUBcP(M, ACB= BcU and
o Fo,FieU=FNF cl.
U is an ultrafilter on x for M iff it additionally satisfies
e AcPM = AcUork\AcU.

We say that a property holds for U-almost every o (U-a.e. « for short) iff
the set of @ < k which have the property is in U. The critical point of U is
crit(U) := k.

Definition 2.1.2. Let U be an ultrafilter on k for M.
e U is nonprincipal iff U doesn’t contain singletons.

o U is M-normal iff for each function f € M with dom(f) = x and f(a) < «
for U-almost every «, there is some § < k such that f(«) = 8 for U-almost

every .

o U is M-k-complete iff for each sequence (A, | a < 8) € M of length
8 < K, where A, € U for each a < 3, we have ﬂa<ﬁ A, eU.

From now on, let U be a nonprincipal ultrafilter on x for M.

Lemma 2.1.3. Let j: M — N be an elementary embedding. Let k := crit(j),
i.e. k is the least ordinal o such that j(a) # «. Define U; C P(k)M by setting

AecU; iff k € j(A)

for each A € P(k)M. Then U; is a nonprincipal ultrafilter on r for M which is
M -k-complete and M-normal. We call U; the ultrafilter derived from j.



Proof. U; is an ultrafilter: j(0) =0 Z , so 0 ¢ U; and k = crit(j), so k € j(k)
hence k € U;. If A € U; and A C B € P(k)M, then k € j(A) C j(B) and
thus B € U;. We also have j(Ap) N j(41) = j(4o N A1), so Ag, A1 € U;
implies that Ag N A; € U;. Finally U; is an ultrafilter since £ ¢ j(A) implies
5 € J(R)\ J(A) = (s \ A).

U, is nonprincipal: For every a < k we have j({a}) = {j(a)} = {a} # k.

U, is M-k-complete: Let (A, | o < B) € M with 8 < k and A, € U; for each

a < . Then
](m Aoz) = m j(Aoz)

a<f a<pf

since 5 < crit(j) and we have k € j(A,) for each o < 8. So

k€j([) Aa) and (] Aa € U;.

a<f a<lf

U, is M-normal: Let f € M with dom(f) = x and

A={a<k]| fla)<a}el;.
Set 8 := j(f)(x). Then 8 < k since

€ j(A) ={a<j(k)[i(f)la) <a}.

Also
k€ {a <j(k) [i(f)(a) =B} =j({a <k fla) =p}).
Therefore {a < k| f(a) =B} € Uj. O

Definition 2.1.4. Define an equivalence relation on the functions of M with

domain k by:
frgiff{a<k|f(e) =g(a)} €U

and denote the equivalence class of f by [f] or [f]y if we want to emphasize the

ultrafilter. We define another relation on the equivalence classes:

[fI€lg] iff {a < k| f(a) € g(a)} € U.
Now we set
Ult(M,U) := ({[f] | f function in M,dom(f) =k}, €)

and define the map

iM M — Ult(M,U),z — [const,],



where const, : Kk = M, — x. We collapse the wellfounded part of Ult(M,U).
So if (Ult(M,U), €) is wellfounded then this yields a transitive model. We denote
it by (Ult(M,U), €) and call it the ultrapower of M by U.

Remark 2.1.5. Ult(M,U) has the same cardinality as M. In particular, if M
is countable then Ult(M,U) is also countable.

Lemma 2.1.6. IfU is M-k-complete then U does not contain bounded subsets
of k. In particular, the interval (B,k) :={a < k| B < a} €U for each B < k.

Proof. Tt suffices to show that g ¢ U for each 5 < k. Fix some g < k. Note
that k \ {a} € U for each o < 8 since U is nonprincipal. Therefore

/@\B:H\U{a}z ﬂli\{a}EU

a<f a<f
by M-k-completeness. O

Lemma 2.1.7. (Properties of Ult(M,U)) Assume that (Ult(M,U), €) is well-
founded. Let f, fo be functions in M with domain r for each o < k. Denote the

identity function on k by id and i := zgf

(i). Los Theorem: Let p(vg,...,vy) be an Le-formula and n < w. Then

UL U) E o([fo.- .. [fa]) i
M = o(fo(a), ..., fa(a)) for U-a.c. a.
(ii). i is elementary. In particular Ult(M,U) = ZFC~.
(iii). If U is M-k-complete then k = crit(i).
(iv). [f] = i(f)(id).
(v). Let A€ P(k)M. Then A € U iff [id) € i(A).
(vi). If U is M-normal and M-r-complete then [id] = k.
(vii). If (fa | @ < &) € M then {[fa] | a < k) € Ult(M,U).

Proof.  (i). We show this by induction on the complexity of ¢. If ¢ = (vg o v1)
with variables v and v; and o € {=, €} then

Ult(M, U) = ¢(fol, [A1]) if {o < w | M = fo(@) 0 fr(a)} €U

by definition of Ult(M,U). The cases ¢ = =), 1 A )2, 11 V )2 follow from

the ultrafilterness of U. We have to be a little bit more careful in the case



-,

¢ = Jy(y). We abbreviate [fo], ..., [fn] by [f] and fo(a),..., fo(a) by

—

f(«). We have that

-

Ult(M,U) = 3y v ((f],v)
& there is g € M such that Ult(M,U) = w([f], 9]
< there is g € M such that {a <k | M E¢(f ?x),g(oz))} el

—

Sla<r|MEIyd(fla)y}el.

Here, the forward direction in the last implication is obvious. For the other

direction, we need to find a function g € M with dom(g) = k such that

—

g(a) is a witness for M = Jy p(f(«),y) for U-almost every «. This is the
point where we use the Axiom of Collection and the Axiom of Choice in
M. In order to see that the witnesses for M = Jy go(f(_d), y) form a set,
we use the Axiom of Collectionl Then we can use the Axiom of Choice to

find a g with the desired property.

(ii). Let a1,...,a, € M and suppose that M = ¢(ag,...,a,) for some Lc-

formula ¢(vo, ..., v,) with variables vy, ..., v,. Then
{a < k| M = ¢(consty,(a),...,const,, ()} =k €U
and by t.0§ Theorem
Ult(M,U) = p(i(ag), ..., i(an))

since i(ax) = [const,, ] for each k < n.

(iii). We claim that i(«) = o for each @ < k. Suppose not and fix v < k£ minimal
with v < i(7y). Let f be such that v = [f]. Then

A={a<k| flo) <y} ={a<k] fla) <const,(a)} € U.
This implies that

s\ {a<r|fla)=pt=r\AgU.

B<y

So by M-k-completeness, there is some 8 < v with {a < k| f(a) = 8} € U.
Hence v = [f] = i(8) = 8 by the minimality of v and this is a contradiction.

2Here, we need really need the Axiom of Collection rather than the Axiom of Replacement.
Read more about this issue in [GHJ15].



(vii).

For each v < k we have
{z < k| consty(z) <id(x)} = (a,k) €U

by Lemma So a = i(«) < [id] for each a < k and therefore x < [id].
Since {a < k| id(a) < consty(a)} =k € U, [id] < i(k). Hence k < i(k).

- i(f)([id]) = [consts]([id]) = [f o id] = [f].

. We have

A={a<k|ac A} ={a <k |id(a) € consta(a)}.
So by Lo$ Theorem,

AeU<&UM,U) [ [id] € [const 4] = i(A).

i). “D” Let B < k. From we know that 8 = i(8) = [constg]. So

{a <k |constg(a) €idla)} ={a<k|f<a}l= (k) €U
by [2.1.6] Then 8 € [id].

“C” Let [f] € [id]. Then {a < k| f(a) < id(e)} € U. Since we assume
that U is M-normal, there is 8 < x such that

Us{a<k|fla)=p}={a<r]|[f(a)=constz(a)}.
So by Eo$ Theorem, we have [f] = i(8) = 5 € &.
We have
(i(fa) | < k) =i((fa | a <r)) [ k€ U(M,U)
and [id] € Ult(M,U). So by we have
([fo] | a < k) = (i(fa)([id]) | @ < k) € ULL(M,U).

O

Corollary 2.1.8. If U is M-normal and M -k-complete then the ultrafilter
derived from i}l is U itself.

Proof. Let A € P(k)™. We saw that crit(i}f) = [id] in Lemma and by



definition i/ (A) = [const ). Therefore
A € Upy iff [id] € [consta] iff {o < k| id(a) € consta(a)} € U

and {a < k| id(a) € consta(a)} = A. O

Let j : M — N be elementary. We cannot expect to get j back from Uj, but

we can capture part of the information.

Lemma 2.1.9. Let j: M — N be an elementary embedding with crit(j) = k.
Then k : Ult(M,U;) = N, [f] = j(f)(r) is an elementary embedding such that

M7

o T

Ult(M,U;)

commutes for i := z{‘,{ and k | P(rk)VHOMUG) — jd,

Proof. k is welldefined: Let f,g € M with domain x. Then

f1=lg e {a<r]fla)=gla)} el
e rejfa<r|fla)=g(@)})={a<j(k)[i(f)e)=jlg)(a)}
& J()(K) =3 (9)(x).

So k does not depend on the representatives of the equivalence classes.
k is elementary: Let ¢ be a formula and assume that ¢ has only one free variable
for simplicity. Let [f] € Ult(M,U;). Then

Ult(M,Uj) = »([f])

e{a<r|MEp(fla)} el
erejfa<r|MEe(fla)}) ={a<jk) | NEe((H)@)}
& Nk e(i(f)(K) & N Eek(f])

The diagram commutes: For a € M, we have that

k(i(a)) = k([const,]) = j(consty)(k) = constj(a)(n) = j(a).

k [ P(k)VHMU5) = id: U; is M-x-complete by Lemma hence crit(i) = x
by Lemma crit(j) = k so crit(k) > k. U; is M-normal therefore

k(r) = k(lid]) = j(id)(r) = &



Let A € P(x)V*M.Us) Then
Ult(M,U;) EACKIf N Ek(A) Ck(k) =k

by the elementarity of k. Now a € A iff a = k() € k(A) for each @ < k. Hence
k(A) = A. O

Corollary 2.1.10. Let j : M — N be elementary with k := crit(j). Then
Ult(M,U;) is wellfounded.

Proof. Follows directly from the existence of the elementary embedding
k:Ult(M,U;) = N
which we discussed in Lemma 2.1.9] and the wellfoundedness of N. O

Definition 2.1.11. U is wi-complete iff A, € U for each n < w implies
nn<w A" 7& (Z)

Remark 2.1.12. Note that wi-completeness is the same as V-w;-completeness.
Clearly V-wi-completeness implies wi-completeness. Assume that U is wi-
complete. Let (A, | « < ) € V, where 8 < wy, and A, € U for each a < 3.
Then there is a surjection ¢ : w — . Set A] := A,(,) for each n < w. We
have that (.5 Aa = N0, Apn) = Np<y, A7 # 0 since we assumed that U is

wi-complete.
Lemma 2.1.13. If U is wi-complete then Ult(M,U) is wellfounded.

Proof. Suppose that Ult(M,U) is not wellfounded. Then there are [f,] €
Ult(M,U) for each n < w such that [f,] > [fn+1] for each n < w. So we
have that A, := {a < k| fu(a) 3 fry1(a)} € U for each n < w. By the

wi-completeness there is an a € N A,,. But then

n<w
Jola) > -+ 3 fula) 3 fura(a) 3 ...
contradicts the Axiom of Foundation in V. O
Lemma 2.1.14. Assume U € M. Then the following are equivalent:
(i). U is wi-complete and

(ii). for every countable, transitive N and every elementary map w: N — M

with 1(W) = U there is an elementary embedding o : Ult(N,W) — M



such that
M

3

N —— UIt(N, W)

- N
w

commutes. The map o is called w-realization.

Proof. “(i) = (ii)”: Fix some N,W and 7 as in the statement. Note that %}, is
meaningful because W is a nonprincipal ultrafilter on IV by the elementarity of
7. Set £’ := crit(W). Then k = w(x'). pew m(B) is a countable intersection
since N is transitive and countable. So by the wi-completeness of U, there is

some v € Mpew (B). Define
o U(N, W) = M, [f] = 7(f)(7)-
This is welldefined since [f] = [g] implies
B:={a<w'|f(a) =g(a)} e W.

Hence 7 (f)(v) = 7(g)(7y) because v € w(B). In order to show that o is elemen-
tary, let [f1],...,[fn] € Ult(N,W) and let ¢ be an Lc-formula such that

Ult(N’ W) ': @([fl]v ) [an

Then B:={a <k | N Eo(fi(a),..., fn(a))} € W.

Since y € 7(B) and o([fi]) = 7(fi)(7) for I = 1,...,n, we have that
M= ¢(o([f1]), .-, o([fa]))-
The diagram commutes since every z € N satisfies
o (il () = o([const,]) = w(const,)(7) = ().
“(ii) = (i)": Let A, € U for every n < w. Set
N == mos(Hully;({U} U {4, | n < w}))

and let m: N — M be the anti-collapse embedding®f} Find W, ', B,, € N such

3Hullps ({UYU{A, | n < w}) is the Skolem Hull of {U} U{A, | n < w} in M which is a
countable elementary submodel of M.
4mos stands for Mostowski collapse which turns a wellfounded model into an isomorphic

10



that #(W) = U, n(x') = k and w(B,,) = A, for each n < w. Then N and W

satisfy the conditions of m So there is an elementary map
o : Ult(N,W) — M such that o o ily, = 7.
We claim that o([id]) € 7(B) for every B € W. Then, in particular,
o([id]) € w(B,) = A, for each n < w

and therefore A, # (. Let xp be the characteristic function of B as
a subset of k' in N and Xy the one for 7(B) C « in M. Observe that

n<w

Xr(8) = m(xB) = o(ily,(xp)) since 7 is elementary and the diagram commutes.

Now we have
X=(B)(o([id])) = o i (x ))( ([id])) by the observation

JV\{, ) since o is elementary

(

a([xz]) bym
(
(i

=017

o([constq]) since [xp] = [const1] is witnessed by B € W

w (1)) =7(1) = 1 since the diagram commutes.

o(i
This proves the claim and concludes the proof. O

A proof of the next lemma can be found in Chapter 10 in [Jec03].
Lemma. FEvery measurable cardinal is inaccessible.

Lemma 2.1.15. Let U be M-k-complete. Then U & Ult(M,U).

Proof. U witnesses that x is measurable in M. Since ¢ := zg[ is elementary
we have that (k) is measurable and therefore inaccessible in Ult(M,U). If
U € Ult(M,U) then also the function

®: k" = Ult(M,U), f — [f]

is an element of Ult(M,U). We claim that im(®) = i(k).
“C”: For f € k™ we have that

{a< k]| fla) <consty(a)} ={a<k| fla)<k}=reU

so [f] € i(k).
“D7: Let [g] € i(k). Then A :={a < k| g(a) € const,(a)} € U. Define f € "

transitive model.

11



by
gla), a€d
0, a€ K\ A
Then [g] = [f] since {a < k | g(a) = f(a)} D A€ U. So [g] € im(P).
But now Ult(M,U) = k" > im(®) = i(k) > &, which is a contradiction to
(k) being inaccessible in Ult(M,U). O

2.2 Iterated Ultrapowers

In Chapter 2.I] we discussed how to extend a model by an ultrafilter. Since this
extension is a model itself, we can use the same method again and so on. But
we saw in the first chapter that the ultrafilter U is never in Ult(M,U), so we

can’t use the same ultrafilter again.

Definition 2.2.1. Let Y C M. We say that (1,Y") is an amenable structure
iff tNY € M for each x € M. An M-nuf U is a nonprincipal ultrafilter for M
which is M-normal and M-crit(U)-complete. A pair (M,U) is called a good
pair iff (M,U) is an amenable structure and every element of I/ is an M-nuf.

Definition 2.2.2. Let U be an M-nuf and let (M,Y’) be an amenable structure.
The ultrapower of (M,Y) by U is defined as

Ult((M,Y),U) == (UIt(M,U), Yy),

where [flv e Yy it {a< k| f(a) €Y} eU
for each function f € M with dom(f) = &.

Remark 2.2.3. Note that asking for {a < k| f(a) € Y} € U in Definition

B2 2 makes sense since
{a< k]| fla) €Y} =fHran(f)NY].

fran(f)NY] € P(k)M since f € M and ran(f) NY € M because (M,Y) is

an amenable structure.

Lemma 2.2.4. Let U be an M-nuf and let (M,Y) be an amenable struc-
ture. Assume that (Ult(M,U),€) is wellfounded. Then Ult(M,Y),U) =
(Ult(M,U),Yy) is an amenable structure.

Proof. Fix some x € Ult(M,U). We need to show that  NYy € Ult(M,U). Set

i=i.
We claim that there is a transitive y € M such that € i(y). Pick any f € M

with [f] = z and set y := trel({ran(f)}). This is transitive by definition and

12



y € M. We have that {o¢ < x| M |= f(a) € y} =k € U. So by Lo§ Theorem,
Ult(M,U) = [f] € [const,] = i(y).

(M,Y) is amenable by the assumption, hence there is some u € M such that
u =y NY. This implies that

i(u) =i(y)NY

because ¢ : (M,Y) — (Ult(M,U),Yy) is elementary. Note that i(y) is transitive

since y is transitive, so « € i(y) implies that « C i(y). We compute that
zNYy = (zNi(y)) NYu =20 (i(y) NYu) =z Ni(u).

Hence z NYy € Ult(M,U). O

From now on, let (M,U) be a good pair.

Lemma 2.2.5. Let U be an M-nuf and assume that (Ult(M,U), €) is well-
founded. Then Ult((M,U),U) is a good pair.

Proof. We know that Ult((M,U),U) is an amenable structure from Lemma [2.2.4]
We need to show that every element of Uy is an Ult(M,U)-nuf. Let [W]y € Uy.
Then {a < k | W(a) € U} € U. Since every element of U is an M-nuf, we have
that W () is an M-nuf for U-a.e. a. Then Lo§ Theorem implies that [W]y is
an Ult(M,U)-nuf. O

Definition 2.2.6. Let 8 be some ordinal. We call I = (U, | @ < ) a linear
iteration of (M,U) of length § iff there are (M,,U, | @ < ) and elementary
embeddings (iq .~ : My — M, | & <y < §) such that

(1) M[) =M and Z/{Q :u,

(ii). for each o < g
M, is a transitive model of ZFC~ and U, € U,

(iii). for successors a+ 1 < -
(Ma+17ua+1) = Ult((Mayua)7 Ua)a
lo,ad1 = i%‘* and

y,a41 = fa,a+1 © ivy,o for each v < a,

(iv). for limit ordinals A < :
(M, Uy) is the direct limit of ((Ma,Ua),ta,y | @ <y < A) and iy, y are the

direct limit embeddings.

13



We also write UZ, M[,i!,  and k[, for Uy, My, ia, and crit(Us,). We associate

the “last model” ML . If 3 is a limit ordinal, then

ML is defined as the direct limit of (M, iéﬂ |la<vy<pB)

. . . . . -I
with direct limit embeddings i,, ., for each a < f3.

If 8= ' +1, then ML := M},.

Remark 2.2.7. e (M,U) is a good pair and Uy € Y. In particular, Uy is
an M-nuf. Lemma yields that (Mj,U,) is a good pair. Therefore
Uy € Uy is an My-nuf and (Ma,Us) = Ult((Ma,Us), Ur) is welldefined. The

same applies to every successor step.
e We will sometimes suppress the U, ’s in favor of the readability.

o The models (M, | @ < 8) and elementary embeddings (i~ | @ <y < 3)
from Definition [2.2.6] are unique. Therefore we call them the models and

the elementary embeddings of I.
e If B < wy, then every M, with a < /8 has the same cardinality as M.

Definition 2.2.8. Let 6 be an ordinal. We call (M,U) <6-linearly iterableﬂ
iff ML is wellfounded for every linear iteration I of (M,U) of length less than 6.
If (M,U) is <B-linearly iterable for every ordinal 6 then we call (M,U) linearly

iterable.

The goal for the rest of this chapter is the following theorem:

‘Theorem 2.2.9. If every U € U is w1-complete then (M,U) is linearly z'temble.‘

The proof uses a characterization of linear iterability which is discussed in
Lemma [2.2.12] The following lemma is important for the proof of Lemma [2.2.12]
It shows how to pull back linear iterability through an elementary embedding.

Definition 2.2.10. Let (M,U) and (N, W) be amenable structures. We write
“r: (N,W)— (M,U) is an elementary embedding ” iff 7 : N — M is an
elementary embedding and in addition z € W < 7w(z) € U for each v € N.

Lemma 2.2.11. (Pull Back Linear Iterability) Let (M,U) be <0-linearly iterable
for some ordinal 6. Let (N, W) be a good pair and let w: (N,W) — (M,U) be
an elementary map. Then (N, W) is <6-linearly iterable, too.

Proof. Let 8 < 6 and fix some linear iteration J = (W, | a < 8) of (N, W)
with models (N, | @ < ) and embeddings (ja,, | @ < v < ). We recursively

5Usually this is called 6-linearly iterable but I prefer this version because it is less ambiguous.
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construct good pairs (M,,U,) and elementary maps 7, : (No, Wa) = (Mo, Us)
for each o < 3 such that

o I:= (U, |a< p)is a linear iteration of (M,U), where U, := 7, (W,) for
each a < 3, and

* Tat1 0 Ja,a+1l = ta,a+1 © o for each o with o +1 < .

Assume that we already constructed m, for each a < . We define an
elementary map 7o : N2 — ML . If 3 = 8’ + 1 for some ordinal 3’ then 7., is
constructed as in the successor step below as mg/11. If 8 is a limit ordinal then
Teo 18 constructed as in the limit step below. In both cases 7, is an elementary
map. We know that M, is wellfounded because (M,U) is <6-linearly iterable.

Hence N is wellfounded, too. We have the following diagram:

10,1 11,2 Ta,at1
M M, . M, M, . M,
/l\ﬂ- /l\ﬂ'l /I\ﬂ'a Wﬂ'a+l /I\ﬂ'oo
N — Ny — . N, = N, o N
Jo,1 1 Ji,2 a Jo,a+1 o+l o

Let’s build the recursion.
a=0:
Set (Mo,Uo) := (M,U)

and g := 7.

a+1<g:
Set (Mat1,Uat1) = Ult((Ma,Us), Us)

and define mo41 : Not1 = Mat1 by [flw, — [7a(H)]u, -

We need to show that this is welldefined. Pick f, g € N, such that [flw, = [g]w,

a?

ie. {z <kl| f(x)=g(x)} € W,. The elementarity of 7, implies that

{z < kg | ma(f)(@) = 7alg)(2)}
=ma({z <ry | f(2) = g(2)}) € Ta(Wa) = Ua.

Hence [m4(f)]u, = [ma(9)]u,. The elementarity of my41 follows from F.o$

Theorem and the elementarity of m,. We claim that mo41 : (Nat1, Wat1) —
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(Myt1,Usy1) is elementary. In order to show that, pick [g]lw,, € No+1. Then

[9]w. € Was1 = Wa)w.,
e {r <kl |glx) e Wy} e W,
e r.({z <kl g(x) € Wa}) € ma(Wa)
e {z <kl | ma(g)(x) €U} € U,
& mar1(lglw.) = [Ta(9)lv. € Ua)v, = Uat1
The definition of 7,41 directly implies that To41 © ja,a+1 = ta,a+1 © Ta-

~ limit ordinal: Let (My,U,) be the direct limit of ((My,Us) | @ < 7). For
x € N, there is some a < v and 2’ € N, such that j, (z') = . Set

Ty (2) 1= ia(Ta(z)).

It is easy to check that (M., U, ) that my : (N, W,) — (M,,U,) is an elementary

map which commutes with the j's and 4’s. O

Lemma 2.2.12. (Characterization of Linear Iterability) The following are

equivalent
(i). (M,U) is <w;-linearly iterable.

(ii). If (N, W) is a good pair, N is countable and transitive and = : (N, W) —
(M,U) is an elementary map. Then (N, W) is <w:-linearly iterable.

(#i). (M,U) is linearly iterable.

Proof. “(i) = (i1)” is a special case of Lemma

“(#) = (i4i)” Suppose that (M,U) is not linearly iterable. Fix some linear
iteration I such that MZ is illfounded. By the Reflection Principle, there is an
ordinal # such that Vy = “MZL is illfounded”. Set

H := mos(Hully,({M,U,T}))

and let 0 : H — Vp be the anti-collapsing embedding. Then there are N, W, J €
H such that o(N) = M,c(W) = U and o(J) = I. Since H is countable and
transitive, we know that NV is countable and transitive, J is of length < w; and
mi=0 [ (N,W):(N,W) — (M,U) is a welldefined elementary embedding. So
by the assumption, (N, W) is <w;-linearly iterable and N is wellfounded. But

on the other hand, the elementarity of ¢ implies
H = “NZ is illfounded”.
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“NZ is illfounded” is a X1 statement and therefore upwards absolute. Hence we
have that NZ is illfounded which is a contradiction to the above.
“(#i4) = (4)” follows from the definition. O

We have all the ingredients to prove Theorem [2.2.9

Proof of Theorem[2.2.9 Fix some good pair (N,W) with N countable and
transitive and an elementary map 7 : (N, W) — (M,U). By Lemma it
is enough to show that (N, W) is <w;-linearly iterable. Fix a countable linear
iteration J = (W, | o < B) for 8 < wy on (N, W) with associated models
(No | @ < B) and associated embeddings (ja,~ | @ < < ). We need to show

that N is wellfounded. We recursively define elementary embeddings
(Ta + (Nay Wa) = (M,U) | a < B)

and 7s : Noo — M such that the following diagram commutes:

N

Ta+1
™ Ta
N—— N . N, Nuis . No.

M

3

ja,a+1

Then N, embeds into the wellfounded model M. Hence N, is wellfounded.
a = 0: Set mp := .
a — a+ 1: N, is countable by Remark Wy € W, hence m,,(W,,) € U,

so by assumption, 7, (W,) is wi-complete. Set 7,41 to be the m,-realization

described in Lemma 2.1.14] i.e.

Tas1 : Ul (Nay Wa) = M, [fI, = ma(£)(7),
where 7 is any element of (\zcyy Ta(B). We claim that

Tot1 : (Nag1, Wat1) = (M,U) is elementary.
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We have that

[FINe € Watr = Wa)w,
& B:={z <crit(Wy) | f(z) € Wy} € W,
<y € my(B) ={z < mo(crit(Wy)) | mo(f)(z) € U}
& mas1 ([fI52) = ma(H)(7) €U.

« limit ordinal: We define 7., : Ny, — M as follows. For = € IV, there is some
a <vyand y € N, such that © = j, ,(y). Set my(x) := w4 (y). It is easy to check
that m, : (N, W,) = (M,U) is elementary.

If 3 =’ + 1 is a successor ordinal, then define 74, as in the successor case.

Otherwise § is a limit ordinal and we define 7., as in the limit case. O

2.3 Extenders and Ultrapowers from Extenders

We want to generalize the idea of extending a model via an ultrafilter from
Chapter We are going to use extenders which allow us to extend a model

by a lot of ultrafilters at the same time. From now on, let A be an ordinal.

Definition 2.3.1. For a set of ordinals a, we denote the i-th smallest element of a
by a;. Let n < m, a € [N]",b € [\]™ with b= {b1,...,bp} and a = {b;,,...,b; }.
For X C [k]™, set

X = {u e [k]™ | {us,,...,u;,} € X} C [&]™.
If f:[k]" = M, set
O [R]™ = Myu— f({ui,, ... u, }).

Definition 2.3.2. ((Pre-)Extender) A set £ C [A\]<% x P([s]<¥) is called a
(k, \)-pre-extender over M (or M-pre-extender) iff for every a,b € [\]<¥
with a C b

(). The set E, :={X € P([k]<¥) | (a, X) € E} is an M-k-complete ultrafilter
on [k]lel for M.

(ii). (Compatibility) If X € M then X € E, iff X% € E,

(iii). (M-normality) If f € M with dom(f) = [x]l%l and f(u) < u; for E,-a.e. u.
Then there is £ < a; such that f&H{&} (u) = uy, for E,ugey-a.e. u, where k
is such that & = (a U {&})x.

We call k =: crit(E) the critical point of E and A =: [h(E) the length of E.
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Remark 2.3.3. Note that the definition of an M-pre-extender only depends
on P(k)M. If Q | ZFC~ is transitive and P(k)? = P(k)™. Then E is a
Q-pre-extender iff F is an M-pre-extender.

Lemma 2.3.4. Let j : M — N be an elementary embedding with crit(j) = k
and A < j(k). Set

E(j, ) = {{a,X) |ae [N¥ X € [/@']'a‘,a €j(X)}.

This is a (K, \)-pre-extender over M which we call the (k,\)-pre-extender

derived from j.

Proof. Let a,b € [A\|<* with a = {b;,,...,b;,}- E(j,\)q is an M-k-complete
ultrafilter on [x]!%! for M by the same arguments as in Lemma In order to
check that E(j, A) is compatible, let X € M. Note that

FX) = fu e [ {uiys - oui, b€ 50}

So X € E(j,\)a < a € j(X)
& be (X
& X% e B, A,

For M-normality, let f € M with dom(f) = []l%l and f(u) < u; for E,-a.e. u,
a € j({ue s ] flu) <uwl)={ue i) () (u) <ul.
Hence j(f)(a) < a;. Set € := j(f)(a) and k such that £ = (a U {£})x. Then
Je ) @u{ey) = i(N* 1 au{e}) = 5(f)(a) = € = (@U{ED

Therefore f&9 &} (u) = uy, for Equgey-a-e. u. O

Definition 2.3.5. Let E be a (k, A)-pre-extender over M. For functions f,g € M
with dom(f) = []l? and dom(g) = [k]"’l, where a,b € [\]<%, we define an

equivalence relation by
{a, f) ~ (b, g) iff f»2°(u) = g>%P(u) for E, p-a.c. u

Denote the equivalence class of (a, f) by [a, f] or [a, f]¥. We also define the
relation € by

[a, fIE[b, g] iff f20(u) € g¥T°(u) for E,up-a.e. u.
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Let Ult(M, E) := ({[a, f] | a € [\|<%, f function in M, dom(f) = [s]'*'}, &)
and i - M — Ult(M, E), x + [{0}, constl]

where const? : [k]" — M,u > x for each n < w. Again (Ult(M, E), €) does not
have to be wellfounded, but we collapse its wellfounded part. If (Ult(M, E), €) is
wellfounded then this yields a transitive model and we denote it by (Ult(M, E), €)
and call it the ultrapower of M by FE.

Lemma 2.3.6. (Properties of Ult(M,E)) Let E be a (k,\)-pre-extender over
M. Fir some n < w. Let a,a® € [\[<* and f, fx be functions in M with
dom(f) = [x]'® and dom(fy) = [K]“"! for each k < n. Denote the identity
function on [k]™ by id™ for each n < w and i := i¥. Then the following

properties hold:

(i). Lo$ Theorem: Let ¢(vy,...,v,) be a formula, n < w and b := J,., a".
Then

Ult(M, E) E ¢([a°, fo], ... [a", f]) iff

M ): QD( go,b(u)7 B fﬁn’b(u)) fOT FEyp-a.e. u.
(ii). i is elementary. In particular, Ult(M,E) = ZFC~.
(i) K = crit(i).

(iv). Let e : [K]* = k,{B} = B and ey ; : [K]" — K, u > u; for each i <n < w.
Then every [ in the wellfounded part of Ult(M, E) satisfies

(o) [{B}el =B if B <A,
(b) la,€q15) = ai for 0 <i < |a| and

(c) a=[a,id?].
(v)- la, f] = i(f)(a).
Proof.  (i). Works exactly the same as in Lemma [2.1.7]
(ii). Works exactly the same as in Lemma [2.1.7]
(iii). Works exactly the same as in Lemma [2.1.7]

(iv). (a) Define a function

F:\— Ult(M,E)
B [{B}.e].
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This is an order preserving map. For f; < f2 < A, we have
elBibABLB2} () = w; for i = 1,2 and every u € [k]?. u1 < ug holds by
definition. By Los Theorem, F (1) = [{81},¢] € [{B2},¢] = F(B2).
We claim that for every § < A and [b, f] € F(8) there is £ < 3 such
that [b, f] = F(§). We may assume that § € b, say 8 = b;. By defi-
nition, {u € [k]°1] f(u) < u;} = {u € [&]®1] f(u) € PPl (u)} € E.
By the M-normality of E, there is some £ < b; = [ such that
{u € [P | fPAS (u) = w} € Eyugey, where k is such that
(b U {&})r = & Therefore [b, f] = [{{},¢] = F(§). The fact that F
is order preserving and the claim imply that F(8) is an ordinal for
each 8 < A. The claim also implies that im(F) is an initial segment
of the ordinals hence im(F') is an ordinal itself. This shows that F
is an order preserving bijection between A and some ordinal. Hence
F = idy.

(b) Fix i < |a]. We have g4/, = glaiba S0 by Lo Theorem, [a, €la)i] =
la, e{e32) = [{a;}, €] = a; by [iv)](a).

(¢) We have id®(u) = {u1, ..., ujq} = {€ja),1 (), - - -, Ejal,ja) (w)} for every
u € [K]1%l. Again by Lo$ Theorem,

la,id") = {[a,eja1], - -+ [@s Elapjal]} = {a1s- -+ a10} = a

using [(iv)|(b).

(v). i(f)(a) = [{0},const}](a) = [a,constlfal](a) = [amonstlfa']([a,id‘“']) =
[a, f o idl*] = [a, f].
O

We can perfectly recover the extender from the ultrapower embedding.
Lemma 2.3.7. Let E be a (r,\)-pre-extender over M. Then E(i¥,\) = E.
Proof. Let a € [\]<% and X € [x]ll.

(a,X) € E(iy , \)
& a € iM(X) = [{0}, const] by the definition of E(i}, \)

Sac€ [a,constl)?‘} since [{0}, constk] = [a,const‘;‘]

& [a,id") e [a,constl)?l] by Lemma [2.3.6(iv)|
& {ue k]| id (u) e constl;l(u)} € E,
sX={uecll|ueX}cE, & (a,X)cE.
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It doesn’t work exactly as good in the other direction, but if we have the

derived extender then we can recover at least a part of j.

Lemma 2.3.8. (Recovering j) Let j : M — N be an elementary embedding with
crit(§) =k and XA < j(k). Then k : Ult(M, E(j4,)\)) — N, [a, f] — j(f)(a) is an
elementary embedding with crit(k) > X and

M—7

Tk

Ult(M, E(j,)))

S M
commutes for i := 5TERNE

Proof. This proof is exactly the same as the proof of Lemma [2.1.9] We use
Lemma [2.3.6(iv){a) to compute that crit(k) > A. O

In Chapter[2:2] we iteratively used ultrafilters and we want to do the analogous
construction with pre-extenders. So far, we established that Ult(M, E) is a model
of ZFC~. But we assumed that M is a wellfounded model. So if we want to
extend Ult(M, E) again then we need to make sure that Ult(M, E) is also
wellfounded. We simply add this as a condition to the definition of being a

pre-extender.

Definition 2.3.9. Let E be a (k, A)-pre-extender over M. If Ult(M, E) is

wellfounded then we call E a (k, \)-extender over M (or M-extender).

Remark 2.3.10. Note that being an M-extender does not only depend on
P(r)M. If Q E ZFC~ with P(k)? = P(k)™ and E is an M-extender, then we

know that F is a QQ-pre-extender but it is not necessarily a Q-extender.

Our definition of extenders is not a first order property. But analogous to
the ultrafilter case there is a first order property called w;-completeness, which

implies wellfoundedness of ultrapowers.

Definition 2.3.11. Let E be a (k, A)-pre-extender over M. E is wi-complete
iff for every (a™ € [A\|*¥ | n < w) and (X,, € E4n | n < w) there is an order-
preserving map ® : | J. __ a"™ — & such that ®”[a"] € X, for each n < w.

n<w

Corollary 2.3.12. Let E be a (k, \)-pre-extender over M and assume that E

is wy-complete. Then E, is an wy-complete ultrafilter for every a € [A\]<¥.

Proof. Let A, € E, and set a™ := a for each n < w. Since FE is wj-complete,
new @ — k& such that ®”[a"] € A, for each n < w. We
have that | J,, ., a" = a and thus ®”[a] € ), _,, An. O

there is a map @ :
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Lemma 2.3.13. Let E be an M -pre-extender. If E is wi-complete then
Ult(M, E) is wellfounded.

Proof. Suppose that Ult(M, E) is not wellfounded. Then there are [a™, f,,] €
Ult(M, E) such that

(™, fri1] € [a", fn] for each n < w.

We can assume that a™ C a™! for each n < w. Then

n an+1

X1 = {u €[] fura(u) € £2" " (w)} € Egnia.

Set Xo = [/f]'“O' € E,. F is wi-complete by assumption, so there is an

order-preserving map

D U a™ — k such that ®”[a"] € X,

n<w

for each n < w. We set y,, := fn(®"[a"]) for each n < w and claim that

(yn | n < w) is an infinite descending chain in V. Fix some n < w. Note that

n n+l

Yn = fg ,a ((I)n[an-‘rl])

since ® is order-preserving. By the definition of X,,;1 and ®, we have that
Yna1 = far1 (®7[a" 1)) € f2"a" " (&7[a"+1]) = y,,. This shows that (y, | n < w)

is a descending chain which is a contradiction. O

The following Lemma is the analog of Lemma

Lemma 2.3.14. Let E € M be an M -pre-extender. Then the following are

equivalent:

(i). E is wi-complete,

(ii). For every N and F with m: N — M elementary, N countable, transitive
and 7(F) = E there is an elementary embedding o : Ult(N, F) — M such

that
M \
N —— Ult(N, F)
F
commutes.

Proof. “(i) = (#i)”: Fix N, F and 7 as in the statement. Then F is a (k/, \')-
pre-extender, where 7(x') = x and w(\') = A. We define X, := Ny p, m(Y) for
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every b € [\']<“. Since N is countable, Corollary implies that X3, € E ).
Enumerate [A']<% = (¢" | n < w). We can do this because A’ € N and therefore
M is countable. E is wi-complete by assumption, i.e. there is an order-preserving
map @ : J, ., 7(c") — & such that ®”[r(c")] € Xcn. Set

a([b,g]F) = m(g)(@7[m(b)])-

Note that 7(b) € [w(A)]<¥ and thus ®”[x(b)] € k. m(g) € M is a function with
domain 7(k’") = k. Therefore 7(g)(®”[x(b)]) € M. In order to show that the map
is welldefined and elementary, let ¢ be a formula and let [b°, go], ..., [b¥, gx] €
Ult(N, F) such that

Ult(Na F) ': (p([bOmgO]a R [bkang
Set b:=b"U---UbF. By Lo Theorem, we have that
0 k
Yi={uec W]’ NEo(g @), .9 "(w)} € K.

The construction of X, and ® imply that ®”[x(b)] € X, C 7(Y) and thus
O7[r(b)] € 7(Y). We have that

7(V) = {ue [ | M o(m(g0)™ 7O (w),...,7(ge)™ 7O (u))}.

Note that

w(g) ™ (@[ (b)]) = 7(00)(@"[x (B)]) = o (V. 1))

for | < k because @ is order-preserving. Hence

M E o(a([b°,90),- ..o (0", ar))).

“(i1) = (1)": Fix (@™ € [A|<¥ | n < w) and (X,, € Egn | n < w). Set N :=
mos(Hullyy({E} U{X,, | n < w}) and let 7 : N — M be the anti-collapsing
embedding such that 7(F) = E, n(Y,,) = X,, and 7(b™) = a™. For every a € a",
there is 3 € b™ such that 7(8) = a. Set ®(a) := o(8) = o([{B8},¢]¥), where the
second equality holds by Lemma [2.3.6{(iv)(a). U is order-preserving because 7 and

o are elementary. In order to show that ®”[a"] € X,,, we compute xx, (?”[a"]),
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where Y x, is the characteristic function of X,, as a subset of [x]!*"].

xx, (®7]a"]) = m(xy, )(®7[r(b")]), since a” = 7(b") and X;, = 7(Y7,)
= o([{0}, const ]) , because 7 = o 0 i}
U([b",constlb | )( ([, zdlb" )), by Lemma c)
=o([b", constlb |]([b Lid”" ‘)), follows from the elementarity of o
=o([b", xv.])
= o([b", constl |])7 since Y,, € Fpn
= o([{0}, constl]) = o(i¥ (1)) = 1.

O

Corollary 2.3.15. If j : M — N and N is wellfounded then E(j,\) is an
M -extender.

Proof. In Lemma we showed that Ult(M, E(j,\)) embeds into the well-
founded model N. In particular, Ult(M, E(j, \)) is wellfounded. O

Definition 2.3.16. Let Q and Q' be any models and 6 an ordinal. We say that
e Qand Q agree up to 0 if QNVy=Q' NV,

¢ @ and )’ agree well beyond 0 iff they have the same first inaccessible

cardinal u above 6 and agree up to p.

Let 7: @ — P and j' : Q' — P’ be elementary embeddings for some models P
and P’. We say that

e jand j’ agree up to 6 iff Q and Q' agree up to 0,
J1@QNVy) =3 1(Q NVy) and j(0) = j'(0).
« j and j' agree well beyond 6 iff Q and Q' agree well beyond 6 and

J T(QQVH) :j, f(Q'ﬂVu%
where p is the first inaccessible above 6 in both Q and Q’.

Proposition 2.3.17. Let E be a (k, \)-pre-extender over M and suppose that
M and N agree up to k + 1. Then

(i). E is an N-pre-extender,

(ii). i and if¥ agree up to k+ 1 and
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(ii3). Ult(M,E) and Ult(N, E) agree up to i (k) + 1.
Proof. (i). M and N agree up to s + 1 so in particular PM (k) = PN (k).

(ii). Let x € M NV,41. Then constl € M NV,y1 = NNV, and therefore
iy (z) = [{0}, consty]3 = [{0}, consty]y = if; (x).

In particular, i (k) = i¥ (k) and thus i (k + 1) =¥ (k + 1).

(iii). Set ' :=i¥ (k). It is enough to show that
Ult(M, E) and Ult(M NV,.41, E) agree up to ' + 1.
Note that F is an (M N V,.41)-pre-extender by On the one hand,
Ult(MNVieyr1, E)N Vg1 CURM,E) N Vg
by construction. On the other hand, let [a, f]¥ € Ult(M, E)NV,41. Then
Ult(M, E) = [a, 15 € Vi (o)41-
t.0§ Theorem implies that
Ap:={uc k]| ME f(u) € Viy1} € E,.
Define g : [k]l*l — V.11 by

flu), ue Ay

0, otherwise.

g(u) ==

Then [a, g|¥ = [a, f]¥ and g € M NV, 11, s0
a, f1M = [a, g ¥V € Ul(M N V,eyy, B).
E B

O

Definition 2.3.18. Let E be an M-extender. The strength of F in M,
strM(E), is the largest ordinal o such that M NV, C Ult(M, E). We say that
E is nice in M iff strM (E) = Ih(E) is inaccessible in M.

Proposition 2.3.19. Let E € M be a (k, A)-extender over M. Then
(i). k+1<strM(E),

(ii). E ¢ UM, E) and
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(iii). strM(E) <.

Proof.  (i). We know that i/ | (M NV,) = id because k = crit(i%f). Therefore
every A € M NV,41,ie. ACV,, satisfies A =i (A) NV, € Ult(M,E)N
Vii1. So M NV, CUI(M,E) and strM(E) > k + 1.

(ii). In the ultrafilter-case, we used the fact that the image of x is inaccessible
in the ultrapower. We will also use it here. We write x* for (x+)M.
Note that we can code functions from x to k¥ in M as elements of V,.1.
Since E € M, we have that Ult(M, E) C M. Therefore |(i)| implies that
M N Ve =Ult(M,E) N Viyq and thus

(5(r+))THOLE) — (5 ()M
If we assume that E € Ult(M, E) then
i¥ (k1) is the order type of {[a, f] | a € [\]<, f € ®(xT)}.
kT <i¥ (k) because k < i¥ (k). So inside Ult(M, E), we have
B ()] < N ()] < 1 ()
which is a contradiction.

(iii). We have that E € M N Vy4; so by M N Vi1 € Ult(M, E). Hence
strM(E) < A+ 1.
O

Lemma 2.3.20. (Shift Lemma) Let w: M — N and o : M’ — N’ be elementary
embeddings, where M', N’ = ZFC~. Assume that m and o agree up to k + 1.
Let E € M’ be a (k, A)-extender over M'. Then

(i). F:=0(E) is a (o6(k),o(N))-pre-extender over N.

(ii). T : Ult(M,E) — UIt(N,F), [a, fI]M — [o(a),7(f)]F is an elementary

embedding and T o i =il o .

(iii). If F is an N-extender then E is an M-extender, i.e. if Ult(N,F) is
wellfounded then Ult(M, E) is wellfounded.

(iv). o [ A=71]A\

(v). If T and o agree well beyond k and E is nice in M’, then o and T agree

up to A.
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Proof. First of all we show that N and N’ agree up to o(x) + 1. We compute

NOWo(m41 = NWaiyp1 = Vi = (Vi) = a(VEL) = Vi = NOWo(on

K K

where the first equality holds because 7 is elementary and o(x) = (k). The last
one holds because o is elementary and the middle one because M and M’ agree

up to k + 1.

(i). F is an N'-pre-extender by the elementarity of 0. So F' is an N-pre-
extender by Proposition k is definable from F since k is the
critical point of the ultrafilters of E. Therefore o(k) = crit(F). A is also
definable from E since formally £ = {(a, X) | a € [N]l*/, X € E,}, so
A=U{a|3IX (a,X) € E}. Hence o(\) = Ih(F).

(ii). First we show that formulas true in Ult(M, E) transform to formulas true
in Ul¢(N, F).

Claim. Let ¢(xo,...,z,) be a formula and let [a°, fol%,, ..., [a", fo]}) €
Ult(M, E) such that

Ult(M, E) = ¢(a°, foldp,- - [a", ful i)

Then
Ult(Nv F) ': @([U(a’o)’ ﬂ-(fO)]J}Gv ] [U(a'n)v W(fn)]llif)

Proof of Claim. For simplicity and readability, we assume that n = 1. Set
b:=a’Ual and X = {u e [5]" | M = o(f2" " (u), £ (u))}. Then

Ult(M7 E) ': @([aohfo]ﬁ’ [al’fl]ﬁ) < (b7X) € E.
By the elementarity of ,
X ={ue W] | N o(r(f "), w1 )}
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(i)
(iv).

For simplicity, assume that a® is an initial segment of b and let |a°| =

k,|b| = k + m. Then for any u € [x]/’!, we have

m(fg " (w)

=n(fy ’(ul,...uk,uk+1,...,uk+m))
=n(fo(u1,...ux))

=m(fo)(m(ur), ... m(ur))
=7(fo)(o ( ) -0 (uk))
=7(fo)" 7O (0 (w), .. o (wr), 0 (uks1), - 0 (kg m))
wmrwwwwm»

Therefore

X ={ue [ ™| N E or(fo)7 O (), n(f)7@7 (o (u)))}
and

o(X)
={o(u) € [o(m)] " | N = o(x(f6)7 @O (0 (w)), 7(£1)7 7O (o (u))))
=H€MWW@WNFﬂMth”WmﬂhWM”WW}

Now we have

(b, X) € E o (o(b),0(X)) € F
& UIt(N, F) = ¢(lo(a”), 7(fo)l ¥ [o(a"), 7(f1)]§))-

The claim implies that 7 is a welldefined elementary embedding. The

diagram is commuting by construction.
It follows directly from the existence of the elementary embedding 7.

We want to use Lemma Note that Ult(M, E)m‘/;fg(n)ﬂ is wellfounded
because Proposition [2.3.17] implies that

Ult(M, E) and Ult(M', E) agree up to i3 (k) +1

and Ult(M', E) is wellfounded because E is an M’-extender. The same
argument shows that Ult(N, F) N Vit (o (x))41 18 wellfounded.
Let § < A. Then § is in the wellfounded part of Ult(M, E), so by Lemma
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ﬁ = [{B},e]¥. We compute
7(8) = ({8}, el ) = [o({81), n()]F = {o(B)}. {7} = 1]F = a(B)

because o(f) < o(A) is in the wellfounded part of Ult(N, F).

. In Proposition [2.3.17) we showed that Ult(M, E) and Ult(M’, E) agree

up to i (k) + 1. Since E is nice in M', Ult(M', E) and M’ agree up to
X. So Ult(M, E) and M’ agree up to A. Now take some z € M' NV, =
Ult(M,E)NVy. Since = € Vin (), there is some f : k — V. in M and
some a € [\]<“ such that = = [a, f]¥. Note that the rank of f is below
the first inaccessible above k in M and we assumed that o and 7 agree
well beyond k. Therefore o(f) = w(f). Proposition implies that
0, F1 = [a, 12 and [o(a), o(NIY = [o(a), o(£)]}Y'- We compute

In order to show that o(\) = 7(X), notice that A € Ult(M, E) because
i(k) € Ult(M, E) and X <i(x). In particular, X € Ult(M, E) N V;(,)41, s0
there is some ¢ : kK — V,.41 in M and some b € [\]<“ such that A\ = [b, g]¥.
As before, the rank of g is below the first inaccessible above x in M

and therefore o(g) = m(g). The same computation as above shows that
a(A) =71(N).

O

Definition 2.3.21. Let M, M’, N, N’ 0,7 and E be as in Lemma 2.3.20] We
call the (o(k),o(\))-extender o(E) over N from Lemma [2.3.2([i)| the shift of E
to N via (m, o) and the elementary embedding 7 : Ult(M, E) — Ult(N,o(E))
from Lemma [2.3.2(J(ii)| the shift map of (r,0) via E.

2.4 Linear Iterations via Extenders

In Chapter we iteratively extended a model by ultrafilters. In this chapter,

we are going to do the same with extenders. The following definitions and

results are exactly the same as in Chapter 2.2] where we exchange “M-nuf” by

“M-extender”.

Definition 2.4.1. Let E be any M-pre-extender and let (M,Y") be an amenable
structure. The ultrapower of (M,Y) by FE is defined as

UIt(M,Y), E) = (Ult(M, E), Yg),
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where [a, f]g € Yp iff {u < [5]l* | f(u) e Y} € E,
for every a € A< and each function f € M with dom(f) = [x]!*l.
Lemma 2.4.2. Let E be any E-pre-extender and let (M,Y) be an amenable

structure. Assume that (Ult(M, E), €) is wellfounded. Then Ult((M,Y), E) is

an amenable structure.
The proof is analogous to the proof of Lemma [2.2.4

Definition 2.4.3. A pair (M,€) is a good pair iff (M,€) is an amenable
structure and every E € & satisfies M = “F is an M-pre-extender”. It will
always be clear from the context whether it is about a good pair in the ultrafilter

sense or a good pair in the extender sense.
From now on, let (M, ) be a good pair.

Lemma 2.4.4. Let E be an M-pre-extender and assume that (Ult(M, E), €) is
wellfounded. Then Ult((M,E), E) is a good pair.

The proof is analogous to the proof of Lemma [2.2.5

Definition 2.4.5. Let § be some ordinal. We call I = (E, | a < () a linear
iteration of (M, ) of length § iff there are (M,, &, | @ < ) and elementary
embeddings (iq, : Mo — M, | o <y < f3) such that

(i). Mo =M and & = &,

(ii). for each av < f:
M, is a transitive model of ZFC~ and E, € &,,

(iii). for successors o+ 1 < -
(Mar1,Ea+1) = Ult((Ma, Ea), Ea),
lo,ad1 = z{g: and

y,a41 = fa,a+1 © ivy,o for each v < a,

(iv). for limit ordinals A < §:
(M, Ey) is the direct limit of (Ma, ), %ay | @ <7 < A) and iq,x are the
direct limit embeddings.

We also write EL, M} and igw for Fy, M, and i,~. We associate the “last

model” M1 which is defined as the direct limit of (M2, il | a <~ < f).

Remark 2.4.6. e Lemma yields that the construction is welldefined.

o We will sometimes suppress the &,’s in favor of the readability.
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o The models (M, | @ < 8) and elementary embeddings (i~ | & <y < )
from Definition are unique. Therefore we call them the models and
the elementary embeddings of I.

e If B < wj then every M, with a < 8 has the same cardinality as M.

Definition 2.4.7. Let 6 be an ordinal. We call (M, ) <#-linearly iterable
iff ML is wellfounded for every linear iteration I of (M, &) of length less than 6.
If (M, E) is <6-linearly iterable for every ordinal 8 then we call (M, ) linearly

iterable.

We have the same theorem as Theorem [2.2.9] where we used M-nuf’s instead

of M-extenders.

Theorem 2.4.8. If every E € £ is wy-complete then (M, E) is linearly itemble.‘

The proof works exactly the same as the proof in Chapter [2.2] using Lemma [2.4.9]
and Lemma 24101

Lemma 2.4.9. (Pull Back Linear Iterability) Let (M, E) be <@-linearly iterable
for some ordinal 0. Let (N, F) be a good pair and let w: (N, F) — (M,E) be an
elementary map. Then (N,F) is <0-linearly iterable, too.

Lemma 2.4.10. (Characterization of Linear Iterability) The following are

equivalent
(i). (M,E) is <wi-linearly iterable,

(i1). If (N, F) is a good pair, N is countable and transitive and 7 : (N, F) —
(M,E) is an elementary map. Then (N,F) is <ws-linearly iterable.

(iii). (M, &) is linearly iterable.

2.5 Iteration Trees

In the previous chapter, we iterated ultrapowers by always using the last model
for the next ultrapower. But we saw that a pre-extender E over one model is
also a pre-extender over another model whenever the two models agree up to
crit(E) + 1. Therefore we could also apply E to an earlier model in the iteration.

This process creates an iteration tree.
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Definitions and the Agreement Property
Definition 2.5.1. Let 8 be an ordinal. T is a tree order on [ iff
(i). T an order on f, i.e. T is irreflexive, antisymmetric and transitive,
(ii). T is coarser than the usual ordering on the ordinals, i.e. uT¢ = u < &,
(iii). {pu < B | uTE} is linearly ordered by T for each £ < 3,

(iv). £+ 1 is a successor in T for each £ < § with £ + 1 < 8. We denote the
T-predecessor of £ + 1 by predr (£ + 1) and

(v). {p < B | pT~} is cofinal in v for v < § limit ordinal.
Definition 2.5.2. Let T be a tree order on 3. For u,& < 3, set
o (1,87 :=A{a | pTaTc},
o &7 = {n}u o,
o (187 = (1, &) U{&} and
o [ 8r = A{prU(p, & r U{L}

Let (M, E) be a good pair throughout this chapter.

Definition 2.5.3. Let 8 be an ordinal. 7 = (T,(E: | €+ 1 < f8)) is an
iteration tree of length § on (M,E&) iff there are (Mg, & | £ < ) and
elementary embeddings (i, ¢ : M,, — M | puT¢ < () such that
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(i).
(i)
(ii).

(iv).

T is a tree order on 8 and
My=M,E =E.

For each £ with £ +1 < 8:
Me is a transitive model of ZF'C~ and E¢ € &.

For successors £ + 1 < 8, n:= predr(§ 4+ 1):
M, and M; agree up to crit(Eg) + 1,
(Mey1, E11) = Ult((My, Ey), E¢),

. M,

ingt1 = ip, and

.41 = fne41 Oty .y for each pln.

. For limit ordinals v < f:

(M, &) = dirlim((Mg,E),ipe | pTETy) and ig ., is the direct limit
embedding for each 7.

Remark 2.5.4. o The condition that M, and M, agree up to crit(E¢) + 1

in implies that F¢ is a M,-pre-extender. Lemma yields that
(M, E¢) is a good pair. Therefore Ult((M,,,E,), E¢) is welldefined.

We will sometimes suppress the Eés in favor of the readability.

The models and embeddings from Definition [2.5.3| are unique. Hence we
call them the models and embeddings of 7 and denote them by Mg—
and zZ ¢ Whenever the iteration tree is clear from the context, we simply

write M¢ and i, ¢.

Definition 2.5.5. Let 7 = (T, (E¢ | { +1 < §8)) be an iteration tree on (M, E).
We say that T is

non-overlappinﬂ iff for each £ with £+ 1 < 3, we have that predr(£+1)
is the minimal n such that M, and M agree up to crit(E¢) + 1.

length-increasing iff [h(E,) < lh(E¢) for every p < £ +1 < 3 (not only
for uT¢).

nice iff E is nice in Mg, i.e. strMe(Eg) = Ih(E;) is inaccessible in Mg, for
every £ +1 < 8 and T is non-overlapping and length-increasing.

Definition 2.5.6. A branch through an iteration tree 7 is a set which is

linearly ordered by T and closed under predr. Assume that the length of 7 is a
limit ordinal. For a cofinal branch b, i.e. sup(b) = Ih(T), we define the direct

limit along b as

(M, &) = dirlim((Me, &), i,¢ | uTE € b)

6In Remark [2.5.13| we will see why this property is called non-overlapping.
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and iZb : M¢ — M,y as the direct limit embeddings. Write ibT for i;{b. We call a
cofinal branch b wellfounded iff MbT is wellfounded.

Definition 2.5.7. The iteration game of length 8 on (M, E) is the following
two-player-game of length 3:

The beginning: (Mg, &) := (M, ).

(& + 1)-th stage: Player I plays an extender E¢ € & and chooses n < & such that
M,, and M¢ agree up to crit(E¢) + 1. We set (Mey1,Ee41) = Ult((M,, &), Ee).
If M¢4q is illfounded, the game is over and Player I wins.

7 limit stage: Player II plays a cofinal branch b, C v. We set (M,,&,) :=
(My.,, &.). If M, is illfounded, the game is over and Player I wins.

The end: If they went through all the stages before § and Player I did not win

at those stages then Player II wins.

Note that Player IT only influences the iteration game at limit stages. So a
winning strategy for him doesn’t influence what’s happening in the successor
steps. It it not enough for Player II to make sure that M) is wellfounded. He
also has to care about every possible M;1, Myy2,... This is a very hard job!

Definition 2.5.8. We say that (M, €) is S-iterable iff Player II has a winning
strategy in the iteration game of length 5 on (M, ). We call such a winning
strategy a [-iteration strategy for (M,E). We say that (M,E) is (fully)
iterable if (M, &) is B-iterable for every ordinal .

Lemma 2.5.9. (Pull Back Iterability) Let (M, E) be S-iterable for some ordinal
B. Let (N,F) be a good pair and let w: (N,F) — (M, E) be an elementary map.
Then (N, F) is B-iterable, too.

Sketch of proof. The proof is analogous to the proof of pulling back linear iter-
ability, see Lemma and Lemma m For an iteration tree S = (.5, (F¢ |
£+ 1< f))on (N,F), we construct an iteration tree 7 = (T, (E¢ | £ +1 < 3))
on (M,€) and elementary embeddings m¢ : N¢ — M for every & < (. Since
(M, E) is PB-iterable, we know that M, is wellfounded for every & < 5. Hence N¢
is wellfounded for every £ < . O

We define a weakening of iterability which often suffices.

Definition 2.5.10. The nice iteration game of length § on (M, &) is the
iteration game of length § on (M, ), where Player I can only play extenders
which give rise to a nice iteration tree. She has to choose an extender E¢ which
is nice and has length above the previous extenders. She has only one option in
choosing the model M, because 7 is already determined by the non-overlapping

property. We say that (M, ) is S-iterable for nice trees iff Player II has a
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winning strategy in the nice iteration game of length 5 on (M, &) and we say
that (M, &) is (fully) iterable for nice trees if (M, &) is S-iterable for nice

trees for every ordinal f3.

Lemma 2.5.11. Let T be an iteration tree of length B on (M,E), which is nice
except for the non-overlapping condition. Fix £ be such that £ +1 < 5. We
assume that T is non-overlapping below &, i.e. for each & with & +1 <€,
we have that predr (&' + 1) is the minimal p such that M,, and M agree up to
crit(Ee ) + 1. Then every p < & (not only pTE) satisfies:

(i). M, and Mg agree up to lh(E,) and
(i1). M, and M¢ do not agree up to lh(E,) + 1.
Moreover, if € is a successor ordinal, say & = &' + 1, then

(tit). predp(§+1) is the minimal p such that M, and M agree up to crit(Ee )+
1 if and only if predr (&' +1) is the minimal p such that crit(Ee ) < lh(E),).

Proof. We show and simultaneously by induction on £.

£ = 0: There is nothing to prove here.

successor £ + 1: We differentiate two cases for proving |(i)| and

Case 1 (u = &): Ult(Mg, E¢) and M¢q agree up to iAE/[;(crit(Eg)) + 1 by
Proposition Since E¢ is nice in Mg, we know that M¢ and Ult(Me, E¢)
agree up to lh(E¢). By Proposition we know that M, and Ult(M, E¢)
do not agree up to [h(E¢) + 1. Now i]g[: (crit(Ee)) + 1 > Ih(E¢). Hence Mg and
Me¢44 agree up to lh(E¢) and not up to [h(E¢) + 1.

Case 2 (1 < €): The induction hypothesis together with Case 1 immediately
solves this case.

In order to prove set n := predr (&' + 1) and assume that 7 is the minimal
p such that M, and M agree up to crit(Ee ) + 1 and set  := predr(§ + 1).
We have that M, and M¢; do not agree up to lh(E,) + 1 by Therefore
crit(Ee )+1 < Ih(E,)+1so0 crit(Ee ) < lh(E,). If @ < 7 then by the assumption
M,, and Mg do not agree up to crit(Ee )+ 1 but by[[i)} they agree up to lh(Eq)
hence crit(Ee) + 1 > lh(Ey) so crit(Ee) £ Ih(Ey). On the other hand, assume
that n is the minimal p such that crit(Ee ) < (h(E,). Then M, and M, agree
up to crit(Ee ) + 1 by [(i)|and for each o < 7, we have that M, and M, do not
agree up to crit(Ee ) + 1 because crit(Ee ) > lh(E,) and

¢ limit ordinal:

Take some a > pu + 1 such that oT¢. We can do this because [0, £)r is cofinal
in £. We claim that every € with ¢ + 1 € (a, §)r satisfies crit(E;) > Ih(E,4+1).
Suppose that there is some € such that € + 1 € (a, &) and crit(E.) < Ih(E,41).
The induction hypothesis yields that M, and M, agree up to [h(E,+1). So by
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assumption, M, 1 and M, agree up to crit(E;)+1. T is non-overlapping below &,
hence predr(e+1) < p+1. But on the other hand, predr(e+1) > a > pu+1 which
is a contradiction. The claim implies that crit(iq.¢) > h(E,41) > W(E,) + 1
and therefore M, and M agree up to [h(E,)+ 1. By the induction hypothesis,
M,, and M, agree up to [h(E,) but not up to [h(E,) + 1. Hence M, and M,
agree up to [h(E,) but not up to lh(E,) + 1. O

Corollary 2.5.12. (Agreement property of nice trees) Let T be a nice iteration
tree of length B on (M,E). Then

o M, and M¢ agree up to lh(E,) and
o M, and Mg do not agree up to lh(E,) +1
for each p < & <.

Remark 2.5.13. Lemma says that we can exchange the non-
overlapping condition in the definition of a nice iteration tree by the condition
that predp (€ + 1) is the minimal g such that crit(E¢) < lh(E,). This is the
reason why this property is called non-overlapping. Consider (n+ 1)T'(§ + 1),
i.e. the extenders F,, and F¢ were used on the same branch. By the definition of
predr (€ + 1), we have that p := predp (€ 4+ 1) > 1. Therefore crit(Ee) > lh(E,),
i.e. E¢ is above E, and they do not overlap.

Definition 2.5.14. (nSBH) The nice Strategic Branches Hypothesis
(nSBH) asserts that every countable model which embeds into a rank initial

segment of V is iterable for nice trees.

A proof of nSBH from ZFC, if it exists, would constitute a substantial
breakthrough in the study of large cardinals, particularly in inner model theory.
It is hard to find a proof of nSBH because the complexity of canonical inner
models, i.e. the amount of large cardinals they can accommodate, directly
influences the complexity of their iteration strategy. We are going to prove two
special cases of nSBH. The first one is Theorem where only nice iteration
trees of length w are considered. The second one is Corollary where we

replace iterability for nice trees by weak iterability.

(w + 1)-iterability of nice iteration trees

This subsection is based on the second chapter of Neeman’s article Determinacy
in L(R) |NeelO]. The proof in |Stel5] is slightly different. The goal is to prove

the following theorem.
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Theorem 2.5.15. Fiz an ordinal 0. Let M be countable, let w : M — Vjy
be an elementary embedding and let T be a nice iteration tree of length w on
(M,E). Then there is a cofinal branch b through T and an elementary embedding
o : My — Vy such that o0 oip = 7. In particular, b is a wellfounded cofinal branch
through T .

TN

MTMb

For the proof of Theorem [2.5.15] we are going to use a special kind of nice

iteration tree of length w.

Definition 2.5.16. Let T be a nice iteration tree of length w on (M, &) with
models (M, | n < w) and embeddings (i, | kKTn). We say that 7 is continu-
ously illfounded iff there is a sequence of ordinals (a, | n < w) with «,, € M,
such that M, = a, < ikn(og) for each kTn < w.

Proposition 2.5.17. If T is a continuously illfounded iteration tree then there

is no wellfounded cofinal branch through T .

Proof. Fix a witness (ay, | n < w) for T being continuously illfounded and
a cofinal branch b through 7. For every k,n € b with kTn, we have that
M, = inn(on) = an < ign(ak). Since M, is the direct limit of (M, | n € b),
we also have that My |= iy p(cn) < igp(n). S0 (inp(ay) | n < w) is a strictly e-

decreasing. Therefore M, is not wellfounded and hence b is not wellfounded. [

Let M be a countable model which embeds into some Vjy. If there would be
a continuously illfounded iteration tree on (M, &) then this would contradict
Theorem by the previous proposition. We are going to show that every
counterexample to Theorem [2.5.15] gives rise to a continuously illfounded iter-
ation tree on V in Lemma The next step is to show that there are no
continuously illfounded iteration trees on V. This is done in Lemma [2.5.21]

Lemma 2.5.18. (Copy Construction) Let T = (T,(E, | n < w)) be a nice
iteration tree of length w on (M, E) with models (M, | n < w) and embeddings
(tmn | mTn). Let (N,F) be a good pair and let w : (M,E) — (N,F) be an
elementary embedding. Then there is a nice iteration tree S = (T, (F, | n < w))
of length w on (N, F) with models (N,, | n < w) and embeddings (I, | kTn).
Furthermore there are elementary embeddings (mw, : (Mp,En) — (Np, Fn) | n <
w) such that

(i). mo =,
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(i). F, = mp(Ey) for each n < w,
(11). lgp © T = T, 0 ig p for each kTn,

(iv). T and m, agree up to lh(Ey) for each k < n.

g; <M, Fse'\J5 ﬁ‘iN\ﬁ
/'I
\ / -
1 EeM, FQ 2
E€ M Fer\/

Proof. We define (N, F,,, ™, | n < w) by recursion on n < w.

n = 0: Set g := .

n—n+1: Set m:= predr(n+1) and & := crit(E,). Let F,, := 7, (E,) be the
shift of E, to Ny, via (m, ™). Set Nyy1 := Ult(Np, Fp) and Ly i1 = i
T is a nice iteration tree, so M,, and M, agree up to [h(E,,) by Lemma
Since m < n, we constructed 7, and 7, such that they agree up to lh(FE,,). By
the non-overlapping property, k£ < lh(E,,). We have that E,, is nice in M,,,
hence Ih(E,,) is inaccessible. So in particular, 7, and =, agree well beyond x
and we can use the Shift Lemma[2.3.20] Set 7,41 to be the shift map of (7, m,)
via E,. Then 741 : My4+1 — Nyp41 is an elementary embedding and

lm,n+1 O Tm = Tp41 © im,n+1~

This and the induction hypothesis imply that

lk,n—i—l O T = lm,n—l—l o lk,m O T = lm,n+l O Ty © ik,m
= Tp4+1 © Zlrn,n+1 o ik,m = Tp+1 © ik,n+1
for every kT'm. Hence holds. The Shift Lemma also yields that 7, and 7,41
agree up to [h(E,). So m, and 7,41 agree up to lh(E}) for every k < n by the
induction hypothesis and because T is length-increasing. This shows S

is an iteration tree of length w and what is left to show is that S is nice. S is
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length-increasing because every k < n satisfy
lh(Fy) = m(Ih(EL)) = mn(lh(EY)) < mp(IR(Ey)) = Lh(Fy),

where we use that 7 is length-increasing for the inequality. In order to show that
S is non-overlapping, set m := predr(n + 1). We will use the characterization of
non-overlappingness from Remark [2.5.13]in the following arguments. We have
that

erit(Fy) = mp(erit(Ey)) = mm(crit(Ey)) < mm(Ih(En)) = Lh(Fy,),

where we use that crit(FE,) < [h(E,,) in the second and third step. For every
k < m, we have that

crit(Fy) = mp(erit(Ey,)) > m(Ih(Ey)) = mp(lh(Ey)) = Ih(Fy).
This shows that m is the least n’ such that crit(F,) < [h(F,). Finally,
N,, = “F, is nice”

because 7, is elementary and M,, =“F,, is nice”. O

Definition 2.5.19. Let (M, &), (N, F), m and T be as in the previous lemma.
We call § from above the copy of 7 to N along 7, denoted by #«T, with

associated copy maps (1, | n < w).

Lemma 2.5.20. Let M be countable and let m : M — Vy be an elementary
embedding. Suppose that T is a counterezample to Theorem[2.5.15. Then ©T is

a continuously illfounded nice iteration tree of length w on V.

Proof. By Lemma [2.5.18) 77 is a nice iteration tree of length w on V. We need
to show that 77 is continuously illfounded. Denote #7T = (T, (F}, | n < w)) and
let (N,, | n < w) be the associated models and let (I,,., | mTn) be the associated
embeddings. M is countable, hence M,, is countable for every n < w and we
enumerate M, by " := (e} | k < w). Set M,, [l :={e} | k<l} andif o isa
function with dom(o) = M, then o [l := 0o | (M, | 1). We built the tree R of
attempts to create a cofinal branch through 7" and to create a commuting system
of embeddings realizing the models along this branch into V in the following
way:

(a,{or |k €a)) e R
(i). a is a finite branch in T and ! := |al,

(ii). o : My [l = V for each k € a,
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(iii). oo =7 [l and

(iv). if k,m € a with kT'm and © € My, | | such that iy, (z) € My, |1

then oy, (ig,m () = ok ().

If R had a cofinal branch then its first coordinate b would be a cofinal branch
of T. The direct limit of the embeddings in its second coordinate would be an
elementary embedding M, — V. Therefore b would be a wellfounded cofinal
branch of 7" which does not exist by the assumption. Hence R has no infinite
branch. This implies that there is a rank function ¢ : R — Ord, i.e. if s,t € R
are such that s properly extends ¢ then ¢(s) < ¢(t). For n < w, set

Sn = ([0,n]p,0™)
where
e [0,n]7 = (0 =ng,n1,...,m_1 =n),
o 0" = (o ]i<l)and
e o' =y 0ly, |l foreachi<l.

Claim 1. s, € lp,(R).

V =N, /M\Nn\» N,
M - MO Mnl T Mni/ T Mn
20,n

Proof of Claim 1. Since T C w X w, lo»(T)) = T, and therefore [0, n]7 is a finite
branch in Iy, (T). For every ¢ < [, we have that

05 =Tp Oy, [ L My, 11— Ny.
Condition is also satisfied because

08 =m0l [l=moigy [ 1= (onom) [
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For the last condition |(iv)} let = € M, [ [ such that iy, ,,(z) € M, [ [. Then

o (im,ni/ (r)) = (mn 0 ini/,n I l)(lmnz/ (z))
= ﬂ'n((inﬂ,n © Zn“nll)(x))

= T (in,,n(2)) = 07 (2).

Claim 2. Let nTn'. Then s, properly extends l,, n/(Sn).

Proof of Claim 2. We have that 1,, v (s,) = ([0,n]7, (ln,nr 00 | i < 1)). Clearly
[0,7/]7 properly extends [0, n]r and

n .
lnn 007 =lpn 0Ty Ol n |1
= ln,n’ o lni,n O Tn; f l

’

y n
= ln“n/ o) ﬂ'ni = Tp’ © Zni,n’ r l = Ui

Set a, := lo n(¢)(sn). Note that o, is welldefined since ¢ is a function in
V = Ny with domain R so ly () is a function in N,, with domain o ,(R) and
Sn € lon(R) by Claim 1. This also shows that «,, € N,,. ¢ is a rank function,
so by Claim 2, we have that ¢(s,/) < @(lp,n(sn)). This implies that

= o/ (p(snr)) < lo,n/ (‘P(ln, '(8n)))

(nnr 0 lo.n)(@(ln,n (5n)))
(nnr © Lo ) ((Innr © ) (5n))
In.n (lo,n (0(50)))
:lnyn/(an).

Hence (o, | n < w) witnesses that 77 is continuously illfounded. O

Lemma 2.5.21. Let S = (T, (F,, | n < w)) be a nice iteration tree of length w

on V. Then S is not continuously illfounded.

Proof. Let (N, | n < w) be the models of S and (I, ,, | kT'n) be the embeddings of
S. Suppose towards a contradiction that S is continuously illfounded with witness
(B | n < w). Choose n large enough such that S € V;,. First of all, we manipulate
the witness for continuously illfoundedness to get some extra properties. Let
Bn be the (7’th regular cardinal above Iy () in N, for each n < w. Then
(Brn | n < w) witnesses that S is continuously illfounded. Take k < n. Then
Ik n(Br) is the Ik, (85)’th regular cardinal above li , (lo.x(17)) = lo.n(n) in N,, by
the elementarity of I ,,. 8 < li.»(5)) by assumption, so 3, < Iy n(Bk). Now we
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have that 5, > lp »(n) and that 3, is regular for every n < w. Choose 6 large
enough such that S, (5, | n <w) € Vy. Set H := Hully, {S, (Bn | n <w)}) and
M :=mos(H). Note that M is countable. Let m : M — Vp be the anti-collapse
embedding. Set

T =(T,(E, | n<w)):=71"YS)

and (o, | n < w) =7 (Bn | n < w)).

Then 7T is a nice iteration tree of length w on M which is continuously illfounded
and (o, | n < w) is a witness. We also have that «, is regular in M,,, where
(M, | n < w) are the models of 7. E,, € M,, NV, because S € V,, and therefore
F,. € Vi, () € V3,- The plan is to produce models P,, and embeddings o, for

each n < w such that

(i). op: M, NV,, — P, is elementary,

(ii). o, € P, and P, "0, is countable”,

(iii). o and oy, agree up to lh(Ey) for k < n and
(iv). Pny1 € Py.

If we find such models and embeddings then (P, | n < w) is an infinite €-
decreasing sequence in V' which is a contradiction. We construct the models and
embeddings by recursion on n < w.

n =0: Set Py := Vg, and 0¢ := 7 [ (M NV,,). Note that og C Vg, and oy is
countable because M is countable. [y is regular, so in particular, cof(8y) > w
and hence oy is a bounded subset of Vj3,. Therefore oy and all bijections between
o and w are elements of Vg, = Fj.

n — n+1: Let m := predr(n + 1). Then M, 11 = Ult(M,,, E,) and we have

the following situation.

P, P, ?

MyNVa,  En€M,NVa, My = Ult(Mp, E,)
— B MV,

Z"m,n+1

We would like to shift E,, to P, via (o,,,0,). But this is not possible since

om and o, are only partial maps. What we can use is that
Ult(My, "V, En) = Mpi1 NV,
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where v 1= iy nt1(0m) and My, NV, , M, NV, agree up to A, :=lh(E,). Let

o G, be the shift of E,, (considered as an (M, NV, )-extender) to P, via

(Omyon),
o Pr:=Ult(Pn,G,) and
o 0y Ult(Mp11) NV, — P be the shift map of (0., 0y,) via E,.
There are two major problems with P} and o} namely P} & P, and o & PJ.
Claim. 7:=0} | (Mp4+1 NVy,) € Pr.

Proof of Claim. First of all A,, <, since E,, € V,,,, implies
An € an < Jmanl(0m) < Jnntt(Gmn(@m)) = jmmnri(am) = 7.
By the Shift Lemma 2.3.20} 0, and ¢, agree up to A,. Therefore
T=0n | Mpt1NVy,).

By the induction hypothesis, o, € P,,. A, := 0,(\y) is inaccessible in P,, because
E,, is nice and o,, is elementary. Therefore 7 € P, N Vi = Py NV, where we
use that stri(G,) = \,. ]

Claim. There is an elementary embedding o;* : M1 NV,
Py =Py N Vox(a,,,) such that

i — B3, where

o o | (Mpy1NVy,)=r,
o o*(A\n) = A, and

o o € Py and P = “o}* is countable”.

Proof of Claim. First of all, E,, 11 € V,,, ., implies that A\, < lh(E,41) < apyr,

so the restriction of o* to M,,+1NV,, makes sense. Let R be the tree of attempts

n+1

inside P to construct such a o;*. We can do this because 7 € P;; according to
the first claim. Then R has an infinite branch in V' given by ¢ | (Mp+1 NV,
because 11 < bmont1(@m) = and o (A,) = 0 (A,) = A, by the Shift Lemma
oy [ (Mpy1 N Vy,,,) is countable since M, is countable. Then by
absoluteness, there is also an infinite branch inside P} . n

n+1)

Pr* and o * satisfy the first three conditions of the plan:

(i). o is elementary by construction.
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(i)

(ii).

This is essentially the same arguing as in the case n = 0. We have
that 07" C Vo= (a,,,)- Mny1 is countable so 0,,* is countable. ol (Ony1)

is regular in P;. Therefore 03" is a bounded subset of V- y and all

QAn+1
bijections between o},* and w are elements of V- (4, ). By the construction
of o}*, we know that 0" € P and there is some bijection ¢ : 0;* — w in

P;. Hence 0;,* € P;* and ¢ witnesses that P;* =“0,* is countable”.

o, and o* agree up to lh(E,) = A\, by construction. Let k < n. Then
oy, and o, are constructed such that oy and o, agree up to lh(FEy). Since
T is length-increasing we have that [h(E)) < A,. Therefore oy, and o*
agree up to [h(Ey).

We manipulate P* and ¢}* a little bit more such that they satisfy |(iv)| too.
oy (any1) € Py so Py* = PyNVye(a,,,) € Py and P;* is a strict initial segment
of Pr. Set

H := Hullps((Py* N Va )U{X,,0:*}) and
w1 = mos(H).

Let @ : P11 — H be the anti-collapse embedding and

set oy = @ 1(oF").

Then P, 41,041 satisfy all the conditions that we wanted:

(1)-

(i)

(ii).

Note that Gy is a nice extender over Vg, and Ay = str(Go) > crit(Go).
crit(Gyp) is measurable so in particular uncountable hence )\j is uncountable.

T is length-increasing so
A, =0, (I(Ey)) > on,(Ih(Ep)) = oo(lh(Ep)) = Ag.

Therefore A/, is uncountable. a,11 € M, 41 is countable because M, 1 is
countable. Hence a1 < Al < erit(®) and

dom(cy,11) = @ Hdom(o:*) = & (M, 1N Ve, ) = My NV,

n+1) 1

We also know that the codomain of o,,41 is P,,41. Therefore 0,41 is an

elementary embedding M, 1 NV, — Pot1.

n+1
o* € H and H is an elementary submodel of P}*. Therefore H 0" is

countable” and P, 1 E“0,41 is countable”.

We have that o*(\,,) = A, € H and crit(®) > A/,. This implies that 0,41
and o* agree up to A, and we saw before that o, and ¢;* agree up to A,.

Hence o,, and 0,11 agree up to A,.
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(iv). Since P'*,0%* € P¥, we have that P} = |H| = M,. Therefore P41
can be coded by some ¢ € P(\,)F». We will show that ¢ € P,. Re-
call that P} := Ult(Py,,Gy). My, and M, agree well beyond crit(E,)
since crit(E,) < lh(Ep). Therefore P, and P, agree well beyond
crit(G,) and by Proposition P* and Ult(P,,G,) agree well be-
yond ig (crit(Gp)). X, = Ih(Gy) < ig (crit(Gy)) so ¢ € P(A,)P =
PN )V EnGn) UIL(P,,G,) can be computed inside P, since G,, € P,.
Therefore P(\, )V (Pn:Gn) C P, and in particular ¢ € P,.

O

Proof of Theorem [2.5.15 The proof follows directly from Lemma [2.5.20] and
Lemma 2.5.21] as discussed before. O

Weak Iterability

A weak iteration is a linear composition of iteration trees of length w and looks
like this:

T T T
H o h—rh -~ K<yl

The formal definition is as follows.

Definition 2.5.22. Let 8 be an ordinal. (7¢,b¢ | £ < ) is a weak iteration
on (M, €) of length 3 iff there are (M¢, ¢ | ¢ < B) and elementary embeddings
(iM€ . MP — MS | p < € < B) such that
(i). (MY, &% = (M,€).
(ii). For each & < f:
T¢ is a nice iteration tree of length w on (M¢, %),
be is a cofinal branch through T,
(MSTL £5+1) is the direct limit along be and
i€+ is the direct limit embedding along be.

(iii). For each A < /8 limit:
MY = dirlim(M¢,i*¢ | p < € < ) and

&7 is the direct limit embedding.
(iv). The remaining embeddings i*+¢ are obtained by composition.
Note the upper indices for the M’s and i’s so that one does not confuse M™

with Mo,

46



As before, there is also a game corresponding to the construction of a weak

iteration.

Definition 2.5.23. The weak iteration game on (M, &) is the following
two-player-game of length wi:

The beginning: (M°, £%) := (M, £).

&-th stage: Player I yields a nice iteration tree 7¢ of length w on (M¢,E%). Player
IT chooses a cofinal branch b through T¢. We set (M1, £5+1) to be the direct
limit along be. If M is illfounded then the game is over and Player I wins.
7 limit: Set M7 := dirlim{M¢,i*¢ | p < € < 7). If M7 is illfounded, the game
is over and Player I wins.

The end: If they went through all the stages before w; and Player I did not win
at those stages then Player II wins.

Definition 2.5.24. We say that (M, ) is weakly iterable iff Player IT has a
winning strategy in the weak iteration game on (M, ).

Lemma [2.5.25] is another weakening of nSBH, where iterability is replaced by
weak iterability.

Lemma 2.5.25. Let M be countable and m : M — Vy be an elementary
embedding. Then (M, &) is weakly iterable.

Proof. We need to find a winning strategy for Player II in the weak iteration
game. Construct wellfounded branches (be | £ < w1) and elementary embeddings
¢ : MS — Vp by recursion on £ < w;:

£=0: MO = M, 7y :=m.

& — £+ 1: Player I chooses some nice iteration tree 7¢ of length w on ME. e
is elementary and M?¢ is wellfounded and countable. We can use Theorem
which yields a wellfounded cofinal branch b¢ trough 7¢ and an elementary
embedding

41 - M v,

where Mt = (Mf)bs. So M¢*1 is wellfounded and countable.

~ limit: M7 is set to be the direct limit of the system (M, i*¢ | u < & < 7)
which is countable. We set m, := dirlim(me | £ < 7). This is an elementary
embedding M7 — Vp hence M" is wellfounded. O

2.6 Woodin Cardinals

Definition 2.6.1. Let j : V — N be an elementary embedding. Let A be a
set and let a be an ordinal. We say that j is a-strong for A iff a > crit(j),
Vo CNand j(A)NV,=ANV,.
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A V-extender F is a-strong for A iff i¥% is a-strong for A.

The next lemma says that if j is a-strong for A then there is a V-extender

which is a-strong for A.

Lemma 2.6.2. Let j : V — N with crit(j) = & and let o > k be such that
Vo €N and j(A)NV, = ANV,. Let X :=|V,|" and set E := E(j,\). Then E

s a-strong for A.

Proof. Write i for i%. We first show that V,, C Ult(V, E).

Use the factor map
k:V = Ult(V,E),[a, f] = j(f)(a)

from Lemma [2.3.8] Set 8 := |V,], fix a bijection ¥ : § — V, and define the

relation

R:={(z,y) e x| ®(x) € D(y)}.

Since «, 8 < A and crit(k) > A by Lemma we know that «, 5 € rng(k).
Now R C 82 so R = k~Y(R) € Ult(V,E) and therefore (3,R) C Ult(V,E).
Hence V,, C Ult(V, E). In order to show that i(4) NV, = ANV, we use that
crit(k) > X again:

i(A) N Vo = k(i(A) N Va) = k(i(A)) NVl = §(A) N Ve = ANV,
The last two equalities holds because j is a-strong for A. O
Definition 2.6.3. Let x < § for some ordinals x and § and let A C V5. We
say that x reflects A in 0 iff for every a < § above k, there is an a-strong

embedding for A with critical point .
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Definition 2.6.4. Let § be inaccessible. ¢ is called Woodin iff for each A C Vs

there is some x < § which reflects A in 6.

Remark 2.6.5. Assume that § is Woodin. By the previous Lemma all
the witnesses for § being Woodin can be chosen as extenders. They can even
be chosen in Vj since § is inaccessible. This is very useful because it yields a
formalization of Woodinness as a first order property. So if § is Woodin in M
then there is a set £ € M witnessing that § is Woodin in M and we have that
(M, &) is a good pair.
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3 Using Iteration Trees

So far, we established the basic theory of iteration trees. The first part of this
chapter is about developing the method of genericity iteration which heavily
uses iteration trees. We will use this method in the second part to show that
L(R) is a model of the Axiom of Determinacy. We will work with ZFC' instead
of ZFC™ in this chapter just to be extra safe. So M will always be a model of

Z FC which is transitive and hence wellfounded.

3.1 Genericity Iterations

The results in this chapter are due to W. Hugh Woodin and their presentation
here is based on Farah’s paper The extender algebra and Y2-absoluteness, see
[Far16]. ¢ is an ordinal from now on. We identify R, w* and P(w) as usual in

set theory.

Definition 3.1.1. Let W be a forcing notion and let a be a set. We say that
a is W-generic over M iff there is some g which is W-generic over M and
a € Mg

Woodin’s Genericity Iteration is a construction which makes a previously
fixed real generic over a sufficiently iterable countable structure which has a
Woodin cardinal. It uses a specific forcing notion called Extender Algebra which

is based on an infinitary propositional logic.

Definition 3.1.2. Let § be an infinite regular cardinal. L; is the infinitary
propositional logic with countably many variables {v, | n < w} and standard
connectives A,V, -, —,<>. The additional connectives are conjunctions and
disjunctions of length less than § denoted by \/£<B and /\E<B for each g < 4.

Besides the usual axioms and rules for classical propositional logic, we have
. |_V§<ﬁ_'q)§ <—>ﬁ/\£<ﬁ¢5,
o = Aecp @c then = @ for all £ < 8 and
o if - ®¢ for every £ < B then F /\£<6 .

For a set a C w, and n < w we set a = v, iff n € a. a |= @ for arbitrary ® € L;
is defined by recursion as expected. We code an Ls-formula ® as a set in Vs by
Ag :={a € R| a = ®}. This language is usually denoted by Ls,,, where the
second index indicates the number of variables. We will always have countably

many variables and therefore omit the second index.

We define a theory in this language which depends on a Woodin cardinal
and its witnesses. This theory yields a Boolean algebra which can be used as a

forcing poset.
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Definition 3.1.3. Let £ be a set of extenders witnessing that ¢ is a Woodin
cardinal. We define the Ls-theory Ts(E):

IfEeg, crit(E):m,‘f:<<l>5|£<5> C L such that ® | k C V,, and E is
A-strong for ®. Then

\ @« \/ @ € Ts(8).

E<k E<A

Ts(E) is the deductive closure of those sentences in L5. Note that

\ @c=in(\/ @) 1A

E<A (<K

since E' is A-strong for 3.
The Lindenbaum algebra of Ts(€) is defined in the following way:

Let ~ be the equivalence relation on Ls, where
O~ P if Ts(E) F @ < P'.
Denote the equivalence classes by [®]. Set
0:=[L],1:=[TL[®]A[®]:=[PAD][®]VI[P]:=[PVP], and =[®] = [~D].
This yields a Boolean algebra
Ws(&) == ({[®] | ® € L5},0,1,A,V,7)

which we call the extender algebra. Whenever the set of witnesses & is
understood from the context, we will write W instead W;(E). We often interpret
Ws(E) as a forcing notion using the following partial order on the non-zero
elements:

[@] < [@'] iff T5(E)U{P} + @'

Lemma 3.1.4. W5 has the d-c.c.

Proof. Let & = (Pe | € < 0) C Ls such that [®¢] # 0 for each £ < §. We want to
show that {[®¢] | £ < §} is not an antichain. Set

C:={B<3|®[BCVs}

We claim that C' is club in §. That C is closed is immediate from its definition.
In order to see that C' is unbounded, we fix ag < § and we will find some 3 > ag
such that § € C. Note that d C Vs and d [ ap is a bounded subset of Vj since
ap < 4. 9 is regular, so we can find some a7 < ¢ such that ) [ g C V. We

cannot use this a; for 8 because there might be some { < ay such that ®¢ ¢ V,,,.
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But we can “catch our tail” by repeating this. Let 1 < n < w and assume that
an < ¢ is already defined such that ) [ ap—1 C V,,. Since a,, < 6 and 9 is
regular, there is some a,,41 such that ) ['an € Vo, Set B = suppco,on.
If £ < B then there is some n < w such that £ < «,, and by the construction
& € V,,,, € Vg. This shows that 8 € C' and hence C is club in 4.

& witnesses that 0 is a Woodin cardinal, so we can pick an extender F € &

such that E is A-strong for (C,®) and [x,\) N C # 0, where  := crit(E) < .

We use E to show that x € C. It is enough to show that for every a < &, there

is some B € C such that a < 8 < k because C' is closed under limits. Set i := zg

We have that
Ult(V,E) E3B(a< B <i(k) AB€CNA)

because every element of [k, \) N C is a witness. FE is A-strong for C, i.e.
i(C)NVy = CnNV,y. In particular, i(C) N A = C N A. Therefore

Ult(V,E) E3B(a < B <i(k) AB€i(C)).

We use the elementarity of ¢ and o < k = crit(i) to see that
ViEIB(a<B<rABEC).

So we have that ® [ k C V.. By the definition of the theory,

(\V 2o\ @), (@ = \/ e) € T5(E).

<k E<A E<A

Therefore (@, — V., ) € Ts(€) and [®,] < [V, Pe]. We claim that
there is some & < k such that [®¢] and [®,] are compatible. Suppose toward
a contradiction that [®¢] and [®,] are not compatible for every { < k. Then
TU{®P: AP} F L (otherwise we would have 0 # [P¢ A D] < [D¢], [Ds]).
Compute that

TU{P:ND,}F L for each £ < &,
= TU{®,} F P, for each £ < &,
= TU{®:}F  ~®¢ and
E<k
= TU{D:}F =\ @
E<k
But we showed that [@.] < [V, , ®¢], ie. TU{®x} F V., P, which is a

contradiction. O
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We have all the ingredients to formulate Woodin’s Genericity Iteration.

Theorem 3.1.5. (Woodin’s Genericity Iteration) Let a € R. Suppose that M is
countable and (M, E) is a good pair such that £ witnesses that 0 is Woodin in M.
Assume that (M, &) is (w1 + 1)-iterable and every extender in & is nice in M.
Then there is a countable iteration i : M — M* such that a is i(Ws(E))-generic

over M*.

> T4®)
'
£

H : H*

©

The next lemmas will be very useful for the proof of Theorem [3.1.5)

Lemma 3.1.6. Let a, (M,E) and 6 be as in Theorem , If a = Ts(E)M

then a is Ws-generic over M.

Proof. Set hy := {[®] € Ws | a = @} C Ws. We claim that h, is M-generic. If
this is true then a = {n < w | [v,] € ho} € M[hg]. It is easy to see that h, is a
filter, so we only need to show that h, meets every maximal antichain in Wj.
We know that Ws has the d-c.c. from Lemma [3:1.4] so it suffices to consider
antichains of size less than . Let A = {[®¢] | £ < 8} € M be an antichain in
W; for some 3 < §. Then T5(E) - V5 P¢ since otherwise AU {[A¢_5 ~P¢]}
would be an antichain in Ws. By the assumption, we have that a = Ts(E).
Therefore a |= \/;_5 ¢ and there is some § < 3 such that a = ®¢. Hence
[P¢] € hg N A. O

Lemma 3.1.7. Let (M,E) be a good pair and let M be countable. Suppose that
T = ({T,Me,E, | £ <wi,n < wi) is an iteration tree on (M,E) with cofinal
branch b. Assume that H is a countable elementary substructure of Vg, where 0 is
large enough and T € H. Let H := mos(H) and 7 : H — Vp be the anti-collapse
embedding. Set ao:= H Nwyi. Then

(i). o €b,
(ii). 7 and il , agree on My NH and

(iii). crit(il ) = .
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Proof. Let T € H be such that 7(7) = 7. Note that 7 does not move countable

ordinals, i.e. w(5) = f for each § < a. But m(a) = w; because « is the set of

countable ordinals in H. Hence crit(r) = o, a = w and m(a) = w;.

(i). We know that 7 [ @ =T | @ and [0,a)7 = bNa. « is a limit ordinal,

(ii).

hence [0, )7 is cofinal in a by the definition of a tree order. Therefore
b N« is cofinal in . Since any branch of an iteration tree is closed below

its supremum, we have that o € b.

i). Let z € M, N H. « is a limit ordinal, so M, = dirlim(M, il& | uTET ).

Pick some £ < o and y € Mg such that x = z?a(y) = iZa(y), where the
last equality holds because 7 | (a+1) =T by M is countable because
M is countable. Therefore 7(y) = y. We compute

(@) = 7L W) = i) o TW)) = 0L, () = 00, (L0 () = i, ().

a+1C M, N H and crit(r) = a. Hence implies that crit(i] ,, ) = a.

O

Proof of Theorem[3.1.5 The idea is to let Player I and Player II play a round
of the nice iteration game of length wy + 1 on (M, ) with resulting embedding

i: M — M*. Player IT uses his (w; +1)-iteration strategy, so we know that M* is

wellfounded. We let Player I use a special strategy which assures that a = i(T)M",
where T := Ts(E)M. We have that i(T)M = i(Ts(E)M) = Ti(5)(i(£))™ and
therefore Lemma implies that a is i(Ws)-generic over M*. In the end, we
will prove that the construction actually stopped at a countable stage.

Let’s start with the strategy for Player 1. Let My := M. Assume that o < wy

and

<T TOéyMngu|§§0hM<Oé>

have already been constructed. Let

(e | nTE < o)

be the associated embeddings. If a |= ig o (T)™= then I stops the construction.

Otherwise there is a counterexample, i.e. there is

an extender FE € &, with k := crit(F) and

a 6%sequence of Lsa-formulas ®, where § := i0,a(9),

such that

dkCV,,
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e FE is A-strong for 5,
M,
e aF iR " (Vee, Pe) I Aand

L] CL|7$\/E<K(I)§.

Let A be minimal such that there is a 6%-sequence ® and an extender E which
is A-strong for ® and every condition of being a counterexample is satisfied. Let
FE, be any such F.

Now let the two players play the nice iteration game of length (w; + 1)
on (M,E). Player I uses the strategy described above and Player II uses his
(w1 + 1)-iteration strategy. Let

T = (T,M¢,E, | €< B,u<p)

be the resulting tree. Note that § < w;. Suppose towards a contradiction
that § = w; and let b be a cofinal branch in 7. Fix a countable elementary
substructure H of Vy for a large enough 6 such that H contains everything
relevant. Let H := mos(H) and let 7 : H — Vj be the anti-collapse map. Set
o = H Nw;. a is countable since H is countable. By Lemma [3.1.7] we know
that o € b and since o < wy, there is some § > « such that Mgy, = Ult(M,, E).

7 Mwl\ P
_ -
o
Hyer ML&(HK.E?
e _
Hd( H -7
- L
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Lemma also shows that crit(E¢) = cm’t(i]g:) = rit(low, ) = Q. Pllayer I
used her strategy to find E¢, so there is a d¢-sequence of Lge-formulas ® € M,
with @ [ a €V, and E¢ is A-strong for ® such that

al=iy(\/ @)1 Aand (3.1)
E<a
ale\/ e (3.2)
E<a

Since \/5<a O, € Me N Vyy1 = My N Vay1, we know that
M, .
'E, (\/ P¢) = mel(\/ D).
<a E<a

Therefore

it (\ ®6) 1A =iaw (\ @) TA=m(\/ e) ), (3.3)

{<a (<a (E<a

where we use Lemma for the last equality. Now (3.1)) and (3.3)) imply that

alm(\/ ®) 1A

(<

and since m(\/,_,, ®¢) is a disjunction, also

al=m(\/ @)

E<a

a is a real, so a = w(a) and therefore the elementarity of 7 implies that

al= \/ D,
{<a
which is a contradiction to (3.2)). This shows that the length 3 of the iteration
tree T is strictly below wy. So Player I stopped the construction at a countable
stage and she would only do that if a = igs(T)#. Therefore, we can use
i:=19,8 and M* := Mp and we are done by the argument in the beginning of
the proof. 0

The result of Woodin’s Genericity Iteration [3.1.5] can be slightly improved.
We want to be able to use it while preserving another forcing extension which

“happens below” the Genericity Iteration. Additionally, we can replace the forcing
Ws by Col(w, 9).

Definition 3.1.8. Let £ be a set of extenders. A forcing notion Q is called
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small relative to & iff there is an ordinal v such that Q € V,, and crit(E) > v
for every F € £.

Corollary 3.1.9. (Improved Genericity Iteration 1) Let a € R. Suppose that
M is countable and (M, E) is a good pair such that € witnesses that § is Woodin
in M. Suppose that (M,E) is (w1 + 1)-iterable. Let Q € M be a small forcing
relative to € and let G C Q in V be M-generic. Then there is a countable
iteration i : M — M* such that a is i(Ws(E))-generic over M*[G].

5-—/ [
e{ ©
GE@O QE&O

H : H*

Proof. The critical point of ¢ will be above the rank of Q because 7 will be
built with the extenders in £ and those have critical points above the rank of Q.
Therefore G C Q is also generic over M*. The property that Q is small relative
to & also yields that every extender F € &£ defines an extender in M [G] which has
the same strength as . We will abuse the notation and denote this extender by
E, too. Then & witnesses that § is Woodin in M[G]. These results are discussed
in [HWO0O]. Then the proof is almost the same as the proof of Theorem
The only difference is that in the strategy for Player I she computes the extender
FE and the sequence ® in M]G] instead of M. G € V so this is still a strategy
for Player I. Note that this produces an iteration tree on (M[G],€). Since Q is

small relative to &£, this iteration tree is also an iteration tree on (M, E). O

Corollary 3.1.10. (Improved Genericity Iteration 2) Let a € R. Suppose that
M is countable and (M, E) is a good pair such that € witnesses that § is Woodin
in M. Suppose that (M,E) is (w1 + 1)-iterable. Fiz q € Col(w,d). Let Q € M
be a small forcing relative to € and let G C Q in V' be M-generic. Then there is
a countable iteration i : M — M* and there is some H C Col(w,i(0)) which is
generic over M*[G) such that i(q) € H and a € M*[G][H].

Proof. Let i : M — M* be the countable iteration from Corollary [3.1.9] set
0% := (), and let h C W4« be generic over M*[G] such that a € M*[G][h]. J.

Cummings describes in Chapter 14 of [Cum10] how to absorb a forcing of size
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at most ¢* into Col(w,d*). We know that Ws- has size exactly 0*. Therefore
W+ can be completely embedded into Col(w, d*). Set ¢* :=i(q). We have that
Col(w, 6*)/q* is isomorphic to Col(w, §*). Hence there is a complete embedding

k:Ws — Col(w, ) /q".

Choose h' C Col(w,6*)/q* such that M*[G][h] C M*[G|[h']. Every M*[G|]-
generic in Col(w,0*)/q* corresponds to some M*[G]-generic in Col(w, §*) con-
taining ¢*, i.e. there is some H C Col(w, §*) such that ¢* € H and M*[G][H]
M*[G][h']. H also satisfies that a € M*[G]|[H] because a € M*[G][h] C
M*|G][H]. O

3.2 AD in L(R)

In this chapter we will use genericity iterations to prove the consistency of the
Axiom of Determinacy. The statement is that L(R) is a model of the Axiom
of Determinacy under large cardinal assumptions. The presented proof is a
variation of the last section in [Neel(]. We identify R with w* and P(w).

Definition 3.2.1. (Axiom of Determinacy) For a set A C R we define the game
G, (A) in the following way. Player I chooses a natural number zy € w. Then
Player II chooses yy € w. It’s Player I’s turn again and she chooses z1 € w and

so on. We end up with

Player 1 ‘ o T1

Player II ‘ Yo Y1

We say that Player I wins iff (zq, yo, 21, y1,...) € A and otherwise Player
IT wins. A strategy for Player I is a function o : (J,,, w?k — w. Set

oxyY = (U(@),y0,0(0(®)7y0),y1, .- )

for y = (yo,¥1,...) € w*. The strategy tells I what she should do in every
step based on the previous choices of I and II. ¢ is a winning strategy iff
oxy € A for every y € w¥, i.e. whenever Player I plays according to o, she will
win. (Winning) strategies for Player II are defined analogously. We say that A is
determined iff there is a winning strategy for one of the players. The Axiom

of Determinacy (AD) says that every set of reals is determined.

Definition 3.2.2. Let @ be any model. We say that a set X C @ is definable
over (@ iff there is an Lc-formula ¢ and elements a4, ..., a, € Q for some n < w
such that

X={zeQ|QEvpx,a,...,an]}
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Set

LO(R) = Ra
Lot1(R) :={X C L, | X is definable over L} and

L,(R):= U L (R) for every limit ordinal .
a<ly

L(R) := Uycon La(R) is the smallest model of ZF which contains R U On.

This Axiom of Determinacy came up in the early 60’s and it implies regularity
properties for sets of reals, e.g. the Baire property, perfect set property or
Lebesgue measurability. A lot of machinery was developed until Woodin showed
in the mid 80s that L(R) is a model of AD under large cardinal assumptions. I
am going to prove a similar result using Woodin’s Genericity Iterations.We need

a slightly stronger iterability assumption than (w; + 1)-iterability.

Definition 3.2.3. Let £ € M. We say that (M, €) is (2,w; + 1)-iterable iff
(M, &) is (w1 + 1)-iterable and every iteration i : M — M* on (M, ) of length
< w; satisfies that (M*,i(£)) is also (wy + 1)-iterable.

Theorem 3.2.4. Suppose that M is countable, §= (0n, | m < w) is a strictly
increasing sequence of ordinals of M and k > sup(g) is an ordinal in M. Suppose
that (€, | n < w) € M, where &, witnesses that 0, is Woodin in M for
each n < w and U € M witnesses that k is measurable in M. Assume that

(M,U, <., En U{U}) is (2,w1 + 1)-iterable. Then L(R) = AD.

We will make use of the fact that the statement AD is of a very specific form.

Definition 3.2.5. Let R C R. A ¥;(R)-statement is a statement of the form
(FACR)Y[A, x1,. .., 2]

for some z1,...,z, € R and some Ag-formula v, i.e. ) only has Vo € R, 3x € R

as quantifiers.
Proposition 3.2.6. —AD is a ¥1(R)-statement.

Proof. =AD says (3A C R)“A is not determined”. Note that a strategy for
G, (A) can be coded as a real. “A is determined” can be expressed as the

following Ap-statement:
JdoeRVyeR(oxy € A).

59



Hence “A is not determined” is also a Ag-statement. O

Definition 3.2.7. Let R C R. We say L,(R) is an R-initial segment of
Ls(R) iff @ < B and RE«(R) = REs(F) = R,

It it easy to see the following.

Proposition 3.2.8. (“31(R) goes up”) If Lo(R) is an R-initial segment of
Ls(R) and ¢ is a 1(R)-statement such that ¢ is true in Lo(R). Then ¢ is also
true in Lg(R).

We will often use collapse forcing and introduce abbreviations for better

readability.

Definition 3.2.9. For a finite sequence of ordinals S = (sq,...,s;) we let
Qs be the product Col(w, sg) X -+ x Col(w,si). If S = (s, | n < w) is a
countable sequence of ordinals then Qg denotes the finite support product
Col(w, sp) x Col(w, 1) X ...

Note that for an elementary embedding j we have that j(Qs) = Qj(s) for

finite and countable sequences S.

Definition 3.2.10. Let § = (5, | n < w) be a strictly increasing sequence
of Woodin cardinals in M. Let G = (g, | n < w) C Qz be generic over
M. Set G | d:= gox...9a-1 € Qs,....56,_,) for each d < w. Define
(RMIE) .=, _, RMICI"] called the symmetric reals of M induced by G
and Der(M, G) := Lynon (R*)MIE]) called the derived model of M induced
by G.

Remark 3.2.11. Let § and G be as in the previous definition. Let & be a finite
sequence of elements of M[G [ d] for some d < w and fix an Le-formula ¢. The
y is homogeneous. So if ¢[#] holds in M((R*)M[G]),
i.e. the minimal model containing M and (R*)MIC], then ¢[#] is forced to hold
in M((R*)M[G]) by the the empty condition in Qs, s,,,,...) over M[G [ d].
So if A C M[G | d] is definable in M[G] from parameters in M[G [ d], then
Ae MG 1d).

forcing notion Q<5d75d+17~~

Proposition 3.2.12. Let 6 and G be as in Definition|3.2.10. Then RPer(M.G) —

Proof. (R*)MIG] C RPer(M.G) follows from the definition of Der(M,G). In
order to show the other inclusion, let A € RPer(M.G) A is definable in
Lrnon (R*)MIE)) from parameters in (R*)MIEU (M NOn). Lynon (R*)MIE)
is definable in M[G]. So there is some d < w such that A is definable in M[G]
from parameters in M |G | d]. By the previous remark, A € M[G | d]. Therefore
A € RMIGH) C (R¥)MIC], 0
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Lemma 3.2.13. Suppose that M is countable and & = (8, | n < w) is a strictly
increasing sequence of ordinals of M. Suppose that (€, | n < w) € M, where &,
witnesses that 6, is Woodin in M for each n < w. Assume that (M,\],, .., En) is
(w1 + 1)-iterable. Let G = go x g1 X g2 X --- C Q5 be generic over M. Let o[Z]
be a X1 (R)-statement, where T is a finite sequence of elements of (R*)MIC], If
Der(M, Q) = ¢[Z] then L(R) = ¢[Z].

Proof. Fix d < w such that & C M[G | d|. We start with some preparation. Let
0 be a large enough ordinal. Fix a countable substructure X of Vjy containing
everything we need. Let P be the transitive collapse of X with anti-collapse
embedding 7 : P — Vp. Note that 7= 1(M) = M and 7~ (&) = #. We will show
that L(R)? k= ¢[#]. Then by the elementarity of 7 we have that L(R)"? = o[Z].
Since L(R)" is an R-initial segment of L(R) and ¢[#] is an ¥;(R)-statement,
Lemma implies that L(R) = ¢[Z]. The plan is to find a wellfounded iterate
M’ of M and a set H such that

(1) M’ has w-many Woodin cardinals 8’ = (8/, |< w),
(2) H is Qg,-generic over M’,

(3) (R =R”,

(4) M'NOn C PNOn and

(5) Der(M',H) = ¢|Z].

We get that Der(M’, H) is an RP-initial segment of L(R)":

Both models are of the correct form since

L(R)" = Lpron(RY) and
Der(M',H) = Lypnon(R”) by [(3)}

They have the same reals because

RE®T) = RP and
RPer(M'H) (R*)M/[H] = R? by Proposition [3.2.12 and(3)

So Der(M’, H) is an RP-initial segment of L(R)”, since M’ N On C PN On by
By the assumption, ¢[Z] is a X1 (R)-statement and thus Proposition
and imply that L(R)" = o[z].

Let’s start with the construction. First of all we make all the reals of P
generic. Fix a Col(w,RP)-generic enumeration (a,, | d < n < w) of R in V.

From now on, we work in P[{a, | d <n < w)].
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We will recursively construct models (M™ | n < w) and elementary embed-
dings (i*": M* — M™ | k < n < w) such that crit(i®™) > i%%(§;_;) for each
k <n < w. We will denote

-

§F =% (5) = (6F | n < w)

for each k < w. Furthermore, we will find generics (h,, C Col(w,d"_;) | n < w)
such that a,, € M"T1[hg x --- x hy,] for each n > d.

We do nothing in the first d-many steps, i.e. for m < k < d set M* := M,
ik =d : M™ — M* and h,, == gp,.

Fix n > d. Assume that (M* | k < n), (i*°F : M¥ — M* | k' < k < n),
and (hy | k < n) are already constructed. We want to use Woodin’s Improved
Genericity Iteration 2 from Corollary for an, M™, 8, and E" := 9" (&,)
with intermediate forcing extension by hg X - -+ X h,,—1 C (@%75%7“_,5371). We will
specify the choice of ¢, € Col(w, d7) later. The assumption that @<53,6f,...,6;§71>
is small relative to & is not necessarily satisfied. We can arrange that by
removing every extender F € £ with crit(E) < §7_; from E. £ still witnesses
that ;7 is Woodin in M"™ because §;!_; < d,. The Genericity Iteration yields
a countable iteration i+ : M™ — M"*! and h,, C Col(w, 6" *!) generic over
M"™+1 such that a, € M™" t[hg X -+ X hy_1][hy] and i""1(g,) € h,,. We have
that crit(i™"*1) > 6"_; because only extenders with critical point above 6"_;

were used in the iteration.
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Define ™ : M* — M™ for the remaining k < n < w such that the maps

commute. Set
M’ = dirlim{(M",i*™ | k < n < w)

and let 4% : M™ — M’ be the direct limit embeddings. Set

i= %,

& =i(8) = (0 | n < w),
andH:Zh()Xth....

adeMalhot_*he) adea€ Mgl hot—<hdia]
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e
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We claim that M’ is wellfounded. Fix n > d. We constructed i"t17+2 . pyntl
M"+2 as an iteration on (M™1, M), where £)F1 = im"t1(€r, ). We know
that the iteration ™" : M™ — M"*+! happens below 6"+ and we arranged
that €7} is above 67+1. Therefore i™"*! and §"+1"+2 can be “glued together”
to an iteration i"*h"*2 o it on (M™TL EM U EN, (). We can repeat this
w-many times and get that 4 is an iteration on (M,J,, ., €»). This iteration is
of countable length since the individual steps are all of countable length. We

assumed that (M,(J, ., En) is (w1 + 1)-iterable, hence M’ is wellfounded.

Note that §7 = 0; whenever k& < n. We know that ¢ is an elementary
embedding from M to M’. Therefore 5 is a strictly increasing sequence of

Woodin cardinals in M’ and condition is satisfied.
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But H is not necessarily Qj, -generic over M’. We specify the (¢,)’s to achieve
that. We have to assure that H meets every dense open subset of Q, in M’. Take
such a dense open subset D. Since M’ = dirlim{M",i*™ | k < n < w) there is
some k < w and a dense open subset Dy, € MPF* of ng such that %« (D) =D.
The idea is that M’ has only countably many dense open subsets of Qg, and we
can take care of one dense open subset in each step of the construction. Since we
are constructing H in countably many steps, we can use some book-keeping to
arrange that in the end we took care of each dense open subset. For simplicity
and readability, we assume that d = 0 from now on. Otherwise we have to shift
all the indices by +d. We fix a bijection

Y :wXw— w with (k1) > k.
We start with the 0-th step. Fix an enumeration
Yo :w — {D € M°| D is dense open in Qj}.

There is such a 1y € P because M? is countable. Let »~1(0) = (0,1) and set
D :=1)y(l). Pick any p} € D C Qz and set

q0 = (p})o € Col(w,dp) and

p1=i"'(p}) € Qz.

We used Corollary [3.1.10| to find hg C Col(w, 6}) such that hg 3 i%1(qe) = p1 | 1.
Fix an enumeration v; : w — {D € M! | D is dense open in Qs } in P.

In the (n + 1)-st step of the construction assume that we already constructed

(i). an enumeration ¢y, : w — {D € M* | D inside P is dense open in Qg } for
each k < n,

(ii). pn € Qz, and
(ifi). pn [1 € ho X -+ X hp_1.

Set o~t(n) := (k,1). Then k < n. We want to take care of D := 1) (l) and need
to find gn11, pry1 and ¥,41. Choose p;, € Qy, such that

hd p:; Spnv
e pi €ib"(D) and
OpZ[nEh()X'-'th,l.
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Why does such a p;, exist? Set
E, ={re @(537.“75270 |

r <p, [ nand 3p € Qs (p < pp,p € °"(D),p [ n =)}

E,, is dense in Q(JS‘,---ﬁ;‘,l) below p, [ n. Since p, [ n € hg X -+ X hp_1 by
assumption, we can find some r € E,, Nhyg X -+ X hy,_1. Take p} to be the
witness for r € E, and set g, := (p})n. Fix ppg1 := """ (p) € Qzra. We
claim that pp41 [ (n+1) € hg X -+ X hy—1 X hy,. Compute that

Pns1 [ (n+1)=i""T1(pk)
=" s 1)@ ()
=pi 73" (qn)) € (ho X -+ hy_1) X hy,

where ™" H(

ph | n) = pS | n because crit(i™"*tt) > 6", and p; | n €
Qsgp,....om_ ) © Vsn . We have that pj, [ n € ho X ... hp—1 by assumption and

i”*”“(qn) € h, since we used Corollary [3.1.10[ to find h,. Fix an enumeration
Y1 :w—{D € ML | D is dense open in Qy,, }.

Such an enumeration exists because M™*! is countable and we can choose
¥n+1 € P since every finite initial segment of the process is happening inside P.
This shows that H is Qg -generic over M’. Hence H satisfies

We can also show that holds for M’ and H. Let n > 1. We made sure

!
n—1-

crit(i™®) = crit(i™™*t1) > 6! ;. This implies that M™ and M’ agree up to
d/,_1 and in particular RM'[HInl — RM"[HIn]  We have that M™ and H | n
belong to P. Therefore RM "[Hinl — RM"[HIn] C P and since n is arbitrary, we
have that (R*)M,[H] C RP. On the other hand, a,_; € RM"[HE "] implies that
an_1 € (R)M'IF) Again n is arbitrary, hence R” = {a,, | n < w} C (R*)M'[H],

Condition is also satisfied. All the ordinals of M’ belong to P because
M’ belongs to P[{ay | n < w)].

that the extenders in & have critical points above 6;'_; = d Therefore

In order to verify the last condition we have to show that Der(M', H) =
©[Z]. Set Rg := (R*)MIC] and R}, := (R*)M'IH], Let )(vo, v1) be the statement
“p(vp) holds in L(v1)”. By the assumption, Der(M, G) |= ¢[#] and we have that

Der(M,G) = L(Rg)™ € M(Rg).

Therefore M (R¢) | ¢[Z, Rg]. Recall that £ C M[G | d]. Remark [3.2.11] implies

that [, R¢] is forced to hold in M (R¢) by the empty condition in Qs s,.,,...)
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over M[G | d]. By the construction, we have that M[G | d] = M[H | d],
H [dCQ,,...5,,) and crit(i) > d04_1. Therefore i : M — M’ extends to an
elementary embedding ¢* : M[H [ d] — M'[H | d]. i* does not move Z because
Z C R. This implies that ¢[Z, R/;] is forced to hold in M'(R/;) over M'[H | d].
Therefore Der(M', H) = L(R)))M" = |]. O

Another important ingredient of the proof of AD in L(R) is a simplified
version of the Derived Model Theorem. The crucial step in the proof of the

Simplified DMT is using universally Baire sets.

Definition 3.2.14. Let T be a tree on w X w. We define the projection of T'
as p[T] := {x € R | Jy € R such that (z,y) is a branch in T'}.

Definition 3.2.15. Let T and 77 be trees on w X w and let a be a regular
cardinal. The pair (Tp,T1) is a-absolutely complementing iff whenever
g C Col(w,a) is V-generic then V]g] = “p[To] = R\ p[T1]”. A set A C R is
called a-universally Baire iff there is a a-absolutely complementing pair of
trees (To,T1) with A = p[Tp].

The following lemma can be found in Chapter 6 of [Neel0].

Lemma 3.2.16. (Neeman) Let 6 be a Woodin cardinal. Every §-universally

Buaire set of reals is determined.

Theorem 3.2.17. (Simplified DMT) Suppose that §isa strictly increasing
sequence of cardinals in V. Let (€, | n <w) € V be such that &, witnesses that
0n is Woodin in V. Assume that (V,|, ., En) is (w1 + 1)-iterable. Let H be
Qj-generic over V. Then Der(V,H) = AD.

Proof. Set R := (R*)VIH], Suppose that there is some A C RP¢"(V:H) = R which
is not determined in Der(V, H) = L(R). By definition, there is a parameter
a € R, ordinals 7, ¢ and a formula ¢ such that

r€As Ly(R) = ¢[z,a,(].

We may assume that a € V = V[H | 0]. Otherwise replace V' by V[H [ n], where
n is such that a € RVIHI" We may also assume that (7, ¢) is <jep-minimal
such that

{3? ‘ L’Y(R) ': ¢[x,a, C]}

is non-determined. Fix 6 large enough. Working in V' let T}, C w x Vjy be the
tree of attempts to construct a real x and a sequence ((e,, fn) | n < w) € (V)¥
such that

o {en | n <w} is an elementary substructure of Vj.
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Set M, := mos({e, | n < w}) and let m, : M, — Vp be the anti-collapse
embedding.

e ey =a,e; =0, e =Qf, e3 = R the canonical name for R, ey, =, e5 =

and eg is a name for a real in R and

« the empty condition in Qj forces that Ls(R) = 1(es, &, 0).

=

Set i := 7 *(eg) and 0, := 75 1(0).

T

o Gy i={m;(es,) | n <w} forms a Qj, -generic filter over M, and
o i[Gy] = .

Tout © w x Vp has the same definition except that the empty condition in Qy
forces that Ls(R) W= v (es, @, 0).

For z € R let ¢;,[a,z] be the statement “there is a non-determined set
definable from a and ordinal parameters and x belongs to the least such set”
and let pout]a, ] be the statement “there is a non-determined set definable from
a and ordinal parameters and = belongs to the complement of the least such set”.
Note that p;,[a, 2] and @out]a, ] are X1 (R)-statements. The definitions of Tj,
and T, imply that

x € p|T;n] = Der(M,,G.) = pinla, 7
2 € p[Tout] = Der(M,,G.) E voutla, ]

Let z € RV and assume that = € p[T;,]. Set F, = 7, 1(&,) for each n < w.
Then 7, : (My,U, <o, Fn) = (V,U, <o, Fn) is an elementary embedding and

Lemma implies that (My,J,, ., Fn) is (w1 +1)-iterable. Use Lemma
for M, 5;, (Fn|n<w), Gy C ng and @i, [a, z]. It yields that

Der(M,,G,) E ¢inla,z] = LR) & ¢inla, z].
Analogously for x € p[T,u:l:

Der(My,Gy) = vout|a, ] = L(R) = pout|a, z].

Together with the above, we have

z € p[Tin] = L(R)  ¢in[a, 2]
x € p[Tout] = L(R) = voutla, x].

Claim. (T}, Tout) is dg-absolutely complementing.
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Proof of Claim. We show that V E“p[T;,] = R\ p[T,u]” first. Fix z € RY
and assume that = € A. In this case, we have that L. ((R*)VIH]) = [z, a,(]
holds in V. Therefore we can find a countable elementary substructure M of
Vy containing 6 and H such that L, (R*)MH]) = 9[z,a,¢] holds in M. Set
M, := mos(M) with anti-collapse embedding =, : M, — V,. Find G, such
that 7, (G,) = H. Then M, and G, witness that x € p[T;,]. If € A, then
by the analogous argument, © € p[Tou:]. Hence R = p[T;,] U p[Tou:] in V.
Clearly p|T;n] N p[Tout] = O because otherwise there would be a real x such
that L(R) = @inla, ] A pout[a,x]. Now take some g C Col(w,dy) which is
V-generic. Note that there is some H* C Col(w, dg) which is V[g]-generic such
that V[H] = V[g][H*] because Col(w,dg) is absorbed into Qz. Therefore the

exact same argument as for V works for Vg]. |

On the one hand, this implies that p[T;,] is dp-universally Baire. Hence p[T;,]
is determined by Lemma On the other hand, we have that « € p[T},]
implies that z is in the least non-determined set definable from a and ordinal
parameters in L(R). Call this set LNS. If z & p[T;,] then x € p[Tyy] by the
claim and hence ¢ LNS. Therefore LNS = p[T;,]. In particular, p[T;,] is

non-determined which is a contradiction. O]
We are ready for the proof of Theorem [3.2.4]

Proof of Theorem|3.2.4] We start with some preparation. Let 6 be a large
enough ordinal. Fix a countable substructure X of Vj containing everything
we need and let P be the transitive collapse of X with anti-collapse embedding
7 : P — V. We will show that L(R)¥ = AD. Then, by the elementarity of m,
we have that L(R)Y? = AD. Since 6 can be arbitrarily large, L(R) = AD holds.
The plan is to find a model N of ZFC and a set H such that

(1) N has a strictly increasing sequence & = (¢, |< w) and a sequence
(Fn | n < w) such that F,, witnesses that ¢/, is Woodin in N for each
n <wand (N,U,, ., Fn) is (w1 + 1)-iterable.

(2) H is Qg,-generic over N,
(3) (R*)NMH] = RP and
(4) PNOn C NNOn.

If we find such N and H then and allow us to use the Simplified DMT
3.2.17 to conclude that Der(N, H) = AD. We also get that L(R)? is an R”-
initial segment of Der(N, H):
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Both models are of the correct form since

L(R)” = Lpnon(R”) and
Der(N, H) = Lynon(RF) by

They have the same reals because

RE®T) = RP and
RPer(NH) — (R*)NIH] = RP by Proposition [3.2.12 and [(3)}

So L(R)? is an R¥-initial segment of Der(N, H) by We saw that -AD is a
¥1(R)-statement in Proposition We know that ¥ (R)-statements go up
from Proposition Therefore Der(N, H) = AD implies that L(R)" = AD.

In the first step we make exactly the same construction as in the proof of
Lemma with d := 0. This yields a countable iteration i : M — M’ where
M’ is wellfounded. Set &' :=i(6) and (Fy, | n < w) = i((E, | n < w)).

: Ly
£ { > {
13, 1y
23 &l
S,

m
—
T
&
s
r-“ﬂ=
N

Since i is a countable iteration on (M, J,, .,

&) and (M,U,, ., En) is (2,w1 +1)-
Fn) is (wy + 1)-iterable. The
construction also produces H C Qy, generic over M’ such that (R*)M 'H] = RP,
Therefore M’ and H satisfy the conditions and

But M’ and H do not necessarily satisfy the last condition In fact, we
know that M’ N On C P N On. We make another iteration to fix the ordinal

-

height of M’ by using the ultrafilter U € M witnessing that £ > sup(d) is

iterable by assumption, we have that (M’,J

n<w
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measurable in M. Set U’ :=i(U), ' :=i(k) and € := PN On < w;. Let
(Mg, jas = Mg = Mj | a < B <€)

be a linear iteration on (M’,U’). Set N := Mg, j := jog : M’ — N and
(Fpn|n<w):=(joi){&n|n <w).

_30‘)“\’\
+ o (K) L i
‘ / ‘Ijo.su ,/n;m\'K)
/ Tomt®) Towtk) Tonel®)
/ 1 a0 Lot 1ot it
/WK"———-—K’ ______ L — — — g — — — Ly
T K
43, N 5—: 1 5—: 1 5; o 3—01 iy
13,
Ly ; | . | ) M
H H'Hn o H'i Jmot HD( MMHK}W N H';

j elongates the iteration 7 because i is a countable iteration and ' > Sup(g’ ). We
new En U{UY).
Again by the (2,w; + 1)-iterability and since crit(j) > sup(d’), we have that
(N,Up<w Fn) is (w1 + 1)-iterable.

Note that

have that £ < wq, so j o1 is an iteration of length < w; on (M,

& < jo1(Kk") < joa(k') <+ <joe(r)

are different ordinals in N. Therefore £ < N N On and N satisfies k' is the
critical point of j and ' > 4/, for every n < w. Thus H is not touched by j and
the conditions and still hold in N. O]

Remark 3.2.18. Theorem (Simplified DMT) and Theorem are
not optimal. In fact, Neeman proved in that if there are w many
Woodin cardinals and a measurable above those in V' then AD holds in L(R).
This can be shown by replacing Woodin’s Genericity Iteration by Neeman’s
Genericity Iteration. This Genericity Iteration doesn’t need (w; + 1)-iterability.
The construction is very different and more complicated. This is why I used

Woodin’s Genericity Iteration in this thesis.
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