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CHAPTER 1

Introduction

1.1. What are cross-diffusion systems?

Diffusion is a physical process that models many real-life situations from natural sciences,
economics, data science, and social sciences. A particle or substance or individual undergoing
diffusion spreads out from a location at which there is a higher concentration of that particle or
substance or individual. Although diffusion is considered to be an equilibrating process, it may
lead to counterintuitive phenomena. For instance, constant equilibria that are stable in ordinary
differential equations may become unstable if spatial diffusion is added (Turing instability [24]).
This is not necessarily a negative effect: It gives rise to pattern formation in reaction-diffusion
equations, modeling, for instance, spatio-temporal periodic structures in chemical reactions, wind
pattern formed in sand, or pattern on animal skins.

The situation is more complex for systems of diffusion equations. First, substances in
multicomponent systems may flow in the direction of lower concentrations due to the influence of
the other substances. This phenomenon is called uphill diffusion. The first experimental evidence
of uphill diffusion in fluids dates back to Hartley [13], followed by experiments on solids by
Darken [6]. This phenomenon can be understood as a result of the competition between the
density gradients of each component. We refer to the review [16] for more details. Second, a
species may segregate completely from another species. Particle segregation may appear due to
different particle sizes in sheared granular mixtures [10, 12] or in hyperbolic–parabolic diffusion
systems from population dynamics [3, 4].

Both phenomena – uphill diffusion and segregation – typically occur in the presence of cross
diffusion. Cross diffusion refers to the phenomenon in which a flux of one fluid component is
induced by the gradient of another component. The experimental investigation of binary mixtures
started already in 1850 [11], while cross terms in multicomponent models were suggested in 1932
[19]. The experiment of Duncan and Toor [7] has shown that standard diffusion is not able to
describe the experimental results, and cross diffusion needs to be taken into account.

Cross-diffusion systems are generally quasilinear parabolic equations of the form

(1.1) ∂tui −
n∑

j=1

d∑
k,ℓ=1

∂

∂xk

(
Akℓ

ij (x, u)
∂uj

∂xℓ

)
= ri(u) in Ω, t > 0, i = 1, . . . , n,

describing the dynamics of, for instance, the densities or concentrations ui(x, t) of the ith
component of a mixture in a bunded domain Ω ⊂ Rd (d ≥ 1). Here, u = (u1, . . . , un) is the
density vector, Akℓ

ij (u) are the diffusion coefficients, and ri(u) are reaction terms. Cross-diffusion
equations may also be of elliptic type, but we consider only the parabolic case in this book. We
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6 1. INTRODUCTION

impose the initial conditions

(1.2) ui(x, 0) = u0
i (x) for x ∈ Ω, i = 1, . . . , n,

and the boundary conditions can be of Dirichlet, Neumann, mixed Dirichlet–Neumann, Robin,
or no-flux type. For simplicity, we consider the no-flux conditions

(1.3)
n∑

j=1

d∑
k,ℓ=1

νkA
kℓ
ij (x, u)

∂uj

∂xℓ

= 0 on ∂Ω, t > 0, i = 1, . . . , n,

where ν = (ν1, . . . , νd) is the exterior unit normal vector to the boundary ∂Ω. This corresponds
to the situation that the mixture cannot leave the domain Ω. When mixed Dirichlet–Neumann
boundary conditions are prescribed, the particle densities are fixed at the Dirichlet boundary,
while the remaining Neumann boundary models isolating boundary parts.

In many applications, the diffusion coefficients Akℓ
ij (x, u) simplify to Akℓ

ij (x, u) = Aij(u)δkℓ,
where δkℓ denotes the Kronecker symbol. In this book, (almost) only this case is considered.
Then the initial-boundary value problem (1.1)–(1.3) reduces to

∂tui − div

( n∑
j=1

Aij(u)∇uj

)
= ri(u), in Ω, t > 0, i = 1, . . . , n,(1.4)

ui(·, 0) = u0
i in Ω,

n∑
j=1

Aij(u)∇uj · ν = 0 on ∂Ω, t > 0.(1.5)

It is convenient to write equations (1.4) more compactly in vector form:

∂tu− div(A(u)∇u) = r(u),

where A(u) = (Aij(u))i,j=1,...,n and r(u) = (ri(u))i=1,...,n.
The mathematical analysis of cross-diffusion systems is very delicate. First, the very useful

maximum principle cannot generally be applied to diffusion systems such that the proof ofL∞(Ω)
bounds for the solutions is not clear. Second, there does not exist a regularity theory like for
scalar parabolic equations, and solutions may develop singularities in finite time [21].

To ensure the solvability of problem (1.4)–(1.5), we need some notion of parabolicity. Uniform
positive definiteness of the diffusion matrix A(u) is in principle sufficient to conclude at least
local-in-time solvability. Unfortunately, many cross-diffusion systems arising in applications
have a diffusion matrix that is neither symmetric nor positive definite. In fact, this is not needed:
Amann has shown [1] that normal ellipticityof the associated elliptic operator is sufficient,
meaning that the real parts of the eigenvalues of A(u) are positive. This condition only ensures
local solvability, and some regularity conditions on the solutions (basically Hölder continuity)
are required to conclude global solvability. However, this regularity property is generally very
difficult to prove. This motivates us to consider only a subclass of cross-diffusion systems, namely
those that possess a certain structure inherited from the underlying thermodynamic model. It
turns out that such a structure is provided by the free energy or entropy. It leads to a priori
estimates that are the key step to prove global solvability. For this reason, we analyze the class of
cross-diffusion systems with entropy structure.
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1.2. What is an entropy structure?

As mentioned in the previous subsection, additional conditions need to be imposed on cross-
diffusion systems to ensure global solvability. We claim that such a condition (plus possibly
additional assumptions) is provided by the entropy structure. In this subsection, we detail this
notion and explain relations to thermodynamics and hyperbolic conservation laws.

We assume that there exists a strictly convex functional

H(u) =

∫
Ω

h(u)dx

for suitable functions u : Ω×(0, T ) → D, where D ⊂ Rn is an open set, such that equations (1.4)
can be written in gradient-flow form with a positive definite diffusion matrix. More precisely, we
suppose that (1.4) can be written as

(1.6) ∂tu− div
(
B(u)∇h′(u)

)
= r(u) in Ω, t > 0,

where B(u) ∈ Rn×n is a positive definite matrix for all u ∈ D and h′ is the derivative of h. This
formulation is related to a gradient-flow structure in the sense that (1.6) can be written in operator
form as

∂tu+K(u)DH(u) = r(u), t > 0,

where K(u)ξ = − div(B(u)∇ξ) is the so-called Onsager operator and DH(u) is the variational
derivative of H at u (which can be identified with h′(u) by the Riesz representation theorem).
Gradient flows can be defined in Hilbert spaces and even in metric spaces [2, 17]. We do not
define this notion here, since we only need the algebraic structure expressed in (1.6). Introducing
the entropy variable w := h′(u), we can formulate (1.6) also as

(1.7) ∂tu− div(B(u)∇w) = r(u), B(u) = A(u)h′′(u)−1.

Here, h′′ : D → Rn×n is the Hessian matrix of h and the new unknown w = w(x, t) is a vector-
valued function. The set D may equal (0,∞)n in the case of densities or be a subset of (0, 1)n in
the case of mass fractions. In formulation (1.6), we interpret u as a function of w by means of
u(w) := (h′)−1(w). (We suppose that the inverses of h′ and h′′ exist.) The matrix B(u) is called
the mobility matrix or Onsager matrix. Then (1.7) is understood as an evolution equation in the
variable w, and the density vector u = u(w) is computed a posteriori.

Definition 1.1 (Entropy structure). If there exists a strictly convex functional h(u), called the
entropy density, such that B(u) = A(u)h′′(u)−1 is positive definite for all u ∈ D, we call
equations (1.4) a cross-diffusion system with entropy structure.

We stress the fact that we do not suppose the positive definiteness on D, since in many
applications, the matrix B(u) is only positive semidefinite on this set. As the positive definiteness
may fail on ∂D, our definition of entropy structure includes degenerate and singular equations;
see Chapter 2 for examples. In particular, standard parabolic theory cannot be applied to such
situations.

The functional H(u) =
∫
Ω
h(u)dx is called an entropy, since it corresponds to the physical

entropy (up to the sign) in nonequilibrium thermodynamics; see Remark 1.4.
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The entropy structure has two important consequences. First, if r(u) = 0, it implies that the
entropy t 7→ H(u(t)) is decreasing along trajectories of (1.7):

d

dt
H(u) = −

∫
Ω

∇uTh′′(u)A(u)∇udx = −
∫
Ω

∇wTB(u)∇wdx ≤ 0,

where we used the no-flux boundary conditions. This justifies in some sense the notion of
gradient flow. Second, the entropy structure leads to L∞(Ω) bounds if the inverse of h (if it
exists) has a bounded codomain. Indeed, let D ⊂ Rn be a bounded open set and let h′ : D → Rn

be invertible. Furthermore, let w be a solution to (1.7). Then the values of the function
u(x, t) := u(w(x, t)) = (h′)−1(u(x, t)) lie in the bounded set D. Thus, the solution u to (1.6)
is automatically bounded, without the use of any maximum principle. Clearly, since we did not
specify the solution spaces, this statement is only formal here.

Example 1.2 (Bounded solutions). An example for a function satisfying the previous properties
is given by

h(u) =
n∑

i=1

ui(log ui − 1) + u0(log u0 − 1) with u0 = 1−
n∑

i=1

ui,

defined on the open simplex

D =

{
u = (u1, . . . , un) ∈ Rn : ui > 0 for all i,

n∑
i=1

ui < 1

}
.

The function h(u) corresponds to the Boltzmann–Shannon entropy density for a mixture with
mass fractions u1, . . . , un and the solvent fraction u0. The entropy variables are

(1.8) wi =
∂h

∂ui

= log
ui

u0

, i = 1, . . . , n.

The Hessian H := h′′(u) has the entries Hij = δij/ui + 1/u0, and its inverse H−1 has the
coefficients δijui − uiuj for i, j = 1, . . . , n. Relations (1.8) can be inverted:

ui(w) =
expwi

1 +
∑n

j=1 expwj

, i = 1, . . . , n,

showing that ui(w) > 0,
∑n

i=1 ui(w) < 1, and consequently u(w) ∈ D for any w ∈ Rn.
Applications which can be described by cross-diffusion systems with this entropy structure are
detailed in Chapter 2. The solutions for these models are bounded. □

Example 1.3 (Degenerate and singular systems). The dynamics of two population species can
be described by cross-diffusion systems (1.4) with the diffusion matrix

A(u) =

(
a10 + (s+ 1)a11u

s
1 + a12u

s
2 sa12u1u

s−1
2

sa21u
s−1
1 u2 a20 + (s+ 1)a22u

s
2 + a21u

s
1

)
,

where ai0 > 0, aij ≥ 0 for i, j = 1, 2, and s > 1. We choose the entropy density

h(u) =
1

s(s− 1)
(a21u

s
1 + a12u

s
2) for u = (u1, u2) ∈ D = (0,∞)2.
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Then the matrixB(u) = A(u)h′′(u)−1 is symmetric. Under the conditionsmin{a11/a21, a22/a12}
≥ s/(s+ 1), a computation shows that, for z ∈ R2,

zTB(u)z ≥ a10
a21

u2−s
1 z21 +

a20
a12

u2−s
2 z22 + s(u1z1 + u2z2)

2.

This shows that the matrix B(u) is positive definite on D, but not uniformly in u and only positive
semidefinite on D if 1 < s < 2. In fact, we may interpret equations (1.7) as degenerate in this
case and singular at u1 = 0 or u2 = 0 if s > 2.

The novelty of the entropy approach is that we can handle nonstandard degenerate or singular
diffusion (see Chapter 2) and that we obtain in some cases bounded weak solutions. In fact,
the assumption that the domain D is bounded, can be relaxed. For instance, the entropy density
h(u) =

∑n
i=1 ui(log ui−1) is defined onD = (0,∞)n. Then the entropy variables arewi = log ui

with inverse ui = exp(wi) > 0. This yields nonnegative solutions, but they may have no upper
bound.

Remark 1.4 (Relation to thermodynamics). The transformation of cross-diffusion systems to the
form (1.6) is not surprising from a thermodynamic viewpoint, and the entropy variables are related
to the chemical potentials. To make this statement more specific, consider an isothermal ideal
gas mixture consisting of n + 1 components with partial mass (or volume) fractions u0, . . . , un.
By definition, the total mass fraction is constant,

∑n
i=0 ui = 1. Let the Helmholtz free energy

F be given. The chemical potential µi of the ith species is defined in thermodynamics as the
partial derivative µi = ∂F/∂ui. Actually, the free energy density F equals F = U − θS, where
U is the internal energy density, θ is the temperature of the mixture, and η is the physical entropy.
As the mixture is assumed to be ideal and isothermal, the internal energy is constant. Thus,
normalizing the temperature to one, θ = 1, the chemical potential becomes µi = −∂η/∂ui. Since
u0 = 1−

∑n
i=1 ui, we introduce the mathematical entropy density as a function of u1, . . . , un:

h(u) = −η

(
1−

n∑
i=1

ui, u1, . . . , un

)
, where u = (u1, . . . , un).

With this notation, the entropy variables become

wi =
∂h

∂ui

= − ∂η

∂hi

+
∂η

∂u0

= µi − µ0, i = 1, . . . , n.

These relations relate entropy variables and chemical potentials. The entropy of ideal gas mixtures
equals η = −

∑n
i=0 ui(log ui − 1) such that the chemical potentials become µi = log ui. Then

wi = log
ui

u0

, i = 1, . . . , n,

which corresponds to (1.8). This transformation of variables is well known in thermodynamics;
see, e.g., [9].

Observe that the mathematical and physical entropy differ by the sign. The reason is that
the physical entropy is always nondecreasing in thermodynamics, by the second law of ther-
modynamics, while it is preferred in mathematics to work with a nonincreasing quantity, the
mathematical entropy, which is nonincreasing along the corresponding trajectories. □
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1.3. When do cross-diffusion systems have an entropy structure?

The question how to determine the entropy structure for a given cross-diffusion system, if
it exists, is delicate. Often, the entropy is related to the free energy of the system if it has a
thermodynamic origin, which may be used as a mathematical entropy. In this section, we only
show some properties which may help to understand whether an entropy structure exists.

Necessary conditions for an entropy structure can be determined from matrix factorization
theory. We proceed as in [5] and consider cross-diffusion systems of the type

(1.9) ∂tui = div

( n∑
j=1

Aij(u)∇uj

)
in Ω, t > 0,

whereΩ ⊂ Rd (d ≥ 1) is a bounded domain. An important result that relates the entropy structure
to Amann’s normal ellipticity is as follows. Let D ⊂ Rn be any open set. We recall that equations
(1.9) have an entropy structure if there exists a strictly convex function h ∈ C2(D) such that
h′′(u)A(u) is positive definite for all u ∈ D.

Theorem 1.5. Let A(u) ∈ Rn×n be defined for u ∈ D. If (1.9) has an entropy structure then the
operator u 7→ div(A(u)∇u), defined for suitable functions u, is normally elliptic. If A(u) is a
constant matrix, the existence of an entropy structure and the normal ellipticity are equivalent.

Before we prove the theorem, we comment this result. If there is an eigenvalue of A(u) with
a negative real part, the operator u 7→ div(A(u)∇u) is not normally elliptic. In this case, we
cannot expect any entropy structure. The proof of Theorem 1.5 is based on matrix factorization
theory (and Lyapunov’s theorem on matrix equations). We only state the results and refer to [5,
Sec. 2] for the proof and references therein.

We say that a matrix A(u) is positively stable if the real part of any eigenvalue of A(u) is
positive, and we say that A(u) is positive definite if its symmetric part A(u) + A(u)T is positive
definite. If A(u) is positively stable, the operator u 7→ div(A(u)∇u) is normally elliptic by
definition.

Proposition 1.6 (Matrix factorization). Let A ∈ Rn×n be a matrix.
(i) The matrix A is positively stable if and only if there exist a symmetric positive definite matrix

A1 and a positive definite matrix A2 such that A = A1A2 (or A = A2A1).
(ii) The matrix A is positively stable and diagonalizable if and only if it is the product of two

symmetric positive definite matrices.
(iii) If A is positively stable and A = A1A2 or A = A2A1 with A1 being symmetric positive

definite and A2 being symmetric, then A2 is also positive definite.

Proof of Theorem 1.5. For fixed u ∈ D, we factorize A(u) = A1A2, where A1 = h′′(u)−1

and A2 = h′′(u)A(u). Let equations (1.9) have an entropy structure, i.e., A2 is positive definite.
Since h(u) is strictly convex, A1 is symmetric positive definite, and Proposition 1.6 (i) implies
that A(u) is positively stable. Next, let A = A(u) be constant and positively stable. By
Proposition 1.6 (i) again, there exist a symmetric positive definite matrix A1 and a positive
definite matrix A2 such that A = A1A2. Defining the entropy density h(u) = 1

2
uTA−1

1 u, we
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infer that h′′(u)A = A−1
1 A = A2 is positive definite and thus, equations (1.9) have an entropy

structure. □

The matrix H := A−1
1 appearing in the entropy density h(u) = 1

2
uTHu for constant and

positively stable matrices A can be constructed explicitly, namely H =
∫∞
0

e−AT te−Atdt [14,
Problem 9, Sec. 2.2].

The symmetry of the mobility matrix is a natural condition for irreversible thermodynamic
processes. Interestingly, the symmetry of the mobility matrix implies its positive definiteness
(but not vice versa as there exist counterexamples).

Proposition 1.7. IfA(u) ∈ Rn×n is positively stable for all u ∈ D ⊂ Rn and there exists a strictly
convex function h ∈ C2(D) such that h′′(u)A(u) is symmetric for all u ∈ D, then equations
(1.9) have an entropy structure. Moreover, if equations (1.9) have an entropy structure such that
h′′(u)A(u) is symmetric for all u ∈ D, then A(u) is diagonalizable with positive eigenvalues.

Proof. For fixed u ∈ D, we again factorize A(u) = A1A2, where A1 = h′′(u)−1 and
A2 = h′′(u)A(u). By assumption, A1 is symmetric positive definite and A2 is symmetric.
Proposition 1.6 (iii) shows that A2 is positive definite, proving the first claim. Next, let A2 be
symmetric positive definite. We infer from Proposition 1.6 (ii) that A(u) is positively stable and
diagonalizable, which implies that A(u) has only positive eigenvalues. □

Theorem 1.5 states that if A = A(u) is a constant positively stable matrix, then equations
(1.9) have an entropy structure. This statement is stable under bounded perturbations.

Proposition 1.8. Let A0 ∈ Rn×n be positively stable and let A(u) = A0 + εA∗(u), where A∗(u)
is a bounded matrix in D and ε > 0. Then there exists ε0 > 0 such that equations (1.9) have an
entropy structure for all 0 < ε < ε0.

Proof. By Proposition 1.6 (i), we can factorize A0 = A1A2 with a symmetric positive
definite matrix A1 and a positive definite matrix A2. Then H := A−1

1 is symmetric positive
definite and HA0 = A2 is positive definite. Thus, there exists λ > 0 such that zTHA0z ≥ λ|z|2
for all z ∈ Rn. Since A∗(u) is bounded, there exists M > 0 such that ∥HA∗(u)∥ ≤ M for
all u ∈ D for some (submultiplicative) matrix norm. Let h(u) = 1

2
uTHu. We infer that

zTh′′(u)A(u)z = zT (HA0 + εHA∗(u))z ≥ (λ − εM)|z|2. The claim follows after choosing
ε0 := λ/(2M). □

Example 1.9 (Fluid mixture models). We consider the equations

(1.10) ∂tui = div

( n∑
j=1

Dij(u)∇pj(u)

)
, i = 1, . . . , n,

together with initial and no-flux boundary conditions. Here, ui is the density of the ith fluid
component, pi is the ith partial pressure, and Dij(u) are diffusion coefficients. This model
describes a fluid micture that is driven by all the partial pressures. If Dij(u) = δijui, we recover
the model discussed in detail in Section 2.1.2. We assume that (the symmetric part of) (Dij(u))
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Figure 1. Cross-diffusion
systems with an entropy
structure form a subset of
all systems with a positively
stable diffusion matrix A(u).

A(u)
positively 
stable A(u)

entropy 
structure

A(u)
positive 
definite

is positive semidefinite and that pi satisfies the symmetry condition

(1.11)
∂pi
∂uj

(u) =
∂pj
∂ui

(u) for all i ̸= j, u ∈ D.

Furthermore, we suppose that D ⊂ (0,∞)n is star-shaped. Since (p1, . . . , pn) defines a curl-free
vector field on the star-shaped setD in the sense of (1.11), it is conservative, by the Poincaré lemma
for closed differential forms. This means that there exists h ∈ C2(D) such that ∂h/∂ui = pi for
i = 1, . . . , n. This shows that

d

dt

∫
Ω

h(u)dx =
n∑

i=1

∫
Ω

∂tuipi(u)dx = −
∫
Ω

n∑
i,j=1

Dij(u)∇pj(u) · ∇pi(u)dx ≤ 0,

since (Dij(u)) is assumed to be positive semidefinite. Hence, u 7→
∫
Ω
h(u)dx is an entropy along

solutions to (1.10). □

We can illustrate the sets of matrices, which are positively stable, or which induce an entropy
structure, or which are positive definite, in Figure 1. If A(u) is positively stable, the Lya-
punov theorem [14, Theorem 2.2.1] implies the existence of a symmetric positive definite matrix
H(u) ∈ Rn×n such that H(u)A(u) + A(u)TH(u) = 2I , where I is the unit matrix. This means
that 1

2
(H(u)A(u) + A(u)TH(u)) is symmetric positive definite and consequently, H(u)A(u) is

positive definite. If H(u) is induced by the Hessian of a function h ∈ C2(D), H(u) = h′′(u)
for u ∈ D, we obtain an entropy structure, and A(u) is positively stable. If H(u) is the unit
matrix, A(u) is positive definite. The entropy structure is given by the quadratic entropy density
h(u) = 1

2
|u|2. The determination of an entropy, if is exists, for a given cross-diffusion system is

a delicate issue and a general strategy is missing.
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CHAPTER 2

Examples from physics and biology

Many applications in physics, chemistry, and biology describe systems with multiple com-
ponents like gas mixtures, competing population species, and reacting chemical substances.
Therefore, it is natural to model the multicomponent applications on the macroscopic level by
reaction-diffusion equations with cross-diffusion terms. In this chapter, we give some examples
from the literature showing the variety of applications.

Generally, the cross-diffusion systems under consideration are of the type

(2.1) ∂tui − div

( n∑
j=1

Aij(u)∇uj +Di(u)∇Φ

)
= ri(u) in Ω, t > 0, i = 1, . . . , n,

where Ω ⊂ Rd (d ≥ 1) is a bounded domain, ui = ui(x, t) are representing particle densities,
mass concentrations, or mass fractions of the ith component, Aij(u) are the diffusion coefficients,
Di(u) is the drift term, Φ : Ω → R is a (e.g. electric or environmental) potential, and ri(u) is the
reaction rate. The initial conditions are given by ui(0) = u0

i in Ω. To simplify the presentation
and the computations, we generally impose the no-flux boundary conditions( n∑

j=1

Aij(u)∇uj +Di(u)∇Φ

)
· ν = 0 on ∂Ω, i = 1, . . . , n,

where ν denotes the exterior unit normal vector to ∂Ω, which is assumed to exist. Setting
A(u) = (Aij(u))

n
i,j=1, D(u) = (Di(u))

n
i=1, and r(u) = (ri(u))

n
i=1, we can write equation (2.1)

in compact form as

∂tu− div(A(u)∇u+D(u)∇Φ) = r(u) in Ω, t > 0.

We present in the following some examples of cross-diffusion systems.

2.1. Population dynamics

2.1.1. Shigesada–Kawasaki–Teramoto model. The possibly best known cross-diffusion
system is the population model suggested by Shigesada, Kawasaki, and Teramoto in [103], called
the SKT model. The authors assume that two population species prefer the same environment but
avoid the other species, which means that they have the tendency to segregate from each other.
The evolution of the densities of the population species u1 and u2 is given by (2.1) with n = 2
and the diffusion matrix

(2.2) A(u) =

(
a10 + 2a11u1 + a12u2 a12u1

a21u2 a20 + a21u1 + 2a22u2

)
,

15
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where u = (u1, u2), aij are nonnegative parameters, and the drift vector has the components
Di(u) = ui. The parameters a12 and a21 are called cross-diffusion coefficients, and a11 and a22
are the self-diffusion coefficients, since the diffusivity aiiui (i = 1, 2) depends on the density
itself. Observe that without linear diffusion, a10 = a20 = 0, equations (2.1) with (2.2) are of
degenerate type since they contain the diffusion div(2aiiui∇ui), which vanishes if ui = 0. This
corresponds to a porous-medium equation with quadratic nonlinearity. The potential Φ models
areas where the environmental conditions are more or less favorable. The reaction terms are of
Lotka–Volterra type:

ri(u) = ui(bi0 − bi1u1 − bi2u2), i = 1, 2,

with bij ≥ 0. For nonnegative functions ui, these terms grow at most linearly and are quasi-
positive, i.e. for all (u1, . . . , un) ∈ Rn

+ := [0,∞)n,

ri(u1, . . . , ui−1, 0, ui+1, . . . , un) ≥ 0.

The above model (without drift and reaction) can be derived from an on-lattice model in the
diffusion limit (Example 3.3) or from moderately interacting particle systems in the mean-field
limit.

The matrix A(u) is generally neither symmetric nor positive definite, but it has positive
eigenvalues. This means that the associated differential operator is normally elliptic, which
is a minimal condition for local solvability. By the minimum principle, the densities ui are
nonnegative (use u−

i = min{0, ui} as a test function in (2.1) and exploit the quasi-positivity of
ri). However, the derivation of a priori estimates is delicate. Therefore, the global existence of
solutions under general assumptions was an open problem for some decades.

The first global existence result seems to be due to Kim [84], who considered the one-
dimensional case, neglected self-diffusion (a11 = a22 = 0) and assumed equal coefficients
(aij = 1). Deuring [42] generalized this result to any space dimension and allowing for a10 ̸= a20,
but with sufficiently small cross-diffusion parameters a12 and a21. Again some years later, Yagi
[109] proved an existence theorem under the assumption that the diffusion matrix is positive
definite (a12 < 8a11, a21 < 8a22, and a12 = a21). The tridiagonal case was investigated by several
authors. Amann [1] proved local solvability in two space dimensions and global solvability
if the local solution is bounded in a Hölder norm. Lou, Ni, and Wu [91] were able to show
the existence of global solutions in C0([0,∞);W 1,p(Ω)) for p > 2 in the two-dimensional case.
More recently, Desvillettes and Trescases [41] revisited the triangular system with general reaction
terms (possibly being nonquadratic).

Major progress was made by Amann [1]. He reduced the question whether a local solution
exists globally in time to the problem of finding a priori estimates in the W 1,p(Ω) norm with
p > d. Unfortunately, the derivation of such a bound is difficult. The first global existence result
without any restriction on the diffusion coefficients aij (except positivity) was achieved in [52] in
one space dimension and in [30, 31] in several space dimensions.

From a biological viewpoint, model (2.1)–(2.2) has some interesting properties. For instance,
under certain conditions on the parameters, there exist nonconstant steady states, which represents
pattern formation. It turns out that large diffusion coefficients a10, a20 tend to eliminate any
pattern, while large cross-diffusion coefficents a12, a21 help to create pattern. The interplay
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between diffusion and cross-diffusion was explored in detail by, e.g., Lou and Ni [90]. We also
refer to the review [95].

Equations (2.1) with (2.2) can be formulated as

∂tui −∆(uipi(u)) = ri(u), pi(u) = ai0 +
2∑

k=1

aikuk.

This formulation allows one to derive higher-integrability bounds by means of the so-called
duality method [39]. Furthermore, it motivates the following generalization of the SKT model to
an arbitrary number n ∈ N of species:

(2.3) ∂tui −∆(uipi(u)) = ri(u), pi(u) = ai0 +
n∑

k=1

aikuk.

The associated diffusion matrix has the entries

(2.4) Aij(u) = δij

(
ai0 +

n∑
k=1

aikuk

)
+ aijui, i, j = 1, . . . , n.

A global existence result was proved in [107] assuming that A(u) is positive definite. Without
this condition, the analysis of (2.3) for n ≥ 3 is much more involved than the two-species case.
The existence of local solutions follows from [2]; the delicate point is the global solvability.

It was shown in [33, Theorem 1] that there exists a global weak solution to (2.3) (with initial and
no-flux boundary conditions) under the detailed-balance condition: There exist π1, . . . , πn > 0
such that

(2.5) πiaij = πjaji for all i, j = 1, . . . , n.

If n = 2, this condition is always fulfilled with, for instance, π1 = a21 and π2 = a21. However, it
does not hold if, for instance,

A(u) =

 0 0 a13u3

a21u1 0 0
0 a32u2 0

 .

Condition (2.5) is sufficient but not necessary for global solvability of the SKT system. Global
existence can also be shown if self-diffusion dominates cross-diffusion in a certain sense; see [33,
Theorem 1] and [36, Theorem 1].

The key of the existence analysis is the entropy structure of (2.1)–(2.2). Indeed, let

(2.6) hB(u) =
n∑

i=1

πiui(log ui − 1) for u ∈ Rn
+

be the modified Boltzmann–Shannon entropy density, where the numbers πi > 0 are defined in
(2.5).
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Lemma 2.1. Let u be a smooth solution to (2.4) with no-flux boundary conditions and ri ≡ 0 for
i = 1, . . . , n. Then

(2.7)
d

dt

∫
Ω

hB(u)dx+ 4
n∑

i=1

∫
Ω

πipi(u)|∇
√
ui|2dx+

n∑
i,j=1

∫
Ω

πiaij∇ui · ∇ujdx = 0.

If the detailed-balance condition (2.5) holds, the matrix (πiaij)ij is positive definite, and the last
term on the left-hand side is nonnegative, yielding L2(Ω) bounds for ∇ui.

Proof. We compute

d

dt

∫
Ω

hB(u)dx =
n∑

i=1

∫
Ω

πi∂tui log uidx = −
n∑

i=1

∫
Ω

πi(pi(u)∇ui + ui∇pi(u)) · ∇ log uidx

= −
n∑

i=1

∫
Ω

πipi(u)
|∇ui|2

ui

dx−
n∑

i=1

∫
Ω

πi∇pi(u) · ∇uidx,

and inserting the definition of pi(u) gives the entropy equality. If the detailed-balance condition
holds, the matrix (πiaij) is symmetric. Thus, we can decompose A = (aij) = A1A2, where
A1 = diag(π−1

i ) is symmetric positive definite and A2 = (πiaij) is symmetric. By Proposition
1.6 (iii), A2 is positive definite. □

The previous lemma provides H1(Ω) bounds for √
ui if ai0 > 0 and H1(Ω) bounds for

ui if (2.5) holds. These estimates are the key for the global existence analysis. Here, the
detailed-balance condition (2.5) is crucial. In fact, it has a further consequence: Property (2.5)
is equivalent to the symmetry of the mobility matrix B := A(u)h′′(u)−1 [33, Prop. 19]. Then
equations (2.1) write as

∂tu− div(B∇w) = r(u), w = h′(u) in Ω, t > 0,

where w is the entropy variable (see Remark 1.4). The equivalence of the symmetry of B and the
detailed-balance condition is not surprising, since (2.5) means that (π1, . . . , πn) is a reversible
measure of the Markov chain associated to (aij). In fact, time-reversibility of a thermodynamic
system is equivalent to the symmetry of the so-called Onsager or mobility matrix B, so symmetry
and reversibility are related mathematically and thermodynamically.
Remark 2.2 (Potential terms). Originally, the SKT model included drift terms taking into account
the influence of the given environmental potential Φ:

∂tui − div

( n∑
j=1

Aij(u)∇uj + µiui∇Φ

)
= ri(u), i = 1, . . . , n,

where µi > 0 are so-called mobility constants. The article [33] only analyzed the SKT model
with Φ = const. However, the analysis also works with nonconstant potentials. Indeed, to
compute the entropy inequality (2.7), we use πi log ui as a test function in the evolution equation,
and considering the drift term yields, after integrating by parts,

−
n∑

i=1

∫
Ω

µiπiui∇Φ · ∇ log uidx =
n∑

i=1

∫
Ω

µiπiui∆Φdx−
n∑

i=1

∫
∂Ω

µiπiui∇Ψ · νds.
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If ∆Φ ∈ L∞(Ω) and ∇Ψ · ν ≥ 0 on ∂Ω, the right-hand side can be bounded from above by the
entropy density (2.6), and we obtain the entropy inequality (2.7) on any finite time interval (0, T ),
with a different constant on the right-hand side (depending on T ), after applying a Gronwall
argument. □

Remark 2.3 (Nonlinear functions pi(u)). In the literature, nonlinear functions pi(u) have been
suggested, often using power-law nonlinearities [33, 40, 86],

(2.8) pi(u) = ai0 +
n∑

k=1

aiku
sk
k , where sk > 0.

The exponents sk do not necessarily have a biological interpretation but they can be used as
fitting parameters to match experimental results [58]. The entropy structure for (2.3) with (2.8)
is different compared to the affine functions pi(u). We define the entropy density

h(u) =
n∑

i=1

πiu
s
i

s(s− 1)
, u ∈ Rn

+,

where we have set s = sk for all k to simplify. Assume that πiaij = πjaji for all i ̸= j and for
some πi > 0. A computation shows that (see [33, Sec. 2] for a proof)

if 0 < s ≤ 1 : zTh′′(u)A(u)z ≥
n∑

i=1

πi(ai0 + (s+ 1)aiiu
s
i )u

s−2
i z2i ,

if s > 1 : zTh′′(u)A(u)z ≥
n∑

i=1

πiai0u
s−2
i z2i + (s+ 1)

n∑
i=1

ηiπiu
2s−2
i z2i ,

where

ηi := aii −
s

2(s+ 2)

n∑
j=1

(√
aij −

√
aji

)2
.

Thus, if ηi ≥ 0, the matrix h′′(u)A(u) or equivalently B = A(u)h′′(u)−1 is positive definite on
(0,∞)n. □

Remark 2.4 (Detailed balance and symmetry). We may replace the detailed-balance condition
(2.5) by the assumption that the matrix (aij) is symmetric. Indeed, transforming to the variables
vi := πiui, we write (2.3) with ri = 0 as

∂tvi = ∆(vip̃i(v)), p̃i(v) = ai0 +
n∑

k=1

aik
πk

vk,

and (2.5) means that the transformed matrix (aik/πk) is symmetric. Thus, without loss of
generality, we may assume that (aij) is symmetric. □
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2.1.2. Generalized Busenberg–Travis model. The evolution of the ith species is driven in
the SKT model by the diffusion coefficients aijui and pi(u). As diffusion counteracts segregation
and the SKT model is supposed to describe segregation, one may ask whether a model with less
diffusion better describes the segregation behavior. This motivates us to drop the last term in the
SKT model,

∂tui = div(ui∇pi(u)) + div(pi(u)∇ui), i = 1, . . . , n,

and to consider instead the population model

(2.9) ∂tui = div(ui∇pi(u)), pi(u) =
n∑

j=1

aijuj in Ω, t > 0, i = 1, . . . , n,

together with initial and no-flux boundary conditions. This model, for functions pi only depending
on the sum

∑n
j=1 uj , has been first suggested by Busenberg and Travis [24] in epidemiological

modelling. Gurtin and Pipkin [62] have considered populations that disperse to avoid crowding
by setting pi = ki

∑n
j=1 uj , where ki are some positive constants. This is a special case of

equations (2.9) with aij = ki. Models with general coefficients aij and two species were analyzed
in [53] assuming positive definiteness for (aij) ∈ R2×2.

Model (2.9) can be derived from interacting particle systems in the many-particle limit [53]
(the single case n = 1 is analyzed in [25]). A proof for multiple species, assuming moderate
interactions and using a mean-field approach, can be found in [29].

There is some reason to believe that model (2.9) better describes the dynamics of segregating
populations than the SKT model. First, it is the mean-field limit of a natural interacting particle
system, where the coefficients aij measure the strength of the interaction potentials; see [29].
Also the SKT model is the mean-field limit of an interacting particle system, but requiring that
the interaction potentials are part of the diffusion and not of the drift, which seems less natural
[28].

Second, we may interpret (2.9) as a conservation law of the density of the ith species, where
the partial velocity is given by vi := −∇pi(u) [62]. Interpreting pi(u) as the pressure of the
ith species, equation vi = −∇pi(u) expresses Darcy’s law. Thus, equations (2.9) have a ther-
modynamic interpretation. Third, under detailed balance, the SKT model possesses an entropy
structure via the Boltzmann–Shannon entropy, while equations (2.9) allow for two entropies:
the Boltzmann–Shannon entropy and the so-called Rao entropy, which measures the functional
diversity of the species [98].

We detail the last statement. Recall the modified Boltzmann–Shannon entropy hB, defined in
(2.6), and the Rao entropy

hR(u) =
1

2

n∑
i,j=1

πiaijuiuj for u ∈ Rn
+.

Assuming the detailed-balance condition (2.5) and computing along solutions to (2.9) yields
[78, 81]

d

dt

∫
Ω

hB(u)dx+
n∑

i,j=1

∫
Ω

πiaij∇ui · ∇ujdx = 0,(2.10)
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d

dt

∫
Ω

hR(u)dx+
n∑

i=1

∫
Ω

πiui|∇pi(u)|2dx = 0.(2.11)

Let the matrix (aij) be positively stable (i.e., all eigenvalues have a positive real part). The proof
of Lemma 2.1 reveals that (πiaij) is positive definite. Hence, identities (2.10) and (2.11) yield
H1(Ω) bounds for ui and the regularity √

ui∇pi(u) ∈ L2(Ω). These estimates are the key for the
existence analysis [78, Theorem 17]. We remark that an earlier existence result for n = 2 species
was proved in [54].

The numerical results in [28, Sec. 7], performed on the level of the associated particle systems,
indicate that the densities of (2.9) show a much clearer componentwise segregation behavior than
those of the SKT model (2.3).

Interestingly, complete segregation (in the sense that the supports of the densities do not
intersect) happens if the determinant of the matrix (aij) vanishes. Bertsch et al. seem to be the
first who analyzed such a situation in [9] for the two-species system,

(2.12) ∂tui = div(ui∇pi(u)), pi(u) = u1 + u2 in Ω, t > 0, i = 1, 2,

where a > 0. The one-dimensional situation of [9] was generalized to multiple space dimensions
in [10]. The authors of [9] proved that if the initial data are segregated (u1(0)u2(0) = 0 in Ω)
then the solutions are segregated for all time (u1(t)u2(t) = 0 in Ω for all t > 0). This behavior
appears to be counterintuitive for parabolic systems, but in fact, (2.12) is a hyperbolic–parabolic
system. This can be seen by introducing the change of variables

(2.13) v1 = u1 + u2, v2 =
u1

u1 + u2

.

If (u1, u2) solves (2.12), then (v1, v2) is a solution to

∂tv1 =
1

2
∆(v21), ∂tv2 −∇v1 · ∇v2 = 0 in Ω.

The first equation is the (parabolic) porous-medium equation with quadratic nonlinearity, while
the second one is a (hyperbolic) transport equation. Using regularity theory for the porous-
medium equation, Bertsch et al. [10] argued that the velocity field −∇v1 is Hölder continuous
and has a certain Sobolev regularity, which allows one to use DiPerna’s and Lions’ theory of
renormalized solutions of transport equations for v2 [43].

A discrete-time gradient-flow approach was suggested in [85, Theorem 1.1], where it is
shown, in one space dimension and assuming complete segregation of the initial data, that the
time-discrete solutions to a minimizing movement scheme converge to a (completely segregated)
weak solution to (2.12). The existence of weak solutions of bounded variation for general initial
data was shown in [26] by using a variational splitting scheme and optimal transport methods.
The loss of regularity due to the hyperbolic character indicates that regularity better than bounded
variation cannot be expected.

Another idea is to replace Darcy’s law v = −∇pi(u) = −∇(u1 + u2) (here v is the fluid
velocity) by Brinkman’s law [21, (5)]

∂tui = div(ui∇w), −ε∆w + w = −(u1 + u2) in Ω, t > 0.
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The parameter ε > 0 can be interpreted as a viscosity, which is a way to represent friction between
the particles. In the limit ε → 0, we revover (2.12). The (inviscid) limit ε → 0 was proved in
[37, Theorem 1.3].

System (2.12) has been generalized in various directions. Assuming that the pressure is given
as in fluid dynamics by p(u) = ūγ , where ū = u1 + u2 is the total mass density and γ > 2− 4/d,
the existence of global weak solutions was proved in [63] (even with suitable reaction terms). A
more general approach was studied in [74] via the duality ūp(u) = g(ū) + g∗(ū), where g is a
convex function and g∗ its convex dual.

The two-species model (2.12) can be generalized to n species by considering (2.9), i.e.

(2.14) ∂tui = div(uipi(u)), pi(u) =
n∑

j=1

aijuj in Ω, t > 0, i = 1, . . . , n,

but now assuming that the matrix (aij) has not full rank. The rank-one case is special in the
sense that it provides a thermodynamical interpretation. Indeed, if aij = aj > 0 for i = 1, . . . , n,
the function pi(u) is independent of the index i and may again be interpreted as the pressure
of the mixture. It is shown in [48] that there exists a unique classical solution to (2.14) on the
torus Ω = Td satisfying the initial conditions ui(0) = u0

i in Ω. Equations (2.14) with pressures
that depend nonlinearly on the density vector were analyzed in [47]. The idea is to transform
equations (2.14) to a nonlinear parabolic equation and a symmetrizable hyperbolic system.

If the rank of the matrix is larger than one, r := rank(aij) ∈ {1, . . . , n−1}, we can transform
(2.14) again to a symmetric hyperbolic–parabolic system, consisting of r parabolic equations
and n − r hyperbolic equations. Using an energy approach, such systems admit a unique local
classical solution provided the initial data is sufficiently smooth and positive [48]. For integrable
initial data, the existence of dissipative measure-valued solutions was shown in [67].

2.2. Fluid mixtures

The dynamics of gaseous mixtures can be described by the so-called Maxwell–Stefan equa-
tions, which model the diffusive transport of the components of the mixture. Applications arise in
many fields like sedimentation, dialysis, respiratory airways, electrolysis, and chemical reactors
[108]. We introduce this model by first assuming that the partial mass fractions ui(x, t) of the
mixture are driven by the balance equations

(2.15) ∂tui + div(uiv + Ji) = ri(u) in Ω, t > 0, i = 0, . . . , n,

where v is the barycentric velocity, Ji = uivi are the partial fluxes with the partial velocities vi,
and ri the reaction rates. We choose the initial and boundary conditions

ui(0) = u0
i in Ω, Ji · ν = 0 on ∂Ω, i = 0, . . . , n.

To derive the Maxwell–Stefan equations, we impose four assumptions:
(1) The barycentric velocity v := ū−1

∑n
i=0 uivi with the total mass fraction ū =

∑n
i=0 ui

vanishes, v = 0, i.e., the mixture is not moving globally.
(2) The total reaction rate is zero, which means that no particles are created,

∑n
i=0 ri = 0.

(3) The initial total mass fraction is constant,
∑n

i=0 u
0
i = 1 in Ω.
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(4) Spatial variations of the mass fractions arise from differences of the partial velocities,

∇ui = −
n∑

j=0

dijuiuj(vi − vj), i = 1, . . . , n,

where dij = dji are positive diffusion coefficients.
The first assumption implies that the total flux vanishes,

∑n
i=0 Ji = 0. Then, in view

of the second assumption, the sum of (2.15) leads to the total mass conservation equation
∂tū = − div(ūv) = 0. Thus, the total mass fraction ū is constant in time and, because of the
third assumption, equal to one,

∑n
0=1 ui = 1 in Ω for all time. Finally, the fourth assumption

shows that the dynamics of the partial mass fractions is given by

(2.16) ∂tui + div Ji = ri(u), ∇ui = −
n∑

j=0

dij(ujJi − uiJj) in Ω, t > 0, i = 0, . . . , n.

In this formulation, the fluxes are not explicitly given as linear combinations of the density
gradients, but the density gradients are linear combination of the fluxes; we call this the Maxwell–
Stefan formulation. If the fluxes are linear combinations of the density gradients, we call this the
Fick–Onsager formulation. Both formulations are in fact equivalent in the sense detailed in [16].

Equations (2.16) are called the Maxwell–Stefan model. They were suggested in 1866 by
James Maxwell [93] for dilute gases and in 1871 by Joseph Stefan [105] for fluids. In contrast to
Fick’s law, which predicts a linear dependence between ∇ui and Ji, the flux Ji in the Maxwell–
Stefan approach also depends on the gradients ∇uj for j ̸= i. This model is able to predict uphill
diffusion (reverse diffusion in the direction of the gradient) or osmotic diffusion (diffusion with
vanishing gradient) in multicomponent mixtures, which have been demonstrated experimentally
by Duncan and Toor [49]. These phenomena can in principle be modeled by using the theory of
nonequilibrium thermodynamics, where the fluxes are assumed to be linear combinations of the
thermodynamic forces [38, Chap. 4]. However, this approach requires the knowledge of all binary
diffusion coefficients, which are not always easy to determine, and the positive semidefiniteness of
the diffusion matrix. The advantage of the Maxwell–Stefan approach is that it can describe uphill
diffusion effects without assuming particular properties on the diffusivities (besides symmetry).

The Maxwell–Stefan equations can be derived from the multi-species Boltzmann equation
in the diffusive approximation; see [19] for a formal derivation and [12, 20] for rigorous results.
Another derivation starts from Euler equations with friction terms, and the high-friction limit
rigorously gives the Maxwell–Stefan equations in the Fick–Onsager formulation [71]. The three-
species Maxwell–Stefan model was obtained as a hydrodynamic limit of locally interacting
Brownian motions in [101]. A formal derivation from thermodynamical principles can be found
in [14, Sec. 14].

The existence of local-in-time solutions to the Maxwell–Stefan equations was shown in
[13, 60, 64], while the existence of global-in-time weak solutions can be found in [80].

2.2.1. Fick–Onsager formulation. In the following, we explain how the Maxwell–Stefan
equations can be written as a cross-diffusion system of the Fick–Onsager form (2.1). For this, we
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need to invert the gradient–flux relation in (2.16). Let the matrix D(u) = (Dij(u)) be given by

Dii(u) =
n∑

j=0, j ̸=i

dijuj, Dij(u) = −dij
√
uiuj if i ̸= j,

for i, j = 0, . . . , n. Then the gradient–flux relation in (2.16) becomes

(2.17) 2∇
√
ui = −

n∑
j=0

Dij(u)
Jj√
uj

, i = 0, . . . , n.

This system has to be solved under the constraint
∑n

i=0 Ji = 0. Since (dij) is symmetric by
assumption, we deduce from

0 =
n∑

i,j=1

Dij(u)zj =
n∑

j ̸=i

dijujzi −
n∑

j ̸=i

dij
√
uiujzj =

n∑
j ̸=i

dij
√
uj(

√
ujzi −

√
uizj)

that zi/
√
ui = zj/

√
uj for all i ̸= j and hence zi =

√
ui and kerD(u) = span{

√
u}, where√

u := (
√
u1, . . . ,

√
un}. Thus, D(u) is not invertible. However, we can invert this matrix on a

subspace.
For this, let L = {z ∈ Rn+1 :

√
u · z = 0} and let PL and PL⊥ be the projections on L and

L⊥, respectively, given by

(2.18) (PL)ij = δij −
√
uiuj, (PL⊥)ij =

√
uiuj for i, j = 0, . . . , n.

Then kerD(u) = L⊥, so D(u) is invertible on L only. We claim that D(u)PL+PL⊥ is invertible
in Rn.

Lemma 2.5. Let D ∈ R(n+1)×(n+1) be a matrix satisfying kerD = L⊥. Then DPL + PL⊥ is
invertible in Rn+1.

Proof. We first show that ker(DPL + PL⊥) = ker(DPL) ∩ L. Let z ∈ ker(DPL + PL⊥).
Since ranD = L, we have DPL = PLDPL. Thus, if 0 = (DPL + PL⊥)z = PL(DPLz) + PL⊥z,
then DPLz = 0 and PL⊥z = 0. It follows from kerPL⊥ = L that z ∈ ker(DPL) ∩ L.
The other inclusion follows in a similar way. Next, we compute the kernel of DPL. Any
z ∈ ker(DPL) satisfies Dz = DPL⊥z +DPLz = DPLz = 0 (since kerD = L⊥). We infer that
ker(DPL) = kerD = L⊥. This shows that

ker(DPL + PL⊥) = ker(DPL) ∩ L = L⊥ ∩ L = {0},

and consequently, the matrix DPL + PL⊥ is invertible. □

The set of solutions toDz = b, z ∈ L is the same as the set of solutions to (DPL+PL⊥)z = b,
since PLz = z and PL⊥z = 0. Thus, the lemma shows that z = (DPL +PL⊥)−1b exists if b ∈ L.

The left-hand side of (2.17) satisfies 2∇
√
u ·

√
u =

∑n
i=0∇ui = 0, so it is an element of L.

Therefore, we can invert (2.17) by means of the so-called Bott–Duffin inverse [18]

DBD(u) := PL

(
D(u)PL + PL⊥

)−1
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(which is symmetric since D(u) is symmetric), and

Ji√
ui

= −2
n∑

j=1

DBD
ij (u)∇√

uj, i = 0, . . . , n.

Giovangigli used in [59, Sec. 7.3.4] the group inverse to invert the gradient–flux relations (2.17).
In fact, since the matrix (Dij) is symmetric and L = ranD(u), the Bott–Duffin inverse and group
inverse coincide [102, Lemma 2.2].

Consequently, the equations in (2.16) become

∂tui − div

( n∑
j=0

Aij(u)∇uj

)
= ri(u),(2.19)

where Aij(u) =

√
ui

uj

DBD
ij (u), i, j = 0, . . . , n,

which corresponds to formulation (2.1) (with Di(u) = 0). We call equations (2.19) the Maxwell–
Stefan system in Fick–Onsager form.

Example 2.6 (Fick–Onsager formulation for three species). In the case n = 2, we can invert
equations (2.16) explicitly. Indeed, inserting u0 = 1 − u1 − u2 and J0 = −J1 − J2 into (2.16)
for i = 1, 2 and taking into account the symmetry of (dij), we find that

∇u1 = −
(
d01 + (d12 − d01)u2

)
J1 + (d12 − d01)u1J2,

∇u2 = (d12 − d02)u2J1 −
(
d02 + (d12 − d02)u1

)
J2.

Multiplying the first equation by d02 + (d12 − d02)u1 and the second one by (d12 − d01)u1 and
adding both equations to eliminate J2 yields(

d02 + (d12 − d02)u1

)
∇u1 + (d12 − d01)u1∇u2

= −J1
(
d12d01u1 + d12d02u2 + d01d02(1− u1 − u2)

)
.

In a similar way, we can eliminate J1 to obtain an expression for J2. Inserting J1 and J2 into
(2.16) then leads to ∂tu− div(A(u)∇u) = r(u) with

A(u) =
1

a(u)

(
d02 + (d12 − d02)u1 (d12 − d01)u1

(d12 − d02)u2 d01 + (d12 − d01)u2

)
,

where a(u) = d01d02(1− u1 − u2) + d01d12u1 + d02d12u2.

Notice that a(u) ≥ min{d01, d02, d12} > 0. □

2.2.2. Entropy structure. Formulation (2.19) allows us to determine the entropy structure
of the Maxwell–Stefan system. Introduce the n-dimensional simplex

(2.20) D :=

{
u = (u1, . . . , un) ∈ (0, 1)n :

n∑
i=1

ui < 1

}
.
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We assume that

(2.21)
n∑

i=0

ri(u) log ui ≤ 0 for all u ∈ D u0 = 1−
n∑

i=1

ui.

Lemma 2.7. There exists c > 0, only depending on (dij), such that for all u ∈ Rn+1 with∑n
i=0 ui = 1 and z ∈ Rn+1 that

zTDBD(u)z ≥ c|PLz|2.

Proof. By [72, Lemma 4], the eigenvalues of (D(u)PL + PL⊥)−1 are larger than or equal
c > 0, and this constant only depends on (dij). Moreover, we conclude from (D(u)PL +
PL⊥)PL⊥ = PL⊥ that PL⊥ = (D(u)PL + PL⊥)−1PL⊥ and hence

0 = PLPL⊥ = PL(D(u)PL + PL⊥)−1PL⊥ = DBD(u)PL⊥ .

Conequently, DBD(u) = DBD(u)(PL +PL⊥) = DBD(u)PL. This implies for all u ∈ Rn+1 with∑n
i=0 ui = 1 and z ∈ Rn+1 that

zTDBD(u)z = zTPL(D(u)PL + PL⊥)−1PLz ≥ c|PLz|2,
ending the proof. □

Let the Boltzmann–Shannon entropy density be given by

(2.22) h(u) =
n∑

i=1

ui(log ui − 1) + u0(log u0 − 1) for u ∈ D,

where u0 = 1 −
∑n

i=1 ui. Then, along solutions to (2.19), integrating by parts, and taking into
account (2.21),

d

dt

∫
Ω

h(u)dx =
n∑

i=0

∫
Ω

log ui∂tuidx(2.23)

= −4
n∑

i=0

∫
Ω

DBD
ij (u)∇

√
ui · ∇

√
ujdx+

n∑
i=0

∫
Ω

ri(u) log uidx

≤ −4c

∫
Ω

|PL∇
√
u|2dx.

First, this shows that t 7→
∫
Ω
h(u(t))dx is nonincreasing. In fact, it is sufficient to find an upper

bound for this function. This can be achieved under the weaker condition (compared to (2.21))
n∑

i=0

ri(u) log ui ≤ C(1 + h(u)) for all u ∈ D.

Second, the entropy inequality (2.23) provides gradient bounds for √ui in L2(Ω), since

|PL∇
√
u|2 =

n∑
i=0

∣∣∣∣ n∑
j=0

(δij −
√
uiuj)∇

√
uj

∣∣∣∣2 = n∑
i=0

|∇
√
ui|2,
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where we used the property
∑n

j=0

√
uj∇

√
uj =

1
2

∑n
j=0∇uj = 0. This implies that

(2.24)
d

dt

∫
Ω

h(u)dx+ 4c
n∑

i=0

|∇
√
ui|2dx ≤ 0.

We note that the Maxwell–Stefan equations can also be written in terms of the entropy
variables wi = ∂h/∂ui = log(ui/u0):

(2.25) ∂tui − div

( n∑
j=1

Mij(u)∇wj

)
= ri(u) in Ω, t > 0, i = 1, . . . , n,

where the mobility matrix M(u) = (Mij(u)) ∈ Rn×n has the entries Mij(u) =
√
uiujD

BD
ij (u).

Since the Bott–Duffin inverse is symmetric [72, Lemma 15], the mobility matrix is symmetric
too, which expresses Onsager’s reciprocal relations. Observe that we have n+1 equations (2.19)
in the variables u0, . . . , un (one of which is superfluous) and n equations (2.25) in the variables
w1, . . . , wn.

The idea is first to find solutions w = (w1, . . . , wn) to (an approximate version of) (2.25)
and then to define a posteriori the partial mass fractions ui = ui(w) by inverting the relation
wi = log(ui/

∑n
j=1 uj) explicitly:

ui =
expwi

1 +
∑n

j=1 expwj

, i = 1, . . . , n.

Then automatically u = (u1, . . . , un) ∈ D (defined in (2.20)), which proves lower and upper
bounds of ui without the use of an maximum principle. This strategy has been called in [75]
the boundedness-by-entropy method, since the entropy implies the boundedness of the physical
variables.
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CHAPTER 3

Derivation of cross-diffusion equations

Cross-diffusion equations can be derived from basic models by various techniques. In this
section, we detail some of these methods, starting from random-walk lattices or kinetic equations.
Other approaches include fast-diffusion limits [14], nonlocal-to-local limits [32], and relaxation
limits by reaction-diffusion [23] or by elliptic regularization [2], but all of them start from diffusion
equations. All derivations in this chapter are formal to highlight the ideas and to simplify the
presentation. We will give references in the text for rigorous proofs.

3.1. Derivation from random-walk lattice models

Diffusion can be viewed as the continuum limit of a spatially discrete random walk process
for a single species. If several species are involved, we show in this section that generally
cross-diffusion terms appear.

3.1.1. Random walk on a lattice. We consider particles distributed over cells in one space di-
mension. The following arguments can be extended in a straightforward way to multi-dimensional
lattices. The particles are allowed to move to one of the neighboring cells with a certain proba-
bility. We wish to derive the particle dynamics if the cell size tends to zero.

The lattice consists of cells with midpoints xj (j ∈ Z) with a uniform cell size h = xj−xj−1 >
0 (see Figure 1). The particle density at time t > 0 is denoted byu(xj) = u(xj, t), and the function
u(x) is supposed to be smooth. We assume that the particles move from cell j to cell j + 1 with
transition rate q and from cell j to cell j−1 with transition rate 1−q. If q = 1/2, this corresponds
to an unbiased random walk (no direction is preferred), while q ̸= 1/2 is a biased random walk.
In principle, the movement is done in each time step. Then the probability to find a particle
at position xj after N jumps is given by the binomial distribution. We prefer to work with a
time-continuous movement, which makes the computations easier. The evolution of the density
is given by the so-called master equation for a discrete-space random walk on R:

∂tu(xj) = qu(xj−1) + (1− q)u(xj+1)− (q + (1− q))u(xj), j ∈ Z, t > 0,

Figure 1. Random walk on a
one-dimensional lattice.
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with the initial condition u(xj, 0) = u0(xj). The first two terms represent the gain from incoming
particles from cell j − 1 with transition rate q and from cell j + 1 with transition rate 1− q, and
the last term describes the loss of particles that move to the neighboring cells j±1 with transition
rates q and 1− q, respectively.

To perform the limit h → 0, we expand the densities around xj according to

(3.1) u(xj±1) = u(xj)± h∂xu(xj) +
h2

2
∂2
xu(xj) +O(h3)

and insert this expansion into the master equation. To simplify the notation, we set uj := u(xj).
We obtain

∂tu
j = q

(
uj − h∂xu

j +
h2

2
∂2
xu

j

)
+ (1− q)

(
uj + h∂xu

j +
h2

2
∂2
xu

j

)
+O(h3)− uj(3.2)

= (1− 2q)h∂xu
j +

h2

2
∂2
xu

j +O(h3).

In the naive limit h → 0, the cell size becomes smaller and smaller and the size of the particle
jumps tends to zero. Indeed, the limit h → 0 in (3.2) leads to the trivial equation ∂tu

j = 0,
i.e., the densities do not change in time. To recover the dynamics in the limit, we consider the
evolution on a longer time scale. This means that we change t by t/h2 and correspondingly ∂t
by h2∂t. After division by h2 in (3.2), the first term on the right-hand side is unbounded when
h → 0. Therefore, we require that this term is also of order h2 and set (1 − 2q)h = vh2 for
some number v ∈ R. In other words, we choose the transition rate q = 1/2 − vh/2, i.e., our
random walk is biased but asymptotically unbiased. Then, after dividing equation (3.2) by h2

and performing the formal limit h → 0 with uj = u(xj) → u(x) gives the diffusion equation

(3.3) ∂tu(x) = v∂xu(x) +
1

2
∂2
xu(x), x ∈ R, t > 0.

The first term expresses the transport of the particles with velocity v and is a remainder of the
slightly biased random walk, while the second term is a linear diffusion with coefficient 1/2. On
a multi-dimensional lattice, the diffusion limit leads to ∂tu = v · ∇u+ 1

2
∆u in Rd.

We may derive nonlinear diffusion terms if the transition rate depends onu(xj), pj = p(u(xj)).
The master equation changes in the unbiased case to

(3.4) h2∂tu
j = pj−1uj−1 + pj+1uj+1 − 2pjuj.

where we included already the diffusion time scale. Here, we need to expand not only uj±1

around xj but also pj±1:

pj±1 = p(uj±1) = p(uj) + ∂up
j(uj±1 − uj) +

1

2
∂2
up

j(uj±1 − uj)2 + · · ·

= pj ± h∂up
j∂xu

j +
h2

2
∂up

j∂2
xu

j +
1

2
∂2
up

j(h∂xu
j)2 +O(h3),

and we used expansion (3.1) in the last step. Next, we insert the previous expansion and (3.1)
into the master equation. It turns out that the terms of order O(1) and O(h) cancel, and we end
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up with
h2∂tu = h2uj

(
∂up

j∂2
xu

j + ∂2
up

j(∂xu
j)2

)
+ 2∂up

j(∂xu
j)2 + pj∂2

xu
j +O(h3).

We divide this equation by h2 and perform the formal limit h → 0:
∂tu = u∂up∂

2
xu+ u∂2

up(∂xu)
2 + 2∂up(∂xu)

2 + p∂2
xu

= ∂x
(
(p(u) + u∂up(u))∂xu

)
in R, t > 0.

This is a nonlinear diffusion equation with coefficient p(u) + u∂up(u). If p(u) is constant,
we recover the linear equation (3.3) with v = 0, since we considered the unbiased case. The
multi-dimensional equation reads as

∂tu = div
(
(p(u) + u∂up(u))∇u

)
= ∆(up(u)) in Rd, t > 0.

3.1.2. Population dynamics models. We generalize the technique from the previous sub-
section to multiple particle species, following the description in [33, 36]; also see [26, Sec. 4.2].
Again, we consider a one-dimensional lattice for simplicity. As before, the lattice consists of cells
with midpoints xj (j ∈ Z) with the uniform cell size h = xj − xj−1 > 0, and the particle density
of the ith population at time t > 0 is denoted by ui(xj) = ui(xj, t). We assume that the particles
move from the jth cell to the neighboring cells j ± 1 with the transition rate Rj,±

i . Conversely,
the particles from the neighboring cells move to the jth cell with rate Rj−1,+

i if they come from
the (j − 1)th cell and Rj+1,−

i if they come from the (j + 1)th cell. The time evolution is then
given by the diffusion-scaled master equation
(3.5) h2∂tui(xj) = Rj−1,+

i ui(xj−1) +Rj+1,−
i ui(xj+1)− (Rj,+

i +Rj,−
i )ui(xj),

where i = 1, . . . , n, j ∈ Z, t > 0, supplemented by the initial condition ui(xj, 0) = u0
i (xj). The

first two terms represent the gain from incoming particles, the last two terms the loss from leaving
particles.

If the departure cell is crowded or the neighboring cells are less populated, the particles tend
to leave the cell, otherwise they prefer to stay. This suggests the multiplicative ansatz

(3.6) Rj,±
i = pi(u(xj))qi(u0(xj±1))

for some functions pi and qi. The function u = (u1, . . . , n) is the vector of the species’ densities
and u0 = 1−

∑n
i=1 ui represents the void (no particles). We can interpret u1, . . . , un also as the

densities of some substances and u0 as the solvent density. The mixture is then called saturated
since

∑n
i=0 ui = 1. Therefore, it is more precise to call ui a mass fraction or a volume fraction

(depending on the physical context). The quantities pi(u(xj)) and qi(u0(xj±1)), respectively,
measure the tendency of the ith species to leave the jth cell, or to move into the jth cell from one
of the neighboring cells.

We claim that the master equations converge in the limit h → 0 to a cross-diffusion system.

Theorem 3.1. Let (u0, . . . , un) be a smooth solution to the master equations (3.5) with transition
rates (3.6). Then equations (3.5) converge in the limit h → 0 formally to

(3.7) ∂tui = ∂x

( n∑
j=1

Aij(u)∂xuj

)
in R, t > 0, i = 1, . . . , n,
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with the diffusion coefficients

(3.8) Aij(u) = δijpi(u)qi(u0) + uipi(u)
dqi
du0

(u0) + uiqi(u0)
∂pi
∂uj

(u),

and u0 := 1−
∑n

i=1 ui.

Proof. We proceed as in [36]. To simplify the presentation, we abbreviate

uj
i = ui(xj), pji = pi(u(xj)), qji = qi(u0(xj)),

∂kp
j
i =

∂pi
∂uk

(u(xj)), ∂0q
j
i =

dqi
du0

(u0(xj)).

This allow us to formulate the master equation (3.5) compactly as

(3.9) h2∂tu
j
i = qji

(
pj−1
i uj−1

i + pj+1
i uj+1

i

)
− pjiu

j
i

(
qj+1
i + qj−1

i

)
.

We compute the Taylor expansions of pi and qi around u(xj) up to second order,

pj±1
i = pji +

n∑
k=1

∂kp
j
i (u

j±1
k − uj

k) +
1

2

n∑
k,ℓ=1

∂2
kℓp

j
i (u

j±1
k − uj

k)(u
j±1
ℓ − uj

ℓ) + · · · ,

qj±1
i = qji + ∂0q

j
i (u

j±1
0 − uj

0) +
1

2
∂2
0q

j
i (u

j±1
0 − uj

0)
2 + · · · ,

insert the Taylor expansion uj±1
k − uj

k = ±h∂xu
j
k + (h2/2)∂2

xu
j
k + O(h3), and collect the terms

up to second order:

pj±1
i = pji ± h

n∑
k=1

∂kp
j
i∂xu

j
k +

h2

2

n∑
k=1

∂kp
j
i∂

2
xu

j
k +

h2

2

n∑
k,ℓ=1

∂2
kℓp

j
i (∂xu

j
k)(∂xu

j
ℓ) +O(h3),

qj±1
i = qji ± h∂0q

j
i ∂xu

j
0 +

h2

2
∂0q

j
i ∂

2
xu

j
0 +

h2

2
∂2
0q

j
i (∂xu

j
i )

2 +O(h3),

= qji ∓ h∂0q
j
i

n∑
k=1

∂xu
j
k −

h2

2
∂0q

j
i

n∑
k=1

∂2
xu

j
k +

h2

2
∂2
0q

j
i

n∑
k,ℓ=1

(∂xu
j
k)(∂xu

j
ℓ) +O(h3),(3.10)

where we replaced ∂xu
j
0 by −

∑n
k=1 ∂xu

j
k in the last step. Then the terms of order O(h) cancel

out in the two sums in (3.9):

−pjiu
j
i

(
qj+1
i + qj−1

i

)
= −2pjiu

j
iq

j
i + h2(· · · ) +O(h3),

qji
(
pj−1
i uj−1

i + pj+1
i uj+1

i

)
= qji

(
pji − h

n∑
k=1

∂kp
j
i∂xu

j
k + h2(· · · )

)(
uj
i − h∂xu

j
i +

h2

2
∂2
xu

j
i

)

+ qji

(
pji + h

n∑
k=1

∂kp
j
i∂xu

j
k + h2(· · · )

)(
uj
i + h∂xu

j
i +

h2

2
∂2
xu

j
i

)
+O(h3)

= 2qji p
j
iu

j
i + h2(· · · ) +O(h3).



3.1. DERIVATION FROM RANDOM-WALK LATTICE MODELS 39

Taking the sum, we see that also the term 2pjiq
j
iu

j
i cancels out, and there remain only terms of

order O(h2). Rearranging these terms and dividing (3.9) by h2, we end up, after some elementary
computations, with

∂tu
j
i =

n∑
k=1

∂2
xu

j
k

(
pjiq

j
i δik + uj

iq
j
i ∂kp

j
i + uj

ip
j
i∂0q

j
i

)
+

n∑
k,ℓ=1

(∂xu
j
k)(∂xu

j
ℓ)
(
2qji ∂kp

j
iδiℓ + uj

iq
j
i ∂

2
kℓp

j
i − uj

ip
j
i∂

2
0q

j
i

)
+O(h).

We pass to the limit h → 0 and omit the superindex j in the previous equation:

∂tui =
n∑

k=1

∂2
xuk

(
piqiδik + uiqi

∂pi
∂uk

+ uipi
dqi
du0

)

+
n∑

k,ℓ=1

(∂xuk)(∂xuℓ)

(
2qi

∂pi
∂uk

δiℓ + uiqi
∂2pi

∂uk∂uℓ

− uipi
d2qi
du2

0

)
.

A lengthy but straightforward computation shows that

∂x

(
piqiδik + uiqi

∂pi
∂uk

+ uipi
dqi
du0

)
=

n∑
ℓ=1

∂xuℓ

(
2qi

∂pi
∂uk

δiℓ + uiqi
∂2pi

∂uk∂uℓ

− uipi
d2qi
du2

0

)
.

We infer that the differential equation for ui becomes

∂tui =
n∑

k=1

∂x

{(
piqiδik + uiqi

∂pi
∂uk

+ uipi
dqi
du0

)
∂xuk

}
,

which equals (3.7)–(3.8). □

Theorem 3.1 also holds in the multidimensional situation, and equations (3.7) become

(3.11) ∂tui = div

( n∑
j=1

Aij(u)∇uj

)
in Rd, t > 0, i = 1, . . . , n,

where the diffusion coefficients (3.8) stay unchanged. Interestingly, equations (3.11) can be
reformulated as

(3.12) ∂tui = div

(
qi(u0)

2∇uipi(u)

qi(u0)

)
,

yielding a diagonal mobility matrix but more complicated variables. Indeed, it follows from∑n
j=1 uj = 1− u0 that

n∑
j=1

Aij(u)∇uj = pi(u)qi(u0)∇ui + uipi(u)
dqi
du0

n∑
j=1

∇uj + uiqi(u0)
n∑

j=1

∂pi
∂uj

(u)∇uj

= pi(u)qi(u0)∇ui − uipi(u)
dqi
du0

∇u0 + uiqi(u0)∇pi(u)
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= qi(u0)
2∇

(
uipi(u)

qi(u0)

)
,

and inserting this expression into (3.11) yields (3.12).
The limit h → 0 can be made rigorous; see, e.g., [13]. The idea is to write the master equation

as a finite-difference scheme, to derive a discrete entropy inequality, and to apply compactness
results to the linear interpolant of the finite-difference solution defined at the nodes xj .

The cross-diffusion system (3.12) has an entropy structure [36] if q(u0) := qi(u0) for all
i = 1, . . . , n and if there exists a function χ : D → R such that

(3.13) pi(u) = exp

(
∂χ

∂ui

(u)

)
for all u ∈ D :=

{
u ∈ (0, 1)n :

n∑
i=1

ui < 1

}
.

Notice that all functions qi are the same and that pi possesses a particular structure. It is unknown
whether system (3.12) has an entropy structure under more general conditions. Introduce the
entropy density

(3.14) h(u) =
n∑

i=1

ui(log ui − 1) +

∫ u0

a

log q(s)ds+ χ(u)

for some a ∈ (0, 1). If q(u0)0u0 and χ(u) = 1, we recover, up to an additive constant, the
Boltzmann-Shannon entropy density

h(u) =
n∑

i=1

ui(log ui − 1) + u( log u0 − 1)− a(log a− 1) + 1.

The following result holds.

Lemma 3.2. Let q = qi for all i = 1, . . . , n and let (3.13) hold. Furthermore, let (u0, u1, . . . , un)
be a smooth solution to (3.11) with (3.8). Then

d

dt

∫
Rd

h(u)dx+ 4
n∑

i=1

∫
Rd

q(u0)
2

∣∣∣∣∇
√

uipi(u)

q(u0)

∣∣∣∣2dx = 0.

Proof. We deduce from log pi = ∂χ/∂ui and ∂u0/∂ui = −1 that
∂h

∂ui

(u) = log ui + log q(u0)
∂u0

∂ui

+
∂χ

∂ui

= log
uipi(u)

q(u0)

and therefore, after inserting (3.12) and integrating by parts,

d

dt

∫
Rd

h(u)dx =
n∑

i=1

∫
Rd

∂h

∂ui

∂tuidx = −
n∑

i=1

∫
Rd

q(u0)
2∇uipi(u)

q(u0)
· ∇ log

uipi(u)

q(u0)
dx,

which finishes the proof. □

The entropy production can be estimated from below by [36, Theorem 1]

4
n∑

i=1

∫
Rd

q(u0)
2

∣∣∣∣∇
√

uipi(u)

q(u0)

∣∣∣∣2dx ≥ C

∫
Ω

( n∑
i=1

q(u0)
2|∇

√
ui|2 + |∇q(u0)|2

)
dx,
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which provides some gradient estimates. We consider some examples.

Example 3.3 (Population dynamics models). We suppose that cells can be arbitrarily packed with
particles, i.e., we discard the variable u0 and set qi(u0) = 1. Then the transition rates only depend
on the functions pi(u). The diffusion coefficients (3.8) simplify to Aij(u) = (∂/∂uj)(uipi(u)),
and we can write (3.7) (or equivalently (3.12)) as

(3.15) ∂tui = ∆(uipi(u)) in Rd, i = 1, . . . , n.

Choosing n = 3 and the linear ansatz pi(u) = ai0 + ai1u1 + ai2u2, we recover the Shigesada–
Kawasaki–Teramoto population system introduced in Section 2.1.1. Clearly, the linear ansatz is
just a choice; we may also choose a nonlinear dependence like

pi(u) = ai0 + a1iu
s
1 + ai2u

s
2, i = 1, 2, s > 0.

Such models have been analyzed in, e.g., [12, 18, 30]. The Laplacian structure of (3.15) is quite
surprising. It allows for L2(Ω) regularity for ui

√
pi(u), by the duality method [17], instead of the

usual L2(Ω) regularity for ui in bounded domains Ω. This improves the integrability of ui. □

Example 3.4 (Volume-filling models). The other extreme case is pi(u) = 1 for all i = 1, . . . , n.
Then the diffusion coefficients (3.8) reduce to

Aij(u) = δijqi(u0) + uiq
′
i(u0), i, j = 1, . . . , n,

where q′ = dq/du0. Taking into account
∑n

j=1∇uj = −∇u0, we obtain

n∑
j=1

Aij(u)∇uj = qi(u0)∇ui − uiq
′
i(u0)∇u0 = qi(u0)∇ui − ui∇qi(u0),

and equations (3.12) can be written as

∂tui = div
(
qi(u0)∇ui − ui∇q(u0)

)
= div

(
uiqi(u0)∇ log

ui

qi(u0)

)
.

Unfortunately, we are unable to find a functional h(u) that satisfies ∂h/∂ui = log(ui/qi(u0))
except in the case qi ≡ q. Indeed, a necessary condition is that

∂

∂uj

log
ui

qi(u0)
=

∂

∂ui

log
uj

qj(u0)
for i ̸= j,

which is equivalent to (log qi(u0))
′ = (log qj(u0))

′. This seems to be possible only of qi ≡ q for
all i. □

3.2. Derivation from kinetic equations

We first introduce some basic concepts of kinetic theory and then derive formally the Maxwell–
Stefan systems from Boltzmann equations in the diffusion limit.
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3.2.1. Basics of kinetic theory. The dynamics of N particles moving in Rd can in be
described by Newton’s laws of motion, which leads to 2dN differential equations in the phase
space Rd × Rd. The solution of these equations is computationally very costly if the number of
particles N is large. Often, we are interested in the behavior of the particle ensemble instead of
the behavior of the individual particles, such that is is reasonable to use a statistical description.
This idea is made precise in kinetic theory: The system, composed of a large number of particles,
is described by a distribution function f(x, ξ, t), where x ∈ Rd is the position, ξ the velocity, and
t the time of the ensemble. The function f(x, ξ, t) is interpreted is a density in the sense that the
integral

∫
B
f(x, ξ, t)d(x, ξ) is the number of particles in the phase-space domain B ⊂ Rd × Rd

at time t. Observable macroscopic quantities like the particle density u(x, t) and velocity v(x, t)
are given by moments (i.e. integrals of functions of ξ) with respect to the measure f(x, ξ, t)dξ:

u(x, t) =

∫
Rd

f(x, ξ, t)dξ, v(x, t) =
1

u(x, t)

∫
Rd

ξf(x, ξ, t)dξ.

The second moment 1
2

∫
Rd |ξ|2fdξ is the energy density. By definition of the distribution function,

and in the absence of collisions, f(x, ξ, t) should be constant along trajectories of the particle
ensemble. Denoting by (x(t), ξ(t)) the position and velocity of the particle ensemble at time t,
respectively, and by ∂tx = v the velocity, we find that

0 =
d

dt
f(x(t), ξ(t), t) = ∂tf + v(t) · ∇xf + ∂tξ · ∇ξf.

According to Newton’s law, the acceleration ∂tξ equals the force F divided by the particle mass
m (which we normalize to one).This yields the Vlasov equation

∂tf + ξ · ∇xf + F · ∇vf = 0 in Rd × Rd, t > 0.

This argument is very simplified, since we just considered the movement of the whole
ensemble. Taking into account the evolution of each particle, we obtain generally a Vlasov
equation for the distribution function f(x, ξ, t) with the position variable x = (x(1), . . . , x(N)) ∈
RdN and the velocity variable ξ = (ξ(1), . . . , ξ(N)) ∈ RdN . This equation in RdN × RdN is as
complex as Newton’s laws of motion. Under the so-called initial chaos assumption (which is
a condition on the initial data), it is possible to show that the one-particle distribution function
f(x, ξ, t) with (x, ξ) ∈ R2d contains the dynamics of the many-particle problem with distribution
function f(x, ξ, t); see, e.g., [10, Chap. 2] or [5, Sec. 3.2].

The Vlasov equation describes the dynamics of the particles without collisions. To include
collisional effects, we include a collision operator Q(f) on the right-hand side of the Vlasov
equation,

(3.16) ∂tf + ξ · ∇xf + F · ∇vf = Q(f) in Rd × Rd, t > 0.

This equation is called the Boltzmann equation, first formulated by Boltzmann in 1872 [3]. To
determine the term Q(f), we assume that

• collisions between particles are binary, i.e., we neglect collisions involving three or more
particles, which is reasonable for dilute gases;

• collisions are local, as if the particles are billard balls;
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Figure 2. Precollisional ve-
locities (ξ′, ξ′∗) and postcolli-
sional velocities (ξ, ξ∗) of a
collision of two particles.

1 1

2 2

x‘

x‘* x*

x

• collisions are elastic, which means that the total momentum and total kinetic energy are
conserved by the collision process.

Let (ξ′, ξ′∗) be the precollisional velocities of two particles and (ξ, ξ∗) be the postcollisional
velocities, and assume that all particles have the same mass m = 1; see Figure 2. Then the
conservation of total momentum and kinetic energy means that

(3.17) mξ′ +mξ′∗ = mξ +mξ∗,
m

2
|ξ′|2 + m

2
|ξ′∗|2 =

m

2
|ξ|2 + m

2
|ξ∗|2.

These equations allow us to express (ξ′, ξ′∗) in terms of (ξ, ξ∗). Indeed, let σ ∈ Rd be such
that |σ| = 1 and let A ∈ R. Then we can write Aσ := ξ′ − ξ, which implies, by momentum
conservation, that ξ′∗ − ξ∗ = −Aσ and consequently, ξ′ = ξ + Aσ, ξ′∗ = ξ∗ − Aσ. We replace
ξ′ and ξ′∗ in the energy conservation by these expressions and expand the squares to find that
A = (ξ∗ − ξ) · σ. This shows that

(3.18) ξ′ = ξ + ((ξ∗ − ξ) · σ)σ, ξ′∗ = ξ∗ − ((ξ∗ − ξ) · σ)σ.

Since σ = (ξ′ − ξ)/A is normalized, we have σ = (ξ′ − ξ)/|ξ′ − ξ|.
The collision term Q(f) is the difference of the gain f ′f ′

∗ and the loss ff∗, integrated over all
velocities ξ∗ ∈ Rd and directions σ ∈ S, where we abbreviated f ′ = f(x, ξ′, t), f∗ = f(x, ξ∗, t),
f ′
∗ = f(x, ξ′∗, t), and S is the d-dimensional unit sphere:

Q(f)(ξ) =

∫
Rd

∫
S
B(ξ, ξ∗, σ)(f

′f ′
∗ − ff∗)dσdξ∗.

The collision kernel B(ξ, ξ∗, σ) ≥ 0 is generally a function of |ξ− ξ∗| and |(ξ− ξ∗) ·σ|. For more
details on the Boltzmann collision operator, we refer to [9]. The following lemma shows that the
collision term conserves the mass, momentum, and energy.

Lemma 3.5. The conservation of mass, momentum, and energy, respectively, hold:∫
Rd

Q(f)dξ = 0,

∫
Rd

Q(f)ξdξ = 0,
1

2

∫
Rd

Q(f)|ξ|2dξ = 0.

Proof. Let ϕ(ξ) be a smooth function. We observe that the collision kernel B is invariant
under the changes of variables (ξ, ξ∗) 7→ (ξ′, ξ′∗) and (ξ, ξ∗) 7→ (ξ∗, ξ). Hence, we can reformulate
the integral over Q(f)ϕ(ξ):∫

Rd

Q(f)(ξ)ϕ(ξ)dξ =

∫
Rd

∫
Rd

∫
S
B(f ′f ′

∗ − ff∗)ϕ(ξ)dσdξ∗dξ(3.19)
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=

∫
Rd

∫
Rd

∫
S
B(f ′

∗f
′ − f∗f)ϕ(ξ∗)dσdξ∗dξ

(swapping ξ and ξ∗ and hence ξ′ and ξ′∗)

=
1

2

∫
Rd

∫
Rd

∫
S
B(f ′f ′

∗ − ff∗)
(
ϕ(ξ) + ϕ(ξ∗)

)
dσdξ∗dξ

(adding the last two lines)

=
1

2

∫
Rd

∫
Rd

∫
S
B(ff∗ − f ′f ′

∗)
(
ϕ(ξ′) + ϕ(ξ′∗)

)
dσdξ∗dξ

(swapping (ξ, ξ∗) and (ξ′, ξ′∗))

=
1

4

∫
Rd

∫
Rd

∫
S
B(f ′f ′

∗ − ff∗)
(
ϕ(ξ) + ϕ(ξ∗)− ϕ(ξ′)− ϕ(ξ′∗)

)
dσdξ∗dξ.

(adding the last two lines)

Choosing ϕ(ξ) = 1 directly yields mass conservation. The choices ϕ(ξ) = ξ and ϕ(ξ) = 1
2
|ξ|2,

together with properties (3.17), finish the proof. □

There is another consequence of (3.19). The choice ϕ(ξ) = log f(ξ) leads to∫
Rd

Q(f) log fdξ = −1

4

∫
Rd

∫
Rd

∫
S
B(f ′f ′

∗ − ff∗)
(
log(f ′f ′

∗)− log(ff∗)
)
dξdξ∗dσ ≤ 0,

since the logarithm is monotone. Thus, introducing the Boltzmann entropy

H(f) =

∫
Rd

∫
Rd

f(log f − 1)dξdx,

a formal computation shows that

d

dt
H(f) =

∫
Rd

∫
Rd

∂tf log fdξdx =

∫
Rd

∫
Rd

Q(f) log fdξdx ≤ 0.

This property, which is called the H-theorem, has an important consequence. It is possible to
show that dH(f)/dt = 0 if and only if log f is at most quadratic in ξ with coefficients depending
on (x, t) [10, Theorem 3.1.1],

log f(x, ξ, t) = A(x, t) +B(x, t) · ξ + C(x, t)|ξ|2.

This can be written as

f(ξ) = exp

(
C

∣∣∣∣ξ + B

2C

∣∣∣∣2 − |B|
4C

+ A

)
.

For f(ξ) to be integrable, the constant C must be negative. Thus, choosing C ′ := −C, B′ :=
−B/(2C), and A′ := exp(−|B|2/(4C) + A), we have

f(ξ) = A′ exp(−C ′|ξ −B′|2).
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Such distribution functions are called local thermodynamic equilibria. They can be equivalently
formulated as

(3.20) M(x, ξ, t) =
u(x, t)

(2πθ(x, t))d/2
exp

(
− |ξ − v(x, t)|2

2θ(x, t)

)
,

where the functions u(x, t), v(x, t), θ(x, t) have the physical meaning of a particle density,
velocity, and temperature, respectively, since a computation, transforming η = (ξ − v)/

√
θ,

shows that∫
Rd

Mdξ =
u

(2π)d/2

∫
Rd

e−|η|2/2dη = u,∫
Rd

Mξdξ =
u

(2π)d/2

∫
Rd

e−|η|2/2(v +
√
θη)dη = uv,

1

2

∫
Rd

M |ξ|2dξ =
u

2(2π)d/2

∫
Rd

e−|η|2/2(|v|2 + 2
√
θv · η + θ|η|2

)
dη = u

(
|v|2

2
+

d

2
θ

)
.

The expression in the brackets is the total energy density, being the sum of the kinetic and thermal
energy.

3.2.2. Maxwell–Stefan equations. The aim of this section is the formal derivation of the
Maxwell–Stefan equations introduced in Section 2.2. We proceed as in [7]. Let Ω ⊂ Rd be a
bounded position domain and consider a mixture of n+ 1 species, each of which is described by
the Boltzmann equation

∂tfi + v · ∇xfi =
n∑

j=0

Qij(fi, fj) in Ω× Rd, t > 0, fi(·, ·, 0) = f 0
i ,

where i = 0, . . . , n. For simplicity, we have neglected the force F in (3.16) and we assume that
the particles have the same mass; we refer to [7] for a mixture with different masses. The collision
operators are given by

Qij(fi, fj) =

∫
Rd

∫
S
Bij(ξ, ξ∗, σ)(f

′
if

′
j∗ − fifj∗)dσdξ∗,(3.21)

where the collision kernels Bij satisfy the conditions
Bij(ξ, ξ∗, σ) = Bji(ξ, ξ∗, σ), Bij(ξ, ξ∗, σ) = Bij(ξ

′, ξ′∗, σ),

which we have already assumed in the single-species case of Section 3.2.1. A generalization of
Lemma 3.5 shows that these operators satisfy mass, momentum, and energy conservation in the
sense [7, Sec. 3.3] ∫

Rd

Qij(fi, fj)dξ = 0,∫
Rd

Qij(fi, fj)ξdξ +

∫
Rd

Qji(fj, fi)ξdξ = 0,(3.22)

1

2

∫
Rd

Qij(fi, fj)|ξ|2dξ +
1

2

∫
Rd

Qji(fj, fi)|ξ|2dξ = 0 for i ̸= j,
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and if i = j, Lemma 3.5 implies mass, momentum, and energy conservation for Qii(f
ε
i , f

ε
i ).

The Maxwell–Stefan equations are derived in the diffusion limit. For this, we impose the
following assumptions:

(1) The time scale is large and the collisions dominate the dynamics.
(2) The initial functions are local Maxwellians with small initial velocity.
(3) The temperature is uniform in space and time, θ = 1.
(4) The collision kernels Bij only depend on the collision angle σ.

The first condition means that the time t is replaced by t/ε for some ε > 0 and Qij(fi, fj) is
replaced by ε−1Qij(fi, fj):

(3.23) ε∂tfi + v · ∇xfi =
1

ε

n∑
j=0

Qij(fi, fj) in Ω× Rd, t > 0.

According to (3.20), the second and third conditions mean that

f 0
i (x, ξ) =

u0
i (x)

(2π)d/2
exp

(
− 1

2
|ξ − εv0i (x)|2

)
for (x, ξ) ∈ Ω ∈ Rd,

whereu0
i ≥ 0 and v0i ∈ Rd are given initial particle densities and velocities satisfying

∑n
i=0 u

0
i = 1

in Ω. Finally, the fourth condition is used later to evaluate the integral of Bij over σ.
We impose a further crucial assumption. We assume that the system keeps the distribution

functions in the local Maxwellian state, i.e., there exist functions uε
i , vεi such that

(3.24) f ε
i (x, ξ, t) =

uε
i (x, t)

(2π)d/2
exp

(
− 1

2
|ξ − εvεi (x, t)|2

)
for (x, ξ) ∈ Ω× Rd, t > 0.

The functions uε
i and vεi can be interpreted as the particle densities and velocities since∫

Rd

f ε
i dξ = uε

i ,

∫
Rd

f ε
i ξdξ = εuε

iv
ε
i .

Now we are able to derive the Maxwell–Stefan equations. First, we integrate (3.23) over ξ,
using (3.22),

(3.25) 0 = ε∂t

∫
Rd

f ε
i dξ + divx

∫
Rd

f ε
i ξdξ = ε∂tu

ε
i + ε divx(u

ε
iv

ε
i ),

which expresses the conservation of mass. Second, we multiply (3.23) by ξ and integrate over ξ:

ε∂t

∫
Rd

f ε
i ξdξ + divx

∫
Rd

f ε
i ξ ⊗ ξdξ =

1

ε

n∑
j=0

∫
Rd

Qij(f
ε
i , f

ε
j )ξdξ.(3.26)

Lemma 3.6. It holds for i, j = 0, . . . , n that

ε∂t

∫
Rd

f ε
i ξdξ = ε2∂t(u

ε
iv

ε
i ),

divx

∫
Rd

f ε
i ξ ⊗ ξdξ = ∇xu

ε
i + ε2 divx(u

ε
iv

ε
i ⊗ vεi ),
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1

ε

∫
Rd

Qij(f
ε
i , f

ε
j )ξdξ = biju

ε
iu

ε
j(v

ε
i − vεj ).

Proof. We use the definition of f ε
i and substitute ξ by η = ξ − εvεi in the integral to find that∫

Rd

f ε
i ξdξ =

uε
i

(2π)d/2

∫
Rd

e−|η|2/2(η + εvεi )dη = εuε
iv

ε
i .

In a similar way, we compute∫
Rd

f ε
i ξ ⊗ ξdξ =

uε
i

(2π)d/2

∫
Rd

e−|η|2/2(η + εvεi )⊗ (η + εvεi )dη

=
uε
i

(2π)d/2

∫
Rd

e−|η|2/2η ⊗ ηdη + ε2
uε
i

(2π)d/2
vεi ⊗ vεi

∫
Rd

e−|η|2/2dη

= uε
i I+ ε2uε

iv
ε
i ⊗ vεi ,

where I is the unit matrix in Rd×d. Next, we insert definition (3.21) of Qij(f
ε
i , f

ε
j ) and transform

ηi = ξ − εvεi , ηj = ξ − εvεj (observing that Bij does not change):∫
Rd

Qij(f
ε
i , f

ε
j )ξdξ =

uε
iu

ε
j

(2π)d

∫
Rd

∫
Rd

∫
S
Bije

−(|η′|2−|η′∗|2)/2(ηi + εvεi )dσdη∗dη

−
uε
iu

ε
j

(2π)d

∫
Rd

∫
Rd

∫
S
Bije

−(|η|2+|η∗|2)/2(ηj + εvεj )dσdη∗dη.

The integrals over ηi and ηj vanish. The fourth condition imposed above implies that bij :=∫
S Bijdσ is a number. Hence,∫

Rd

Qij(f
ε
i , f

ε
j )ξdξ = εbiju

ε
iu

ε
j(v

ε
i − vεj ).

This ends the proof. □

We deduce from the previous lemma that (3.26) can be written as

(3.27) ε2∂t(u
ε
iv

ε
i ) + ε2 divx(u

ε
iv

ε
i ⊗ vεi ) +∇xu

ε
i =

n∑
j=0

biju
ε
iu

ε
j(v

ε
i − vεj ).

Assuming that uε
i → ui and vεi → vi as ε → 0, we can perform, in the third step, the formal limit

ε → 0 in (3.25) and (3.27), leading to the Maxwell–Stefan equations for i = 0, . . . , n:

(3.28) ∂tui + div(uivi) = 0, ∇ui = −
n∑

j=0

bijuiuj(vj − vi) in Ω, t > 0.

Since
∫
Rd f

0
i dξ = u0

i , the initial conditions become

ui(0) = u0
i in Ω, i = 0, . . . , n.

It remains to verify that
∑n

i=0 u
0
i = 1 implies that

∑n
i=0 ui(t) = 1. This does not directly

follow from the mass conservation law, since we do not know whether uivi · ν = 0 on ∂Ω (with
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ν being the exterior normal unit vector to ∂Ω). To this end, we multiply (3.23) by |ξ|2, integrate
over Rd, and sum over i = 0, . . . , n:

(3.29) ε∂t

n∑
i=0

∫
Rd

f ε
i |ξ|2dξ +

1

ε
divx

n∑
i=0

∫
Rd

f ε
i |ξ|2dξ =

1

ε2

n∑
i,j=0

∫
Rd

Qij(f
ε
i , f

ε
j )|ξ|2dξ = 0,

where we used properties (3.22) of Qij . The integrals on the left-hand side can be computed as
in the proof of Lemma 3.6:

n∑
i=0

∫
Rd

f ε
i |ξ|2dξ = duε

i +O(ε2),
n∑

i=0

∫
Rd

f ε
i |ξ|2dξ = ε(d+ 2)uε

iv
ε
i +O(ε2),

where O(ε2) denotes terms of order ε2. We insert these expressions into (3.29) and pass to the
formal limit ε → 0:

d∂t

n∑
i=0

ui + (d+ 2) div
n∑

i=0

uivi = 0.

Summing the mass conservation laws in (3.28) over i = 0, . . . , n, we find that

∂t

n∑
i=0

ui + div
n∑

i=0

uivi = 0.

Both equations can only hold if
∑n

i=0 ui = 0 and div
∑n

i=0 uivi = 0. In particular, the total
particle density

∑n
i=0 ui is constant in time. Since we assumed that initially

∑
i=1 u

0
i = 1, we

conclude that
∑n

i=1 ui(t) = 1 for all t ≥ 0, which shows the claim.
Summarizing, we have proved that the formal limit functions (ui, vi) solve equations (3.28),

the initial conditions ui(0) = u0
i for i = 1, . . . , n, and the side condition

∑n
i=0 ui = 1 in Ω, t > 0.

Equations (3.28) coincide with the Maxwell–Stefan equations of Section 2.2. Notice, however,
that we have not derived any boundary conditions for ui on ∂Ω.

Remark 3.7 (Chapman–Enskog expansion). An alternative way to derive Maxwell–Stefan-type
equations is to use a variant of the Chapman–Enskog expansion [11], which is a perturbative
approach. This allows for a rigorous mathematical derivation [6, 8]. The idea is to expand
the solution f ε

i to the scaled Boltzmann equation (3.23) around the global Maxwellian M(ξ) =
(2π)−d/2 exp(−|ξ|2/2) according to

f ε
i (x, ξ, t) = ui(x, t)M(ξ) + εgi(x, ξ, t), i = 0, . . . , n,

which can be interpreted as the definition of gi(x, ξ, t). We insert this expansion into the scaled
Boltzmann equation (3.23) and sort the terms in powers of ε:

ξ·∇x(uiM) + ε
(
∂t(uiM) + ξ · ∇xgi

)
+ ε2∂tgi

=
1

ε

n∑
j=0

Qij(uiM,ujM) +
n∑

j=0

(
Qij(uiM, gj) +Qij(gi, ujM)

)
+ ε

n∑
j=0

Qij(gi, gj).
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Observing that the energy conservation (3.17) implies that Qij(uiM,ujM) = 0, we identify the
terms of order O(1) and O(ε):

ε0 : M(ξ · ∇xui) =
n∑

j=0

(
Qij(uiM, gj) +Qij(gi, ujM)

)
=: Li(g),(3.30)

ε1 : M∂tui + ξ · ∇xgi =
n∑

j=0

Qij(gi, gj).(3.31)

First, we integrate (3.31) over ξ ∈ Rd, observe that
∫
Rd Mdξ = 1, and take into account that Qij

conserves the total mass so that
∫
Rd Qij(gi, gj)dξ = 0:

(3.32) ∂tui + divx Ji = 0, where Ji =
∫
Rd

giξdξ.

Second, the flux Ji is determined by analyzing the zeroth-order equations (3.30). We split
L(g) = (L1(g), . . . , Ln(g)) into two terms, Li(g) = (Kg)i − νi(ξ)gi, where g = (g1, . . . , gn)
and

(Kg)i =
n∑

j=0

Qij(uiM, gj) +
n∑

j=1

∫
Rd

∫
S
Bijg

′
iujM

′
∗dσdξ∗,

νi(ξ) =
n∑

j=0

∫
Rd

∫
S
Bij(ξ, ξ∗, σ)ujM∗dσdξ∗.

The quantity νi can be interpreted as a collision frequency. It is proved in [6, Prop. 2] that the
operator K, defined on a suitable space, is compact and that (Mξ · ∇xui)

n
i=1 ∈ (kerL∗)⊥, where

L∗ denotes the adjoint operator ofL. Because of the compactness ofK, the range ofLi = K−νiI
is closed. This shows that (kerL∗

i )
⊥ = ranLi = ranLi. Consequently, there exists a function g

such that Li(g) = Wi, i.e.

g = L−1(W ), where Wi = Mξ · ∇xui, i = 0, . . . , n,

and the flux becomes
Ji =

∫
Rd

giξdξ =

∫
Rd

L−1(W )iξdξ.

Using some properties of the linear operator L−1 (self-adjointness on (kerL∗)⊥), it is shown in
[8, Sec. 4] that

Ji = −
n∑

j=1

uiGij(u)∇uj, i = 0, . . . , n,

where Gij(u) = ⟨L−1(wi), wj⟩, wi is a vector depending on M , ξ, and kerL∗
i , and ⟨·, ·⟩ is a scalar

product in some weighted L2(Rd) space. This shows that the mass conservation law (3.32) can
be written as the cross-diffusion system

(3.33) ∂tui − div

( n∑
j=0

uiGij(u)∇uj

)
= 0, i = 0, . . . , n.
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The matrix (Gij) is symmetric, its kernel is spanned by the vector (u1, . . . , un), and it has n
positive eigenvalues as long as mini ui is positive [8, Sec. 5]. System (3.33) is called the Fick–
Onsager formulation, which is linked to the Maxwell–Stefan formulation; see Section 2.2.1. We
observe that equations (3.33) ressemble the generalized Busenberg–Travis model in Section 2.1.2,
but in the latter model the matrix (Gij) does not depend on u and has a trivial kernel. □
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CHAPTER 4

Structure-preserving finite-volume approximations

In numerical simulations, it is desirable to design numerical schemes that preserve as many
properties of the cross-diffusion systems as possible, in particular conservation or control of the
total mass, nonnegativity of the densities, and preservation of the entropy structure. In this chapter,
we introduce two-point flux approximation finite-volume methods for cross-diffusion systems,
which preserve these properties at the discrete level. We start with a brief introduction of
finite-volume methods and then detail structure-preserving finite-volume schemes for population
cross-diffusion systems and volume-filling cross-diffusion systems.

4.1. Basics of finite-volume methods

We explain a special class of finite-volume techniques, the two-point flux approximation. We
decompose the computational domain Ω ⊂ Rd (typically, d = 2 or d = 3) in open polygonal
control volumes K ∈ T such that the closure of the union of these volumes forms a partition of Ω,
namely ∪K∈T K = Ω, where T is the set of control volumes. Finite-volume methods are usually
applied to differential equations in divergence form. The idea is to integrate the equation over
each control volume and to apply the divergence theorem in order to convert the volume integral
containing the divergence term to a surface integral. Finite-volume methods differ in the way
they approximate the flux through the surface. We present here the two-point flux approximation.
For detailed expositions of the finite-volume method, we refer to [8, 15].

The finite-volume method was introduced into the field of computational fluid dynamics
(Euler equations) in the seventies [17, 18], but there are early approaches for convection-diffusion
equations in the sixties; see, e.g., [21]. The mathematical analysis of finite-volume schemes
started only in the nineties [8, 10].

Some advantages of finite-volume methods are:
• They are based on weak formulations of the equations and are independent of the domain

geometry, like finite-element methods.
• They allow for the conservation of discrete physical quantities.
• They seem to be superior to finite-element methods in problems dealing with disconti-

nuities.
Finite-volume methods usually use piecewise constant base functions, possibly with a higher-
order interpolation scheme for the fluxes. This leads to methods that are first-order or second-order
accurate. A drawback is that it is not straightforward to design higher-order methods, which is
easier in finite-element methods. Another drawback is that the two-point approximations that
we discuss below need an orthogonality condition which restricts the geometry of the meshes,
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54 4. STRUCTURE-PRESERVING FINITE-VOLUME APPROXIMATIONS

in particular in three space dimensions. A comparison between finite-volume schemes and so-
called approximate gradient schemes, which include mass-lumping finite elements [5], mixed
finite elements [3], and mimetic finite differences [16], is presented in [7].

4.1.1. Notation and numerical scheme. Consider the diffusion equation

(4.1) ∂tu− div(A(u)∇u) = f(x) in Ω, A(u)∇u · ν = 0 on ∂Ω, t > 0,

with the initial condition u(·, 0) = u0 ≥ 0 in Ω. The function A : [0,∞) → R is assumed to be
continuous and nonnegative. We integrate (4.1) over K ∈ T and use the divergence theorem:

d

dt

∫
K

udx−
∫
∂K

A(u)∇u · νds =
∫
K

f(x)dx.

Let E be the set of all edges (in two space dimensions) or faces (in three space dimensions).
Denoting by EK the set of all edges that are part of ∂K, we write the previous equation as

(4.2)
d

dt

∫
K

udx−
∑
σ∈EK

∫
σ

A(u)∇u · νds =
∫
K

f(x)dx.

Let∆t > 0 be the (uniform) time step and uk(x) be an approximation of u(x, k∆t). We introduce
the space-time piecewise constant functions

uk
K =

1

m(K)

∫
K

uk(x)dx, fK =
1

m(K)

∫
K

f(x)dx, K ∈ T , k ≥ 0,

where m(K) denotes the measure of K. Replacing the time derivative by the implicit Euler
scheme, equation (4.2) is approximated by

(4.3)
m(K)

∆t
(uk

K − uk−1
K ) +

∑
σ∈EK

F k
K,σ = m(K)fK .

The discrete flux F k
σ,K through the edge (or face) σ still needs to be defined. In the two-point

flux approximation, we wish to replace the gradient by the finite difference (uk
L−uk

K)/dist(K,L),
whereK andL are the adjacent control volumes of the edge σ, written as σ = K|L, and dist(K,L)
is some “distance between K and L”. The question is how this distance can be defined, since uk

is piecewise constant and generally discontinuous through the edges. Therefore, we introduce a
set of points (xK)K∈T associated to the control volumes such that the straight line xKxL between
two centers of neighboring cells is orthogonal to the edge σ = K|L; see Figure 1. We discuss
below which meshes satisfy such a condition. The distance dist(K,L) is defined as the Euclidean
distance d(K,L) between the points xK and xL. Then, if σ = K|L, the flux Fσ,K can be
approximated by

F k
K,σ = −m(σ)A(uk

σ)
uk
L − uk

K

d(xK , xL)
,

where uk
σ is a mean value of uk at the edge σ, which still needs to be determined. If the boundary of

the control volume is part of the boundary ∂Ω, the flux vanishes because of the no-flux boundary
conditions, and we set F k

K,σ = 0 if σ ⊂ ∂Ω. To unify the notation, we introduce the set Eint,K of
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Figure 1. Cell-centered method.

K L
xK xL

s

edges contained in Ω and the set Eext,K of edges σ satisfying σ ⊂ ∂Ω. Then EK = Eint,K ∪Eext,K
is the set of edges of K. We also define for σ ∈ E the distance

dσ =

{
d(xK , xL) if σ = K|L ∈ Eint,K ,
d(xK , σ) if σ ∈ Eext,K .

With the notation

vK,σ =

{
vL if σ = K|L ∈ Eint,K ,
vK if σ ∈ Eext,K ,

we introduce the discrete operator

(4.4) DK,σv := vK,σ − vK for σ = K|L,
which equals DK,σv = vL − vK if σ = K|L and DK,σv = 0 if σ ∈ Eext,K . Then the discrete flux
becomes

(4.5) F k
K,σ = −m(σ)A(uk

σ)
DK,σu

k

dσ

, K ∈ T , σ ∈ E .

We still need to define the value of uk
σ at the edge σ. The choice depends on the desired

properties of the scheme. Possible choices are, for instance

(4.6) uk
σ =

1

2
(uk

L + uk
K), uk

σ = min{uk
L, u

k
K} for σ = K|L.

The first choice is an arithmetic average, the second one is called an upwind scheme. It defines
the direction of the “upstream information” with respect to the location of σ. An advantage of the
second option is that it preserves the nonnegativity of the solution if f ≤ 0; see Lemma 4.8. Both
choices imply that the numerical fluxes F k

K,σ are consistent approximations of the exact fluxes
through the edges, i.e. F k

K,σ + F k
L,σ = 0 for all σ = K|L.

We summarize our discussion. Introducing the so-called transmissibility coefficient,

(4.7) τσ =
m(σ)

dσ

,

the recursive scheme (4.3) becomes

(4.8)
m(K)

∆t
(uk

K − uk−1
K ) +

∑
σ∈EK

F k
K,σ = m(K)fK , F k

K,σ = −τσA(u
k
σ)DK,σu

k
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for all K ∈ T . It remains to specify our assumptions on the mesh; see [8, Definition 9.1] for a
more detailed definition.

Definition 4.1 (Admissible mesh). Let Ω ⊂ Rd with d = 2, 3 be an open bounded polygonal set.
An admissible mesh of Ω consists of

• a family T of open polygonal convex sets of Ω, called control volumes, which do not
overlap and satisfy Ω = ∪K∈T K;

• a family E of edges (d = 2) or faces (d = 3) of the control volumes with positive measure;
• a family of points P = (xK) of Ω such that xK ∈ K and the straight line xKxL between

two centers of neighboring cells is orthogonal to the edge σ = K|L.

Generally, the structure assumption on the mesh is rather restrictive. However, on non-
admissible meshes, the numerical fluxes may not be consistent and the scheme may not converge
to the solution to the continuous problem [9]. At least in two space dimension, the construction
of admissible triangular meshes is not too difficult as shown by the following examples, which
are taken from [8, Example 9.1].

Example 4.2 (Triangular meshes). Let Ω be an open bounded polygonal subset of R2 and let T
be a family if open triangular disjoint subsets of Ω. We suppose that (i) any two triangles K and L
with the common edge σ = K|L have two common vertices and (ii) all angles of the triangles are
less than π/2. The latter condition implies that xK ∈ K. Such a mesh is admissible. Condition
(ii) can be relaxed to the so-called strict Delaunay condition, i.e., the closure of the circumscribed
circle of each triangle does not contain any other triangle of the mesh. Another example of
admissible meshes are Voronoï meshes [8, Example 9.2]. Voronoï meshes can be derived as dual
grids of boundary-conforming Delaunay triangulations. The construction of Voronoï meshes can
also be applied to non-polygonal domains. □

The weak formulation of equation (4.1),∫
Ω

∂tuvdx+

∫
Ω

A(u)∇u · ∇vdx =

∫
Ω

fvdx for v ∈ H1(Ω)

is based on integration by parts. We need a similar property for the numerical scheme.

Lemma 4.3 (Discrete integration by parts). Let F k
K,σ + F k

L,σ = 0 for σ = K|L and let (vK) be a
piecewise constant function. Then∑

K∈T

∑
σ∈EK

F k
K,σvK = −

∑
σ=K|L∈Eint

F k
K,σ(vL − vK),

where Eint = ∪K∈T Eint,K .

Proof. In the sum over K ∈ T and σ ∈ EK , we count every edge twice. Therefore, since
F k
K,σ = 0 for σ ∈ Eext,K ,∑

K∈T

∑
σ∈EK

F k
K,σvK =

∑
σ∈Eint
σ=K|L

F k
K,σvK +

∑
σ∈Eint
σ=K|L

F k
L,σvL



4.1. BASICS OF FINITE-VOLUME METHODS 57

Figure 2. Vertex-centered
method. The dual mesh
consists of polygonal sets
around the vertices. The gray
area is one control volume.

=
∑
σ∈Eint
σ=K|L

F k
K,σvK −

∑
σ∈Eint
σ=K|L

F k
K,σvL = −

∑
σ=K|L∈Eint

F k
K,σ(vL − vK),

which proves the statement. □

We finish this subsection with some remarks.

Remark 4.4 (Cell centered versus vertex centered). The presented finite-volume technique be-
longs to the class of cell-centered methods. Another class are vertex-centered methods. In
cell-centered methods, the control volumes are formed by the mesh cells with the points xK

storing the average value in the control volume. In vertex-centered methods, the control volumes
are centered around the vertices of the cells and form a dual mesh, while the vertices store the
average value over the control volumes (see Figure 2). The edges of the control volumes are
constructed within the cells rather than at the cell interfaces like in the cell-centered method. The
cell-centered method is very efficient and requires matrices with low band width (which is equal
to the number of cell neighbors plus one). However, the mesh topology is restricted due to the
orthogonality requirement. The vertex-centered method is less efficient and requires more storage
but the mesh topology does not have the same restrictions as the cell-centered method. □

Remark 4.5 (Comparison with finite differences). Because of the flux definition by the finite
difference DK,σu

k = uk
L−uk

K for σ = K|L, the finite-volume scheme looks like a generalization
of the finite-difference method. However, as pointed out in [8, Sec. 5.2], the (finite-difference)
truncation error associated to the finite-volume scheme generally does not tend to zero, while this
is the case for the finite-difference scheme.

As an example, consider the one-dimensional diffusion equation −uxx = f in Ω = (0, 1). An
admissible mesh is given by the family K1, . . . , KN such that Ki = (xi−1/2, xi+1/2)and a family
(x0, . . . , xN+1) such that x0 = 0, xN+1 = 1, and xi−1 < xi−1/2 < xi for all i = 1, . . . , N + 1.
We set

hi = m(Ki) = xi+1/2 − xi−1/2, hi+1/2 = xi+1 − xi;

Figure 3. One-dimensional
non-uniform mesh.

xi–1 xi xi+1xi+1/2xi–1/2

hi

xi–3/2

Ki-1 Ki

hi–1/2
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see Figure 3. Let h = max{hi/2 : i = 1, . . . , 2N}. and hi±1/2/hi ≤ C for some C > 0
independent of h (this condition only becomes relevant in the convergence analysis h → 0). The
discrete unknowns ui for i = 1, . . . , N are approximations of u in the control volume Ki, and we
set fi = h−1

i

∫
Ki

f(x)dx. The finite-volume scheme reads as

hifi =
1

hi

(Fi+1/2 − Fi−1/2) =
1

hi

(
− ui+1 − ui

hi+1/2

+
ui − ui−1

hi−1/2

)
.

We wish to compute the finite-difference truncation error

Ti :=
1

hi

(
− u(xi+1)− u(xi)

hi+1/2

+
u(xi)− u(xi−1)

hi−1/2

)
− hif(xi).

Assuming that the functions are sufficiently smooth, inserting the Taylor expansions

hifi =

∫
Ki

(f(xi) + hifx(ξ))dx = hif(xi) +O(h2),

u(xi±1) = u(xi)± hi±1/2ux(xi) +
1

2
h2
i±1/2uxx(xi) +O(h3),

and taking into account that f(xi) = uxx(xi), we arrive at

Ti =
1

hi

{
−

(
ux(xi) +

1

2
hi+1/2uxx(xi)

)
+

(
ux(xi)−

1

2
hi−1/2uxx(xi)

)}
− f(xi) +O(h)

= −
hi+1/2 + hi−1/2

2hi

uxx(xi) + uxx(xi) +O(h).

If h = hi = hi±1/2, the truncation error becomes Ti = O(h) → 0 as h → 0. Generally, however,
(hi+1/2 + hi−1/2)/(2hi) ̸= 1, and the truncation error does not tend to zero as h → 0. Thus,
the scheme is not consistent in the finite-difference sense (but it is consistent in the finite-volume
sense).

The consistent finite-difference scheme is derived from
f(xi) = −uxx(xi)

=
2

hi+1/2 + hi−1/2

{
−

(
ux(xi) +

1

2
hi+1/2uxx(xi)

)
+

(
ux(xi)−

1

2
hi−1/2uxx(xi)

)}
,

and reads as
2

hi+1/2 + hi−1/2

(
− ui+1 − ui

hi+1/2

+
ui − ui−1

hi−1/2

)
= f(xi).

Because of the different prefactor 2/(hi+1/2 + hi−1/2), the truncation error becomes Ti =
−uxx(xi)+ f(xi)+O(h) = O(h), which converges to zero. This shows that the finite-difference
and finite-volume schemes coincide for uniform mesh sizes, up to a different approximation of
the source term f(x). □

Remark 4.6 (Mixed Dirichlet–Neumann boundary conditions). If the diffusion equation (4.1) is
supplemented with the mixed boundary conditions

u = uD on ΓD, A(u)∇ · ∇ν = 0 on ΓN ,
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where ν is the exterior unit normal vector to ∂Ω = ΓD ∪ ΓN and uD is defined on ΓD, the
scheme slightly changes. We assume that each exterior edge is an element of either the Dirichlet
or Neumann boundary, Eext,K = ED

ext,K ∪ EN
ext,K and Eext = ED

ext ∪ EN
ext. Then, setting uD

σ =

m(σ)−1
∫
σ
uD(x)dx, we introduce

uk
K,σ =


uk
L if σ = K|L ∈ Eint,

uD
σ if σ ∈ ED

ext,K ,

uk
K if σ ∈ EN

ext,K .

The numerical scheme (4.8) does not change but the discrete integration by parts becomes∑
K∈T

∑
σ∈EK

F k
K,σ = −

∑
σ∈E

F k
K,σDK,σu

k +
∑

σ∈ED
ext

F k
K,σu

k
K,σ.

We still have local conservation of the numerical fluxes, but they vanish on the Neumann boundary
edges, F k

K,σ = 0 for σ ∈ EN
ext,K . □

4.1.2. Structure preservation. The finite-volume scheme preserves many properties of the
continuous diffusion equation, namely

• local conservation of the flux;
• conservation of the total mass if f = 0;
• preservation of nonnegativity if f ≤ 0 and u0 ≥ 0;
• preservation of the entropy structure.

We already mentioned that the numerical fluxes (4.5) with (4.6) are locally conserved, F k
K,σ+

F k
L,σ = 0 for σ = K|L. This property is automatically satisfied if uσ is symmetric in K and L.

Also conservation of the total mass is an inherent property of the scheme.

Lemma 4.7 (Discrete conservation of the total mass). Let f = 0. Then∑
K∈T

m(K)uk
K =

∑
K∈T

m(K)u0
K ,

recalling that u0
K = m(K)−1

∫
K
u0(x)dx.

Proof. We sum scheme (4.8) over K ∈ T and use discrete integration by parts:∑
K∈T

m(K)

τσ
(uk

K − uk−1
K ) = −

∑
K∈T

∑
σ∈EK

F k
K,σ = 2

∑
σ∈Eint
σ=K|L

F k
K,σ =

∑
σ∈Eint
σ=K|L

(F k
K,σ + F k

L,σ) = 0.

Thus, by recursion, ∑
K∈T

m(K)uk
K =

∑
K∈T

m(K)uk−1
K = · · · =

∑
K∈T

m(K)u0
K ,

which ends the proof. □

Lemma 4.8 (Preservation of nonnegativity). Let A(z) = 0 for z ≤ 0, fK ≤ 0 and let u0
K ≥ 0 for

all K ∈ T . The value of uk on the edge is given by the upwind scheme uk
σ = min{uk

L, u
k
K}. Then

the solution to (4.3), if it exists, satisfies uk
K ≥ 0 for all K ∈ T .
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Proof. We assume, by recursion, that uk−1
K ≥ 0 for all K ∈ T for some k ≥ 1. If k = 1, this

property is satisfied by assumption. The goal is show that uk
K ≥ 0. To this end, we multiply (4.8)

by (uk
K)

− = min{0, uk
K}, sum over K ∈ T , and use discrete integration by parts:

0 ≥
∑
K∈T

m(K)fK =
∑
K∈T

m(K)

∆t
(uk

K − uk−1
K )(uk

K)
− +

∑
K∈T

∑
σ∈EK

F k
K,σ(u

k
K)

−

=
∑
K∈T

m(K)

∆t
(uk

K − uk−1
K )(uk

K)
− −

∑
σ∈Eint
σ=K|L

F k
K,σ

(
(uk

L)
− − (uk

K)
−).

The function z 7→ z− is convex, which implies that (z − y)z− ≥ 1
2
((z−)2 − (y−)2). Taking into

account definition (4.5) of F k
K,σ, we infer that

1

2

∑
K∈T

m(K)

∆t

(
[(uk

K)
−]2 − [(uk−1

K )−]2
)
≤ −

∑
σ∈Eint
σ=K|L

τσA(u
k
σ)(u

k
L − uk

K)
(
(uk

L)
− − (uk

K)
−).(4.9)

If both uk
L ≥ 0 and uk

K ≥ 0, the right-hand side is nonpositive (since A(uk
σ) ≥ 0 by assumption).

If uk
L < 0 or uk

K < 0, the upwind definition of uσ implies that uk
σ = 0. Since A(z) = 0 for z ≤ 0,

we have A(uk
σ) = 0 in this case. Thus, the right-hand side of (4.9) is nonpositive or zero. Since

our recursion assumption implies that (uk−1
K )− = 0, we arrive at

1

2

∑
K∈T

m(K)

∆t
[(uk

K)
−]2 ≤ 0.

We conclude that (uk
K)

− = 0 and thus uk
K ≥ 0 for K ∈ T . □

Finally, we discuss the preservation of the entropy structure at the discrete level. Let h ∈
C1([0,∞)) be a convex function. We use the test function h′(u) in the weak formulation of the
continuous equation (4.1) with f = 0:

d

dt

∫
Ω

h(u)dx =

∫
Ω

h′(u)∂tudx = −
∫
Ω

A(u)h′′(u)|∇u|2dx,(4.10)

and the right-hand side is nonpositive since h′′(u) ≥ 0 by assumption. Thus, any convex function
is a Lyapunov functional (or entropy density) along the solutions to (4.1) with f = 0.

To translate this property to the discrete level, we multiply scheme (4.8) by h′(uk
K), sum over

K ∈ T , and use discrete integration by parts:∑
K∈T

m(K)

∆t
(uk

K − uk−1
K )h′(uk

K) =
∑
K∈K

∑
σ∈EK

τσA(u
k
σ)DK,σ(u

k)h′(uk
K)

= −
∑

σ=K|L∈Eint

τσA(u
k
σ)(u

k
L − uk

K)(h
′(uk

L)− h′(uk
K)).
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We deduce from the convexity of h that (z− y)h′(z) ≥ h(z)−h(y) for all z, y ≥ 0, which yields∑
K∈T

m(K)

∆t
(h(uk

K)− h(k−1
K )) ≤ −

∑
σ∈Eint

τσA(u
k
σ)(u

k
L − uk

K)(h
′(uk

L)− h′(uk
K)).

By the mean-value theorem, we can define uk
σ (if it exists) as the generalized Stolarsky mean [20]

h′′(uk
σ) =

h′(uk
L)− h′(uk

K)

uk
L − uk

K

for σ = K|L, k ∈ N.

This yields the discrete analog of (4.10):∑
K∈T

m(K)

∆t
(h(uk

K)− h(k−1
K )) ≤ −

∑
σ∈Eint

τσA(u
k
σ)h

′′(uk
σ)(u

k
L − uk

K)
2.

An example for an entropy density is h(u) = u(log u− 1). Then h′(u) = log u, which shows
that we need to be careful with the definition of uk

σ if uk
K = 0 or uk

L = 0. Therefore, we define
the mean value as

(4.11) uk
σ =


ũk
σ if uk

K > 0, uk
K,σ > 0, and uk

K ̸= uk
K,σ,

uk
K if uk

K = uk
K,σ > 0,

0 else,

where ũk
σ ∈ (0,∞) is the unique solution to

(4.12) h′′(ũk
σ)DK,σu

k = DK,σh
′(uk) for K ∈ T , σ ∈ EK , i = 1, . . . , n.

This equation is the discrete version of the chain rule h′′(u)∇u = ∇h′(u). Equation (4.12) is
solvable by the mean-value theorem applied to the function h′. The solution ũk

σ is unique if h′′ is
strictly monotone.

The discrete chain rule (4.12) resembles the discrete-gradient method [11, Sec. V.5]. If h
equals the Boltzmann entropy density h(u) = u(log u−1), the discrete chain rule (4.12) becomes
the logarithmic mean

ũk
σ =

uk
L − uk

K

log uk
L − log uk

K

for σ = K|L if uk
L > 0, uk

K > 0.

The logarithmic mean is well-known in numerical analysis [2, (28)] and in gradient-flow Markov
chains [19, (1.3)]. Property (4.12) can be also satisfied for the power-law entropy densities
h(u) = uα with α > 0.

If h(u) = u(log u − 1), Definition (4.11) of uk
σ is consistent with the discrete chain rule

(4.12). Indeed, let uk
L > 0 and uk

K → 0. Then h′(uk
K) = log uk

K → −∞ and h′′(ũk
σ)(u

k
L−uk

K) =
h′(uk

L)− h′(uk
K) → ∞. We deduce from h′′(ũk

σ) = 1/ũk
σ → ∞ that ũk

σ → 0, which is consistent
with the definition uk

σ = 0 if uk
K = 0.

We summarize our results in the following lemma.
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Lemma 4.9 (Preservation of the entropy structure). Let h : [0,∞) → R be a convex function
such that h′′ is strictly monotone and introduce the discrete entropy

Hd(u
k) =

∑
K∈T

m(K)h(uk
K), k ≥ 0.

Then the function k 7→ H(uk) is nonincreasing for k ∈ N. Moreover, if uk
σ is defined by (4.11),

then the discrete analog of (4.10) holds:

Hd(u
k) +

∑
σ∈Eint

τσA(u
k
σ)h

′′(uσ)(u
k
L − uk

K)
2 ≤ Hd(u

k−1), k ∈ N.

4.2. Finite volumes for population systems

The goal of this section is to design a structure-preserving finite-volume scheme for population
cross-diffusion models. First, we present a general scheme and then apply it to some examples.
We proceed as in [12].

4.2.1. General scheme. We wish to discretize the cross-diffusion equations

∂tui − div

( n∑
j=1

Aij(u)∇uj

)
= ri(u) in Ω, t > 0, i = 1, . . . , n,(4.13)

n∑
j=1

Aij(u)∇uj · ν = 0 on ∂Ω, t > 0, ui(0) = u0
i in Ω,(4.14)

where Ω ⊂ Rd (d ≥ 1) is a bounded domain, u = (u1, . . . , un) is the density vector, and ν is
the exterior unit normal vector to ∂Ω. We assume that this system has a weak solution that is
nonnegative componentwise and an entropy structure in the sense that there exists an entropy
density h(u) such that h′′(u)A(u) is uniformly positive definite. Then the following entropy
inequality holds:

d

dt

∫
Ω

h(u)dx =

∫
Ω

∂tu · h′(u)dx = −
∫
Ω

∇uTh′′(u)A(u)∇udx+

∫
Ω

f(u) · h′(u)dx

≤ −c

∫
Ω

|∇u|2dx+

∫
Ω

f(u) · h′(u)dx,

where c > 0 is the smallest eigenvalue of h′′(u)A(u) and f(u) = (f1(u), . . . , fn(u)).
The goal is to design a finite-volume scheme that preserves this structure and the nonnegativity

of the solutions. This is a nontrivial task because of the cross-diffusion terms. Our main
assumption is that the entropy density is the sum of the single-species entropy densities hi(ui).
A more general entropy density is considered in Section 4.3.

Let (T , E ,P) be an admissible mesh (see Definition 4.1) with the mesh size ∆x :=
maxK∈T diam(K). We denote for some given end time T > 0 by ∆t = T/N for N ∈ N
the time step size and set tk = k∆t for k = 0, . . . , N . The space of spatially piecewise constant
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functions is defined by

V∆x =

{
v : Ω → R : ∃(vK)K∈T ⊂ R, v(x) =

∑
K∈T

vK1K(x)

}
,

where 1K is the characteristic function on K.
We introduce the numerical scheme for the cross-diffusion model (4.13)–(4.14). The initial

functions are approximated by

u0
i,K =

1

m(K)

∫
K

u0
i (x)dx for K ∈ T , i = 1, . . . , n.

Let uk−1 = (uk−1
1 , . . . , uk−1

n ) ∈ V n
∆x be given. The values uk

i,K are determined from the implicit
Euler finite-volume scheme

(4.15)
m(K)

∆t
(uk

i,K − uk−1
i,K ) +

∑
σ∈EK

F k
i,K,σ = m(K)ri(u

k
K), i = 1, . . . , n,

where the fluxes F k
i,K,σ are given by

(4.16) F k
i,K,σ = −

n∑
j=1

τσAij(u
k
σ)DK,σu

k
j for K ∈ T , σ ∈ EK ,

recalling definition (4.7) of τσ and definition (4.4) of DK,σ.
It remains to determine the values uk

σ on the edges. We suppose that h is convex and that
h′′ is strictly monotone. We wish to choose this value in such a way that the discrete analog
h′′(ṽσ)(vL − vK) = h′(vL) − h′(vK) for v ∈ V∆x of the chain rule h′′(u)∇u = ∇h′(u) holds.
The difficulty is that the mean-value theorem for vector-valued functions can be formulated only
as (∫ 1

0

h′′(θvL + (1− θ)vK)dθ

)
(vL − vK) = h′(vL)− h′(vK),

and generally a mean vector ṽσ cannot be found. Therefore, we assume that the entropy density
is the sum of the single-species entropy densities, h(u) =

∑n
i=1 hi(ui). Then the Hessian h′′ is

diagonal, and the standard mean-value theorem can be applied componentwise like in the previous
section.

More precisely, we define for i = 1, . . . , n the mean value

(4.17) uk
i,σ =


ũk
i,σ if uk

i,K > 0, uk
i,K,σ > 0, and uk

i,K ̸= uk
i,K,σ,

uk
i,K if uk

i,K = uk
i,K,σ > 0,

0 else,

where ũk
i,σ ∈ (0,∞) is the unique solution to

(4.18) h′′
i (ũ

k
i,σ)DK,σu

k
i = DK,σh

′
i(u

k
i ) for K ∈ T , σ ∈ EK , i = 1, . . . , n.
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As shown in the previous section, this equation is uniquely solvable. Moreover, ũk
i,σ lies between

uk
i,K and uk

i,L if σ = K|L. Hence,

min{uk
i,K , u

k
i,K,σ} ≤ ũk

i,σ ≤ max{uk
i,K , u

k
i,K,σ} for K ∈ T , σ ∈ EK , i = 1, . . . , n.

Before verifying the preservation of the entropy structure, we detail the hypotheses. We set
D := (0,∞)n.

(H1) Domain: Ω ⊂ Rd (d = 2, 3) is a bounded polygonal domain.
(H2) Discretization: (T , E ,P) and (∆t, N) is a space-time discretization of Ω × (0, T )

composed of an admissible mesh T and the values ∆t > 0, N ∈ N.
(H3) Initial data: u0 = (u0

1, . . . , u
0
n) ∈ L1(Ω;D) satisfies

∫
Ω
h(u0)dx < ∞.

(H4) Entropy density: h(u) =
∑n

i=1 hi(ui), wherehi ∈ C2(0,∞)∩C0([0,∞)) is nonnegative
and convex, h′

i : (0,∞) → R is invertible, h′′
i is strictly monotone, and there exists ch > 0

such that hi(s) ≥ ch(s− 1) for s ≥ 0, i = 1, . . . , n.
(H5) Diffusion matrix: A ∈ C0(D;Rn×n), and there exist cA > 0, s ≥ 1/2 such that

zTh′′(u)A(u)z ≥ cA

n∑
i=1

u2s−2
i z2i for all z ∈ Rn, u ∈ D.

(H6) Source terms: r = (r1, . . . , rn) ∈ C0(D;Rn), and there exists Cr > 0 such that for all
u ∈ D,

r(u) · h′(u) ≤ Cr(1 + h(u)).

Assuming that a solution to scheme (4.15)–(4.16) exists, the discrete entropy

Hd(u
k) =

n∑
i=1

∑
K∈T

m(K)hi(u
k
i,K), k ≥ 0,

fulfills a discrete entropy inequality, showing that the scheme preserves the entropy structure.

Theorem 4.10 (Discrete entropy inequality). Let Hypotheses (H1)–(H6) hold and let uk =
(uk

1, . . . , u
k
n) ∈ V n

∆x be a solution to (4.15)–(4.18) satisfying uk
i,K > 0 for K ∈ T , k ≥ 1, and

i = 1, . . . , n. Then, for any k ≥ 1,

(4.19) (1− Cr∆t)Hd(u
k) + cA∆t

n∑
i=1

∑
σ∈E

τσ(u
k
i,σ)

2s−2(DK,σu
k
i )

2 ≤ Hd(u
k−1) + Cr∆tm(Ω).

In particular, if Cr = 0, the discrete entropy k 7→ Hd(u
k) is nonincreasing.

Proof. Let wk
i,K := h′(uk

i,K) for i = 1, . . . , n be the entropy variables. We multiply scheme
(4.15) by wk

i,K and sum over i = 1, . . . , n and K ∈ T . Then I1 + I2 + I3 = 0, where

I1 =
1

∆t

n∑
i=1

∑
K∈T

m(K)(uk
i,K − uk−1

i,K )wk
i,K ,

I2 =
n∑

i=1

∑
K∈T

∑
σ∈EK

F k
i,K,σw

k
i,K ,
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I3 = −
n∑

i=1

∑
K∈T

m(K)ri(u
k
K)w

k
i,K .

The convexity of z 7→ hi(z) for z > 0 implies that (z − y)h′
i(z) ≥ hi(z)− hi(y) for all y, z > 0.

Hence, the first term becomes

I1 ≥
1

∆t

n∑
i=1

∑
K∈T

m(K)
(
hi(u

k
i,K)− hi(u

k−1
i,K )

)
=

1

∆t

(
Hd(u

k)−Hd(u
k−1)

)
.

We rewrite the second term by using discrete integration by parts and the chain rule (4.18):

I2 = −
n∑

i=1

∑
σ∈E

F k
i,K,σDK,σw

k
i,K

=
n∑

i,j=1

∑
σ=K|L∈Eint

τσAij(u
k
σ)DK,σu

k
jDK,σh

′
i(u

k
i )

=
n∑

i,j=1

∑
σ=K|L∈Eint

τσh
′′
i (u

k
i,σ)Aij(u

k
σ)DK,σu

k
iDK,σu

k
j .

This expression is bounded from below by Hypothesis (H5):

I2 ≥ cA

n∑
i=1

∑
σ∈E

τσ(u
k
i,σ)

2s−2(DK,σu
k
i )

2.

Finally, we deduce from Hypothesis (H6) that

I3 ≥ −Cr

∑
K∈T

m(K)(1 + h(uk
K)) = −Cr∆t(m(Ω) +Hd(u

k)).

These estimates yield

Hd(u
k) + cA∆t

n∑
i=1

∑
σ∈E

τσ(u
k
i,σ)

2s−2(DK,σu
k
i )

2 ≤ Cr∆t(m(Ω) +Hd(u
k)),

finishing the proof. □

The nonnegativity of solutions is a by-product of the existence analysis which is based on the
formulation in terms of entropy variables.

Theorem 4.11 (Existence of discrete solutions). Let Hypotheses (H1)–(H6) hold and let ∆t <
1/Cr. Then there exists a solution uk = (uk

1, . . . , u
k
n) ∈ V n

∆x to scheme (4.15)–(4.18) satisfying

uk
i,K ≥ 0 for all K ∈ T , k ≥ 1, i = 1, . . . , n.

If s ≥ 1, uk satisfies the discrete entropy inequality (4.19).

The proof of this result is based on Schaefer’s fixed-point theorem.
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Theorem 4.12 (Schaefer). Let X be a finite-dimensional vector space and S : X → X be a
continuous mapping. We assume that the set

Y := {v ∈ X : ∃θ ∈ [0, 1], v = θS(v)}

is bounded. Then S has a fixed point.

The idea of the theorem is a homotopy argument: Setting Yθ = {v ∈ X : v = θS(v)}, we
have Y = ∪θ∈[0,1]Yθ. The idea is to “deform” the nonempty set Y0 = {0} to Y1 by means of
the sets Yθ. The theorem states that if we have a bound on any fixed point of the mapping θS
for θ ∈ [0, 1], then Y1 is nonempty, and there exists a fixed point of S. In nonlinear PDEs, the
bounds are a consequence of a priori estimates. In this sense, supposing that a solution to the
nonlinear PDE exists, the a priori estimates show that a solution indeed exists. Theorem 4.12 is a
consequence of Brouwer’s fixed-point theorem. It is also valid in infinite-dimensional spaces if
S is compact. We refer to [6, Sec. 9.2.2] for a proof.

Proof of Theorem 4.11. We proceed by induction. If k = 0, we have uk
i,K ≥ 0 for all

K ∈ T , i = 1, . . . , n by Hypothesis (H3). Assume that there exists a solution uk−1 to scheme
(4.15)–(4.16) satisfying uk−1

i,K ≥ 0 for K ∈ T , i = 1, . . . , n. For the construction of uk, we use a
fixed-point argument.

▶ Step 1: Construction of the fixed-point operator. Let ε > 0 and define the operator
S : V n

∆x → V n
∆x, S(v) = w, where w ∈ V n

∆x is the unique solution to

εm(K)wi,K = −m(K)

∆t
(ui,K(v)− uk−1

i,K )−
∑
σ∈EK

Fi,K,σ(v) + m(K)ri(uK(v)),(4.20)

Here, we interpret the densities as functions of v, i.e.

(4.21) ui,K(v) := (h′
i)
−1(vi,K), Fi,K,σ(v) := −

n∑
j=1

τσAij(uσ(v))DK,σuj(v),

and uσ(v) is determined by (4.17) with (uk
i,K , u

k
i,K,σ) replaced by (ui,K(v), ui,K,σ(v)). The finite-

dimensional space V∆x is endowed with the norm

∥wi∥0,2,T =

( ∑
K∈K

m(K)w2
i,K

)1/2

.

Since V∆x is finite-dimensional, in fact all norms are equivalent. The regularization on the
left-hand side of (4.20) is needed to prove the existence of solutions in the entropy variable
formulation (to obtain a bound in terms of wi) and to conclude that ui,K(v) = (h′

i)
−1(vi,K) is

positive (which follows from the fact that (h′
i)
−1 maps Rn to (0,∞)n).

▶ Step 2: Continuity of S. Let i ∈ {1, . . . , n} be fixed. We show first an a priori estimate.
For this, we multiply (4.20) by wi,K , sum over K ∈ T , and use discrete integration by parts:

ε∥wi∥20,2,T = −
∑
K∈T

m(K)

∆t
(ui,K(v)− uk−1

i,K )wi,K +
∑

σ=K|L∈Eint

Fi,K,σ(v)DK,σwi(4.22)
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+
∑
K∈T

m(K)ri(uK(v))wi,K =: J1 + J2 + J3.

It follows from the Cauchy–Schwarz inequality and definition (4.21) of Fi,K,σ(v) that

J1 ≤
1

∆t
∥ui(v)− uk−1

i ∥0,2,T ∥wi∥0,2,T ,

J2 =

( n∑
j=1

∑
σ∈E

τσAij(uσ(v))(DK,σuj(v))
2

)1/2(∑
σ∈E

τσ(DK,σwi)
2

)1/2

,

J3 ≤ ∥ri(u(v))∥0,2,T ∥wi∥0,2,T .

We infer from (4.22) that

ε∥wi∥20,2,T ≤ C
(
1 + max

i=1,...,n
∥vi∥0,2,T

)
∥wi∥0,2,T ,

since ui(v) depends only on v and all norms are equivalent on V∆x. Here, C > 0 is some constant
being independent of v and w. This shows that

(4.23) ∥wi∥0,2,T ≤ Cε−1
(
1 + max

i=1,...,n
∥vi∥0,2,T

)
.

Next, we turn to the continuity of S. Let (vm)m∈N ⊂ V n
∆x be such that vm → v as m → ∞.

Then (vm)m is bounded. Estimate (4.23) implies that also (wm)m, defined by wm := S(vm), is
bounded. By the theorem of Bolzano–Weierstraß, there exists a subsequence of (wm), which is
not relabeled, such that wm → w as m → ∞. Passing to the limit m → ∞ in scheme (4.20) and
taking into account the continuity of the nonlinear functions, we conclude that wi is a solution
to (4.20) and w = S(v). Because of the uniqueness of the limit function, the whole sequence
converges. This proves that S is continuous.

▶ Step 3: Existence of a fixed point. Let θ ∈ [0, 1] and let w = θS(w), i.e., wi solves

εm(K)wi,K = −θ
m(K)

∆t
(ui,K(w)− uk−1

i,K )− θ
∑
σ∈EK

Fi,K,σ(w) + θm(K)ri(uK(w)).

We have to show that w is uniformly bounded. By Hypothesis (H4), we can define ui(w) :=
(h′

i)
−1(wi) > 0. The proof of Theorem 4.10 shows the following discrete entropy inequality:

(1− Cr∆t)H(uk) + ε∆t
n∑

i=1

∥wi∥20,2,T(4.24)

+ θcA∆t
n∑

i=1

∑
σ∈E

τσ(u
k
i,σ)

2s−2(DK,σu
k
i )

2 ≤ θH(uk−1) + θCr∆tm(Ω),

which differs from the inequality in Theorem 4.10 by the additional norm for wi and the factor
θ ∈ [0, 1]. Set

R2 :=
1

ε∆t

(
H(uk−1) + Cr∆tm(Ω)

)
.
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Then ∥wi∥20,2,T ≤ θR2 ≤ R2. Since the value R is universal (it does not depend on w or θ), this
shows that the set {w : w = θS(w) for some θ ∈ [0, 1]} is bounded. By Schaefer’s fixed-point
theorem, there exists a solution wε := w to (4.20) with v = w.

▶ Step 4: Limit ε → 0 and nonnegativity. We define uε
i := (h′

i)
′(wε

i ). By Hypothesis (H4),
this function is positive. We pass to the limit ε → 0 in the variable uε

i and not wε
i , since we do

not have an ε-independent estimate for wε
i . To derive such a bound for uε

i , we use the condition
hi(u

ε
i,K) ≥ ch(u

ε
i,K −1) from Hypothesis (H4). This is the only place where we use this property.

We infer from (4.24) for θ = 1 that, for any K ∈ T ,

chm(K)(uε
i,K − 1) ≤ m(K)hi(u

ε
i,K) ≤ Hd(u

ε) ≤ Hd(u
k−1) + Cr∆tm(Ω)

1− Cr∆t
.

Hence, (uε
i,K) is bounded uniformly in ε, and there exists a subsequence (not relabeled) such that

uε
i,K → uk

i,K as ε → 0. We deduce from inequality (4.24) with θ = 1 that

ε∥wε
i ∥20,2,T ≤ (∆t)−1

(
Hd(u

k−1) + Cr∆tm(Ω)
)
,

which implies a bound for
√
εwε

i,K . Consequently, εwε
i,K → 0 as ε → 0. Therefore, we can

pass to the limit ε → 0 in scheme (4.20) with v = w to deduce the existence of a solution uk to
(4.15)–(4.16). As uε

i,K is positive, its limit function uk
i,K is nonnegative. Finally, assuming that

s ≥ 1, we can pass to the limit ε → 0 in the approximate discrete entropy inequality (4.24) with
θ = 1, showing that uk satisfies the discrete entropy inequality (4.19). □

In the case s < 1, the limit ε → 0 in the regularized discrete entropy inequality (4.24) with
θ = 1 is nontrivial since the expression (ui,σ(w

ε))2s−2 diverges if ui,σ(w
ε) → 0. Under rather

weak additional assumptions, we are able to prove that the limit uk
i,σ is positive, which removes

the singularity and makes possible the limit ε → 0 in the discrete entropy inequality also for
s < 1.

Proposition 4.13. Let Hypothesis (H6) with s < 1 hold,
∫
Ω
u0
idx > 0, and let ri(u) ≥ −crui for

u ∈ [0,∞)n, i = 1, . . . , n. Furthermore, let uk ∈ V n
∆x be the solution to scheme (4.15)–(4.16)

constructed in Theorem 4.11. Then

uk
i,K > 0 for all K ∈ T , k ∈ N, i = 1, . . . , n,

and uk satisfies the discrete entropy inequality (4.19) for any s ≥ 1/2.

Proof. The proof is taken from [14, Sec. 4]. First, we show that the total mass
∫
Ω
uk
i dx is

positive, thanks to the assumption ri(u) ≥ −crui. To this end, we sum (4.20) with v = wk over
K ∈ T , set uε

i,K := ui,K(w
ε), and use the local balance equations Fi,K,σ(w

k) + Fi,L,σ(w
k) = 0

to deduce that, by induction,∑
K∈T

m(K)uε
i,K =

∑
K∈T

m(K)uk−1
i,K − ε∆t

∑
K∈T

m(K)wk
i,K +∆t

∑
K∈T

m(K)ri(u
ε
K)

≥
∑
K∈T

m(K)uε
i,K − ε∆t

k∑
j=1

∑
K∈T

m(K)wj
i,K − cr∆t

∑
K∈T

m(K)uε
i,K .
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Denoting by uk
i,K the limit function of uε

i,K as ε → 0, this limit yields∑
K∈T

m(K)uk
i,K ≥

∑
K∈T

m(K)u0
i,K − cr∆t

∑
K∈T

m(K)uk
i,K .

We infer that

(4.25)
∑
K∈T

m(K)uk
i,K ≥

∑
K∈T m(K)uk−1

i,K

1 + cr∆t
≥

∑
K∈T m(K)u0

i,K

(1 + cr∆t)k
> 0.

With this bound at hand, we proceed to the proof of the positivity of uk
i,K . Let i ∈ {1, . . . , n}

and k ∈ N be fixed. Assume by contradiction that there exists K ∈ T such that uk
i,K = 0. The

approximate discrete entropy inequality (4.24) shows that

(uε
i,σ)

2(s−1)(DK,σu
ε
i )

2 ≤ C(∆t, uk−1),

and hence,
(uε

i,L − uε
i,K)

2 ≤ C(∆t, uk−1)(uε
i,σ)

2−2s.

This becomes in the limit ε → 0 (because of s < 1):

(uk
i,L)

2 = (uk
i,L − uk

i,K)
2 ≤ C(∆t, uk−1)(uk

i,σ)
2−2s.

Now, uk
i,K = 0 implies that uk

i,σ = 0 and consequently uk
i,L = 0. Let L′ be a neighboring control

volume of L. By the same argument as before, it follows that also uk
i,L′ = 0. Repeating this

argument for all control volumes in the finite set T , we infer that uk
i,K = 0 for allK ∈ T . Then the

total mass vanishes,
∑

K∈T m(K)uk
i,K = 0, which contradicts (4.25). We conclude that uk

i,K > 0
for all K ∈ T . □

4.2.2. Examples. We present some examples for which the model assumptions (H4)–(H6)
are fulfilled.

▶ Shigesada–Kawaski–Teramoto system. We consider equations (4.13)–(4.14) with the dif-
fusion coefficients

Aij(u) = δij

(
ai0 +

n∑
k=1

aikuk

)
aijui, i, j = 1, . . . , n,

and the Lotka–Volterra source terms

ri(u) = ui

(
bi0 −

n∑
j=1

bijuj

)
, i = 1, . . . , n,

where the parameters satisfy aii > 0, bii > 0 for i = 1, . . . , n and aij ≥ 0, bij ≥ 0 for i ̸= j. For
n = 2, we recover the Shigesada–Kawasaki–Teramoto population system without environmental
potential, introduced in Section 2.1.1.

To verify Hypotheses (H4)–(H6), we choose the entropy density

hB(u) =
n∑

i=1

hi(ui), where hi(ui) = πi

(
ui(log ui − 1) + 1

)
, u ∈ [0,∞)n,
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and the numbers πi > 0 satisfy the detailed-balance condition πiaij = πjaji for i ̸= j. Then the
mean ũk

i,σ in (4.17) specializes to the logarithmic mean

(4.26) ũk
i,σ =

1

πi

uk
i,K,σ − uk

i,K

log uk
i,K,σ − log uk

i,K

for K ∈ K, σ ∈ EK .

Since h′
i(ui) = πi log ui is invertible as a function from (0,∞) to R, Hypothesis (H4) is satisfied.

A computation shows that (see Lemma 2.1)

zTh′′
B(u)A(u)z ≥

n∑
i=1

πi

(
4ai0
ui

+ 2aii

)
z2i for z ∈ Rn

holds, so Hypothesis (H5) is fulfilled with s = 1 (and s = 1/2 if ai0 > 0). It remains to check
Hypothesis (H6) for the source terms.

With the elementary inequalities z log z + e−1 ≥ 0 and z ≤ z(log z − 1) + e, we find that
n∑

i=1

ri(u)h
′
i(ui) =

n∑
i=1

πi

(
ui log ui +

1

e

)(
bi0 −

n∑
j=1

bijuj

)
− 1

e

n∑
i=1

πi

(
bi0 −

n∑
j=1

bijuj

)

≤
n∑

i=1

πibi0

(
ui log ui +

1

e

)
+

1

e

n∑
j=1

( n∑
i=1

πibij

)
uj

≤
n∑

i=1

πibi0

(
ui(log ui − 1) + ui +

1

e

)
+

n∑
j=1

( n∑
i=1

πibij

)(
uj(log uj − 1) + e

)
≤ Cr(1 + h(u))

for some Cr > 0 only depending on the coefficients πi and bij .
We conclude from Theorem 4.11 that there exists a finite-volume solution to scheme (4.15)–

(4.16), which is nonnegative componentwise and which satisfies the discrete entropy inequality
(4.19) if s = 1 and ai0 = 0. Moreover, if ai0 > 0, we have s = 1/2, and restricting the Lotka–
Volterra terms to the case bij = 0 for all i ̸= j, we have ri(u) ≥ −biiui. Then Proposition 4.13
shows that the discrete solution is positive componentwise and that the discrete entropy inequality
holds.

▶ Busenberg–Travis model. The generalized Busenberg–Travis model from Section 2.1.2
has the diffusion matrix Aij(u) = uiaij for i, j = 1, . . . , n. With the Boltzmann entropy density
of the previous subsection, we have

zTh′′
B(u)A(u)z =

n∑
i,j=1

πiaijzizj ≥ α|z|2 for z ∈ Rn,

if the matrix (πiaij) is symmetric positive definite with smallest eigenvalue α > 0. Thus,
Hypothesis (H5) is satisfied with s = 1, and according to Theorem 4.11, scheme (4.15)–(4.16)
possesses a discrete solution with nonnegative components and satisyfing the discrete entropy
inequality (4.19).
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The Busenberg–Travis system has another entropy density, namely the Rao entropy density

hR(u) =
1

2

n∑
i,j=1

πiaijuiuj,

introduced in Section 2.1.2. One may ask whether scheme (4.15)–(4.16) satisfies a discrete Rao
entropy inequality, which is an equality at the continuous level:

d

dt

∫
Ω

hR(u)dx+
n∑

i=1

∫
Ω

πiui|∇pi(u)|2dx = 0, where pi(u) =
n∑

j=1

aijuj.

This is indeed the case. To see this, we rewrite scheme (4.15)–(4.16) as

m(K)

∆
(uk

i,K − uk−1
i,K ) +

∑
σ∈EK

F k
i,K,σ = 0, i = 1, . . . , n,(4.27)

F k
i,K,σ = −τσu

k
i,σDK,σpi(u

k),(4.28)

for K ∈ T , σ ∈ EK , k ≥ 1, where uk
i,σ is defined in (4.17) and (4.26). This expression

coincides with the general definition (4.16). We claim that the numerical flux (4.28) preserves
the nonnegativity of the densities and the entropy inequality. We define the discrete Rao entropy
by

(4.29) HR(u
k) =

∑
K∈T

m(K)hR(u
k
K).

Lemma 4.14. Letuk ∈ V n
∆x be a solution to (4.27)–(4.28) and let (πiaij)ij be positive semidefinite.

Then uk
i,K ≥ 0 for all K ∈ T , k ∈ N, i = 1, . . . , n, and

HR(u
k) + ∆t

n∑
i=1

∑
σ∈E

τσu
k
i,σ(DK,σpi(u

k))2 ≤ HR(u
k−1), k ≥ 1.

For this lemma, it is sufficient to assume the positive semidefiniteness of (πiaij). However, we
should assume that at least aii > 0, since HR(u

k) ≥
∑n

i=1

∑
K∈T m(K)aii(u

k
i,K)

2 then implies
an L2(Ω) bound for uk

i . Positive definiteness of (πiaij) is needed to prove the convergence of the
scheme.

Proof. Similarly as in the proof of Lemma 4.8, we assume by induction that uk−1
i,K ≥ 0 for

all K ∈ T for some k ≥ 1 and some fixed i ∈ {1, . . . , n}. We multiply (4.27) by (uk
i,K)

− =

min{0, uk
i,K}, sum over K ∈ T , and use discrete integration by parts:∑

K∈T

m(K)

∆t
(uk

i,K − uk−1
i,K )(uk

i,K)
− =

∑
σ=K|L∈Eint

F k
i,K,σ

(
(uk

i,L)
− − (uk

i,K)
−)(4.30)

= −
∑

σ=K|L∈Eint

τσu
k
i,σ

(
pi(u

k
L)− pi(u

k
K)

)(
(uk

i,L)
− − (uk

i,K)
−).
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If both uk
i,L ≥ 0 and uk

i,K ≥ 0, then the right-hand side vanishes. If uk
i,L < 0 or uk

i,K < 0, we
have uk

i,σ = 0 by definition. (Observe that the definition uk
i,σ = min{uk

i,K , u
k
i,L} would lead to the

same result.) Thus, the right-hand side of (4.30) vanishes in either case, and we conclude that∑
K∈T

m(K)

∆t
[(uk

i,K)
−]2 = 0.

This shows that uk
i,K ≥ 0 for any K ∈ T .

Next, we multiply scheme (4.27) by πipi(u
k
K), sum over K ∈ T and i = 1, . . . , n, and use

discrete integration by parts:
n∑

i=1

∑
K∈T

m(K)

∆t
πi(u

k
i,K − uk−1

i,K )pi(u
k
K) =

n∑
i=1

∑
σ∈E

πiF
k
i,K,σDK,σpi(u

k)

= −
n∑

i=1

∑
σ∈E

τσπiu
k
i,σ(DK,σpi(u

k))2.

Inserting the definition of pi(u
k
K) and using the assumption πjaji = πiaij , we calculate the

left-hand side:
n∑

i=1

πi(u
k
i,K − uk−1

i,K )pi(u
k
K) =

n∑
i,j=1

πiaij(u
k
i,K − uk−1

i,K )uk
j,K

=
1

2

n∑
i,j=1

πiaij(u
k
i,K − uk−1

i,K )uk
j,K +

1

2

n∑
i,j=1

πjaji(u
k
j,K − uk−1

j,K )uk
i,K

=
1

2

n∑
i,j=1

πiaij
(
(uk

i,K − uk−1
i,K )uk

j,K + (uk
j,K − uk−1

j,K )uk
i,K

)
=

1

2

n∑
i,j=1

πiaij
(
uk
i,Ku

k
j,K − uk−1

i,K uk−1
j,K

)
+

1

2

n∑
i,j=1

πiaij(u
k
i,K − uk−1

i,K )(uk
j,K − uk−1

j,K )

≥ HR(u
k)−HR(u

k−1),

since the last sum is nonnegative due to the positive semidefiniteness of the matrix (πiaij). This
shows that

HR(u
k)−HR(u

k−1) ≤ −
n∑

i=1

∑
σ∈E

τσπiu
k
i,σ(DK,σpi(u

k))2,

concluding the proof. □

4.3. Finite volumes for volume-filling systems

In the previous section, the entropy density was assumed to be given by the sum of the entropy
densities of the various species. Then its Hessian is diagonal, which allowed us to define the
discrete chain rule
(4.31) h′′

i (ũi,σ)(ui,L − ui,K) = h′
i(ui,L)− h′

i(ui,K) for σ = K|L
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component by component by using the standard mean-value theorem. This idea cannot be used if
the entropy density contains mixed terms, like in volume-filling models. Indeed, consider a fluid
mixture of n components with mass fractions u1, . . . , un dissolved in a solvent with mass fraction
u0. We assume that the sum of all components including the solvent adds up to one,

∑n
i=0 ui = 1,

which means that the fluid is saturated. Thus, we are looking for values in the simplex

(4.32) D :=

{
u = (u1, . . . , un) ∈ (0, 1)n :

n∑
i=1

ui < 1

}
.

In many applications, like the Maxwell–Stefan model introduced in Section 2.2, the entropy
density is given by the sum

h(u) =
n∑

i=0

hi(ui) =
n∑

i=1

hi(ui) + h

(
1−

n∑
i=1

ui

)
, u ∈ D,

and we interpret h(u) as a function of u = (u1, . . . , un), since the solvent fraction can be
computed from all the other mass fractions. In this situation, the Hessian of h(u) is not diagonal,
∂2h/(∂ui∂uj) = δijh

′′
i (ui)+h′′

0(u0). Then the mean-value theorem does not allow us to formulate
a discrete chain rule.

Following [14], we overcome this issue by introducing two ideas. First, we define the solvent
fraction u0,K = 1−

∑n
i=1 ui,K on the control volumes, but we define u0,σ as well as u1,σ, . . . , un,σ

independently from the discrete chain rule (4.31). Then we cannot expect that the values on the
edges sum up to one, i.e., generally u0,σ ̸= 1 −

∑n
i=1 ui,σ; see the discussion in Remark 4.18

below. Then, setting
uK = (u1,K , . . . , un,K) ∈ D ⊂ Rn, uσ = (u0,σ, . . . , un,σ) ∈ Rn+1,

we introduce the modified Hessian
(4.33) Hij(uσ) := δijh

′′
i (ui,σ) + h′′

0(u0,σ), i, j = 1, . . . , n,

where ui,σ for i = 0, . . . , n is defined as in (4.17), i.e.

(4.34) uk
i,σ =


ũk
i,σ if uk

i,K > 0, uk
i,K,σ > 0, and uk

i,K ̸= uk
i,K,σ,

uk
i,K if uk

i,K = uk
i,K,σ > 0,

0 else,

and ũi,σ is determined from the discrete chain rule (4.31). The matrix H(uσ) = (Hij(uσ))ij ∈
Rn×n differs from the Hessian h′′ by the fact that we use u0,σ as the argument of h′′

0 and not
1−

∑n
i=1 ui,σ. Thus, H depends on the n + 1 variables u0,σ, . . . , un,σ, while h′′ is a function of

the n variables u1,K , . . . , un,K . Relaxing the identity u0,σ = 1−
∑n

i=1 ui,σ provides us with some
flexibility to prove a vector-valued discrete chain rule; see Proposition 4.15 below.

The second idea is to interpret also the diffusion matrix A, which is defined for the n
variables u1, . . . , un, as a function of the n + 1 variables uσ = (u0,σ, . . . , un,σ), called Aσ. If
u0,σ = 1 −

∑n
i=1 ui,σ, then both matrices coincide, Aσ(uσ) = A(u1,σ, . . . , un,σ). Generally, we

have u0,σ ̸= 1 −
∑n

i=1 ui,σ and so, both matrices may not coincide. Although we reformulate
A by Aσ by using the relation u0,σ = 1 −

∑n
i=1 ui,σ, we do not use it anymore in the numerical

scheme. In some sense, this relation is encoded in the definition of Aσ. The mathematical reason
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for this choice is that we need the positive (semi-) definiteness of h′′(u)A(u) at uσ. Since we have
replaced h′′(u) by the matrix H(uσ), by consistency, we need to switch to the variable uσ also in
the matrix A, leading to Aσ(uσ). We suppose that H(uσ)Aσ(uσ) is positive definite in the sense
of Hypothesis (H5); see Section 4.2.1.

Let us discuss both ideas in more detail.
▶ Discrete chain rule. We show that the scalar chain rule (4.31) indeed leads to a vector-

valued chain rule.

Proposition 4.15 (Discrete chain rule). Let u ∈ V n
∆x be such that u(x) ∈ D for x ∈ Ω, let uσ be

defined by (4.31) and (4.34), and let Hij be given by (4.33). Then

H(uσ)DK,σu = DK,σh
′(u) for K ∈ T , σ ∈ EK .

Proof. We fix i ∈ {1, . . . , n}, σ = K|L ∈ Eint,K , and let u(x) ∈ D. It follows from
definition (4.33) of Hij(uσ) and

∑n
j=1 uj,K = 1− u0,K that

n∑
j=1

Hij(uσ)DK,σuj = h′′
i (ui,σ)(ui,L − ui,K) + h′′

0(u0,σ)
n∑

j=1

(uj,L − uj,k)

= h′′
i (ui,σ)(ui,L − ui,K)− h′′

0(u0,σ)(u0,L − u0,K).

The choice u(x) ∈ D implies that the components of u do not vanish, so either ui,σ = ũi,σ or
ui,σ = ui,K = ui,L, by definition (4.34). Then the scalar discrete chain rule (4.31) gives

n∑
j=1

Hij(uσ)DK,σuj = (h′
i(ui,L)− h′

i(ui,K))− (h′
0(u0,L)− h′

0(u0,K))

= DK,σh
′
i(u)−DK,σh

′
0(u) = DK,σ

(
∂h

∂ui

(u)

)
.

The result also holds when σ ∈ Eext,K , since then DK,σuj = 0. This ends the proof. □

The proof that the discrete solution has values in D relies on the entropy structure and is
proved in a similar way as in the previous subsection in the proof of the existence of discrete
solutions; see Theorem 4.11.

▶ Definition of Aσ. As an illustrative example, we consider the Maxwell–Stefan equations
from Section 2.2:

A(u) =
1

a(u)

(
d02 + (d12 − d02)u1 (d12 − d01)u1

(d12 − d02)u2 d01 + (d12 − d01)u2

)
,

where a(u) = d01d02(1− u1 − u2) + d01d12u1 + d02d12u2,

and d01, d02 ,d12 > 0, u = (u1, u2). The entropy density equals h(u) =
∑2

i=0 ui(log ui − 1) with
the Hessian

h′′(u) =

(
1/u1 + 1/u0 1/u0

1/u0 1/u2 + 1/u0

)
,
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recalling that u0 = 1− u1 − u2. The discrete Hessian reads as

H(uσ) =

(
1/u1,σ + 1/u0,σ 1/u0,σ

1/u0,σ 1/u2,σ + 1/u0,σ

)
.

To formulate the matrixAσ, we replace d02(1−u1) by d02(u0+u2) and d01(1−u2) by d01(u0+u1)
such that

Aσ(uσ) =
1

aσ(uσ)

(
d02(u0,σ + u2,σ) + d12u1,σ (d12 − d01)u1,σ

(d12 − d02)u2,σ d01(u0,σ + u1,σ) + d12u2,σ

)
,(4.35)

where aσ(uσ) = d01d02u0,σ + d01d12u1,σ + d02d12u2,σ.

Notice that A = Aσ if u0,σ = 1−u1,σ−u2,σ. We set Iσ := u0,σ+u1,σ+u2,σ ̸= 1. A computation
shows that

zTH(uσ)Aσ(uσ)z =
Iσ

aσ(uσ)

(
d2
u1,σ

z21 +
d1
u2,σ

z22 +
d0
u0,σ

(z1 + z2)
2

)
≥ c

(
z21
u1,σ

+
z22
u2,σ

)
,

where c := min{d01, d02}/max{d01d02, d01d12, d02d12}, since
Iσ

aσ(uσ)
=

u0,σ + u1,σ + u2,σ

d01d02u0,σ + d01d12u1,σ + d02d12u2,σ

≥ 1

max{d01d02, d01d12, d02d12}
.

We infer that the matrix H(uσ)Aσ(uσ) satisfies Hypothesis (H5) with s = 1/2. We show below
that ui,σ > 0 for i = 1, 2 so that aσ(uσ) is positive and Aσ is well defined.

There is no clear recipe how to construct the matrix Aσ. The idea is to replace some
expressions to introduce u0,σ instead of ui,σ in such a way that H(uσ)Aσ(uσ) satisfies the positive
definiteness condition of Hypothesis (H5) from Section 4.2.1.

We summarize the finite-volume scheme:
m(K)

∆t
(uk

i,K − uk−1
i,K ) +

∑
σ∈EK

F k
i,K,σ = m(K)ri(u

k
K), i = 1, . . . , n,(4.36)

F k
i,K,σ = −

n∑
j=1

τσAσ,ij(u
k
σ)DK,σu

k
j for K ∈ T , σ ∈ EK ,(4.37)

the mean values uk
i,σ are determined from (4.34), and ũk

i,σ ∈ (0, 1) is the unique solution to

(4.38) h′′
i (ũ

k
i,σ)DK,σu

k
i = DK,σh

′
i(u

k
i ) for K ∈ T , σ ∈ Eint,K , i = 0, . . . , n.

We show now some properties of this scheme. We introduce the discrete entropy

Hd(u
k) =

n∑
i=0

∑
K∈T

m(K)hi(u
k
i,K), k ≥ 0.

Theorem 4.16 (Discrete entropy inequality). Let Hypotheses (H1)–(H6) from Section 4.2.1 hold
with sums over i = 0, . . . , n and let uk = (uk

1, . . . , u
k
n) ∈ V n

∆x be a solution to (4.36)–(4.38)
satisfying uk

i,K > 0 for K ∈ T , k ≥ 0, and i = 0, . . . , n. Then, for any k ≥ 1,

(1− Cr∆t)Hd(u
k) + cA∆t

n∑
i=1

∑
σ∈E

τσ(u
k
i,σ)

2s−2(DK,σu
k
i )

2 ≤ Hd(u
k−1) + Cr∆tm(Ω).



76 4. STRUCTURE-PRESERVING FINITE-VOLUME APPROXIMATIONS

Proof. The proof is similar to that one of Theorem 4.10. Therefore, we highlight only the
different parts of the proof. First, we prove that uk

i,σ > 0 for σ ∈ E , i = 0, . . . , n. If σ ∈ Eext,K ,
we have uk

i,K = uk
i,K,σ > 0 and, by definition (4.34), uk

i,σ = uk
i,K > 0. If σ = K|L ∈ Eint,K , we

have either uk
i,K = uk

i,L > 0 and then uk
i,σ > 0, or uk

i,σ is the unique solution to

h′′
i (u

k
i,σ) =

h′
i(u

k
i,L)− h′

i(u
k
i,K)

uk
i,L − uk

i,K

> 0.

We already know that uk
i,σ ≥ min{uk

i,K , u
k
i,L} > 0.

Next, define the entropy variable wk := h′(uk). Then wk
i,K = h′

i(u
k
i,K) + h′

0(u
k
0,K) for

i = 1, . . . , n. We multiply scheme (4.36) by wk
i,K , sum over K ∈ T and i = 1, . . . , n, and use

discrete integration by parts in the sum with the numerical flux. Then I1 + I2 + I3 = 0, where

I1 =
1

∆t

n∑
i=1

∑
K∈T

m(K)(uk
i,K − uk−1

i,K )wk
i,K ,

I2 = −
n∑

i=1

∑
σ=K|L∈Eint

F k
i,K,σDK,σw

k
i ,

I3 =
n∑

i=1

∑
K∈T

m(K)ri(u
k
K)w

k
i,K .

The convexity of h, due to Hypothesis (H4), implies that

I1 =
1

∆t

∑
K∈T

m(K)(uk
K − uk−1

K ) · h′(uk
K)

≥ 1

∆t

∑
K∈T

m(K)(h(uk
K)− h(uk−1

K )) =
1

∆t

(
Hd(u

k)−Hd(u
k−1)

)
.

The discrete chain rule in Proposition 4.15 and the symmetry of H(uσ) show that

I2 =
n∑

i,j=1

∑
σ∈Eint
σ=K|L

τσAij(u
k
σ)DK,σu

k
jDK,σ(h

′(uk))i

=
n∑

i,j=1

∑
σ∈Eint
σ=K|L

τσ
(
H(uk)DK,σu

k
)
i
Aij(u

k
σ)DK,σu

k
j

=
n∑

i,j=1

n∑
ℓ=1

∑
σ∈Eint
σ=K|L

τσDK,σu
k
ℓHℓi(u

k
σ)Aij(u

k
σ)DK,σu

k
j

=
n∑

i,j=1

n∑
ℓ=1

∑
σ∈Eint
σ=K|L

τσDK,σu
k
ℓ

(
H(uk

σ)A(u
k
σ)
)
ℓj
DK,σu

k
j
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≥ cA

n∑
j=1

∑
σ∈Eint
σ=K|L

τσ(u
k
j,σ)

2s−2(DK,σu
k
j )

2.

We deduce from Hypothesis (H6) that

I3 =
n∑

i=1

∑
K∈T

m(K)ri(u
k
K)

(
h′
i(u

k
i,K) + h′

0(u
k
0,K)

)
≤ Cr

n∑
i=1

∑
K∈T

m(K)(1 + h(uk
K)) = Cr(Hd(u

k) + m(Ω)).

Inserting these estimates into I1 + I2 + I3 = 0 and proceeding as in the proof of Theorem 4.10
concludes the proof. □

As in the previous section, the bound uk
i,K ∈ D is a consequence of the formulation in entropy

variables. We call this approach the discrete boundedness-by-entropy method. For the existence
analysis, we need an additional hypothesis:

(H7) There exists a matrix Aσ which is Lipschitz continuous on [0, 1] × (0, 1)n such that
A(u) = Aσ(uσ) for all u ∈ D with ui = ui,σ for i = 1, . . . , n and u0,σ = 1 −

∑n
i=1 ui,

as well as ∥Aσ(0, u)∥ < ∞ for all u ∈ (0, 1)n satisfying
∑n

i=1 ui ≤ 1, where ∥ · ∥ is an
arbitrary matrix norm,

Theorem 4.17 (Existence of discrete solutions). Let Hypotheses (H1)–(H7) hold with the excep-
tions that the sums are from i = 0, . . . , n and that s < 1. Furthermore, let ∆t < 1/Cr. Then
there exists a solution uk = (uk

1, . . . , u
k
n) ∈ V n

∆x to scheme (4.36)–(4.38) satisfying

uk
K ∈ D for K ∈ T , 0 < uk

i,σ < 1 for σ ∈ Eint

and for all k ≥ 1 and i = 1, . . . , n. Moreover, uk satisfies the discrete entropy inequality in
Theorem (4.16).

Proof. The proof is very similar to that one of Theorem 4.11. We still need to verify that
0 < uk

i,σ < 1 for σ ∈ Eint, i = 1, . . . , n. In view of definition (4.34) and
∑n

i=0 u
k
i,K ≤ 1, it is

sufficient to show that uk
i,K > 0 for all K ∈ T , i = 1, . . . , n. This property was shown in the

proof of Proposition 4.13 under the condition that ri(u) ≥ −crui for some cr > 0. Here, we
exploit the boundedness of D to infer that |ri| is bounded on D, and the lower bound is satisfied.
Since uk

0,σ = 0 is possible, we need the condition ∥Aσ(uσ)∥ < ∞ in Hypothesis (H7) whenever
uk
0,σ = 0. From this point on, the proof follows the lines of the proof of Theorem 4.11. □

Remark 4.18 (Upper bound). Theorem 4.17 states in particular that the solution satisfies for
K ∈ T and σ ∈ Eint,

0 < uk
i,K < 1, 0 < uk

i,σ < 1 for i = 1, . . . , n,
n∑

i=1

uk
i,K < 1,
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but we cannot exclude that
∑n

i=0 u
k
i,σ > 1. When the entropy is given by the Boltzmann-type

entropy density h(u) =
∑n

i=0 ui(log ui − 1), we deduce from the fact that the logarithmic mean
is not larger than the arithmetic mean that

n∑
i=0

uk
i,σ ≤ 1

2

n∑
i=0

(uk
i,K + uk

i,L) = 1 for σ ∈ Eint, k ≥ 0,

In this situation, we obtain uk
σ ∈ D. □

Remark 4.19 (Case s = 1). The condition ∥Aσ(0, uσ)∥ < ∞ is crucial. Indeed, the matrix Aσ in
example (4.35) contains the factor 1/aσ(uσ) that is infinite if uσ = 0. Since we do not require that∑n

i=0 u
k
i,σ = 1, this may happen. Then the quantity ∥Aσ(uσ)∥ is not a number, and the existence

of a discrete solution cannot be guaranteed. □
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