EXISTENCE OF GLOBAL WEAK SOLUTIONS
TO A CAHN-HILLIARD CROSS-DIFFUSION SYSTEM
IN LYMPHANGIOGENESIS

ANSGAR JUNGEL AND YUE LI

ABSTRACT. The global-in-time existence of weak solutions to a degenerate Cahn—-Hilliard
cross-diffusion system with singular potential in a bounded domain with no-flux boundary
conditions is proved. The model consists of two coupled parabolic fourth-order partial
differential equations and describes the evolution of the fiber phase volume fraction and
the solute concentration, modeling the pre-patterning of lymphatic vessel morphology.
The fiber phase fraction satisfies the segregation property if this holds initially. The
existence proof is based on a three-level approximation scheme and a priori estimates
coming from the energy and entropy inequalities. While the free energy is nonincreasing
in time, the entropy is only bounded because of the cross-diffusion coupling.

1. INTRODUCTION

Lymphangiogenesis describes the formation of lymphatic vessels from pre-existing ones
similar to angiogenesis. In this paper, we analyze a two-phase diffusion system modeling the
pre-patterning of lymphatic vessel morphology in collagen gels. The model, first suggested

n [21], describes the interaction of the collagen gel with a solute, such as protons and
nutrients. The equations have been modified and given a thermodynamically consistent
form in [17]. They describe the evolution of the volume fractions of the fiber phase ¢(x,t)
and fluid phase 1 — ¢(z,t) as well as the concentration ¢(x,t) of the solute. The unknowns
are solutions to the cross-diffusion equations

(1.1) 0ip = div (M(¢)(Vu — ¢V, f(,0))),
(1.2) Oe = —div (cM(9) (Vi — cVO.f(¢,¢))) + div (ce *V.f(9,c)),
(1.3) p=—-A¢p+0sf(p,c) inQ, t>0,

where Q C R? (d > 1) is a bounded domain and 9. = 9/9¢, 8, = 0/0¢ are partial
derivatives. The (degenerate) mobility is given as in [21] by

(1.4) M(¢) = ¢*(1 - 9)*,
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and the energy density reads as
2

(1L5)  f(9.c) = dlog+ (1= ) log(l —9) +6(1 = 8) + 5 +e(1 = 4).

The first three terms represent the (nonconvex) Flory—Huggins energy [10, 14], and the last
two terms are the nutrient energy [13, (2.63)]. The potential dsf(¢,c) in (1.2) contains
the term log(¢/(1 — ¢)) which is singular at ¢ = 0 and ¢ = 1. The coefficient ce™® can
be interpreted as the effective diffusion of solute in the fluid phase [21, (4)]. Observe that
the corresponding term is different from the diffusion in [21] because of thermodynamic
considerations; see [17, Section 2] for details on the derivation of the model.

Equations (1.1)—(1.3) are supplemented by initial and no-flux boundary conditions,

(1.6) ¢(0) = ¢o, c(0)=co in(
(1.7) Vo-v=cVe-v=cM(@)Vu-v=0 ondQ, t>0.

Model (1.1)—(1.3) is a fourth-order cross-diffusion system with the following features. If
the chemical potential p is constant, the diffusion matrix associated to the variables (¢, ¢)
has a vanishing eigenvalue. This indicates that it is more convenient to work with the
thermodynamic variables (u, 0.f) (see below). If the nutrient energy is constant, we obtain
the Cahn-Hilliard equation for phase separation with a nonconvex energy. Our aim is to
prove the global existence of weak solutions to (1.1)—(1.7).

1.1. State of the art. The study of two-phase models is stimulated by various applica-
tions modeling, for instance, tumor growth [6], biofilm growth [24], or formation of lym-
phatic vessels [21]. The mathematical modeling of lymphangiogenesis is rather recent. A
discrete compartment model of the lymphatic system was already presented in the 1970s
[19]. More recently, a differential equations model was presented in [1]. The work [11]
analyzed a diffusion system with haptotaxis and chemotaxis terms for tumor lymphangio-
genesis. The collagen pre-pattering caused by interstitial fluid flow is modeled in [21] by
Cahn-Hilliard-type equations. It was found in [22] that a hexagonal lymphatic capillary
network is optimal in terms of fluid drainage, confirmed by experiments in mouse tails
and human skin. This hexagonal structure was also found in numerical simulations in two
space dimensions [17].

The Cahn-Hilliard model was introduced in [3] to study phase separations in binary
alloys. The first existence analysis of Cahn—Hilliard equations was given in [9] in one
space dimension and in [8] in several space dimensions. The existence and uniqueness of
solutions to the Cahn-Hilliard system strictly depend on the properties of the mobility
M (¢) (degenerate or nondegenerate) and the potential J,f(¢,c) (singular or regular).
Since the Cahn-Hilliard equations do not admit a comparison principle, lower and upper
bounds for the phase variable cannot generally be obtained. A sufficient condition for the
property 0 < ¢ < 1 (if satisfied initially) is a degenerate mobility M (¢) [25] or a singular
potential [2]. We refer to the book [18] for more details and references.

Diffusion systems with Cahn—Hilliard terms were analyzed more recently, in particular in
the context of biological membranes [12] and tumor growth modeling [20]. In these models,
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the cross diffusion is of Keller-Segel type and thus, the diffusion matrix is triangular,
which simplifies the analysis. In [15], Maxwell-Stefan models for fluid mixtures with full
diffusion matrix and Cahn—Hilliard-type chemical potentials were investigated. Finally, a
Cahn—Hilliard cross-diffusion model arising in thin-film solar cell fabrication was analyzed
in [4, 7). The techniques of these papers, however, cannot be employed for our model. In
particular, the existence analysis of model (1.1)—(1.3) is new up to our knowledge.

1.2. Key ideas. The analysis of (1.1)—(1.7) is based on two observations. First, equations
(1.1)—(1.3) can be written as the gradient-flow system

Dy = div(B(u)VSE(w)), where u = (f) ,

the so-called mobility matrix reads as
_( M(¢) —cM(¢)
B(u) = (—CM(¢) ce ? + czM(qﬁ)) '

and 0F(u) = (i, 0.f(¢,c))T is the variational derivative of the free energy

(1.9 B6.0)= [ (51908 + (6. )do

which is the sum of the correlation and interaction-nutrient energies. This implies the
energy equality (see Lemma 3.1)
dFE
19) 00+ [ ME)ITn - eVas@.dfde+ [ o000 dr =0,
Q Q

yielding L?(Q2) bounds for V¢ and c¢. However, due to the strong coupling, we cannot
conclude gradient bounds for the solute concentration c¢. Moreover, the equations are
degenerate at ¢ = 0 and ¢ = 0.

Like in the Cahn—Hilliard equation, we exploit the entropy density

(1.10) / / drds
12 Ji2 M

A formal computation (see Proposition 2.2) shows that

d 2
pr (IJ(gb)d:E—{—/Q(Agb) dx

/ (2, 1(6, VP + uf(6,)Ve - Vb + VL (6.) - V) da.

While the first term on the right-hand side can be bounded by the L?*(€2) estimate for V¢
from (1.9) and the last term can be controlled with the help of the energy dissipation in
(1.9) (if 0 < ¢ < 1), the second term is more delicate because of the gradient Ve. Since
83)0 f(&,c¢) is constant in our model, an integration by parts leads to

—/8§Cf(¢,c)Vc-V¢dx = 83,61”/ cA¢dx
Q Q
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1
< CllellollAdlie < €+ [ (30)ds
Q

Thus, the entropy is not a Lyapunov functional along solutions to (1.1)—(1.3) (as it is in
the Cahn-Hilliard system) but it is bounded from above. This yields an H?(€2) bound for

0.
Still, we are missing a gradient estimate for ¢. This is achieved by observing that, as
long as 0 < ¢ <1,

/ c|Velrdx < 2/ c|Ve— V|’ dx + 2/ c|Vo|*dx
Q Q Q
< C/ ce”?|VO.f (¢, 0))*dx + 2||c|| L2 IVl Fa () < C,
Q

since H%(Q2) — WH4(Q) in up to four space dimensions.

These arguments provide gradient bounds for ¢ and ¢*? under the condition that 0 <
¢ < 1. These lower and upper bounds cannot be easily derived from the boundedness-
by-entropy method [16], since the relation between the entropy variable p and the fiber
phase ¢ is not algebraic. One idea is based on the minimization of a functional on the
set of functions satisfying 0 < ¢ < 1 [7]. Here, we introduce the entropy with cutoff and
conclude the bounds in the limit of vanishing cutoff parameters as in [8, 15]. The idea is
simple: The entropy with cutoff &4 for § > 0 satisfies

@5(¢5(t7x)) _ (¢52(§a25(51) :;)/22)2 for (tuI) eV, = {gzﬁg(t,x) >1+4+ Oz},

for any a > 0, where ¢; is the approximate fiber phase fraction (see Section 3). Therefore,
in view of the entropy bound,

a’*meas(V,) (65 — 1/2)2 -
(1 —0p = /V 2021 = )20 = /V s(¢s)dz < C.

o

We obtain meas(V,,) = 0 in the limit § — 0, and since o > 0 is arbitrary (and using Fatou’s
lemma), ¢(t, ) = lims_,o ¢s(t, ) < 1 for all (¢, x); see Lemma 5.3 for the precise argument.
The lower bound ¢ > 0 is proved in a similar way.

1.3. Main result. We first define our notion of weak solution.

Definition 1.1 (Weak solution). Let T' > 0 be arbitrary and set Qp := (0,T) x Q. The
function (¢, c) is called a weak solution to problem (1.1)—(1.7) on [0,T] if (¢, c) satisfies
0<op<1,¢>01inQr,

¢ € L0, T; H'(Q2)) N L*0,T; H*(Q)), 9 € L*(0,T; H'(Q)'),

ce L=(0,T; L*(Q)), 2 € L*(0,T; HY(Q)), dyc € L*(0,T; WHS4/@+D(Q)"),
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the initial conditions ¢(0) = ¢g in L*(Q), c(0) = co in the sense of H'(Q)', (¢, c) verifies
the weak formulation

T T
0 o Jo
T T T
— } _ —¢ .
/0 (Oyc, 1h9)odl = /0 /Qc\/M(qﬁ)I Vipodxdt /0 /ch VOo.f(¢,c) - Vipadadt

for ally € L*(0,T; HY(Q)), vy € L0, T; WHSH(@+40(Q))  and p solves
p=—Ap+0sf(p,c) a.e. inQr.

Here, (-, )1 is the dual product between H* () and H* (), (-, )2 is the dual product between
WS+ Q) and WS (E@+0(Q) | and it holds that

I=+/M(¢)(Vi—cVo.f(¢,c)) € L*(Qr) in the weak sense,
i.e. for any ¥ € L2(0,T; HY(Q;RY)) N L>®(Qp; RY) with ¥ -v =0 on (0,T) x 99,

/0 /QI-\Ildxdt:/O /Q[Agbdiv(\/M(qﬁ)\If)+(V¢—2\/M(¢)V¢)-\IJ
+ cdiv (VM(@)¥) — /M (¢)cVO.f(p,c) - ] dxdt.

Since it is difficult to derive an upper bound for ¢, we cannot expect that the weak
formulation of the equation for ¢ holds for 1y € L*(0,T; H'(2)). Because of the degeneracy,
we cannot expect a gradient bound for p, but we obtain /M (¢)Vu € L*(0,T; L*/3()).

Our existence result reads as follows.

Theorem 1.2. Let Q C RY (d < 4) be a bounded domain with boundary 0Q € C?, let
T >0, and let ¢y € H' (), co € L*(Q) satisfy 0 < ¢ < pg <1 — ¢, <1, ¢g >0 in Q for
some ¢, € (0,1). Then problem (1.1)—(1.7) possesses a weak solution (¢,c) in [0,T] in the
sense of Definition 1.1.

The proof is based on an approximation procedure. We introduce three approximation
levels. First, we remove the degeneracy in M (¢) and the singularities in f(¢, c¢) by suitable
cutoffs with parameter o > 0 and then truncate the diffusion coefficients in the equation for
the solute concentration ¢ with parameter € > 0. Because of the lack of a gradient estimate
for ¢, we add an artificial diffusion in the equation for ¢ (with parameter §). Finally, we
solve the approximate system in a Faedo—Galerkin space with dimension N € N. Its global
solvability follows from standard arguments and the energy inequality. After the limit
N — 00, we are able to conclude the nonnegativity of the concentration. Then the entropy
estimate and the artificial diffusion yield gradient bounds and we can pass to the limit
€ — 0. The most delicate part is the limit 6 — 0 in the approximate system with solutions
(¢s, cs). The main idea is to derive a gradient bound for cg/ % and to apply the “nonlinear”
Aubin-Lions lemma in the version of [5] to conclude the relative compactness of (c5) in
L3(€). To identify the weak limit I, we proceed similarly as in [8, Section 3].
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The paper is organized as follows. We derive the formal energy and entropy estimates
in Section 2. The Faedo—Galerkin method and the limit N — oo are presented in Section
3. The limits € — 0 and then o — 0 are performed in Sections 4 and 5, respectively.

2. FORMAL ESTIMATIONS

For the convenience of the reader, we derive the energy and entropy estimates formally
for general energy densities f(¢,c). Rigorous proofs on an approximate level are shown in
Lemma 3.1 (energy inequality) and Lemma 4.2 (entropy inequality).

Proposition 2.1 (Energy equality). Let (¢, c, 1) be a smooth solution to (1.1)—(1.3) with
the initial and boundary conditions (1.6)—(1.7), satisfying 0 < ¢ < 1 in Qp. Then

d
%E(gb, c) + /Q M(¢)|Vu — cVO.f(¢,c)|*dr + /ch_‘b|vacf(¢, c)*dx = 0,

recalling definition (1.8) of the energy E(¢,c). If f(é,c) > kc? holds for some k > 0, this
gives a priori estimates for ¢ in L°°(0,T; HY(Q)) and for ¢ in L>=(0,T; L*(Q)).

Proof. We compute the time derivative, integrate by parts, and insert equations (1.1) and
(1.2):

d
d_§ - / (— A¢Dp + 0y f (6, ¢)0u + e f (¢, €)Dpc)d = / (10s + O f (¢, ¢)Osc) da
Q Q

= [ (M) V- (V= 0 (6,0)) = M(TI6.) - (Vi — eV F(6,0)
+ ce ?|VO.f (o, )] dx

= —/ M(¢)|Vu— cNVO.f(¢,c)*dx — / ce ?|VOo.f (¢, c)|*dz,
Q 0
which ends the proof. U
The second estimate involves the entropy density defined in (1.10).

Proposition 2.2 (Entropy equality). Let (¢,c, u) be a smooth solution to (1.1)—(1.3) with
the initial and boundary conditions (1.6)—(1.7), satisfying 0 < ¢ < 1 in Qp. We assume
that f(¢,c) > kc® for some k > 0, 8;¢f(q5,c) is bounded from below, and 92.f(¢,c) is
constant for all (¢,c). Then

d

dt Jq
where C' > 0 depends on E(¢o, co).

B(o)dn+ 5 [ Aoy < C.

Proof. We compute the time derivative, observe that ®”(¢) = 1/M(¢), and insert equation
(1.3) for p:

21 g [ e = - [ @06 (M6)(Tu- cVas(6,0))ds
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= — / ( — VA + VO, f(p,c) — cVO.f(o, c)) - Vodx
Q

- /Q(<A¢) + 85,1 (¢,0) Vo[> + 05.f (¢, c)Ve -V
—VO.f(érc) - Vo)da.

The last term can be estimated by using Holder’s inequality:

/cV@Cf(ng, c) - Vodx
Q
< IWell = o,rpa@) IVeVOef (¢, )l L2 I VBl 2050152 -
The continuous embedding H'(Q) < L*(2) and the elliptic regularity [23, Theorem 2.24]
16l r2) < C(1AGN 2@) + 9l (@) < C(I1AIL2() + IVl L20) + 1)
where we also used the bound 0 < ¢ < 1, show that
IVollLa) < Clidllmzi) < C(1AG] r2) + VOl 2@ +1)-
We infer from Young’s inequality and Proposition 2.1 that

_ _ 1 27 L 2
/QCV8Cf(<;5,c) Vodx < 4/{2(A¢) dq:—|—4/Q]V¢| dr + C.

The first term on the right-hand side is absorbed from (2.1), while the second one is
bounded uniformly in time, because of the energy bound.

The delicate term is the third term on the right-hand side of (2.1), since we do not have
any gradient control for ¢. Under the condition that 92, f(¢,c) is constant, an integration
by parts and Young’s inequality yield

1
~ [ Bf(6. 00 Vode = 02,7 [ codn < Clelfraoay + 7 [ (B0

The first term on the right-hand side is controlled by the energy equality, while the second
one is absorbed by the first term on the right-hand side of (2.1). O

The condition that (?ic f is constant can be replaced by (i) 82 .f does not depend on ¢
and is bounded, and (ii) c@dm f <0. Indeed, by integrating by parts

/ 02,1 (¢,¢)Ve- Vodr = /Q (02, fIV O[> + 2. fAG)da

1
< Cllel oz |2 2y + + / (Ag)d

In any case, we need that the potential J,f grows at most linearly in c and that the energy
f contains a superlinear term in c¢. Thus, we may generalize the nutrient part of the energy,
but its structure needs to be similar to the function (¢, c) — ¢*/2+ ¢(1 — ¢) considered in
this paper.



8 A. JUNGEL AND Y. LI

3. APPROXIMATE SOLUTIONS
We introduce first the approximate problem. To this end, we define for fixed § > 0 the
nondegenerate mobility
M (3) if ¢ <4,
Ms(¢) = < M(9) ifo<op<1-—4,
MA-9¢) ifp>1—0.
The free energy density (1.5) is split into a convex part f; and a nonconvex part fo, where
2
c
fi(¢) = ¢log g+ (1 =) log(L = ¢),  fa,¢) = &(1 =) + 5 + (1 = 9).

We define an approximation of f; on R to remove the singularities at ¢ = 0 and ¢ = 1:

F1(0) + f1(0)(6 = 0) + 5 f1(0)(¢ —6)* if ¢ <,
frs(¢) = filg) ifd <o <14,
AL =0)+ 1 =08)(0—(1=0)+35/{(1=0)(d—(1-0))? else,
and we set

f5(0,¢) = fi5(0) + f2(0,c).

Finally, we introduce the truncations

[gb]iL = min{1, max{0,¢}}, [c]5 = min{l/e, max{0,c}},

where 0 < € < 1. Then our approximate system reads as

(31) at¢ = div (M6(¢)(VM - [C]i—vacf5<¢7 C))),
(3.2) dhe = —div([cZMs(0) (Vi — [V fs5(0, ¢))) + div ([c)5e WV, f5(6, ) + A,
p=—=A¢+ 0y fs(¢,c),

with the initial and homogeneous Neumann boundary conditions

(3.3) ¢(0) = ¢o, c(0)=co in
(3.4) Vo-v=Vu-v=Ve-v=0 on (0,7) x 09.

Observe that we added the artificial diffusion dAc in (3.2) to obtain gradient bounds for
c. The truncations [c]¢ and [¢]} provide bounded diffusion coefficients needed to derive
gradient bounds for the Faedo—Galerkin approximation. The existence of global weak
solutions to the nondegenerate approximate problem (3.1)—(3.4) is shown in a classical way
by means of the Faedo—Galerkin method, energy estimates, and a compactness argument.
Since the estimations are strongly model-dependent, we present a full proof.



CAHN-HILLIARD CROSS-DIFFUSION SYSTEMS 9

3.1. Faedo—Galerkin approximation. Let (¢;);eny be a complete orthonormal set of
eigenfunctions of the Laplacian with homogeneous Neumann boundary conditions in L?(2).
We assume that e; = const, and we set Xy = span{ey,...,ex} for N € N. We wish to
find solutions ¢y, ¢y, and py of the form

N N

on(t,z) = ZAi(t)ei<x>7 en(t,z) = ZBi(t)ei(fU)a pn(t, ) = Zci(t)ei(x)

i=1 i=1

such that
N N

on(0) = Z(%, )2, cn(0) = Z(C(bei)L?(Q)ei:

i=1 i=1

and for any e € Xy,
(3.5) / Opnedr = —/ Ms(on)(Viun — [en]|3 V0. f5(on, cn)) - Ved,
Q Q
(3.6) / Dreyeds — / (en]E My (0m) (Vi — [en]o V0S5, ) - Veda
Q Q
— /[CN]ie_["ﬁN]}FV@Cf(g(qu, cy) - Vedr — (5/ Vey - Vedz,
Q Q

(3.7) /Q/LNGdQZ:/QV(bN'Vedl’—l—/ﬂaqﬁf(;((b]v,CN)edl’.

This means that we wish to find the coefficients A; and B;, satisfying for i = 1,..., N the
ordinary differential equations

(3.8) dﬁi = - / Ms(on)(Vin = [en]3VO.fs(dn, en)) - Veidr,
Q
39) = [ leniMs(ox) (Vi — [eniVOfs(6x.cv) - Veida
Q

— /[CN]ie_[‘z’NHrV&f(;(gzﬁN, cy) - Veidr — (5/ Vey - Veidr,
Q Q

Cl(t) = /QV¢N : Veidw+/(28¢f5(¢N,cN)eidw,

and the initial conditions

(310) AZ(O) = (gbo, ei)LQ(Q)7 BZ(O) = (C(), ei)L2(Q).
Since the right-hand side of system (3.8)—(3.9) depends continuously on A; and B; for
i=1,...,N, Peano’s theorem implies the existence of a solution to (3.8)—(3.10) on a time

interval [0, 7"] with 7" < T. Then problem (3.1)—(3.4) possesses an approximate solution
(¢N7 CN, /“LN) on [07 T/]
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3.2. Uniform estimates independent of N. In order to extend the solution constructed

in the previous subsection globally, it is sufficient to show that ¢5 and cy are bounded in
Xy on [0,77].

Lemma 3.1 (Energy inequality). Let (¢n,cn, un) € X3 be a solution to problem (3.1)-
(3.4). Then (¢n,cn, in) satisfies

(311) %/Q <%|V¢N|2 + f§<¢N; CN)>dl’ -+ /Q M5(¢N)|VIU,N — [CN]ivacf(;(qﬁN,CN)‘zdl’

J J
b [l b Voo, ex)Pda+ D [ [VexPar <2 [ (wonpa
0 2 Ja 2 Jo
Proof. We choose the test functions e = py in (3.5) and e = d;¢n in (3.7) to find that

1d

(312) 5%/{;|V¢N|2dl‘+/§;6¢f6(¢N>CN)8t¢Nd5E:\/g;lijathNdx

= - /Q M&(@v)(‘v/ﬁN’Q - [CN]ivacf6(¢N,CN) : VMN)CL?E-

The test function e = 0. f5(dn,cn) = cn + (1 — ¢n) in (3.6) yields

3.13) [ Oexdfiton,ex)is
:/Q([CN]iMé(QbN)VMN'Vacfd(ch,CN)—M&(¢N)H¢N]ivacf5(¢1v,CN)|2)dl"

— /[CN]‘jre[¢N]1+|V86f5(¢N,cN)|2dx — (5/ Ven - Vo fs(dn, en)de.
Q Q

Summing (3.12) and (3.13), some terms can be written as a square, and we end up with

d 1
T (§|V¢N!2 + fs(on, CN))dx + / M;(6n)|Vin — [en]y VOLfs(on, ex)| da
Q Q
+/[CN]ie_[qﬁN]Hvacf&WN,CN)|2d1E = —5/ Ven - VO, fs(dn, en)d.
Q Q
) )
= —5/ Ven - Viey — ¢on)dr < ——/ \Vey|2dr + —/ |Von|*dr,
Q 2 Ja 2 Ja
where we used Young’s inequality in the last step. This finishes the proof. U

The energy inequality (3.11) allows us to conclude some a priori estimates.

Lemma 3.2. (Estimates for ¢y and cy). Let 6 < 1/12. There exists a constant C > 0
independent of N such that

(3.14) ||\/ M6(¢N)|V,UN - [CN]iV@fé(?vacN)‘ HL2((0,T’)><Q) =C,
(3.15) IVoN |z, + [/ [en]§ VOS5 (dn, en)| 2o 7y xey < C

(3.16) IVen|lz2 o< + llen ooz @) < C.
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Proof. The estimates basically follow from the energy inequality (3.11), but we need to
estimate f1s(¢n) and fa(on,cn), as ¢n and ¢y may be negative. Let ¢ < 6. We divide
the term fi 5(¢n) into two parts. The first part f1(0) is bounded uniformly in N and 6,
while a simple calculation shows that the second part f{(6)(¢y — 0) + 1 f'(0)(¢n — 6)* is
nonnegative. If § < ¢ < 1 — 9, the term f15(¢pn) = fi(¢n) is bounded uniformly in N
and 6. The case ¢n > 1 — 0 can be treated similarly as the case ¢y < 6. We turn to the
estimate of fy(¢n,cn). The first term on the right-hand side of

/f2 on,cn)d /ng (1— ng)dx—/QcN(l — ¢n)dx

is uniformly bounded with respect to N, while the second term is estimated according to

1
—/QCN(l — ¢n)dr < Z/Qc?\,dw + /Q(l — ¢n)’dw.

The first term on the right-hand side can be treated in view of inequality (3.11) by means
of Gronwall’s inequality. For the last term, we distinguish several cases. If § < oy < 1—19,
we have (1 — ¢n)? < 1; if o5 < &, we choose § < 1/12 to find that 6(1 — d) < 1/12 and
consequently,

(¢ —0)°
66(1 — 0)
which is bounded in view of f'(6) = 1/(6(1 — d)) and the definition of f;s; finally, if
¢n > 1 — 6, we obtain in a similar way

(1—on)* <2(0 —¢n)* +2(1-0)* < +2,

(¢n — (1 —9))?

1—o¢n)? < 2.

7

The terms involving ¢y can be treated by taking into account fis(¢n) and Gronwall’s
lemma. ]

Lemma 3.2 provides an H'(Q) bound for c¢y. We can also derive such bounds for ¢y
and .

Lemma 3.3 (H'(Q) estimates for ¢n and uy). For § < 1/12, there exists a constant
C > 0 independent of N such that

(3.17) H¢NHL°°(0,T/;H1(Q)) + H/LNHLQ(O,T’;Hl(ﬂ)) <C

Proof The test function e = 1 in (3.5) yields conservation of the total fiber phase,
Jod(x, t)de = [, do(x)dx for all 0 < t < T’. Then estimate (3.15) for V¢n and the
Pomcare —~Wirtinger mequahty lead to an H'(Q) bound for ¢y, showing the first claim.
Next, we deduce from bounds (3.15) and (3.16) that

v M5(¢N)V“N||L2((0,Tf)xm < [V Ms(on)[View — [CNﬁvacf5<¢N7CN)|HL2((0,Tf)xQ)
- CH V [CN]iHLOO((O,T’)xQ)“ [CN]ivacf%(qu’CN)HL?((O,T')xQ) <G,
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which gives a uniform L*(Q2) bound for YV, since M (¢y) > M(6) > 0. The test function
e = 1 in equation (3.7) for ux gives a uniform bound for fQ pydzr uniformly in time. There-
fore, using the Poincaré-Wirtinger inequality again shows that py is uniformly bounded
in L?(0,T"; H'(Q)), proving the second claim. O

The uniform L?*(2) bounds for (¢, cy) imply that the approximate solution (¢, cx)
to (3.5)—(3.7) exists on the whole interval [0, 7], and estimates (3.14)-(3.17) hold on that
interval. For the limit N — oo, we need bounds for the time derivatives.

Lemma 3.4 (Estimates for the time derivatives). For § < 1/12, there exists a constant
C > 0 independent of N such that

(3.18) 10N | 220,750 () + 10w 220,751 0) < C

Proof. Let Iy denote the projection of L?(Q) onto X = span{ey,...,ex}. Based on the
estimates obtained in Lemmas 3.2-3.3, we have, for any ¢, € L*(0,T; H*(Q)),

‘/OT/Qﬁt¢N¢1dxdt‘ = ‘/OT/Q@QﬁNHN%dCUdt'

< H % M5<¢N>HL°°(QT)H Vv M5(¢N)|V'UN - [CN]ivaCf5(¢N7CN)‘HL?(QT)
X |\ VI || 200y < Clltnl 2001 @)
which proves the first claim. Similarly, for any 1, € L?(0,T; H*()),

T T
‘/ /@chpgdmdt‘ = ‘/ /@cNHNz/)dedt‘
0 Q 0 Q

< llen]s 2@ || v M6(¢N)HLoo(QT)||VHN¢2||L2(QT)
X || v/ Ms(6n)|Vien — [CN]i»vaCf5<¢NucN)}HL2(QT)

_ 1
+ I el e o le Y @) | VIV 2| 220

+ ||\/[en)a Ve fs(ow, CN)HLQ(QT) + 0| Ven |l 2@ VN2 22(04)
< Ol 20,750 () -
This finishes the proof of Lemma 3.4. U

3.3. Compactness argument. Estimates (3.16) and (3.17) allow us to extract subse-
quences (¢n,cn, ) (not relabeled) such that as N — oo, for some functions ¢, ¢ and

22

(3.19) dn = ¢ weakly in L>®(0,T; H'(Q)),
(3.20) cy — ¢ weakly in L*(0,T; H'(Q)),
(3.21) pn — p weakly in L*(0,T; H'(Q2)).
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The estimates for the time derivatives (3.18) yield
Oipn — Oy,  Orey — Orc weakly in L*(0,T; H(Q)').

We deduce from the Aubin—Lions compactness lemma, in view of estimates (3.16), (3.17),
and (3.18), that, up to a subsequence,

(3.22) ¢n — ¢ strongly in C([0, T]; L*(Q2)),
(3.23) cy — ¢ strongly in L*(Q7) N C([0,T]; H(Q2)).

It follows from (3.22) and the continuity of Ms(-) that Ms(¢n) — Ms(¢) a.e. in Qp. Thus,
in accordance with the bound ||Ms(én )| z=.) < C, we infer that

(3.24) Ms(pn) — Ms(¢) strongly in LP(Qr) for any p € [1,00).
Similar arguments give
(3.25) eTlonl ol len]i = [} strongly in LP(Qr) for any p € [1,00).
Then it follows from (3.14), (3.19)-(3.21), (3.24), and (3.25) that
Ms(on)(Vin — [en]7(Ven — Vo))
— M;s(¢) (Vi —[d5.(Ve—V¢))  weakly in L*(Qr).

The partial derivative 9, fs is continuous in R?, thanks to the cutoff, and we conclude
from (3.22)-(3.23) that

Opfs(dn,cn) = Opfs(@,c) a.e. in Qr.

Taking into account the interpolation inequality in Lebesgue spaces, bounds (3.16) for cy,
and the continuous embedding H'(Q2) < L?¥/(@=2)(Q)), we find that

T 1/4
(3.26) lenl oo, zaara-n gy < (/ ”CN“i2<m||CN||%w<dz><mdt)
0
1/2
< HCNHL/OO (0,TL2(Q HCNHL2 (0,T;L24/(d=2)(Q)) <C

By definition of fs, this estimate and bound (3.17) yield

Ha¢f6(¢N7 CN)”L4(O,T;L2d/(d*2)(9)) < CH¢N”LOO(O,T;LZd/(d*?)(Q))
+ CHCN||L4(07T;L2d/(d—2)(9)) + C S C.

Therefore, we achieve the strong convergence

a¢f5(¢N7 CN) - a¢f5(¢7 C) Strongly in L2(QT)

By the previous convergence results, we can take the limit N — oo in system (3.5)-(3.7)
for (¢n, e, i), and the limit functions (¢, ¢, ) solve

(3.27) / (Opb, 1 )1 / /M(; (Vi = [c]aVO.f5(¢,¢)) - Vipdadt,

(3.28) /0 (Oyc, o)y dt = /o /Q[c]ng(qﬁ)(Vu — 3 VO.f5(9,c)) - Vapadadt
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T T
— / / €5 e AV, f5(6, ¢) - Vipodadt — 6 / / Ve - Vihydrdt,
0 Q 0 Q

(3.29) /0 ' /Q pbsdudt = /O ' /Q Vo - Vipsdadt + /0 ' /Q 0y f5(0, ) hsdadt

for all test functions v, 19, 13 € L?(0,T; H'(S2)), recalling that (-,-); is the dual product
between H'(Q)" and H'(Q).

It remains to show that ¢ and ¢ attain the initial conditions. We deduce from (3.22) and
the fact that ¢n(0) — ¢o strongly in L*(Q) that ¢(0) = ¢y in . The strong convergence
of ey to ¢ in C([0,T]; H(R2)') implies that {cyx(0),&)1 — (c(0),&); for any £ € HY(Q). We
combine this result and ¢y (0) — ¢ in L*(Q) to find that (c(0),&); = (co, &)1

4. THE LIMIT € — 0

In this section, we derive a lower bound for ¢ and perform the limit ¢ — 0 in equations
(3.27)-(3.29). We denote by (¢., c.) the solution at this level of approximation.

4.1. Uniform estimates independent of c. We start with the lower bound for c..

Lemma 4.1 (Lower bound for ¢.). Let (¢e,c.) be a solution to (3.27)-(3.29). Then
c.(t,x) >0 a.e in Qr.

Proof. The proof is easy since it is sufficient to take the test function iy = [c]_ =
—min{0, c.} in (3.28), which yields

1 T

-/[CE]Q(T,x)dHa/ /|V[CE]_|2dxdt:O,

2 Ja 0o Jo
and hence [c.]- = 0 a.e. in Q7 finishing the proof. O

The previous lemma shows that we can replace the truncation [c.]5 by [c.]® := min{1/e,
¢}, and it remains to remove the upper truncation.

We claim that (¢., c.) satisfies an energy inequality similar to (3.11). As a preparation,
by elliptic regularity theory, we conclude from A¢. = —pu. + 9y fs5(de,c.) € L*(Qr) that
¢. € L*(0,T; H*(Q)). Furthermore, it follows from VA@. = —Vu. + VO, fs(de,c.) €
L*(Q7) that ¢. € L*(0,T; H*(2)). Therefore, we can compute for 7 € (0,7,

0= / (Outoos e + Db — Dy f5(6o, c)rdt
0

2

Choosing ¢ = p. € L*(0,T; H'(Q)) in (3.27) and 19 = 0. fs5(d.,c.) € L*(0,T; H'(Q)) in
(3.28), we obtain the energy equality

1 2 ! 5 2
11) [ (319084 o0 )(rarde+ [ [ Ms(6190c = (e V0L fo(0n,co) P

:/ @(be,ushdt—l/ (IV@:(T,SE)IZ—\Vaﬁo(:c)|2)dx—/ (019, Op f5(0e, ) )1 dL.
0 Q 0
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+ / / . e VO, f5(9-, c.)|Pdudt + 6 / / Ve |?dudt
0 Q 0 Q
1 T
=/ (—!V¢o!2+fa(¢o,co))dx—5/ /V05~V¢dedt.
o \2 o JO

It follows from this equality and similar arguments as the proof of Lemmas 3.2-3.4, for
d < 1/12, that

(4.2) [V M5(6e) |V e — eV e f5(¢x, ¢2) ||| 12, < C
(43) H\/ Cs Va fé ¢€7C€ HLz Q )—

(4.4) IVeell o) + lleell L o/msrai@) < Cv
(4.5) 10c| Lo 0,731 @)) + 10eel 20,7501 02y < €

where the constant C' > 0 is independent of ¢ (but possibly depending on 9).

In contrast to Section 3.2, we cannot expect a uniform L>(€2) bound for [c.]?, which
makes it necessary to take advantage of (4.4). It follows from Holder’s inequality and
bounds (4.3), (4.4) that

|| [Cs]gvacf6(¢sa Cs) HLQ(O,T;L4/3(Q))
SH\/C_S||L°°(O,T;L4(Q))H \% [CE]Evacf5(¢€7 Ca)||L2(Q ) < C

Together with (4.2) and the property Ms(¢.) > ¢ for some ¢ > 0 independent of e, we infer
that (V) is bounded in L(0,T; L*3(£2)). The test function w3 = 1 in (3.29) provides a
uniform bound for | fQ pedx|, so by the Poincaré~Wirtinger inequality,

(4.6) e £2g0,rwr.a72(0y) < C-

Next, the continuous embedding H'(Q) — L?¥/(@=2)(Q) and interpolation as in (3.26)
yield
1/2
(4.7) lezllzsozz200-1 ) < ||C€||Loo (0,T;L2(%2)) ||C€||L/2(0,T;L2d/<d—2>(sz)) <C

Estimates (4.2)—(4.4) allow us to derive a uniform bound for the time derivative d;c.. For
this, let ¢ € L*(0,T; W1?4(Q)) and estimate as follows:

T
[ atcawdxdt} < llez o zasrcn i1V M0 | gy IV loizszascany
X H\/ ¢a |v;ua_ Ce Va fé Qbaaca H|L2 (Qr)

Ve oz gy e @ | Ve | a2
|| V1el V0 fs(0e, )| 12 )

+0[Veell 2n IVl 2@y < CllYl s mmwr 2q))-
This gives the desired bound for the time derivative:

(4.8) 10ece | Lass 0 w20 (yy < C.
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We are now in the position to derive the entropy inequality satisfied by (¢.,c.). The
entropy inequality is needed to pass to the limit € — 0 in the energy equality (4.1). We
define the approximate entropy density by

Bs(6) = / 5 drds > 0.
12 Ms(r)

Lemma 4.2 (Entropy inequality for (¢.,c.)). There exists a constant C > 0 independent
of € such that the following entropy inequality holds for any T € [0, T]:

(4.9) /Q(I)(g(gba)(T,x)dx +%/OT/Q(A¢6)2dxdt < /Q@(;(gba)(O,x)dx +C.

Proof. A similar argument as in the proof of the energy equality (4.1) can be used to
find that A¢. € L?(0,T; H*(2)). Hence, we can choose the test function ¢3 = A¢. in
(3.29). Tt follows from the definition of ®5(¢.) that V®5(¢.) € L?(Q7). Therefore, taking
Y = D(¢:) in (3.27) and combining this equation with (3.29), choosing the test function
3 = A¢., we infer, for any 7 € [0, T], that

/ () (r, 2)dx + / T / (A, 2dudt

/ D5(¢.)(0, z)dx — / / ( ]\Vz; — Ve, — 2V¢5) - Vé.dudt

" /0 /Q V0 fs(6esc.) - Vodadt,

observing that ®§(¢.) = 1/M;s(¢.) and the fact that

Vo.

VO, fs5(pe, cc) = W

— Ve, — 2V ..
We deduce from /M;s(¢.) > 0 that

! 2
(4.10) /Q(I)(;(gba)(T, :E)dx+/0 /Q(Agbe) dxdt

< /gzq)(;(gbs)((),x)dx—l—/oT/Qch~V¢dedt+2/OT/Q!V¢e|2dxdt

+/0 /Q[ca] vacf6(¢€aca) : V¢gd$dt

The second term on the right-hand side can be estimated according to

(4.11) / /Vca-ngSgdxdt:—/ /chnggdxdtS C’+1/ /(Agbg)dedt.
0o Ja 0o Ja 4)o Ja
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Furthermore, in view of bounds (4.3)-(4.5) and the continuous embedding of H?*(Q) —
W4(Q) for d < 4, the last term in (4.10) can be computed as

(4.12) /OT /Q[CEFVE)Cf(;(qSE, ce) - Vodxdt

< Vel omra@pl|V e EVOe f5(@e, o)l 2@ | VPell 20,740
< C(IVeellzz@r) + 1APe] 20y + 1)

<C+- //Agzﬁ6 ) dxdt.

Inserting (4.11)-(4.12) into (4.10) yields (4.9). 0

4.2. Compactness argument. The uniform bounds in the previous subsection allow us
to perform the limit ¢ — 0 in the weak formulation (3.27)—(3.29). The proof is similar
to that one given in Section 3.3, except the compactness of the terms involving [c.]°. We
focus on these terms in the following discussion.

In view of (4.4), (4.6), and (4.8), we can apply the Aubin-Lions compactness lemma to
obtain a subsequence (c., pte) (which is not relabeled) and functions ¢ and p such that, as
e —0,

(4.13) c. — ¢ strongly in L*(Q7) N C([0,T]; H'(Q)"),
(4.14) dyc. — Ope  weakly in L¥3(0,T; WH24(Q)"),
(4.15) e = p weakly in L2(0, T; WH3(Q)) N L3 (Qy).

It follows from (4.4) that

T T
[leel® = el 11 oy _/ /(Cs — 1/€)X{e>1/epdadt < 2/ /CEX{cgzl/s}dxdt
0 Q 0 Q
T
< 25/ / czdxdt < (Ce = 0.
0 Q

This, together with (4.13), implies that [c.]* — ¢ a.e. in Q7. Then bound (4.7) shows that
2d
(4.16) [c.]° = ¢ strongly in LP(0,7; LY(Q2)) for p € [1,4), q € [1 ﬂ)

Since Ms(¢.) converges strongly to Ms(¢) in LP(Qr) for 1 < p < oo and VO,.f(¢e, c.) =
V. — Ve, converges weakly to VO, f(¢,c) = V¢ — Ve in L2(Qr), it follows from estimate
(4.2) and the convergence results (4.15) and (4.16) that
(417) M5(¢6) (Vﬂs - [Ca]svacf(¢a7 Cs))

— M;(¢) (Vi —cVO.f(¢,c)) weakly in L*(Qr).

Taking into account the convergences (4.13)—(4.17), we can pass to the limit ¢ — 0 in
system (3.27)—(3.29), for the variables (¢, c., 1), to conclude that the triplet (¢,c, u) is a
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weak solution to the following problem:
(4.18) 9o =div (Ms5(0)(V — ¢V, f5(0,¢))),
(4.19) O = —div(cMs(¢)(Vi — cV.f5(6,¢))) + div (ce™HVa, f5(¢, ) + 6 Ac,
(420) = —Ap+d,fs(6.0),
with the boundary and initial conditions
Vo-v=Ve-v=Vu-v=0 on (0,7) x 02, (¢(0),c(0)) = (¢o,co) in .

The weak formulations of (4.18) and (4.20) are the same as (3.27) and (3.29), respectively,
while the weak formulation of (4.19) can be written, for any ¢ € L*(0, T; W1?4(Q)), as

(4.21) / (Ohe, )it /0 /Q My(0) (Vi — VO fs(6, 0)) - Vibdadt

0
T T
— / / ce VO, f5(¢, ¢) - Vipdadt — & / / Ve - Vipdadt,
0 Q 0 Q

where (-, -)3 denotes the dual product between W124(Q)" and W124(Q).

As the weak formulation (4.21) holds for ¢ € L*(0,T; W?¢(Q)), we cannot choose
¥ = 0.fs(¢,c) as a test function in (4.21) as in the proof of the energy equality (4.1).
Fortunately, we can derive this identity, satisfied by (¢, c), in another way. Thanks to
(4.13)—(4.17) and the weak lower semicontinuity of convex functions, we are able to pass
to the limit € — 0 in (4.1), expect for the last term. The entropy inequality (4.9) gives a
uniform L?(2) bound for A¢,, which implies that A¢. weakly converges to A¢ in L*(£2).
We deduce from the strong convergence (4.13) of c¢. that

/ /Vc‘E Vo.dxdt = / /caAgbgdxdt
—>/ /cAngdxdt:—/ /V0~V¢dxdt.
0o Jo 0 Jo

As a consequence, (¢, ¢) satisfies, for any 7 € [0, 7], the energy equality

az) [(GVer a0 )rade s [ [ M)V oo daa

/ / VA, f5(¢ )|2dxdt+6/0 /Q|Vc|2dxdt
:/Q(§|V¢0|2+f6(¢0700)>dx—5/OT/QVC-V¢dxdt.

5. THE LIMIT 6§ — 0

For the proof of Theorem 1.2, it remains to pass to the limit 6 — 0 in the weak formu-
lation of system (4.18)—(4.20). Let (¢s, cs, its) be the solution constructed in the previous
section.
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5.1. Uniform estimates independent of §. By the same argument as that one used in
the proof of Lemma 3.2, we derive from the energy equality (4.22) the following estimates:

(51) H‘b&HL‘X’(O,T;Hl(Q)) + || \/ M6(¢6)‘V//J5 - Cévacfé((béa Cé)‘ HLQ(QT) < 07
(5.2) Vo(|Veslzar + lleslle oz < C,
(5.3) 1VesVOefs(¢s: cs)ll 2y < C,

where C' is a positive constant independent of .

The entropy inequality from Lemma 4.2 and the above compactness arguments show
that Ags € L*(Qr). Thus, since us, 04 fs5(¢s, cs) € L*(Qr), the weak formulation of (4.20)
holds for any 1) € L?*(Q27). We can choose A¢s as a test function in this weak formulation
and proceed as in Lemma 4.2 to obtain, for any 7 € [0, 7], the entropy inequality

(5.4) /Q () (, x)dx+% /0 ' /Q (Ady)?dadt < /Q Bs(5)(0, 2)dx + C.

Lemma 5.1 (Estimates for ¢5 and ¢s5). There ezists a constant C' > 0 independent of 0
such that

(5.5) 165l 20.13m20) < C,
3/2
(5.6) 165 |20 2,001y Netll siorizsarsa—ogeyy < C.

Proof. The entropy inequality (5.4) provides a uniform bound for A¢. in L*(Q7). This,
together with (5.1), implies (5.5). As a consequence, V¢, is uniformly bounded in L*(0, T;
HY(Q)) = L*(0,T; L*(2)) (for d < 4), which gives

IVesV sl r2or) < (Ve Lo o.r;04@) IV sl 1200,7,00)) < C.
We conclude from (5.3) that

1V oy = —mmnmﬂ
S CH\/gvacf(gb& 65)||L2(QT + C||\/C_5ng5||L2(QT) S C.

By the Sobolev embedding H'(€2) — L2/(@-2(Q), (¢¥/?) is bounded in L2(0, T'; L*#/(-2)(Q))
and thus, by interpolation,

3/4 1/4
||C<5||L4 0,584/ (3d-) ()) < ||C5||L/3(0TL3d/(d 2)(Q ||C5||L/<>o (0,T3L2(2)) <C,
achieving the second claim in (5.6). O

We also need estimates for the time derivatives.

Lemma 5.2 (Estimates for the time derivatives). There ezists a constant C' > 0 indepen-
dent of 0 such that

(57) ||at¢5||L2 OTHI(Q + ||at05”L4/3 0TW1 8d/(d+4)( ) ) S C



20 A. JUNGEL AND Y. LI

Proof. We only present the proof for 0,cs, as the proof for 0;¢s is similar. Thanks to (5.1),
(5.3), and (5.6), we have for any ¢ € L*(0, T; W8#/(d+4)(Q)),

T
‘/ /Q@:CW dfdt‘ < lesll 1o, rinsaras @[V Mo(95) || ooy
0

X ||Vl Lo psasarn @y || vV Ms(6) | Vi — ¢sV e f5(ds, ¢5)| HLa(QT)

a1
17| ey 1V ol a0 zimr -

X |[v/esV e f5(bs, cs) || 2 I VU 140, 1807 @0 (@)
+6[|Vesl 2 on IV L2y < C.

This completes the proof of (5.7). O

5.2. Compactness argument. The estimates obtained in the previous subsection allow
us to complete the proof of Theorem 1.2.

Step 1: Convergence of (¢s). We deduce from bound (5.7) that there exists a subsequence
(not relabeled) such that, as § — 0,

8t¢5 — 8t¢ Weakly in LQ(O, T, ]3'1 (Q)/)

Taking into account estimate (5.5), we have, up to a subsequence,

(5.8) Ags — A¢ weakly in L*(Qp).
Estimates (5.1), (5.5), (5.7), and the Aubin-Lions lemma show that
(5.9) ¢s — ¢ strongly in L*(0,T; H'(2)) N C([0, T]; L*()),

which implies that ¢5 — ¢ a.e. in Qp. Since exp(—[¢s]}) is bounded in L>(Q), we have
the convergence

ek 5 e strongly in LP(Qg), p € [1,00).

We need to verify that ¢ lies between zero and one. Although the proof of the following
lemma is very similar to [8], we present the full proof for the convenience of the reader.

Lemma 5.3 (Upper and lower bounds for ¢). The limit function ¢ satisfies 0 < ¢ < 1
a.e. in Q.

Proof. For any a > 0, define the sets V, 5 := {(t,z) € Qp : ¢s(t, ) > 1+ a}. We integrate

1 1
(I)g(¢5(t>$)) = M(l _ (5) = (52(1 N 5)2 for (t> .I) S Va,é

twice to obtain

drds — (¢5—1/2)°
s(9s(t, ) / /25 (1—0)2  262(1—6)2°
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We infer from the definition of V,, 5 and from the entropy inequality (5.4) that

o’meas(Vos) _ / (¢a—1/2)zdxdt:

o t,z)dzdt < C.
20%(1-0)% = Jy,, 262(1—9) /V 5(¢5)(t, x)dzdt < C

In view of the a.e. convergence of (¢s), this yields

206%(1 — §)?
meas{(t,z) : ¢(t,z) > 1+ a} = (lsig(l) meas(V, 5) < (lsig(l) w =0,

implying that ¢(¢,2) < 1+ « a.e. in Qp for all &« > 0. Since a > 0 is arbitrary, ¢(t,z) < 1
a.e. in Qp. In a similar way, we show that ¢(¢t,z) > 0 a.e. in Q7.
Finally, because of ®s(¢s) > 0, we can apply Fatou’s lemma to conclude that

/ lim @5(ps(t, x))dr < lim/ Ds(ps(t,x))dx < C.
It follows from ®(0) = ®(1) = oo that

d(p) f0< o<1,

clsi—%q)é(%):{oo ifo=0o0r ¢p=1.

Consequently, meas{z : ¢(t,x) = 0 or ¢(t,x) = 1} = 0 for a.e. t € (0,7T), concluding the
proof. O

Step 2: Convergence of (cs). Bound (5.7) for the time derivative of ¢s gives the existence
of a subsequence (not relabeled) such that, as 6 — 0,

dycs — Oy weakly in LY3(0, T; WHA/ @+ (Q)).

To conclude the strong convergence of (¢s), we use the “nonlinear” Aubin—Lions compact-
ness lemma [5, Theorem 3|, which provides, in view of the gradient bound in (5.6), a
subsequence such that

(5.10) cs — ¢ strongly in L3(Qr).

/

This implies that, again up to a subsequence, c(?; > 5 32 ae. in Qp and, because of (5.6),

2d
cg’/Q — 2 strongly in LP(0,T; L%(S2)), where p € [1,2), q € [1, m)
This convergence is sufficient to pass to the limit 6 — 0 in the part of ¢sV 0, f(¢s, cs) that

. 3/2
contains c 5/

parts,
T 2 T
esVes - pdadt = —= &2 div hdadt
0
0 Q 3 0 Q

2 T T
— = / / A2 divpdzdt = / / Veve - pdxdt.
3 0 Q 0 Q

. Indeed, we have for any test function ¢ € C§°(Qp;R?), by integrating by
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Actually, since ch/ > = (3/ 2)/¢sV¢s is uniformly bounded in L?(€7), this convergence
holds true even in L*(Qr):
(5.11) VesVes = \/cVe  weakly in L*(Qr).
Step 3: Convergence of Ms(¢ps). We deduce from the mean value theorem that, for any
z € [0,1],

[Ms(z) = M(z)| < sup [M(6) — M(2)|+ sup |[M(1—0)—M(2)|

0<z<0 1-6<z2<1
< sup M'(6:1(2))d+ sup M'(65(2))d6 — 0,
0<z<d 1-6<z<1

where 01(2) € (2,0) and d2(2) € (1 — 4, z). Hence, Ms — M uniformly in [0, 1]. Tt follows
from the continuity of M that

(5.12) Ms(¢s) — M(¢) a.e. in Qrp.
As Ms(¢s) is uniformly bounded in L*°(€r), this implies that
(5.13) M;s(ps) — M(¢) strongly in LP(Qr), p € [1,00).

Moreover, in view of the bounds 0 < ¢ < 1 from Lemma 5.3, we have
M;(ds) — M'(¢) a.e. in Q.
This yields, together with (5.12), that
My(g) | M'(9)
Ms(ds) M(¢)

In view of the definition of Ms(¢s), the singularity of 1/1/Mj(¢ps) is canceled by Mg(¢s),

which provides a uniform L*(€2) bound for Mj(¢s)/+/Ms(¢s). It follows from (5.9) and
dominated convergence that

M; M’
5(¢5) V¢6 N (Qb)
M;s(¢s) M(9)
According to (5.1), there exists I € L?(€2r) such that
M(;(gb(g) (V/Lg — Cgvacf(g((bg, C(g)) — ] Weakly n LQ(QT).
The final step of the proof is concerned with the identification of the limit I.

a.e. in Qp.

(5.14) V¢ strongly in L*(Qr).

Step 4: Identification of I. Let ¥ € L?(0,T; H'(Q;R?)) N L>=(Q7; RY) with ¥ - v = 0 on
%) be given. We compute

(5.15) /0 /Q \ M5(¢5>(V“5 _Cévacfa(%,@s)) - Wdzdt
:/0 /QA¢5diV( Ma(¢5)\lf)da:dt+/0 /Q\/mV%ﬁ(%’%),qjdxdt



CAHN-HILLIARD CROSS-DIFFUSION SYSTEMS

T
—/ /Q\/M(;(gb(;)c(g(VC(; —V¢5) -Wdzdt =: I + I + I3.
0

The term I; can be divided into two parts

1_/ /QQM(S %s) w Ags - \Ifdwdt—l—/ /WA%dw\Ifdwdt

Ms(os)
=: 111 + Io.

It follows from convergences (5.8), (5.9), and (5.14) that

T Wf/(f)
— ————VopAop-
Iy /0 /{22 —<¢) PA¢ - Vdxdt,

and convergences (5.8) and (5.13) yield

T
s — / / VM () Addivldadt.
0 Q

Summarizing, this shows that

L —>/OT/QA¢div(\/W\p)dxdt.
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We turn to the term 5. By the definition of f5, we have VO, fs(¢s, c5) = Vs // Ms(¢s)—

Ves — 2V s, which gives

/ / Vs - Wdxdt + / / Ms(s) V¢565-\I/dxdt
2/ Ms(ops)

+ / / vV M5(¢5)C5 div Wdxdt — 2/ / vV M(s(gb(g)V(b(g - Udxdt
0 Q 0 Q

=: Io1 + Igo + Loz + Io4.
By the convergences (5.9), (5.10), (5.13), and (5.14),

T
Iy — / / Vo - Udrdt, / / V¢c~\l’dxdt,
0 Q Q

T
123 — / / \/ M(gb)c div qfdl‘dt, Iy — —2/ / \/ M(gb)qu) - Wdzdt.
0 Q 0 Q

Therefore,

IQ—>/OT/Q(V¢—2\/WV¢) -\Ifdde/OT/chiv(\/pr)dxdt.

It follows from convergences (5.9), (5.10), (5.11), and (5.13) that

- / / (V/Ms(95)v/es(V/c5V es) — v/ My(95)csV bs) - Wdadt
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- — /T/ VM (¢)e(Ve— Vo) - Ydxdt
o Ja
T
= —/ /\/M(gb)cvacf(qb, c) - Udzdt.
o Ja

Inserting the previous convergence results for Iy, I5, and I3 into (5.15), we conclude that

/0 /QI-\IJd:vdt:/O /Q[A(bdiv(\/M(qS)\I!)—|—(V¢—2\/M(¢)V¢)-\If
+ cdiv (VM(@)¥) — /M (¢)cVO.f (o, c) - V]duxdt,

finishing the proof of Theorem 1.2.
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