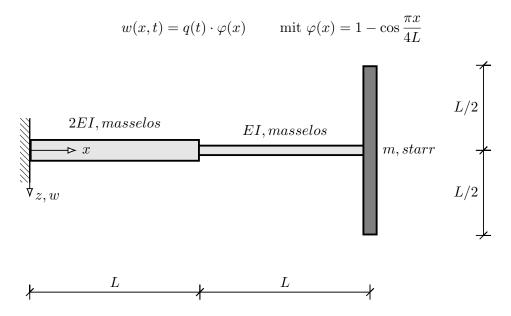
Kontinuierliche Systeme

Beispiel KS2


Gegeben:

Ebenes, schwingungsfähiges System laut Skizze in Gleichgewichtslage

Masseloser Kragträger der Länge 2L mit veränderlicher Biegesteifigkeit (2EI, EI) und lokalem (x, z)-Koordinatensystem

Starre, stabförmige Masse m mit Länge L

Ritz'scher Ansatz:

Gesucht:

Für kleine Schwingungen um die Gleichgewichtslage mit Hilfe des Ritz'schen Verfahrens:

- 1) Kinetische Energie T
- 2) Potentielle Energie Π
- 3) Grundeigenkreisfrequenz ω_0

T	П
$\frac{1}{2} \cdot 1,051m\dot{q}^2$	$rac{1}{2}\cdot 0,692rac{EI}{L^3}q^2$
ω_0	
$0,811\sqrt{rac{EI}{mL^3}}$	

Hinweis:

$$\int \cos^2(ax) \, dx = \frac{x}{2} + \frac{1}{4a} \sin(2ax) + C$$