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Kurzfassung

Magnetische Prozesse spielen eine wichtige Rolle in einer Vielzahl technologischer Anwendun-
gen. Speziell im Mikroskalenbereich basieren viele Geräte auf der Ausnutzung des dynamischen
Verhaltens der Magnetisierung m eines ferromagnetischen Körpers, etwa zur Datensicherung auf
magnetischen Festplatten. In diesen Größenbereichen wird das Verhalten der Magnetisierung
von einer Vielzahl physikalischer Effekte beeinflusst. Um diese Effekte ausreichend gut vo-
rauszusagen, und damit die Kosten für die Entwicklung und Verbesserung solcher Hardware
niedrig zu halten, bedarf es zuverlässiger numerischer Simulationen.
Die Grundlage für diese Simulationen bildet die Landau-Lifshitz-Gilbert Gleichung (LLG).

Diese modelliert die Dynamik der Magnetisierung eines ferromagnetischen Körpers Ω über einem
Zeitintervall (0, T ) und unter dem Einfluss des sogenannten effektiven Feldes. Die verschiedenen
physikalischen Effekte tragen in Form von Operatoren zu diesem effektiven Feld und damit dem
Verhalten der Magnetisierung bei. Mathematische Herausforderungen bei dieser zeitabhängigen
partiellen Differentialgleichung liegen in ihrer starken Nichtlinearität, etwaigen komplexen und
nichtlokalen Feldbeiträgen, sowie einer inhärenten nichtkonvexen Nebenbedingung zur Längener-
haltung der Magnetisierung.
Ausgangspunkt der vorliegenden Arbeit bildet die Arbeit [Alouges, Disc. Cont. Dyn. Sys.

Ser. S, 2008], sowie deren Erweiterungen [Alouges et al., Physica B, 2011] und [Goldenits,
Dissertation, TU Wien, 2012]. Im erstgenannten Beitrag leitet der Autor ein Finite-Elemente-
Schema für die LLG Gleichung her, welches nur die Lösung eines linearen Gleichungssystems pro
Zeitschritt erfordert und dabei unbedingte Konvergenz sicherstellt.
In dieser Arbeit behandeln wir multiple Erweiterungen der Analysis von Alouges. Zunächst

untersuchen wir die reine LLG Gleichung für ein allgemeines effektives Feld, während Alouges
und die genannten Nachfolgearbeiten nur klassische Feldbeiträge betrachten. Dadurch gewinnen
wir zwei abstrakte Voraussetzungen an die einzelnen Feldbeiträge, welche die unbedingte Kon-
vergenz des Verfahrens garantieren. Wir weisen nach, dass die klassischen Feldbeiträge durch un-
seren abstrakten Zugang abgedeckt sind und auch ein neuer Mehrskalenzugang aus [Bruckner,
Dissertation, TU Wien, 2013] in diesen Rahmen fällt.
Im zweiten Schritt betrachten wir gekoppelte Probleme, d.h. wir koppeln LLG mit einer weit-

eren Evolutionsgleichung, um zusätzliche Effekte simulieren zu können. Konkret untersuchen wir
Kopplung zum vollen Maxwell-System (als Modellbeispiel für hyperbolische Gleichungen zweiter
Ordnung) und der eddy-current Gleichung (als Modellbeispiel für eine parabolische Gleichung
zweiter Ordnung) zum besseren Verständnis magnetischer Felder, sowie der Impulserhaltungs-
gleichung (als Modellbeispiel für einen nichtlinearen Kopplungsoperator) für magnetoelastische
Effekte. In allen Fällen schlagen wir Algorithmen vor, welche die Gleichungen numerisch entkop-
peln, d.h. statt eines großen (nichtlinearen) Systems lösen wir pro Zeitschritt nacheinander zwei
kleinere lineare Systeme, eines für LLG und eines für die gekoppelte Gleichung. Trotz dieser
Entkopplung, die in der Praxis große Vorteile bietet, erhalten wir keine zusätzliche Anforderung
an Orts- und Zeitschrittweite und können jeweils unbedingte Konvergenz nachweisen. Unsere
Analysis liefert ferner konstruktive Beweise für die Existenz von (schwachen) Lösungen, d.h. wir
zeigen, dass die berechenbaren diskreten Lösungen gegen eine schwache Lösung des Gesamtsys-
tems konvergieren.
Numerische Simulationen runden die Arbeit ab.
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Abstract

Magnetic processes play an important role in a variety of technological applications. Especially on
a microscale, many devices rely on the exploitation of the dynamic behaviour of the magnetization
m of a ferromagnetic body. This is used, for example, for data storage in magnetic hard drives.
Within these length scales, the behaviour of the magnetization is influenced by a multitude of
physical effects. In order to reliably predict these effects, and thus lower the production costs
for development and/or improvement of such devices, we require reliable numerical simulations.
The foundation for those simulations is the Landau-Lifshitz-Gilbert equation (LLG). This

equation models the dynamics of the magnetization of a ferromagnetic body Ω on some time
intervall (0, T ) under the influence of the so-called effective field. The different physical effects
contribute to this effective field, and hence the behaviour of m, in form of operators on suitable
Banach spaces. Mathematical challenges of this time-dependent partial differential equation are
given by a strong nonlinearity, possible complicated and nonlocal field contributions, as well as
an inherent non-convex side constraint which enforces length preservation of m.
Starting point for this thesis is the work [Alouges, Disc. Cont. Dyn. Sys. Ser. S, 2008] as

well as the subsequent contributions [Alouges et al., Physica B, 2011] and [Goldenits, PhD
thesis, Vienna UT, 2012]. In the first one, the author constructs a finite-element-scheme for the
LLG equation which only requires the solution of one linear system per time step. Moreover,
unconditional convergence is proved.
In this work, we consider multiple extensions of Alouges’ analysis. First, we investigate

the pure LLG equation with an abstract effective field, while Alouges and the mentioned
subsequent works only consider classical field contributions. Via this approach, we derive two
conditions which guarantee unconditional convergence provided that they are satisfied by all
contributions of the effective field. We further show that all classical field contributions are
covered by this general advance, and that even a new multiscale model from [Bruckner, PhD
thesis, Vienna UT, 2013] falls into this setting.
In a second step, we deal with coupled problems, i.e. problems where LLG is coupled to a

second evolution equation, in order to include even more physical effects. More precisely, we
investigate coupling to the full Maxwell system (as a model problem for hyperbolic second order
PDEs) and the eddy-current equation (as a model problem for parabolic second order PDEs) for
a more precise modeling of the occurring magnetic fields. Moreover, we consider coupling to the
conservation of momentum equation (as a model problem for nonlinear coupling operators) to
account for magnetostriction, i.e. magnetoelastic effects. In all cases, we propose algorithms that
numerically decouple both equations, i.e. instead of one large (and possibly nonlinear) system,
we subsequently solve two smaller linear systems in each time step, one for LLG and one for
the coupled PDE. Despite this decoupling, which provides major advantages in practice, we still
prove unconditional convergence. Moreover, in all cases, our analysis yields constructive proofs
of the existence of (weak) solutions in the sense that the computable discrete solutions converge
towards some weak solution of the overall PDE system.
Numerical simulations complete the work.
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Chapter 1
Introduction

Magnetism accompanied mankind throughout the centuries. From the first reference by
Thales of Miletus (around 585 B.C.), who thought that certain materials attracted

each other because they have souls, to the construction and initial operation of the high-speed
Transrapid Maglev train in Shanghai in 2004, it shaped our understanding of the world.
The exploitation of magnetism, while not fully understood, led to the development of the
compass and its use in navigation which revolutionized travel sometime between the 9th
and 11th century. The first comprehensive scientific contribution to the understanding of
magnetism goes back to William Gilbert around 1600 with the famous work De Magnete,
Magneticisque Corporibus, et de Magno Magnete Tellure [Gil00]. In this work, Gilbert
even experimentally concluded that the earth itself is a giant magnet. Over time, more and
more scientists, among others Carl Friedrich Gauss and Michael Faraday, contributed
to the physical understanding and the mathematical modeling of magnetic fields and their
relationship to electric currents. Finally, in 1865, James Clerk Maxwell proposed a
set of equations which describe the interactions of electricity and magnetism and laid the
foundation to the study of electromagnetism, cf. [Max65]. Today, we count the electromagnetic
force as one of the four fundamental interactions between physical bodies. The unification
of the forces gravitation, electromagnetism, weak nuclear force, and strong nuclear force into
a unifying theory of everything is one of the major open problems in modern physics and
subject to comprehensive research. The history of magnetism is thus far from being over and
will undoubtedly influence science and technology for many more generations [Ver93].

In this work, we consider magnetic interactions of very small magnetic bodies. The mag-
netic condition of such a body at a given time is described by a physical quantity called
magnetization. Magnetic effects to control the behaviour of the magnetization are exploited
in various technological devices throughout all areas. In magnetic recording devices, e.g. hard
drives, for example, the magnetization of Ironoxid or Cobalt is used to store data. To that
end, a very thin layer of the magnetic material is applied to a slice. Via a magnetic field, the
magnetization of the material can now be aligned almost parallel into one direction (e.g. left
or right) in certain areas of the slice. The recording head which emits the magnetic field, can
then be utilized to change the direction of the magnetization in a specific area at any time.
Employing the interpretation, e.g., left=̂1 and right=̂0, any data can be stored in this way.
This basic functionality is visualized in Figure 1.1

1



Chapter 1. Introduction

Figure 1.1.: Basic functionality of a magnetic hard drive. Picture taken from www.elektronik-
kompendium.de, copyright of Patrick Schnabel is thankfully acknowledged.

On a microscale, the dynamical behaviour of the magnetization depends on a variety of
physical influences that exceed the simple response to a magnetic field. Instead, on this scale
one even needs to consider interactions on the atomistic level as well as the alignment of the
different molecules within the crystal lattice. The dynamical behaviour of a magnetization then
follows the Landau-Lifshitz-Gilbert equation which is a strongly nonlinear partial differential
equation which inherently includes some non-convex side constraint. The interpretation and
mathematical modeling of this equation as well as the influential effects are described in
detail below. Over time, the size of technological devices tends to get smaller under the
same requirements like e.g. storage capacity. In order to guarantee progress and working
technology while avoiding unnecessary costs, reliable and fast computer simulations, that take
into account as many physical effects as possible, are thus required.
In this thesis, we contribute to this requirement and construct an unconditionally convergent

numerical scheme to simulate micromagnetic problems. The main leitmotif of this thesis is
always the generality of the discretization approach. To be more precise, we investigate and
give answers to the following questions:

• What is the set of assumptions that an influential effect needs to fulfill in order to be
reliably included into the numerical scheme? Here, we always ensure that the scheme
remains unconditionally convergent. In particular, this includes:

– Can linear effects be included?

– Can nonlinear effects be included?

– Can time dependent effects be included?

– What can we say about the energy of the system?

• Are the effects considered in the classical literature compatible with our requirements?

• Are multiscale problems compatible with our requirements?

• Some effects require coupling of the Landau-Lifshitz-Gilbert equation to yet another
PDE. We show that those problems are also compatible with our scheme. This includes:

– Can we couple linear parabolic PDEs, e.g., the eddy-current formulation?

– Can we couple linear hyperbolic PDEs, e.g., the full Maxwell system?

– Can we include couplings, where the coupling operator is nonlinear, e.g., the mag-
netostrictive effect?

2



1.1. What is all about

– Can the individual problems be decoupled for the numerical simulation without
posing a condition on the discretization parameters?

• How can we make the overall integrator computationally attractive?

1.1. What is all about

The basic goal of this work, which coincides with the goal of many other works in the area of
dynamical micromagnetism, is to gain knowledge about the magnetization of a ferromagnetic
material of very small size. The magnetization of such a magnet is a physically measurable
quantity which basically states how magnetic the material is at a certain point and into a
certain direction. In principle, information about the state of the magnetization (or any other
physical quantity) can be gained in three ways.

(i) Experimentally

(ii) Analytically / Theoretically

(iii) Computationally (i.e. by means of a computer simulation)

While the second and third possibilities require a suitable model that describes the behaviour
of the magnetization under the influence of certain effects, the first one merely uses observation
in order to derive those very models. It therefore has to be completed before the other two
steps. As usually (and so in micromagnetics), this was done by experimental physicists,
and the reader is referred to the pioneering works [LL35] and [Gil55] from 1935 and 1955,
respectively, as well as to the monograph [HS08] and the references therein. The work of the
mathematician then begins in step (ii) as well-posedness of the model, existence of solutions,
and regularity properties are investigated. Here, we refer to the pioneering works [Vis85]
and [AS92] to name only a few. Finally, one is interested in the prediction of the behaviour
of the magnetization in certain setups in order to make the physical effects usable in, e.g.,
technological devices like magnetic hard drives. This prediction is usually done by means
of computer simulations, and thus the need for reliable and fast solvers of the given model
arises. To that end, a variety of work has been done, and the reader is referred to the overview
articles [KP06, Cim07a, GC09], the monograph [Pro01], and the references therein. A brief
overview is also given in Section 1.6.
The contributions of this thesis are located between (ii) and (iii) as we construct reliable

numerical schemes which are then rigorously analyzed and thus also give insight into the
properties of the solution.
Mathematically speaking, a magnet is modeled by a bounded, polyhedral domain Ω ⊂ R3

with boundary Γ = ∂Ω. The dynamics of the magnetization is investigated on the finite time
interval [0, T ] for some T > 0. The magnetization M in [A/m] is then given as a function

M : ΩT := (0, T )× Ω −→
{
x ∈ R3 : |x| = Ms

}
. (1.1.1)

Here, Ms denotes the saturation magnetization in [A/m]. This models the fact that the ferro-
magnet is saturated, i.e. that the magnetization cannot be increased any further by applying
a stronger magnetic field. The strength of the magnetization in a saturated material, mathe-
matically the length ofM at any point, is actually temperature dependent. In our setting, we

3



Chapter 1. Introduction

thus implicitly assume that the temperature does not change over time, i.e. the length of the
magnetization remains constant over time. Moreover, we assume that the temperature is be-
low the Curie point, where the magnet looses its ferromagnetic properties. The magnetization
can thus be written as M = Msm for some dimensionless direction m of unit length.

Remark . The inclusion of variable temperature into both, the simulations as well as the
development of recording devices, for so-called heat-assisted-recording, is currently an active
field of research. It is, however, beyond the scope of this work, and we refer to e.g. [BPS08,
BPS12] and the references therein for further information.

In physics literature, one often deals with the polarization J instead of M as the relevant
quantity, cf. e.g. [SSS+01]. This is, however, equivalent as it describes only some scaling with
the permeability of vacuum µ0 = 4π · 10−7 in [Tm/A]. This rescaling allows to work with
magnetic fields given in [T ], rather than [A/m] which is more suitable in some situations.
Together with the polarization J , one has the saturation polarization Js, and there holds

J = µ0M , Js = µ0Ms, and J = Jsm.

As mentioned above, various physical effects have an influence on the polarization resp. the
magnetization. Those effects now contribute to the so-called total effective field Heff in the
form of operators (on suitable Banach spaces). This effective field then drives the dynamical
behaviour of J via the Landau-Lifshitz-Gilbert equation which is described in the next section.
From a physical point of view, one often argues with energies rather than operators. Such an

approach is also possible here, since one can assign a certain energy to each physical effect. The
sum of all energies then denotes the total energy Etotal in [J ] of the polarization. The effective
field is then simply given by the first variation of the total energy after the polarization.
As one expects, the magnetization pursues a state of minimal energy and the stationary
solutions of the upcoming Landau-Lifshitz-Gilbert equation minimize the total energy Etotal,
cf. e.g. [Alo08b].

1.2. The Landau-Lifshitz-Gilbert equation and the effective field

The dynamical behaviour of a magnetic polarization J over time and under the influence of
an effective magnetic field Heff is described by the Landau-Lifshitz-Gilbert (LLG) equation

J t = − γ0

1 + α2
J ×Heff −

αγ0

(1 + α2)Js
J × (J ×Heff). (1.2.1)

Here, γ0 = 2.210173 · 105 in [m/(As)] denotes the gyromagnetic ratio, and Heff in [A/m]
denotes the total effective field which accounts for all the included physical effects below. The
effective field is given as the negative variation

Heff = −∂Etotal
∂J

(1.2.2)

of the total energy Etotal in [J ] after the polarization J . To ease the presentation, one usually
considers a non-dimensional formulation of LLG. We refer to [Gol12, Section 1.1], where the
derivation of this formulation is comprehensively discussed. As dimensionless equation, (1.2.1)
takes the form

mt = − 1

1 + α2
m× heff −

α

1 + α2
m× (m× heff), (1.2.3)

4



1.2. The Landau-Lifshitz-Gilbert equation and the effective field

Figure 1.2.: Precession part (left) and damping part (right) of the LLG equation.

for some dimensionless magnetization

m : ΩT −→ S2 :=
{
x ∈ R3 : |x| = 1

}
.

In addition, (1.2.3) is supplemented by the following initial and boundary conditions

m(0) = m0 ∈H1(Ω,S2), (1.2.4)
∂nm = 0 on ∂ΩT := (0, T )× ∂Ω. (1.2.5)

In the following, we will investigate this equation a little bit closer.

The precession term

The first term on the right hand side of (1.2.3) denotes the so-called precession and can be
rigorously derived from quantum mechanical concepts. Starting from Schrödinger’s equation

d

dt
〈Mi〉 =

1

i}
〈|Mi, Ê |〉, i = 1, 2, 3 (1.2.6)

for the Hamiltonian Ê , a technical derivation yields

mt = −m× heff, (1.2.7)

which is the classical undamped Landau-Lifshitz equation. For details on the derivation of
equation (1.2.7), we refer to [Hrk05, GD08, Woh10]. The solution of Equation (1.2.7) describes
a rotation of the magnetization m around the effective field heff. This behaviour is visualized
in Figure 1.2 (left), where heff is visualized by the green arrow and the magnetization at two
points in time, t1 and t2, is plotted in red and blue, respectively.

The damping term

The second part of (1.2.3) cannot be motivated mathematically. It was phenomenologically
introduced by Landau and Lifshitz in [LL35] for some damping parameter λ to account for

5



Chapter 1. Introduction

Figure 1.3.: Evolution of the magnetization, where precession and damping are taken into
account.

friction effects. Consequently, the equation

mt = −λm× (m× heff) (1.2.8)

describes damping of the magnetization towards the effective field. This behaviour is visualized
in Figure 1.2 (right).
Combining both equations (1.2.7) and (1.2.8), one derives the classical Landau-Lifshitz

equation

mt = −m× heff − λm× (m× heff) (1.2.9)

from [LL35]. Taking both effects into account, it describes a magnetization that rotates around
the effective field while being damped towards it. This behaviour is visualized in Figure 1.3.

Gilbert’s contribution

By 1955, a number of different damping mechanisms had been studied, and we refer to [Gil04]
and the references therein for further information. It turned out, however, that while the
commonly used Landau-Lifshitz damping term was very feasible for small damping 0 < λ� 1,
it failed to produce useful results as damping grows larger λ � 1. To that end, Gilbert
introduced a new phenomenological damping term which allowed to take into account larger
(especially non-eddy-current) damping as it occurs, for example, in thin Permalloy sheets,
cf. [Gil55, Gil04]. He derived the equation

mt = −m×
(
heff − αmt

)
, (1.2.10)

which is equivalent to

mt = − 1

1 + α2
m× heff −

α

1 + α2
m× (m× heff). (1.2.11)

6



1.2. The Landau-Lifshitz-Gilbert equation and the effective field

The last equation turns out to be much more suitable for larger damping α � 1. For small
damping α� 1, on the other hand, the term α2 is negligible, and the LLG equation (1.2.11)
is a very good approximation of (1.2.9) for λ = α.
Throughout this work, we will switch between various different equivalent formulations of

LLG as they have distinct advantages and disadvantages. In addition to the equations (1.2.10)
and (1.2.11), there is yet another equivalent formulation and for sake of readability, we collect
all formulations in the following lemma.

Lemma 1.2.1. Let LLG be supplemented with the initial and boundary conditions

m(0) = m0 ∈H1(Ω, S2)

∂nm = 0 on ∂ΩT .

Then, the following formulations of LLG are equivalent:

a) mt = − 1

1 + α2
m× heff −

α

1 + α2
m× (m× heff) (1.2.12)

b) αmt + m×mt = heff −m(m · heff) and |m| = 1 a.e. in ΩT (1.2.13)
c) mt − αm×mt = heff ×m. (1.2.14)

Proof. The proof is done by straightforward calculations and exploits properties of the cross
product. The elaborated arguments can be found in [Gol12, Lemma 1.2.1].

While equation a) is suitable for the interpretation and physical understanding of the two
different effects (precession and damping) that drive the magnetization, it will not be used for
the upcoming analysis. Instead, equation b) will be used for the construction of a numerical
scheme below. In order to be consistent with the available literature, equation c) will finally
serve for the definition of a weak solution.
We close this short section with an observation that directly follows from the LLG equa-

tion (1.2.12). Scalar multiplication with m almost everywhere on ΩT yields

mt ·m = − 1

1 + α2
m× heff ·m−

α

1 + α2
m× (m× heff) ·m.

In combination with the cross product property (a× b) · a = 0 for any a, b ∈ R3, this yields

1

2
∂t|m|2 = mt ·m = 0 pointwise almost everywhere in ΩT . (1.2.15)

The equation thus preserves the length of the vector-valued magnetization at almost every
point of the computational domain ΩT which is in good agreement with (1.1.1). From |m0| = 1,
we thus conclude |m| = 1 almost everywhere in ΩT . Moreover, we conclude that the time
derivative mt of the magnetization is pointwise orthogonal to m. This property will massively
enter the construction of our numerical integrator below. Note, however, that this property
only follows from the formulations a) and c) of LLG and has to be explicitly supposed for
formulation b).

7



Chapter 1. Introduction

1.3. Classical field contributions

After we shed some more light on the LLG equation, we take a closer look at the physical
effects which influence the dynamic behaviour of the magnetization. In the first part, we
consider the classical field contributions

• Exchange

• Microcrystalline anisotropy

• External field

• Strayfield

which are well-known throughout the literature and for which various analytical and numerical
results are available. In the next section, we then consider physical effects that extend this
classical scheme.

Exchange

The exchange effect describes the property of a ferromagnet that it prefers a constant mag-
netization. If the sample Ω is large enough, this leads to the formation of domain structures,
i.e. subregions of Ω where the magnetization is aligned in parallel, but allows jumps along the
walls. Since the investigation of magnetic domains in nanostructures is beyond the scope of
this work, we refer to the works [Get08, HS08] and the references therein. The corresponding
energy contribution reads

Eexch =
1

2
Ce

∫
Ω
|∇m|2, (1.3.1)

where Ce > 0 denotes the material dependent exchange constant. The contribution to the
effective field caused by the exchange is then given by the Laplacian of the magnetization

hexch = Ce∆m. (1.3.2)

As this contribution involves not only the magnetization, but also its spatial derivative, it
requires special treatment. In order to guarantee unconditional convergence of the upcoming
scheme, this contribution will thus be treated implicitly.

Microcrystalline anisotropy

In each ferromagnetic material, the particles are aligned in a crystal lattice in which certain
directions may be distinguished. A magnetization which is not aligned with those easy axes,
has a higher energetic value. Consequently, the magnetization prefers the easy directions over
the others. This material dependent effect is called microcrystalline anisotropy. A magnetic
material may have one (uniaxial) or more (multiaxial) easy directions and the preference of
the magnetization might even be inhomogeneously distributed between the different easy axes.
For more details and illustrations, the interested reader is referred to [HS08, Section 3.2.3].
For a given anisotropy density

φ : B :=
{
x ∈ R3 : |x| ≤ 1

}
−→ R3, (1.3.3)
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1.3. Classical field contributions

the corresponding anisotropy energy reads

Eani = Cani

∫
Ω
φ(m), (1.3.4)

where Cani denotes the anisotropy constant. Prominent examples for φ are the uniaxial density

φ(x) = −1

2
(x · e)2,

with the easy axis e, or the cubic density

φ(x) = K1(x2
1x

2
2 + x2

2x
2
3 + x2

3x
2
1) +K2x

2
1x

2
2x

2
3.

The corresponding field contribution is then given by hani = −CaniDφ(m).

External field

The magnetization of a ferromagnetic body can obviously be influenced if it is exposed to an
external magnetic field f . This effect is called Zeeman contribution. It states that the magne-
tization will prefer alignment with the external field. The corresponding energy contribution
is given by

Eext = −
∫

Ω
f ·m, (1.3.5)

and the field contribution to heff simply by f . Depending on the regularity of hext = f ,
different approximations can be used for a numerical integrator, and we refer to [Gol12] for
details.

Strayfield

The last of the classical contributions considered in micromagnetic theory is the so-called
strayfield or demagnetizing field. It accounts for the fact that each magnetized body itself
induces a magnetic field in the whole space R3 which then again influences the magnetization
until an equilibrium is reached. Formally, this field H follows Maxwell’s equations, but of-
tentimes, it suffices to utilize only a simplified, stationary version. Instead of solving the full
Maxwell system from Section 1.4.2 below, one only solves

∇×H = 0,

∇ ·B = ∇ · µ0(H + m) = 0,

where B denotes the magnetic induction. Since H is curl-free, there exists some scalar po-
tential u ∈ H1(R3) such that H = ∇u. Additionally, the above equations are supplemented
by boundary conditions and a radiation condition, cf. e.g. [Hrk05, Section 4.2.3]. Altogether,
one derives the transmission problem

∆u = div m in Ω,

∆u = 0 in R3\Ω,
[u] = 0 on ∂Ω, (1.3.6)

[∂nu] = −m · n on ∂Ω,

u(x) = O(1/|x|) for |x| −→ ∞.

9



Chapter 1. Introduction

Here, [·] denotes the jump operator. The energy contribution is then given by

Estray =
1

2

∫
R3

|H|2 =
1

2

∫
R3

|∇u|2 =
1

2

∫
R3

|P(m)|2,

where P(m) = ∇u denotes the strayfield operator and expresses the dependence on m. This
contribution can be further simplified since P(·) is the L2-orthogonal projection onto the space

L2
∇(R3) =

{
f ∈ L2(R3) : ∃u ∈ H1(R3), ∇u = f

}
,

cf. e.g. [Pra04, Proposition 3.1]. This yields(
P(m),P(m)

)
=
(
P(m),m

)
+
(
P(m),P(m)−m

)︸ ︷︷ ︸
=0

.

Since the magnetization vanishes outside the computational domain Ω, one deduces

Estray =
1

2

∫
Ω
P(m) ·m, (1.3.7)

and the corresponding field contribution is given by hstray = P(m). Moreover, there holds
boundedness

‖P(m)‖Lp(R3) ≤ C(p)‖m‖Lp(Ω) (1.3.8)

for all 3/2 < p <∞, cf. e.g. [Pra04, Theorem 5.1]. In particular, P(·) is self-adjoint and there
holds (

P(u),v
)

=
(
u,P(v)

)
for all u,v ∈ L2(R3). (1.3.9)

These last two estimates will be exploited below to gain improved energy estimates.

The energy functional and the effective field

Altogether, the total energy, which is classically considered throughout the literature, is thus
given by

Etotal = Eexch + Eani + Eext + Estray

=
1

2
Ce

∫
Ω
|∇m|2 + Cani

∫
Ω
φ(m)−

∫
Ω

f ·m +
1

2

∫
Ω
P(m) ·m.

(1.3.10)

This total energy is also called Gibb’s free energy. The corresponding magnetic field is then
given by

heff = hexch + hani + hext + hstray

= Ce∆m− CaniDφ(m) + f − P(m).
(1.3.11)

In the subsequent sections and chapters, we follow a more general approach, where we
introduce an abstract field operator π(·). Via this approach, we derive two simple conditions
that a field contribution needs to fulfill, to guarantee convergence of our scheme. In this
context, we also consider the energy of the general operator given by

Egeneral =

∫
Ω
π(m) ·m. (1.3.12)

This ansatz particularly includes the classic energy functionals and leads to the desired field
contribution π(m) (up to some constant) if π(m) is, e.g., polynomial with respect to m.
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1.4. Extended contributions

1.4. Extended contributions

In the following, we introduce physical effects that extend the classical scheme from above as
they require the inclusion of multiple domains on different scales or even coupling to other
PDEs. The construction and analysis of a convergent scheme for those coupled problems is
one of the main contributions of this thesis.

1.4.1. Multiscale modeling

Ωcoil

Ω1

Ω2

Figure 1.4.: Example geometry which demonstrates model separation into LLG region Ω1 and
Maxwell region Ω2 (and in this case in an electric coil region Ωcoil). Here, Ω1 represents
one grain of a recording media and Ω2 shows a simple model of a recording head. —
Picture taken from [BFF+12], copyright of Florian Bruckner is thankfully acknowledged.

Many devices that rely on micromagnetic interactions, contain several parts on several different
length scales. Often, the magnetization dynamics after the LLG equation are important only
on a small domain, whereas for the magnetization on other parts, rough estimates are sufficient.
We face such a problem, if we want to simulate a complete read/write head of a magnetic
hard disk, for example, as it is visualized in Figure 1.4. Here, one is interested in the detailed
remagnetization process of the magnetic grains, simplified by Ω1. For the other domains,
however, it is sufficient to have an approximation of the magnetization such that the magnetic
field that they induce, and which then reacts back on Ω1, can be approximated. In this thesis,
we consider a model by Bruckner which was introduced in [Bru13]. On the small domain
Ω1, we are interested in the magnetization dynamics of m1 given by the LLG equation. On
the macroscopic domain Ω2, on the other hand, the model involves some (possibly nonlinear)
material law

m2 = χ(|H|)H.

Suitable material laws can be found, e.g., in [RZMP81]. The corresponding strayfields ∇u1 =
P(m1) and ∇u2 = P(m2) are then computed and both contribute to the effective field heff of
the LLG domain Ω1.

11
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1.4.2. The Maxwell system

As mentioned above, the magnetostatic strayfield is only an approximation of the magnetic
field generated by the magnetization m. The complete field H, which is really induced, is the
solution of the full Maxwell system which is then coupled to the LLG equation. Depending
on the material and the considered timescale, it is not always necessary to solve the full
system, and there are different approximation levels that suit different situations. Besides
the magnetostatic approximation, we consider the full system, as well as the eddy-current
simplification in this thesis. For many situations, the classic strayfield already gives sufficiently
good approximations, but this is not always the case, see e.g. [MV01, Hrk05]. In the following,
we briefly present the additional equations.

The full Maxwell system

We start with the Maxwell’s equations as they are given in [Mon08, Section 1.2]. The four
vector-valued quantities E (electric field intensity), D (electric displacement), H (magnetic
field intensity), and B (magnetic induction) fulfill

∂tB +∇×E = 0, (1.4.1a)
∇ ·D = ρ, (1.4.1b)

∂tD −∇×H = −J̃ , (1.4.1c)
∇ ·B = 0. (1.4.1d)

Equation (1.4.1a) is called Faraday’s law and describes the influence of a changing magnetic
field on the the electric field. Condition (1.4.1b) goes back to Gauss and gives the effect of
the charge density ρ on the electric displacement. Equation (1.4.1c) is Ampére’s circuital law
(modified by Maxwell) and finally, condition (1.4.1d) takes into account that B is solenoidal.
In the above equations, J̃ denotes the electric current density. The Maxwell equations are
computed on some domain Ω̂ into which the magnet Ω is embedded.
Depending on the presence, respectively absence of media, the relations between the above

quantities are given by certain material laws. To ease the presentation, we assume the magnet
Ω ⊂ Ω̂ to be much smaller than the Maxwell domain Ω̂. Moreover, as is usually done in prac-
tice, we assume the difference Ω̂\Ω to be vacuum. For the electric field and the displacement,
we then get the relation

D = ε0E, (1.4.2)

where ε0 denotes the electric permittivity of free space. Since the magnetic induction is
obviously influenced by the magnetization of the ferromagnetic body Ω, we need to employ
the slightly more involved material law

B = µH = µ0(H + m). (1.4.3)

Here, µ denotes the magnetic permeability and µ0 the permeability of vacuum. Plugging (1.4.2)
and (1.4.3) into the equations (1.4.1a)–(1.4.1d), we derive

µ0∂tH +∇×E = −µ0mt, (1.4.4a)
ε0∇ ·E = ρ, (1.4.4b)

ε0∂tE−∇×H = −J̃ , (1.4.4c)
∇ ·H = −∇ ·m. (1.4.4d)
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Next, according to [Hrk05, Section 6.1.1], the electric current density can be further split into

J̃ = Js + Jfree + Jmat, (1.4.5)

denoting an independent current source term Js, the free currents Jfree, and the material
currents Jmat. Furthermore, the material currents and the magnetization are connected via
the relation

∇×m = Jmat = χΩσE, (1.4.6)

where χΩ denotes the magnetic susceptibility. We note that in a non-dimensional formu-
lation of the Maxwell system, χΩ coincides with the characteristic function of Ω, since the
susceptibility of vacuum is zero. Employing this relation, we finally end up with

µ0∂tH +∇×E = −µ0mt, (1.4.7a)
ε0∇ ·E = ρ, (1.4.7b)

ε0∂tE−∇×H + σχΩE = −J, (1.4.7c)
∇ ·H = −∇ ·m, (1.4.7d)

where J = Js + Jfree consists of the source currents and the free currents.

The eddy-current simplification

Starting from the equations (1.4.7), we aim to derive the so-called eddy-current equation which
is a simplification of the Maxwell system for good conducters. More precisely, this is modeled
by the condition

ε0∂tE� σE, (1.4.8)

cf. e.g. [ABN00, Hrk05]. Taking into account the relation

Jfree + Jmat = σE, (1.4.9)

and Jmat = σχΩE, from (1.4.7c) we obtain

ε0∂tE−∇×H + σE = −Js. (1.4.10)

Exploiting (1.4.8) and neglecting the source currents, we derive

∇×H = σE. (1.4.11)

Plugging this equation into (1.4.7a), we finally derive

µ0∂tH +
1

σ
∇× (∇×H) = −µ0mt, (1.4.12)

which is the desired eddy-current equation.
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1.4.3. Magnetoelastic interactions

Magnetoelastic properties are intrinsic to all magnetic materials. In ferromagnetic materi-
als, like Terfenol-D, they are particularly more enhanced and the elasticity is exploited in
many technical devices like positioning sensors and actuators. The effect that models the
deformation of a ferromagnetic body under the influence of a magnetic field is called magne-
tostriction. The inclusion of this effect after [Vis85, Baň05b] relies on the coupling of LLG to
the conservation of momentum equation

%utt −∇ · σσσ = 0 in ΩT , (1.4.13)

supplemented by the initial and boundary conditions

u(0) = u0 in Ω,

ut(0) = u̇0 in Ω, and
u = 0 on Γ.

Here, % denotes the material density, and the vector-valued quantity u is the displacement.
The stress tensor σσσ is given by

σσσ := λλλeεεεe(u,m), σij =
3∑

p,q=1

λeijpqε
e
pq,

εεεe(u,m) := εεε(u)− εεεm(m)

for some material tensor λλλe. The total strain tensor is defined as the symmetric part of the
gradient

εij(u) :=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
,

and the magnetic part is given by

εεεm(m) := λλλmmmT ,

where λλλm denotes another material tensor. The elastic effect is finally incorporated into the
effective field by means of the operator

(hm)q =
(
hm(u,m)

)
q

:=

3∑
i,j,p=1

λmijpqσij(m)p, q = 1, 2, 3,

where (·)q denotes the q-th component.

1.5. Preliminaries & Notation

In this short section, we aim to fix some notation that is widely used throughout the work.
Additional notation will be explained as the need arises.
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1.5. Preliminaries & Notation

Norms

Throughout this thesis, we investigate functions in various Banach spaces which may or may
not be time-dependent. For a better overview, we collect the notation of the corresponding
norms here. Before the actual definition of those norms and spaces, however, we like to
address the issue of dimension, since we will mostly work in three-dimensional space. To
prevent confusion with scalar-valued functions, multidimensional functions will be indicated
by bold letters. In addition, we will also use bold letters for function spaces consisting of
multidimensional functions. The L2-norm of a square integrable three-dimensional function
u : R3 → R3 on some domain Ω ⊆ R3 with u = (u1, u2, u3), for example, will thus be denoted
by

‖u‖2
L2(Ω)

=

∫
Ω
|u(x)|2 dx =

∫
Ω
|u1(x)|2 + |u2(x)|2 + |u3(x)|2 dx.

Next, we define some frequently used spaces and their corresponding norms in the multidi-
mensional setting. We denote the space of square-integrable functions on some space-time
domain ΩT by L2(ΩT ) equipped with the norm

‖u‖2
L2(ΩT )

:=

∫
ΩT

|u(t,x)|2 dx dt =

∫ T

0

∫
Ω
|u(t,x)|2 dx dt =

∫ T

0
‖u(t)‖2L2(Ω) dt

= ‖u‖2
L2([0,T ],L2(Ω))

,

where the last equality is in analogy to the definition from [Eva02, § 5.9.2]. For the sec-
ond equality, we employed Fubini’s theorem. Those functions in L2(ΩT ) that admit a weak
derivative which is again in L2(ΩT ), are denoted by H1(ΩT ), with

‖u‖2
H1(ΩT )

:= ‖u‖2
L2(ΩT )

+ ‖∇u‖2
L2(ΩT )

+ ‖∂tu‖2L2(ΩT )
,

where ∇(·) denotes the weak spatial gradient operator and ∂t(·), sometimes also denoted by
(·)t is the (weak) time derivative. Note that the weak derivative of H1(ΩT )-functions even
includes one weak time derivative. In addition, we define the L2(ΩT )-functions which admit a
weak derivative in L2(ΩT ) only in time by H1

(
(0, T );L2(Ω)

)
, and those that admit one weak

derivative only in space, by L2
(
(0, T );H1(Ω)

)
. The corresponding norms are given by

‖u‖2
H1
(

(0,T );L2(Ω)
) :=

∫ T

0
‖u(t)‖2

L2(Ω)
+ ‖∂tu(t)‖2

L2(Ω)
dt

and

‖u‖2
L2
(

(0,T );H1(Ω)
) :=

∫ T

0
‖u(t)‖2

L2(Ω)
+ ‖∇u(t)‖2

L2(Ω)
dt.

Finally, and in analogy to [Eva02, §5.9.2], we define the functions that are H1 in time and
map each t to a function in H1(Ω), by

‖u‖2
H1
(

(0,T );H1(Ω)
) :=

∫ T

0
‖u(t)‖2

H1(Ω)
+ ‖∂tu(t)‖2

H1(Ω)
dt

=

∫ T

0
‖u(t)‖2

L2(Ω)
+ ‖∇u(t)‖2

L2(Ω)
+ ‖∂tu(t)‖2

L2(Ω)
+ ‖∇∂tu(t)‖2

L2(Ω)
dt.
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Note carefully that H1(ΩT ) 6= H1
(
(0, T );H1(Ω)

)
since the latter additionally involves the

spatial gradient of the weak time-derivative. To ease the presentation as well as the readability,
we will omit the time- and spatial domains if the context is clear and thus use the following
abbreviations throughout:

H1
(
(0, T );L2(Ω)

)
=: H1(L2),

L2
(
(0, T );H1(Ω)

)
=: L2(H1),

H1
(
(0, T );H1(Ω)

)
=: H1(H1).

Moreover, if no confusion is possible, we will omit explicitly stating the integration variable,
e.g. ∫ T

0
‖u‖2

L2(Ω)
dt =

∫ T

0
‖u‖2

L2(Ω)
, and∫

Ω
|u(t,x)| dx =

∫
Ω
|u(t,x)| for t ∈ [0, T ].

Finally, the scalar products of two functions φ,ψ ∈ L2(ΩT ) or L2(Ω) are denoted by (φ,ψ).
Sometimes, to avoid confusion, also 〈φ,ψ〉 is utilized. We stress, however, that ambiguity is
never an issue. For two vectors x,y ∈ R3, the scalar product is denoted by x · y.

Representations of time-dependent spaces

Formally, L2(ΩT ) and L2(L2) denote different spaces. The first one simply involves the
square-integrable functions over the time-space cone ΩT , whereas the second space involves the
square-integrable functions over [0, T ] with values in L2(Ω). Therefore, a function u ∈ L2(ΩT )
maps from ΩT to R3, i.e. almost everywhere in ΩT , we have

u : ΩT → R3 with

(t, x) 7→ u(t, x) ∈ R3.

A function ũ ∈ L2(L2), on the other hand, maps from [0, T ] into the space of square-integrable
functions L2(Ω), i.e.

ũ : [0, T ]→ L2(Ω) with

t 7→ ũ(t) ∈ L2(Ω).

We like to emphasize that, due to the Fubini theorem, both spaces essentially coincide. More-
over, there is a natural identification, since ũ ∈ L2(L2) implicitly yields a function û with

û : ΩT → R3 with
(t, x) 7→ û(t, x) := ũ(t)(x)

and u := û.
We may thus consider a square-integrable function as a function on the time-space cone,

or as a time-dependent function with values in L2(Ω). In the following, both representations
will prove suitable in different situations, and we will switch between the two possibilities
with no notational distinction. Obviously, though, time evaluations are to be understood
almost everywhere, if we do not have any information on the smoothness of the corresponding
function.
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1.6. Overview over the current literature

Convergence

We frequently work with subconvergent sequences, i.e. sequences that admit the extraction
of a convergent subsequence. This is due to the fact that most of the upcoming convergence
proofs rely on compactness arguments. To clarify the presentation, we therefore introduce a
special notation for this case. To that end, let X be a normed vector space. If a sequence
(an) ⊆ X admits a subsequence an`

that converges towards some a ∈ X for ` → ∞, i.e.
lim
`→∞

‖an`
− a‖X = 0, we write

an
sub−−→ a in X.

If the sequence is only weakly subconvergent, i.e. it admits a weakly convergent subsequence,
we write

an
sub−−⇀ a in X.

What else?

In the upcoming results, we will always state constants and their dependencies. Throughout
the proofs, however, we omit multiplicative constants for sake of readability. As a remedy, we
use the notations . and & to denote smaller or equal and larger or equal, respectively, up to
a multiplicative constant, i.e. for two quantities A,B and a constant c > 0, we write A . B if
A ≤ cB. Here, the constant c > 0 is always independent of the time- and spatial parameter
if not explicitly stated otherwise. In the case A . B and B . A, we write A ∼ B.

1.6. Overview over the current literature

The Landau-Lifshitz-Gilbert equation poses a problem of equal interest for the physical as well
as for the mathematical community. Its great applicability and necessity for the simulation
and construction of technological devices cannot be overestimated. On the other hand, the
equation itself poses a whole set of mathematical difficulties such as

• a strong nonlinearity,

• the non-convex side constraint |m| = 1 almost everywhere,

• possible nonlocal field contributions,

• inclusion of coupled problems, or

• possibly nonlinear coupling to other PDEs.

All those problems complicate the construction and analysis of numerical integrators for LLG
and yet, make the equation that much more interesting. Consequently, many contributions
to the analysis and numerics of LLG have been made in the recent years. In this section, we
aim to give a brief overview over the current state of the art and also embed our contribution
into the bigger context.
Obviously, we cannot cover the complete literature, so we will restrict ourselves to those

works which are in direct correlation to this thesis. First of all, this includes only the math-
ematical literature. For a comprehensive overview over the state of the art in the physics
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Chapter 1. Introduction

literature, we refer to [Kro07, HS08] and the references therein. Next, we consider only
those works that contribute to the analysis and numerics of weak solutions. For literature
on strong solutions, we refer to the overview articles [KP06, Cim07a, GC09] as well as the
monographs [Pro01, Baň05b, Cim05] and the references therein. A nice overview is also
given in [Gol12]. For details on strong solutions of LLG with magnetostriction, we refer
to [BS05] and [BS06], where also numerical schemes are considered. In [Baň08], even a pos-
teriori estimates for LLG with magnetostriction can be found and an adaptive algorithm is
proposed. For strong solutions of the Maxwell-LLG system, we refer to [MV99, dSM+05]. The
works [Cim07b, Cim07c, Cim08] consider strong error estimates for the Maxwell-LLG system
and even provide an analysis of the regularity properties of periodic solutions.
First results on the existence of weak solutions of LLG, even in the presence of the full

Maxwell system and the magnetostrictive effect, go back to Visintin [Vis85]. Here, however,
the notion of a weak solution was different from what is used nowadays. In [AS92], the authors
first defined a weak solution that is also the foundation for this thesis. There, a function m is
a weak solution of the Landau-Lifshitz equation (1.2.9) for the simplified field heff = hexch, if
it fulfills the following definition.

Definition 1.6.1. Let m0 ∈ H1(Ω) with |m0| = 1 almost everywhere, then m is a weak
solution of LLG if

(i) for all T > 0,m ∈H1(ΩT ), |m| = 1 almost everywhere;

(ii) for all ϕ ∈H1(ΩT ), there holds∫
ΩT

mt ·ϕ+ λ

∫
ΩT

(m×mt) = −(1 + λ2)

∫
ΩT

(m×∇m) · ∇ϕ;

(iii) m(x, 0) = m0(x) in the sense of traces;

(iv) for all T > 0, ∫
Ω

|∇m(T )|2

2
+

λ

1 + λ2

∫
ΩT

m2
t ≤

∫
Ω

|∇m0|2

2

Moreover, Alouges and Soyeur showed in this work, that weak solutions exist and are,
in general, not unique. To that end, they showed the existence of a weak solution m and then
constructed another (stationary solution) m0 which is weakly harmonic, i.e. it satisfies

−∆m0 = m0|∇m0|2

in the distributional sense. Given the additional length preservation constraint, this function
is a weak solution of the Landau-Lifshitz equation. In a next step they proved that m 6= m0

and even constructed a continuum of weak solutions by

mt(s) = m0 if s ≤ t,
mt(s) = m(s− t) otherwise ,
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1.6. Overview over the current literature

for all t > 0 and where m is the constructed solution with m(0) = m0. In [AS92], however,
the authors only treat the LL equation, rather than LLG and consider an effective field with
exchange only. For those reasons, our notion of a weak solution 2.1.1 is slightly different.
The existence of weak solutions of the Maxwell-LLG system is shown in [CF98], and for the
existence of weak solutions of LLG with magnetostriction, we refer to [CEF11].
Next, we consider works which provide (convergent) numerical integrators for the LLG

equation. Those integrators can be divided into two groups depending on how they treat the
geometric side constraint. More precisely, we distinguish between

• projection based integrators and

• non-projection based integrators.

In the case of non-projection based schemes, the side constraint has to be implicitly enforced
by the algorithm, whereas in the other case, it is explicitly enforced by normalization. For
both cases, there exist prototype schemes which inspired a whole bunch of future publications.
Concerning the projection based integrators, the pioneering work is the one by Alouges
and Jaisson [AJ06]. They considered an explicit finite element scheme for the original LL
equation, where they employed the equivalent formulation similar to (1.2.13). Introducing a
free variable v which approximates the time derivative and testing in the pointwise tangent
space K

mj
h
, they derive the scheme

λ(vjh,ϕ)−
(
(mj

h × vjh),ϕ
)

= −(∇vjh,∇ϕ) + (heff,ϕ), for all ϕ ∈ K
mj

h
,

where mj
h is assumed to be given. In a second step, the node constraint is enforced by nodewise

normalization, i.e.

mj+1
h (z) =

mj
h(z) + kvjh(z)

|mj
h(z) + kvjh(z)|

, (1.6.1)

for all nodes z ∈ Nh. Here and throughout, h, k > 0 denote the spatial and temporal mesh
parameters. A major advantage of this scheme, which will also be found in all follow-up works,
is that, despite the nonlinearity of LL resp. LLG, only one linear system needs to be solved
per timestep. In [AJ06], the authors prove, that the (in time interpolated) discrete solutions
provide a subsequence mhk that weakly converges towards a weak solution m of LL in the
sense of Definition 1.6.1, provided that first k, and afterwards h is driven to 0. We emphasize
that here, as well as in all inspired works, the proof is constructive in that it even yields
existence of weak solutions without any regularity assumptions. Throughout, the line of proof
is always given by the three steps:

boundedness of
discrete quantities 7−→ Extraction of weakly

convergent subsequences 7−→ Identification with
weak solution

In 2008, the result from above was improved by Bartels, Ko, and Prohl in [BKP08]. Here,
the authors prove that the integrator from [AJ06] provides a weakly subconvergent sequence
of discrete solutions as (h, k) → (0, 0), provided kh−1−d/2 → 0. Moreover, the efficiency of
the scheme was further increased by incorporating mass-lumping, i.e. reduced integration.
The authors did, however, only consider a reduced effective field heff = ∆m. In [BKP08],
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Chapter 1. Introduction

the authors specifically employed the Alouges-Jaisson tangent plane scheme because of its
stability for small damping parameters λ, as their focus was on a numerical study of finite
time blow-up for small damping. In this thesis, we will also contribute to those studies.
The next improvement to the tangent plane scheme was provided by Alouges in 2008,

cf. [Alo08a]. Here, the author managed to circumvent the disadvantages of an explicit dis-
cretization by utilizing the implicit discretization

α(vjh,ϕ)− (mj
h × vjh,ϕ) = −(1 + α2)

(
∇(mj

h + θkvjh),∇ϕ
)

for all vjh ∈ Kmj
h
,

where θ ∈ [0, 1] is used to steer the scheme. That is to say, θ = 0 denotes the explicit
scheme from above, θ = 1 denotes a fully implicit scheme, and θ = 1/2 is a Crank-Nicholson
type discretization. The modulus constraint is again enforced by nodewise normalization,
i.e. (1.6.1). In this work, the author proves existence of a weakly convergent subsequence
as (h, k) → 0 independently of each other, provided θ ∈ (1/2, 1]. This work again inspired
multiple sequels, among others this thesis. In [Gol12], the scheme was extended to cover all
of the classic field contributions from Section 1.3, where only the exchange contribution is
treated implicitly, and all the other contributions are treated explicitly. Moreover, reduced
integration to enhance the scheme’s efficiency was rigorously included into the analysis. In
total, the derived scheme is given by

α(vjh,ϕ)h + (mj
h × vjh,ϕ)h = −Ce

(
∇(mj

h + θkvjh),∇ϕ
)

+
(
hlow(mj

h),ϕ
)

for all ϕ ∈ K
mj

h

and subsequent normalization. Here, the advantages from the implicit scheme could be car-
ried over and the author proves unconditional weak subconvergence towards a weak solution.
Independently of [Gol12], the authors of the work [AKT11] also extended the implicit tangent
plane scheme to a semi-implicit scheme for the full effective field with an unconditional con-
vergence result. Unlike [Gol12], however, [AKT11] does not study the influence of additional
discretization errors which arise, e.g., for the strayfield computation. Moreover, they even
propose a first second order in time formulation without convergence analysis. In [AKST12],
the authors propose the second order in time scheme(
ψm(mj

h)vjh,ϕ
)

+ (mj
h × vjh,ϕ) +

k

2

(
(1 + ρ(k))∇vjh,∇ϕ

)
−
(
hstray(vjh),ϕ

)
−
(
Dφ(vjh),ϕ

)
= −(∇mj

h,∇ϕ) +
(
hstray(mj

h) + hext +Dφ(mj
h),ϕ

)
,

for all ϕ ∈ K
mj

h
. Here, ψm denotes a cut-off function, and ρ(k) → 0 as k → 0. The scheme

is motivated by not simply taking vjh as the approximation of mt at tj , but rather as a
higher order Taylor expansion. The drawback is, however, that the scheme requires implicit
treatment of all field contributions. The original work [Alo08a] of Alouges also inspired the
work [LT12], where coupling to the eddy-current equation is considered, as well as [GLT13],
which deals with the stochastic LLG equation. Finally, it is the main foundation of this
thesis, where the original results are extended in multiple ways while still maintaining the
initial advantages.

As prototype scheme for non-projection based methods serves the work [BP06] from Bartels
and Prohl from 2006. The authors combine reduced integration with a midpoint based
approach and derive

(dtm
j+1
h ,ϕ)h + α(mj+1

h × dtm
j+1
h ,ϕ)h = (1 + α2)(m

j+1/2
h × ∆̃hm

j+1/2
h ,ϕ)h ∀ϕ ∈ S1(Th).
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Here, dtm
j+1
h = (mj+1

h −mj
h)/k denotes the first order difference quotient, mj+1/2

h = 1/2(mj+1
h +

mj
h) the midpoint evaluation, and ∆̃h the discrete Laplacian defined by

−(∆̃hφ,ϕh)h = (∇φ,∇ϕh) for all ϕh ∈ S1(Th).

One easily verifies that the mass lumping is employed here not only for efficiency reasons,
but rather ensures the modulus constraint provided the initial data fulfills |m0| = 1 almost
everywhere. Given the exact solvability of the above system of equations, the authors prove
unconditional convergence towards (and hence existence of) a weak solution of LLG. The
system is, however, nonlinear and thus requires an iterative solution. To that end, in [BP06],
a fixed point iteration is proposed which again leads to a coupling of the mesh parameters
and allows convergence only if k ≤ Ch2.
In [BBP08], the authors extend the midpoint scheme to the Maxwell-LLG problem and

derive

(dtm
j+1
h ,ϕ)h + α(mj

h × dtm
j+1
h ,ϕ)h

= (1 + α2)
(
m
j+1/2
h × (∆̃hm

j+1/2
h + PVhH

j+1/2
h )

)
h

for all ϕ ∈ S1(Th),

ε0(dtE
j+1
h ,ψψψ)− (H

j+1/2
h ,∇×ψψψ) + σ(χΩE

j+1/2
h ,ψψψ)

= −(J
j+1/2
h ,ψψψ) for all ψψψ ∈ Xh,

µ0(dtH
j+1
h , ζ) + (∇×E

j+1/2
h , ζ) = µ0(dtm

j+1
h , ζ) for all ζ ∈ Yh.

Here, Xh and Yh are suitable conforming finite element spaces and ε0, µ0 denote the electric
and magnetic permeability. Again, unconditional convergence is proved theoretically, but the
proposed fixed point iteration imposes k ≤ Ch2. Moreover, the algorithm couples Maxwell’s
equations with LLG even numerically, such that in each step a large system of nonlinear
equations needs to be solved. In [Roc12], the author extends the midpoint scheme to magne-
tostrictive effects, and convergence under the same conditions is proved. An application of the
midpoint scheme to thermally assisted recording is found in [BPS08] and as before, uncondi-
tional convergence is theoretically proved. Very recently, in [BBP13], the authors presented
computational studies of the stochastic LLG equation using a midpoint-based algorithm.
Finally, a computational comparison between the tangent plane scheme and the midpoint

scheme for a 2D blowup-benchmark problem can be found in [BPPR13].

1.7. Structure of this thesis and main results

The remainder of this work is organized as follows:

• In Chapter 2, we present our numerical integrator, which is based on the work [Alo08a]
of Alouges, for the pure LLG equation in the most general form. We derive a set of
two assumptions, namely boundedness and some weak convergence property, that a sta-
tionary field contribution needs to fulfill in order to guarantee unconditional convergence
of the scheme. Moreover, we investigate time dependent contributions and show conver-
gence via a Riemann-sum approach. As a side effect, we prove that for a fixed spatial
mesh size h > 0, the sequence of discrete solutions converges towards some limit mh

as the temporal mesh size k > 0 tends to zero, and that this convergence is uniform.
Finally, we take a closer look at the energy of the system and derive improved energy
estimates.
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Chapter 1. Introduction

• Chapter 3 considers the conditions from the general analysis in concrete applications.
First, we show that all classic field contributions are covered by our general theory. In the
next step, we investigate the multiscale approach from [Bru13] and show that it also fits
into our setting. In particular, we show that the desired conditions for convergence are
guaranteed by a certain class of monotone operators. Numerical experiments conclude
this chapter and shed particular new light on the development of singularities in the
solution of LLG. The results have partially been published in [BFF+12].

• Next, we leave the pure LLG case and consider the coupled problem of LLG with the full
Maxwell system in Chapter 4. This serves as a model problem for a coupling of LLG
with a second order linear hyperbolic PDE. We propose two numerical schemes, one of
which is fully decoupled, i.e. instead of one large nonlinear system, one subsequently
solves two smaller linear systems in an iterated scheme:

compute discrete solution vjh of LLG in step j

compute discrete solution uj+1
h of second PDE

vjh uj+1
h

Even though, this approach comprises major advantages with respect to analysis and
implementation, it does not impose additional conditions, and unconditional convergence
can still be proved. This is the first fully decoupled and rigorously analyzed algorithm for
the Maxwell-LLG system in the literature. The idea of decoupling will also accompany
us through the subsequent chapters. The results from this chapter have partially been
published in [BPP13].

• Chapter 5 considers coupling of LLG to the eddy-current equation, i.e. coupling of
LLG with a second order parabolic PDE. Again, we propose a fully decoupled scheme
and derive unconditional convergence. Moreover, an improved energy estimate is shown.
Numerical experiments conclude the chapter. The results have partially been published
in [LPPT13].

• In Chapter 6, we include the magnetostrictive effect into our simulation which imposes
coupling to the conservation of momentum equation. Again, this serves as a model prob-
lem. Here, the coupling operator, i.e. the corresponding field contribution, is nonlinear
and one thus has to be careful with the weak limits. As before, we can show uncondi-
tional convergence of a fully decoupled scheme even in this case. The results from this
chapter have partially been published in [BPPR13]. Numerical experiments conclude
this section.

• A short outlook and discussion of open questions is finally given in Chapter 7.

22



Chapter 2
Problem formulation and discretization

In this chapter, we present our first extension of the original work [Alo08a] of Alouges. We
consider the pure LLG equation, but our ambitions go beyond incorporating only the classical
field contributions from Section 1.3 which has been discussed in e.g. [AKT11, Gol12]. Instead,
the goal of this chapter is to provide a set of assumptions that guarantee unconditional con-
vergence of the numerical integrator provided that they are fulfilled for all field contributions.
To that end, we perform an abstract convergence analysis where we only distinguish between
time dependent and stationary contributions. Unlike [AKT11] and in the spirit of [Gol12], we
even incorporate a possible discretization of the field contributions.

2.1. What are we trying to do

We aim for the construction and rigorous analysis of an unconditionally convergent integrator
for the LLG equation (1.2.12)

mt = − 1

1 + α2
m× heff −

α

1 + α2
m× (m× heff)

subject to the initial and boundary conditions

m(0) = m0 in H1(Ω,S2)

∂nm = 0 on ∂ΩT .

In order to derive a general result, we do not consider the standard field contributions, but
rather an effective field with general operators

heff = Ce∆m + C1π(m) + C2χ(m). (2.1.1)

The contributions π(·) and χ(·) denote stationary, respectively time-dependent operators, and
we refer to Section 2.2 below for a detailed description. Throughout this work, we only deal
with weak solvers and seek convergence towards a weak solution. To that end, we follow the
approaches from the literature and employ the equivalent formulation (1.2.14)

mt − αm×mt = heff ×m.

In the spirit of Alouges and Soyeur [AS92], our notion of a weak solution of LLG then
reads as follows:
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Definition 2.1.1. A function m is called a weak solution of LLG, if

(i) m ∈H1(ΩT ) with |m| = 1 almost everywhere in ΩT ;

(ii) For all φ ∈ C∞(ΩT ), there holds∫
ΩT

mt · φ− α
∫

ΩT

(m×mt) · φ = (2.1.2)

− Ce
∫

ΩT

(∇×m) · ∇φ+ C1

∫
ΩT

(
π(m)×m

)
· φ+ C2

∫
ΩT

(
χ(m)×m,φ

)
;

(2.1.3)

(iii) We have m(0, ·) = m0 in the sense of traces;

(iv) For almost all t′ ∈ (0, T ), there holds

‖∇m(t′)‖2
L2(Ω)

+ ‖mt‖2L2(Ωt′ )
≤ C, (2.1.4)

for some constant C > 0 which depends only on m0, as well as on the constants Cπ and
Cχ from below.

A mentioned above, we follow the steps of Alouges [Alo08a] for the construction of our
numerical integrator. To that end, we utilize the third equivalent formulation (1.2.13)

αmt + m×mt = heff −m(m · heff) and |m| = 1 a.e. in ΩT

subject to the above initial and boundary conditions. The main observation from [Alo08a]
now is that the equation is nonlinear with respect to the magnetization m, but linear with
respect to the time derivative mt of the magnetization. Consequently, we introduce a new
free variable v, which will approximate mt. Via this approach, even though LLG is nonlinear,
a scheme can be derived which requires the solution of only one linear system per time step.
The adjusted equation then reads

αv + m× v = heff −m(m · heff)

This equation is advantageous for yet another reason. We already know from (1.2.15), that
the magnetization m and its time derivative mt are pointwise orthogonal on the continuous
level. For the construction of the upcoming finite-element scheme, this is taken into account
for the choice of the test functions. Since the sought solution v should be in the tangent space
of m in order to be a useful replacement for mt, the above equation is tested with functions
from the tangent space

Km :=
{
φ ∈ C∞(ΩT ) : φ ·m = 0 almost everywhere in ΩT

}
, (2.1.5)

and the upcoming integrator is therefore called tangent plane scheme. This, however, yields

α(v,φ) + (m× v,φ) = (heff,φ) for all φ ∈ Km, (2.1.6)
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i.e. the second term on the right hand side vanishes. Moreover, and for stability reasons,
the exchange contribution (here hidden in the notation heff) is treated implicitly. For sake of
efficiency, however, all the other contributions will be treated explicitly, cf. [AKT11, Gol12].
Finally, we emphasize, that all the upcoming convergence proofs are constructive, i.e. they
even provide existence of weak solutions without any further regularity assumptions.

2.1.1. Numerical framework

Throughout this work, let Ω ⊂ R3 denote a polyhedral domain. For the discretization
of (2.1.6), we employ a regular triangulation T of Ω after the following definition.

Definition 2.1.2. A set T = {T1, . . . , TP } is called a triangulation of Ω if and only if

• T is a finite set of non-degenerated tetrahedra,

• Ω is fully covered by T , i.e. Ω =
⋃
T ,

• for two elements T, T ′ ∈ T with T 6= T ′, there holds |T ∩ T ′| = 0.

We call a triangulation further regular (in the sense of Ciarlet), if the intersection of two
elements T, T ′ ∈ T with T 6= T ′ is either

• empty,

• a common node,

• a common edge, or

• a common face.

Throughout, the set of nodes of the triangulation is denoted by N . For a given triangulation
T , the local mesh size is given by

hT := diam(T ) := sup
{
|x− y| : x,y ∈ T

}
.

Moreover, let ρT be the radius of the largest sphere within T , and define by

σ(T ) := max
T∈T

hT
ρT
≥ 1

the so-called form regularity constant. A triangulation T = Th subordinate to the global
mesh-size

h := max
T∈T

hT

will be denoted by Th and its nodes byNh. For many results concerning finite element methods,
it is very important that the form regularity constant remains bounded as h → 0. This will
be the case here as well and has to be ensured by the mesh refinement strategy. Throughout
this work, we employ the refinement strategy from [Ver96, Section 4.1]. When refined, the
tetrahedron is subdivided into 8 smaller tetrahedra as follows: First, we cut off the four apices
and get four tetrahedra. The remainder forms an octahedron at the center of the original
tetrahedron and is further subdivided into four more tetrahedra. A more detailed description
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including a visualization of the scheme is found in [Gol12, Section 2.1.1]. We stress, that this
refinement strategy guarantees that the shape regularity constant remains bounded.

For the discretization of (2.1.6), we now employ the standard P1-FEM space of piecewise
affine and globally continuous functions

S1(Th) :=
{
φh : Ω→ R3 continuous : φh|T is affine for all T ∈ Th

}
. (2.1.7)

Note, that a basis for the three-dimensional space S1(Th) can be obtained from the one-
dimensional hat functions. To that end, let {η1, . . . , ηN} be a basis for the scalar P1-FEM
space S̃1(Th). Then a basis for the three-dimensional case is given by

{ηi0
0

 ,

 0
ηi
0

 ,

 0
0
ηi

 : i = 1, . . . , N
}
. (2.1.8)

Due to the modulus constraint, we further introduce the set

Mh :=
{
φ ∈ S1(Th) : |φh| = 1 for all nodes z ∈ Nh

}
, (2.1.9)

which will be used to approximate the magnetization. Finally, to account for the fact that
the sought quantity v is orthogonal to the magnetization, we define the discrete counterpart
of (2.1.5) by

K
mj

h
:=
{
φh ∈ S1(Th) : φh(z) ·mj

h(z) = 0 for all nodes z ∈ Nh
}
. (2.1.10)

This space will be utilized for the discretized function vjh ≈ v(tj) = mt(tj) at a given time
tj ∈ (0, T ).
For the time discretization, we finally impose a uniform partition Ik with 0 = t0 < t1 <

. . . < tN = T of the time interval [0, T ]. The time step is then denoted by k = kj := tj − tj−1

for j = 1, . . . , N , i.e. tj = jk.
In many of the upcoming proofs, a certain angle condition∫

Ω
∇ηi · ∇ηj for all basis functions ηi, ηj ∈ S1(Th) with i 6= j

is required. We emphasize that this condition only needs to be enforced for the initial mesh
T0. If the refinement strategy from above is used, and Tj fulfills the angle condition, then it
is also satisfied by Tj+1, cf. [Bar05]. Moreover, the angle condition is automatically fulfilled if
the dihedral angles of the triangulation are smaller than π/2.
We close this section with a technical result that correlates the Lp(Ω)-norm with the degrees

of freedom at the nodes of the triangulation.

Lemma 2.1.3. Let φh ∈ Vh be a discrete function. For any 1 ≤ p <∞, we then have

1

C
‖φh‖pLp(Ω) ≤ h

d
∑
z∈Nh

|φh(z)|p ≤ C‖φh‖pLp(Ω), (2.1.11)

where d ∈ N0 denotes the spatial dimension, and the constant C > 0 depends only on d and
the shape regularity constant σ(Th).

Proof. The proof basically relies on norm equivalence on finite dimensional spaces and scaling
arguments. The elaborated arguments can be found e.g. in [Gol12, Lemma 3.1.1].
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2.2. Abstract algorithm

2.2. Abstract algorithm

In this section, we present our LLG-integrator in an abstract setting, where the effective field
consists of the exchange contribution as well as the two general field contributions

π : L2(Ω)→ L2(Ω) and

χ : L2(ΩT )→ L2(ΩT ).
(2.2.1)

Since the first operator π(·) is not time-dependent, we implicitly understand time evaluations
by π(f)(t) = π

(
f(t)

)
for f ∈ L2(ΩT ). Note that such an equality is not true in general for the

time-dependent contribution χ(·), i.e. χ(f)(t) 6= χ
(
f(t)

)
as χ(f(t)) is not even well-defined,

since f(t) 6∈ L2(ΩT ). Even if we would implicitly understand f(t) as a constant function in
time, i.e. f(t)(t′) = f(t) ∈ L2(Ω) for almost all t′ ∈ [0, T ], such an equality would generally
not be true. If χ(·) is given by χ(f) = gf for some g ∈ L∞(ΩT ), for example, then we have
χ(f)(t,x) = g(t,x)f(t,x), but χ(f(t′))(t,x) = g(t,x)f(t′,x). This circumstance complicates
the upcoming convergence analysis. In addition, for any given h > 0, let

πh : L2(Ω)→ L2(Ω) (2.2.2)

be a numerical realization of π. Unlike [AKT11], this will allow us to rigorously include the
inevitable approximation error that occurs when computing the different field contributions,
into the convergence analysis. For sake of readability, we neglect a numerical approximation of
the time-dependent contribution χ(·) and assume that this is computed exactly. Obviously, we
cannot prove convergence for completely arbitrary operators, and we will specify the required
properties down below in (2.3.2)–(2.3.4). In Section 3 we will then investigate some classical
field contributions and show that they fit into our abstract framework. We first state our
general integrator.

Algorithm 2.2.1 (General algorithm). Input: initial approximation m0
h ∈ Mh, damping

parameter α > 0, parameter θ ∈ [0, 1], C1, C2 ≥ 0.
For j = 0, . . . , N − 1 iterate:

(i) Find vjh ∈ Kmj
h
such that for all test functions ψh ∈ Kmj

h
, we have

α

∫
Ω

vjh ·ψh +

∫
Ω

(mj
h × vjh) ·ψh = −Ce

∫
Ω
∇(mj

h + θkvjh) · ∇ψh

+ C1

∫
Ω
πh(mj

h) ·ψh + C2

∫
Ω
χ(mhk)(tj) ·ψh.

(2.2.3)

(ii) Define mj+1
h ∈Mh nodewise by mj+1

h =
∑Nh

i=0 mj+1
i ηi with mj+1

i =
mj
i + kvji

|mj
i + kvji |

.

Output: Sequence of discrete time derivatives vjh ∈ Kmj
h
and magnetizations mj+1

h ∈Mh.

For t ∈ [tj , tj+1) the function mhk ∈ L2(ΩT ) is defined by

mhk(t,x) :=
t− jk
k

mj+1
h (x) +

(j + 1)k − t
k

mj
h(x),

= mj
h(x) + (t− tj)dtmj+1

h (x),

(2.2.4)
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where the equality can be established as in (2.2.13) below, and dtm
j+1
h denotes the first order

difference quotient, i.e.

dtm
j+1
h =

mj+1
h −mj

h

k
.

The evaluation of χ(mhk) in step j of the above algorithm is to be understood successively,
i.e. mhk is constructed successively and χ(mhk) denotes the application of χ to the so far
constructed function mhk. In the upcoming proof, this leads to some technical issue. Since
mhk is constructed on the fly during execution of the above algorithm, it is a priori not defined
on the full time interval [0, T ] in each step. We therefore need to assume, that χ is well defined
on shorter time intervals as well, so that χ(mhk) makes sense. Furthermore, we assume that
χ(mhk)(t) depends only on mhk at time t or earlier, but not on later times. If mhk denotes
the full function on [0, T ] and m̃hk denotes the successively generated function on [0, T/2], we
thus have

χ(mhk)(t) = χ(m̃hk)(t) for almost all t ∈ [0, T/2]. (2.2.5)

This assumption is, however, quite natural, since the field contributions usually stem from
physical effects and equations and should thus fulfill such a property. Moreover, to ensure
that our algorithm is well-defined, we assume that χ(·) is sufficiently smooth in time in
order for the time evaluation χ(mhk)(tj) to make sense. More precisely, we assume that
χ(f) : [0, T ] → L2(Ω) is continuous, if f : [0, T ] → L2(Ω) is continuous. We stress that our
convergence analysis only requires Riemann integrability of χ in time. For sake of simplicity,
however, we assume time-continuity here. Finally, for the initial step, χ(mhk)(0) has to be
meaningful, i.e. there exists some suitable spatial operator χ0 : L2(Ω) → L2(Ω) such that
χ(mhk)(0) = χ0(m0

h).
For sake of readability, we recall the three assumptions on the time-dependent contribution

χ(·).

• We assume that χ(·) is well defined even on smaller time-intervals and that χ(mhk)(t)
does not depend on values of mhk at any time t′ > t.

• We assume that χ(f) is continuous in time if f is continuous in time.

• We assume that there exists some suitable initial value χ(mhk)(0) = χ0(m0
h).

In addition to the linear time-interpolation mhk, we also define the piecewise constant
time-approximations for t ∈ [tj , tj+1) by

m−hk(t,x) := mj
h(x),

m+
hk(t,x) := mj+1

h (x).
(2.2.6)

Since our ansatz treats the time derivative of the magnetization as independent variable, we
also define its piecewise constant time-approximation for t ∈ [tj , tj+1) by

v−hk(t,x) := vjh(x). (2.2.7)

Before moving on to a general convergence analysis of the above algorithm, we write down
some results that immediately follow from the definition of the discrete approximations and
Algorithm 2.2.1, respectively. First of all, we show that the above algorithm is well-defined.
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2.2. Abstract algorithm

Lemma 2.2.2. Algorithm 2.2.1 presented above is well defined, i.e. it admits a unique so-
lution vjh ∈ Kmj

h
in each step of the loop. In particular there holds ‖mj

h‖L∞(Ω) = 1 and
‖mhk‖L∞(ΩT ) = 1.

Proof. We define the bilinear form aj(·, ·) : K
mj

h
×K

mj
h
→ R by

aj(ϕ,ψ) := α(ϕ,ψ) +
(
(mj

h ×ϕ),ψ
)

+ θCek(∇ϕ,∇ψ)

and the functional

Lj(ψ) := −Ce(∇mj
h,∇ψ) + C1(π(mj

h),ψ) + C2

(
χ(mhk)(tj),ψ

)
.

Then, (2.2.3) can equivalently be stated as

aj(vjh,ψ) = Lj(ψ) for all ψ ∈ K
mj

h
.

Clearly Lj(·) is a linear functional in ψ and aj(·, ·) is positive definite, since

aj(ψ,ψ) = α‖ψ‖2
L2(Ω)

+ θCek‖∇ψ‖2L2(Ω)
.

Due to finite dimension, we conclude the existence of a unique solution vjh ∈ Kmj
h
in each

time step. Finally, from the definition of vjh and the Pythagoras theorem, we get

|mj
h(z) + kvjh(z)|2 = |mj

h(z)|2 + k|vjh(z)|2 ≥ 1.

Therefore, also the normalization from step (ii) of the above algorithm is well-defined. The
boundedness of ‖mi

h‖L∞(Ω) = ‖mhk‖L∞(ΩT ) = 1 finally follows from normalization at the grid
points and use of barycentric coordinates, cf. [Gol12, Lemma 3.2.6].

The next two statements relate the time derivative of the discrete magnetization mhk with
the quantity v−hk, i.e. the variable that approximates the time-derivative of the continuous
solution m. In fact, we have a relation of those two quantities on each time step.

Lemma 2.2.3. The time derivative of the discrete magnetization mhk is a lower bound for
the approximation v−hk of the time derivative of the continuous magnetization m in each time
step, i.e. for t ∈ [tj , tj+1), there holds

‖∂tmhk(t)‖L2(Ω) =
∥∥∥mj+1

h −mj
h

k

∥∥∥
L2(Ω)

≤ Cv‖vjh‖L2(Ω) (2.2.8)

for each j = 0, . . . , N−1. Here, the constant Cv ≥ 0 is a norm equivalence constant of a finite
dimensional space.

Proof. The proof is a simple consequence of the orthogonality relation between vjh and mj
h.

The elaborated arguments can be found in [Gol12, Lemma 3.3.2].

Lemma 2.2.4. For any j = 0, . . . N − 1 and any node z ∈ Nh, there holds

|mj+1
h (z)−mj

h(z)− kvjh(z)| ≤ 1

2
|kvjh(z)|2. (2.2.9)

29



Chapter 2. Problem formulation and discretization

Proof. The proof is found e.g. in [Gol12, Lemma 3.3.3].

The following abstract result concerns the difference of the piecewise linear and piecewise
constant interpolations in time of some continuous quantity g ∈ L2(Ω). We consider functions
ghk, g

−
hk, and g

+
hk of the form (2.2.4) resp. (2.2.6). As expected, we find that the difference

can be estimated from above by means of the weak time derivative.

Lemma 2.2.5. Let gjh ∈ S
1(Th) be a spatial discretization of the quantity g(tj) ∈ L2(Ω) for

any j = 0, . . . , N − 1. Analogously to the above definitions, we set

ghk(t,x) :=
t− jk
k

gj+1
h (x) +

(j + 1)k − t
k

gjh(x), and

g−hk(t,x) := gjh(x), g+
hk(t,x) := gj+1

h (x) for t ∈ (tj , tj+1].

Then, for almost all t ∈ [0, T ], there holds

‖(ghk − g−hk)(t)‖L2(Ω) ≤ k‖∂tghk(t)‖L2(Ω) and (2.2.10)

‖(ghk − g+
hk)(t)‖L2(Ω) ≤ 2k‖∂tghk(t)‖L2(Ω). (2.2.11)

In particular, we thus get

‖ghk − g±hk‖
2
L2(ΩT )

≤ Ck
N−1∑
j=0

‖gj+1
h − gjh‖

2
L2(Ω)

= Ck3‖∂tghk‖2L2(ΩT )
, (2.2.12)

where C > 0 is either 1 or 2, depending on the approximation g−hk resp. g+
hk. Moreover, if the

discrete time derivative ∂tghk is bounded in L2(ΩT ), then we have ‖ghk − g±hk‖
2
L2(ΩT )

−→ 0.

Proof. First of all, we see that for t ∈ [tj , tj+1], we have

ghk(t) =
t− jk
k

gj+1
h +

(j + 1)k − t
k

gjh

=
t− tj
k

gj+1
h +

k − (t− tj)
k

gjh

= gjh +
t− tj
k

(gj+1
h − gjh)

= gjh + (t− tj)dtgj+1
h .

(2.2.13)

For t ∈ [tj , tj+1), we thus get

‖(ghk − g−hk)(t)‖L2(Ω) = ‖gjh + (t− tj)dtgj+1
h − gjh‖L2(Ω)

= |t− tj |‖dtgj+1
h ‖L2(Ω)

≤ k‖dtgj+1
h ‖L2(Ω)

= k‖∂tghk(t)‖L2(Ω),

and

‖(ghk − g+
hk)(t)‖L2(Ω) = ‖gjh + (t− tj)dtgj+1

h − gj+1
h ‖L2(Ω)

≤ ‖gj+1
h − gjh‖L2(Ω) + |t− tj |‖dtgj+1

h ‖L2(Ω)

≤ 2k‖dtgj+1
h ‖L2(Ω)

= 2k‖∂tghk‖L2(Ω),
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2.3. Abstract convergence analysis

which proves (2.2.10)–(2.2.11). The desired estimate (2.2.12) for the L2(ΩT )-norm simply
follows from summing up over all timesteps, i.e.

‖ghk − g±hk‖
2
L2(ΩT )

=
N−1∑
j=0

∫ tj+1

tj

‖(ghk − g±hk)(t)‖
2
L2(Ω)

≤ k
N−1∑
j=0

C‖gj+1
h − gjh‖

2
L2(Ω)

= Ck3‖∂tghk‖2L2(ΩT )
.

This completes the proof.

Remark. For most of the upcoming discrete quantities, we can show

‖ghk − g±hk‖
2
L2(ΩT )

. k

N−1∑
j=0

‖gj+1
h − gjh‖

2
L2(Ω)

−→ 0,

whence the above Lemma allows us to unify the limits of ghk and g±hk as long as they exist.

We are now ready to give a first convergence result based on the abstract framework of the
above algorithm.

2.3. Abstract convergence analysis

In this section, we give a detailed convergence analysis of the abstract Algorithm 2.2.1. The
proof follows the lines of [Alo08a, Gol12], but the analysis is widened and generalized at several
points to capture the general field contributions π and χ. The following theorem is the main
result of this Section and states convergence of the scheme in the abstract framework, under
some assumptions on the field contributions. Afterwards, we will explicitly investigate certain
field contributions and show that they fall into our general setting. In particular, all field
contributions from Chapter 1 are covered by this theory.

Theorem 2.3.1. (a) Let θ ∈ (1/2, 1] and suppose that the spatial meshes Th are uniformly
shape regular and satisfy the angle condition∫

Ω
∇ηi · ∇ηj for all basis functions ηi, ηj ∈ S1(Th) with i 6= j. (2.3.1)

Moreover, suppose that the general field contributions πh(·) and χ(·)(·) are uniformly bounded,
i.e. for all n ∈ L2(Ω) with |n| ≤ 1 pointwise almost everywhere and ñ ∈ C(L2) with |ñ| ≤ 1
pointwise almost everywhere, there holds

‖πh(n)‖L2(Ω) ≤ Cπ <∞
‖χ(ñ)(t)‖L2(Ω) ≤ Cχ <∞.

(2.3.2)

The constants Cπ, Cχ > 0 may depend only Ω and are, in particular, assumed to be indepen-
dent of the time step- and spatial mesh-sizes k and h. Finally, suppose weak convergence of
the initial data, i.e.

m0
h ⇀ m0 weakly in H1(Ω) (2.3.3)
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Chapter 2. Problem formulation and discretization

as h → 0. Under these assumptions, we have strong subconvergence of m−hk towards some
function m in L2(ΩT ) as (h, k)→ (0, 0) independently of each other.

(b) In addition to the above, we assume

πh(m−hk)
sub−−⇀ π(m) weakly subconvergent in L2(ΩT ), and

k
N−1∑
j=0

∫
Ω
χ(mhk)(tj) ·

(
(m−hk ×Ψ)(tj)

) sub−−→
∫

ΩT

χ(m) · (m×Ψ),
(2.3.4)

for all Ψ ∈ C∞(ΩT ). Then, the computed FE solutions mhk are weakly subconvergent in
H1(ΩT ) towards a weak solution m ∈ H1(ΩT ) of LLG in the sense of 2.1.1. In particular,
this yields existence of weak solutions and each accumulation point of mhk is a weak solution
of LLG.

Remark. The second assumption in (2.3.4) seems hard to verify at first glance. It is, how-
ever, exactly the property that is needed for the convergence analysis. In a more detailed
investigation, we propose some more suitable conditions (2.3.30)– (2.3.31) which guarantee
the above convergence property. As the proof is quite involved and requires considering the h-
and k-limits separately, details are postponed to Section 2.3.1.

The proof of Theorem 2.3.1 basically relies on the following three steps which will be elab-
orated subsequently.

• Step 1: Boundedness of the discrete quantities and energies.

• Step 2: Existence of weakly convergent subsequences via compactness.

• Step 3: Identification of the limits with weak solutions of LLG.

Before we move on to the actual convergence analysis, we would like to comment on the
somewhat technical angle condition (2.3.1). While it may seem arbitrary at first sight, this
condition is a crucial ingredient to prove a certain energy decay on a discrete level. Starting
from the energy decay relation ∫

Ω

∣∣∣∇( m

|m|

)∣∣∣2 ≤ ∫
Ω
|∇m|2

it has been shown by Bartels in [Bar05] that (2.3.1) and nodewise projection ensures the
decay even on a discrete level, i.e.∫

Ω

∣∣∣∇Ih( m

|m|

)∣∣∣2 ≤ ∫
Ω
|∇Ihm|2. (2.3.5)

This yields the following lemma by definition of mj+1
h .

Lemma 2.3.2. Assume the angle condition (2.3.1). Then, we have the energy decay relation

‖∇mj+1
h ‖2

L2(Ω)
≤ ‖∇(mj

h + kvjh)‖2
L2(Ω)

(2.3.6)

in each step j = 0, . . . , N − 1 of Algorithm 2.2.1.
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2.3. Abstract convergence analysis

Remark . As mentioned in Section 2.1.1, (2.3.1) is automatically fulfilled for tetrahedral
meshes with dihedral angles that are smaller than π/2. If the condition is satisfied by T0,
it can be ensured for the refined meshes as well, provided that, e.g., the refinement strategy
from Section 2.1.1 is used.

We now elaborate the above steps of the convergence proof.
Step 1: The discrete quantities mhk,m

±
hk, and v−hk are uniformly bounded.

Lemma 2.3.3. For any j = 0, . . . , N , there holds

1

2
‖∇mj

h‖
2
L2(Ω)

+ k

j−1∑
i=0

‖vih‖2L2(Ω)
+ (θ − 1/2)k2

j−1∑
i=0

‖∇vih‖2L2(Ω)
≤ C3, (2.3.7)

where C3 > 0 depends only on Cπ and Cχ from (2.3.2), C1, C2, and Ce as well as |Ω|.

Proof. We consider (2.2.3) with the special testfunction ψψψh = vih ∈ Kmi
h
to see

α(vih,v
i
h) +

(
(mi

h × vih),vih︸ ︷︷ ︸
=0

)
= −Ce

(
∇(mi

h + θkvih),∇vih
)

+ C1

(
πh(mi

h),vih
)

+ C2

(
χ(mhk)(ti),v

i
h

)
,

and therefore

α‖vih‖2L2(Ω)
+ Ceθk‖∇vih‖2L2(Ω)

= −Ce(∇mi
h,∇vih)

+ C1

(
πh(mi

h),vih
)

+ C2

(
χ(mhk)(ti),v

i
h

)
.

(2.3.8)

Next, we use

1

2
‖∇mi+1

h ‖
2
L2(Ω)

≤ 1

2
‖∇(mi

h + kvih)‖2
L2(Ω)

from Lemma 2.3.2 to deduce

1

2
‖∇mi+1

h ‖
2
L2(Ω)

≤ 1

2
‖∇mi

h + k∇vih‖2L2(Ω)

=
1

2
‖∇mi

h‖2L2(Ω)
+ k(∇mi

h,∇vih) +
k2

2
‖∇vih‖2L2(Ω)

=
1

2
‖∇mi

h‖2L2(Ω)
+
k2

2
‖∇vih‖2L2(Ω)

− αk

Ce
‖vih‖2L2(Ω)

− θk2‖∇vih‖2L2(Ω)
+
k C1

Ce

(
πh(mi

h),vih) +
k C2

Ce

(
χ(mhk)(ti),v

i
h

)
=

1

2
‖∇mi

h‖2L2(Ω)
− (θ − 1

2
)k2‖∇vih‖2L2(Ω)

− αk

Ce
‖vih‖2L2(Ω)

+
k C1

Ce

(
πh(mi

h),vih
)

+
k C2

Ce

(
χ(mhk)(ti),v

i
h

)
.

(2.3.9)
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Summation over i = 0, . . . , j − 1 and exploiting the telescopic sum leads to

1

2
‖∇mj

h‖
2
L2(Ω)

≤ 1

2
‖∇m0

h‖2L2(Ω)
− (θ − 1

2
)k2

j−1∑
i=0

‖∇vih‖2L2(Ω)
− αk

Ce

j−1∑
i=0

‖vih‖2L2(Ω)

+
k C1

Ce

j−1∑
i=0

(
πh(mi

h),vih
)

+
k C2

Ce

j−1∑
i=0

(
χ(mhk)(ti),v

i
h

)
.

Hölders inequality in combination with (2.3.2) now yields

1

2
‖∇mj

h‖
2
L2(Ω)

+
αk

Ce

j−1∑
i=0

‖vih‖2L2(Ω)
+ (θ − 1

2
)k2

j−1∑
i=0

‖∇vih‖2L2(Ω)

≤ 1

2
‖∇m0

h‖2L2(Ω)
+
k C1

Ce

j−1∑
i=0

‖πh(mi
h)‖L2(Ω)‖v

i
h‖L2(Ω)

+
k C2

Ce

j−1∑
i=0

‖χ(mhk)(ti)‖L2(Ω)‖v
i
h‖L2(Ω)

≤ 1

2
‖∇m0

h‖2L2(Ω)

+
2k

Ce

j−1∑
i=0

max{C1Cπ, C2Cχ}‖vih‖L2(Ω),

Exploiting Youngs inequality, this reveals for any ε > 0

1

2
‖∇mj

h‖
2
L2(Ω)

+
αk

Ce

j−1∑
i=0

‖vih‖2L2(Ω)
+ (θ − 1

2
)k2

j−1∑
i=0

‖∇vih‖2L2(Ω)

≤ 1

2
‖∇m0

h‖2L2(Ω)
+

k

Ce

j−1∑
i=0

( 1

2ε
max{C1Cπ, C2Cχ}2 + ε‖vih‖2L2(Ω)

)
and therefore

1

2
‖∇mj

h‖
2
L2(Ω)

+
k

Ce
(α− ε)

j−1∑
i=0

‖vih‖2L2(Ω)
+ (θ − 1

2
)k2

j−1∑
i=0

‖∇vih‖2L2(Ω)

≤ 1

2
‖∇m0

h‖2L2(Ω)
+

k

Ce

j−1∑
i=0

1

2ε
max{C1Cπ, C2Cχ}2.

Altogether we have thus proved

1

2
‖∇mj

h‖
2
L2(Ω)

+
k

Ce
(α− ε)

j−1∑
i=0

‖vih‖2L2(Ω)
+ (θ − 1

2
)k2

j−1∑
i=0

‖∇vih‖2L2(Ω)

≤ 1

2
‖∇m0

h‖2L2(Ω)
+

T

2εCe
max{C1Cπ, C2Cχ}2,

which is a stability result that depends on ε > 0. The choice ε < α thus yields the desired
result (2.3.7).
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2.3. Abstract convergence analysis

The last result is all that is necessary to show boundedness of the discrete magnetizations
mhk and m±hk, as well as of the discrete time derivative v−hk.

Corollary 2.3.4. The discrete quantities from (2.2.4) and (2.2.6)–(2.2.7) are uniformly bounded
in H1(ΩT ) resp. L2(ΩT ), i.e.

‖mhk‖H1(ΩT ) ≤ C4 <∞ (2.3.10)

‖m±hk‖L2(H1) ≤ C4 < ∞, and (2.3.11)

‖v−hk‖L2(ΩT ) ≤ C4 <∞, (2.3.12)

where the constant C4 > 0 depends only on C3 from Lemma 2.3.3, Cv from Lemma 2.2.3, and
|Ω|.

Proof. From Lemma 2.3.3, we get boundedness of ‖mj
h‖H1(Ω), and k

∑j−1
i=0 ‖vih‖L2(Ω) in each

time step j = 0, . . . , N . First, we thus get

‖v−hk‖
2
L2(ΩT )

=
N−1∑
i=0

∫ ti+1

ti

‖vih‖2L2(Ω)
= k

N−1∑
i=0

‖vih‖2L2(Ω)
≤ C3.

Second, we consider boundedness of the discrete magnetizations. A bound for the L2(ΩT )
part was already given in Lemma 2.2.2. We therefore consider the gradient contributions. To
that end, the above boundedness of mj

h directly implies

‖∇mhk‖2L2(L2)
=

N−1∑
i=0

∫ ti+1

ti

‖∇mi
h + (t− ti)dt∇mi+1

h ‖
2
L2(Ω)

≤ 2

N−1∑
i=0

∫ ti+1

ti

‖∇mi
h‖2L2(Ω)

+ ‖∇mi+1
h ‖

2
L2(Ω)

= 2k
N−1∑
i=0

(
‖∇mi+1

h ‖
2
L2(Ω)

+ ‖∇mi
h‖2L2(Ω)

)
≤ 4TC3.

By definition of the H1(ΩT )-norm, it only remains to investigate ‖∂tmhk‖L2(ΩT ). To that
end, we use Lemma 2.2.3 and conclude from the definition of mhk

‖∂tmhk‖2L2(ΩT )
=

∫ T

0
‖∂tmhk(t)‖2L2(Ω)

=
N−1∑
i=0

∫ ti+1

ti

‖∂tmhk(t)‖2L2(Ω)

=

N−1∑
i=0

∫ ti+1

ti

‖
mi+1
h −mi

h

k
‖2
L2(Ω)

≤ C2
v

n−1∑
i=0

‖vih‖2L2(Ω)

∫ ti+1

ti

1

= kC2
v

N−1∑
i=0

‖vih‖2L2(Ω)
≤ C2

vC3.

Finally, the bound for ‖m+
hk‖L2(H1) and ‖m−hk‖L2(H1) follows analogously.
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With the last result, step 1 of the proof of our main theorem is completed.

Step 2:
In this short part, we show the existence of weakly convergent subsequences of our dis-

cretizations mhk,m
±
hk and v−hk. Here, the main ingredient is an abstract compactness ar-

gument which shows mere existence of those subsequences. Therefore, we do not get any
information on whether or not those sequences converge towards a useful limit at this point.
However, we can already promise that this will be the case. The limit, though, still has to be
formally identified with a weak solution of LLG. This will be done in step 3 below.

Lemma 2.3.5. There exist functions m ∈ H1(ΩT ;S2) and v ∈ L2(ΩT ), as well as subse-
quences of mhk,m

±
hk and v−hk such that there holds

mhk
sub−−⇀ m weakly in H1(ΩT ) for (h, k) −→ (0, 0), (2.3.13)

mhk,m
±
hk

sub−−⇀ m weakly in L2(H1) for (h, k) −→ (0, 0), (2.3.14)

mhk,m
±
hk

sub−−→m strongly in L2(ΩT ) for (h, k) −→ (0, 0), (2.3.15)

mhk,m
±
hk

sub−−→m pointwise a.e. in ΩT for (h, k) −→ (0, 0), (2.3.16)

v−hk
sub−−⇀ v weakly in L2(ΩT ) for (h, k) −→ (0, 0). (2.3.17)

In particular, there exists one subsequence (hm, kn) of (h, k) such that all the above limits hold
simultaneously. Moreover, the limit function m is continuous in time.

Proof. Since all the considered spaces are reflexive, the boundedness from Corollary 2.3.4 in
combination with the theorem of Eberlein-Smulian A.2.1 proves the existence of limit functions
m ∈H1(ΩT ), (m̃−, m̃+) ∈ L2(H1), and v ∈ L2(ΩT ), as well as subsequences, such that there
holds

mhk
sub−−→m weakly in H1(ΩT ),

m−hk
sub−−⇀ m̃− weakly in L2(H1),

m+
hk

sub−−⇀ m̃+ weakly in L2(H1),

v−hk
sub−−⇀ v weakly in L2(ΩT ).

Successive extraction of those subsequences shows that there exists a subsequence of the
indices (h, k) for which all limit processes hold simultaneously. Due to the Rellich-Kondrachov
compactness theorem, we get the compact embeddingH1(ΩT ) b L2(ΩT ) and thus the strong
subconvergence

mhk
sub−−→m strongly in L2(ΩT ).

Uniqueness of weak limits (Lemma A.2.9) and the continuous inclusion H1(ΩT ) ⊆ L2(H1)
further shows

mhk
sub−−⇀ m weakly in L2(H1).
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Moreover, boundedness also proves

m−hk
sub−−⇀ m̃− weakly in L2(ΩT ) and

m+
hk

sub−−⇀ m̃+ weakly in L2(ΩT ).

It thus only remains to show that the limits m, m̃− and m̃+ coincide, i.e.

m = m̃− = m̃+ almost everywhere in ΩT .

To that end, Lemma 2.2.5 shows

‖mhk −m±hk‖L2(ΩT ) ≤ k
3/2‖∂tmhk‖L2(ΩT ) −→ 0.

In particular, the last statement proves subconvergence of m±hk towards m even strongly in
L2(ΩT ), since

‖m±hk −m‖L2(ΩT ) ≤ ‖m
±
hk −mhk‖L2(ΩT ) + ‖mhk −m‖L2(ΩT )

sub−−→ 0.

The Weyl Lemma A.2.7 now shows the pointwise convergence (2.3.16). Finally, from

‖|m| − 1‖L2(ΩT ) ≤ ‖|m| − |m
−
hk|‖L2(ΩT ) + ‖|m−hk| − 1‖L2(ΩT )

and

‖|m−hk(t, ·)| − 1‖L2(Ω) ≤ hmax
tj
‖∇mj

h‖L2(Ω),

we deduce |m| = 1 almost everywhere in ΩT . For the last estimate, we exploited mj
h ∈ S

1(Th).
Finally, it remains to show the desired time-continuity. From m ∈H1(ΩT ), we deduce

‖m‖2
H1([0,T ];L2(Ω))

=

∫ T

0

(
‖m(t)‖2

L2(Ω)
+ ‖mt(t)‖2L2(Ω)

)
≤ ‖m‖H1(ΩT ) ≤ C,

and thus m ∈ H1([0, T ];L2(Ω)). Exploiting [Eva02, § 5.9.2, Theorem 2], we particularly
conclude m ∈ C([0, T ];L2(Ω)).

This concludes the proof of part (a) of Theorem 2.3.1.

Step 3:
In the remainder of this section, we aim to identify the functions m,v, whose existence

was shown in Lemma 2.3.5, with a weak solution of LLG and its time derivative, respectively.
First of all, we ignore the dependency on the LLG equation and simply show that the limit
function v is indeed the weak time derivative of m.

Lemma 2.3.6. The function v ∈ L2(ΩT ) is the weak time derivative of m ∈ H1(ΩT ), i.e.
v = ∂tm almost everywhere on ΩT .

Proof. The proof was already given in [Alo08a, Gol12], and we therefore only sketch it. The
elaborated arguments can be found in [Gol12, Lemma 3.3.13]. Simple geometric estimates
show the inequality

‖∂tmhk − v−hk‖L1(ΩT ) . k‖v−hk‖
2
L2(ΩT )

,

which, in combination with the weak lower semicontinuity of the norm, yields

‖∂tm− v‖L1(ΩT ) ≤ lim inf ‖∂tmhk − v−hk‖L1(ΩT ) = 0, for (h, k)→ (0, 0).

This reveals v = ∂tm in L1(ΩT ) and thus almost everywhere in ΩT .
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With the identification of v with the time derivative ∂tm of m, reuse of the lower semicon-
tinuity now shows boundedness of the energy.

Lemma 2.3.7. The energy is bounded in the sense of the weak solution from Definition 2.1.1,
i.e. for almost any t′ ∈ [0, T ] we have

‖∇m(t′)‖2
L2(Ω)

+ ‖∂tm‖2L2(Ωt′ )
≤ C3, (2.3.18)

with C3 > 0 from Lemma 2.3.3.

Proof. From the discrete energy estimate (2.3.7), we get for any t′ ∈ [0, T ] with t′ ∈ [tj , tj+1)

‖∇m+
hk(t

′)‖2
L2(Ω)

+ ‖v−hk‖
2
L2(Ωt′ )

= ‖∇m+
hk(t

′)‖2
L2(Ω)

+

∫ t′

0
‖v−hk‖

2
L2(Ω)

≤ ‖∇m+
hk(t

′)‖2
L2(Ω)

+

∫ tj+1

0
‖v−hk‖

2
L2(Ω)

= ‖∇mj+1
h ‖2

L2(Ω)
+

j∑
i=0

∫ tt+1

ti

‖vih‖2L2(Ω)

= ‖∇mj+1
h ‖2

L2(Ω)
+ k

j∑
i=0

‖vih‖2L2(Ω)

≤ C3

Integration in time thus yields for any measurable set T ⊆ [0, T ]∫
T
‖∇m+

hk(t
′)‖2
L2(Ω)

+

∫
T
‖v−hk‖

2
L2(Ωt′ )

≤
∫
T
C3.

Finally, by use of weak lower semicontinuity, we deduce∫
T
‖∇m(t′)‖2

L2(Ω)
+

∫
T
‖∂tm‖2L2(Ωt′ )

≤
∫
T
C3.

Note that we can pass to the limit also on the (potentially small) time set T, since L2(ΩT)
can always be bounded from above by L2(ΩT ). Since the above inequality is true for any
measurable set T ⊆ [0, T ], the desired result follows from standard measure theory, see e.g.
[Els11, Section IV, Theorem 4.4].

Before completing the proof, we need two somewhat technical lemmata. The first one deals
with nodal interpolation estimates which arise due to usage of discrete test functions. The
second one considers the limit process of some concrete terms which are treated separately
for sake of readability. Let us first recall the definition of the piecewise constant in time
approximation of a given smooth function.

For Ψ ∈ C∞(ΩT ), let Ψ−k be defined by

Ψ−k (t,x) := Ψ(tj ,x) for t ∈ [tj , tj+1). (2.3.19)

Then, we have the following statement:
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2.3. Abstract convergence analysis

Lemma 2.3.8. There holds the estimate∫ T

0

(
αv−hk + m−hk × v−hk, (Ih − 1)(m−hk ×Ψ−k )

)
+ Ceθk

∫ T

0

(
∇v−hk,∇(Ih − 1)(m−hk ×Ψ−k )

)
+ Ce

∫ T

0

(
∇m−hk,∇(Ih − 1)(m−hk ×Ψ−k )

)
− C1

∫ T

0

(
πh(m−hk), (Ih − 1)(m−hk ×Ψ−k )

)
− C2 k

n−1∑
j=0

∫
Ω
χ(mhk)(tj) · (Ih − 1)

(
(m−hk ×Ψ)(tj)

)
= O(h)

(2.3.20)

for any Ψ ∈ C∞(ΩT ).

Proof. The proof follows the lines of [Alo08a] and [Gol12, Lemma 3.3.16]. From the approxi-
mation theorem [Bra07, Theorem 6.4], we get

‖m−hk(t, ·)×Ψ−k (t, ·)− Ih
(
m−hk(t, ·)×Ψ−k (t, ·)

)
‖2
H1(K)

. h2‖D2
(
m−hk(t, ·)×Ψ−k (t, ·)

)
‖2
L2(K)

. h2‖m−hk(t, ·)‖
2
H1(K)

‖Ψ−k (t, ·)‖2
W 2,∞(K)

= h2‖m−hk(t, ·)‖
2
H1(K)

‖Ψ(tj , ·)‖2W 2,∞(K)

. h2‖m−hk(t, ·)‖
2
H1(K)

‖Ψ‖2
W 2,∞([0,T ]×K)

,

for any K ∈ Th(Ω). Here, we have used that m−hk is an affine function on each element
K ∈ Th(Ω). Summation over all elements and integration in time thus leads to

‖m−hk ×Ψ−k − Ih(m−hk ×Ψ−k )‖L2(H1) . h‖m−hk‖L2(H1)‖Ψ‖W 2,∞(ΩT ).

Using this statement, we see(
αv−hk + m−hk × v−hk, (Ih − 1)(m−hk ×Ψ−k )

)
≤ α‖v−hk + m−hk × v−hk‖L2(ΩT )‖(Ih − 1)(m−hk ×Ψ−k )‖L2(ΩT )

= O(h),

k
(
∇v−hk,∇(Ih − 1)(m−hk ×Ψ−k )

)
≤ ‖k∇v−hk‖L2(ΩT )‖(Ih − 1)(m−hk ×Ψ−k )‖L2(H1)

= O(h), and

(
∇m−hk,∇(Ih − 1)(m−hk ×Ψ−k )

)
= O(h),

where we have used the boundedness of k‖∇v−hk‖L2(ΩT ) from Lemma 2.3.3 for θ ∈ (1/2, 1]
in the second estimate. Using the boundedness of the general contributions from assump-
tion (2.3.2), we deduce (

πh(m−hk), (Ih − 1)(m−hk ×Ψ−k )
)

= O(h),
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as well as

k

N−1∑
j=0

〈
χ(mhk)(tj), (Ih − 1)((m−hk ×Ψ)(tj))

〉
. k

N−1∑
j=0

‖(Ih − 1)((m−hk ×Ψ)(tj))‖L2(Ω)

≤ hk
N−1∑
j=0

‖mj
h‖H1(Ω)‖Ψ‖W 2,∞(ΩT )

. h‖Ψ‖W 2,∞(ΩT )k

N−1∑
j=0

1

. h‖Ψ‖W 2,∞(ΩT )

= O(h).

The combination of the above results concludes the proof.

In order to ease the presentation as well as the readability of the convergence proof, we
consider the following limits separately:

Lemma 2.3.9. There holds

α(v−hk + m−hk × v−hk,m
−
hk ×Ψ−k )

sub−−→ α(mt + m×mt,m×Ψ) (2.3.21)

Ceθk
(
∇v−hk,∇(m−hk ×Ψ−k )

) sub−−→ 0 and (2.3.22)

Ce
(
∇m−hk,∇(m−hk ×Ψ−k )

) sub−−→ Ce
(
∇m,∇(m×Ψ)

)
, (2.3.23)

for (h, k) −→ (0, 0). Moreover, there holds

m−hk ×Ψ−k
sub−−→m×Ψ (2.3.24)

strongly in L2(ΩT ) as (h, k) −→ (0, 0).

Proof. The proof is done in analogously to [Alo08a] and [Gol12, Lemma 3.3.17–3.3.19]. The
only difference is that, in our case, we also have to deal with a piecewise constant approxima-
tion of Ψ in time. We therefore only have to show

m−hk ×Ψ−k
sub−−→m×Ψ strongly in L2(ΩT ) and

∇(m−hk ×Ψ−k )
sub−−→m×∇Ψ strongly in L2(ΩT ).

Let us now consider those convergence properties individually. From Lemma 2.3.5, we already
know the pointwise convergence of m−hk towards m almost everywhere in ΩT . Moreover,
from the continuity of Ψ and the compactness of ΩT , we conclude that Ψ is even uniformly
continuous on ΩT . Now let ε > 0 be arbitrary and let δ = δ(ε) be the parameter of uniform
continuity, i.e.

∀(t1,x1), (t2,x2) ∈ ΩT : |(t1,x1)− (t2,x2)| ≤ δ =⇒ |Ψ(t1,x1)−Ψ(t2,x2)| ≤ ε.
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2.3. Abstract convergence analysis

By definition this yields for k ≤ δ and t ∈ [tj , tj+1)

|Ψ−k (t,x)−Ψ(t,x)| = |Ψ(tj ,x)−Ψ(t,x)| ≤ ε,

whence the pointwise convergence of Ψ−k to Ψ. By definition, we thus get (m−hk ×Ψ−k )
sub−−→

(m×Ψ) pointwise almost everywhere in ΩT . Due to the boundedness

|m−hk(t,x)×Ψ−k (t,x)| ≤ ‖m−hk‖L∞(ΩT )‖Ψ‖L∞(ΩT ) = ‖Ψ‖L∞(ΩT ),

the Lebesgue dominated convergence theorem A.2.3 yields (m−hk ×Ψ−k )
sub−−→ (m ×Ψ) even

strongly in L2(ΩT ) whence (2.3.24). For the other convergence properties, we exploit the
result of Lemma A.1.6 to see

(∇v−hk,∇(m−hk ×Ψ−k )
)

= (∇v−hk,m
−
hk ×∇Ψ−k

)
, as well as

(∇m−hk,∇(m−hk ×Ψ−k )
)

= (∇m−hk,m
−
hk ×∇Ψ−k

)
.

From the above elaborations, we already know the pointwise convergence of m−hk. It thus
remains to show pointwise convergence of ∇Ψ−k to ∇Ψ almost everywhere in ΩT . Since
Ψ is smooth, we also get uniform continuity of ∇Ψ, where we again denote the continuity
parameter by δ = δ(ε) for any ε > 0. Use of Lemma A.2.12 now allows us to interchange the
spatial gradient with the time evaluation of Ψ, and for k ≤ δ and t ∈ [tj , tj+1) shows

|(∇Ψ−k )(t,x)− (∇Ψ)(t,x)| = |
(
∇Ψ−k (t)

)
(x)− (∇Ψ)(t,x)|

= |
(
∇Ψ(tj)

)
(x)− (∇Ψ)(t,x)|

= |(∇Ψ)(tj ,x)− (∇Ψ)(t,x)| ≤ ε.

We therefore conclude pointwise convergence of ∇Ψ−k to ∇Ψ almost everywhere in ΩT . Anal-
ogously to [Gol12, Lemma 3.3.17–3.3.19], we conclude the proof.

We are now ready to conclude the proof of part (b) of the main theorem from this section,
i.e. we identify the function m ∈H1(ΩT ) with a weak solution of the general LLG equation.

Proof of part (b) of Theorem 2.3.1. We choose any function Ψ ∈ C∞(ΩT ) and in (2.2.3) test
with ϕjh := Ih

(
(m−hk ×Ψ)(tj)

)
∈ K

mj
h
. Note that by definition of m−hk and K

mj
h
, we have

ϕjh ∈ Kmj
h
. Plugging into our Algorithm 2.2.1 now yields

α

∫
Ω

vjh · Ih
(
(m−hk ×Ψ)(tj)

)
+

∫
Ω

(mj
h × vjh) · Ih(m−hk ×Ψ)(tj)

= −Ce
∫

Ω
∇(mj

h + θkvjh) · ∇Ih
(
(m−hk ×Ψ)(tj)

)
+ C1

∫
Ω
πh(mj

h) · Ih
(
(m−hk ×Ψ)(tj)

)
+ C2

∫
Ω
χ(mhk)(tj) · Ih

(
(m−hk ×Ψ)(tj)

)
.
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Next, multiplication by k and summation over all time intervals j = 0, . . . , N − 1 show∫
ΩT

(αv−hk + m−hk × v−hk) · Ih(m−hk ×Ψ−k )

= −Ce
∫

ΩT

∇(m−hk + θkv−hk) · ∇Ih(m−hk ×Ψ−k )

+ C1

∫
ΩT

πh(m−hk) · Ih(m−hk ×Ψ−k )

+ C2k

N−1∑
j=0

∫
Ω
χ(mhk)(tj) · Ih

(
(m−hk ×Ψ)(tj)

)
.

(2.3.25)

For the term on the left-hand side, this equality can be seen as follows:

k
N−1∑
j=0

(
vjh + mj

h × vjh, Ih
(
(m−hk ×Ψ)(tj)

)

=

N−1∑
j=0

∫ tj+1

tj

(
vjh + mj

h × vjh, Ih
(
(m−hk ×Ψ)(tj)

))

=
N−1∑
j=0

∫ tj+1

tj

(
v−hk(t) + m−hk(t)× v−hk(t), Ih

(
(m−hk ×Ψ−k )(t)

))
=

∫ T

0

(
v−hk + m−hk × v−hk, Ih(m−hk ×Ψ−k )

)
.

The other time-independent terms, in particular nonlinear ones, can be treated analogously.
Next, we rewrite (2.3.25) as

0 =

∫
ΩT

(αv−hk + m−hk × v−hk) · Ih(m−hk ×Ψ−k ) + Ce

∫
ΩT

∇(m−hk + θkv−hk) · ∇Ih(m−hk ×Ψ−k )

− C1

∫
ΩT

πh(m−hk) · Ih(m−hk ×Ψ−k )− C2k
N−1∑
j=0

∫
Ω
χ(mhk)(tj) · Ih

(
(m−hk ×Ψ)(tj)

)
=

∫
ΩT

(αv−hk + m−hk × v−hk) · (Ih − 1)(m−hk ×Ψ−k ) + Ce

∫
ΩT

∇(m−hk + θkv−hk) · ∇(Ih − 1)(m−hk ×Ψ−k )

− C1

∫
ΩT

πh(m−hk) · (Ih − 1)(m−hk ×Ψ−k )− C2k
N−1∑
j=0

∫
Ω
χ(mhk)(tj) · (Ih − 1)

(
(m−hk ×Ψ)(tj)

)
+

∫
ΩT

(αv−hk + m−hk × v−hk) · (m
−
hk ×Ψ−k ) + Ce

∫
ΩT

∇(m−hk + θkv−hk) · ∇(m−hk ×Ψ−k )

− C1

∫
ΩT

πh(m−hk) · (m
−
hk ×Ψ−k )− C2k

N−1∑
j=0

∫
Ω
χ(mhk)(tj) ·

(
(m−hk ×Ψ)(tj)

)
= O(h) +

∫
ΩT

(αv−hk + m−hk × v−hk) · (m
−
hk ×Ψ−k ) + Ce

∫
ΩT

∇(m−hk + θkv−hk) · ∇(m−hk ×Ψ−k )

− C1

∫
ΩT

πh(m−hk) · (m
−
hk ×Ψ−k )− C2k

N−1∑
j=0

∫
Ω
χ(mhk)(tj) ·

(
(m−hk ×Ψ)(tj)

)
,
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where we have used Lemma 2.3.8 for the last step. Passing to the limit while using the
convergence properties from Lemma 2.3.9, strong subconvergence (2.3.24), as well as the
convergence assumption (2.3.4) for the general field contributions, we see

α

∫
ΩT

mt · (m×Ψ) +

∫
ΩT

(m×mt) · (m×Ψ) = −Ce
∫

ΩT

∇m · ∇(m×Ψ)

+ C1

∫
ΩT

π(m) · (m×Ψ)

+ C2

∫
ΩT

χ(m) · (m×Ψ).

Technical but elementary calculations (see e.g. [Gol12, Proof of Thm. 3.3.7]) show the identities

(m×mt) · (m×Ψ) = mt ·Ψ and
mt · (m×Ψ) = −(m×mt) ·Ψ

whence ∫
ΩT

mt ·Ψ− α
∫

ΩT

(m×mt) ·Ψ = −Ce
∫

ΩT

∇m · ∇(m×Ψ)

+ C1

∫
ΩT

π(m) · (m×Ψ)

+ C2

∫
ΩT

χ(m) · (m×Ψ).

Exploiting the identities

a · (b× c) = (a× b) · c and∫
ΩT

∇m · ∇(m×Ψ) =

∫
ΩT

∇m · (m×∇Ψ)

for any a, b, c ∈ R3, cf. Lemma A.1.6–A.1.7, we deduce (2.1.2). The energy estimate was
already shown in Lemma 2.3.7. Finally, it remains to show m(0, ·) = m0 in the sense of
traces. This, however, follows from the weak convergence mhk

sub−−⇀ m in H1(ΩT ) and hence
the weak convergence of the traces. Here, due to continuity in time (Lemma 2.3.5), the lower
trace of mhk and m, respectively, is simply given by the evaluation at t = 0, i.e. we get

mhk(0, ·)
trace theorem /

definition

m(0, ·)
♥

m0
h

assumption (2.3.3) /m0(·)

.

From the assumed convergence property m0
h ⇀ m0 in H1(Ω) and the uniqueness of weak

limits, we conclude the equality ♥ and thus the desired result.

In the remaining part of this chapter, we further investigate the time-dependent energy
contribution χ(·). In (2.3.30)– (2.3.31), we propose two verifiable conditions that are sufficient
to prove convergence of the sum in (2.3.4). A special case, in which the analysis simplifies, is
considered individually.

43



Chapter 2. Problem formulation and discretization

2.3.1. Time-dependent energy contributions

We now investigate the time-dependent field contribution and take a closer look at the desired
convergence property

k

N−1∑
j=0

∫
Ω
χh(mhk)(tj) ·

(
(m−hk ×Ψ)(tj)

) sub−−→
∫

ΩT

χ(m) · (m×Ψ), (2.3.26)

which is very much needed in the above convergence analysis. We start with a simple case
where we assume additional apriori knowledge..

Time-dependent but a priori convergent contributions

The main problem with time-dependent contributions is that the above sum can a priorily
not be written as time integral over χ(m−hk). It is, however, still possible to approximate the
whole operator χ(·) piecewise constant in time and thus deduce a representation of the form

k
n−1∑
j=0

∫
Ω
χ(mhk)(tj) · ((m−hk ×Ψ)(tj)) =

∫
ΩT

χ−hk · (m
−
hk ×Ψ−k ), (2.3.27)

with χ−hk(t) := χ(mhk)(tj) for t ∈ [tj , tj+1). For now, let us assume that we even have some
weak convergence property for this approximation, i.e.

χ−hk
sub−−⇀ χ(m) weakly in L1(ΩT ). (2.3.28)

In this case, from the strong convergence

(m−hk ×Ψ−k )
sub−−→ (m×Ψ),

we immediately get ∫
ΩT

χ−hk · (m
−
hk ×Ψ−k )

sub−−→
∫

ΩT

χ(m) · (m×Ψ) (2.3.29)

from Lemma A.2.10.
In this case, the weak convergence property refers to the weak convergence of the approx-

imation of the entire operator χ as opposed to the time-independent case, where we only
needed the application of the operator π to the weakly convergent subsequence. It may thus
be quite difficult to derive such a convergence property, which is the main reason for the anal-
ysis in the next section. This case is, however, still relevant as one can see, for example, by
considering the approximation of a continuous external field χ ∈ C(ΩT ). In this case, χ−hk is,
independently of mhk, given by the time evaluation χ−hk(t) = χ(tj) for t ∈ [tj , tj+1) and we
have that χ−hk converges towards χ even strongly in L2(ΩT ). This can be seen as follows: As
in the proof of Lemma 2.3.9, from uniform continuity we immediately see that χ−hk → χ even
pointwise and almost everywhere. Lebesgue’s dominated convergence Theorem A.2.3 would
now directly show the desired convergence.
For sake of motivation, however, we choose a different approach here. From [Els11, VI, The-

orem 5.9] and the pointwise convergence, we deduce χ−hk ⇀ χ weakly in L2(ΩT ). Moreover,
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2.3. Abstract convergence analysis

from the continuity of ‖χ‖L2(Ω) (and thus Riemann integrability) in time, we see

‖χ−hk‖
2
L2(ΩT )

=
N−1∑
i=0

∫ ti+1

ti

‖χ(ti)‖2L2(Ω)
= k

N−1∑
i=0

‖χ(ti)‖2L2(Ω)
−→

∫ T

0
‖χ(t)‖2

L2(Ω)
= ‖χ‖2

L2(ΩT )
.

The combination of weak convergence and convergence of the norms in R yield the convergence
χ−hk −→ χ even strongly in L2(ΩT ). It turns out that the Riemann sum approach, while it
may be unexpected in the first place, carries quite far. In the following, we will pick up on
this idea and extend it to cover more general cases.

If we know even less ...

As we have seen in the last section, weak L1(ΩT ) resp. L2(ΩT ) convergence is not obvious for
time-dependent operators. One approach that was chosen above is considering a corresponding
Riemann sum. In this section, we allow more general operators and extend the Riemann sum
concept in two ways. First, we drop the assumption χhk ⇀ χ of weak convergence. Second,
we allow operators that change with h and k inside our Riemann-type sum. Those two
changes make the convergence analysis much more complicated. We will, however, still derive
unconditional convergence and can thus treat very general field contributions within our LLG
integrator. In this section, we therefore finally investigate the limiting process

k

n−1∑
j=0

∫
Ω
χ(mhk)(tj) · ((m−hk ×Ψ)(tj))

sub−−→
∫

ΩT

χ(m) · (m×Ψ)

for completely general field contributions. In particular, we allow contributions χ which do
not only depend on mj

h at a certain time tj , but rather on the whole evolution mhk up to tj .
As promised, the upcoming analysis will lead to unconditional convergence of our integrator as
(h, k)→ (0, 0). Some technical details, however, require separate consideration of the h- and
k-limit. Besides the necessity that arises due to the proof, this approach is very interesting, as
for fixed h > 0, it yields existence of a function mh ∈ L2(ΩT ) with mhk

sub−−→ mh in L2(ΩT )
and even uniformly in time. Using this ansatz, we thus gain additional information about our
numerical integrator that goes way beyond the simple fact that it is convergent.
Obviously, it is impossible to show convergence for fully arbitrary operators. Therefore, we

assume the following two conditions to be fulfilled by the contributions χ. Those assumptions
will prove to be sufficient for the desired property (2.3.26).

χ(mh)
sub−−⇀ χ(m) weakly in L1(ΩT ) and (2.3.30)

‖χ(mhk)(t)− χ(mh)(t)‖2
L2(Ω)

. ‖mhk(t)−mh(t)‖2
L2(Ω)

+ ‖mhk −mh‖2L2(ΩT )
+ ‖m−hk −mh‖2L2(ΩT )

+ ‖m+
hk −mh‖2L2(ΩT )

,

(2.3.31)

where mh ∈ L2(ΩT ) denotes the k-limit of mhk. While existence of this function formally
still has to be shown, we can already assure that it does exist. Moreover, we will also see, that
mh is continuous with respect to time. We like to emphasize that time-continuity of mhk and
mh and the assumption on χ guarantee that the time evaluation in (2.3.31) is well-defined.

45



Chapter 2. Problem formulation and discretization

Remark . At first glance, the above conditions (2.3.30)–(2.3.31) seem to be equally strong
as in the previous section. We stress, however, that in this case, we only need convergence
properties of the operator χ applied to the discrete magnetizations. In this section, we thus
completely circumvent the approximation of the operator itself. More precisely, there holds
χ(mhk) 6= χhk.

In the following, we will show that there indeed exists a function mh ∈ L2(ΩT ) such that
mhk, and even m±hk, admit strongly convergent subsequences with

mhk
sub−−→mh strongly in L2(ΩT ),

m−hk
sub−−→mh strongly in L2(ΩT ), and

m+
hk

sub−−→mh strongly in L2(ΩT ),

(2.3.32)

as k → 0. In particular, this limit process is even uniformly in time. The main argument will
be the application of the Arzela-Ascoli theorem which basically classifies compact sets within
the continuous functions. First we need a technical lemma.

Lemma 2.3.10. Let h > 0 be fixed and α > 0. Then, the set {‖vjh‖L2(Ω)}j is uniformly
bounded as k → 0, i.e.

sup
k>0
‖vjh‖L2(Ω) ≤ C5(h) <∞,

where C5(h) > 0 depends only on Cπ and Cχ from (2.3.2), α > 0, the current mesh-width
h > 0, as well as the shape regularity constant σ(Th) > 0. In particular, C5(h) is independent
of k.

Proof. From (2.3.8), we immediately get

α

∫
Ω
|vjh|

2 ≤ −Ce
∫

Ω
∇mj

h · ∇vjh

+ C1

∫
Ω
πh(mj

h) · vjh

+ C2

∫
Ω
χ(mhk)(tj) · vjh

whence

α‖vjh‖
2
L2(Ω)

. ‖∇mj
h‖L2(Ω)‖∇vjh‖L2(Ω) + C1Cπ‖vjh‖L2(Ω)

+ C2Cχ‖vjh‖L2(Ω).

Next, we apply an inverse estimate (see e.g. [Bra07, II, Theorem 6.8]) for the first term on the
right-hand side to see

α‖vjh‖
2
L2(Ω)

.
1

h2
‖mj

h‖L2(Ω)‖v
j
h‖L2(Ω) + (C1Cπ + C2Cχ)‖vjh‖L2(Ω)

=
( 1

h2
‖mj

h‖L2(Ω) + (C1Cπ + C2Cχ)
)
‖vjh‖L2(Ω).
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Altogether, using the compactness of Ω, we derive

‖vjh‖L2(Ω) .
1

h2
‖mj

h‖L2(Ω) + (C1Cπ + C2Cχ)

≤ 1

h2
|Ω|1/2 + (C1Cπ + C2Cχ)

=: C5(h),

and therefore the k-independent boundedness of ‖vjh‖L2(Ω).

The previous lemma now allows us to uniformly bound mhk for k → 0. In addition, this
allows us to prove that the sequence mhk is even equicontinuous for any fixed h > 0. This,
however, yields the possibility of applying the Arzelà-Ascoli theorem to see that for fixed
h > 0, mhk is even uniformly convergent in time. The reader might know the Arzela-Ascoli
theorem only for functions g : [0, T ] → R. There are, however, several extensions to function
spaces, one of which will be applied here. The following result can be found e.g. in [Pop74,
Chapter 4, Cor. 4.48], and the interested reader is referred to that work for further studies.

Proposition 2.3.11 (Arzelà-Ascoli). Let (X, dX) and (Y, dY ) be metric spaces. Let further
X be compact and H ⊂ C(X,Y ). Then, H is relatively compact in C(X,Y ) if and only if

(a) H(x) :=
{
h(x) : h ∈ H

}
is relatively compact in Y for any x ∈ X and

(b) H is equicontinuous, i.e.

∀ε > 0∃δ > 0 ∀h ∈ H ∀x1, x2 ∈ X : dX(x1, x2) ≤ δ ⇒ dY (h(x1), h(x2)) ≤ ε.

Exploiting this result, we now investigate the limiting process for k → 0.

Lemma 2.3.12. Let h > 0 be fixed. Then, there exists a function mh ∈ L2(ΩT ), such that a
subsequence of mhk converges uniformly in time towards mh for k → 0, i.e.

‖mhk −mh‖C([0,T ];L2(Ω))
sub−−→ 0. (2.3.33)

In particular, there holds

‖mhk −mh‖L2(ΩT )
sub−−→ 0 (2.3.34)

‖mhk(t)−mh(t)‖L2(Ω)
sub−−→ 0. (2.3.35)

for the same subsequence as above. Moreover, the limit function mh is continuous in time for
any h > 0.

Proof. We aim to use the Arzela-Ascoli theorem for the following quantities:

(X, dX) = ([0, T ], | · |),
(Y, dY ) = (S1(Th), ‖ · ‖L2(Ω)),

H = mhk(·) ⊂ C(X,Y ) for fixed h.
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First, we note that obviously, one has mhk(·) ∈ C
(
[0, T ], (S1(Th), ‖ · ‖L2(Ω))

)
. Next, we want

to apply Proposition 2.3.11. We first show assumption (b), i.e. the equicontinuity of mhk.
To that end, let ε > 0 be arbitrary and C5(h) = C5(h, |Ω|, Cπ, Cχ) be the constant from
Lemma 2.3.10. We now choose δ = ε

CvC5
> 0 (independent of k > 0) and consider t, t′ ∈ [0, T ]

with |t− t′| ≤ δ. For any k > 0, we have to distinguish two cases.

Case 1: t, t′ ∈ [tj , tj+1]. There holds

‖mhk(t, ·)−mhk(t
′, ·)‖L2(Ω)

= ‖ t− jk
k

mj+1
h +

(j + 1)k − t
k

mj
h −

t′ − jk
k

mj+1
h − (j + 1)k − t′

k
mj
h‖L2(Ω)

= ‖ t− t
′

k
mj+1
h − t− t′

k
mj
h‖L2(Ω)

=
|t− t′|
k
‖mj+1

h −mj
h‖L2(Ω)

≤ |t− t
′|

k
kCv‖vjh‖L2(Ω)

≤ |t− t′|CvC5

≤ ε

CvC5
C5Cv = ε,

with C5 = C5(h) (see Lemma 2.3.10). In particular, C5 is independent of k. For the first
inequality, we additionally exploited Lemma 2.2.3.

Case 2: t and t′ are from ’different time intervals’, i.e. t ∈ [j1k, (j1 +1)k] and t′ ∈ [j2k, (j2 +
1)k] with j1 < j2. Then we have

|t′ − t| = |t− tj1+1|+
j2−1∑
i=j1+1

|ti − ti+1|+ |t′ − tj2 |.

The triangle inequality in L2(Ω) further shows

‖mhk(t
′, ·)−mhk(t, ·)‖L2(Ω) ≤ ‖mhk(t

′, ·)−mhk(tj2 , ·)‖L2(Ω)

+

j2−1∑
i=j1+1

‖mhk(ti+1, ·)−mhk(ti, ·)‖L2(Ω)

+ ‖mhk(tj1+1, ·)−mhk(t, ·)‖L2(Ω).

Using case 1 above now yields

‖mhk(t
′, ·)−mhk(t, ·)‖L2(Ω) ≤

(
|t′ − tj2 |+

j2−1∑
i=j1+1

|ti − ti+1|+ |tj1+1 − t|
)
CvC5,

= |t′ − t|CvC5 ≤ ε

which is the equicontinuity of
{
mhk : k > 0

}
. It remains to show assumption (a). To that

end, we show that ‖mhk(t, ·)‖H1(Ω) is bounded independently of k. Exploiting the Rellich-
Kondrachov compactness theorem A.2.4, we then conclude relative compactness of

{
mhk(t, ·) :

k > 0
}
in L2(Ω). Again, we distinguish between two cases.

48



2.3. Abstract convergence analysis

Case 1: We first consider t = tj = jk for any j ∈ 1, . . . , N . Then, we have

‖mhk(tj , ·)‖2L2(Ω)
= ‖mj

h‖
2
L2(Ω)

≤ |Ω|‖mj
h‖

2
L∞(Ω) = |Ω|.

The uniform boundedness of ‖∇mj
h‖

2
L2(Ω)

directly follows from Lemma 2.3.3.
Case 2: Now, let t 6= tj with t ∈ [jk, (j + 1)k]. Then, we have

‖mhk(t, ·)‖2H1(Ω)
= ‖mhk(t, ·)‖2L2(Ω)

+ ‖∇mhk(t, ·)‖2L2(Ω)

= ‖ t− jk
k

mj
h +

(j + 1)k − t
k

mj+1
h ‖2

L2(Ω)

+ ‖ t− jk
k
∇mj

h +
(j + 1)k − t

k
∇mj+1

h ‖2
L2(Ω)

≤ |t− jk|
k
‖mj

h‖
2
L2(Ω)

+
|(j + 1)k − t|

k
‖mj+1

h ‖2
L2(Ω)

+
|t− jk|

k
‖∇mj

h‖
2
L2(Ω)

+
|(j + 1)k − t|

k
‖∇mj+1

h ‖2
L2(Ω)

≤ k

k
(‖mj

h‖
2
L2(Ω)

+ ‖mj+1
h ‖2

L2(Ω)
+ ‖∇mj

h‖
2
L2(Ω)

+ ‖∇mj+1
h ‖2

L2(Ω)
)

≤ C.

This bound is even independent of h. Altogether, we derived relative compactness of
{
mhk(·) :

k > 0
}
in C(X,Y ) and thus the existence of a subsequence that converges towards a function

mh in C(X,Y ). Since uniform limits of continuous functions are continuous, we conclude
continuity of mh in time. The pointwise convergence (2.3.35) directly follows from uniform
convergence. Since [0, T ] is a compact interval, we finally get

‖mhk −mh‖2L2(ΩT )
= ‖mhk −mh‖2L2([0,T ];L2(Ω))

≤ |T |‖mhk −mh‖2L∞([0,T ];L2(Ω))

sub−−→ 0

and thus the desired result.

In the following, we mostly work with the discretizations m−hk resp. m+
hk, which are constant

in time. Therefore, we like to have a corresponding result for those functions. Luckily, the
uniform convergence can be transferred, which is the result of the upcoming corollary.

Corollary 2.3.13. The uniform convergence property can be transferred to m−hk and m+
hk,

i.e. for fixed h > 0, we have

‖m−hk −mh‖L∞([0,T ];L2(Ω))
sub−−→ 0 and (2.3.36)

‖m+
hk −mh‖L∞([0,T ];L2(Ω))

sub−−→ 0 (2.3.37)

as k → 0, for the same subsequence as above.

Proof. The Lemmata 2.2.3 and 2.3.10 show the uniform boundedness of

‖∂tmhk(t)‖L2(Ω) = ‖
mj+1
h −mj

h

k
‖L2(Ω) ≤ Cv ‖vjh‖L2(Ω) ≤ CvC5(h), (2.3.38)
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for any t ∈ [tj , tj+1]. Next, we know from Lemma 2.2.5

‖mhk −m−hk‖
2
L∞([0,T ];L2(Ω))

= sup
t∈[0,T ]

‖mhk(t)−m−hk(t)‖
2
L2(Ω)

= sup
t∈[0,T ]

∫
Ω
|mhk(t,x)−m−hk(t,x)|2 dx

= sup
t∈[0,T ]

k2

∫
Ω
|∂tmhk(t,x)|2 dx

= sup
t∈[0,T ]

k2 ‖∂tmhk(t)‖2L2(Ω)

≤ k2C2
vC5(h)2 −→ 0.

This, however, directly yields

‖m−hk −mh‖L∞([0,T ];L2(Ω)) ≤ ‖m
−
hk −mhk‖L∞([0,T ];L2(Ω))

+ ‖mhk −mh‖L∞([0,T ];L2(Ω))
sub−−→ 0,

due to Lemma 2.3.12. The result (2.3.37) for m+
hk is derived analogously.

With the above statements, we have a pretty good understanding of the limiting process of
the discrete magnetizations for k → 0. It thus remains to investigate the one for h → 0 and
the corresponding question on whether or not it makes sense to treat those limiting processes
separately. The next lemma gives some insight into that regard.

Lemma 2.3.14. There holds ‖mh −m‖L2(ΩT ) → 0 for h→ 0, i.e. we have

mhk
k //

(k,h) ''

mh

h
��

m

.

Without loss of generality, the convergence is to be understood for yet another subsequence in
the sense of Lemma 2.3.12, i.e. there exists a subsequence of the index set (h, k) such that all
the above convergence properties hold simultaneously.

Proof. We only have to show the convergence property ‖mh −m‖L2(ΩT ) for h → 0, as the
other terms have already been treated before. To that end, we write

‖m−mh‖2L2(ΩT )
≤ 2‖m−mhk‖2L2(ΩT )

+ 2‖mhk −mh‖2L2(ΩT )
.

Now, let ε > 0 be arbitrary. From the unconditional convergence of mhk towards m, we
deduce the existence of (h0, k0) such that‖m −mhk‖2L2(ΩT )

≤ ε for all h ≤ h0, k ≤ k0. This
yields

‖m−mh‖2L2(ΩT )
= lim sup

k→0
‖m−mh‖2L2(ΩT )

≤ lim sup
k→0

(
2‖m−mhk‖2L2(ΩT )

+ 2‖mhk −mh‖2L2(ΩT )

)
≤ 2 lim sup

k→0
‖m−mhk‖2L2(ΩT )

+ 2 lim sup
k→0

‖mhk −mh‖2L2(ΩT )

≤ 2ε+ 0 = 2ε,
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for all h ≤ h0. Here, we used that there exists a subsequence of mhk such that there holds

‖mhk −mh‖2L2(ΩT )
−→ 0 for any fixed h < h0 and k → 0.

This can be seen by construction of a diagonal sequence in the following sense: First, we
choose a subsequence of the time-index k such that we have mh0kn0

→mh0 for n→∞. Then,
we choose a further subsequence satisfying mh1kn1

→mh1 , as well as mh0kn1
→mh0 as n→∞,

and so on. For the time-index k, we now choose the diagonal sequence mhk := mhknn to see

mhk
sub−−→mh for any h < h0, as k −→ 0. (2.3.39)

This concludes the proof.

Up to now, we investigated both, the limiting process for k → 0, as well as the one for
h → 0, and we saw that indeed, the discrete quantities behave the way we anticipated. The
next lemma carries those convergence properties over to a pointwise level. Recall that all
involved quantities are continuous in time, cf. Lemmata 2.3.5 and 2.3.12.

Corollary 2.3.15. For any t ∈ [0, T ], we have

‖mhk(t)−m(t)‖L2(Ω)
sub−−→ 0 and (2.3.40)

‖mh(t)−m(t)‖L2(Ω)
sub−−→ 0, (2.3.41)

as (k, h)→ (0, 0) resp. h→ 0.

Proof. We only show the first statement since the second one follows completely analogously.
For the moment, we assume that there existed some t ∈ [0, T ], such that the above convergence
property does not hold, i.e.

∃C > 0∀(h, k) : ‖mhk(t)−m(t)‖L2(Ω) ≥ C.

Due to continuity of the involved functions (Lemma 2.3.5 and 2.3.12), there exists a neigh-
borhood Bε(t) around t, such that

‖mhk(t)−m(t)‖L2(Ω) > 0

for any t ∈ Bε(t) and for all (h, k). This, however, yields

‖mhk −m‖2
L2(ΩT )

=

∫ T

0
‖mhk(s)−m(s)‖2

L2(Ω)
ds > 0

for all (h, k) which contradicts the assumption.

We finally collected all the necessary ingredients to prove assumption (2.3.26). The proof
consists of one lemma and two propositions, and considers the limiting processes for k → 0
and h → 0 separately. In order to ease readability, the following lemma was extracted from
the proof. The upcoming propositions 2.3.17 and 2.3.18 then deal with one limiting process
each, and thus combine all the previous results.
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Lemma 2.3.16. There holds

k
N−1∑
j=0

‖χ(mhk)(tj)− χ(mh)(tj)‖L2(Ω)
sub−−→ 0 (2.3.42)

as k → 0, where the subsequence is the same as for the limiting process mhk
sub−−→mh.

Proof. By assumption (2.3.31), we have

k

N−1∑
j=0

‖χ(mhk)(tj)− χ(mh)(tj)‖L2(Ω)

. k

N−1∑
j=0

((
‖mhk(tj)−mh(tj)‖2L2(Ω)

+ ‖mhk −mh‖2L2(ΩT )

+ ‖m−hk −mh‖2L2(ΩT )
+ ‖m+

hk −mh‖2L2(ΩT )

))1/2

. |T |
(
‖mhk −mh‖2L∞(L2)

+ ‖m−hk −mh‖2L∞(L2)
+ ‖m+

hk −mh‖2L∞(L2)

)1/2
sub−−→ 0,

where we have used Lemma 2.3.12 and Corollary 2.3.13.

Remark. The convergence analysis in this section could be greatly simplified, if we could proof
uniform convergence of mhk to m in time. This is, however, not the case.

Proposition 2.3.17. For any fixed h > 0, there holds

k

N−1∑
j=0

∫
Ω
χ(mhk)(tj) · (m−hk ×Ψ)(tj)

sub−−→
∫

ΩT

χ(mh) · (mh ×Ψ) (2.3.43)

as k → 0.
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Proof. We obviously have

∣∣∣k N−1∑
j=0

∫
Ω
χ(mhk)(tj) · (m−hk ×Ψ)(tj)−

∫
ΩT

χ(mh) · (mh ×Ψ)
∣∣∣

=
∣∣∣k N−1∑

j=0

∫
Ω
χ(mh)(tj) · (mh ×Ψ)(tj)−

∫
ΩT

χ(mh) · (mh ×Ψ)

− k
N−1∑
j=0

∫
Ω
χ(mh)(tj) · (mh ×Ψ)(tj) + k

N−1∑
j=0

∫
Ω
χ(mh)(tj) · (m−hk ×Ψ)(tj)

+ k
N−1∑
j=0

∫
Ω
χ(mhk)(tj) · (m−hk ×Ψ)(tj)− k

N−1∑
j=0

∫
Ω
χ(mh)(tj) · (m−hk ×Ψ)(tj)

∣∣∣
≤
∣∣∣k N−1∑

j=0

∫
Ω
χ(mh)(tj) · (mh ×Ψ)(tj)−

∫
ΩT

χ(mh) · (mh ×Ψ)
∣∣∣

+
∣∣∣k N−1∑

j=0

∫
Ω
χ(mhk)(tj) · (m−hk ×Ψ)(tj)− k

N−1∑
j=0

∫
Ω
χ(mh)(tj) · (m−hk ×Ψ)(tj)

∣∣∣
+
∣∣∣k N−1∑

j=0

∫
Ω
χ(mh)(tj) · (m−hk ×Ψ)(tj)− k

N−1∑
j=0

∫
Ω
χ(mh)(tj) · (mh ×Ψ)(tj)

∣∣∣
= |I1|+ |I2|+ |I3|.

In the following, we will investigate each of those three contributions separately. First, we
have

|I1| −→ 0

by definition of the Riemann integral. Note, that
∫

Ωχ(mh)(·) · (mh × Ψ)(·) is Riemann
integrable in time due to continuity of mh and thus, by assumption, continuity of χ(mh)(·)
in time. For the second term, we use Lemma 2.3.16 to deduce

|I2| ≤ k
N−1∑
j=0

∫
Ω
|[χ(mhk)(tj)− χ(mh)(tj)] · (m−hk ×Ψ)(tj)|

≤ k
N−1∑
j=0

‖χ(mhk)(tj)− χ(mh)(tj)‖L2(Ω)‖(m
−
hk ×Ψ)(tj)‖L2(Ω)

. k

N−1∑
j=0

‖χ(mhk)(tj)− χ(mh)(tj)‖L2(Ω)
sub−−→ 0, für k → 0
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Finally, it remains to consider the third term. Here, we have

|I3| ≤ k
N−1∑
j=0

‖χ(mh)(tj)‖L2(Ω)‖[(m
−
hk ×Ψ)− (mh ×Ψ)](tj)‖L2(Ω)

. sup
tj

‖[(m−hk ×Ψ)− (mh ×Ψ)](tj)‖L2(Ω))

. ‖(m−hk ×Ψ)− (mh ×Ψ)‖L∞([0,T ];L2(Ω))

= ‖(m−hk −mh)×Ψ‖L∞(L2)

. ‖m−hk −mh‖L∞(L2)‖Ψ‖L∞(L2)
sub−−→ 0.

For the first estimate, we used the assumed time-continuity of χ(mh) and thus

k

n−1∑
j=0

‖χ(mh)(tj)‖L2(Ω) −→
∫ T

0
‖χ(mh)(t)‖L2(Ω).

This concludes the proof.

Remark. In the proof of the previous result, we used the Riemann sum k
∑N−1

j=0

∫
Ωχ(mhk)(tj)

for the convergence analysis. The quantity mhk, however, is successively constructed by our
scheme. Implicitly, we thus assumed, that χ(mhk)(tj) depends only on mhk at time tj or ear-
lier, i.e. it does not depend on later time evaluations. This is where we used assumption (2.2.5),
which is a quite natural one, since the involved quantities usually stem from physical processes
of some kind.

With the last statement, we can finally describe the h-limit and thus show (2.3.26).

Proposition 2.3.18. Assumption (2.3.26) holds, i.e. we have

k
N−1∑
j=0

∫
Ω
χ(mhk)(tj) · ((m−hk ×Ψ)(tj)) −→

∫
ΩT

χ(m) · (m×Ψ) (2.3.44)

as (h, k)→ (0, 0).

Proof. We define the real-valued sequence

ahk := k

N−1∑
j=0

∫
Ω
χ(mhk)(tj) · (m−hk ×Ψ)(tj).

Then, there holds

|ahk| ≤ k
N−1∑
j=0

‖χ(mhk)(tj)‖L2(Ω)‖(m
−
hk ×Ψ)(tj)‖L2(Ω) . CχT,

whence boundedness of ahk. Due to the Bolzano-Weierstrass theorem, there exists some value
a ∈ R and a subsequence of ahk (notationally unchanged) with

lim
h→0
k→0

ahk =: a.
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2.4. Improved energy estimate

Proposition 2.3.17, assumption (2.3.30), and Lemma A.2.10 now show

lim
h→0

lim
k→0

ahk = lim
h→0

∫
ΩT

χ(mh) · (mh ×Ψ) =

∫
ΩT

χ(m) · (m×Ψ).

From the uniqueness of limits and Lemma A.3.1, we finally deduce

a =

∫
ΩT

χ(m) · (m×Ψ),

which concludes the proof.

This statement concludes the general convergence analysis. In the next chapter, we will
investigate certain concrete field contributions from the literature and show that those fulfill
our assumptions and are thus covered by the theory. Later on, we will show that it is even
possible to couple the general LLG integrator with other PDEs and still derive an uncondi-
tionally convergent scheme. Before proceeding to those investigations, however, we shed some
light on further aspects of our integrator: We discuss improved and physically more relevant
energy estimates.

2.4. Improved energy estimate

In this section, we like to comment on our energy decay estimates in comparison to those
available throughout the literature. In our notion of a weak solution of LLG, we are satisfied
with a simple energy bound in the sense of (2.1.4). Put explicitly, we only assume the energy
to be bounded by some time- and space-independent constant C ≥ 0, i.e.

‖∇m(t′)‖2
L2(Ω)

+ ‖mt‖2L2(Ωt′ )
≤ C, for almost all t′ ∈ [0, T ].

We stress that such an energy bound is sufficient to show convergence of our respective al-
gorithms towards a weak solution. Furthermore, from a mathematical point of view, more
than this boundedness is not to be expected. This is true mainly due to the fact that —
as mathematicians — we try to prove convergence with as little as possible assumptions on
the involved operators, i.e. we try to figure out the set of minimal assumptions to still have
unconditional convergence towards some useful notion of a solution.
In contrast to this approach, in many works available throughout the literature (especially

physically related ones), we find energy estimates of the form

E(t′) + ‖mt‖2L2(Ωt′ )
≤ E(0)

for some meaningful energy term E(·) and t′ ∈ [0, T ]. This means that as time progresses, the
total energy of the system can never increase, which is certainly a property one would expect
from any physically motivated simulation. We like to emphasize, however, that estimates of
this form are thus a physical relevance rather than a mathematical necessity. The reason why
such estimates can still be obtained in practice is that the contributions of the effective field
usually stem from physical observations, as well. Those operators then fulfill more properties
than the bare minimum that is needed to obtain convergence. Given such additional proper-
ties, those improved energy estimates can be deduced with our LLG integrator as well, which
is the result of this section. As mentioned in Section 1.3, we define the energy term

E(t) := E
(
m(t)

)
:= Ce‖∇m(t)‖2

L2(Ω)
− 〈π(m(t)),m(t)〉 − 〈f(t),m(t)〉 (2.4.1)
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and its discrete version

E(mj
h) := Ce‖∇mj

h‖
2
L2(Ω)

− 〈πh(mj
h),mj

h〉 − 〈f
j
h,m

j
h〉. (2.4.2)

To obtain a result which is comparable to the available literature, we omit the time-dependent
contribution χ. Moreover, since externally applied fields are relevant in many physical sim-
ulations and have a special impact on the energy landscape, we especially consider this con-
tribution modeled by the function f : L2(ΩT )→ L2(ΩT ). The term f jh denotes some suitable
approximation of the applied field, and we assume strong convergence of f±hk → f in L2(ΩT ).
The reader is referred to Section 3.1.2 for details.
With those notions, we can derive an energy result in the spirit of e.g. [AKST12], which

weakly depends on the spatial dimension and has partially been published in [BFF+12]. Even
though this work mainly deals with 3D domains, we also give a result for 2D since this might
be of general interest.

Lemma 2.4.1 (improved energy estimate). Let π(·) and πh(·) be uniformly Lipshitz-continuous
with Lipshitz constant CL, and let the applied field f ∈ L2(ΩT ) be constant in time and hence
f ih = f i+1

h for all time-steps i = 0, . . . , N − 1 of the integrator. Furthermore, for the 3D case,
let f be in L4(ΩT ) and let πh(·) be uniformly bounded in L4(Ω). Then, there holds

E
(
m(t′)

)
+ 2(α− 3/2C2

v ε)‖mt‖2L2(Ωt′ )
≤ E

(
m(0)

)
+

1

4ε
‖f‖L2(ΩT ) +

|T |(C2
π + C2

L)

4ε

for any ε > 0 and almost every t′ ∈ [0, T ]. For vanishing applied field f and self-adjoint
operators π(·) and πh(·), it even holds that

E
(
m(t′)

)
+ 2α‖mt‖2L2(Ωt′ )

≤ E
(
m(0)

)
for almost every t′ ∈ [0, T ].

Proof. To abbreviate notation, we define

H(mi
h) := −πh(mi

h)− f ih.

Together with f ih = f i+1
h , this implies

H(mi+1
h )−H(mi

h) = −πh(mi+1
h ) + πh(mi

h).

In complete analogy to (2.3.9), we get

E(mi+1
h )− E(mi

h) = Ce‖∇mi+1
h ‖

2
L2(Ω1)

+ 〈H(mi+1
h ),mi+1

h 〉 − Ce‖∇mi
h‖2L2(Ω1)

− 〈H(mi
h),mi

h〉

≤ Ce‖∇mi
h‖2L2(Ω1)

− 2Ce(θ − 1/2)k2‖∇vih‖2L2(Ω1)
− 2αk‖vih‖2L2(Ω1)

− 2k〈H(mi
h),vih〉+ 〈H(mi+1

h ),mi+1
h 〉 − Ce‖∇mi

h‖2L2(Ω1)

− 〈H(mi
h),mi

h〉
= −2Ce(θ − 1/2)k2‖∇vih‖2L2(Ω1)

− 2αk‖vih‖2L2(Ω1)
+ 2k〈H(mi

h),vih〉

+ 〈H(mi+1
h ) +H(mi

h),mi+1
h −mi

h〉+ 〈H(mi+1
h ),mi

h〉 − 〈H(mi
h),mi+1

h 〉.
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Straightforward calculations now show

−2k〈H(mi
h),vih〉+ 〈H(mi+1

h ) +H(mi
h),mi+1

h −mi
h〉

= 2〈H(mi
h),mi+1

h −mi
h − kvih〉+ 〈H(mi+1

h )−H(mi
h),mi+1

h −mi
h〉.

Next, the exploitation of |mi+1
h (z) −mi

h(z) − kvih(z)| ≤ 1/2|kvih(z)|2 for all nodes z ∈ Nh,
cf. Lemma 2.2.4 in combination with the norm equivalence from Proposition 2.1.3, we get for
the 2D case

‖mi+1
h −mi

h − kvih‖2L2(Ω)
≤ h2

∑
z∈Nh

|mi+1
h (z)−mi

h(z)− kvih(z)|2

.
h2

4

∑
z∈Nh

k4|vih(z)|4

. k4‖vih‖4L4(Ω)

whence

2〈H(mi
h),mi+1

h −mi
h − kvih〉 ≤ 2‖H(mi

h)‖L2(Ω)‖m
i+1
h −mi

h − kvih‖L2(Ω)

. k2‖vih‖2L4(Ω)
.

For the 3D case, we get

‖mi+1
h −mi

h − kvih‖
4/3

L4/3(Ω)
. h3

∑
z∈Nh

|mi+1
h (z)−mi

h(z)− kvih(z)|4/3

. h3
∑
z∈Nh

k8/3|vih(z)|8/3

. k8/3‖vih‖
8/3

L8/3(Ω)

whence

‖mi+1
h −mi

h − kvih‖L4/3(Ω) ≤ k
2‖vih‖2L8/3(Ω)

.

Next, we use ‖H(mi
h)‖L4(Ω) ≤ C to see

2〈H(mi
h),mi+1

h −mi
h − kvih〉 ≤ 2‖H(mi

h)‖L4(Ω)‖m
i+1
h −mi

h − kvih‖L4/3(Ω)

. k2‖vih‖2L8/3(Ω)

. k2‖vih‖2L3(Ω)
,

and make use of the Sobolev embeddings

‖vih‖2L4(Ω)
. ‖vih‖H1(Ω)‖v

i
h‖L2(Ω) for 2D

‖vih‖2L3(Ω)
. ‖vih‖H1(Ω)‖v

i
h‖L2(Ω) for 3D .

Altogether we have thus shown

2〈H(mi
h),mi+1

h −mi
h − kvih〉 . k2‖vih‖L2(Ω)

(
‖vih‖L2(Ω) + ‖∇vih‖L2(Ω)

)
.
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Using Lipschitz-continuity of H(·) together with Lemma 2.2.3, we further estimate

〈H(mi+1
h )−H(mi

h),mi+1
h −mi

h〉 ≤ ‖H(mi+1
h )−H(mi

h)‖L2(Ω)‖m
i+1
h −mi

h‖L2(Ω)

≤ CL‖mi+1
h −mi

h‖2L2(Ω)

≤ C2
vCLk

2‖vih‖2L2(Ω)
.

We have thus derived

E(mi+1
h )− E(mi

h) ≤ −Ce2(θ − 1/2)k2‖∇vih‖2L2(Ω)
+ Ĉk2

(
‖vih‖L2(Ω)‖∇vih‖L2(Ω) + ‖vih‖2L2(Ω)

)
− 2αk‖vih‖2L2(Ω)

+ 〈H(mi+1
h ),mi

h〉 − 〈H(mi
h),mi+1

h 〉.

Summing up over i = 0, . . . , j − 1 and using the Cauchy-Schwarz inequality, we get for any
j = 0, . . . , N and for θ ∈ [1/2, 1]

E(mj
h)− E(m0

h) + 2αk

j−1∑
i=0

‖vih‖2L2(Ω1)
≤ Ck

(
‖v−hk‖L2(ΩT )‖∇v−hk‖L2(ΩT ) + ‖v−hk‖

2
L2(ΩT )

)
+

j−1∑
i=0

〈 H(mi+1
h ),mi

h〉 −
j−1∑
i=0

〈H(mi
h),mi+1

h 〉

= k
(
‖v−hk‖L2(ΩT )‖∇v−hk‖L2(ΩT ) + ‖v−hk‖

2
L2(ΩT )

)
+

j−1∑
i=0

(
〈H(mi+1

h )−H(mi
h),mi

h〉 − 〈H(mi
h),mi+1

h −mi
h〉
)
,

(2.4.3)

where we have used

〈H(mi+1
h ),mi

h〉 = 〈H(mi+1
h )−H(mi

h),mi
h〉+ 〈H(mi

h),mi
h〉

and

−〈H(mi
h),mi+1

h 〉 = −〈H(mi
h),mi+1

h −mi
h〉 − 〈H(mi

h),mi
h〉,

respectively, for the last inequality. Next, we again exploit Lipschitz-continuity and Young’s
inequality to see for any ε > 0

j−1∑
i=0

(
〈H(mi+1

h )−H(mi
h),mi

h〉 − 〈H(mi
h),mi+1

h −mi
h〉
)

≤ CvCL

j−1∑
i=0

‖kvih‖L2(Ω)‖m
i
h‖L2(Ω) + Cv

j−1∑
i=0

‖kvih‖L2(Ω)‖f
i
h‖L2(Ω) + CvCπ

j−1∑
i=0

‖kvih‖L2(Ω)

≤ 3C2
vεk

j−1∑
i=0

‖vih‖2L2(Ω)
+

k

4ε

j−1∑
i=0

‖f ih‖2L2(Ω)
+
|T |(C2

π + C2
L)

4ε
.

We thus get

E(mj
h) + 2k(α− 3/2C2

vε)

j−1∑
i=0

‖vih‖2L2(Ω)
≤ E(m0

h) + C2k
(
‖v−hk‖L2(ΩT )‖∇v−hk‖L2(ΩT ) + ‖v−hk‖

2
L2(ΩT )

)
+

1

4ε
‖f−hk‖

2
L2(ΩT )

+
|T |(C2

π + C2
L)

4ε
.
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As in the proof of Lemma 2.3.7, we conclude for any measurable set T ∈ [0, T ]∫
T
E
(
m+
hk(t

′)
)

+ 2(α− 3/2C2
vε)

∫
T
‖v−hk‖

2
L2(Ωt′ )

≤
∫
T
E(m0

h) + Ck

∫
T
‖v−hk‖L2(ΩT )‖∇v−hk‖L2(ΩT )

+ Ck

∫
T
‖v−hk‖

2
L2(ΩT )

+

∫
T

1

4ε
‖f−hk‖

2
L2(ΩT )

+

∫
T

|T |(C2
π + C2

L)

4ε
.

Passing to the limit as (h, k)→ (0, 0), this finally yields∫
T
E
(
m(t)

)
+ 2(α− 3/2C2

vε)

∫
T
‖mt‖2L2(Ωt)

≤
∫
T
E
(
m(0)

)
+

∫
T

1

4ε
‖f‖2

L2(ΩT )
+

∫
T

|T |(C2
π + C2

L)

4ε
.

Here, we have used the boundedness of
√
k‖∇v−hk‖L2(ΩT ). Since T ∈ [0, T ] was arbitrary, we

derive the desired result from standard measure theory, cf. e.g. [Els11, IV, Theorem 4.4]. Note
that for vanishing f and self-adjoint operators, the terms

j∑
i=0

〈H(mi+1
h ),mi

h〉 −
j∑
i=0

〈H(mi
h),mi+1

h 〉

in (2.4.3) vanish. This immediately yields the corresponding result.
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Chapter 3
Application to field contributions

In this section, we finally consider concrete contributions of the effective field which stem from
actual physical processes. We investigate the classical field contributions

• magnetocrystalline anisotropy,

• magnetostatic strayfield, and

• exterior magnetic field

and show that they indeed fulfill the assumptions (2.3.2) and (2.3.4). For sake of readability,
we repeat those here:

‖πh(mj
h)‖L2(Ω) ≤ Cπ <∞, and

πh(m−hk)
sub−−⇀ π(m) weakly subconvergent in L2(ΩT ),

i.e. we concentrate on the classical contributions, and neglect a possible time-dependence χ(·)
here. We thus give particular examples for our general field contribution πh(·) and show that
the classical micromagnetic field theory is covered by our general approach. Moreover, in a
second step, we exceed the classical field contributions and show that our framework even
covers a multiscale model as introduced in Section 1.4.1. The results from this chapter have
partially been published in [BFF+12].

3.1. Classical contributions

We now consider each of the classic field contributions individually. We start with the
anisotropy contribution from Section 1.3.

3.1.1. Magnetocrystalline anisotropy and pointwise operators

Let B :=
{
x ∈ R3 : |x| ≤ 1

}
be the compact unit ball in R3, and let φ : B→ R be a Lipschitz

continuous anisotropy density. This particularly includes the uniaxial density

φ(x) = −1

2
(x · e)2,
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with a given easy axis e ∈ S :=
{
x ∈ R3 : |x| = 1

}
as it occurs, for example, in Cobalt (Co)

or Hematite (Fe2O3). Furthermore, the general approach also covers nonlinear anisotropy
densities like the cubic density

φ(x) = K1(x2
1x

2
2 + x2

2x
2
3 + x2

3x
2
1) +K2x

2
1x

2
2x

2
3,

with certain constants K1,K2 ≥ 0, which is relevant for Iron (Fe) and Nickel (Ni), for
example.
According to Rademacher’s theorem, φ is differentiable pointwise almost everywhere with

Dφ ∈ L∞(B). The anisotropy contribution to the effective field now reads

π(n)(x) = Dφ
(
n(x)

)
for n ∈ L2(Ω) and almost all x ∈ Ω, (3.1.1)

and πh(·) = π(·). The next result states that, for this classic field contribution, all assumptions
to guarantee convergence are fulfilled.

Proposition 3.1.1. Suppose that Φ ∈ L∞(B), e.g. Φ(x) = Dφ(x), and πh(n) := π(n) :=
Φ ◦ n such that the pointwise operation is continuous (but might be nonlinear). Then, there
exists a constant C6 > 0 such that

‖π(n)‖L∞(Ω) ≤ C6 for all n ∈ L2(Ω) with |n| ≤ 1 almost everywhere. (3.1.2)

Moreover, there holds strong subconvergence π(m−hk)
sub−−→ π(m) in L2(ΩT ) as (h, k)→ (0, 0).

In particular, the assumptions (2.3.2)–(2.3.4) of Theorem 2.3.1 are satisfied.

Proof. Clearly, (3.1.2) holds with C6 = ‖Φ‖L∞(Ω). Lemma 2.3.5 thus predicts strong subcon-
vergence m−hk →m in L2(ΩT ). Now, choose sequences h` → 0, k` → 0 such that m` := m−h`k`
converges strongly in L2(ΩT ) to m. According to the Weyl Lemma A.2.7, by extracting a
subsequence, we may in particular assume that m` converges to m even pointwise almost
everywhere in ΩT . By pointwise continuity, this implies π(m`) → π(m) pointwise almost
everywhere in ΩT . In particular, |m`| ≤ 1 also implies |m| ≤ 1 almost everywhere. Moreover
and because of (3.1.2), |π(m)−π(m`)| ≤ 2C6 is uniformly bounded in L∞(ΩT ). Finally, the
Lebesgue dominated convergence theorem A.2.3 thus applies and proves even strong conver-
gence of π(m`) to π(m) in L2(ΩT ).

Remark . We emphasize that – at least the uniaxial anisotropy – fulfills the additional as-
sumptions required for the improved energy estimate from Lemma 2.4.1. Here, we have

Dφ(m) = (m, e)m,

whence the L4-boundedness of Dφ(·). Moreover, the operator is self-adjoint in L2(Ω) as(
(e,u)e,v

)
= (e,u)(e,v) =

(
(e,v)e,u

)
for all u,v ∈ L2(Ω).
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3.1.2. Applied exterior field

For the applied exterior field contribution f , the general operators πh resp. π is actually inde-
pendent of the magnetization. The analysis does, however, cover a numerical approximation
fhk of f . In this short section, we thus consider

πh(m−hk) := f−hk, (3.1.3)

where f−hk, analogously to above, is defined by

f−hk(t) := f jh for any t ∈ [tj , tj+1). (3.1.4)

Depending on the actual smoothness of f , different discretizations are possible. Those include
time discretization and time-space discretization and, for f ∈ C(ΩT ) read

f jh(·) := f(tj , ·) and f jh := Ih
(
f(tj , ·)

)
, (3.1.5)

respectively. For functions with less regularity, corresponding integral formulations can be
used, see e.g. [Gol12, Section 3.4]. For all those discretizations, the assumptions (2.3.2)–(2.3.4)
of Theorem 2.3.1 are satisfied. Furthermore, one usually even gets strong convergence

‖f−hk − f‖L2(ΩT ) → 0. (3.1.6)

For further information and proof, the reader is referred to [Gol12, Lemma 3.4.1].

3.1.3. Linear and continuous contributions, e.g., the strayfield operator

In this subsection, we consider the strayfield- or demagnetization operator. Basically, this is an
application of a more general result for linear and continuous operators which is stated below.
For a given linear and continuous π ∈ L(L2(Ω);L2(Ω)), we assume that the discretization
πh(·) is also linear and continuous and satisfies

πh(n) ⇀ π(n) weakly in L2(Ω) (3.1.7)

for all n ∈ L2(Ω).

Lemma 3.1.2. Under the aforegoing assumptions, it holds that

‖πh(n)‖L2(Ω) ≤ C7 for all n ∈ L2(Ω) with |n| ≤ 1 almost everywhere (3.1.8)

and for all h > 0, with an independent constant C7 > 0. Moreover, strong subconvergence
m−hk

sub−−→m in L2(ΩT ) implies weak subconvergence πh(m−hk)
sub−−⇀ π(m) in L2(ΩT ) as h, k →

0. In particular, the assumptions (2.3.2)–(2.3.4) of Theorem 2.3.1 are satisfied.

Proof. Weak convergence in (3.1.7) implies the boundedness suph>0 ‖πh(n)‖L2(Ω) <∞ for all
n ∈ L2(Ω). Therefore, the Banach-Steinhaus theorem [Wer00, Theorem IV 2.1] applies and
predicts uniform boundedness of the operator norms

C := sup
h>0
‖πh‖ <∞.
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In particular, this guarantees ‖πh(n)‖L2(Ω) ≤ C ‖n‖L2(Ω) ≤ C |Ω|1/2 for all n ∈ L2(Ω) with
|n| ≤ 1 almost everywhere and thus verifies (3.1.8). Finally, it remains to prove weak L2(ΩT )-
subconvergence of πh(m−hk) to π(m).
To this end, choose sequences h` → 0, k` → 0 such that m` := m−h`k` converges strongly in

L2(ΩT ) to m. Define π` := πh` and let φ ∈ L2(ΩT ). Then,(
π`(m`)− π(m),φ

)
=
(
π`(m)− π(m),φ

)
−
(
π`(m)− π`(m`),φ

)
(3.1.9)

We rewrite the first duality bracket in the form

(
π`(m)− π(m),φ

)
=

∫ T

0
〈π`(m(t))− π(m(t)),φ(t)〉 dt.

By use of (3.1.7), the integrand tends to zero pointwise almost everywhere as `→∞. More-
over, the uniform stability of the linear operator π` − π and |m| ≤ 1 almost everywhere in
ΩT yields

〈π`(m(t))− π(m(t)),φ(t)〉 ≤ ‖π`(m(t))− π(m(t))‖L2(Ω)‖φ(t)‖L2(Ω)

. ‖m(t)‖L2(Ω)‖φ(t)‖L2(Ω) := g(t).

Since g ∈ L1(0, T ), the Lebesgue dominated convergence theorem proves that the first scalar
product in (3.1.9) tends to zero as ` → 0. For the second scalar product, we argue similarly.
We write

(
π`(m)− π`(m`),φ

)
=

∫ T

0
〈π`
(
m(t)−m`(t)

)
,φ(t)〉 dt

.
∫ T

0
‖m(t)−m`(t)‖L2(Ω)‖φ(t)‖L2(Ω) dt

≤ ‖m−m`‖L2(ΩT )‖φ‖L2(ΩT ),

since the operators π` are linear and uniformly stable and the integrands are positive. Al-
together, we have seen that the scalar product in (3.1.9) tends to zero as ` → ∞. We thus
conclude weak convergence in L2(ΩT ).

Remark . Similar arguments to those in the proof of Lemma 3.1.2 show that strong L2(Ω)-
convergence πh(n)→ π(n) for all n ∈ L2(Ω) instead of (3.1.7) also yields strong convergence
πh(m−hk)→ π(m) in L2(Ω).

Remark. A result similar to Lemma 3.1.2 is also given in [Gol12, Lemma 4.0.2]. We empha-
size, however, that we consider an abstract framework, whereas in [Gol12], only the strayfield
contribution was considered. Moreover, the result from [Gol12] requires stronger assumptions.

Before we come to the actual algorithm for strayfield computation and the more involved
multiscale problem, we briefly recall some integral operators and their mapping properties.
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Integral operators and mapping properties

The following applications need two integral operators for either Γ, namely the double-layer
potential K̃ and the simple-layer potential Ṽ , which formally read

(K̃v)(x) =
1

4π

∫
Γ

(x− y) · n(y)

|x− y|3
v(y) dΓ(y), (3.1.10)

(Ṽ φ)(x) =
1

4π

∫
Γ

1

|x− y|
φ(y) dΓ(y), (3.1.11)

for all x ∈ R3\Γ. These operators allow extension to bounded, linear operators K̃ : H1/2(Γ)→
H1(R3\Γ) and Ṽ : H−1/2(Γ)→ H1(R3), see e.g. [McL00, HW08, SS11]. There holds

∆K̃v = ∆Ṽ φ = 0 on R3\Γ and K̃v, Ṽ φ ∈ C∞(R3\Γ) (3.1.12)

at least if φ admits the additional regularity φ ∈ L2(Γ). Via restriction to the boundary Γ,
one obtains

(K̃v)int = (K − 1/2)v and (Ṽ φ)int = V φ, (3.1.13)

where the operators K : H1/2(Γ)→ H1/2(Γ) and V : H−1/2(Γ)→ H1/2(Γ) coincide formally
with K̃ and Ṽ , but are evaluated on the boundary Γ. There hold the following jump properties
across the boundary Γ, cf. e.g. [SS11, Theorem 3.3.1]:

(K̃v)ext − (K̃v)int = v, ∂ext
n K̃v − ∂int

n K̃v = 0, (3.1.14)

(Ṽ φ)ext − (Ṽ φ)int = 0, ∂ext
n Ṽ φ− ∂int

n Ṽ φ = −φ. (3.1.15)

Here, the superscripts int and ext indicate whether the trace is considered from inside Ω or
the exterior domain R3\Ω.

Fredkin/Koehler approach for strayfield computation

In the following, we present the approach of Fredkin and Koehler [FK90] for the ap-
proximate computation of the strayfield contribution and show that it satisfies the desired
properties.
Let m ∈ L2(Ω) be given. We aim to solve the transmission problem

∆u = ∇ ·m in Ω,

∆u = 0 in R3\Ω,
uext − uint = 0 on Γ,

∂nu
ext − ∂nuint = −m · n on Γ,

u(x) = O(1/|x|) as |x| → ∞

(3.1.16)

from (1.3.6). To that end, We split the solution u into two partial solutions u1 and u2. In a
first step, let u1 ∈ H1(Ω) with

∫
Ω u1 dx = 0 be the unique solution of the Neumann problem

∆u1 = ∇ ·m in Ω,
∂nu1 = m · n on Γ,

(3.1.17)
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and extend u1 by zero to the entire space R3\Ω. Then, the remainder u2 = u− u1 satisfies

∆u2 = 0 in Ω,

∆u2 = 0 in R3\Ω,
uext

2 − uint
2 = uint

1 on Γ,
∂nu

ext
2 − ∂nuint

2 = 0 on Γ,
u2(x) = O(1/|x|) as |x| → ∞.

(3.1.18)

It is well-known that the unique solution u2 ∈ H1(R3\Γ) of the transmission problem (3.1.18)
is the double-layer potential

u2(x) = (K̃uint
1 )(x) :=

1

4π

∫
Γ

(y − x) · n(y)

|y − x|3
uint

1 (y) dΓ(y) for all x ∈ R3\Γ, (3.1.19)

see e.g. [McL00]. The trace jump of the double-layer potential, where the integral operator K
formally coincides to K̃, but is evaluated for x ∈ Γ, is given by (K̃uint

1 )int = (K − 1/2)uint
1 .

From the combination of (3.1.12) and (3.1.19), we now get ∆u2 = ∆K̃u1 = 0 on R3\Γ.
Consequently, u2 on Ω is characterized by the inhomogeneous Dirichlet problem

∆u2 = 0 in Ω,
uint

2 = (K − 1/2)uint
1 on Γ,

(3.1.20)

and we have u = u1 +u2. Altogether, the strayfield operator is then given by π(m) = P(m) =
∇u = ∇u1 +∇u2 in Ω.
To discretize these equations, we use lowest-order Courant finite elements: First, let u1h ∈
S1(Th) with

∫
Ω u1h dx = 0 be the unique FE solution of∫

Ω
∇u1h · ∇vh dx =

∫
Ω

m · ∇vh dx for all vh ∈ S1(Th) with
∫

Ω
vh dx = 0. (3.1.21)

Note, that integration by parts was performed twice here, and the boundary data cancel out
due to ∂nu1 = m·n. Moreover, since div m is employed in a weak sense, only L2(Ω)-regularity
of m is required instead of m ∈H(div). Since a finite element solution u2h ∈ S1(Th) of (3.1.20)
cannot satisfy continuous Dirichlet data (K − 1/2)uint

1h , we employ a Clément-type quasi-
interpolation operator Ih : H1/2(Γ)→ S1(Th|Γ), e.g. the Scott-Zhang projection [SZ80]. Then,
we let u2h ∈ S1(Th) with uint

2h = Ih(K − 1/2)uint
1h be the unique solution of the inhomogeneous

Dirichlet problem ∫
Ω
∇u2h · ∇vh dx = 0 for all vh ∈ S1(Th) with vint

h = 0. (3.1.22)

The following proposition is found in [Gol12, Lemma 4.3.5] and applies, in particular, for the
Scott-Zhang projection.

Proposition 3.1.3. Suppose that the operator Ih : L2(Γ) → S1(Th|Γ) satisfies L2- and H1-
stability

‖Ihv‖L2(Γ) ≤ C8 ‖v‖L2(Γ) resp. ‖∇ΓIhv‖L2(Γ) ≤ C8 ‖∇Γv‖L2(Γ) (3.1.23)

as well as a first-order approximation property

‖(1− Ih)v‖L2(Γ) ≤ C8 h ‖∇Γv‖L2(Γ) (3.1.24)
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for all v ∈ H1(Γ). Here, ∇Γ denotes the surface gradient, and we suppose that the con-
stant C8 > 0 stays bounded as h → 0. Then, the operator πh(m) := ∇u1h + ∇u2h de-
fined via (3.1.21)–(3.1.22) satisfies πh ∈ L(L2(Ω);L2(Ω)), and convergence (3.1.7) towards
π(m) := ∇u holds even strongly in L2(Ω). In particular, Lemma 3.1.2 applies and guarantees
the assumptions (2.3.2) and (2.3.4).

Remark . Besides the famous Fredkin/Koehler approach, there are other ways to ap-
proximatively compute the strayfield. Those include the analytic projection approach after
Praetorius [Pra04], the symmetric FEM-BEM coupling after Costabel [Cos88], as well
as the Johnson/Nédélec coupling [JN80]. Moreover, all of those approaches are compatible
with our general framework as they guarantee the assumptions (2.3.2) and (2.3.4) analogously
to the Fredkin/Koehler approach. The interested reader is referred to [Gol12, Chapter 4]
where all the proofs can be found.

Remark . We like to emphasize that the results of this section are also covered by the more
general result on uniformly monotone operators from the next section.

Remark. The strayfield contribution, as well as its discretization (if chosen wisely), fit well
into the setting of improved energy estimates in the sense of Lemma 2.4.1. We have already
seen in the introduction, that the strayfield operator P(·) with P(m) = ∇u is uniformly bounded
in L4, cf. (1.3.8) and self-adjoint, cf. (1.3.9). Now, let us consider the projection approach
after Praetorius [Pra04]. Here, the discretized operator is given by

Ph := ΠhPΠh : L2(Ω) −→ P0(Th),

where the operator Πh denotes the L2-orthogonal projection onto the piecewise constant func-
tions P0(Th), i.e. the elementwise integral mean. We refer to [Pra04, Gol12] for details. By
definition, we thus even get self-adjointness as well as uniform L4-boundedness of the discrete
operator Ph. This can be seen as follows: For each element Ti, the Jensen inequality [Eva02,
B.1, Theorem 2] yields for the convex function (·)4

‖Πhn‖L4(Ti) =

(∫
Ti

( 1

|Ti|

∫
Ti

n
)4)1/4

=

(( 1

|Ti|

∫
Ti

n
)4|Ti|)1/4

≤
(
|Ti|
|Ti|

∫
Ti

n4

)1/4

= ‖n‖L4(Ti)
.

In combination with

‖Πhn‖4L4(Ω)
=
∑
Ti

‖Πhn‖4L4(Ti)
≤
∑
Ti

‖n‖4
L4(Ti)

= ‖n‖4
L4(Ω)

,

this yields

‖ΠhPΠhm‖L4(Ω) ≤ ‖PΠhm‖L4(Ω) . ‖Πhm‖L4(Ω) ≤ ‖m‖L4 .

Hence the additional assumptions for the improved energy estimate are fulfilled.
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3.2. Uniformly monotone operators

In this section, we consider an extension of the above framework. We allow the general field
contribution π(·) and its discretization πh(·) to depend not only on the magnetization, but
also an additional contribution ζ ∈ L2(YT ) = L2([0, T ], Y ) for some Banach space Y . In the
showcase example of the next section, ζ will simply be the applied field f . In particular, the
analysis therefore includes a discretization f−hk of f . Suitable discretizations are discussed in
Section 3.1.2. We stress, however, that more general ζ are possible. In total, the effective field
thus reads

heff = Ce∇m + π(m, ζ). (3.2.1)

Given this additional dependence, the assumptions (2.3.2) and (2.3.4) have to be slightly
modified. Altogether we derive the following result which is stated in analogy to the main
theorem 2.3.1.

Theorem 3.2.1. (a) Let θ ∈ (1/2, 1] and suppose that the spatial meshes Th are uniformly
shape regular and satisfy the angle condition∫

Ω
∇ηi · ∇ηj ≤ 0 for all basis functions ηi, ηj ∈ S1(T Ω

h ) with i 6= j. (3.2.2)

Define functions f−hk ∈ P
0
(
Ik;L2(Ω)

)
and ζ−hk ∈ P

0(Ik;Y ) by f−hk(t) := f jh, ζ
−
hk(t) := ζjh for

tj ≤ t < tj+1. We suppose that

f−hk
sub−−⇀ f weakly convergent in L2(ΩT ) (3.2.3)

Moreover, we suppose that the spatial discretization πh(·, ·) of π(·, ·) satisfies

‖πh(n, y)‖L2(Ω) ≤ C29 (3.2.4)

for all h, k > 0 and all n ∈ L2(Ω) with |n| ≤ 1 almost everywhere in Ω and y ∈ Y with
‖y‖Y ≤ C10 for some y-independent constant C10 > 0. Here, C29 > 0 denotes a constant that is
independent of h, k,n, and y, but may depend on C10 and Ω. We further assume ‖ζjh‖Y ≤ C10

for all j = 1, . . . , N . Under these assumptions, we have strong L2(ΩT )-subconvergence of m−hk
towards some function m.

(b) In addition to the above, we assume m0
h ⇀ m0 weakly in H1(Ω) and

πh(m−hk, ζ
−
hk)

sub−−⇀ π(m, ζ) weakly subconvergent in L2(ΩT ). (3.2.5)

Then, the computed FE solutions mhk are weakly subconvergent in H1(ΩT ) to a weak solution
m ∈H1(ΩT ) of general LLG.

Proof. The proof is verbatim to that of Theorem 2.3.1 without the time dependent field
contribution.

Before we come to an example of this new field contribution, we investigate the criteria under
which the assumptions (3.2.4) and (3.2.5) are valid. In contrast to the pointwise, respectively
linear and continuous setting from before, we now extend the analysis to (possibly nonlinear)
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uniformly monotone operators in the setting of the Browder Minty Theorem [Zei90, Section
26.2].
Let X be a separable Hilbert space, A : X → X∗ be a uniformly monotone, coercive, and

hemicontinuous (nonlinear) operator, and b ∈ X∗. We consider the operator equation

Aw = b (3.2.6)

and the corresponding Galerkin formulation

〈Awh, vh〉X∗h×Xh
= 〈bh, vh〉X∗h×Xh

for all vh ∈ Xh, (3.2.7)

for finite dimensional subspaces Xh ⊆ Xh′ ⊂ X, as h > h′. Then, we get the following result
which goes back to Browder and Minty.

Theorem 3.2.2 (Browder & Minty, 1963). The following statements are true:

(a) For each b ∈ X∗, the operator equation (3.2.6) admits a unique solution w ∈ X.

(b) For each bh ∈ X∗, the Galerkin formulation (3.2.7) admits a unique solution wh ∈ X.

(c) If we have ‖bh‖X∗ ≤ M < ∞, then the sequence of Galerkin solutions is bounded,
i.e. ‖wh‖Xh

≤ C < ∞. Here, the h-independent constant C > 0 depends only on M
and the coercivity of A. In particular, the sequence (wh) is weakly subconvergent in X
towards some limit w ∈ X. If limh→0 ‖b − bh‖X∗h = 0, this limit solves the operator
equation (3.2.6).

(d) Due to the uniform monotonicity of A, there even holds strong convergence limh→0 ‖w−
wh‖X = 0 of the entire sequence.

Proof. The proof is along the lines of [Zei90, Theorem 26.A] with only minor modifications
concerning the strong convergence ‖bh − b‖X∗ .

This framework is now used in the following lemma which guarantees the assumptions (3.2.4)–
(3.2.5) of Theorem 3.2.1 for certain field contributions:

Lemma 3.2.3. Let Y be a Banach space and let S, Sh ∈ L
(
X,L2(Ω)

)
, and T, Th ∈ L

(
L2(Ω)×

Y,X∗
)
with

Shx ⇀ Sx weakly in L2(Ω) for all x ∈ X, (3.2.8)

Th(n, y)→ T (n, y) strongly in X∗ for all n ∈ L2(Ω), y ∈ Y , (3.2.9)

and π(·) := SA−1T : L2(Ω) × Y → L2(Ω). For h > 0, n ∈ L2(Ω), and y ∈ Y , define the
approximate operator πh(n, y) := Shuh, where uh is the unique Galerkin solution of

〈Auh, vh〉X∗h×Xh
= 〈Th(n, y), vh〉X∗h×Xh

for all vh ∈ Xh. (3.2.10)

Under the foregoing assumptions, it holds that

‖πh(n, y)‖L2(Ω) ≤ C12 (3.2.11)

for all n ∈ L2(Ω) with |n| ≤ 1 almost everywhere and all y ∈ Y with ‖y‖Y ≤ C11 for
some constant C11 > 0, and for all h > 0. The constant C12 > 0 does not depend on y
and n, but only on Ω and C11. Moreover, strong subconvergence (m−hk, ζ

−
hk) → (m, ζ) in

L2
(
[0, T ]; (L2(Ω) × Y )

)
= L2(L2(Ω) × Y ) for some sequence ζ−hk ∈ L∞(Y ) implies weak

subconvergence πh(m−hk, ζ
−
hk) ⇀ π(m, ζ) in L2(ΩT ) as (h, k) → (0, 0). In particular, the

assumptions (3.2.4) and (3.2.5) are satisfied.
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Proof. The Banach-Steinhaus theorem implies uniform boundedness CS := suph>0 ‖Sh‖ <∞
and CT := suph>0 ‖Th‖ < ∞ of the respective operator norms. For fixed n ∈ L2(Ω) with
|n| ≤ 1 almost everywhere, y ∈ Y with ‖y‖Y ≤ C11, and bh := Th(n, y), this implies

‖bh‖X∗ ≤ CT ‖(n, y)‖L2(Ω)×Y ≤ CT
(
|Ω|+ C2

11

)1/2
=: M <∞.

Thus, from the Browder-Minty theorem, we infer ‖uh‖X ≤ C <∞, where C > 0 does neither
depend on h nor on (n, y), but only onM . Consequently, this proves (3.2.11) with C12 = CCS .
Next, we aim to show that πh(nh, yh) ⇀ π(n, y) weakly in L2(Ω) as h→ 0 provided that

(nh, yh) → (n, y) strongly in L2(Ω) × Y . By assumption (3.2.9) on Th, we have Th(n, y) →
T (n, y) strongly in X∗ as h→ 0. Together with uniform boundedness of Th, this implies

Th(nh, yh) = Th(n, y)− Th(n− nh, y − yh)→ T (n, y) strongly in X∗ as h→ 0.

Therefore, the Browder-Minty theorem for uniformly monotone operators guarantees uh → u
strongly in X, where u = A−1T (n, y) and uh ∈ Xh solves (3.2.10) with (n, y) replaced by
(nh, yh). The convergence assumption (3.2.8), the uniform boundedness of Sh, and the strong
convergence ‖uh − u‖L2(Ω) → 0 thus show

πh(nh, yh) = Shuh = Shu− Sh(u− uh) ⇀ Su = π(n, y) weakly in L2(Ω) as h→ 0.

Finally, we prove weak subconvergence πh(m−hk, ζ
−
hk) ⇀ π(m, ζ) in L2(ΩT ) as (h, k) →

(0, 0). To that end, we choose sequences h` → 0, k` → 0 such that (m`, ζ`) := (m−h`k` , ζ
−
h`k`

)

converges strongly in L2
(
L2(Ω)×Y

)
to (m, ζ). By extracting a further subsequence, we may

assume that m`(t)→m(t) strongly in L2(Ω) as well as ζ`(t)→ ζ(t) in Y , for almost all times
t. Define π` := πh` and let φ ∈ L2(ΩT ). Then,(

π`
(
(m`, ζ`)

)
− π

(
(m, ζ)

)
,φ
)

=

∫ T

0
〈π`
(
(m`(t), ζ`(t))

)
− π

(
(m(t), ζ(t)

)
,φ(t)〉 dt.

From weak convergence π`
(
(m`(t), ζ`(t))

)
⇀ π

(
(m(t), ζ(t))

)
as ` → ∞ for almost all times

t, we see pointwise convergence of the integrand to zero. According to (3.2.11) and the
assumption ζ−hk ∈ L

∞(Y ), the Lebesgue dominated convergence theorem thus proves(
π`
(
(m`, ζ`)

)
− π

(
(m, ζ)

)
,φ
)
→ 0 as `→∞.

This concludes the proof.

Remark. (i) Similar arguments as in the proof of Lemma 3.2.3 reveal that strong convergence
Shx → Sx in (3.2.8) also results in strong convergence πh(m−hk, ζ

−
hk) → π(m, ζ) in L2(ΩT )

as h, k → 0.
(ii) The abstract framework applies, in particular, to linear contributions πh(·) = Sh of the
effective field heff, where X = L2(Ω), Y = {0}, and the operators A and T = Th are just the
identities. In this case, we have ζ−hk = 0 for all (h, k) > 0 and thus L2(Ω) ↪→ L2(Ω) × Y is
the canonical embedding with L2(Ω) ∼=

{
(x, 0) : x ∈ L2(Ω)

}
. In particular, we may therefore

write πh(m−hk, ζ
−
hk) = πh(m−hk). The (linear) strayfield contribution is thus also covered by the

more general result of Lemma 3.2.3.
(iii) For the upcoming multiscale example, we will use Y = H(div; Ω2) for some domain Ω2,
ζ−hk = f−hk, and ζ = f , respectively.

In the next section, we finally present a nonlinear and uniformly monotone operator π(·, ·)
which is covered by the theory of Lemma 3.2.3. This operator models a multiscale problem
which was first introduced in [Bru13].
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3.2.1. Multiscale problems

In our model, we consider two separated ferromagnetic bodies Ω1 and Ω2 as schematized
in Figure 3.1. Let Ω1,Ω2 ⊂ R3 be bounded Lipschitz domains with Euclidean distance
dist(Ω1,Ω2) > 0 and boundaries Γ1 = ∂Ω1 resp. Γ2 = ∂Ω2. On the microscopic part Ω1,
we are interested in the domain configuration and thus solve the LLG equation to obtain the
magnetization m1 : Ω1 → R3. On Ω2, we will use the macroscopic Maxwell equations with a
(possibly nonlinear) material law instead.
To motivate this setting, we consider a magnetic recording head (see Figure 3.1). The

microscopic sensor element is based on the giant magnetoresistance (GMR) effect, and it
requires the use of LLG in order to describe the short range interactions between the individual
layers of the sensor accurately. On the other hand, the smaller these sensor elements, the more
important becomes the shielding of the strayfield of neighboring data bits. In practice, this
is achieved by means of some macroscopic softmagnetic shields located directly besides the
GMR sensor. Describing these large components by use of LLG would lead to very large
problem sizes, because the detailed domain structure within the magnetic shields would be
calculated. The macroscopic Maxwell equations allow to overcome this limitation and thus
provide a profound method to describe the influence of the shields in an averaged sense. For
more details and motivation of this model, the interested reader is referred to [Bru13].

Ωcoil

Ω1

Ω2

Figure 3.1.: Example geometry which demonstrates model separation into LLG region Ω1 and
Maxwell region Ω2 (and in this case in an electric coil region Ωcoil). Here, Ω1 repre-
sents one grain of a recording media and Ω2 shows a simple model of a recording write
head. — Picture taken from [BFF+12], copyright of Florian Bruckner is thankfully ac-
knowledged.

Problem formulation

In this section, we present some details of the modeling, as well as the computation and
discretization, of the multiscale operator. This was developed in joint work with Thomas
Führer and is published in [BFF+12]. We start with the magnetostatic Maxwell’s equations
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(see e.g. [Mon08])

∇×H = j and ∇ ·B = 0 in R3, (3.2.12)

where H : R3 → R3 is the magnetic field strength and where the magnetic flux density
B : R3 → R3 is given by

B = µ0(H + m) in R3. (3.2.13)

Here, µ0 denotes the permeability of vacuum. The current density j is the source of the
magnetic field strength H. The magnetization field m is non-trivial on the magnetic bodies
Ω1 ∪ Ω2, but vanishes in R3\(Ω1 ∪ Ω2). The total magnetic field is split into

H = H1 +H2 + f , (3.2.14)

where Hj : R3 → R3 is the magnetic field induced by the magnetization m on Ωj and f is the
applied field generated by the current density j in R3\Ω1 ∪ Ω2. We thus have

∇× f = j and therefore ∇×Hj = 0 in R3. (3.2.15)

In particular, the de Rham complex tells us that the induced fields are gradient fields Hj =
−∇uj with certain scalar potentials uj : R3 → R. For this model, we assume that f is induced
by electric currents only, but not by magnetic monopoles, which yields

∇ · f = 0 in R3. (3.2.16)

Moreover, the sources of Hj lie inside Ωj only and hence

∇ ·Hj = 0 in R3\Ωj . (3.2.17)

Since we assumed no sources for B, i.e. (3.2.12), we obtain

0 = ∇ ·B = µ0(∇ ·H +∇ ·m) = µ0(∇ ·Hj +∇ ·m) on Ωj . (3.2.18)

Together with Hj = −∇uj and (3.2.17), this reveals

∆uj = ∇ ·m in Ωj , (3.2.19a)

∆uj = 0 in R3\Ωj . (3.2.19b)

For the micromagnetic body Ω1, the respective magnetization m1 = m|Ω1 is computed by
solving the LLG equation. The overall transmission problem (3.2.19) is then supplemented
by boundary conditions as well as a radiation condition and reads

∆u1 = ∇ ·m1 in Ω1, (3.2.20a)

∆u1 = 0 in R3\Ω1. (3.2.20b)

uext
1 − uint

1 = 0 on Γ1, (3.2.20c)

∂nu
ext
1 − ∂nuint

1 = −m1 · n on Γ1, (3.2.20d)
u1(x) = O(1/|x|) as |x| → ∞. (3.2.20e)
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Again, the superscripts int and ext indicate whether the trace is considered from inside Ω1

(resp. Ω2 in (3.2.23) below) or the exterior domain R3\Ω1 (resp. R3\Ω2 in (3.2.23) below).
Moreover, n denotes the outer unit normal vector on Γ1 (resp. Γ2 in (3.2.23) below), which
points from Ω1 (resp. Ω2 in (3.2.23) below) to the exterior domain. On the macroscopic
domain, we are not interested in the dynamics on the microscale and thus do not utilize LLG
here. Instead, we involve a nonlinear material law

m = χ(|H|)H on Ω2 (3.2.21)

with a scalar function χ : R≥0 → R and | · | the modulus. Obviously, the results we aim for
impose some restrictions on χ. Many physically relevant examples are, however, covered by
the theory and some are exemplified below.
For the computation of the potential u2, we introduce an auxiliary potential uapp. Recall

that ∇ × f = 0 in Ω2. If Ω2 is simply connected, we infer f = −∇uapp on Ω2 with some
potential uapp : Ω2 → R. According to (3.2.16) and up to an additive constant, uapp can be
obtained as the unique solution of the Neumann problem

∆uapp = 0 in Ω2, (3.2.22a)

∂nu
int
app = −f int · n on Γ2, (3.2.22b)

with
∫

Ω2
uapp dx = 0. Note, that here we need the additional regularity f ∈ H(div), as for

those functions, the normal trace is well-defined, i,e. the map m 7→ m · n is well-defined for
m ∈ H(div), cf. e.g. [Mon08, Theorem 3.24]. The transmission problem for the total potential
u = u1 + u2 + uapp of the total magnetic field H = −∇u in Ω2 and for the potential u2 in
R3\Ω2, supplemented by a radiation condition, reads

∇ ·
(
(1 + χ(|∇u|))∇u

)
= 0 on Ω2, (3.2.23a)

∆u2 = 0 on R3\Ω2, (3.2.23b)

uext
2 − uint = −uint

1 − uint
app on Γ2, (3.2.23c)

∂nu
ext
2 − (1 + χ(|∇uint|))∂nuint = (Hext

1 + f ext) · n on Γ2, (3.2.23d)
u2(x) = O(1/|x|) as |x| → ∞, (3.2.23e)

where (3.2.23a) follows from (3.2.12)–(3.2.17) and (3.2.21). The boundary conditions of (3.2.23)
are derived from (3.2.12), which leads to (Hext−H int) ·n = 0 on Γ2, and the continuity of u2

on Γ2. Details on the computation of the above quantities are postponed to the next section.

Remark . In case of a linear material law χ(|H|) = χ ∈ R>0 in (3.2.21), the transmission
problem (3.2.23) simplifies to (1 + χ)∆u2 = 0 in Ω2, uext

2 − uint
2 = 0 on Γ2, and ∂nuext

2 −
(1 +χ)∂nu

int
2 = (Hext

1 + f ext) ·n on Γ2 in (3.2.23a), (3.2.23c), and (3.2.23d), respectively. In
particular, the Neumann problem (3.2.22) does not have to be solved.

In the next part, we will discuss how the above problem can actually be computed, i.e. we
will divide it into subproblems which are then individually analyzed.

Computation of the multiscale operator

Our goal is to apply Proposition 3.2.3 to the model problem, i.e. the computation of π(m, f) =
∇u2 on Ω1. We therefore need to bring it into the appropriate form π(m, f) = SA−1T (m, f)
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for suitable operators S,A, and T . In the following we consider the individual subproblems
needed for the computation of∇u2 as well as their discretizations and assign the corresponding
operators.
The computation of the total potential u, and therefore of u2, relies on the computation

of the auxiliary potential uapp and the strayfield potential on Ω2. For a magnetization m ∈
L2(Ω1), we compute u1 ∈ H1(Ω1) via the Fredkin/Koehler-approach from Section 3.1.3
as solution of the strayfield operator on the microscopic part. To that end, u1 is separated
into u11 and u12, where u11 is the solution of (3.1.17). Recall that u11 is extended by zero on
R3\Ω1. We therefore have u1 = u12 = K̃1u

int
11 . Here and subsequently,

Ki : H−1/2(Γi)→ H1/2(Γi) and Vi : H1/2(Γi)→ H1/2(Γi)

denote the operators from (3.1.10) and (3.1.11) on the corresponding boundaries Γi = ∂Ωi for
i = 1, 2.
According to (3.1.12), u1 on Ω2 then solves the inhomogeneous Dirichlet problem

−∆u1 = 0 in Ω2,

uint
1 =

(
K̃1u

int
11

)int on Γ2.
(3.2.24)

For the auxiliary potential uapp, (3.2.22) can be solved directly on Ω2. With respect to the
abstract notation of Lemma 3.2.3, we introduce the continuous linear operator

T̃ : L2(Ω1)×H(div; Ω2)→ H1/2(Γ2)×H−1/2(Γ2),

T̃ (m, f) = (uint
1 + uint

app, f · n− ∂nuint
1 ).

(3.2.25)

The space Y from Lemma 3.2.3 is thus given by H(div; Ω2).
In the next step, we then compute the total magnetostatic potential u = u1 + u2 + uapp

related to the macroscopic domain Ω2. With χ(|∇u|) = χ
(
|f − ∇u1 − ∇u2|

)
, (3.2.23) is

equivalently stated by means of the Johnson-Nédélec coupling from [JN80, AFF+13],∫
Ω2

(1 + χ(|∇u|))∇u · ∇v −
∫

Γ2

φv = −
∫

Γ2

(f · n− ∂nuext
1 ) v,

V2φ− (K2 − 1/2)uint = −(K2 − 1/2)(uint
1 + uint

app),
(3.2.26)

for all v ∈ H1(Ω2). For more details, the reader is referred to [BFF+12] and the references
therein. Recall that u1 ∈ C∞(R3\Ω1) ⊆ H2(Ω2), cf. (3.1.12). Therefore, it holds

∂nu
ext
1 = ∂nu

int
1

on Γ2 and hence on the right-hand side of (3.2.26). Again, we emphasize that – depending on
χ – this problem might very well be nonlinear. The coupling formulation provides the total
potential u on Ω2 as well as the exterior normal derivative φ = ∂nu

ext
2 of u2 on Γ2.

Recall that the dual space H−1/2(Γ2) of the trace space H1/2(Γ2) is continuously embedded
into the dual space H̃−1(Ω2) of H1(Ω2) by means of the trace operator which maps H1(Ω2)
onto H1/2(Γ2). Therefore, the operator T̃ from (3.2.25) can also be considered as an operator
to H1/2(Γ2)× H̃−1(Ω2). With respect to the abstract notation of Lemma 3.2.3, the coupling
formulation (3.2.26) gives rise to the nonlinear operator

Ã : H−1/2(Γ2)×H1(Ω2)→ H1/2(Γ2)× H̃−1(Ω2)

Ã(φ, u) = (uint
1 + uint

app, f · n− ∂nuext
1 ).

(3.2.27)

74



3.2. Uniformly monotone operators

It is not obvious at all, that the coupling equation (3.2.26) admits a (unique) solution. This
hinges strongly on the material law χ. To that end, we present some suitable and physically
relevant choices in the following and consider material laws of the form

χ(t) = C13 tanh(C14t)/t for t > 0, χ(0) = C13C14, (3.2.28)

with dimensionless constants C13, C14 > 0 or

χ(t) =
C15 + C16t

1 + C17t+ C18t2
(3.2.29)

with certain, material-dependent constants C15, C16, C17, C18 > 0. Furthermore, the operator
Ã itself is not uniformly monotone. To get into the setting of uniformly monotone operators,
an additional linear shift is required, and we define A = LÃ and T = LT̃ for some linear
operator L. This does not change the solution of the operator equations and details are found
in [BFF+12, Lemma 19]. In this setting, [BFF+12, Lemma 18,19] state unique solvability and
thus well-posedness of the equations (3.2.25) and (3.2.27).
So far, we have computed the total potential u, and by simple postprocessing u2 = u−u1−

uapp on Ω2 is derived. The effective field heff, however, relies on the gradient of u2 on the
microscopic part Ω1. Since u2 solves −∆u2 = 0 in R3\Ω2, u2 can theoretically be computed
by means of the representation formula, cf. e.g. [SS11, Theorem 3.1.6],

u2 = −Ṽ2(∂nu
ext
2 ) + K̃2(uext

2 ) in R3\Ω2 ⊃ Ω1. (3.2.30)

To lower the computational cost for an implementation, we will, however, not use the rep-
resentation formula on Ω1, but only on Γ1 and solve an inhomogeneous Dirichlet problem
instead. With uext

2 = uint
2 = uint − uint

1 − uint
app as well as φ = ∂nu

ext
2 on Γ2, we obtain

−∆u2 = 0 in Ω1,

uint
2 =

(
− Ṽ2φ+ K̃2(uint − uint

1 − uint
app)

)int on Γ1,
(3.2.31)

according to (3.1.12). Put into the abstract frame of Lemma 3.2.3, we consider the linear and
continuous operator

S : H−1/2(Γ2)×H1(Ω2)→ L2(Ω1)

S(φ, uint) = ∇u2.
(3.2.32)

Overall, the computation of π(m, f) = SÃ−1T̃ (m, f) = SA−1T = ∇u2 on Ω1 is therefore
done in five steps:

(i) Solve (3.1.17) to compute u11 on Ω1.

(ii) Solve (3.2.24) to compute ∇u1 on Ω2.

(iii) Solve (3.2.22) to compute uapp on Ω2.

(iv) Solve (3.2.26) to provide u and φ = ∂nu
ext
2 on Γ2.

(v) Solve (3.2.31) to provide ∇u2 on Ω1.
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Remark . Note that the formal definition of the operator S once again requires the solution
of (3.2.24)–(3.2.22) to provide uint

1 + uint
app. Theoretically, this can be dealt with by considering

the extended operators

T̂ (m, f) = (uint
1 + uint

app, f · n− ∂nuext
1 , uint

1 + uint
app),

Â(φ, u, uint
1 + uint

app) = (uint
1 + uint

app, f · n− ∂nuext
1 , uint

1 + uint
app),

Ŝ(φ, u, uint
1 + uint

app) = ∇u2.

Then, Ŝ and T̂ are still linear and continuous. Provided A is uniformly monotone, the inverse
of A is well-defined and continuous so that (an obvious extension of) Lemma 3.2.3 still applies.

Discretization of the multiscale operator

Discretization of T̃ :
Analogously to the strayfield operator from Section 3.1.3, we solve (3.1.21) to obtain an

approximation u11h ∈ S1
∗ (T

Ω1
h ) of u11. We then proceed as in Section 3.1.3 and discretize

the given Dirichlet data by means of the Scott-Zhang operator from [SZ80]. Note that u1 =
K̃1u

int
11 ∈ C∞(R3\Ω1) ⊂ H2(Ω2). Therefore, the discretization of (3.2.24) then reads: Find

u1h ∈ S1(T Ω2
h ) such that∫

Ω2

∇u1h · ∇vh dx = 0 for all vh ∈ S1
0 (T Ω2

h ) with u1h|Γ2 = IΓ2
h K1u

int
11h. (3.2.33)

Analogously to Proposition 3.1.3, one obtains the following result:

Lemma 3.2.4. The operator Bh : L2(Ω1) → S1(T Ω2
h ) with Bhm := u1h, which uses the

discrete solution of (3.1.21) to compute the solution u1h ∈ S1(T Ω2
h ) of (3.2.33), is well-

defined, linear, and continuous. Moreover, there holds strong convergence Bhm → Bm in
H1(Ω2) as h → 0 for all m ∈ L2(Ω1). Here, B : L2(Ω1) → H1(Ω2) denotes the linear and
continuous solution operator of (3.2.24).

The discrete version of (3.2.22) reads as follows: Let uapp,h ∈ S1
∗ (T

Ω2
h ) solve∫

Ω2

∇uapp,h · ∇vh dx = −
∫

Γ2

f · n dΓ2 for all vh ∈ S1
∗ (T

Ω2
h ). (3.2.34)

The following Lemma states a corresponding result for (3.2.34).

Lemma 3.2.5. Let Ω2 be convex. Then, the operator Bh : H(div; Ω2) → S1
∗ (T

Ω2
h ) which

maps f to the discrete solution of (3.2.34) is well-defined, linear, and continuous. Moreover,
there holds strong convergence Bhf → Bf in H1(Ω2) as h→ 0 for all f ∈ H(div,Ω2). Here,
B : H(div; Ω2)→ H1

∗ (Ω2) denotes the linear and continuous solution operator of (3.2.22).

With respect to the definition of the operator T̃ in (3.2.25), it remains to prove convergence
∂nu

int
1h → ∂nu

int
1 strongly in H−1/2(Γ2) as h→ 0. To that end, let u?1h be the discrete solution

of (3.2.33) with boundary data u?1h|Γ2 = IΓ2
h K1u

int
11 . Here, IΓ2

h : H1/2(Γ2) → S1(T Ω2
h |Γ2)

denotes the projection induced by the Scott-Zhang projection IΩ2
h : H1(Ω2)→ S1(T Ω2

h ), now
considered on Ω2 instead of Ω1, cf. [BFF+12]. The Céa lemma proves

‖u1 − u?1h‖H1(Ω2) . ‖u1 − IΩ2
h u1‖H1(Ω2) = O(h).
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For the term ‖u1h − u?1h‖H1(Ω2), we get due to convexity of Ω1 and thus u1 ∈ H2(Ω1)

‖u?1h − u1h‖H1(Ω2) . ‖uint
11 − uint

11h‖H1/2(Γ1) . ‖u11 − u11h‖H1(Ω1) = O(h),

where we have used stability of IΩ2
h and K̃1 as well as the trace theorem. Altogether, we see

‖u1 − u1h‖H1(Ω2) ≤ ‖u1 − u?1h‖H1(Ω2) + ‖u?1h − u1h‖H1(Ω2) = O(h).

The desired result now follows from ‖Ψ‖H−1/2(Γ2) ≤ ‖Ψ‖L2(Γ2) for all Ψ ∈ L2(Γ2) and the next
lemma, which can be found in [BFF+12, Lemma 24].

Lemma 3.2.6. Let w ∈ H2(Ω2) and let wh ∈ S1(T Ω2
h ) be a sequence with

‖∇(w − wh)‖L2(Ω2) ≤ C19h
1/2+ε for all h > 0

for some h-independent constants C19 > 0 and ε > 0. Then, there holds

‖∂ν(w − wh)‖L2(Γ2) ≤ C20h
ε for all h > 0

and a constant C20 > 0 which is independent of h > 0.

Combining Lemma 3.2.4–3.2.6, we obtain the following proposition.

Proposition 3.2.7. With X = H−1/2(Γ2)×H1(Ω2) and Y = H(div; Ω2), the operator

T̃h : L2(Ω1)×H(div; Ω2)→ P0(EΓ2
h )× S1(T Ω2

h ) ⊆ X∗,

T̃h(m, f) = (uint
1h + uint

app,h, f · n− ∂nuint
1h )

(3.2.35)

is well-defined, linear, and continuous and satisfies (3.2.9) with (Th, T ) replaced by (T̃h, T̃ ).

Discretization of Ã:
For the numerical solution of (3.2.26), we use lowest-order finite elements combined with

lowest-order boundary elements. The numerical approximation of the Johnson-Nédélec equa-
tions is then given by the following problem: Find (φh, uh) ∈ Xh := P0(EΓ2

h )× S1(T Ω2
h ) such

that∫
Ω2

(1 + χ̃(|∇uh|))∇uh · ∇vh −
∫

Γ2

φhv
int
h = −

∫
Γ2

(f · n− ∂nuint
1h )vh,∫

Γ2

(V2φh − (K2 − 1/2)uint
h )ψh = −

∫
Γ2

(K2 − 1/2)(uint
1h + uint

app,h)ψh

(3.2.36)

for all (ψh, vh) ∈ Xh, where (uapp,h, u1h) is the output of Th. With the operator Ã from (3.2.27),
the Galerkin formulation (3.2.36) is given by

〈Ã(φh, uh), (ψh, vh)〉X∗h×Xh
= 〈T̃h(m, f), (ψh, vh)〉X∗h×Xh

for all (ψh, vh) ∈ Xh. (3.2.37)

Analogously to the linear case, (3.2.37) is equivalent to

〈A(φh, uh), (ψh, vh)〉X∗h×Xh
= 〈Th(m, f), (ψh, vh)〉X∗h×Xh

for all (ψh, vh) ∈ Xh, (3.2.38)
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for the uniformly monotone operator A = LÃ and Th = LT̃h. For details, we again refer
to [BFF+12] and [AFF+13]. Consequently, Th satisfies assumption (3.2.9).
Discretization of S:
In analogy to (3.2.33), we use the Scott-Zhang operator IΓ1

h to discretize the Dirichlet
data in (3.2.31). The corresponding discretization thus reads: Find u2h ∈ S1(T Ω1

h ) with
u2h|Γ1 = IΓ1

h

(
− Ṽ2φh + K̃2(uint

h − uint
1h − uint

app,h)
)int such that∫

Ω1

∇u2h · ∇vh = 0 for all vh ∈ S1
0 (T Ω1

h ). (3.2.39)

Completely analogously to before, the following result is true.

Proposition 3.2.8. The operator Sh : X = H−1/2(Γ2) × H1(Ω2) → P0(T Ω1
h )3 ⊆ L2(Ω1),

which computes the gradient of the solution of (3.2.39) is well-defined, linear, and continuous.
Moreover, there holds Shx → Sx strongly in L2(Ω1) as h → 0 for all x ∈ X. Here, S : X →
L2(Ω1) denotes the exact solution operator of (3.2.31). In particular, S satisfies (3.2.8).

Combining the last results, we ultimately conclude:

Proposition 3.2.9. Suppose that the microscopic domain Ω1 is convex, that the macroscopic
domain Ω2 is simply connected, and that the material law χ is of the form (3.2.28) or (3.2.29).
Let Y := H(div; Ω2) and ζ−hk := f−hk. Assume further that f |Ω2 is sufficiently smooth, such
that f−hk → f strongly in L2

(
H(div; Ω2)

)
and f−hk ∈ L∞

(
H(div; Ω2)

)
. Then, the operator

πh(m, f) = ShA
−1Th(m, f) = ∇u2h defined via the previous section satisfies all assumptions of

Lemma 3.2.3. In particular, the assumptions (3.2.4)–(3.2.5) of Theorem 3.2.1 are satisfied.

Remark. Computational studies of the analyzed multiscale approach are beyond the scope of
this thesis and can be found in [BVB+, Bru13].

3.3. Numerical experiments

In this section, we give a first set of numerical experiments to underline the theoretical results
from above and allow for a better understanding of the tangent plane scheme 2.2.1. Through-
out, we consider various field contributions which will be individually specified in the different
examples. As a starting point for our implementation, and hence the computational experi-
ments, serve two different LLG implementations. For the 3D examples, we extend a Matlab
code written by Petra Goldenits during her PhD thesis [Gol12]. For the upcoming 2D
examples, a FreeFem++ code from Jonathan Rochat [Roc12] serves as starting point.
Throughout, the 3D visualizations are carried out in Paraview [Webc].

3.3.1. General performance

The basic implementation of this code has already been tested with µMAG problems from
the National Institute of Standards and Technology [Webb], and we refer to [Gol12, Chapter
6] for details and documentation. Here, we thus concentrate on the performance as well as
the investigation of the unique properties of this scheme. For the first example, we aim to
investigate the convergence rate of the tangent plane scheme in both, time and space. To that
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Figure 3.2.: Magnetization dynamics on [0, 3] for the above example.
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Figure 3.3.: Spatial error for k = 0.01. As expected, linear decay is observed.
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Figure 3.4.: Temporal error for P = 20480 spatial elements. As expected, linear decay is
observed.
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end, we consider a homogeneous magnetization in x3-direction on the scaled and shifted unit
cube [−1, 1]3. Onto this initial state, a rotating external field of the form

f(t, x1, x2, x3) :=

 f1

f2

f3

 (t, x1, x2, x3),

with

f1 := α cos(2t+ x1 + x2 + x3) + 3 sin(t+ x1) cos(t+ x2 + x3)

+ sin(t+ x2 + x3) sin(2t+ x1 + x2 + x3) + cos(t+ x1) cos2(t+ x2 + x3),

f2 := 3 cos(t+ x1) cos(t+ x2 + x3)−
(
α sin(2t+ x1 + x2 + x3)

+ sin(t+ x1) cos2(t+ x2 + x3)− sin(t+ x2 + x3) cos(2t+ x1 + x2 + x3)
)
, and

f3 := α cos
(
t+ x2 + x3) + 2 sin(t+ x2 + x3)− cos2(t+ x2 + x3)

is applied. In addition, the exchange contribution is taken into account with Ce = 1, i.e. we
consider

heff = ∆m + f .

The other input variables are chosen to be α = 1 = θ.
The evolution of the magnetization is computed on the time interval [0, 3], and we are

interested in the convergence rates of the scheme in time and space as (h, k) → (0, 0). Since
no exact solution is known, we employ a reference solution m on a fine grid with 20480
elements and 10000 time steps. The dynamic behaviour of the magnetization is visualized in
Figure 3.2. A respective error table for different time- and spatial mesh sizes is given below
in Table 3.1. Here, the error is given by

Err(m) := max
j
‖mj

h −m(tj)‖L2(Ω) + ‖∇mj
h −∇m(tj)‖L2(Ω).

Timesteps

10 50 100 500 1000 5000 10000

Spatial elements

5 3.3592 2.6469 2.6067 2.5839 2.5816 2.5799 2.5797

40 4.1866 3.1576 3.1003 3.0767 3.0754 3.0746 3.0746

320 3.7968 1.6100 1.4067 1.2830 1.2707 1.2614 1.2603

2560 3.5580 0.9217 0.6890 0.5664 0.5568 0.5503 0.5496

20480 3.4629 0.6032 0.2923 0.0551 0.0260 0.0029 NA

Table 3.1.: Err(m) for the above example computed with respect to a reference solution.

Due to construction, we expect the scheme to be of first order in both, time and space. In-
deed, the error decay in space shows the desired behaviour if the time step is chosen sufficiently

81



Chapter 3. Application to field contributions

small (≥ 100 steps). Note that for small amounts of spatial elements (≤ 2560 elements), the
time error rarely decays, but is rather stuck at a certain value. This is in agreement with
observations from e.g. [Roc12], and we conclude that in these ranges, the temporal error is
dominated by the spatial error. The last line of Table 3.1, however, reveals even the desired
convergence rate for the temporal error. The error seems to make an abrupt jump between the
fourth and fifth line for small time steps. This is due to the fact, that the reference solution
is computed on 20480 elements, as well. Therefore, the spatial resolution of the discrete- and
the reference solution coincides in the last line and the spatial error is thus negligible. This
spatial mesh, on the other hand, is a good opportunity to investigate the temporal error.
The decay of the spatial error for 100 time steps is visualized in Figure 3.3. Here, we plot

the error over P−1/3, where P denotes the number of elements. Notice that this is a 3D
simulation, whence h ∼ P−1/3. On a double-logarithmic scale, we see that the error indeed
behaves like O(h), as to be expected. Figure 3.4 visualizes the decay of the temporal error
on a spatial grid of P = 20480 elements. Here, the error is plotted over the amount of time
steps. Again, the experiment confirms a linear decay rate of O(k).

3.3.2. Finite time blowup in 2D

In the second experiment, we consider a 2-dimensional benchmark problem from [BP06],
which is expected to produce a finite time blowup. On Ω = [−0.5, 0.5]2, we consider the initial
magnetization

m0(x) :=

{
(0, 0,−1) for |x| ≥ 1/2,

(2xA,A2 − |x|2)/(A2 + |x|2) for |x| ≤ 1/2,

with A := (1− 2|x|4)/s for some s > 0. Starting from this initial data, we run the simulation
with

heff = ∆m.

Put explicitly, we set Ce = 1 and neglect all field contributions besides the exchange part.
In particular, no external field is employed. Moreover, we choose α = θ = 1 and s = 4
for now. The evolution of the magnetization on the time interval [0, 0.03] for h = 1/32 and
k = 0.00001 is visualized in Figure 3.5. A lateral view is given in Figure 3.6. As observed
before in [BP06] and also [Roc12, BPPR13] in a different setting, we see that the magnetization
heads towards an extremal state at around t = 0.023 and then gets aligned parallel. The goal
of this benchmark problem is to pinpoint the time of this extremal blowup point which is
defined as the time at which the gradient of m takes its maximum. More precisely, we seek
t ∈ [0, T ], such that

|m(t)|W 1,∞(Ω) = ‖∇m(t)‖L∞(Ω) = max
t̃∈[0,T ]

‖∇m(t̃)‖L∞(Ω).

In [BP06], the authors used the midpoint scheme to compute this problem. Therefore, however,
they were restricted to comparatively large time steps, since the fixed point iteration enforces
a coupling between h and k, namely k ≤ Ch2, for this algorithm. As a result, the most refined
spatial mesh-size they could employ, was h = 1/64. For those computations, the empirical
blowup time seemed to converge towards approximately 0.03. As we do not have any coupling
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3.3. Numerical experiments

Figure 3.5.: Magnetization dynamics on [0, 0.03] for h = 1/32 and k = 0.00001.
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Figure 3.6.: Magnetization dynamics on [0, 0.03] in lateral view.

between h and k, the tangent plane scheme is very convenient for this problem, since we can
compute much further than h = 1/64 which reveals some unexpected results.
In Figure 3.7, a comparison of the empirical blowup times is visualized for different h ∈
{1/8, 1/16, 1/32, 1/64, 1/96, 1/128} and k = 0.00001. For large h ≥ 1/64, the results from
[BP06] are reproduced. For smaller h, however, we observe that the blowup time does not
converge but rather approaches higher values. For h = 1/128 the blowup time even becomes as
high as 0.09. These results are in agreement with first observations from [BKP08, BPPR13],
where still coarser meshes were considered. We conclude that the empirical blowup time
strongly depends on the mesh size and, contrary to [BP06], cannot observe convergence to-
wards any point in time. In fact, finite time blowup in this example might even be a numerical
artifact caused by insufficient mesh resolution.
Moreover, we find that for fixed spatial mesh size and varying time step size, the empirical

blowup time changes again. This behaviour is visualized in Figure 3.8. Here, we observe that
the blowup time approaches smaller values as k is decreased. In particular, for fixed h = 1/32,
the blowup time seems to converge around 0.022. Since the blowup time is very sensitive with
respect to the mesh-size parameters, however, we stress that additional computations are in
order to fully clarify this benchmark example. In fact, it should be interesting to consider
adaptively generated spatial meshes. In addition, we observe that, in contrast to Figure 3.7,
the value of ‖∇m(t)‖L∞(Ω) at the time of the blowup is constant in this case. We therefore
conclude that this value only depends on the spatial mesh-size and not particularly on the
time step size k.
Next, we consider dependence of the blowup time on the two parameters α and s. The

corresponding results are visualized in the Figures 3.9 and 3.10. We observe that, for small α,
the blowup time seems to approach 0.038 and for α ≤ 1/32 the curves nearly coincide. Note
that the choice of a very small α induces a strong rotation of the magnetization (not displayed)
which causes the energy to not to drop to zero immediately after the blowup occurs.
For different values of s, we see that the blowup time decreases as s is increased. Again,

our results are in good agreement with those from [BP06].
Finally, we consider the energy of the simulation for different values of k and h and for

α = 1 and s = 4. Since, besides the exchange contribution, no other field contribution is
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Figure 3.7.: Different empirical blowup times for h ∈ {1/8, 1/16, 1/32, 1/64, 1/96, 1/128} and
k = 0.00001.
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Figure 3.9.: Different empirical blowup times for α ∈ {1, 1/32, 1/64, 1/128, 1/256, 1/512}, k =
0.00001, and h = 1/32.
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Figure 3.10.: Empirical blowup times for s ∈ {1, 2, 3, 4, 5, 6}, α = 1, k = 0.0001, and h = 1/32.

considered, this term is given by

E(m, t) =
1

2
‖∇m(t)‖2

L2(Ω)
,

and the results are visualized in Figure 3.11. As expected, we observe a monotone decay of the
energy for any set of mesh parameters. We like to emphasize that the energy, and hence the
magnetization, behaves as predicted even for the cases (k = 10−2, h = 1/32), (k = 10−3, h =
1/32), and (k = 10−3, j = 1/64) for which the classical CFL condition k < h2 is not satisfied.
This empirical observation underlines the theoretical result of unconditional convergence which
is a key advantage of the tangent plane scheme in comparison to other methods like the
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Figure 3.11.: Energy E(m, t) for different configurations of mesh parameters and α = 1, s = 4
plotted over time.

midpoint scheme. For the latter, unconditional convergence is only theoretically proved.
Altogether, usage of the tangent plane method allows a more thorough investigation of this

benchmark problem since larger time steps and hence finer spatial meshes can be computed.
This sheds new light on the blowup time in dependence of various input and mesh parameters.
While it is expected that the blowup time varies for different parameters α and s, it is quite
surprising that it seems to react fairly sensible to the mesh size parameters h and k. In par-
ticular, we cannot confirm the conjecture from [BP06] stating that the blowup time converges
towards a specific point in time as those parameters decrease.

3.3.3. The case α = 0

In the last experiment of this set, we address the special case where α = 0, i.e. the case where
no damping is considered. When we look at the general Algorithm 2.2.1, we see that the
damping constant α is the coefficient of the L2-contribution of our bilinear form

aj(ϕ,ψψψ) = α(ϕ,ψψψ) + (mj
h ×ϕ,ψψψ) + θCek(∇ϕ,∇ψψψ),

cf. Equation (2.2.3). With the arguments from Lemma 2.2.2, we immediately see that aj(·, ·)
is positive definite for α > 0, since

aj(ψψψ,ψψψ) = α‖ψψψ‖2
L2(Ω)

+ θCek‖∇ψψψ‖2L2(Ω)
.

This result is particularly true for all ψψψ ∈ S1(Ω) and we conclude that Algorithm 2.2.1 is
well-defined for α > 0, even without the tangent plane constraint. This result can directly
be observed at the condition numbers of the corresponding system matrices. Concerning the
implementation, the tangent space constraint is treated by means of a Lagrangian multiplier.
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Figure 3.12.: Condition numbers of M and the full matrix from (3.3.1) for α = 1 plotted over
the simulation time.

In each time step, we thus solve a system of the form(
M ΛT

Λ 0

)(
v
λλλ

)
=

(
b
0

)
. (3.3.1)

Here, vjh =
∑3N

m=1 vmβm is the sought solution, and the Langrangian matrix Λ is up to some
scaling factor given by

Λ =
(
Λ1 Λ2 Λ3

)
∈ RN×3N ,

with

Λ`ii′ = mj
h(zi) · e`δii′ .

The line Λv = 0 thus realizes the tangent plane constraint mj
h(z) · vjh(z) = 0 for all z ∈ Nh.

Finally, for the matrixM ∈ R3N×3N , we haveM = A+B, where A and B denote the matrices
stemming from the scaled H1-scalar product and the cross product in (2.2.3), respectively.
The vector b denotes evaluation of the right-hand side Lj(·). The interested reader is referred
to [GHPS, Section 3], for details. Solving Mv = b thus corresponds to a solution in the
full space S1(Ω), whereas solving the full problem (3.3.1) corresponds to a solution in the
tangent space. With the theoretical result from above, we expect both, M and the full matrix
from (3.3.1) to be well conditioned for α > 0. In a first experiment we now consider the cube
Ω = [−1, 1]3[nm] and an initial homogeneous magnetization in the direction [1, 1, 1]. The
initial state is visualized in Figure 3.13 top left. We then consider the exchange contribution
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as well as some uniaxial anisotropy with easy axis in x3-direction, i.e.

heff = Ce∆m + CaDΦ(m).

The constants are chosen as in the NIST µMAG 3 problem as Ce = 10−11 and Ca =
39788.73455192433, cf. [Webb]. The time interval is given by [0, 2][ns] and we choose α = 1.
We observe a rotation of m around the easy axis and a damping towards it, cf. Figure 3.13
(white arrows). The condition number of M and the full matrix from (3.3.1), as well as the
ratio between cond(M) and cond(full) are visualized in Figure 3.12. As predicted by theory,
both matrices are well-conditioned and hence admit unique solvability.
This observation, however, leaves the obvious question of the case α = 0. We stress that

this case is well worth studying as it occurs in the study of spin torques [Ber02, HKC04],
for example. In Figure 3.14, the condition numbers of the involved matrices for α = 0 are
visualized. We empirically observe unique solvability in the tangent space, whereas the matrix
M is ill-conditioned in this case. In fact, the condition number of the full system is about
1011 times smaller and the system thus admits inversion.
The magnetization dynamics for this case are finally visualized in Figure 3.13 (red arrows).

As expected, we observe a rotation around the effective magnetic field which —in this case—
points into the direction of the easy axis.
Insight into this behaviour – at least for some cases - is indeed hidden in the tangent plane

constraint For α = 0, at first sight, equation (2.2.3) breaks down to

Cekθ(∇vjh,∇ψψψ) + (mj
h × vjh,ψψψ) = Lj(ψψψ), (3.3.2)

where Lj(·) denotes the right-hand side from (2.2.3). This yields

aj(ψψψ,ψψψ) = Cekθ(∇ψψψ,∇ψψψ) + (mj
h ×ψψψ,ψψψ) = Cekθ‖∇ψψψ‖2L2(Ω)

,

which is not an equivalent norm on S1(Ω). This is not surprising, since the constant functions
are within the kernel of aj(·, ·) and (2.2.3) does therefore not admit a unique solution in S1(Ω)
for α = 0. The tangent plane constraint can, however, be exploited in order to improve the
solvability result at least in some cases.
To that end, suppose that there exist three nodes z1, z2, z3 ∈ Nh such that the individual

components of the magnetization evaluated at those nodes are linearly independent. That is
to say

∣∣c1

m
j
1(z1)

mj
1(z2)

mj
1(z3)

+ c2

m
j
2(z1)

mj
2(z2)

mj
2(z3)

+ c3

m
j
3(z1)

mj
3(z2)

mj
3(z3)

∣∣ = 0

implies c1

c2

c3

 = 0

for constants c1, c2, c3 ∈ R and where mj
i denotes the i-th component of mj

h for i = 1, 2, 3.
We emphasize that those three nodes z1, z2, z3 may be different for each j > 0 and we simply
assume that three of those exist in each step of the algorithm.
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Figure 3.13.: Magnetization dynamics as 2D projection on [0, 2] for α = 1 (white) and α = 0
(red). Initial state is visualized in the top left picture
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Figure 3.14.: Condition numbers of M and the full matrix from (3.3.1) for α = 0 plotted over
the simulation time.

Under this assumption, (3.3.2) admits a unique solution vjh ∈ Kmj
h
in each step j even for

α = 0. To see this, we define

|||v||| := ‖∇v‖L2(Ω) +
∑
z∈Nh

|v(z) ·mj
h(z)|

for all v ∈ S1(Th). Obviously, ||| · ||| is a seminorm on S1(Th), and from the tangent plane
condition, we get

|||v||| = ‖∇v‖L2(Ω) for all v ∈ K
mj

h
.

It remains to show that ||| · ||| indeed defines a norm on S1(Th). To that end, we only need
to show that

∑
z∈Nh

|v(z) ·mj
h(z)| is definite on the constant functions. Now let c ∈ R3 be

constant, i.e.

c =

 c1

c2

c3


for some c1, c2, c3 ∈ R, and consider ∑

z∈Nh

|c ·mj
h(z)| = 0.

By definition, this yields

|c1m
j
1(z) + c2m

j
2(z) + c3m

j
3(z)| = 0 for all z ∈ Nh
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and thus also

0 = |c1m
j
1(z1) + c2m

j
2(z1) + c3m

j
3(z1)|

+ |c1m
j
1(z2) + c2m

j
2(z2) + c3m

j
3(z2)|

+ |c1m
j
1(z3) + c2m

j
2(z3) + c3m

j
3(z3)|,

for the special nodes z1, z2, z3 from above. The last estimate is, however, equivalent to

∣∣c1

m
j
1(z1)

mj
1(z2)

mj
1(z3)

+ c2

m
j
1(z1)

mj
1(z2)

mj
1(z3)

+ c3

m
j
1(z1)

mj
1(z2)

mj
1(z3)

∣∣ = 0,

which yields c1 = c2 = c3 = 0 by assumption. The quantity ||| · ||| thus defines a norm on
S1(Th), whence ‖∇(·)‖L2(Ω) is a norm on K

mj
h
.

Even without L2-contribution within the bilinear form, we thus deduce that (3.3.2) admits
a unique solution vjh ∈ Kmj

h
. Even though, this does not fully cover the experiment at hand,

we observe that the scheme’s solvability greatly benefits from the tangent test space. The
experiment, however, empirically suggests that the tangent plane constraint allows unique
solvability even under weaker assumptions.

Artificial damping

Within the context of neglected damping, there is one more thing to investigate, which is
actually a drawback of the tangent plane algorithm: artificial damping. To that end, we go
back to the 2D blowup example from before, i.e. we consider the exchange only case. For this
particular effective field, in combination with α = 0, the analysis from Lemma 2.3.3 reveals

1

2
‖∇mj+1

h ‖2
L2(Ω)

≤ 1

2
‖∇mj

h‖
2
L2 − (θ − 1

2
)k2‖∇vjh‖

2
L2(Ω)

. (3.3.3)

Put explicitly, even for the α = 0 case, we do not have an energy equality, but rather an
inequality in each time step. Moreover, on the right-hand side, we get the additional term
(θ − 1/2)k2‖∇vjh‖

2
L2(Ω)

with a negative sign. We emphasize that this term rises simply from
the construction of the scheme and by no means follows from the equation. For θ ∈ (1/2, 1],
which is the interesting case, we therefore deduce

1

2
‖∇mj+1

h ‖2
L2(Ω)

<
1

2
‖∇mj

h‖
2
L2(Ω)

. (3.3.4)

Even though, we chose the damping parameter to be zero, a certain term is subtracted from
the energy in each step, and we thus cannot expect constant energy in the no-damping case.
More precisely, using the semi-implicit tangent plane scheme, it is not straightforward to
simulate a micromagnetic process without any damping at all. This is somehow the price for
unconditional stability which was derived by introducing this additional energy term in the
first place. In fact, we expect this behaviour to be stronger, the bigger we choose θ. Indeed,
the predicted behaviour can be observed numerically and the energy for different values of
θ, α = 0, h = 1/32 and k = 0.0001 is plotted over the time in Figure 3.15. As expected,
we can clearly see an energy decay in the no-damping case. Obviously, this is much smaller
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Figure 3.15.: Energy E(m, t) for different values of θ plotted over time. Energy computed with
the midpoint scheme is plotted for comparison (dark blue).

than in the case where damping is considered, but it is still not negligible. Moreover, the
empirical observations confirm that the artificial energy decay becomes smaller the closer we
get to θ = 1/2. In this case the artificial damping term from above vanishes. Even in the
case θ = 1/2, we observe some damping of the energy which is, however, in agreement with
our theory, as in none of the cases can we proof an energy equality. For sake of comparison,
we also plot the energy of the midpoint scheme computation from [BP06] for the same setting
(dark blue). Comparison data was provided by Jonathan Rochat which is thankfully
acknowledged. For this scheme, in the no-damping case, an energy equality can indeed be
derived, and we observe the respective behaviour in this experiment. Altogether, we thus
conclude that the artificial damping of the tangent plane scheme stems from the introduction
of the implicit part in combination with the normalization step.
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Chapter 4
Coupling to full Maxwell system

In this chapter, we finally consider something other than the pure LLG equation and investi-
gate coupling to other PDEs. First, we will analyze the coupling of LLG to the full Maxwell
system. This allows us to treat the effects stemming from the magnetic strayfield more ac-
curately than before. Moreover, via σ 6= 0 in (4.1.1) below, this ansatz allows to model
conducting ferromagnets. The latter is unclear for the magnetostatic strayfield approximation
which has been investigated so far [MV01]. The results of this chapter have partially been
published in [BPP13].

4.1. The Maxwell-Landau-Lifshitz-Gilbert system

We consider the coupled Maxwell-Landau-Lifshitz-Gilbert system (MLLG) to accurately de-
scribe the effects of the self-induced magnetic strayfield onto the magnetization m. To that
end, we consider the two domains Ω b Ω̂ ⊆ R3, where the Maxwell system is solved on the
larger domain Ω̂, and the LLG equation is solved on the embedded domain Ω. This is due to
the fact that the strayfield exists even outside the micromagnetic domain Ω and that its values
outside of Ω again influence the magnetization m. For given parameters α, ε0, µ0, σ ≥ 0, the
MLLG system reads

mt − αm×mt = −m× heff in ΩT (4.1.1a)

ε0Et −∇×H + σχΩE = −J in Ω̂T := (0, T )× Ω̂ (4.1.1b)

µ0Ht +∇×E = −µ0mt in Ω̂T . (4.1.1c)

Here, the variables H : Ω̂T → R3 and E : Ω̂T → R3 denote the sought electric and magnetic
field, respectively. More details on the derivation of the System 4.1.1 are given in Section 1.4.2.
In analogy to the Chapters 2 and 3, the effective field heff consists of heff = Ce∆m + H +
π(m) for some general field contribution π. For sake of simplicity, the time dependent field
contribution χ is neglected here. Also, we neglect a possible spatial approximation πh of π. We
stress, however, that using the techniques from Chapter 2, the inclusion of the approximation
πh is straightforward. We thus only assume the general contribution to be uniformly bounded
and a priori weakly subconvergent, i.e. (4.2.7) and (4.2.11) below. As before, we emphasize
that the case heff = Ce∆m + H + CaDΦ(m) + f is particularly covered. The constants
ε0, µ0 ≥ 0 in (4.1.1) denote the electric and magnetic permeability of free space, respectively,
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and the constant σ ≥ 0 stands for the conductivity of the ferromagnetic domain Ω. The
field J : Ω̂T → R3 describes a known applied current density and χΩ : Ω̂ → {0, 1} is the
characteristic function of Ω. As is usually done for simplicity [BBP08], we assume Ω̂ ⊂ R3

to be bounded with perfectly conducting outer surface ∂Ω̂ into which the ferromagnet Ω b Ω̂
is embedded, and Ω̂\Ω is assumed to be vacuum. In addition, the MLLG system (4.1.1) is
supplemented by initial conditions

m(0, ·) = m0 in Ω and E(0, ·) = E0, H(0, ·) = H0 in Ω̂ (4.1.1d)

as well as boundary conditions

∂nm = 0 on ∂ΩT , E× n = 0 on ∂Ω̂T . (4.1.1e)

In analogy to [CF98, BBP08], we assume the given data to satisfy

m0 ∈H1(Ω, S2), H0,E0 ∈ L2(Ω̂,R3), J ∈ L2(Ω̂T ,R3) (4.1.1f)

as well as

div(H0 + χΩm0) = 0 in Ω̂, 〈H0 + χΩm0,n〉 = 0 on ∂Ω̂. (4.1.1g)

The latter stems from the material law (1.4.3) in combination with divB = 0, i.e. (1.4.1d).
Note that from (4.1.1c), one deduces ∂t divB = 0, whence divB(t) = divB(0). It thus suffices
to assume this property for the initial values. For the weak formulation of the Maxwell part,
we introduce the space

H0(curl, Ω̂) :=
{
ϕ ∈ L2(Ω̂) : ∇× ϕ ∈ L2(Ω̂), ϕ× n = 0 on Γ

}
,

Next, we state the notion of a weak solution of the MLLG system (4.1.1) which goes back
to [CF98].
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Definition 4.1.1. Given (5.1.1e)–(5.1.1f), the tupel (m,E,H) is called a weak solution of
MLLG if,

(i) m ∈H1(ΩT ) with |m| = 1 almost everywhere in ΩT and (E,H) ∈ L2(Ω̂T );

(ii) for all ϕ ∈ C∞(ΩT ) and ζ ∈ C∞c
(
[0, T );C∞(Ω̂) ∩ H0(curl, Ω̂)

)
and ξ ∈

C∞c
(
[0, T );C∞(Ω̂)

)
, we have∫

ΩT

mt ·ϕ− α
∫

ΩT

(m×mt) ·ϕ = −Ce
∫

ΩT

(∇m×m) · ∇ϕ (4.1.2)

+

∫
ΩT

(H×m) ·ϕ+

∫
ΩT

(π(m)×m) ·ϕ,

− ε0

∫
Ω̂T

E · ζt −
∫

Ω̂T

H · (∇× ζ) + σ

∫
ΩT

E · ζ = −
∫

Ω̂T

J · ζ + ε0

∫
Ω̂

E0 · ζ(0, ·), (4.1.3)

− µ0

∫
Ω̂T

H · ξt +

∫
Ω̂T

E · (∇× ξ) = −µ0

∫
ΩT

mt · ξ + µ0

∫
Ω̂

H0 · ξ(0, ·); (4.1.4)

(iii) there holds m(0, ·) = m0 in the sense of traces;

(iv) for almost all t′ ∈ (0, T ), we have bounded energy

‖∇m(t′)‖2
L2(Ω)

+ ‖mt‖2L2(Ω′t)
+ ‖H(t′)‖2

L2(Ω̂)
+ ‖E(t′)‖2

L2(Ω̂)
≤ C, (4.1.5)

where C > 0 is independent of t.

Note that the test functions for the Maxwell part are chosen from the space

C∞c
(
[0, T );C∞(Ω̂)

)
,

i.e. we impose a zero-condition for the upper time boundary. This is due to the fact that we
only show boundedness of the involved quantities in L2(Ω̂) and thus perform integration by
parts in time to get rid of the time derivatives of E and H.
Existence of weak solutions was first shown in [CF98] for a simplified model. We stress,

however, that our analysis is constructive in the sense that it also proves existence.

Remark . Under additional assumptions on the general contribution π(·), namely that π(·)
is self-adjoint with ‖π(n)‖L4(Ω) ≤ C for all n ∈ L2(Ω) with |n| ≤ 1 almost everywhere, the
energy estimate (4.1.5) can be improved. The same techniques as in Lemma 2.4.1 then show
for almost all t′ ∈ (0, T ) and ε > 0

E(m,H,E)(t′) + 2(α− ε)µ0‖mt‖2L2(Ωt′ )
+ 2σ‖E‖2

L2(Ωt′ )
≤ E(m,H,E)(0)−

∫ t′

0
(J,E),

where

E(m,H,E) := µ0Ce‖∇m(t)‖2
L2(Ω)

+ µ0‖H(t)‖2
L2(Ω̂)

+ ε0‖E(t)‖2
L2(Ω̂)

− µ0〈π(m(t)),m(t)〉.

This is in analogy to [BBP08] and the result is formally stated and proved in Section 4.2.3.
In particular, the above assumptions are fulfilled in case of vanishing applied field f ≡ 0 and
if π(·) denotes the uniaxial anisotropy density.
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Chapter 4. Coupling to full Maxwell system

4.2. Preliminaries and numerical algorithms

In this section, we present two numerical algorithms to treat the coupled Maxwell-LLG sys-
tem (4.1.1). The first one follows the lines of Banas, Bartels & Prohl [BBP08] and
describes a fully coupled system that may yield the possibility of a higher order extension by
means of midpoint evaluations. The second one is fully decoupled which eases the analysis,
the numerical implementation, as well as some possible preconditioning of the Maxwell part.
Both algorithms are guaranteed to be unconditionally convergent towards a weak solution of
the MLLG system in the sense of Definition 4.1.1. Before we come to the actual description
of our numerical solvers, we like to fix some notation and preliminaries.
For the spatial discretization, let T Ω̂

h be a regular triangulation of the polyhedral and
bounded Lipschitz domain Ω̂ ⊂ R3 into compact and non-degenerate tetrahedra. By Th,
we denote its restriction to Ω b Ω̂, where we assume that Ω is resolved, i.e.

Th = T Ω̂
h |Ω =

{
T ∈ T Ω̂

h : T ∩ Ω 6= ∅
}

and Ω =
⋃
T∈Th

T.

As before (Section 2.1.1), we denote the standard P1-FEM space of globally continuous and
piecewise affine functions from Ω to R3 by S1(Th) and by Ih the nodal interpolation operator
onto this space. ByMh, we denote the set of admissible functions of unit length and by KΦh

the pointwise orthogonal space of Φh for any Φh ∈Mh.
For discretization of Maxwell’s equations (4.1.1b)–(4.1.1c), we use conforming ansatz spaces
Xh ⊂ H0(curl; Ω̂), Yh ⊂ L2(Ω̂) subordinate to T Ω̂

h which additionally fullfil ∇×Xh ⊂ Yh. In
analogy to [BBP08], one can choose e.g. first order edge elements

Xh := {ϕh ∈ H0(curl; Ω̂) : ϕh|K ∈ P1(K) for all K ∈ T Ω̂
h }

and piecewise constants

Yh := {ζh ∈ L2(Ω̂) : ζh|K ∈ P0(K) for all K ∈ T Ω̂
h }.

We refer to [Mon08, Chapter 8.5] for more information and properties of these spaces. As-
sociated with Xh, let IXh

: H2(Ω̂) → Xh denote the corresponding nodal FEM interpolator.
Moreover, let

IYh : L2(Ω̂)→ Yh

denote the L2-orthogonal projection, characterized by

(ζ − IYhζ,yh) = 0 for all ζ ∈ L2(Ω̂) and yh ∈ Yh.

By standard estimates, see e.g. [Mon08], one derives the approximation properties

‖ϕ− IXh
ϕ‖

L2(Ω̂)
+ h‖∇ × (ϕ− IXh

ϕ)‖
L2(Ω̂)

≤ C h2‖∇2ϕ‖
L2(Ω̂)

(4.2.1)

‖ζ − IYhζ‖L2(Ω̂)
≤ C h‖ζ‖

H1(Ω̂)
(4.2.2)

for all ϕ ∈H2(Ω̂) and ζ ∈H1(Ω̂) and some h-independent constant C > 0.
For ease of presentation, we finally assume that the applied field J is continuous in time,

i.e. J ∈ C
(
[0, T ];L2(Ω)

)
so that Jj := J(tj) is meaningful. We emphasize, however, that this
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4.2. Preliminaries and numerical algorithms

is not necessary for our convergence analysis. For discretization of the time derivative, we
employ the difference quotient of first order, i.e.

dtφj+1 =
φj+1 − φj

k
.

Next, we propose two algorithms for the numerical integration of MLLG, where the first
one follows the lines of [BBP08].

Algorithm 4.2.1. Input: Initital data m0, E0, and H0, parameter θ ∈ [0, 1], counter j = 0.
For all j = 0, . . . , N − 1 iterate:

(i) Compute unique solution (vjh,E
j+1
h ,Hj+1

h ) ∈ (K
mj

h
,Xh,Yh) such that for all

(φh,ψψψh, ζh) ∈ K
mj

h
×Xh × Yh, there holds

α(vjh,φh) +
(
(mj

h × vjh),φh
)

= −Ce
(
∇(mj

h + θkvjh),∇φh
)

+ (H
j+1/2
h ,φh) +

(
π(mj

h),φh
)
,

(4.2.3a)

ε0(dtE
j+1
h ,ψψψh)− (H

j+1/2
h ,∇×ψψψh) + σ(χΩE

j+1/2
h ,ψψψh) = −(Jj+1/2,ψψψh), (4.2.3b)

µ0(dtH
j+1
h , ζh) + (∇×E

j+1/2
h , ζh) = −µ0(vjh, ζh). (4.2.3c)

(ii) Define mj+1
h ∈Mh nodewise by mj+1

h (z) =
mj
h(z) + kvjh(z)

|mj
h(z) + kvjh(z)|

for all z ∈ Nh

Note that the scalar product (vjh, ζh) in (4.2.3b) is the L2(Ω̂)-scalar product. Here, we thus
implicitly use the zero extension

ṽjh(x) :=

{
vjh(x) x ∈ Ω

0 else.
(4.2.4)

For the sake of computational and implementational ease, LLG and Maxwell’s equations
can be decoupled, which leads to two smaller linear systems per time step. This modification
is explicitly stated in the second algorithm.

99



Chapter 4. Coupling to full Maxwell system

Algorithm 4.2.2. Input: Initital data m0, E0, and H0, parameter θ ∈ [0, 1], counter j = 0.
For all j = 0, . . . , N − 1 iterate:

(i) Compute unique solution vjh ∈ Kmj
h
such that for all φh ∈ Kmj

h
, there holds

α(vjh,φh) +
(
(mj

h × vjh),φh
)

= −Ce
(
∇(mj

h + θkvjh),∇φh
)

+ (Hj
h,φh) +

(
π(mj

h),φh
)
.

(4.2.5a)

(ii) Compute unique solution (Ej+1
h ,Hj+1

h ) ∈ (Xh,Yh) such that for all (ψψψh, ζh) ∈ Xh × Yh,
there holds

ε0(dtE
j+1
h ,ψψψh)− (Hj+1

h ,∇×ψψψh) + σ(χΩEj+1
h ,ψψψh) = −(Jj ,ψψψh), (4.2.5b)

µ0(dtH
j+1
h , ζh) + (∇×Ej+1

h , ζh) = −µ0(vjh, ζh). (4.2.5c)

(iii) Define mj+1
h ∈Mh nodewise by mj+1

h (z) =
mj
h(z) + kvjh(z)

|mj
h(z) + kvjh(z)|

for all z ∈ Nh.

In the above algorithm, the scalar product in (4.2.5c) is again understood in the sense
of (4.2.4).

Remark. Before we come to the analysis of the two presented algorithms, we briefly want to
remark on their quality and benefits. The first Algorithm 4.2.1 follows the ideas of [BBP08]
and, due to the midpoint evaluation, might be extendable to a scheme which is of higher order
in time. While the second Algorithm 4.2.2 seems to be only a minor extension of the first one,
it provides major advantages. Besides simplifications in the analysis, this scheme seems to
be vastly superior for an actual numerical implementation: First, since the two equations are
decoupled, it can easily be added to an existing LLG solver. Second, since the Maxwell part can
be treated separately, possible preconditioning techniques as in [Baň10] can directly be applied.

It is quite straightforward to see that both of the above algorithms are well-defined, i.e.
admit unique solutions in each step of the respective loop. This result is formally stated and
proved in the next two lemmata. We start with the coupled system of Algorithm 4.2.1.

Lemma 4.2.3. Algorithm 4.2.1 is well-defined in the sense that in each step j = 0, . . . , N − 1
of the loop, there exist unique solutions (mj+1

h ,vjh,E
j+1
h ,Hj+1

h ).

Proof. We multiply the first equation of (4.2.3) by µ0 and the second and third equation by
some free parameter C21 > 0, which will be fixed later, to define the bilinear form aj(·, ·) on
(K

mj
h
,Xh,Yh) by

aj
(
(Φ,Ψ,Θ), (φ,ψψψ, ζ)

)
:= αµ0 (Φ,φ) + µ0

(
(mj

h ×Φ),φ
)

+ µ0Ceθk (∇Φ,∇φ)− µ0

2
(Θ, ζ)

+
C21ε0

k
(Ψ,ψψψ)− C21

2
(Θ,∇×ψ) +

C21σ

2
(χΩΨ,ψψψ)

+
C21µ0

k
(Θ, ζ) +

C21

2
(∇×Ψ, ζ) + C21µ0 (Φ, ζ)
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and the linear functional Lj(·) on (K
mj

h
,Xh,Yh) by

Lj
(
(φ,ψψψ, ζ)

)
:= −µ0Ce (∇mj

h,∇φ) +
µ0

2
(Hj

h,φ) + µ0

(
π(mj

h),φ
)

+
C21ε0

k
(Ej

h,ψψψ) +
C21

2
(Hj

h,∇×ψψψ)− C21σ

2
(χΩEj

h,ψψψ)− C21(Jj+1/2,ψψψ)

+
C21µ0

k
(Hj

h, ζ)− C21

2
(∇×Ej

h, ζ).

To ease the readability, the respective first lines of these definitions stem from (4.2.3a), the
second from (4.2.3b), and the third from (4.2.3c). Clearly, (4.2.3) is equivalent to

aj
(
(vjh,E

j+1
h ,Hj+1

h ), (φh,ψψψh, ζh)
)

= Lj
(
(φh,ψψψh, ζh)

)
for all (φh,ψψψh, ζh) ∈ K

mj
h
×Xh × Yh.

Next, we aim to show that the bilinear form aj(·, ·) is positive definite on K
mj

h
× Xh × Yh.

Usage of the Hölder inequality reveals that for all (φ,ψψψ, ζ) ∈ K
mj

h
×Xh × Yh it holds that

aj
(
(φ,ψψψ, ζ), (φ,ψψψ, ζ)

)
= αµ0(φ,φ) + µ0

(
(mj

h × φ),φ
)︸ ︷︷ ︸

=0

+µ0Ceθk (∇φ,∇φ)− µ0

2
(φ, ζ)

+
C21ε0

k
(ψψψ,ψψψ)− C21

2
(ζ,∇×ψψψ) +

C21σ

2
(χΩψψψ,ψψψ)

+
C21µ0

k
(ζ, ζ) +

C21

2
(∇×ψψψ, ζ) + C21µ0 (φ, ζ)

= αµ0(φ,φ) + µ0Ceθk (∇φ,∇φ) +
(
C21µ0 −

µ0

2

)
(φ, ζ)

+
C21ε0

k
(ψψψ,ψψψ) +

C21σ

2
(χΩψψψ,ψψψ) +

C21µ0

k
(ζ, ζ)

≥
(
α− 2ε(C21 − 1/2)

)︸ ︷︷ ︸
=:a

µ0‖φ‖2L2(Ω) +
C21ε0

k
‖ψψψ‖2

L2(Ω̂)

+
(C21

k
− C21 − 1/2

2ε

)
︸ ︷︷ ︸

=:b

µ0‖ζ‖2L2(Ω̂)
,

where we have used

(φ, ζ) ≥ −2ε‖φ‖2L2(Ω) −
1

2ε
‖ζ‖2

L2(Ω̂)
.

For the last inequality, we employed the zero extension of φ in the sense of (4.2.4). Choos-
ing C21 = 1/2 now yields a, b > 0 and thus the desired result.
From vjh ∈ Kmj

h
and the Pythagoras theorem, we get |mj

h(z) + kvjh(z)|2 = |mj
h(z)|2 +

k|vjh(z)|2 ≥ 1. Hence, also step (ii) of Algorithm 4.2.1 is well-defined. This concludes the
proof.

The next Lemma states that also the second, fully decoupled algorithm is well-defined.

Lemma 4.2.4. Algorithm 4.2.2 is well-defined in the sense that it admits a unique solution
(mj+1

h ,vjh,E
j+1
h ,Hj+1

h ) in each step j = 0, . . . , N − 1 of the iterative loop.
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Proof. For the first equation (4.2.5a), we define the bilinear form aj(·, ·) : K
mj

h
×K

mj
h
→ R by

aj1(Φ,φ) := α (Φ,φ) +
(
(mj

h ×Φ),φ
)

+ θCek (∇Φ,∇φ)

and the functional

Lj1(φ) := −Ce(∇mj
h,∇φ) + (Hj

h,φ) + (π(mj
h),φ).

Then, (4.2.5a) is equivalent to

aj1(vjh,φ) = Lj1(φ) ∀φ ∈ K
mj

h
.

Obviously, Lj(·) is linear, while aj(·, ·) is bilinear and positive definite, since

aj(φ,φ) = α‖φ‖2
L2(Ω)

+ θCek‖∇φ‖2L2(Ω)
.

We thus deduce existence of a unique vjh ∈ Kmj
h
solving (4.2.5a). For the second equation

(4.2.5b), we have to consider the bilinear form a2(·, ·) : (Xh,Yh)× (Xh,Yh)→ R defined by

a2

(
(Ψ,Θ), (ψψψ, ζ)

)
:=

ε0

k
(Ψ,ψψψ)− (Θ,∇×ψ) + σ(χΩΨ,ψψψ) +

µ0

k
(Θ, ζ) + (∇×Ψ, ζ)

which is continuous and positive definite. This is easily seen by

a2

(
(ψ, ζ)(ψ, ζ)

)
=
ε0

k
(ψ,ψ)− (ζ,∇×ψ) + σ(χΩψ,ψ) +

µ0

k
(ζ, ζ) + (∇×ψ, ζ)

=
ε0

k
(ψ,ψ) + σ(χΩψ,ψ) +

µ0

k
(ζ, ζ)

=
ε0

k
‖ψ‖2

L2(Ω̂)
+
µ0

k
‖ζ‖2

L2(Ω̂)
+ σ‖ψ‖2

L2(Ω)
.

We further define the functional

Lj2
(
(ψψψ, ζ)

)
:= −(Jj ,ψψψ)− ε0

k
(Ej

h,ψψψ)− µ0(vjh, ζ)− µ0

k
(Hj

h, ζ)

which is obviously linear. Hence, the system (4.2.5b)–(4.2.5c) is equivalent to

a2

(
(Ej+1

h ,Hj+1
h , (ψψψ, ζ))

)
= Lj2(ψψψ, ζ) ∀(ψψψ, ζ) ∈ (Xh,Yh).

Due to finite dimension, there is a unique solution (Ej+1
h ,Hj+1

h ) of (4.2.5b)–(4.2.5c). As in
Lemma 6.2.2, we see that step (iii) of Algorithm 4.2.2 is also well-defined.

We will close this section with our main convergence theorem for the coupled Maxwell-LLG
system which reads analogously to Theorem 2.3.1 and covers both algorithms 4.2.1 and 4.2.2
simultaneously. Since the proof is quite lengthy, it is postponed to the upcoming sections
below.
We quickly recall the definition of our discrete quantities in the sense of Lemma 2.2.5. For

x ∈ Ω and t ∈ [tj , tj+1) and for γ`h ∈ {m`
h,H

`
h,E

`
h,J

`,v`h} the discrete approximations are
given by

γhk(t,x) :=
t− tj
k

γj+1
h (x) +

tj+1 − t
k

γjh(x)

γ−(t,x) := γjh(x), γ+(t,x) := γj+1
h (x).
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Furthermore, we define the midpoint evaluation by

γhk(t,x) := γ
j+1/2
h (x) =

γj+1
h (x) + γjh(x)

2
.

The next statement is the main result of this chapter.

Theorem 4.2.5. (a) Let θ ∈ (1/2, 1] and suppose that the spatial meshes Th are uniformly
shape regular and satisfy the angle condition∫

Ω
∇ηi · ∇ηj for all basis functions ηi, ηj ∈ S1(Th) with i 6= j. (4.2.6)

Moreover, suppose that the general field contribution π(n) is uniformly bounded, i.e.

‖π(n)‖L2(Ω) ≤ Cπ <∞ (4.2.7)

for n ∈ L2(Ω) with |n| ≤ 1 almost everywhere, and where the constants Cπ > 0 is independent
of the timestep- and spatial mesh-sizes k and h. In particular, Cπ may depend only on Ω.
Assume additionally that we have convergence of the initital data, i.e.

m0
h ⇀ m0 weakly in H1(Ω) (4.2.8)

as well as

H0
h ⇀ H0 and E0

h ⇀ E0 weakly in L2(Ω̂). (4.2.9)

Finally, for the field J, we assume sufficient regularity, e.g. J ∈ C
(
[0, T ];L2(Ω̂)

)
, such that

J± ⇀ J weakly in L2(Ω̂T ). (4.2.10)

Under these assumptions, we have strong subconvergence of m−hk towards some function m in
L2(ΩT ).

(b) In addition to the above, we assume the weak convergence property

π(m−hk)
sub−−⇀ π(m) weakly subconvergent in L2(ΩT ). (4.2.11)

Then, the computed FE solutions (mhk,Hhk,Ehk) of either Algorithm 4.2.1 or Algorithm 4.2.2
are weakly subconvergent in H1(ΩT )×L2(Ω̂T )×L2(Ω̂T ) towards a weak solution (m,H,E) of
the Maxwell-LLG system. In particular, this yields existence of weak solutions of MLLG and
each accumulation point of (mhk,Ehk,Hhk) is a weak solution in the sense of Definition 4.1.1.

Remark. As mentioned above, an approximation πh(·) of π(·) can easily be included into the
analysis. With the techniques from Chapter 2 the analysis directly carries over to this case
and, in analogy to before, one then gets the constraints ‖πh(mj

h)‖
L2(Ω̂)

≤ Cπ <∞ as well as

πh(m−hk)
sub−−⇀ π(m) weakly subconvergent in L2(Ω̂T )

for the numerical approximation.
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4.2.1. Analysis of coupled Algorithm 4.2.1

As in Section 2.3, the convergence analysis follows three steps.

• Step 1: Boundedness of the discrete quantities and energies.

• Step 2: Existence of weakly convergent subsequences.

• Step 3: Identification of the weak limits from Step 2 with a weak solution of the
Maxwell-LLG system. This particularly shows existence of weak solutions.

We begin with the verification that the discrete quantities computed by Algorithm 4.2.1 are
indeed uniformly bounded.
Step 1:

Lemma 4.2.6. The discrete quantities (mj
h,E

j
h,H

j
h) ∈Mh ×Xh × Yh fulfill

‖∇mj
h‖

2
L2(Ω)

+ k

j−1∑
i=0

‖vih‖2L2(Ω)
+ ‖Hj

h‖
2
L2(Ω̂)

+ ‖Ej
h‖

2
L2(Ω̂)

+
(
θ − 1/2

)
k2

j−1∑
i=0

‖∇vih‖2L2(Ω)
≤ C22

(4.2.12)

for each j = 0, . . . , N and some constant C22 > 0 that depends only on |Ω̂|, |Ω|, and Cπ.

Proof. As for pure LLG, the proof relies on choosing of the correct test functions. For
Maxwell’s equations (4.2.3b)–(4.2.3c), we choose (ψψψh, ζh) = (E

i+1/2
h ,H

i+1/2
h ) and obtain after

summing up

dt
(ε0

2
‖Ei+1

h ‖
2
L2(Ω̂)

+
µ0

2
‖Hi+1

h ‖
2
L2(Ω̂)

)
+ σ‖χΩE

i+1/2
h ‖2

L2(Ω̂)

= −(Ji+1/2,E
i+1/2
h )− µ0(vih,H

i+1/2
h ).

The LLG equation (4.2.3a) is now tested with ϕi = vih ∈ Kmi
h
. We get

α(vih,v
i
h) +

(
(mi

h × vih),vih
)︸ ︷︷ ︸

=0

= −Ce
(
∇(mi

h + θkvih),∇vih
)

+ (H
i+1/2
h ,vih) +

(
π(mi

h),vih
)
,

whence

αk

Ce
‖vih‖2L2(Ω)

+ θk2‖∇vih‖2L2(Ω)
= −k(∇mi

h,∇vih) +
k

Ce
(H

i+1/2
h ,vih) +

k

Ce

(
π(mi

h),vih
)
.

Next, we use ‖∇mi+1
h ‖

2
L2(Ω)

≤ ‖∇(mi
h+kvih)‖2

L2(Ω)
stemming from the mesh condition (4.2.6),

cf. [Bar05], and argue as in the proof of Lemma 2.3.3 to see

1

2
‖∇mi+1

h ‖
2
L2(Ω)

≤ 1

2
‖∇mi

h‖2L2(Ω)
+ k (∇mi

h,∇vih) +
k2

2
‖∇vih‖L2(Ω)

=
1

2
‖∇mi

h‖2L2(Ω)
−
(
θ − 1/2

)
k2‖∇vih‖2L2(Ω)

− αk

Ce
‖vih‖2L2(Ω)

+
k

Ce
(H

i+1/2
h ,vih) +

k

Ce

(
π(mi

h),vih
)
.

104



4.2. Preliminaries and numerical algorithms

Multiplication by µ0/k thus yields
µ0

2k

(
‖∇mi+1

h ‖
2
L2(Ω)

− ‖∇mi
h‖2L2(Ω)

)
+
αµ0

Ce
‖vih‖2L2(Ω)

+
(
θ − 1/2

)
µ0k‖∇vih‖2L2(Ω)

≤ µ0

Ce
(H

i+1/2
h ,vih) +

µ0

Ce

(
π(mi

h),vih
)
.

Adding up the two inequalities, we employ Cauchy’s inequality A.1.5 and conclude for any
ε, ν > 0

dt
(µ0

2
‖∇mi+1

h ‖
2
L2(Ω)

+
ε0

2Ce
‖Ei+1

h ‖
2
L2(Ω̂)

+
µ0

2Ce
‖Hi+1

h ‖
2
L2(Ω̂)

)
+

σ

Ce
‖χΩE

i+1/2
h ‖2

L2(Ω̂)

+
(
θ − 1/2

)
µ0k‖∇vih‖2L2(Ω)

+
µ0

Ce
(α− ε)‖vih‖2L2(Ω)

≤ 1

4νCe
‖Ji+1/2‖2

L2(Ω̂)
+

ν

Ce
‖Ei+1/2

h ‖2
L2(Ω̂)

+
µ0

4εCe
‖π(mi

h)‖2
L2(Ω)

.

Multiplying by k and summing over the time steps i = 0, . . . , j − 1, we see

µ0

2
‖∇mj

h‖
2
L2(Ω)

+
ε0

2Ce
‖Ej

h‖
2
L2(Ω̂)

+
µ0

2Ce
‖Hj

h‖
2
L2(Ω̂)

+
kσ

Ce

j−1∑
i=0

‖χΩE
i+1/2
h ‖2

L2(Ω̂)

+
(
θ − 1/2

)
µ0k

2
j−1∑
i=0

‖∇vih‖2L2(Ω)
+
µ0k

Ce
(α− ε)

j−1∑
i=0

‖vih‖2L2(Ω)

≤ k

4νCe

j−1∑
i=0

‖Ji+1/2‖2
L2(Ω̂)

+
νk

Ce

j−1∑
i=0

‖Ei+1/2
h ‖2

L2(Ω̂)
+

kµ0

4εCe

j−1∑
i=0

‖π(mi
h)‖2

L2(Ω)

+
µ0

2
‖∇m0

h‖2L2(Ω)
+

ε0

2Ce
‖E0

h‖2L2(Ω̂)
+

µ0

2Ce
‖H0

h‖2L2(Ω̂)

≤ C +
kν

Ce

j−1∑
i=0

‖Ei+1/2
h ‖2

L2(Ω̂)
.

For the last inequality, we exploited boundedness of the general field contribution (2.3.2), as
well as convergence (and hence boundedness) of the initial data.
Unfortunately, the term

∑j−1
i=0 ‖E

i+1/2
h ‖2

L2(Ω̂)
cannot be absorbed by

∑j−1
i=0 ‖χΩE

i+1/2
h ‖2

L2(Ω̂)

on the left-hand side, since the latter is defined only on the smaller domain Ω. The remedy is
to employ an artificial extension

j−1∑
i=0

‖Ei+1/2
h ‖2

L2(Ω̂)
≤ 1

2

j−1∑
i=0

(
‖Ei+1

h ‖
2
L2(Ω̂)

+ ‖Ei
h‖2L2(Ω̂)

)
≤ 1

2
‖Ej

h‖
2
L2(Ω̂)

+

j−1∑
i=0

‖Ei
h‖2L2(Ω̂)

.

This yields

µ0

2
‖∇mj

h‖
2
L2(Ω)

+
1

2Ce

(
ε0 − kν

)︸ ︷︷ ︸
=:CE

‖Ej
h‖

2
L2(Ω̂)

+
µ0

2Ce
‖Hj

h‖
2
L2(Ω̂)

+
kσ

Ce

j−1∑
i=0

‖χΩE
i+1/2
h ‖2

L2(Ω̂)

+
(
θ − 1/2

)
µ0k

2
j−1∑
i=0

‖∇vih‖2L2(Ω)
+
µ0k

Ce
(α− ε)

j−1∑
i=0

‖vih‖2L2(Ω)

≤ C +
kν

Ce

j−1∑
i=0

‖Ei
h‖2L2(Ω̂)

,
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where CE > 0 for ν < ε0/k0 Hence, the assertion then follows by application of the discrete
Gronwall’s inequality A.1.2 for ε ≤ α.

Step 2: Analogously to Lemma 2.3.5, we conclude the existence of weakly convergent subse-
quences.

Lemma 4.2.7. There exist functions m ∈ H1(ΩT ,S2),v ∈ L2(ΩT ), and E,H ∈ L2(Ω̂T ) ×
L2(Ω̂T ) such that

mhk
sub−−⇀ m in H1(ΩT ), (4.2.13a)

mhk,m
±
hk,mhk

sub−−⇀ m in L2(H1), (4.2.13b)

mhk,m
±
hk,mhk

sub−−→m in L2(ΩT ), (4.2.13c)

Hhk,Hhk
sub−−⇀ H in L2(Ω̂T ), (4.2.13d)

Ehk,Ehk
sub−−⇀ E in L2(Ω̂T ), (4.2.13e)

v−hk
sub−−⇀ v in L2(ΩT ). (4.2.13f)

In particular, there exists a subsequence (hn, kn) of (h, k) such that all the above limits hold
simultaneously.

Proof. The limits concerning the magnetization m as well as v follow as in Lemma 2.3.5. Due
to the boundedness of the discrete electric and magnetic field from Lemma 4.2.6, we conclude
existence of H, H̃ and E, Ẽ with

Hhk
sub−−⇀ H

Hhk
sub−−⇀ H̃

Ehk
sub−−⇀ E

Ehk
sub−−⇀ Ẽ

in L2(Ω̂T ). It thus only remains to show that the limits H and H̃, resp. E and Ẽ coincide.
This can be seen by some clever user of the midpoint rule. For Λ ∈ C∞(Ω̂T ), consider the
piecewise constant approximation Λ− ∈ P0(Ik, C∞(Ω̂)) with Λ−(t) = Λ(tj) for t ∈ [tj , tj+1)
and γhk ∈ {Ehk,Hhk}. Since the midpoint rule is exact for the (piecewise) affine function
(γhk,Λ

−), there holds∫ T

0
(γhk,Λ

−) =
N−1∑
j=0

∫ tj+1

tj

1

2

(
γj+1
h + γjh,Λ(tj)

)
= k

N−1∑
j=0

(γhk,Λ
−)

(
tj+1 + tj

2

)

=

N−1∑
j=0

∫ tj+1

tj

(
γhk,Λ

−) =

∫ T

0
(γhk,Λ

−).

We thus deduce

(γhk,Λ) = (γhk,Λ
−) + (γhk,Λ− Λ−)

= (γhk,Λ
−) + (γhk,Λ− Λ−)

= (γhk,Λ) + (γhk,Λ
− − Λ) + (γhk,Λ− Λ−).
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Pointwise convergence of Λ− to Λ in combination with the Lebesgue theorem for dominated
convergence A.2.3 yield Λ−

sub−−→ Λ strongly in L2(ΩT ). We thus get lim(h,k)→0(γhk,Λ) =
lim(h,k)→0(γhk,Λ) and hence to coincidence of the two limits.

From Lemma 2.3.6, we conclude that the limiting function v equals the time derivative
of the magnetization m almost everywhere in ΩT . This concludes the proof of part a of
Theorem 4.2.5. In the remainder, we aim to identify the limiting functions from Lemma 4.2.7
with weak solutions of the MLLG system, i.e. we prove part b of Theorem 4.2.5.

Step 3:

Proof of the convergence Theorem 4.2.5 for Algorithm 4.2.1. As special set of test functions
serve (φh,ψψψh, ζh)(t, ·) :=

(
Ih(m−hk × ϕ), IXh

ψψψ, IYhζ
)
(t, ·) for any (ϕ,ψψψ, ζ) ∈ C∞(ΩT ) ×

C∞c
(
[0, T );C∞(Ω̂) ∩H0(curl, Ω̂)

)
× C∞c

(
[0, T );C∞(Ω̂)

)
. Algorithm 4.2.1 implies

α

∫ T

0
(v−hk,φh) +

∫ T

0

(
(m−hk × v−hk),φh

)
= −Ce

∫ T

0

(
∇(m−hk + θkv−hk),∇φh

)
+

∫ T

0
(Hhk,φh) +

∫ T

0

(
π(m−hk),φh

)
ε0

∫ T

0

(
(Ehk)t,ψψψh

)
−
∫ T

0
(Hhk,∇×ψψψh) + σ

∫ T

0
(χΩEhk,ψψψh) = −

∫ T

0
(Jhk,ψψψh)

µ0

∫ T

0

(
(Hhk)t, ζh

)
+

∫ T

0
(∇×Ehk, ζh) = −µ0

∫ T

0
(v−hk, ζh).

As in the proof of Theorem 2.3.1, boundedness of the involved quantities in combination
with the approximation properties of the nodal interpolation operator, for the LLG part this
yields∫ T

0

(
(αv−hk + m−hk × v−hk), (m

−
hk ×ϕ)

)
+ k θ

∫ T

0

(
∇v−hk,∇(m−hk ×ϕ)

)
+ Ce

∫ T

0

(
∇m−hk,∇(m−hk ×ϕ)

)
−
∫ T

0

(
Hhk, (m

−
hk ×ϕ)

)
−
∫ T

0

(
π(m−hk), (m

−
hk ×ϕ)

)
= O(h)

Passing to the limit and using the strong L2(ΩT )-convergence of (m−hk×ϕ) towards (m×ϕ),
we get ∫ T

0

(
(αv−hk + m−hk × v−hk), (m

−
hk ×ϕ)

)
−→

∫ T

0

(
(αmt + m×mt), (m×ϕ)

)
,

k θ

∫ T

0

(
∇v−hk,∇(m−hk ×ϕ)

)
−→ 0, and∫ T

0

(
∇m−hk,∇(m−hk ×ϕ)

)
−→

∫ T

0

(
∇m,∇(m×ϕ)

)
,

as in Lemma 2.3.9. For the second limit, we have used the boundedness of k‖∇v−hk‖
2
L2(ΩT )

for θ ∈ (1/2, 1], see Lemma 4.2.6. The weak convergence properties of Hhk and π(m−hk)
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from (4.2.11) now yield∫ T

0

(
Hhk, (m

−
hk ×ϕ)

)
−→

∫ T

0

(
H, (m×ϕ)

)
and∫ T

0

(
π(m−hk), (m

−
hk ×ϕ)

)
−→

∫ T

0

(
π(m), (m×ϕ)

)
.

So far, we have thus proved∫ T

0

(
(αmt + m×mt), (m×ϕ)

)
= −Ce

∫ T

0

(
∇m,∇(m×ϕ)

)
+

∫ T

0

(
H, (m×ϕ)

)
+

∫ T

0

(
π(m), (m×ϕ)

)
As in Lemma 2.3.9, we conclude (4.1.2). The equality m(0, ·) = m0 in the trace sense again
follows from the weak convergence mhk ⇀ m in H1(ΩT ) and thus weak convergence of the
traces. Using the weak convergence m0

h ⇀ m0 in L2(Ω), we finally identify the sought limit.
For the Maxwell part (4.1.3)–(4.1.4) of Definition 4.1.1, we proceed as in [BBP08]. Given the
above definition of the test functions, (4.2.5b) implies

ε0

∫ T

0

(
(Ehk)t,ψψψh

)
−
∫ T

0
(Hhk,∇×ψψψh) + σ

∫ T

0
(χΩEhk,ψψψh) =

∫ T

0
(Jhk,ψψψh)

µ0

∫ T

0

(
(Hhk)t, ζh

)
+

∫ T

0
(∇×Ehk, ζh) = −µ0

∫ T

0
(v−hk, ζh).

We now consider each of those two terms separately. For the first term of the first equation,
we integrate by parts in time and get∫ T

0

(
(Ehk)t,ψψψh

)
= −

∫ T

0

(
Ehk, (ψψψh)t

)
+
(
Ehk(T, ·),ψψψh(T, ·)

)︸ ︷︷ ︸
=0

−
(
E0
h,ψψψh(0, ·)

)
,

where the second term on the right-hand side vanishes due to the temporal boundary condi-
tions. Passing to the limit on the right-hand side, we see∫ T

0

(
(Ehk)t,ψψψh

)
−→ −

∫ T

0

(
E,ψψψt

)
−
(
E0,ψψψ(0, ·)

)
, (4.2.14)

where we have used the assumed convergence of the initial data. For the first term in the
second equation we proceed analogously The convergence of the terms∫ T

0
(Hhk,∇×ψψψh) −→

∫ T

0
(H,∇×ψψψ),∫ T

0
(χΩEhk,ψψψh) −→

∫ T

0
(χΩE,ψψψ),∫ T

0
(Jhk,ψψψh) −→

∫ T

0
(J,ψψψ), and∫ T

0
(v−hk, ζh) −→

∫ T

0
(mt, ζ)
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is straightforward. It remains to analyze the second term in the second equation. Using
∇×Ehk(t) ∈ Yh and the orthogonality properties of IYh , we deduce∫ T

0
(∇×Ehk, ζh) =

∫ T

0
(∇×Ehk, ζ)−

∫ T

0

(
∇×Ehk, (1− IYh)ζ

)
=

∫ T

0
(∇×Ehk, ζ) =

∫ T

0
(Ehk,∇× ζ) −→

∫ T

0
(E,∇× ζ).

For the last equality, we have used the boundary condition Ehk×n = 0 on ∂Ω̂T and integration
by parts. This yields (4.1.3) and (4.1.4). It remains to show the energy estimate (4.1.5). From
the discrete energy estimate (4.2.12), we get for any t′ ∈ [0, T ] with t′ ∈ [tj , tj+1)

‖∇m+
hk(t

′)‖2
L2(Ω)

+ ‖v−hk‖
2
L2(Ωt′ )

+ ‖Hhk(t
′)‖2
L2(Ω̂)

+ ‖Ehk(t
′)‖2
L2(Ω̂)

= ‖∇m+
hk(t

′)‖2
L2(Ω)

+

∫ t′

0
‖v−hk(s)‖

2
L2(Ω)

+ ‖Hhk(t
′)‖2
L2(Ω̂)

+ ‖Ehk(t
′)‖2
L2(Ω̂)

≤ ‖∇m+
hk(t

′)‖2
L2(Ω)

+

∫ tj+1

0
‖v−hk(s)‖

2
L2(Ω)

+ ‖Hhk(t
′)‖2
L2(Ω̂)

+ ‖Ehk(t
′)‖2
L2(Ω̂)

≤ 2C22

Integration in time thus yields for any measurable set I ⊆ [0, T ]∫
I
‖∇m+

hk(t
′)‖2
L2(Ω)

+

∫
I
‖v−hk‖

2
L2(Ωt′ )

+

∫
I
‖Hhk(t

′)‖2
L2(Ω̂)

+

∫
I
‖Ehk(t

′)‖2
L2(Ω̂)

≤ 2

∫
I
C22

whence weak lower semi-continuity leads to∫
I
‖∇m‖2

L2(Ω)
+

∫
I
‖mt‖2L2(Ωt′ )

+

∫
I
‖H‖2

L2(Ω̂)

∫
I
‖E‖2

L2(Ω̂)
≤ 2

∫
I
C22.

The desired result now follows from standard measure theory, see e.g. [Els11, IV, Thm. 4.4].

Remark . Note that, with the above analysis, we do not get the convergence of γ±hk towards
γ for γ ∈ {E,H} as we do not control

∑
‖γj+1

h − γjh‖
2
L2. This is somewhat unexpected as

we know that γ±hk do converge by boundedness — at least for a subsequence. Theoretically,
however, the limits of γ+

hk and γ−hk could be different.

4.2.2. Analysis of fully decoupled Algorithm 4.2.2

In this Section, we finally show convergence of the fully decoupled Algorithm 4.2.2. While
the analysis seems to be slightly more involved at first glance, we again stress that, due to
decoupling, this algorithm has large benefits from an implementational point of view. As
before, the proof consists of three steps and we start by verifying the boundedness of the
computational quantities.

Step 1: Boundedness of the discrete quantities.
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Lemma 4.2.8. There exists k0 > 0 such that for all k < k0, the discrete quantities (mj
h,E

j
h,H

j
h) ∈

Mh ×Xh × Yh fulfill

‖∇mj
h‖

2
L2(Ω)

+ k

j−1∑
i=0

‖vih‖2L2(Ω)
+ ‖Hj

h‖
2
L2(Ω̂)

+ ‖Ej
h‖

2
L2(Ω̂)

+
(
θ − 1/2

)
k2

j−1∑
i=0

‖∇vih‖2L2(Ω)

+

j−1∑
i=0

(
‖Hi+1

h −Hi
h‖2L2(Ω̂)

+ ‖Ei+1
h −Ei

h‖2L2(Ω̂)

)
≤ C27 (4.2.15)

for each j = 0, . . . , N and some constant C27 > 0 that only depends on |Ω̂|, on |Ω|, as well as
on Cπ.

Proof. Again, the proof relies on a clever choice of test functions. For Maxwell’s equations, i.e.
step (ii) of Algorithm 4.2.2, we choose (ψψψh, ζh) = (Ei+1

h ,Hi+1
h ) as special pair of test functions

and get from (4.2.5b)–(4.2.5c)
ε0

k
(Ei+1

h −Ei
h,E

i+1
h )− (Hi+1

h ,∇×Ei+1
h ) + σ(χΩEi+1

h ,Ei+1
h ) = −(Ji,Ei+1

h ) and
µ0

k
(Hi+1

h −Hi
h,H

i+1
h ) + (∇×Ei+1

h ,Hi+1
h ) = −µ0(vih,H

i+1
h ).

Adding up those two equations (and multiplying by 1/Ce), we therefore see
ε0

kCe
(Ei+1

h −Ei
h,E

i+1
h ) +

σ

Ce
‖Ei+1

h ‖
2
L2(Ω)

+
µ0

kCe
(Hi+1

h −Hi
h,H

i+1
h )

= −µ0

Ce
(vih,H

i
h) +

µ0

Ce
(vih,H

i
h −Hi+1

h )− 1

Ce
(Ji,Ei+1

h ).
(4.2.16)

The LLG equation (4.2.5a) is again tested with ϕi = vih ∈ Kmi
h
. In complete analogy to

before, we get

α(vih,v
i
h) +

(
(mi

h × vih),vih
)︸ ︷︷ ︸

=0

= −Ce
(
∇(mi

h + θkvih),∇vih
)

+ (Hi
h,v

i
h) +

(
π(mi

h),vih
)
,

whence
αk

Ce
‖vih‖2L2(Ω)

+ θk2‖∇vih‖2L2(Ω)
= −k(∇mi

h,∇vih) +
k

Ce
(Hi

h,v
i
h) +

k

Ce

(
π(mi

h),vih
)
.

Again, we utilize the discrete energy decay stemming from the angle condition (2.3.1) to see

1

2
‖∇mi+1

h ‖
2
L2(Ω)

≤ 1

2
‖∇mi

h‖2L2(Ω)
+ k (∇mi

h,∇vih) +
k2

2
‖∇vih‖L2(Ω)

=
1

2
‖∇mi

h‖2L2(Ω)
−
(
θ − 1/2

)
k2‖∇vih‖2L2(Ω)

− αk

Ce
‖vih‖2L2(Ω)

+
k

Ce
(Hi

h,v
i
h) +

k

Ce

(
π(mi

h),vih
)
.

Multiplying the last estimate by µ0/k and adding (4.2.16), we obtain
µ0

2k
(‖∇mi+1

h ‖
2
L2(Ω)

− ‖∇mi
h‖2L2(Ω)

) +
(
θ − 1/2

)
µ0k‖∇vih‖2L2(Ω)

+
αµ0

Ce
‖vih‖2L2(Ω)

+
ε0

k Ce
(Ei+1

h −Ei
h,E

i+1
h ) +

σ

Ce
‖Ei+1

h ‖
2
L2(Ω)

+
µ0

kCe
(Hi+1

h −Hi
h,H

i+1
h )

≤ µ0

Ce
(Hi

h −Hi+1
h ,vih)− 1

Ce
(Ji,Ei+1

h ) +
µ0

Ce

(
π(mi

h),vih
)
.

110



4.2. Preliminaries and numerical algorithms

Multiplying the above equation by k, summing up over the time intervals, and exploiting
Abel’s summation from Lemma A.1.3 for the Ei

h and Hi
h scalar-products, this yields

µ0

2
‖∇mj

h‖
2
L2(Ω)

+
(
θ − 1/2

)
µ0k

2
j−1∑
i=0

‖∇vih‖2L2(Ω)
+
αkµ0

Ce

j−1∑
i=0

‖vih‖2L2(Ω)
+

ε0

2Ce
‖Ej

h‖
2
L2(Ω̂)

+
ε0

2Ce

j−1∑
i=0

‖Ei+1
h −Ei

h‖2L2(Ω̂)
+
kσ

Ce

j−1∑
i=0

‖Ei+1
h ‖

2
L2(Ω)

+
µ0

2Ce
‖Hj

h‖
2
L2(Ω̂)

+
µ0

2Ce

j−1∑
i=0

‖Hi+1
h −Hi

h‖2L2(Ω̂)

≤ kµ0

Ce

j−1∑
i=0

(Hi
h −Hi+1

h ,vih)− k

Ce

j−1∑
i=0

(Ji,Ei+1
h ) +

µ0k

Ce

j−1∑
i=0

(
π(mi

h),vih
)

+
µ0

2
‖∇m0

h‖2L2(Ω)
+

ε0

2Ce
‖E0

h‖2L2(Ω̂)
+

µ0

2Ce
‖H0

h‖2L2(Ω̂)︸ ︷︷ ︸
=:E0h

for any j ∈ 1, . . . , N . By use of the inequalities of Young and Hölder, the first part of the
right-hand side can be estimated by

kµ0

Ce

j−1∑
i=0

(Hi
h −Hi+1

h ,vih)− k

Ce

j−1∑
i=0

(Ji,Ei+1
h ) +

µ0k

Ce

j−1∑
i=0

(π(mi
h),vih)

≤ kµ0

Ce

j−1∑
i=0

1

2ε
(‖π(mi

h)‖2
L2(Ω)

+ ‖Hi+1
h −Hi

h‖2L2(Ω̂)
) +

εµ0k

Ce

j−1∑
i=0

‖vih‖2L2(Ω)

+
kν

Ce

j−1∑
i=0

‖Ei+1
h ‖

2
L2(Ω̂)

+
k

4νCe

j−1∑
i=0

‖Ji‖2
L2(Ω̂)

,

for any ε, ν > 0. Here, we used ‖Hi+1
h −Hi

h‖2L2(Ω)
≤ ‖Hi+1

h −Hi
h‖2L2(Ω̂)

. The combination of
the last two estimates yields

µ0

2
‖∇mj

h‖
2
L2(Ω)

+
(
θ − 1/2

)
µ0k

2
j−1∑
i=0

‖∇vih‖2L2(Ω)
+
αkµ0

Ce

j−1∑
i=0

‖vih‖2L2(Ω)
+

ε0

2Ce
‖Ej

h‖
2
L2(Ω̂)

+
ε0

2Ce

j−1∑
i=0

‖Ei+1
h −Ei

h‖2L2(Ω̂)
+
kσ

Ce

j−1∑
i=0

‖Ei+1
h ‖

2
L2(Ω)

+
µ0

2Ce
‖Hj

h‖
2
L2(Ω̂)

+
µ0

2Ce

j−1∑
i=0

‖Hi+1
h −Hi

h‖2L2(Ω̂)

≤ µ0k

2Ceε

j−1∑
i=0

(‖π(mi
h)‖2

L2(Ω)
+ ‖Hi+1

h −Hi
h‖2L2(Ω̂)

) +
εµ0k

Ce

j−1∑
i=0

‖vih‖2L2(Ω)

+
νk

νCe

j−1∑
i=0

‖Ei+1
h ‖

2
L2(Ω̂)

+
k

4νCe

j−1∑
i=0

‖Ji‖2
L2(Ω̂)

+ E0
h.

As before, the term kν
Ce

∑j−1
i=0 ‖E

i+1
h ‖

2
L2(Ω̂)

on the right-hand side cannot be absorbed by the

term kσ
Ce

∑j−1
i=0 ‖E

i+1
h ‖

2
L2(Ω)

on the left hand-side, since the latter consists only of contributions
on the smaller domain Ω. Again, we thus artificially enlarge the first term by

kν

Ce

j−1∑
i=0

‖Ei+1
h ‖

2
L2(Ω̂)

≤ 2kν

Ce

j−1∑
i=0

‖Ei+1
h −Ei

h‖2L2(Ω̂)
+

2kν

Ce

j−1∑
i=0

‖Ei
h‖2L2(Ω̂)
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and absorb the first sum into the corresponding quantity on the left-hand side. With

Cv :=
µ0k

Ce
(α− ε), CH :=

µ0

2Ce

(
1− k

ε

)
, and CE :=

1

2Ce

(
ε0 − 4kν),

this yields

aj :=
µ0

2
‖∇mj

h‖
2
L2(Ω)

+
(
θ − 1/2

)
µ0k

2
j−1∑
i=0

‖∇vih‖2L2(Ω)
+ Cv

j−1∑
i=0

‖vih‖2L2(Ω)
+

ε0

2Ce
‖Ej

h‖
2
L2(Ω̂)

+ CE

j−1∑
i=0

‖Ei+1
h −Ei

h‖2L2(Ω̂)
+
kσ

Ce

j−1∑
i=0

‖Ei+1
h ‖

2
L2(Ω)

+
µ0

2Ce
‖Hj

h‖
2
L2(Ω̂)

+ CH

j−1∑
i=0

‖Hi+1
h −Hi

h‖2L2(Ω̂)

≤ E0
h +

kµ0

4Ceε

j−1∑
i=0

‖π(mi
h)‖2

L2(Ω)
+
νk

Ce

j−1∑
i=0

‖Ji‖2
L2(Ω̂)︸ ︷︷ ︸

=:b

+
2kν

Ce

j−1∑
i=0

‖Ei
h‖2L2(Ω̂)

,

≤ b+
4kν

ε0

j−1∑
i=0

ai.

In order to show the desired result, we have to ensure that there are choices of ε > 0 and
ν > 0, such that the constants Cv, CH, and CE are positive, i.e.

(α− ε) > 0,
(
1− k

ε

)
> 0, and

(
ε0 − 4kν

)
> 0

which is equivalent to k < ε < α and ν < ε0/4k0 ≤ ε0/4k. The application of the discrete of
Gronwall inequality from Lemma A.1.2 yields aj ≤ C and thus proves the desired result.

We can now conclude the existence of weakly convergent subsequences.

Step 2:

Lemma 4.2.9. There exist functions (m,H,E) ∈H1(ΩT , S2)×L2(Ω̂T )×L2(Ω̂T ) such that

mhk
sub−−⇀ m in H1(ΩT ), (4.2.17a)

mhk,m
±
hk,mhk

sub−−⇀ m in L2(H1(Ω)), (4.2.17b)

mhk,m
±
hk,mhk

sub−−→m in L2(ΩT ), (4.2.17c)

Hhk,H
±
hk,Hhk

sub−−⇀ H in L2(Ω̂T ), (4.2.17d)

Ehk,E
±
hk,Ehk

sub−−⇀ H in L2(Ω̂T ), (4.2.17e)

where the subsequences are succesively constructed, i.e. for arbitrary mesh-sizes h → 0 and
timestep-sizes k → 0 there exist subindices hn, kn for which the above convergence properties
are satisfied simultaniously. In addition, there exist some v ∈ L2(ΩT ) with

v−hk
sub−−⇀ v in L2(ΩT ) (4.2.18)

for the same subsequence as above.
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Proof. The proof is completely analogue to the one of Lemma 4.2.7 and Lemma 2.3.5, re-
spectively. The limits of H±hk and E±hk are identified using the boundedness of the quantities∑j−1

i=0

(
‖Hi+1

h −Hi
h‖2L2(Ω̂)

+ ‖Ei+1
h − Ei

h‖2L2(Ω̂)

)
in combination with Lemma 2.2.5. Usage of

the midpoint rule can thus be avoided in this case.

From Lemma 2.3.6, we again deduce that the limiting function v equals the time derivative
of the magnetization m almost everywhere in ΩT . This concludes Step 2 of the convergence
analysis and thus the proof of Theorem 4.2.5 part a.

Step 3: Identification of the weak limits.

Proof of Theorem 4.2.5 part b for Algorithm 4.2.2. Consider arbitrary functionsϕ ∈ C∞(ΩT ),
ψψψ ∈ C∞c

(
[0, T );C∞(Ω̂)∩H0(curl, Ω̂)

)
, and ζ ∈ C∞c

(
[0, T );C∞(Ω̂)

)
. We now define test func-

tions by (φh,ψψψh, ζh)(t, ·) :=
(
Ih(m−hk × ϕ), IXh

ψψψ, IYhζ
)
(t, ·). Recall that the L2-orthogonal

projection IYh : L2(Ω̂) → Yh satisfies (u − IYhu,yh) = 0 for all yh ∈ Yh and all u ∈ L2(Ω̂).
Equation (4.2.5a) of Algorithm 4.2.2 implies

α

∫ T

0
(v−hk,φh) +

∫ T

0

(
(m−hk × v−hk),φh

)
= −Ce

∫ T

0

(
∇(m−hk + θkv−hk),∇φh)

)
+

∫ T

0
(H−hk,φh) +

∫ T

0

(
π(m−hk),φh

)
As in the proof of Theorem 2.3.1, boundedness of the discrete quantities and the approximation
properties of the nodal interpolation operator yield∫ T

0

(
(αv−hk + m−hk × v−hk), (m

−
hk ×ϕ)

)
+ kθCe

∫ T

0

(
∇v−hk,∇(m−hk ×ϕ)

)
+ Ce

∫ T

0

(
∇m−hk,∇(m−hk ×ϕ)

)
−
∫ T

0

(
H−hk, (m

−
hk ×ϕ)

)
−
∫ T

0

(
π(m−hk), (m

−
hk ×ϕ)

)
= O(h)

Verbatim to the previous section, passing to the limit yields∫ T

0

(
(αv−hk + m−hk × v−hk), (m

−
hk ×ϕ)

)
−→

∫ T

0

(
(αmt + m×mt), (m×ϕ)

)
,

k θ

∫ T

0

(
∇v−hk,∇(m−hk ×ϕ)

)
−→ 0,∫ T

0

(
∇m−hk,∇(m−hk ×ϕ)

)
−→

∫ T

0

(
∇m,∇(m×ϕ)

)
, and∫ T

0

(
π(m−hk), (m

−
hk ×ϕ)

)
−→

∫ T

0

(
π(m), (m×ϕ)

)
.

Again, this is where we have used the boundedness of k‖∇v−hk‖
2
L2(ΩT )

for θ ∈ (1/2, 1]. Contrary
to the coupled algorithm, we now have convergence of H−hk and may thus directly conclude∫ T

0

(
H−hk, (m

−
hk ×ϕ)

)
−→

∫ T

0

(
H, (m×ϕ)

)
.
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So far, we thus have proved∫ T

0

(
(αmt + m×mt), (m×ϕ)

)
= −Ce

∫ T

0

(
∇m,∇(m×ϕ)

)
+

∫ T

0

(
H, (m×ϕ)

)
+

∫ T

0

(
π(m), (m×ϕ)

)
,

and verbatim arguments as in the previous section show (4.1.2). For the Maxwell part (4.1.3)–
(4.1.4) of Definition 4.1.1, we again follow the lines of [BBP08] and proceed as in the previous
section. Given the above definition of the test functions, (4.2.5b) implies

ε0

∫ T

0

(
(Ehk)t,ψψψh

)
−
∫ T

0
(H+

hk,∇×ψψψh) + σ

∫ T

0
(χΩE+

hk,ψψψh) =

∫ T

0
(J−hk,ψψψh)

µ0

∫ T

0

(
(Hhk)t, ζh

)
+

∫ T

0
(∇×E+

hk, ζh) = −µ0

∫ T

0
(v−hk, ζh).

As before, we see ∫ T

0

(
(Ehk)t,ψψψh

)
−→ −

∫ T

0

(
E,ψψψt

)
−
(
E0,ψψψ(0, ·)

)
, (4.2.19)

where we have used the assumed convergence of the initial data. For the first term in the
second equation we proceed analogously. The convergence of the terms∫ T

0
(H+

hk,∇×ψψψh) −→
∫ T

0
(H,∇×ψψψ),∫ T

0
(χΩE+

hk,ψψψh) −→
∫ T

0
(χΩE,ψψψ),∫ T

0
(J−hk,ψψψh) −→

∫ T

0
(J,ψψψ), and∫ T

0
(v−hk, ζh) −→

∫ T

0
(mt, ζ)

follows as before and here, we exploit knowledge of the limits of H+
hk and E+

hk. As before, we
finally deduce the estimate∫ T

0
(∇×E+

hk, ζh) =

∫ T

0
(∇×E+

hk, ζ)−
∫ T

0

(
∇×E+

hk, (1− IYh)ζ
)︸ ︷︷ ︸

=0

=

∫ T

0
(∇×E+

hk, ζ) =

∫ T

0
(E+

hk,∇× ζ) −→
∫ T

0
(E,∇× ζ),

where we again used the properties of the orthogonal projection and the boundary condition
E+
hk × n = 0 on ∂Ω̂T and integration by parts. This yields (4.1.3) and (4.1.4).
As for the energy estimate (4.1.5) and contrary to the previous section, we can now directly

estimate the limits of E+
hk resp. H+

hk. From the discrete energy estimate (5.3.5), we get for
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any t′ ∈ [0, T ] with t′ ∈ [tj , tj+1)

‖∇m+
hk(t

′)‖2
L2(Ω)

+ ‖v−hk‖
2
L2(Ωt′ )

+ ‖H+
hk(t

′)‖2
L2(Ω̂)

+ ‖E+
hk(t

′)‖2
L2(Ω̂)

= ‖∇m+
hk(t

′)‖2
L2(Ω)

+

∫ t′

0
‖v−hk(s)‖

2
L2(Ω)

+ ‖H+
hk(t

′)‖2
L2(Ω̂)

+ ‖E+
hk(t

′)‖2
L2(Ω̂)

≤ ‖∇m+
hk(t

′)‖2
L2(Ω)

+

∫ tj+1

0
‖v−hk(s)‖

2
L2(Ω)

+ ‖H+
hk(t

′)‖2
L2(Ω̂)

+ ‖E+
hk(t

′)‖2
L2(Ω̂)

≤ C27

Integration in time thus yields for any measurable set I ⊆ [0, T ]∫
I
‖∇m+

hk(t
′)‖2
L2(Ω)

+

∫
I
‖v−hk‖

2
L2(Ωt′ )

+

∫
I
‖H+

hk(t
′)‖2
L2(Ω̂)

+

∫
I
‖E+

hk(t
′)‖2
L2(Ω̂)

≤
∫
I
C27

whence weak lower semi-continuity leads to∫
I
‖∇m‖2

L2(Ω)
+

∫
I
‖mt‖2L2(Ωt′ )

+

∫
I
‖H‖2

L2(Ω̂)

∫
I
‖E‖2

L2(Ω̂)
≤
∫
I
C27.

The desired result now follows from standard measure theory, see e.g. [Els11, IV, Thm. 4.4].

Remark . At this point we like to emphasize that the decoupling of both equations in Algo-
rithm 4.2.2 yields boundedness of the difference of two subsequent discrete solutions, i.e.

j−1∑
i=0

(
‖Ei+1

h −Ei
h‖2L2(Ω̂)

+ ‖Hi+1
h −Hi

h‖2L2(Ω̂)

)
≤ C.

Those terms, sometimes called artificial damping ease the analysis as they allow to control the
limits of E±hk and H±hk, respectively. This is yet another strength of the decoupled algorithm and
is exploited at several points. In particular the technical use of the midpoint rule for computing
the limits can be avoided here. Moreover, the energy estimate (4.1.5) can be proved with the
constant from the discrete energy estimate from Lemma 4.2.8, whereas the coupled algorithm
enforced an additional factor of 2.

4.2.3. Improved energy estimates

Similar to the result from Section 2.4, the energy bound (4.1.5) can be improved for many
(physically relevant) situations. Instead of a uniform bound of the form

‖∇m(t′)‖2
L2(Ω)

+ ‖mt‖2L2(Ωt′ )
+ ‖E(t′)‖2

L2(Ω̂)
+ ‖H(t′)‖2

L2(Ω̂)
≤ C,

one can obtain a real energy inequality of the kind

E(t′) + ‖mt‖2L2(Ω)
≤ E(0)

under some additional assumptions and for some meaningful energy term E(·). This is basically
the result of this section, and we again investigate both algorithms individually. This time, we
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start with the fully decoupled Algorithm 4.2.2 since the analysis is somewhat more involved.
We define the energy term

E(t) := E
(
m(t),E(t),H(t)

)
:= µ0‖∇m(t)‖2

L2(Ω)
+
µ0

Ce
‖H(t)‖2

L2(Ω̂)
+
ε0

Ce
‖E(t)‖2

L2(Ω̂)
− µ0

Ce

(
π(m(t)),m(t)

) (4.2.20)

and its discrete counterpart

E(mj
h,E

j
h,H

j
h)

:= µ0‖∇mj
h‖

2
L2(Ω)

+
µ0

Ce
‖Hj

h‖
2
L2(Ω̂)

+
ε0

Ce
‖Ej

h‖
2
L2(Ω̂)

− µ0

Ce

(
π(mj

h),mj
h

)
.

(4.2.21)

With those notions, we get the following result.

Proposition 4.2.10 (Improved energy estimate for Algorithm 4.2.2). Let π(·) be uniformly
Lipschitz continuous and bounded in L4(Ω), i.e. ‖π(n)‖L4(Ω) ≤ C24 for all n ∈ L2(Ω) with
|n| ≤ 1 almost everywhere in Ω. Here, C24 denotes some uniform constant which only depends
on Ω. Let further π(·) be self-adjoint. Moreover, we assume J−hk → J strongly in L2(Ω̂T ).
Then, for the output of Algorithm (4.2.2), we have the energy decay estimate

E(t′) +
2µ0

Ce
(α− ε)‖mt‖2L2(Ωt′ )

+
2σ

Ce
‖E‖2

L2(Ωt′ )
≤ E(0)− 2

Ce
(J,E)

Ω̂t′
, (4.2.22)

for almost every t′ ∈ [0, T ] and any ε > 0.

Proof. As in the proof of Lemma 4.2.8, there holds

µ0‖∇mi+1
h ‖

2
L2(Ω)

≤ µ0‖∇mi
h‖2L2(Ω)

− 2(θ − 1

2
)µ0k

2‖∇vih‖2L2(Ω)

− 2αµ0k

Ce
‖vih‖2L2(Ω)

− 2ε0

Ce
(Ei+1

h −Ei
h,E

i+1
h )− 2σk

Ce
‖Ei+1

h ‖
2
L2(Ω)

− 2µ0k

Ce
(Hi+1

h −Hi
h,H

i+1
h ) +

2µ0k

Ce
(Hi

h −Hi+1
h ,vih)

− 2k

Ce
(Ji,Ei+1

h ) +
2µ0k

Ce

(
π(mi

h),vih
)
.

On the other hand, by definition of the discrete energy term, the difference of two subsequent
energies can be estimated by

E(mi+1
h ,Ei+1

h ,Hi+1
h )− E(mi

h,E
i
h,H

i
h)

= µ0‖∇mi+1
h ‖

2
L2(Ω)

+
ε0

Ce
‖Ei+1

h ‖
2
L2(Ω̂)

+
µ0

Ce
‖Hi+1

h ‖
2
L2(Ω̂)

− µ0

Ce

(
π(mi+1

h ,mi+1
h )

)
− µ0‖∇mi

h‖2L2(Ω)
− ε0

Ce
‖Ei

h‖2L2(Ω̂)
− µ0

Ce
‖Hi

h‖2L2(Ω̂)
+
µ0

Ce

(
π(mi

h),mi
h

)
=: RHS.
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The combination of those two estimates yields

RHS ≤ µ0‖∇mi
h‖2L2(Ω)

− 2(θ − 1

2
)µ0k

2‖∇vih‖2L2(Ω)
− 2αµ0k

Ce
‖vih‖2L2(Ω)

− 2ε0

Ce
(Ei+1

h −Ei
h,E

i+1
h )− 2σk

Ce
‖Ei+1

h ‖
2
L2(Ω)

− 2µ0

Ce
(Hi+1

h −Hi
h,H

i+1
h )

+
2µ0k

Ce
(Hi

h −Hi+1
h ,vih)− 2k

Ce
(Ji,Ei+1

h ) +
2µ0k

Ce

(
π(mi

h),vih
)

+
ε0

Ce
‖Ei+1

h ‖
2
L2(Ω̂)

+
µ0

Ce
‖Hi+1

h ‖
2
L2(Ω̂)

− µ0

Ce

(
π(mi+1

h ),mi+1
h

)
− µ0‖∇mi

h‖2L2(Ω)
− ε0

Ce
‖Ei

h‖2L2(Ω̂)
− µ0

Ce
‖Hi

h‖2L2(Ω̂)
+
µ0

Ce

(
π(mi

h),mi
h

)
.

Next, we recall that by Abel’s partial summation A.1.3, we get

−2ε0

Ce

j−1∑
i=0

(Ei+1
h −Ei

h,E
i+1
h ) = − ε0

Ce
‖Ej

h‖
2
L2(Ω̂)

+
ε0

Ce
‖E0

h‖2L2(Ω̂)
− ε0

Ce

j−1∑
i=0

‖Ei+1
h −Ei

h‖2L2(Ω̂)
,

and

−2µ0

Ce

j−1∑
i=0

(Hi+1
h −Hi

h,H
i+1
h ) = −µ0

Ce
‖Hj

h‖
2
L2(Ω̂)

+
µ0

Ce
‖H0

h‖2L2(Ω̂)
− µ0

Ce

j−1∑
i=0

‖Hi+1
h −Hi

h‖2L2(Ω̂)
.

Summing up the energy terms over i = 0, . . . , j − 1 therefore yields

E(mj
h,E

j
h,H

j
h)− E(m0

h,E
0
h,H

0
h)

≤ −2(θ − 1

2
)µ0k

2
j−1∑
i=0

‖∇vih‖2L2(Ω)
− 2αµ0k

Ce

j−1∑
i=0

‖vih‖2L(Ω)

− ε0

Ce
‖Ej

h‖
2
L2(Ω̂)

+
ε0

Ce
‖E0

h‖2L2(Ω̂)
− ε0

Ce

j−1∑
i=0

‖Ei+1
h −Ei

h‖2L2(Ω̂)
− 2σk

Ce

j−1∑
i=0

‖Ei+1
h ‖

2
L2(Ω)

− µ0

Ce
‖Hj

h‖
2
L2(Ω̂)

+
µ0

Ce
‖H0

h‖2L2(Ω̂)
− µ0

Ce

j−1∑
i=0

‖Hi+1
h −Hi

h‖2L(Ω̂)
+

2µ0k

Ce

j−1∑
i=0

(Hi
h −Hi+1

h ,vih)

− 2k

Ce

j−1∑
i=0

(Ji,Ei+1
h ) +

2µ0k

Ce

j−1∑
i=0

(
π(mi

h),vih
)

+
ε0

Ce
‖Ej

h‖
2
L2(Ω̂)

+
µ0

Ce
‖Hj

h‖
2
L2(Ω̂)

− µ0

Ce

j−1∑
i=0

(
π(mi+1

h ),mi+1
h

)
− ε0

Ce
‖E0

h‖2L2(Ω̂)
− µ0

C2
‖H0

h‖2L2(Ω̂)
+
µ0

Ce

j−1∑
i=0

(
π(mi

h),mi
h

)
.

Application of Young’s inequality yields for any ε > 0

−µ0

Ce

j−1∑
i=0

‖Hi+1
h −Hi

h‖2L2(Ω̂)
+

2µ0k

Ce

j−1∑
i=0

(Hi
h −Hi+1

h ,vih)

≤ µ0

Ce
(
k

2ε
− 1)

j−1∑
i=0

‖Hi+1
h −Hi

h‖2L2(Ω̂)
+

2εµ0k

Ce

j−1∑
i=0

‖vih‖2L2(Ω)

≤ 2εµ0k

Ce

j−1∑
i=0

‖vih‖2L2(Ω)
.

(4.2.23)
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Without loss of generality, we assumed k/2 < ε here. This can safely be assumed for any
ε, since we are interested in the limit k → 0. Since a couple of terms in the above estimate
cancel out, and others can be dropped due to negativity, by exploiting θ ∈ [1/2, 1], we end up
with

E(mj
h,E

j
h,H

j
h)− E(m0

h,E
0
h,H

0
h) +

2µ0k

Ce
(α− ε)

j−1∑
i=0

‖vih‖2L2(Ω)
+

2σk

Ce

j−1∑
i=0

‖Ei+1
h ‖

2
L2(Ω)

≤ −2k

Ce

j−1∑
i=0

(Ji,Ei+1
h ) +

2µ0k

Ce

j−1∑
i=0

(
π(mi

h),vih
)
− µ0

Ce

j−1∑
i=0

(
π(mi+1

h ),mi+1
h

)
+
µ0

Ce

j−1∑
i=0

(
π(mi

h),mi
h

)
.

As in the proof of Lemma 2.4.1, straightforward calculations show

2k
(
π(mi

h),vih
)
−
(
π(mi+1

h ),mi+1
h

)
+
(
π(mi

h),mi
h

)
= 2k

(
π(mi

h),vih
)
−
(
π(mi+1

h ) + π(mi
h),mi+1

h −mi
h

)
−
(
π(mi+1

h ),mi
h

)
+
(
π(mi

h),mi+1
h

)
= 2k

(
π(mi

h),vih
)
−
(
π(mi+1

h ) + π(mi
h),mi+1

h −mi
h

)
,

due to the assumed self-adjointness of π(·). Further estimation shows

2k
(
π(mi

h),vih
)
−
(
π(mi+1

h ) + π(mi
h),mi+1

h −mi
h

)
= −2

(
π(mi

h),mi+1
h −mi

h − kvih
)︸ ︷︷ ︸

=:a

−
(
π(mi+1

h )− π(mi
h),mi+1

h −mi
h

)︸ ︷︷ ︸
=:b

.

Next, we investigate both terms individually. By the assumed L4- boundedness of π(·), we
get as in the proof of Lemma 2.4.1

a = −2
(
π(mi

h),mi+1
h −mi

h − kvih
)
. k2‖vih‖L2(Ω)

(
‖vih‖L2(Ω) + ‖∇vih‖L2(Ω)

)
.

From the Lipschitz continuity of the general field contribution, we further deduce

b = −
(
π(mi+1

h )− π(mi
h),mi+1

h −mi
h

)
. k2‖vih‖2L2(Ω)

.

Altogether, we thus derived

E(mj
h,E

j
h,H

j
h)− E(m0

h,E
0
h,H

0
h) +

2µ0k

Ce
(α− ε)

j−1∑
i=0

‖vih‖2L2(Ω)
+

2σk

Ce

j−1∑
i=0

‖Ei+1
h ‖

2
L2(Ω)

≤ −2k

Ce

j−1∑
i=0

(Ji,Ei+1
h ) + Ck

(
‖v−hk‖L2(ΩT )‖∇v−hk‖L2(ΩT ) + ‖v−hk‖

2
L2(ΩT )

)
.
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For any t′ ∈ [tj , tj+1], we thus get with ε < α

E
(
m+
hk(t

′),E+
hk(t),H

+
hk(t

′)
)

+
2µ0

Ce
(α− ε)‖v−hk‖

2
L2(Ωt′ )

+
2σ

Ce
‖E+

hk‖
2
L2(Ωt′ )

= E
(
m+
hk(t

′),E+
hk(t),H

+
hk(t

′)
)

+
2µ0

Ce
(α− ε)

∫ t′

0
‖v−hk(s)‖

2
L2(Ω)

+
2σ

Ce

∫ t′

0
‖E+

hk(s)‖
2
L2(Ω)

≤ E
(
m+
hk(t

′),E+
hk(t

′),H+
hk(t

′)
)

+
2µ0

Ce
(α− ε)

∫ tj+1

0
‖v−hk(s)‖

2
L2(Ω)

+
2σ

Ce

∫ tj+1

0
‖E+

hk(s)‖
2
L2(Ω)

= E(mj+1
h ,Ej+1

h ,Hj+1
h ) +

2µ0k

Ce
(α− ε)

j∑
i=0

‖vih‖2L2(Ω)
+

2σk

Ce

j∑
i=0

‖Ei+1
h ‖

2
L2(Ω)

≤ E
(
m0
h,E

0
h,H

0
h

)
− 2k

Ce

j∑
i=0

(Ji,Ei+1
h ) + Ck

(
‖v−hk‖L2(ΩT )‖∇v−hk‖L2(ΩT ) + ‖v−hk‖

2
L2(ΩT )

)
= E

(
m0
h,E

0
h,H

0
h

)
− 2

Ce

j∑
i=0

∫ ti+1

ti

(Ji,Ei+1
h ) + Ck

(
‖v−hk‖L2(ΩT )‖∇v−hk‖L2(ΩT ) + ‖v−hk‖

2
L2(ΩT )

)
= E

(
m0
h,E

0
h,H

0
h

)
− 2

Ce

∫ t′

0
(J−hk,E

+
hk)−

2

Ce

∫ tj+1

t′
(J−hk,E

+
hk)︸ ︷︷ ︸

=:c

+ Ck
(
‖v−hk‖L2(ΩT )‖∇v−hk‖L2(ΩT ) + ‖v−hk‖

2
L2(ΩT )

)
.

First, we observe that due to non-concentration of Lebesgue measures and boundedness of
J−hk and E+

hk in L2(Ω̂T ), we have

c =

∫ tj+1

t′
(J−hk,E

+
hk)

sub−−→ 0 as (h, k)→ (0, 0).

Finally, we consider the limiting process. Integrating the above estimate in time over any
Borel set I ⊆ [0, T ], we get∫

I
E
(
m+
hk(t

′),E+
hk(t),H

+
hk(t

′)
)

+

∫
I

2µ0

Ce
(α− ε)‖v−hk‖

2
L2(Ωt′ )

+

∫
I

2σ

Ce
‖E+

hk‖
2
L2(Ωt′ )

≤
∫
I
E
(
m0
h,E

0
h,H

0
h

)
− 2

Ce

∫
I

∫ t′

0
(J−hk,E

+
hk)−

2

Ce

∫
I

∫ tj+1

t′
(J−hk,E

+
hk)

+

∫
I
Ck
(
‖v−hk‖L2(ΩT )‖∇v−hk‖L2(ΩT ) + ‖v−hk‖

2
L2(ΩT )

)
.

Passing to the limit while using weak lower semi-continuity finally reveals∫
I
E
(
m,E,H

)
+

∫
I

2µ0

Ce
(α− ε)‖mt‖2L2(Ωt′ )

+

∫
I

2σ

Ce
‖E‖2

L2(Ωt′ )

≤
∫
I
E
(
m(0),E(0),H(0)

)
− 2

Ce

∫
I
(J,E)Ωt′ .

Since the set I ⊆ [0, T ] was arbitrary, this yields the desired result by standard measure
theory, i.e. [Els11, IV, Theorem 4.4].

119



Chapter 4. Coupling to full Maxwell system

We conclude this section with an analog statement for the coupled Algorithm 4.2.1. As
mentioned above, the analysis in this case is slightly simplified since there is no need for the
application of Abel’s partial summation formula.

Proposition 4.2.11 (Improved energy estimate for Algorithm 4.2.1). Let π(·) be uniformly
Lipschitz continuous and bounded in L2(Ω), i.e. ‖π(n)‖L4(Ω) ≤ C25 for all n ∈ L2(Ω) with
|n| ≤ 1 almost everywhere in Ω. Here, C25 denotes some uniform constant which only depends
on Ω. Let further π(·) be self-adjoint. Moreover, we assume J−hk → J strongly in L2(Ω̂T ).
Then, for the output of Algorithm (4.2.1), we have the energy decay estimate

E(t′) +
µ0α

Ce
‖mt‖2L2(Ωt′ )

+
σ

Ce
‖E‖2Ωt′

≤ E(0)− 2

Ce
(J,E)

Ω̂t′
, (4.2.24)

for almost every t′ ∈ [0, T ].

Proof. The proof follows the lines of the one of Proposition 4.2.10. We start with a discrete
energy estimate as in the proof of Lemma 4.2.6. The output of Algorithm 4.2.1 satisfies

µ0‖∇mi+1
h ‖

2
L2(Ω)

≤ µ0‖∇mi
h‖2L2(Ω)

− 2(θ − 1

2
)µ0k

2‖∇vih‖2L2(Ω)
− 2αµ0k

Ce
‖vih‖2L2(Ω)

+
2µ0k

Ce

(
π(mi

h),vih
)
− ε0

Ce
‖Ei+1

h ‖
2
L2(Ω̂)

− µ0

Ce
‖Hi+1

h ‖
2
L2(Ω̂)

− 2σk

Ce
‖Ei+1/2

h ‖2
L2(Ω)

+
ε0

Ce
‖Ei

h‖2L2(Ω̂)
+
µ0

Ce
‖Hi

h‖2L2(Ω̂)
− 2k

Ce
(Ji+1/2,E

i+1/2
h ).

Analogously to before, this implies

E(mi+1
h ,Ei+1

h ,Hi+1
h )− E(mi

h,E
i
h,H

i
h)

= µ0‖∇mi+1
h ‖

2
L2(Ω)

+
ε0

Ce
‖Ei+1

h ‖
2
L2(Ω̂)

+
µ0

Ce
‖Hi+1

h ‖
2
L2(Ω̂)

− µ0

Ce

(
π(mi+1

h ),mi+1
h )

)
− µ0‖∇mi

h‖2L2(Ω)
− ε0

Ce
‖Ei

h‖2L2(Ω̂)
− µ0

Ce
‖Hi

h‖2L2(Ω̂)
+
µ0

Ce

(
π(mi

h),mi
h

)
≤ −2αµ0k

Ce
‖vih‖2L2(Ω)

− 2σk

Ce
‖Ei+1/2

h ‖2
L2(Ω)

− 2k

Ce
(Ji+1/2,E

i+1/2
h )

+
2µ0k

Ce

(
π(mi

h),vih
)
− µ0

Ce

(
π(mi+1

h ),mi+1
h

)
+
µ0

Ce

(
π(mi

h),mi
h

)
.

Here, we exploited θ ∈ [1/2, 1]. The last three terms on the right-hand side are estimated as
in the above proof. We again deduce

2µ0k

Ce

(
π(mi

h),vih
)
− µ0

Ce

(
π(mi+1

h ),mi+1
h

)
+
µ0

Ce

(
π(mi

h),mi
h

)
≤ Ck2

(
‖vih‖L2(Ω)‖∇vih‖L2(Ω) + ‖vih‖2L2(Ω)

)
whence in total and after summing up

E(mj
h,E

j
h,H

j
h) +

2αµ0k

Ce

j−1∑
i=0

‖vih‖2L2(Ω)
+

2σk

Ce

j−1∑
i=0

‖Ei+1/2
h ‖2

L2(Ω)

≤ E(m0
h,E

0
h,H

0
h)− 2k

Ce

j−1∑
i=0

(Ji+1/2,E
i+1/2
h ) + Ck

(
‖v−hk‖L2(ΩT )‖∇v−hk‖L2(ΩT ) + ‖v−hk‖

2
L2(ΩT )

)
.
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While the remainder of the proof is pretty similar to the one of Algorithm 4.2.2, we stress
that in this case, we do not have a priori information on the convergence of E±hk and H±hk,
respectively. The remedy is to apply the known convergence of the midpoint evaluations. For
t′ ∈ [tj , tj+1), we have

E
(
m+
hk(t

′),Ehk(t
′),Hhk(t

′)
)

+ E
(
m−hk(t

′),Ehk(t
′),Hhk(t

′)
)

∼ ‖∇mj+1
h ‖2

L2(Ω)
+ ‖Ej+1/2

h ‖2
L2(Ω̂)

+ ‖Hj+1/2
h ‖2

L2(Ω̂)
+
(
π(mj+1

h ),mj+1
h

)
+ ‖∇mj

h‖
2
L2(Ω)

+ ‖Ej+1/2
h ‖2

L2(Ω̂)
+ ‖Hj+1/2

h ‖2
L2(Ω̂)

+
(
π(mj

h),mj
h

)
≤ ‖∇mj+1

h ‖2
L2(Ω)

+ ‖∇mj
h‖

2
L2(Ω)

+ ‖Ej+1
h ‖2

L2(Ω̂)
+ ‖Ej

h‖
2
L2(Ω̂)

+ ‖Hj+1
h ‖2

L2(Ω̂)
+ ‖Hj

h‖
2
L2(Ω̂)

+
(
π(mj+1

h ),mj+1
h

)
+
(
π(mj

h),mj
h

)
∼ E

(
m+
hk(t

′),E+
hk(t

′),H+
hk(t

′)
)

+ E
(
m−hk(t

′),E−hk(t
′),H−hk(t

′)
)
.

Analogously to before, this yields

E
(
m+
hk(t

′),Ehk(t
′),Hhk(t

′)
)

+ E
(
m−hk(t

′),Ehk(t
′),Hhk(t

′)
)

+
2αµ0

Ce
‖v−hk‖

2
L2(Ωt′ )

+
2σ

Ce
‖Ehk‖2L2(Ωt′ )

≤ 2E
(
m0
h,E

0
h,H

0
h

)
+ 2Ck

(
‖v−hk‖L2(ΩT )‖∇v−hk‖L2(ΩT ) + ‖v−hk‖

2
L2(ΩT )

)
−2k

Ce

j−1∑
i=0

(Ji+1/2,E
i+1/2
h )︸ ︷︷ ︸

=:a

−2k

Ce

j∑
i=0

(Ji+1/2,E
i+1/2
h )︸ ︷︷ ︸

=:b

.

The last two terms on the right-hand side can be further estimated by

a = − 2

Ce

∫ tj

0
(Jhk,Ehk) = − 2

Ce

∫ t′

0
(Jhk,Ehk) +

∫ t′

tj

(Jhk,Ehk), and

b = − 2

Ce

∫ tj+1

0
(Jhk,Ehk) = − 2

Ce

∫ t′

0
(Jhk,Ehk)−

∫ tj+1

t′
(Jhk,Ehk).

Again, non-concentration of Lebesgue measures reveals∫ t′

tj

(Jhk,Ehk)−
∫ tj+1

t′
(Jhk,Ehk)

sub−−→ 0 as (h, k)→ (0, 0).

Integration over any Borel set I ⊆ [0, T ] and passing to the limit, we finally deduce

2

∫
I
E(m,E,H) +

2µ0

Ce

∫
I
‖mt‖L2(Ωt′ )

+
2σ

Ce

∫
I
‖E‖2

L2(Ωt′ )

≤ 2

∫
I
E
(
m(0),E(0),H(0)

)
− 4

Ce

∫
I
(J,E)Ωt′ .

Since the integration domain I ⊆ [0, T ] was arbitrary, the result again follows from [Els11, IV,
Theorem 4.4].

Remark . We briefly remark on the derived results in comparison to each other and the
available literature.
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a) In comparison to the estimate (4.2.22), the previous estimate (4.2.24) has only a factor 1
for the second and third term on the left hand side. This is due to the fact that we do not
have any result on the convergence of E±hk and H±hk, respectively. The remedy we used is
to estimate the midpoint evaluation by the sum of the upper- and lower-bound estimation.
Finally, we employed the limiting process for the midpoint evaluation. Another ansatz
would be to directly work with the midpoint evaluation in E(·), i.e. also use ∇mhk. This
would, however, lead to the additional term(

π(mhk),mhk

)
,

which then needs to be controlled. This problem could be circumvented if we knew con-
vergence of E±hk → E and H±hk → H, respectively which is the case for Algorithm 4.2.2.
Here, the drawback is an additional damping term ε in front of mt.

b) In [BBP08], the energy estimate seems to be somewhat nicer at first glance, as it reads

E(t′) + µ0α‖mt‖2L2(Ωt′ )
+ σ‖E‖2

L2(Ωt′ )
≤ E(0)− (J,E)Ωt′ ,

i.e. we do not have a factor 2/Ce in front of the terms outside of E(·). This is, however,
not true, since the energy term in [BBP08] is defined with an additional factor 1/2 in
comparison to our energy functional here. This means that the factor 2 is simply hidden
in E(·). Moreover, the exchange constant Ce is set to be 1 in [BBP08].
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Chapter 5
Coupling to the eddy-current equation

In the last chapter, we treated coupling of the LLG equation to the full Maxwell system, and
particular focus was laid on the possibility of decoupling both problems. In that regard, the
proposed algorithm has a major advantage compared to e.g. the midpoint scheme algorithm
for MLLG which was analyzed in [BBP08]. In this short chapter, we aim to transfer this
advantages to the eddy-current problem below. As already mentioned in Section 1.4.2, the
time derivative of the electric field can sometimes be neglected (especially for low-frequency
problems) which leads to the eddy-current simplification

µ0Ht +
1

σ
∇× (∇×H) = −µ0mt. (5.0.1)

An unconditionally convergent integrator for the coupled system of LLG with the eddy-current
equation (5.0.1) has first been proposed by Le and Tran in [LT12]. In this work, the au-
thors employed the tangent plane scheme for the LLG part and existence of weak solutions
was shown for a simplified effective field. The integrator is, however, still coupled and thus
enforces the solution of one large linear system, instead of two small and subsequent linear
systems per time step. In this chapter, we combine the results from Chapter 4 and [LT12]
to derive a fully decoupled scheme for the eddy-current-LLG problem. As before, this has a
huge impact on implementational applicability as existing LLG solvers, as well as precondi-
tioners for either equation can easily be reused. Moreover, in comparison to the full Maxwell
system and analogously to [LT12], one derives higher time-regularity for the magnetic field
H, cf. Theorem 5.3.1 below. The results from this chapter have partially been published
in [LPPT13].

5.1. The eddy-current-LLG system

We consider the Landau-Lifshitz-Gilbert equation coupled with the eddy-current equation
(ELLG), i.e.

mt − αm×mt = −m× heff in ΩT := (0, T )× Ω, (5.1.1a)

µ0Ht + σ−1∇× (∇×H) = −µ0mt in Ω̂T := (0, T )× Ω̂, (5.1.1b)

where the effective field reads heff = Ce∆m + H +π(m). Again, we neglect a time-dependent
field contribution, as well as a spatial approximation πh of π. The rigorous inclusion of such an
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approximation is, however, straightforward with the techniques from Chapter 2. Analogously
to the other chapters, the case heff = Ce∆m+H+CaDΦ(m) + f is particularly covered. The
above System 4.1.1 describes the evolution of the magnetization of a ferromagnetic body that
occupies the domain Ω b Ω̂ ⊆ R3 for some given parameters α, µ0, σ ≥ 0.
As for the MLLG case, we assume Ω̂ ⊂ R3 to be bounded with perfectly conducting outer

surface ∂Ω̂ into which the ferromagnet Ω b Ω̂ is embedded, and Ω̂\Ω is assumed to be vacuum.
Similar to the full Maxwell-LLG problem, the ELLG system (4.1.1) is supplemented by initial
conditions

m(0, ·) = m0 in Ω and H(0, ·) = H0 in Ω̂ (5.1.1c)

as well as boundary conditions

∂nm = 0 on ∂ΩT , (∇×H)× n = 0 on ∂Ω̂T . (5.1.1d)

In analogy to [LT12] and Chapter 4, we assume the given data to satisfy

m0 ∈H1(Ω, S2), H0 ∈ H(curl; Ω̂) (5.1.1e)

as well as

div(H0 + χΩm0) = 0 in Ω̂, 〈H0 + χΩm0,n〉 = 0 on ∂Ω̂. (5.1.1f)

We now recall the notion of a weak solution of (4.1.1a)–(4.1.1b) from [LT12] which ex-
tends [AS92] from the pure LLG to ELLG .

Definition 5.1.1. Given (5.1.1e)–(5.1.1f), the tupel (m,H) is called a weak solution of ELLG
if,

(i) m ∈H1(ΩT ) with |m| = 1 almost everywhere in ΩT ;

(ii) H,Ht,∇×H ∈ L2(Ω̂T ), i.e. H ∈ H1(L2) and ∇×H ∈ L2(Ω̂T ) in the weak sense;

(iii) for all ϕ ∈ C∞(ΩT ) and ζ ∈ C∞(Ω̂T ), we have∫
ΩT

mt ·ϕ− α
∫

ΩT

(m×mt) ·ϕ = −Ce
∫

ΩT

(∇m×m) · ∇ϕ (5.1.2)

+

∫
ΩT

(H×m) ·ϕ+

∫
ΩT

(π(m)×m) ·ϕ,

µ0

∫
Ω̂T

Ht · ζ + σ−1

∫
Ω̂T

(∇×H) · (∇× ζ) = −µ0

∫
ΩT

mt · ζ; (5.1.3)

(iv) there holds m(0, ·) = m0 and H(0, ·) = H0 in the sense of traces;

(v) for almost all t′ ∈ [0, T ], we have bounded energy

‖∇m(t′)‖2
L2(Ω)

+ ‖mt‖2L2(Ωt′ )
+ ‖H(t′)‖2

L2(Ω̂)
+ ‖(∇×H)(t′)‖2

L2(Ω̂)
+ ‖Ht‖2L2(Ω̂t′ )

≤ C26,

(5.1.4)

where C26 > 0 is independent of t′.
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Remark. Under the usual additional assumptions on the general operator π(·), namely bound-
edness in L4(Ω) and self-adjointness, one can derive the improved energy estimate

E(t′) +
µ0

Ce
(α− 2ε)‖mt‖2L2(Ω̂t′ )

+
µ0α

Ce
‖Ht‖2L2(Ω̂t′ )

+
2

σCe
‖∇ ×H‖2

L2(Ω̂t′ )
≤ E(0),

with

E(t′) = µ0‖∇m(t′)‖2
L2(Ω)

+
µ0

Ce
‖H(t′)‖2

L2(Ω̂))
+

α

Ceσ
‖(∇×H)(t′)‖2

L2(Ω̂)
− µ0

Ce

(
π(m(t′)),m(t′)

)
.

This result is formally stated and proved in Section 5.3.1. The additional assumptions are
particularly fulfilled if π(·) denotes the uniaxial anisotropy.

Remark. We emphasize the additional regularity Ht ∈ L2(Ω̂T ) and ∇×H ∈ L2(Ω̂T ) for the
derivative and the curl of the magnetic field H. If LLG is coupled to the full Maxwell system,
the current analysis of weak solvers provides only the reduced regularity E,H ∈ L2(Ω̂T ) for
the electric and magnetic field, see [BBP08, BPP13].

5.2. Preliminaries and numerical algorithm

The LLG equation is discretized in the tangent space K
mj

h
, as before. For the eddy-current

part, we employ the space Xh of lowest order edge elements of Nédélec’s first family. It is
well-known [Néd80, Mon08], that this is a subspace of

H(curl; Ω̂) :=
{
ϕ ∈ L2(Ω̂) : ∇×ϕ ∈ L2(Ω̂)

}
.

Similarly to the MLLG-case, we propose the following fully decoupled algorithm:

Algorithm 5.2.1. Input: Initial data m0 and H0, parameter 0 ≤ θ ≤ 1, counter i = 0. For
all i = 0, . . . , N − 1 iterate:

(i) Compute unique solution vih ∈ Kmi
h
such that for all φh ∈ Kmi

h
there holds

α(vih,φh) +
(
(mi

h × vih),φh
)

+ Ce(θk∇vih,∇φh) = −Ce(∇mi
h,∇φh)

+ (Hi
h,φh) +

(
π(mi

h),φh
)
.

(5.2.1a)

(ii) Define mi+1
h ∈Mh nodewise by mi+1

h (z) =
mi
h(z) + kvih(z)

|mi
h(z) + kvih(z)|

for all z ∈ Nh.

(iii) Compute unique solution Hi+1
h ∈ Xh such that for all ζh ∈ Xh there holds

µ0(dtH
i+1
h , ζh) + σ−1(∇×Hi+1

h ,∇× ζh) = −µ0(vih, ζh). (5.2.1b)

The following lemma states that the above algorithm is indeed well-defined.

Lemma 5.2.2. Algorithm 5.2.1 is well-defined in the sense that it admits a unique solution
(vih,m

i+1
h ,Hi+1

h ) at each step i = 0, . . . , N − 1 of the iterative loop. Moreover, we have
‖mi

h‖L∞(Ω) = 1 for each i = 0, . . . , N .

125



Chapter 5. Coupling to the eddy-current equation

Proof. Unique solvability of (5.2.1a)–(5.2.1b) directly follows from the linearity of the right-
hand sides, positive definiteness of the left-hand sides, and finite space dimension, cf. e.g. proof
of Lemma 4.2.4. Due to the Pythagoras theorem and the pointwise orthogonality from Kmi

h
,

we further get |mi
h(z) + kvih(z)|2 = |mi

h(z)|2 + k|vih(z)|2 ≥ 1, and thus also step (ii) of the
algorithm is well-defined. The boundedness of ‖mi

h‖L∞(Ω) = 1 finally follows from normaliza-
tion at the grid points and use of barycentric coordinates, cf. [Gol12, Lemma 3.2.6].

5.3. Convergence analysis

In this section, we consider the convergence properties of the above algorithm and show that
it indeed converges towards a weak solution of the coupled ELLG system. As usual, the proof
is constructive in the sense that it also shows existence of weak solutions of ELLG.
Throughout, we assume that the spatial meshes Th are uniformly shape regular and satisfy

the angle condition∫
Ω
∇ηi · ∇ηj ≤ 0 for all hat functions ηi, ηj ∈ S1(Th) with i 6= j. (5.3.1)

As before, we denote by Th the triangulation of the domain Ω which is the restriction of the
triangulation T Ω̂

h of Ω̂.
We now formulate the main result of this chapter

Theorem 5.3.1. (a) Suppose that there exists a constant Cπ > 0 which only depends on |Ω|
such that the general energy contribution π(·) is uniformly bounded

‖π(n)‖2
L2(Ω)

≤ Cπ, for all n ∈ L2(Ω) with ‖n‖2
L2(Ω)

≤ 1. (5.3.2)

Moreover, for the initial data, we assume

m0
h ⇀ m0 weakly in H1(Ω), as well as H0

h ⇀ H0 weakly in H(curl, Ω̂). (5.3.3)

Then, we have strong subconvergence of m−hk towards some function m in L2(Ω̂T ).

(b) In addition to the above, we assume

π(m−hk) ⇀ π(m) weakly subconvergent in L2(ΩT ). (5.3.4)

Then, the computed FE solutions (mhk,Hhk) admit subsequences which are weakly convergent
in H1(ΩT ) ×

(
H1(L2(Ω̂)) ∩ L2(H(curl, Ω̂))

)
towards a weak solution (m,H) of ELLG. In

particular, this yields existence of weak solutions and each accumulation point of (mhk,Hhk)
is a weak solution of ELLG in the sense of Definition 5.1.1.

Again, we have to show the three steps:

(i) Boundedness of the discrete quantities and energies.

(ii) Existence of weakly convergent subsequences.

(iii) Identification of the limits with a weak solution of ELLG.

Step 1:
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Lemma 5.3.2. For all k < α/2, the discrete quantities (mj
h,v

j
h,H

j
h) ∈Mh×Kmj

h
×Xh fulfill

‖∇mj
h‖

2
L2(Ω)

+k

j−1∑
i=0

‖vih‖2L2(Ω)
+
(
θ − 1/2

)
k2

j−1∑
i=0

‖∇vih‖2L2(Ω)
+ ‖Hj

h‖
2
L2(Ω̂)

+ ‖∇ ×Hj
h‖

2
L2(Ω̂)

+

j−1∑
i=0

‖Hi+1
h −Hi

h‖2L2(Ω̂)
+ k

j−1∑
i=0

‖dtHi+1
h ‖

2
L2(Ω̂)

+ k

j−1∑
i=0

‖∇ ×Hi+1
h ‖

2
L2(Ω̂)

+

j−1∑
i=0

‖∇ × (Hi+1
h −Hi

h)‖2
L2(Ω̂)

≤ C27 (5.3.5)

for each j = 0, . . . , N and some constant C27 > 0 that only depends on |Ω̂|, on |Ω|, as well as
on Cπ.

Proof. For the eddy-current equation (5.2.1b) in step (iii) of Algorithm 5.2.1, we choose ζh =
Hi+1
h as test function and multiply by k

Ce
to get

µ0

Ce
(Hi+1

h −Hi
h,H

i+1
h ) +

k

σCe
‖∇ ×Hi+1

h ‖
2
L2(Ω̂)

= −µ0k

Ce
(vih,H

i
h) +

µ0k

Ce
(vih,H

i
h −Hi+1

h ).

(5.3.6)

The LLG equation (5.2.1a) is tested with ϕh = vih ∈ Kmi
h
. With

(
(mi

h × vih),vih
)

= 0, this

yields after multiplication with µ0k
Ce

> 0

µ0αk

Ce
‖vih‖2L2(Ω)

+ µ0θk
2‖∇vih‖2L2(Ω)

= −µ0k(∇mi
h,∇vih) +

µ0k

Ce
(Hi

h,v
i
h) +

µ0k

Ce

(
π(mi

h),vih
)
.

As in the previous chapters, the angle condition gives ‖∇mi+1
h ‖

2
L2(Ω)

≤ ‖∇(mi
h + kvih)‖2

L2(Ω)
,

whence

µ0

2
‖∇mi+1

h ‖
2
L2(Ω)

≤ µ0

2
‖∇mi

h‖2L2(Ω)
+ µ0k (∇mi

h,∇vih) +
µ0k

2

2
‖∇vih‖2L2(Ω)

≤ µ0

2
‖∇mi

h‖2L2(Ω)
− µ0

(
θ − 1/2

)
k2‖∇vih‖2L2(Ω)

− αµ0k

Ce
‖vih‖2L2(Ω)

+
µ0k

Ce
(Hi

h,v
i
h) +

µ0k

Ce

(
π(mi

h),vih
)
.

(5.3.7)

Combining (5.3.6)–(5.3.7), we obtain

µ0

2
(‖∇mi+1

h ‖
2
L2(Ω)

− ‖∇mi
h‖2L2(Ω)

) + µ0(θ − 1/2)k2‖∇vih‖2L2(Ω)
+
αµ0k

Ce
‖vih‖2L2(Ω)

+
µ0

Ce
(Hi+1

h −Hi
h,H

i+1
h ) +

k

σCe
‖∇ ×Hi+1

h ‖
2
L2(Ω̂)

≤ µ0k

Ce
(vih,H

i
h −Hi+1

h ) +
µ0k

Ce
(π(mi

h),vih).

Summing up over i = 0, . . . , j−1, and exploiting Abel’s summation from Lemma A.1.3 for the
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Hi
h scalar product as well as the inequalities of Young and Hölder, this yields for any ε > 0

µ0

2
‖∇mj

h‖
2
L2(Ω)

+
(
θ − 1/2

)
µ0k

2
j−1∑
i=0

‖∇vih‖2L2(Ω)
+
αkµ0

Ce

j−1∑
i=0

‖vih‖2L2(Ω)
+

µ0

2Ce
‖Hj

h‖
2
L2(Ω̂)

+
µ0

2Ce

j−1∑
i=0

‖Hi+1
h −Hi

h‖2L2(Ω̂)
+

k

σCe

j−1∑
i=0

‖∇ ×Hi+1
h ‖

2
L2(Ω̂)

≤ µ0k

2εCe

j−1∑
i=0

(‖π(mi
h)‖2

L2(Ω)
+ ‖Hi+1

h −Hi
h‖2L2(Ω̂)

) +
εµ0k

Ce

j−1∑
i=0

‖vih‖2L2(Ω)

+
µ0

2
(‖∇m0

h‖L2(Ω) +
1

Ce
‖H0

h‖2L2(Ω̂)
).

With the notation Ckv := 2µ0k
Ce

(α− ε), and CkH := µ0
Ce

(
1− k

2ε

)
, this yields

µ0‖∇mj
h‖

2
L2(Ω)

+ 2
(
θ − 1/2

)
µ0k

2
j−1∑
i=0

‖∇vih‖2L2(Ω)
+ Ckv

j−1∑
i=0

‖vih‖L2(Ω)

+
µ0

Ce
‖Hj

h‖
2
L2(Ω̂)

+ CkH

j−1∑
i=0

‖Hi+1
h −Hi

h‖2L2(Ω̂)
+

2k

σCe

j−1∑
i=0

‖∇ ×Hi+1
h ‖

2
L2(Ω̂)

≤ µ0k

2εCe

j−1∑
i=0

‖π(mi
h)‖2

L2(Ω)
+ µ0‖∇m0

h‖L2(Ω) +
µ0

Ce
‖H0

h‖2L2(Ω̂)
.

(5.3.8)

Next, we test with ζh = dtHi+1
h in (5.2.1b) to obtain after multiplication by 2k

2µ0k‖dtHi+1
h ‖

2
L2(Ω̂)

+ 2σ−1(∇×Hi+1
h ,∇× (Hi+1

h −Hi
h)) = −2µ0k(vih, dtH

i+1
h ).

The right-hand side can further be estimated by

−2µ0k(vih, dtH
i+1
h ) ≤ µ0k‖vih‖2L2(Ω)

+ µ0k‖dtHi+1
h ‖

2
L2(Ω̂)

.

Abel’s summation thus yields

µ0k

j−1∑
i=0

‖dtHi+1
h ‖

2
L2(Ω̂)

+ σ−1‖∇ ×Hj
h‖

2
L2(Ω̂)

+ σ−1
j−1∑
i=0

‖∇ × (Hi+1
h −Hi

h)‖2
L2(Ω̂)

≤ σ−1‖∇ ×H0
h‖2L2(Ω̂)

+ µ0k

j−1∑
i=0

‖vih‖2L2(Ω)
.

(5.3.9)

Finally, we weight (5.3.9) by α/Ce and add (5.3.8). The last term on the right-hand side
of (5.3.9) can be absorbed by the corresponding term on the left-hand side of (5.3.8). For the
desired result, we have to ensure that there is a choice of ε such that the Ckv − µ0kα/Ce, and
CkH are positive, i.e. (α−2ε) > 0 and

(
1− k

ε

)
> 0. This is, however, equivalent to k < ε < α/2.

From the assumed convergence of the initial data (5.3.3) as well as (5.3.2), we know that the
right-hand side is uniformly bounded, which concludes the proof.

Next, we conclude the existence of weakly convergent subsequences.
Step 2:
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Lemma 5.3.3. There exist functions (m,H) ∈ H1(ΩT ) ×
(
H1(L2) ∩ L2(H(curl))

)
, with

|m| = 1 almost everywhere in Ω such that up to extraction of a subsequence, there holds

mhk
sub−−⇀ m in H1(ΩT ), (5.3.10a)

mhk,m
±
hk

sub−−⇀ m in L2(H1(Ω)), (5.3.10b)

mhk,m
±
hk

sub−−→m in L2(ΩT ), (5.3.10c)

Hhk
sub−−⇀ H in H1(L2(Ω̂)) ∩ L2(H(curl, Ω̂)), (5.3.10d)

H±hk
sub−−⇀ H in L2(H(curl, Ω̂)), (5.3.10e)

v−hk
sub−−⇀ mt in L2(ΩT ). (5.3.10f)

Here, the subsequences are constructed successively, i.e. for arbitrary mesh-sizes h → 0, and
time-step sizes k → 0 there exist subindices h`, k` for which the above convergence proper-
ties (5.3.10) are satisfied simultaneously.

Proof. Analogously to Lemma 4.2.9, the proof of (5.3.10a)–(5.3.10e) directly follows from the
boundedness of the discrete quantities from Lemma 5.3.2 in combination with the continuous
inclusions H1(ΩT ) ⊆ L2(H1(Ω)) ⊆ L2(ΩT ) and H1(L2(Ω̂)) ∩ L2(H(curl, Ω̂)) ⊆ L2(Ω̂T ). As
in Lemma 2.3.6, we get (5.3.10a). The length constraint of the limiting function m finally
follows by direct calculation.

Now, we have collected all ingredients for the proof of our main theorem.
Step 3:

Proof of Theorem 5.3.1. Let ϕ ∈ C∞(ΩT ) and ζ ∈ C∞(Ω̂T ) be arbitrary. We define test
functions by (φh, ζh)(t, ·) :=

(
Ih(m−hk × ϕ), IXh

ζ
)
(t, ·). Obviously, for any t ∈ [tj , tj+1), we

have (φh, ζh) ∈ (K
mj

h
,Xh). Equation (5.2.1a) of Algorithm 5.2.1 now implies

α

∫ T

0
(v−hk,φh) +

∫ T

0

(
(m−hk × v−hk),φh

)
= −Ce

∫ T

0

(
∇(m−hk + θkv−hk),∇φh)

)
+

∫ T

0
(H−hk,φh) +

∫ T

0

(
π(m−hk),φh

)
As in Chapter 2, passing to the limit and using the strong L2(ΩT )-convergence of (m−hk ×ϕ)
towards (m×ϕ), in combination with Lemma 5.3.3 and the weak convergence property (5.3.4)
of π(m−hk), this yields∫ T

0

(
(αmt + m×mt), (m×ϕ)

)
= −Ce

∫ T

0

(
∇m,∇(m×ϕ)

)
+

∫ T

0

(
H, (m×ϕ)

)
+

∫ T

0

(
π(m), (m×ϕ)

)
Exploiting basic properties of the cross product, we conclude (4.1.2). The equality m(0, ·) =

m0 in the trace sense follows from the weak convergence mhk ⇀ m in H1(ΩT ) Analogously,
we get H(0, ·) = H0 in the trace sense. For the eddy-current part, (5.2.1b) implies

µ0

∫ T

0

(
(Hhk)t, ζh

)
+ σ−1

∫ T

0
(∇×H+

hk,∇× ζh) = −µ0

∫ T

0
(v−hk, ζh).
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The convergence properties from Lemma 6.2.11 in combination with the properties of the
interpolation operator IXh

from (4.2.1) now reveal∫ T

0

(
(Hhk)t, ζh

)
−→

∫ T

0
(Ht, ζ),∫ T

0
(∇×H+

hk,∇× ζh) −→
∫ T

0
(∇×H,∇× ζ), and∫ T

0
(v−hk, ζh) −→ (mt, ζ),

whence (4.1.3).
It remains to show the energy estimate (5.1.4) which follows from the discrete energy esti-

mate (5.3.5) together with weak lower semi-continuity. This yields the desired result.

5.3.1. Improved energy estimate

In the spirit of the Sections 2.4 and 4.2.3, the energy estimate (5.1.4) for the ELLG problem
can also be refined for many physically relevant cases. To that end, we define the energy term

E(t) := E
(
m(t),H(t)

)
(5.3.11)

= µ0‖∇m(t)‖2
L2(Ω)

+
µ0

Ce
‖H(t)‖2

L2(Ω̂)
+

α

Ceσ
‖∇ ×H(t)‖2

L2(Ω̂)
− µ0

Ce

(
π(m(t)),m(t)

)
(5.3.12)

and the discrete version

E(mj
h,H

j
h) (5.3.13)

:= µ0‖∇mj
h‖

2
L2(Ω)

+
µ0

Ce
‖Hj

h‖
2
L2(Ω̂)

+
α

Ceσ
‖∇ ×Hj

h‖
2
L2(Ω̂)

− µ0

Ce

(
π(mj

h),mj
h

)
. (5.3.14)

With these quantities, we derive a result that is in analogy to the MLLG case.

Proposition 5.3.4 (Improved energy estimate for Algorithm 5.2.1). Let π(·) be uniformly
Lipschitz continuous and bounded in L4(Ω), i.e. ‖π(n)‖L4(Ω) ≤ C28 for all n ∈ L2(Ω) with
|n| ≤ 1 almost everywhere in Ω. Here, C28 denotes some uniform constant which only depends
on Ω. Let further π(·) be self-adjoint. Then, for the output of Algorithm (4.2.2), we have the
energy decay estimate

E(t′) +
µ0

Ce
(α− 2ε)‖mt‖2L2(Ωt′ )

+
µ0α

Ce
‖Ht‖2L2(Ω̂t′ )

+
2

σCe
‖∇ ×H‖2

L2(Ω̂t′ )
≤ E(0), (5.3.15)

for almost every t′ ∈ [0, T ] and any ε > 0.

Proof. The proof follows the same lines as the ones in Section 4.2.3 and we only give the
relevant changes here. As in the proof of Lemma 5.3.2, we have

µ0

2
(‖∇mi+1

h ‖
2
L2(Ω)

− ‖∇mi
h‖2L2(Ω)

) + µ0(θ − 1/2)k2‖∇vih‖2L2(Ω)
+
αµ0k

Ce
‖vih‖2L2(Ω)

+
µ0

Ce
(Hi+1

h −Hi
h,H

i+1
h ) +

k

σCe
‖∇ ×Hi+1

h ‖
2
L2(Ω̂)

≤ µ0k

Ce
(vih,H

i
h −Hi+1

h ) +
µ0k

Ce
(π(mi

h),vih)
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and thus

E(mi+1
h ,Hi+1

h )− E(mi
h,H

i
h)

= µ0‖∇mi+1
h ‖

2
L2(Ω)

+
µ0

Ce
‖Hi+1

h ‖
2
L2(Ω̂)

+
α

Ceσ
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σCe
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h −Hi
h,H
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h ) +
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i
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(π(mi

h),vih)

+
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+
α
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.

Summing up over i = 0, . . . , j − 1, we thus get analogously to Section 4.2.3.

E(mj
h,H

j
h)− E(m0

h,H
0
h) +

2αµ0k

Ce
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h‖2L2(Ω̂)
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Here, we employed Abel’s summation by parts from Lemma A.1.3 and θ ∈ (1/2, 1]. The first
two terms on the right hand side are estimated as in (4.2.23) by

−µ0

Ce

j−1∑
i=0

‖Hi+1
h −Hi

h‖2L2(Ω̂)
+

2µ0k

Ce
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i=0

(Hi
h −Hi+1

h ,vih) ≤ 2εµ0k
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.

Next, as in the proof of Lemma 5.3.2 , we have
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,
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and the combination of the last estimates therefore yields

E(mj
h,H

j
h)− E(m0

h,H
0
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Ce
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+
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The remainder of the proof now follows verbatim to the one of proposition 4.2.10.

5.4. Numerical experiments

We conclude the chapters on coupling of LLG with variants of the Maxwell equations with
some numerical experiments. Before we come to the actual investigation of those, however,
we like to comment on some implementational details. Throughout this section, we used
Algorithm 5.2.1, i.e. we implemented the coupling of LLG to the eddy-current equation where
the algorithm fully decouples both equations. For numerical experiments including the full
Maxwell system, i.e. Algorithm 4.2.1 or Algorithm 4.2.2, we refer to [BPP13]. There, also a
comparison to the midpoint scheme is discussed.
As mentioned above, we used lowest order edge elements to discretize the eddy-current

equation. For Nédélec elements, the basis functions take the form

Φk = λi∇λj − λj∇λi,

cf. [Néd80, Mon08]. Here, Φk denotes the k-th edge given by [i, j] and λi, λj are the barycentric
coordinates, i.e. the P1-hat functions of the corresponding nodes of the tetrahedral mesh.
Note, that the orientation of the edge is fixed once and for all at the beginning. If the system
matrices are to be assembled elementwise, one thus has to ensure that the orientation is the
same for each adjacent element.
Straightforward calculations easily show

∇× Φk = 2∇λi ×∇λj

which can directly be exploited for the curl-curl matrix to compute the integral∫
T
∇× Φk · ∇ × Φ`.

As for the mass matrix, we need to compute the entry∫
T

Φi · Φj =

∫
T

(λi1λj1∇λi2∇λj2 − λi1λj2∇λi2∇λj1 − λi2λj1∇λi1∇λj2 + λi2λj2∇λi1∇λj1),

where i = [i1, i2] and j = [j1, j2]. To that end, we exploit∫
T
λiλj =

(
1 + (i == j)

)
|T |/20,
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Figure 5.1.: Decay of Err(u) for uniform refinement in time with P = 320 spatial elements and
N ∈ {10, 50, 100, 500, 1000, 5000, 10000, 50000, 100000}. As expected, we observe
linear behaviour.

cf. [Che08], and compute the scalar product of the corresponding gradients directly. For more
details, the interested reader is referred to [Che08] and the very comprehensive open source
iFEM package [Weba] which was also helpful for our implementation. Some details on the
implementation including the coupling to LLG can also be found in [LT13].
Finally, the transfer matrix T with

Tij =

∫
Ω̂

Φi · ϕj

needs to be computed in order to realize the coupling terms. Note here, that the basis
functions for the edge elements are already three-dimensional, and one thus also needs to use
the three-dimensional P1-hat functionsϕ0

0

 ,

 0
ϕ
0

 , and

 0
0
ϕ

 .

The transfer matrix T is thus a block-full matrix and for each element E ∈ Th, the correspond-
ing element matrix TE is of the size 6× 12. Again, the integral for each entry can directly be
computed.

5.4.1. General performance

In this first series of experiments, we aim to test the performance as well as the implementation
of our Nedélec scheme for the discretization of the eddy-current equation. To that end, we
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Figure 5.2.: Decay of Err(u) for uniform refinement in space with N = 1000 time steps and
P ∈ {5, 40, 320, 2560, 20480}. We observe linear decay in the beginning which is
then dominated by the temporal error.
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Figure 5.3.: Decay of Err(u) for stationary problem and uniform refinement with P ∈
{5, 40, 320, 2560, 20480, 163840}. As expected, we observe linear decay of the
error.
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prescribe an exact solution and investigate the convergence rate with respect to time and
space. For given

u =

u1

u2

u3

 =

 at cos(bx)
−at sin(by)
at(2bz + 1)

 ,

with varying parameters a and b, we compute f such that there holds

ut +∇× (∇× u) = f .

Note that u is chosen in such a way that ∇ × u = 0 whence the boundary condition
(∇× u) × n = 0 is automatically fulfilled. As initial condition u0 serves the temporal trace
of the prescribed solution, i.e.

u0 = u(0) =

0
0
0

 .

Convergence in time

In a first experiment, we consider the temporal convergence rate of our scheme. On the
cube Ω̂ = [−1, 1]3, we solve the above equation for the time interval (0, 2). To minimize
the influence of the spatial error, we choose a = 0.1 and b = 0.00001. We carry out the
computations on a mesh with P = 320 tetrahedra and varying amount of time steps N ∈
{10, 50, 100, 500, 1000, 5000, 10000, 50000, 100000}. In each case we compute the error as

Err(u) = max
j
‖ujh − u(tj)‖L2(Ω̂)

+ ‖∇ ×
(
ujh − u(tj)

)
‖
L2(Ω̂)

.

The results are given in Table 5.1 and visualized in Figure 5.1. As expected, we observe linear
decay of the error as the amount of time steps increases.

Timesteps

10 50 100 500 1000 5000 10000 50000 100000

Err(u) 0.08 0.016 0.008 0.0016 8.0003e-4 1.6004e-4 8.0050e-5 1.6130e-5 8.2292e-6

Table 5.1.: Err(u) for varying time steps.

Convergence in space

Next, we investigate the convergence behaviour of our scheme as the spatial mesh parameter
h tends to zero. To that end, we aim to minimize the effect of the temporal error and choose
a = 0.001 and b = 0.00001. As computational domain, we choose Ω̂ = [−1, 1]3 and (0, 1) for
the time interval. Throughout the computations, we choose k = 0.001, i.e. we make 1000 time
steps. The error for varying amount of spatial elements P ∈ {5, 40, 320, 2560, 20480} is given
in Table 5.2 and visualized in Figure 5.2. As before, we observe linear decay of the error in
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Spatial elements

5 40 320 2560 20480

Err(u) 0.7356e-6 0.37e-6 0.1997e-6 0.1218e-6 0.0946e-6

Table 5.2.: Err(u) for varying amount of spatial elements.

the beginning. As the spatial mesh gets finer, however, the temporal error becomes more and
more dominant and the convergence rate decreases.
Finally, we completely neglect the temporal error and consider the stationary problem

u +∇× (∇× u) = f

on [−1, 1]3. We choose

u =

u1

u2

u3

 =

 cos(x)
− sin(y)
2z + 1

 = f .

The values of the error for this experiment are given in Table 5.3 and the results are visualized
in Figure 5.3. This time, we observe linear decay of the spatial error.

Spatial elements

5 40 320 2560 20480 163840

Err(u) 3.6543 1.8184 0.9348 0.4708 0.2579 0.1446

Table 5.3.: Err(u) for varying amount of spatial elements.

Altogether, our numerical results concur with those from theory.

5.4.2. Finite time blowup in 3D

In the second experiment, we investigate the full ELLG System (5.1.1) on the shifted unit
cube Ω = Ω̂ = [−0.5, 0.5]3 and the time interval (0, 0.1). We consider a problem similar to
the one treated in [BBP08, LT12]. As initial condition, we choose

m0(x) :=

{
(0, 0,−1) |x?| ≥ 1/2,

(2x?A,A2 − |x?|2)/(A2 + |x?|2) |x?| ≤ 1/2,

with x? = (x1, x2) and A = (1− 2|x?|)4/4. The initial magnetization is chosen in such a way,
that it produces a singularity around the (x1, x2) = (0, 0) line, similarly to the 2D example
from Section 3.3.2. The initial state is visualized in the top left of Figure 5.4.
In order to perform a physically relevant simulation, we further need to ensure, that m0

and H0 fulfill condition (5.1.1f). To that end, we take

H0 = H0
? − χΩm0,
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5.4. Numerical experiments

Figure 5.4.: Evolution of the magnetization with Hs = 30. We observe blowup behavior and
alignment of the magnetization in (0, 0,−1)-direction afterwards.
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Figure 5.5.: Exchange energy Eexch = ‖∇m(t)‖2
L2(Ω)

plotted over time.
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Figure 5.6.: Maximum norm ‖∇m(t)‖L∞(Ω) plotted over time.
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Figure 5.7.: Different energy contributions for Hs = 0 plotted over time.
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Figure 5.8.: Exchange energy (solid) and W 1,∞(Ω)-seminorm (dotted) for simulation on re-
fined mesh with P = 20480 elements.
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Figure 5.9.: Evolution of the magnetization with Hs = 30 after T = 0.15. We observe realign-
ment of the magnetization in (0, 0, 1)-direction.

for some H0
? with div H0

? = 0 in Ω̂. For simplicity, we choose H0
? to be the constant

H0
?(x) =

 0
0
Hs


for varying parameters Hs ∈ {−1000,−100,−30, 0, 30, 100, 1000}. As Gilbert damping pa-
rameter, we employ α = 1. Note, that α = 1 corresponds to α/(1 + α2) = 0.5 as coefficient
of the damping term. As spatial mesh size, we use h ≈ 0.07, i.e. a mesh with P = 2560
tetrahedral elements. Throughout, we employ N = 1000 time steps.
The evolution of the magnetization over the time interval (0, 0.1) is visualized in Figure 5.4

for Hs = 30. As expected, we see that the magnetization in the vicinity of (x1, x2) = (0, 0)
slowly aligns parallel to (0, 0,−1) creating a singularity at (0, 0, 0) which induces a blowup
in the W 1,∞(Ω)-norm. Finally, the singularity gets resolved and the magnetization aligns
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Figure 5.10.: Different energy contributions for Hs = 30 and extended simulation time.
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Figure 5.11.: Total energy Etotal = Eexch+Ecurl+EH for Hs = 30 on the extended time interval.

parallel to (0, 0,−1).
Figure 5.5 displays the exchange energy ‖∇m(t, ·)‖2

L2(Ω)
of the magnetization plotted over

time. Note that in the cases Hs = 100 and Hs = 1000, the magnetization directly aligns in
(0, 0, 1)-direction. The results are in good agreement with those from [BBP08]. Figure 5.6
displays the W 1,∞(Ω)-norm of the magnetization. As expected, we observe that the empir-
ical blowup time decreases as the magnetic field gets stronger in (0, 0,−1)-direction, i.e. the
magnetization aligns faster.
In the casesHs = 100 andHs = 1000 on the other hand, m gets aligned in (0, 0, 1) direction,

due to the influence of the magnetic field. In case of a moderate magnetic field Hs = 100, this
takes longer as the majority of the magnetization needs to be realigned and the field is not
too strong yet.
In Figure 5.7, we plot the different energy contributions

Eexch = ‖∇m‖2
L2(Ω)

,

Ecurl = ‖∇ ×H‖2
L2(Ω̂)

,

EH = ‖H‖2
L2(Ω̂)

, and

Etotal = Eexch + Ecurl + EH
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forHs = 0 over time. As expected, we observe a monotone decay of the total energy. Moreover,
the exchange contribution is the dominant term in this case.
In Figure 5.8, the same data are visualized for a refined spatial mesh of P = 20480 tetrahe-

dral elements. The exchange energy Eexch is given by the solid lines, whereas the dotted lines
(of the same color) denote the corresponding W 1,∞(Ω)-norms. Similarly to the 2D case from
Section 3.3.2, we observe that the time as well as the magnitude of the blowup change if the
spatial mesh-size h is decreased.
The case Hs = 30 has a special role as the field points in positive (0, 0, 1)-direction and yet

we observe that the magnetization aligns in the direction of (0, 0,−1), cf. Figure 5.4. The
same behaviour was already observed in [BBP08] and there, the authors conjectured that the
magnetization would eventually realign in (0, 0, 1)-direction. While such a behaviour could be
divined from their experiment, they did not compute far enough to actually check it. With
our experiment, we can now confirm their conjecture for this case as we observe that after
T = 0.1, the magnetization starts to form a x3-centered vortex and then slowly starts to point
upwards in the direction of (0, 0, 1). The dynamical behaviour after T = 0.1 is visualized in
Figure 5.9.
The different energy contributions for the case Hs = 30 are visualized in Figure 5.10 over

the extended time interval (0, 1). One easily observes that the exchange energy monotoneously
decreases at the beginning until the alignment in (0, 0,−1)-direction is reached. After T = 0.1,
however, the exchange- as well as the curl-part of the energy show a peak until they finally
drop to zero again. This corresponds to the remagnetization process in (0, 0, 1)-direction.
Figure 5.11 finally visualizes the total energy throughout the extended experiment and, as
expected, we observe monotone decay of the total energy.

5.4.3. Remarks on known stable states

Finally, we solve a problem for which the stable limiting states are known. In a first experiment,
we consider Ω = Ω̂ = [−1, 1]3 on (0, 0.2) and the initial condition

m0 =

{
(0, 0, 1) x1 ≤ 0,

(0, 0,−1) x1 ≥ 0.

Note, that this initial magnetization is not formally covered by theory as m0 6∈ H1(Ω). We
stress, however, that as soon as the initial state is surpassed, the magnetization becomes
H1(Ω). We furthermore choose

H0 = −m0,

α = 1, P = 2560 spatial elements and N = 1000 time steps.
The dynamic behaviour of the magnetization is visualized in Figure 5.12. As expected, we

observe that, after a short while, a vortex is formed as stable state. The different energy
contributions plotted over time are visualized in Figure 5.13 and the total energy is depicted
in Figure 5.14. Again, we observe a monotone decay of the involved energy.
Next, we start with an initial magnetization that is homogeneously aligned in (0, 0, 1)-

direction. This time, we investigate Ω = [−0.125, 0.125]3 and Ω̂ = [−1, 1]3 on the time
interval (0, 0.5). As the LLG domain Ω needs to have a higher resolution than Ω̂, we employ
an adaptively refined mesh that is dense within Ω and becomes coarser towards the boundary
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Figure 5.12.: Dynamic behaviour of the magnetization that leads to a vortex state.
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Figure 5.13.: Different energy contributions for vortex state plotted over time.
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Figure 5.14.: Total energy Etotal = Eexch + Ecurl + EH of vortex state plotted over time.

Figure 5.15.: Graded mesh for flower state computation as projection (left). The two domains
Ω and Ω̂ as 3D view (right).
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Figure 5.16.: Dynamic behaviour of the magnetization that leads to a flower state.

Figure 5.17.: Symmetric flower state from lateral view (left) and top view (right).
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Figure 5.18.: Different energy contributions of the flower state.

of the larger domain Ω̂. Figure 5.15 shows a 2D projection of the adaptive mesh (left) and a
3D view of the two domains (right), where Ω is marked black and Ω̂ is visualized in grey.
Again, we choose α = 1 and employ

H0(x) =

{
−m0(x) x ∈ Ω,

0 x ∈ Ω̂\Ω.

Moreover, we include uniaxial anisotropy in x3-direction with

Φ(m) = −(e,m)2

into this simulation. Here, e denotes the easy axis.
The dynamic behaviour of the magnetization is shown in Figure 5.16 and we observe, that

the stable state for this setting is the well-known (symmetric) flower state. Figure 5.17 shows
a side- and a top view of the final state.
The different energy contributions are plotted over time in Figure 5.18 and the total energy

is visualized in Figure 5.19. Again, we observe monotoneously decreasing energy towards the
stable state.
Finally, as we increase the size of the sample domains Ω and Ω̂ with a factor of 1.4, we

observe that the symmetric flower state vanishes and we derive a twisted flower state instead.
This behaviour is described in detail in [Gol12] and the final state is visualized in Figure 5.20.
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Figure 5.19.: Total energy Etotal = Eexch + Ecurl + EH + Eani of flower state.

Figure 5.20.: Twisted flower state.
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Chapter 6
LLG with magnetostriction

So far, we have seen that the elegance and the mathematical advantages of the original
work [Alo08a] from Alouges can be carried over to more general effective fields, as well
as coupling to certain variants of Maxwell’s equations. The goal of such generalizations has
been, and must always be, the realization of more realistic simulations. Another interesting
physical effect, which is not negligible at least for certain materials like Terfenol-D, is the
magnetoelastic interaction or magnetostriction. Roughly speaking, this additional field con-
tribution models the circumstance that the deformation of a magnetic material influences the
magnetic field and hence the magnetization. It thus models somehow the inverse of the effect
that a magnet can be deformed if it is exposed to a strong magnetic field. The inclusion of
this effect together with the derivation of an unconditionally convergent numerical scheme in
spirit of the previous approaches will be the goal of this chapter.
Incorporating magnetostriction requires coupling to the conservation of momentum equa-

tion. Here the coupling is, however, less straightforward compared to the previous chapters.
This is mainly because of the structure of the coupling operator hm below, which is simply
more complicated than before. In particular, we deal with a nonlinear coupling operator, which
does not only depend on the solution of the second equation, but rather on its spatial deriva-
tive. The results of this chapter have partially been published in [BPPR13]. For strong LLG
solvers coupled with magnetostriction (LLGM), we refer to [Baň05a, Baň05b, BS06, Baň08].
A weak integrator for the LLGM problem which is based on the midpoint scheme is found
in [Roc12].

6.1. Elasticity model and problem formulation

For the evolution of the magnetization on ΩT , we again consider the LLG equation

mt − αm×mt = −m× heff, (6.1.1a)

where the effective field reads

heff = Ce∆m + hm + π(m) (6.1.1b)

and consists of the exchange contribution ∆m, the generalized contribution π(m), and the
magnetostrictive component hm, which will be specified below. Again, the general contribu-
tion is only assumed to fulfill the two properties (6.2.5) and (6.2.6) below and thus particularly
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Chapter 6. LLG with magnetostriction

includes the case

heff = Ce∆m + hm + CaniDΦ(m) + P (m)− f .

To keep the presentation simple, we did not include the additional coupling to the full Maxwell
system or the eddy-current simplification as in the Chapters 4 or 5. We stress, however, that
this extension is straightforward and, with the combined techniques, one could consider a cou-
pled system of full Maxwell-LLG with the conservation of momentum equation to account for
magnetostrictive effects. Moreover, with the techniques from Chapter 3, it is straightforward
to rigorously include a numerical approximation πh(·) of π(·) into the convergence analysis.
As usual, (6.1.1) is supplemented by the initial and boundary conditions

m(0) = m0 ∈H1(Ω;S2) and ∂nm = 0 on (0, T )× ∂Ω. (6.1.1c)

For modeling the magnetostrictive component, we follow the approach of [Vis85]. Here, the
magnetostrictive field reads

hm : ΩT → R3, (hm)q =
(
hm(u,m)

)
q

:=

3∑
i,j,p=1

λmijpqσij(m)p, (6.1.2)

where (·)p denotes the p-th component of a vector field. We implicitly assume linear depen-
dence of the stress tensor σσσ = {σij} on the elastic part of the total strain εεεe = {εeij} which is
the converse form of Hook’s law, i.e.

σσσ := λλλeεεεe(u,m) : ΩT −→ R3×3, σij =
3∑

p,q=1

λeijpqε
e
pq, (6.1.3)

εεεe(u,m) := εεε(u)− εεεm(m) : ΩT −→ R3×3. (6.1.4)

Here, u : ΩT → R3 denotes the displacement vector field from the conservation of momentum
equation (6.1.8) below. The total strain is defined by the symmetric part of the gradient of
u, i.e.

εij(u) :=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (6.1.5)

and the magnetic part of the total strain by

εεεm(m) := λλλmmmT : ΩT −→ R3×3, εmij (m) =
3∑

p,q=1

λmijpq(m)p(m)q. (6.1.6)

In addition, we assume both material tensors λλλ ∈ {λλλe,λλλm} to be symmetric (λijpq = λjipq =
λijqp = λpqij) and positive definite

3∑
i,j,p,q=1

λijpqξijξpq ≥ λ?
3∑

i,j=1

ξ2
ij (6.1.7)

with bounded entries, i.e. there exists some λ with λeijpq, λ
m
ijpq ≤ λ for any i, j, p, q = 1, 2, 3.

The stress tensor σσσ and the displacement field u (where we assume no external forces) are
finally coupled via the conservation of momentum equation

%utt −∇ · σσσ = 0 in ΩT . (6.1.8a)
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6.1. Elasticity model and problem formulation

Here, we assume the mass density % > 0 to be constant and independent of the deformation.
Equation (6.1.8a) is additionally supplemented by the initial and boundary conditions

u(0) = u0 in Ω, ut(0) = u̇0 in Ω, and u = 0 on ∂Ω. (6.1.8b)

Altogether, we thus aim to solve the coupled problem{
mt − αm×mt = −m× heff

%utt −∇ · σσσ = 0
(6.1.9)

of the LLG equation with magnetostriction (LLGM) subject to the stated initial and boundary
conditions.
Using the above boundary conditions, Hook’s relation (6.1.3), the definition of the total

strain tensor (6.1.4), and the symmetry of the tensors λλλe and λλλm, we obtain the following
result:

Lemma 6.1.1. The weak formulation of (6.1.8a) is given by(
%utt(t),ϕ

)
+
(
λλλeεεε(u)(t), εεε(ϕ)

)
=
(
λλλeεεεm(m)(t), εεε(ϕ)

)
, (6.1.10)

for any testfunction ϕ ∈H1
0(Ω).

Proof. Multiplication with a testfunction ϕϕϕ ∈H1
0(Ω) and intergration over Ω yields

(%utt(t),ϕϕϕ)− (∇ · λλλeεεε(u)(t),ϕϕϕ) = −(∇ · λλλeεεεm(m)(t),ϕϕϕ).

Componentwise integration by parts now shows for the second term on the left hand side

(∇ · λλλeεεε(u)(t),ϕϕϕ) =

∫
Ω

∂x1 [λeε(u)]11(t) + ∂x2 [λeε(u)]12(t) + ∂x3 [λeε(u)]13(t)
∂x1 [λeε(u)]21(t) + ∂x2 [λeε(u)]22(t) + ∂x3 [λeε(u)]23(t)
∂x1 [λeε(u)]31(t) + ∂x2 [λeε(u)]32(t) + ∂x3 [λeε(u)]33(t)

 ·
ϕ1

ϕ2

ϕ3


=

∫
Ω

∑
i

∂xi [λ
eε(u)]1i(t)ϕ1 +

∫
Ω

∑
i

∂xi [λ
eε(u)]2i(t)ϕ2 +

∫
Ω

∑
i

∂xi [λ
eε(u)]3i(t)ϕ3

=

∫
Ω

∑
j

∑
i

∂xi [λ
eε(u)]ji(t)ϕj

i.p.
= −

∫
Ω

∑
j

∑
i

[λeε(u)]ji(t)
∂ϕj
∂xi

+

∫
Γ

∑
j

∑
i

[λeε(u)]ji(t)ϕj · n︸ ︷︷ ︸
=0

= −
∫

Ω

∑
i

[λeε(u)]1i(t)
∂ϕ1

∂xi
+
∑
i

[λeε(u)]2i(t)
∂ϕ2

∂xi
+
∑
i

[λeε(u)]3i(t)
∂ϕ3

∂xi

= −
∫

Ω

[λeε(u)]11(t) [λeε(u)]12(t) [λeε(u)]13(t)
[λeε(u)]21(t) [λeε(u)]22(t) [λeε(u)]23(t)
[λeε(u)]31(t) [λeε(u)]32(t) [λeε(u)]33(t)

 :


∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ1

∂x3
∂ϕ2

∂x1

∂ϕ2

∂x2

∂ϕ2

∂x3
∂ϕ3

∂x1

∂ϕ3

∂x2

∂ϕ3

∂x3


= −(λλλeεεε(u)(t),∇ϕ),

where we implicitly use the frobenius scalar product. Completely analogously, one gets

(∇ · λλλeεεεm(m)(t), ϕ) = −(λλλeεεεm(m)(t),∇ϕ).
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Chapter 6. LLG with magnetostriction

It therefore remains to show the equality

(λλλeεεε(u)(t),∇ϕ) = (λλλeεεε(u)(t), εεε(ϕ)).

To that end, we recall that, for the frobenius scalar product, there holds

A : B = tr(ATB),

from which we deduce

tr(λλλeεεε(u)T (t)∇ϕ) = tr


[λeε(u)]11(t) [λeε(u)]21(t) [λeε(u)]31(t)

[λeε(u)]12(t) [λeε(u)]22(t) [λeε(u)]32(t)
[λeε(u)]13(t) [λeε(u)]23(t) [λeε(u)]33(t)



∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ1

∂x3
∂ϕ1

∂x1

∂ϕ2

∂x2

∂ϕ2

∂x3
∂ϕ3

∂x1

∂ϕ3

∂x2

∂ϕ3

∂x3




= tr



∑

i[λ
eε(u)]i1(t)∂ϕi

∂x1

∑
i[λ

eε(u)]i1(t)∂ϕi

∂x2

∑
i[λ

eε(u)]i1(t)∂ϕi

∂x3∑
i[λ

eε(u)]i2(t)∂ϕi

∂x1

∑
i[λ

eε(u)]i2(t)∂ϕi

∂x2

∑
i[λ

eε(u)]i2(t)∂ϕi

∂x3∑
i[λ

eε(u)]i3(t)∂ϕi

∂x1

∑
i[λ

eε(u)]i3(t)∂ϕi

∂x2

∑
i[λ

eε(u)]i3(t)∂ϕi

∂x3




=
∑
i

[λeε(u)]i1(t)
∂ϕi
∂x1

+
∑
i

[λeε(u)]i2(t)
∂ϕi
∂x2

+
∑
i

[λeε(u)]i3(t)
∂ϕi
∂x3

,

as well as

tr
(
λλλeεεε(u)T (t)(

1

2
(∇ϕ+∇ϕT ))

)
= tr

εεε(u)T (t)
1

2


2∂ϕ1

∂x1

∂ϕ1

∂x2
+ ∂ϕ2

∂x1

∂ϕ1

∂x3
+ ∂ϕ3

∂x1
∂ϕ2

∂x1
+ ∂ϕ1

∂x2
2∂ϕ2

∂x2

∂ϕ2

∂x3
+ ∂ϕ3

∂x2
∂ϕ3

∂x1
+ ∂ϕ1

∂x3

∂ϕ3

∂x2
+ ∂ϕ2

∂x3
2∂ϕ3

∂x3




=
∑
i

[λeε(u)]i1(t)
1

2

(
∂ϕi
∂x1

+
∂ϕ1

∂xi

)
+
∑
i

[λeε(u)]i2(t)
1

2

(
∂ϕi
∂x2

+
∂ϕ2

∂xi

)
+
∑
i

[λeε(u)]i3(t)
1

2

(
∂ϕi
∂x3

+
∂ϕ3

∂xi

)
.

The symmetry of λλλeεεε(u)(t), i.e. [λeε(u)]ij(t) = [λeε(u)]ji(t) concludes the desired result. The
right hand side is estimated in complete analogy.

Given these notations, we now define the notion of a weak solution for the coupled LLGM
system (6.1.9), which goes back to [CEF11]. Note that, analogously to Chapter 4, where
coupling to the full Maxwell system was considered, the highest time derivative of the second
equation is enforced only in a weak sense. That is to say, we perform integration by parts in
time and use suitable testfunctions which vanish at the upper time boundary.
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6.2. Preliminaries and numerical integrator

Definition 6.1.2. The tupel (m,u) is called a weak solution of LLG with magnetostriction,
if for all T > 0,

(i) m ∈H1(ΩT ) with |m| = 1 almost everywhere in ΩT and u ∈ H1(ΩT );

(ii) for all φ ∈ C∞(ΩT ) and ζ ∈ C∞c
(
[0, T );C∞c (Ω)

)
, we have∫

ΩT

mt · φ− α
∫

ΩT

(m×mt) · φ = −Ce
∫

ΩT

(∇m×m) · ∇φ

+

∫
ΩT

(hm ×m) · φ+

∫
ΩT

(
π(m)×m

)
· φ (6.1.11)

− %
∫

ΩT

ut · ζt +

∫
ΩT

λλλeεεε(u) · εεε(ζ) =

∫
ΩT

λλλeεεε(m) · εεε(ζ) +

∫
Ω

u̇0 · ζ(0, ·); (6.1.12)

(iii) there holds m(0, ·) = m0 and u(0, ·) = u0 in the sense of traces;

(iv) for almost all t′ ∈ (0, T ), we have bounded energy

‖∇m(t′)‖2
L2(Ω)

+ ‖mt‖2L2(Ωt′ )
+ ‖∇u(t′)‖2

L2(Ω)
+ ‖ut(t′)‖2L2(Ω)

≤ C29, (6.1.13)

where C29 is independent of t′ and depends only on |Ω|,m0,u0, and u̇0.

6.2. Preliminaries and numerical integrator

For spatial discretization, we again employ the tangent space K
mj

h
for the LLG equation.

Concerning the equation of magnetoelasticity, we consider

S1
0 (Th) := S1(Th) ∩H1

0 (Ω).

In addition, let m0
h ∈Mh and u0

h, u̇
0
h ∈ S1

0 (Th) be suitable approximations of the initial data
obtained e.g. by projection. Further requirements on those initial data are specified below in
Theorem 6.2.3. Moreover, we define dtu0

h as u̇0
h.

The time derivative in (6.1.10) is finally discretized by means of the difference quotient of
second order which is denoted by

dtzi =
zi − zi−1

k
, d2

tzi =
dtzi − dtzi−1

k
=
zi − 2zi−1 + zi−2

k2
, (6.2.1)

for any discrete function zi ≈ z(ti).
With these notations, we propose the following fully decoupled tangent plane scheme for

the LLGM problem.
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Chapter 6. LLG with magnetostriction

Algorithm 6.2.1. Input: Initial data m0
h,u

0
h and u̇0

h, parameter 0 ≤ θ ≤ 1, α > 0. For
` = 0, . . . , N − 1 iterate:

(i) Compute unique solution v`h ∈ Km`
h
such that for all ϕh ∈ Km`

h
, we have

α(v`h,ϕh) +
(
(m`

h × v`h),ϕh
)

= −Ce
(
∇(m`

h + θkv`h),∇ϕh
)

+
(
hm(u`h,m

`
h),ϕh

)
+
(
π(m`

h),ϕh
)
.

(6.2.2)

(ii) Define m`+1
h ∈Mh nodewise by m`+1

h (z) =
m`
h(z) + kv`h(z)

|m`
h(z) + kv`h(z)|

for all z ∈ Nh.

(iii) Compute unique solution u`+1
h ∈ S1

0 (Th) such that for all ψψψh ∈ S1
0 (Th), we have

%(d2
tu

`+1
h ,ψψψh) +

(
λλλeεεε(u`+1

h ), εεε(ψψψh)
)

=
(
λλλeεεεm(m`+1

h ), εεε(ψψψh)
)
. (6.2.3)

In the above algorithm, the discrete magnetostrictive contribution is given by

[hm(u`h,m
`
h)]q :=

3∑
i,j,p=1

λmijpqσ
`
ij(m

`
h)p, with σσσ` = λλλe

(
εεε(u`h)− εεεm(m`

h)
)
.

Exploiting that we solve each of the two equations separately, we can immediately state
well-posedness of Algorithm 6.2.1.

Lemma 6.2.2. Algorithm 6.2.1 is well defined, i.e. it admits a tupel of unique discrete so-
lutions (v`h,m

`+1
h ,u`+1

h ) in each step ` = 0, . . . , N − 1 of the iteration. Moreover, we have
‖m`

h‖L∞(Ω) = 1 for all ` = 1, . . . , N .

Proof. We first show solvability of (6.2.2). We define the bilinear form

a`1(·, ·) : Km`
h
×Km`

h
→ R, a`1(φ,ϕ) := α(φ,ϕ) + θCek(∇φ,∇ϕ) +

(
(m`

h × φ),ϕ
)

and the linear functional

L`1(ϕ) := Ce(∇m`
h,∇ϕ) +

(
hm(u`h,m

`
h),ϕ

)
+
(
π(m`

h),ϕ
)
.

Then, (6.2.2) is equivalent to

a`1(v`h,ϕh) = L`1(ϕh) for all ϕh ∈ Km`
h
.

Note that a`1(·, ·) is positive definite for α > 0, i.e. a`1(ϕ,ϕ) ≥ α‖ϕ‖2
L2(Ω)

. Thus, by exploiting
finite dimension, we see that there exists a unique v`h ∈ Km`

h
which solves (6.2.2). Due

to pointwise orthogonality of m`
h and v`h, and the Pythagoras theorem, we get |m`

h(z) +
kv`h(z)|2 = |m`

h(z)|2 + k|v`h(z)|2 ≥ 1 and thus even step (ii) of the above algorithm is well-
defined. The bound ‖m`

h‖L∞(Ω) = 1 can be seen by the normalization at the grid points in
combination with barycentric coordinates and the convexity of each tetrahedron.
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For the second equation (6.2.3), we consider the bilinear form

a2(·, ·) : S1
0 (Th)× S1

0 (Th)→ R, a2(ζ,ψψψ) :=
%

k2
(ζ,ψψψ) +

(
λλλeεεε(ζ), εεε(ψψψ)

)
and the linear functional

L`2(ψψψ) =
(
λλλeεεεm(m`+1

h ), εεε(ψψψ)
)

+
%

k
(dtu`h,ψψψ) +

%

k2
(u`h,ψψψ),

According to (6.1.7) and Korn’s inequality [BS08, Thm. 11.2.16], it holds that

a2(ψψψ,ψψψ) =
%

k2
‖ψψψ‖2

L2(Ω)
+
(
λλλeεεε(ψψψ), εεε(ψψψ)

)
≥ %

k2
‖ψψψ‖2

L2(Ω)
+ λλλ?

(
εεε(ψψψ), εεε(ψψψ)

)
=

%

k2
‖ψψψ‖2

L2(Ω)
+ λλλ?‖εεε(ψψψ)‖2

L2(Ω)

& ‖ψψψ‖2
H1(Ω)

.

With this notation, (6.2.3) is equivalent to

a2(u`+1
h ,ψψψh) = L`2(ψψψh) for all functions ψψψh ∈ S1

0 (Th),

and hence, admits a unique solution u`+1
h ∈ S1

0 (Th) in each step of the loop. The length
constraint finally follows as before, cf. e.g. Lemma 5.2.2.

6.2.1. Convergence analysis

Next, we show that the sequence of discrete solutions from Algorithm 6.2.1 indeed converges
towards a weak solution of LLGM in the sense of Definition 6.1.2. As usual, we assume the
triangulation to fulfill the angle condition∫

Ω
∇ηi · ∇ηj ≤ 0 for all hat functions ηi, ηj ∈ S1(Th) with i 6= j. (6.2.4)

Moreover, and in addition to the standard notation, for t ∈ [t`, t`+1), we define

u̇hk(t,x) := dtu`h(x) + (t− t`)d2
tu

`+1
h (x), u̇−hk(t,x) := dtu`h(x), u̇+

hk(t,x) := dtu`+1
h (x).

The next statement is the main theorem of this chapter and particularly includes the main
result from [CEF11].

Theorem 6.2.3. (a) Let θ ∈ (1/2, 1] and suppose that the meshes Th are uniformly shape
regular and satisfy the angle condition (6.2.4). Moreover, let the general energy contribution
π be uniformly bounded in L2(ΩT ), i.e.

‖π(n)‖2
L2(Ω)

≤ Cπ for all |n| ∈ L2(Ω) with n ≤ 1 a.e. in Ω, (6.2.5)

with an n-independent constant Cπ > 0 and assume weak convergence of the initial data,
i.e. m0

h ⇀ m0,u0
h ⇀ u0 in H1(Ω), as well as u̇0

h ⇀ u̇0 in L2(Ω) as h → 0. Under these
assumptions, we have strong L2(ΩT )-convergence of m−hk towards some function m ∈H1(ΩT ).
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(b) Suppose that, in addition to the above assumptions, we have

π(m−hk) ⇀ π(m) weakly subconvergent in L2(ΩT ). (6.2.6)

Then, the computed FE solutions (mhk,uhk) are weakly subconvergent in H1(ΩT )×H1(ΩT )
towards some functions (m,u), and those weak limits (m,u) are a weak solution of LLG with
magnetostriction. In particular, weak solutions exist and each weak accumulation point of
(mhk,uhk) is a weak solution in the sense of Definition 6.1.2.

The proof follows exactly the same three steps as the one for pure LLG or coupling to the
different variants of Maxwell’s equations. Those three steps incorporate the classic convergence
strategy that was also employed in the seminal works [BP06, Alo08a]. The approach here is,
however, somewhat different, since including magnetostriction is less straightforward than
e.g. the Maxwell system. For the MLLG system from Chapter 4 and the ELLG system
from Chapter 5, the coupling of LLG and Maxwell’s equations is simply done via (Hj

h,v
j
h).

In contrast to this, here the coupling operators between (6.2.2) and (6.2.3) are different, and
therefore the equations cannot simply be inserted into each other. Consequently, boundedness
has to be shown individually for both problems (Lemma 6.2.5 and Proposition 6.2.8 below.)
The remainder is then finally estimated via Gronwall’s lemma.
Step 1:

First, we show that the discrete quantities remain bounded. To that end, we take a closer
look at the magnetostrictive contribution.

Lemma 6.2.4. The discrete magnetostrictive component can be estimated by the total strain
of the discrete displacement, i.e.

‖hm(u`h,m
`
h)‖2

L2(Ω)
≤ C30‖εεε(u`h)‖2

L2(Ω)
+ C31, (6.2.7)

for some constants C30, C31 > 0 that depend only on λ.

Proof. By definition of the magnetostrictive part, we immediately get

‖hm(u`h,m
`
h)‖2

L2(Ω)
. λ‖m`

h‖2L∞(Ω)‖σσσ
`‖2
L2(Ω)

. ‖σσσ`‖2
L2(Ω)

due to the normalization step. From the definition of the discrete stress tensor and the
boundedness of the material tensors, we additionally get

‖σσσ`‖2
L2(Ω)

. λ
(
‖εεε(u`h)‖2

L2(Ω)
+ ‖εεεm(m`

h)‖2
L2(Ω)

)
. ‖εεε(u`h)‖2

L2(Ω)
+ C.

This yields the assertion.

With the result of the last lemma, we gain the following knowledge about the magnetization
and its discrete derivative.

Lemma 6.2.5. For j = 1, . . . , N , there holds

‖∇mj
h‖

2
L2(Ω)

+ (θ − 1

2
)k2

j−1∑
`=0

‖∇v`h‖2L2(Ω)
+ k

j−1∑
`=0

‖v`h‖2L2(Ω)

≤ C32

(
‖∇m0

h‖2L2(Ω)
+ k

j−1∑
`=0

‖εεε(u`h)‖2
L2(Ω)

+ C33

)
,

(6.2.8)

for constants C32, C33 > 0 that depend only on Cπ as well as C30 and C31 from the previous
lemma.
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Proof. As before, in (6.2.2), we use the special test function ϕh = v`h ∈ Km`
h
and exploit the

angle condition (6.2.4) to see

1

2
‖∇m`+1

h ‖
2
L2(Ω)

≤ 1

2
‖∇m`

h‖2L2(Ω)
+ k(∇m`

h,∇v`h) +
k2

2
‖∇v`h‖2L2(Ω)

≤ 1

2
‖∇m`

h‖2L2(Ω)
−
(
θ − 1/2

)
k2‖∇v`h‖2L2(Ω)

− αk

Ce
‖v`h‖2L2(Ω)

+
k

Ce

(
hm(u`h,m

`
h),v`h

)
+

k

Ce

(
π(m`

h),v`h
)
.

(6.2.9)

Analogously to before, we sum up over the time intervals from 0 to j−1, which, in combination
with Lemma 6.2.4 yields for any ν > 0

1

2
‖∇mj

h‖
2
L2(Ω)

+
k

Ce
(α− ν)

j−1∑
`=0

‖v`h‖2L2(Ω)
+ (θ − 1

2
)k2

j−1∑
`=0

‖∇v`h‖2L2(Ω)

.
1

2
‖∇m0

h‖2L2(Ω)
+
kC30

4Ceν

j−1∑
`=0

(
‖εεε(u`h)‖2

L2(Ω)
+ C31

)
+ Cπ

Taking ν < α thus yields the desired result.

Given the last two lemmata, we now aim to show boundedness of the discrete quantities
involved in equation (6.2.3), i.e. boundedness of the discrete displacement approximations.
We start with a two technical results concerning the material tensors and the magnetic part
of the total strain.

Lemma 6.2.6. There holds

‖λλλeA‖2
L2(Ω)

≤ C‖A‖2
L2(Ω)

and (6.2.10)

‖λλλmA‖2
L2(Ω)

≤ C‖A‖2
L2(Ω)

, (6.2.11)

for all A ∈ R3×3 and for a constant C > 0 that only depends on the entries of λλλe and λλλm.

Proof. By definition, there holds

‖λλλeA‖2
L2(Ω)

=
3∑

i,j=1

‖(λλλeA)ij‖2L2(Ω)

=

3∑
i,j=1

‖
3∑

k,l=1

λeijklAkl‖2L2(Ω)

≤ C
3∑

i,j=1

3∑
k,l=1

‖Akl‖2L2(Ω)

. ‖A‖2
L2(Ω)

.

This yields the first inequality. The second one follows verbatim.
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Lemma 6.2.7. The magnetic part of the total strain depends lipshitz-continuously on the
magnetization, i.e. for any k = 0, . . . N − 1, there holds

‖εεεm(mk+1
h )− εεεm(mk

h)‖L2(Ω) ≤ C‖m
k+1
h −mk

h‖L2(Ω), (6.2.12)

where the constant C > 0 depends only on |Ω|.

Proof. We show the result componentwise for εmij . By definition, we have

‖εmij (mk+1
h )− εmij (mk

h)‖L2(Ω) = ‖
∑
p`

λmijp`((m
k+1
h )p(m

k+1
h )` − (mk

h)p(m
k
h)`)‖L2(Ω)

∼ ‖
∑
p`

(mk+1
h )p(m

k+1
h )` − (mk

h)p(m
k
h)`‖L2(Ω)

= ‖
∑
p`

((mk+1
h )p − (mk

h)p)(m
k+1
h )` + (mk

h)p(m
k+1
h )` − (mk

h)p(m
k
h)`‖L2(Ω)

= ‖
∑
p`

((mk+1
h )p − (mk

h)p)(m
k+1
h )` + (mk

h)p((m
k+1
h )` − (mk

h)`)‖L2(Ω)

≤
∑
p`

(
‖(mk+1

h )p − (mk
h)p‖L2(Ω) + ‖(mk+1

h )` − (mk
h)`‖L2(Ω)

)
=
∑
p

(
‖(mk+1

h )p − (mk
h)p‖L2(Ω) + ‖(mk+1

h )1 − (mk
h)1‖L2(Ω)

+ ‖(mk+1
h )p − (mk

h)p‖L2(Ω) + ‖(mk+1
h )2 − (mk

h)2‖L2(Ω)

+ ‖(mk+1
h )p − (mk

h)p‖L2(Ω) + ‖(mk+1
h )3 − (mk

h)3‖L2(Ω)

)
∼ ‖mk+1

h −mk
h‖L2(Ω).

Here, we only exploited the uniform boundedness of mk
h and mk+1

h , i.e. ‖mk
h‖L∞(Ω) = 1 for

any k ∈ 0, . . . , N − 1.

The statement of the following result is basically found in [BS06, Lemma 3]. There, however,
the focus is on strong solutions of LLG and a different integrator, so that the proof and the
overall analysis differs.

Proposition 6.2.8. For any j = 1, . . . , N and 1
2 ≤ θ ≤ 1, there holds

‖dtujh‖
2
L2(Ω)

+

j∑
`=1

‖dtu`h − dtu`−1
h ‖

2
L2(Ω)

+ ‖εεε(ujh)‖2
L2(Ω)

+

j∑
`=1

‖εεε(u`h)− εεε(u`−1
h )‖2

L2(Ω)
≤ C34

(6.2.13)

for some h and k independent constant C34 > 0 which depends only on λλλ? and the constants
C32 and C33 from Lemma 6.2.5.

Proof. We use ψψψh = u`+1
h − u`h as test function in (6.2.3) and sum up for ` = 0, . . . , j − 1 to

see

%(dtu`+1
h − dtu`h, dtu

`+1
h ) +

(
λλλeεεε(u`+1

h ), εεε(u`+1
h )− εεε(u`h)

)
=
(
λλλeεεεm(m`+1

h ), εεε(u`+1
h )− εεε(u`h)

)
.
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Abel’s summation from Lemma A.1.3 in combination with the positive definiteness (6.1.7)
and symmetry of λλλe now yields

‖dtujh‖
2
L2(Ω)

+

j∑
`=1

‖dtu`h − dtu`−1
h ‖

2
L2(Ω)

+ ‖εεε(ujh)‖2
L2(Ω)

+

j∑
`=1

‖εεε(u`h)− εεε(u`−1
h )‖2

L2(Ω)

≤ C̃ + C

j∑
`=1

(
λλλeεεεm(m`

h), εεε(u`h)− εεε(u`−1
h )

)
,

for some generic constants C, C̃ > 0. Note that the terms ‖dtu0
h‖2L2(Ω)

= ‖u̇0
h‖2L2(Ω)

and
‖εεε(u0

h)‖2
L2(Ω)

are uniformly bounded due to the assumed convergence of these initial data and

are hidden in the constant C̃.
Next, we rewrite the sum on the right-hand side as

j∑
`=1

(
λλλeεεεm(m`

h), εεε(u`h)− εεε(u`−1
h )

)
= (λλλeεεεm(mj

h), εεε(ujh))− (λλλeεεεm(m1
h), εεε(u0

h))−
j−1∑
`=1

(
λλλeεεεm(m`+1

h )− λλλeεεεm(m`
h), εεε(u`h)

)
= (λλλeεεεm(mj

h), εεε(ujh))− (λλλeεεεm(m1
h), εεε(u0

h))− k
j−1∑
`=1

(
λλλedtεεεm(m`+1

h ), εεε(u`h)
)
.

For any η > 0 and with Lemma 6.2.6, we further get

‖dtujh‖
2
L2(Ω)

+

j∑
`=1

‖dtu`h − dtu`−1
h ‖

2
L2(Ω)

+ ‖εεε(ujh)‖2
L2(Ω)

+

j∑
`=1

‖εεε(u`h)− εεε(u`−1
h )‖2

L2(Ω)

. 1 + k

j−1∑
`=1

‖dtεεεm(m`+1
h )‖2

L2(Ω)
+ k

j−1∑
`=1

‖εεε(u`h)‖2
L2(Ω)

+
1

4η
‖εεεm(mj

h)‖2
L2(Ω)

+ η‖εεε(ujh)‖2
L2(Ω)

+ ‖εεεm(m1
h)‖2

L2(Ω)
+ ‖εεε(u0

h)‖2
L2(Ω)

.

For sufficiently small η, this can be simplified to

‖dtujh‖
2
L2(Ω)

+

j∑
`=1

‖dtu`h − dtu`−1
h ‖

2
L2(Ω)

+ ‖εεε(ujh)‖2
L2(Ω)

+

j∑
`=1

‖εεε(u`h)− εεε(u`−1
h )‖2

L2(Ω)

. 1 + k
( j−1∑
`=1

‖dtεεεm(m`+1
h )‖2

L2(Ω)
+

j−1∑
`=1

‖εεε(u`h)‖2
L2(Ω)

)
.

Here, we again used convergence of the initial data. Next, Lemma 6.2.7 yields

‖dtεεεm(m`
h)‖2

L2(Ω)
. ‖dtm`

h‖2L2(Ω)
.

In combination with

‖dtm`
h‖2L2(Ω)

= ‖
m`
h −m`−1

h

k
‖2
L2(Ω)

≤ ‖v`−1
h ‖

2
L2(Ω)

,
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from Lemma 2.2.3, this results in

‖dtujh‖
2
L2(Ω)

+

j∑
`=1

‖dtu`h − dtu`−1
h ‖

2
L2(Ω)

+ ‖εεε(ujh)‖2
L2(Ω)

+

j∑
`=1

‖εεε(u`h)− εεε(u`−1
h )‖2

L2(Ω)

. 1 + k
( j−1∑
`=1

‖v`h‖2L2(Ω)
+

j−1∑
`=1

‖εεε(u`h)‖2
L2(Ω)

)
.

Next, we apply Lemma 6.2.5 to see

‖dtujh‖
2
L2(Ω)

+

j∑
`=1

‖dtu`h − dtu`−1
h ‖

2
L2(Ω)

+ ‖εεε(ujh)‖2
L2(Ω)

+

j∑
`=1

‖εεε(u`h)− εεε(u`−1
h )‖2

L2(Ω)

. 1 +
(
‖∇m0

h‖2L2(Ω)
+ k

j−1∑
`=0

‖εεε(u`h)‖2
L2(Ω)

+ k

j−1∑
`=1

‖εεε(u`h)‖2
L2(Ω)

)
. 1 + k

j−1∑
`=0

‖εεε(u`h)‖2
L2(Ω)

.

Application of a discrete version of Gronwall’s Lemma A.1.2 finally yields the assertion.

In order to show the desired H1(ΩT )-convergence of u, we still need to show uniform
boundedness of the L2(ΩT )-part. This result is stated in the next corollary.

Corollary 6.2.9. Due to the boundary conditions employed, the Poincaré inequality in com-
bination with Korn’s inequality shows

‖ujh‖
2
L2(Ω)

+

j∑
`=1

‖u`h−u`−1
h ‖

2
L2(Ω)

≤ C35

(
‖∇ujh‖

2
L2(Ω)

+

j∑
`=1

‖∇(u`h − u`−1
h )‖2

L2(Ω)

)
≤ C35

(
‖εεε(ujh)‖2

L2(Ω)
+

j∑
`=1

‖εεε(u`h − u`−1
h )‖2

L2(Ω)

)
(6.2.14)

for any j = 1, . . . , N , where the constant C35 > 0 stems from Poincaré’s inequality and
thus only depends on the diameter of Ω. According to Proposition 6.2.8, the right-hand side
of (6.2.14) is uniformly bounded.

Proposition 6.2.8 now immediately yields boundedness of the discrete magnetizations.

Corollary 6.2.10. For any j = 1, . . . , N , there holds

‖∇mj
h‖

2
L2(Ω)

+ k

j−1∑
`=0

‖v`h‖2L2(Ω)
+
(
θ − 1

2

)
k2

j−1∑
`=0

‖∇v`h‖2L2(Ω)
≤ C36 (6.2.15)

for some constant C36 > 0 which depends only on C32, C33, and C34.

Proof. From Lemma 6.2.5, we get

‖∇mj
h‖

2
L2(Ω)

+ (θ − 1

2
)k2

j−1∑
`=0

‖∇v`h‖2L2(Ω)
+ k

j−1∑
`=0

‖v`h‖2L2(Ω)

≤ C32

(
‖∇m0

h‖2L2(Ω)
+ k

j−1∑
`=0

‖εεε(u`h)‖2
L2(Ω)

+ C33

)
,
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By utilizing Proposition 6.2.8, we see k
∑j−1

`=0 ‖εεε(u
`
h)‖2

L2(Ω)
≤ |T |C34. The uniform bounded-

ness of ‖∇m0
h‖L2(Ω) concludes the proof.

Step 2:

Next, we deduce the existence of convergent subsequences.

Lemma 6.2.11. Let 1/2 ≤ θ ≤ 1. Then, there exist functions (m,u, u̇) ∈ H1(ΩT , S2) ×
H1(ΩT )×L2(ΩT ) such that

mhk
sub−−⇀ m in H1(ΩT ) (6.2.16a)

mhk,m
±
hk

sub−−⇀ m in L2(H1), (6.2.16b)

mhk,m
±
hk

sub−−→m in L2(ΩT ) (6.2.16c)

mhk,m
±
hk

sub−−→m pointwise almost everywhere in ΩT , (6.2.16d)

uhk
sub−−⇀ u in H1(ΩT ) (6.2.16e)

uhk,u
±
hk

sub−−⇀ u in L2(H1), (6.2.16f)

uhk,u
±
hk

sub−−→ u in L2(ΩT ) (6.2.16g)

u̇hk, u̇
±
hk

sub−−⇀ u̇ in L2(ΩT ). (6.2.16h)

Here, the convergence is to be understood for a subsequence of the corresponding sequences
which is successively constructed, i.e. for arbitrary spatial mesh-size h→ 0 and time step-size
k → 0, there exist subindices hn, kn, for which the above convergence properties are satisfied
simultaneously. In addition, there holds

v−hk
sub−−⇀ mt in L2(ΩT ) (6.2.17)

again for the same subsequence as above.

Proof. From Proposition 6.2.8, Corollary 6.2.9, and Corollary 6.2.10, we see that

j−1∑
`=0

‖m`+1
h −m`

h‖2L2(Ω)
+

j−1∑
`=0

‖u`+1
h − u`h‖2L2(Ω)

+

j−1∑
`=0

‖εεε(u`+1
h )− εεε(u`h)‖2

L2(Ω)
+

j−1∑
`=0

‖dt(u`+1
h )− dt(u`h)‖2

L2(Ω)

is uniformly bounded. For the first sum, we used the inequality

‖m`+1
h −m`

h‖2L2(Ω)
≤ C2

vk
2‖v`h‖2L2(Ω)

from Lemma 2.2.3. Boundedness of the discrete quantities from Proposition 6.2.8, Corol-
lary 6.2.9, and Corollary 6.2.10 and verbatim analysis from the previous chapters thus show
the L2- and H1-convergence properties. By use of the Weyl theorem, we may extract yet
another subsequence of mhk,m

±
hk to see pointwise convergence, i.e. (6.2.16d). Finally, the

length preservation constraint follows as before and the identification of the limit of v from
Lemma 2.3.6.
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Step 3:

In the remainder of this chapter, we will prove that the limiting tupel (m,u) is indeed a
weak solution in the sense of Definition 6.1.2.
Proof of Theorem 6.2.3. Let (ζ,ψψψ) ∈ C∞(ΩT )×C∞c

(
[0, T );C∞c (Ω)

)
be arbitrary. We define

testfunctions by (ϕh,ψψψh)(t, ·) :=
(
Ih(m−hk × ζ), Ihψψψ,

)
(t, ·). We integrate equation (6.2.2) in

time to obtain

α

∫ T

0
(v−hk,ϕh) +

∫ T

0

(
(m−hk × v−hk),ϕh

)
= −Ce

∫ T

0

(
∇(m−hk + θkv−hk),∇ϕh)

)
+

∫ T

0

(
hm(u−hk,m

−
hk),ϕh

)
+

∫ T

0

(
π(m−hk),ϕh

)
,

where the magnetostrictive component is again given by

[hm(u−hk,m
−
hk)]` :=

∑
i,j,p

λmijpqσ
hkij(m−hk)p, with σσσhk = λλλe

(
εεε(u−hk)− εεε

m(m−hk)
)
.

As before, the definition ϕh(t, ·) := Ih(m−hk × ζ)(t, ·) and the approximation properties of the
nodal interpolation operator show∫ T

0

(
(αv−hk + m−hk × v−hk),(m

−
hk × ζ)

)
+ k θ

∫ T

0

(
∇v−hk,∇(m−hk × ζ)

)
+ Ce

∫ T

0

(
∇m−hk,∇(m−hk × ζ)

)
−
∫ T

0

(
hm(u−hk,m

−
hk), (m

−
hk × ζ)

)
−
∫ T

0

(
π(m−hk), (m

−
hk × ζ)

)
= O(h),

and we estimate the first three terms on the left hand side as above. Next, the weak conver-
gence of π(m−hk) from (6.2.6) yields∫ T

0

(
π(m−hk), (m

−
hk × ζ)

)
−→

∫ T

0

(
π(m), (m× ζ)

)
,

and it therefore only remains to consider the magnetostrictive component. Here, we have to
show

hm(u−hk,m
−
hk)

sub−−⇀ hm(u,m) weakly in L2(ΩT ),

where it obviously suffices to show the desired property componentwise. A straightforward
computation analogously to Lemma 6.2.7 proves

‖εεεm(m−hk)− εεε
m(m)‖2

L2(ΩT )
. ‖m−hk −m‖2

L2(ΩT )

The pointwise convergence of m−hk from (6.2.16d) in combination with Lebesgue’s dominated
convergence theorem, now yields the strong convergence m−hkζ → mζ (which even holds
componentwise for any set of indices). For any indices i, j, p, ` = 1, 2, 3 this shows(

(εεεm(m−hk))ij(m
−
hk)p, ζ`

)
−→

(
εεεm(m)ijmp, ζ`

)
.
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By definition of the magnetostrictive component it therefore only remains to show

(εεε(u−hk))ij(m
−
hk)p

sub−−⇀ εεε(u)ijmp weakly in L2(ΩT )

for any combination i, j, p = 1, 2, 3 of indices. Analogously to above, this can be seen by(
(εεε(u−hk))ij(m

−
hk)p, ζ`

)
=
(
εεε(u−hk)ij , (m

−
hk)pζ`

) sub−−→
(
εεε(u)ij ,mpζ`

)
=
(
εεε(u)ijmp, ζ`

)
for all ζ ∈ C∞(ΩT ), where the convergence of εεε(u−hk) towards εεε(u) particularly follows from
the convergence of u−hk towards u in L2(H1). So far, we have thus proved∫ T

0

(
(αmt + m×mt), (m× ζ)

)
= −Ce

∫ T

0

(
∇m,∇(m× ζ)

)
+

∫ T

0

(
hm(u,m), (m× ζ)

)
+

∫ T

0

(
π(m), (m× ζ)

)
,

and we conclude (6.1.11) with the standard arguments from above. Again, the equality
m(0, ·) = m0 in the trace sense follows from the weak convergence mhk ⇀ m in H1(ΩT )
and thus weak convergence of the traces. The equality u(0, ·) = u0 follows analogously.
In order to prove (6.1.12), we argue similarly. From (6.2.3), we obtain∫ T

0

(
(u̇hk)t,ψψψh

)
+

∫ T

0

(
λλλeεεε(u+

hk), εεε(ψψψh)
)

=

∫ T

0

(
λλλeεεεm(m+

hk), εεε(ψψψh)
)
.

For the first summand on the left-hand side, we perform integration by parts in time and get∫ T

0

(
(u̇hk)t,ψψψh

)
= −

∫ T

0

(
u̇hk, (ψψψh)t

)
+
(
u̇hk(T, ·),ψψψh(T, ·)

)︸ ︷︷ ︸
=0

−
(
u̇hk(0, ·)︸ ︷︷ ︸

=u̇0
h

,ψψψh(0, ·)
)
.

Passing to the limit (h, k)→ 0, we see∫ T

0

(
(u̇hk)t,ψψψh

) sub−−→ −
∫ T

0

(
u̇,ψψψt

)
−
(
u̇(0, ·),ψψψ(0, ·)

)
.

Here, we have used the assumed convergence of the initial data. It remains to identify the
limiting function u̇. From (6.2.16h) and the definition of u̇+

hk, we get u̇+
hk = ∂tuhk, and

therefore, by use of weak lower semi-continuity, conclude

‖u̇− ∂tu‖2L2(ΩT )
≤ lim inf

(h,k)→(0,0)
‖u̇+

hk − ∂tuhk‖
2
L2(ΩT )

= 0

whence u̇ = ∂tu almost everywhere in ΩT . The convergence of the terms∫ T

0

(
λλλeεεε(u+

hk), εεε(ψψψh)
) sub−−→

∫ T

0

(
λλλeεεε(u), εεε(ψψψ)

)
and∫ T

0

(
λλλeεεεm(m+

hk), εεε(ψψψh)
) sub−−→

∫ T

0

(
λλλeεεεm(m), εεε(ψψψ)

)
is straightforward. In summary, we have thus shown (6.1.12).
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Finally, standard techniques show the energy estimate (6.1.13). From the discrete energy
estimates (6.2.13) and (6.2.15), in combination with Korn’s inequality, we get for any t′ ∈ [0, T ]
with t′ ∈ [t`, t`+1)

‖∇m+
hk(t

′)‖2
L2(Ω)

+ ‖v−hk‖
2
L2(Ωt′ )

+ ‖∇u+
hk(t

′)‖2
L2(Ω)

+ ‖u̇+
hk(t

′)‖2
L2(Ω)

= ‖∇m+
hk(t

′)‖2
L2(Ω)

+

∫ t′

0
‖v−hk(t)‖

2
L2(Ω)

+ ‖∇u+
hk(t

′)‖2
L2(Ω)

+ ‖u̇+
hk(t

′)‖2
L2(Ω)

≤ ‖∇m+
hk(t

′)‖2
L2(Ω)

+

∫ t`+1

0
‖v−hk(t)‖

2
L2(Ω)

+ ‖∇u+
hk(t

′)‖2
L2(Ω)

+ ‖u̇+
hk(t

′)‖2
L2(Ω)

≤ C̃,

for some constant C̃ which is independent of h and k. Integration in time thus yields for any
measurable set I ⊆ [0, T ]∫

I
‖∇m+

hk(t
′)‖2
L2(Ω)

+

∫
I
‖v−hk‖

2
L2(Ωt′ )

+

∫
I
‖∇u+

hk(t
′)‖2
L2(Ω)

+

∫
I
‖u̇+

hk(t
′)‖2
L2(Ω)

≤
∫
I
C̃.

Weak semi-continuity now shows∫
I
‖∇m(t′)‖2

L2(Ω)
+

∫
I
‖mt‖2L2(Ωt′ )

+

∫
I
‖∇u(t′)‖2

L2(Ω)
+

∫
I
‖ut(t′)‖2L2(Ω)

≤
∫
I
C̃.

Standard measure theory, cf. e.g. [Els11, IV, Theorem 4.4] concludes the proof.

Remark. Under certain regularity assumptions, namely

∇u ∈ L∞(ΩT ),

∂tu ∈ L2(H2), and

∂ttu ∈ L2(L2),

in combination with the stability assumptions

k

j−1∑
i=1

‖d2
tm

i+1
h ‖

2
L2(Ω)

. 1 + k

j−1∑
i=1

‖dtεεε(uih)‖2
L2(Ω)

,

‖v0
h‖2L2(Ω)

≤ C, and

‖vN−1
h ‖2

L2(Ω)
≤ C,

strong convergence

‖uhk − u‖H1(ΩT )
sub−−→ 0

can be achieved for a subsequence. Here, u denotes a weak solution of the conservation of mo-
mentum equation in the sense of Definition 6.1.2. To that end, the magnetostrictive component
can be treated as a time-dependent contribution, and the properties (2.3.30)–(2.3.31) can be
shown by an extended analysis based on [Baň05b]. The strong convergence property for uhk
then follows along the way. To the best of our knowledge, a proof of the above assumptions is,
however, mathematically open. For more details, the interested reader is referred to [PHPS12].
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6.3. Numerical experiments

6.3. Numerical experiments

We conclude the analytic investigation of the coupled system of LLG with the conservation
of momentum equation with a short section of computational experiments. Throughout, we
implemented Algorithm 6.2.1. As before, visualization of 3D data is carried out in Paraview,
cf. [Webc].

6.3.1. General performance

Before we come to the first experiment, we want to comment on the implementation of the
system matrix A ∈ R3N×3N with

Aij =

∫
Ω

(
λλλeεεε(ηi), εεε(ηj)

)
,

where ηi and ηj denote the nodal basis functions on zi and zj , respectively, and N = #N
denotes the number of nodes. Throughout, we work on a three-dimensional spatial domain.
Therefore, for each node zj ∈ N , we have the three basis functions

ηj1 =

ηj0
0

 , η2 =

 0
ηj

0

 , and ηj3 =

 0
0
ηj

 .

For the entries of the standard stiffness matrix as it occurs in LLG, for example, one thus gets

∇ηj1 =

 ∂η
∂x1

∂η
∂x2

∂η
∂x3

0 0 0
0 0 0

 ,∇ηj2 =

 0 0 0
∂η
∂x1

∂η
∂x2

∂η
∂x3

0 0 0

 , and ∇ηj3 =

 0 0 0
0 0 0
∂η
∂x1

∂η
∂x2

∂η
∂x3

 .

For different components i, i′ of ηj , we thus always get∇ηji : ∇ηji′ = 0 and therefore (∇ηji ,∇η
j
i′)

= 0. By some clever enumeration of the nodes and indices, namely by separating x1, x2 and
x3 components, the stiffness matrix gets the elegant block-diagonal shape

S =


x1 x2 x3

x1 S̃ 0 0

x2 0 S̃ 0

x3 0 0 S̃

,
where S̃ is the 1D stiffness matrix. Exploiting Matlab’s spy-command, we can see that this
is indeed the case and for the data from the second experiment below, the structure of the
stiffness matrix is given in Figure 6.1.
For the system matrix A from the conservation of momentum equation, however, this is not

the case anymore. Even if we neglect the tensorial multiplication with λλλe, we get

εεε(ηj1) =


∂η
∂x1

1
2
∂η
∂x2

1
2
∂η
∂x3

1
2
∂η
∂x2

0 0
1
2
∂η
∂x3

0 0

 , εεε(ηj2) =

 0 1
2
∂η
∂x1

0
1
2
∂η
∂x1

∂η
∂x2

1
2
∂η
∂x3

0 1
2
∂η
∂x3

0

 , and

εεε(ηj3) =

 0 0 1
2
∂η
∂x1

0 0 1
2
∂η
∂x2

1
2
∂η
∂x1

1
2
∂η
∂x2

∂η
∂x3

 .
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Figure 6.1.: Sparsity pattern of the stiffness matrix.

The system matrix A from the conservation of momentum equation thus even has entries in
parts which correspond to different components of the solution. More precisely, A is a block-
full matrix. It is, however, still sparse due to the finite overlap of the supports of the different
hat functions. The structure of the elasticity matrix for the data from the second example
below is visualized in Figure 6.2.

Convergence in time

Timesteps

10 50 100 500 1000 5000 10000 50000

Err(u) 17.5860 5.5100 3.2414 0.7743 0.3985 0.0824 0.0429 0.0165

Table 6.1.: Err(u) for varying time steps.

In a first experiment, we aim to investigate the convergence order in time and space for the
conservation of momentum equation. To that end, we prescribe the exact solution

u(t, x1, x2, x3) =

u1

u2

u3

 (t, x1, x2, x3) and m(t, x1, x2, x3) =

m1

m2

m3

 (t, x1, x2, x3)
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Figure 6.2.: Sparsity pattern of the system matrix A from the conservation of momentum
equation.

with

m1(t, x1, x2, x3) := sin(ct+ dx1) cos
(
ct+ d(x2 + x3)

)
m2(t, x1, x2, x3) := cos(ct+ dx1) cos

(
ct+ d(x2 + x3)

)
m3(t, x1, x2, x3) := sin(ct+ d

(
x2 + x3)

)
u1(t, x1, x2, x3) := sin

(
a(x1x2 + x3) + bt

)
u2(t, x1, x2, x3) := cos

(
a(x3x1 + x2) + bt

)
u3(t, x1, x2, x3) := sin

(
a(x2x3 + x1) + bt

)
+ cos

(
a(x2x3 + x1) + bt

)
and solve (6.2.3) on the cube [−1, 1]3 with % = 1 and heff = ∆m+hm. For the tensors λλλe,λλλm,
we use

λeijkl = λmijkl = Cδikδjl

and C = 1. For the time interval [0, T ], we choose T = 3. To minimize the spatial error,
we further set a = 0.01, b = 4/3π, c = 2π, d = 0.01. The corresponding right-hand side was
calculated with Mathematica. The dynamic behaviour of the displacement u is visualized
in Figure 6.3. For P = 320 spatial elements, we investigate the temporal error for varying
time steps and find linear error decay for Err(u), cf. Table 6.1. The results are also visualized
in Figure 6.4.
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Chapter 6. LLG with magnetostriction

Figure 6.3.: Evolution of the displacement for P = 320 spatial elements and N = 100 time
steps.

168



6.3. Numerical experiments
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Figure 6.4.: Error decay for uniform refinement in time with P = 320 spatial elements. As
expected, we observe linear behaviour.

100 101 102 103 104 105
10−2

10−1

100

101

102

O(P−2/3)

Figure 6.5.: Decay of the spatial error in L2-norm plotted over the amount of spatial elements.

169



Chapter 6. LLG with magnetostriction

100 101 102 103 104 105
10−1

100

101

102

O(P−1/3)

Figure 6.6.: Decay of the spatial error inH1-norm plotted over the amount of spatial elements.

Convergence in space

In the next experiment, we aim to investigate the spatial convergence rate. To that end, we use
a fixed amount of 1000 time steps and choose the parameter setting to be a = 0.5, b = π, c = π,
and d = 0.5. For varying amounts P ∈ {5, 40, 320, 2560, 20480} of spatial elements, we
compare the error in H1 and L2 norm, cf. Table 6.2.

Spatial elements

5 40 320 2560 20480

maxt∈[0,T ] ‖u(t)− uhk(t)‖L2(Ω) 1.7596 0.3426 0.0854 0.0250 0.0126

maxt∈[0,T ] ‖u(t)− uhk(t)‖H1(Ω) 3.1090 2.3096 0.6254 0.3392 0.1987

Table 6.2.: Spatial error in L2- and H1-norm, respectively.

The L2-error is visualized in Figure 6.5 and the H1-error is visualized in Figure 6.6. As
expected, we observer quadratic decay in the L2-norm, and linear decay for H1. We like to
emphasize, that the L2-norm of the error is actually the correct quantity to investigate here,
as the above analysis only yields norm convergence in L2 rather thanH1. The computational
results, however, suggest, that uhk converges towards u normwise even in H1.
Finally, we completely neglect the temporal error and consider the stationary problem

−∇ · σσσ = f (6.3.1)
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Figure 6.7.: Error decay in L2-norm for the stationary problem plotted over the amount of
spatial elements.
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Figure 6.8.: Error decay in H1-norm for the stationary problem plotted over the amount of
spatial elements.
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Chapter 6. LLG with magnetostriction

Figure 6.9.: Visualization of the exact stationary solution (red) and its numerical approxima-
tion (blue).
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6.3. Numerical experiments

Figure 6.10.: Dynamic behaviour of the magnetization for small magnetostriction with Cλ = 1.

for the above data with t = 0. In this example, we thus test the system matrix A with

Aij =

∫
Ω

(
λλλeεεε(ηi), εεε(ηj)

)
.

Moreover, we neglect the dependence on the magnetization m, i.e. we solve(
λλλeεεε(uh), εεε(ψψψh)

)
= (f ,ψψψh) for all ψψψh ∈ S1(Th), (6.3.2)

where the boundary data is given by the trace of the prescribed solution from above. Again,
the exact right-hand side was computed with Mathematica. The exact- and the numerical
solutions are visualized in Figure 6.9. The exact solution is represented by the red arrows,
whereas the numerical solution is represented by the blue arrows. In the third picture of the
top row, both solutions are visualized simultaneously and as expected, they nearly coincide.
The other images from Figure 6.9 show closeup snapshots of the solution and confirm, that
the approximated solution is in good agreement with the exact one for P = 2560 elements.
Again, we investigate the decay of the error for varying spatial resolution and the H1- and

L2 errors are given in Table 6.3. As in the evolutionary case, the errors are visualized in the
Figures 6.7 and 6.8. Again, we observe the expected convergence behaviour.

Spatial elements

5 40 320 2560 20480 163840

‖u− uh‖L2(Ω) 1.5545 0.3124 0.0738 0.0214 0.0067 0.0022

‖u− uh‖H1(Ω) 3.1970 2.5926 0.6474 0.3481 0.1853 0.0869

Table 6.3.: Spatial error in L2- and H1-norm for stationary problem.

6.3.2. Some thoughts on energy

In the next experiment, we consider the coupled system of LLG with the conservation of
momentum equation and investigate the influence of increasing magnetostriction on the total
energy of the system. To that end, we employ the initial data
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Figure 6.11.: Energy contributions Eexch (left), Eelastic (middle), and Etotal (right)for Cλ = 1.
Clearly, the exchange contribution is dominant.
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Figure 6.12.: Energy contributions Eexch (left), Eelastic (middle), and Etotal (right) for Cλ = 2.
Influence of the magnetostriction is clearly visible.
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Figure 6.13.: Total energy Etotal for different values of Cλ ∈ {1, 2, 3, 10} plotted over time.

m0
1(x1, x2, x3) := sin(1/2x1) cos

(
1/2(x2 + x3)

)
,

m0
2(x1, x2, x3) := cos(1/2x1) cos

(
1/2(x2 + x3)

)
,

m0
3(x1, x2, x3) := sin(1/2

(
x2 + x3)

)
,

u0(x1, x2, x3) :=

 0
0
0

 , and u̇0(x1, x2, x3) :=

 0
0
0

 .

We apply the tensors

λeijkl = λmijkl = Cλδikδjl

with increasing Cλ ∈ {1, 2, 3, 10} and consider the time interval [0, T ] with T = 1.5 for
α = 1, P = 2560, and N = 1000. For our simulation, we include the exchange effect, as well
as the magnetostrictive component, i.e. heff = ∆m+hm. Moreover, we consider the exchange
energy

Eexch(m, t) =
1

2
‖∇m(t, ·)‖2

L2(Ω)
, (6.3.3)

the elastic energy

Eelastic(u, t) =
1

2
‖εεε
(
u(t, ·)

)
‖2
L2(Ω)

(6.3.4)
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and the total energy

Etotal = Eexch + Eelastic. (6.3.5)

For small Cλ = 1, the exchange contribution is dominant, and we observe that the mag-
netization slowly aligns parallel. This is visualized in Figure 6.10. The energy contributions
Eexch, Eelastic, and Etotal are plotted over time in Figure 6.11. As expected, the exchange energy
is minimized. In the next step, we set Cλ = 2 and again compare the energy contributions in
Figure 6.12. This time, the influence of the magnetostrictive component is clearly visible and
the exchange energy is not dominant anymore, after a short while.
Finally, in Figure 6.13, we plot Etotal for different values of Cλ ∈ {1, 2, 3, 10} over time. In

any case and as predicted by theory the total energy is uniformly bounded. Note, that we
cannot expect the total energy Etotal to decrease or even vanish, as we only proved boundedness
of Etotal by some constant that strongly depends on Cλ. Altogether, our results are in good
agreement with similar observations in [Roc12, Section 4.2.5].

6.3.3. Effects on hysteresis

Finally, we investigate the effects of magnetostriction on hysteresis. To that end, we com-
pute an academic example in 2D. On [−0.5, 0.5]2 and the time interval (0, 3), we solve Algo-
rithm 6.2.1 with

heff = 0.5∆m + hm + ha + f ,

where ha denotes the uniaxial anisotropy in x3-direction with Cani = 50. For the material
tensors, we choose the simplified

λmijkl = λeijkl =

{
Cλ i = j = k = l ∈ {1, 2},
0 else.

Thus, the magnetostrictive contribution of the effective field simplifies to

(hm)i = λmiiiiσσσii(m)i = Cλσσσii(m)i.

Moreover, the external field f is not constant in time but has the form f(t) = µ(t)Cf [−0.5, 0,−1]
with Cf = 100 and where µ(t) is slowly increased from 0 to 2. Afterwards, it is decreased
until −2 and then again increased until 2 and so on. The inertial remagnetization process
into the direction of the applied field is characteristic for the corresponding material and is
visualized by means of a hysteresis loop, see e.g. [Gol12, Section 6.1] for details. Initially,
the magnetization is homogeneously oriented in easy-axis direction, and the displacement is
neglected, i.e.

m0 :=

 0
0
1

 ,u0 :=

 0
0
0

 , and u̇0 :=

 0
0
0

 .

As discretization parameters, we choose h = 1/16 and N = 10000 time steps and α = 1. The
results for different values of Cλ ∈ {0, 1, 2, 3, 4, 5, 6} are visualized in Figure 6.14 where we
plot the average magnetization in x3-direction over the strength of the applied field. We see
the typical hysteresis loop, and we clearly observe that coercivity increases as we increase Cλ.
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Figure 6.14.: Hysteresis loop for different values of Cλ. Clearly, the coercivity increases as Cλ
is increased.
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Chapter 7
Outlook and open questions

With this work, we contribute to the field of dynamical micromagnetism by means of ana-
lytical and numerical results. Starting from the notion of a weak solution in [AS92] and the
subsequent scheme proposed by Alouges in [Alo08a], we constructed numerical integrators
for a wide variety of problems. The main leitmotif has always been to construct a numeri-
cal integrator which is applicable to as many situations as possible. To that end, we did an
abstract convergence analysis and derived a set of assumptions a field contribution needs to
fulfill in order for the scheme to be convergent. Instead of investigating each classic or possible
future field contribution individually, one now has a checklist of two easily verifiable conditions
to be checked without to even have to look at the convergence analysis. Concretely, one has
to ensure that the field operator π(·) is uniformly bounded in L2(Ω), i.e.

‖π(n)‖L2(Ω) . ‖n‖L2(Ω)

for all n ∈ L2(Ω) with |n| ≤ 1 almost everywhere. Moreover, one needs to verify the weak
convergence property

π(nhk)
sub−−⇀ π(n) weakly in L2(ΩT ),

provided the sequence nhk strongly subconverges towards n in L2(ΩT ). It can be verified that
the classic field contributions anisotropy, strayfield, and external field fall into this category.
Furthermore, we could even show that the multiscale ansatz introduced by Bruckner [Bru13]
is covered by our approach. This result gives both, a better understanding of the line of proof
as well as a straightforward applicability for future developments.
In the next step, we investigated LLG coupled to various other PDEs to account for multiple

micromagnetic effects. More precisely, we investigated coupling to the full Maxwell system,
the eddy-current equation, and the conservation of momentum equation. In all cases, we
were able to derive an unconditionally convergent integrator which numerically decouples
both equations. That is to say instead of one large (and possibly nonlinear) system, we
subsequently solve two smaller linear problems, one for LLG in the spirit of [Alo08a] and one
for the coupled equation. The sequence of discrete solutions is then still guaranteed to weakly
subconverge towards a weak solution of the full coupled problem without any condition on
the discretization parameters. Altogether, we considered coupling to various model problems,
namely
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Chapter 7. Outlook and open questions

• coupling to a linear second order hyperbolic PDE (full Maxwell system),

• coupling to a linear second order parabolic PDE (eddy-current equation),

• coupling with a nonlinear coupling operator (magnetostriction).

Finally, we investigated the conditions under which more physically relevant (yet mathe-
matically unnecessary) energy estimates can be derived. For the 3D case, it turned out that
those are uniform L4(Ω)-boundedness as well as self-adjointness of the corresponding field
contribution. As far as the classical field contributions are concerned, this is the case for uni-
axial anisotropy or the magnetostatic strayfield, which is in good agreement to the available
literature, see e.g. [Alo08a, BP06].

Despite its optimistic title, a single work cannot give a concluding answer to all questions in
dynamical micromagnetism. On the contrary, it behaves as always in mathematics, for each
answered question, two new ones pop up, and we like to give a short outlook here.

• The most obvious issue seems to be a general analysis of the coupling operator. For
stationary LLG field contributions, we derived a list of requirements that need to be
satisfied to ensure unconditional convergence. The question for such a set of minimal
assumptions for the coupling operator thus seems straightforward. Allowedly, with the
magnetostrictive component, we treated quite a complicated coupling operator as it
is nonlinear and additionally depends on the spatial derivative of the solution from the
second PDE. It would be interesting, however, to push the boundaries of our analysis and
see under which circumstances coupling to other PDEs still leads to an unconditionally
convergent scheme.

• In the context of the first point, one could investigate the decoupling of the two problems
in a more general fashion to understand in which cases such a result is possible. In all
cases, we managed to derive a stable bound for the difference of two subsequent solutions,
e.g. for the eddy-current case

N∑
i=0

‖Hi+1
h −Hi

h‖2L2(Ω̂)
≤ C.

While one may expect that such an estimate is a necessary condition for a decoupled
scheme, it remains unclear whether it is also sufficient in general.

• In terms of efficiency of the proposed integrator, there remains the important question of
convergence order. While we did not make any statement on the convergence rate of our
schemes, they are generically of order 1 in both, space and time. Higher order extensions
in space or time are hindered by technical difficulties. The recent work [AKST12] is a
good starting point for a second order scheme in time, but there is still some work to
do. In this context, it would be especially interesting to see if one can still decouple the
coupled problems, if the discretization is of higher order.

• As mentioned in the introduction, we basically find two competing integrators in the lit-
erature at the moment, the tangent plane scheme [Alo08a] and the midpoint scheme [BP06],
both of which have distinguished advantages and disadvantages. For the tangent plane
scheme those are:
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– advantages

∗ linear scheme

∗ unconditional convergence

∗ decoupling rigorously analyzed

– disadvantages

∗ artificial damping

∗ current scheme only of first order in time

∗ angle condition on mesh

For the midpoint scheme, on the other hand, one has:

– advantages

∗ no artificial damping

∗ formally of second order in time

– disadvantages

∗ requires condition on mesh parameters in practice for reliable fixed point iter-
ation

∗ decoupling not rigorously analyzed in the literature so far

It would thus be nice to have criteria that indicate which integrator would be the most
suitable in which situation. To that end, the work [BPPR13] provides some computa-
tional comparison, but more studies are in order.

• Finally, and independently of the concrete integrators derived in this thesis, there are
open questions concerning the analysis of weakly convergent integrators of LLG: Is it
possible to deduce convergence of the whole sequence rather than only a subsequence?
At least in our computations, we always observe that the complete sequence converges.
Other questions concern strong convergence or even the non-uniqueness of weak solu-
tions. The original work [AS92] proves non-uniqueness only in the case heff = ∆m.
Maybe this result could be weakened if other field contributions come into play.

For stationary problems in micromagnetics, for instance, uniqueness of minimizers fol-
lows mathematically from the interplay of anisotropy and the demagnetization field, see
e.g. [DP98, FLMP12].

Altogether, we derived very nice results, but ultimately this thesis leaves much space for
further research. On the other hand, this is what makes a topic interesting for future mathe-
maticians in the first place.

181



182



Appendix A
Appendix

A.1. Equalities and inequalities

Lemma A.1.1 (Gronwall). Let r(t), h(t), y(t) be continuous functions on the interval [a, b]
with r(t), h(t) ≥ 0. Assume that for a ≤ t ≤ b, there holds

y(t) ≤ h(t) +

∫ t

a
r(s)y(s) ds.

Then, we have

y(t) ≤ h(t) +

∫ t

a
h(s)r(s) exp

( ∫ t

s
r(q)r(q) dq

)
ds.

If we further have r(s) = C and h non-decreasing, then we additionally get

y(t) ≤ h(t) exp
(
C(t− a)

)
,

for a ≤ t ≤ b.

Proof. The proof can be found in [Pla00, Lemma 8.13].

Lemma A.1.2 (Gronwall — discrete version). Let h0, . . . , hr−1 > 0 and α ≥ 0, β ≥ 0 be
given. Assume further that for v0, . . . , vr the following inequalities are satisfied:

|v0| ≤ α, |v`| ≤ α+ β

`−1∑
j=0

hj |vj | for all ` = 1, . . . , r.

Then, there holds

|v`| ≤ α exp
(
β
`−1∑
j=0

hj
)

for all ` = 0, 1, . . . , r.

Proof. The proof can be found in [Pla00, Lemma 8.14].
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Lemma A.1.3. (Abel’s summation by parts) Let X be a Hilbert space with scalar product (·, ·)
and induced norm ‖ · ‖2 = (·, ·). Moreover, let v` ∈ X for all ` = 0, . . . , j for some j ∈ N with
j ≥ 0. Then there holds

j−1∑
`=0

(v`+1 − v`, v`+1) =
1

2
‖vj‖2 −

1

2
‖v0‖2 +

1

2

j−1∑
`=0

‖v`+1 − v`‖2. (A.1.1)

Proof. The proof follows by direct calculation. We have

2(v`+1 − v`, v`+1) = (v`+1, v`+1 − v`) + (v`+1 − v`, v`+1)

= (v`+1, v`+1)− (v`+1, v`) + (v`+1 − v`, v`+1)

= (v`+1, v`+1)− (v`+1, v`) + (v`+1 − v`, v`+1)− (v`, v`) + (v`, v`)

= (v`+1, v`+1)− (v`, v`) + (v`+1 − v`, v`+1)− (v`+1 − v`, v`)
= (v`+1, v`+1)− (v`, v`) + (v`+1 − v`, v`+1 − v`).

Summing up and exploiting the telescopic sum yields the assertion.

Lemma A.1.4 (Hölder inequality). Let pj ∈ [1,∞] for j = 1, . . . ,m and 1
r =

∑m
j=1

1
pj
. Let

further fj ∈ Lpj (X) for j = 1, . . .m. Then, there holds

‖
m∏
j=1

fj‖Lr(X) ≤
m∏
j=1

‖fj‖Lpj (X). (A.1.2)

Proof. The proof is found e.g. in [Eva02, B.2].

Lemma A.1.5. (Cauchy inequality with ε - sometimes also Young inequality with ε) For
a, b ∈ R, we have for any ε > 0

ab ≤ εa2 +
b2

4ε
. (A.1.3)

Proof. The proof can be found at [Eva02, Appendix B.2, a and b].

Lemma A.1.6. Let ζ,η ∈ L2(H1). Then there holds(
∇ζ,∇(ζ × η)

)
=
(
∇ζ, (ζ ×∇η)

)
. (A.1.4)

Here, the cross product of ζ and the Jacobian ∇η is given as

ζ ×∇η =

ζ1

ζ2

ζ3

×
∇η1

∇η2

∇η3

 =

ζ2∇η2 − ζ3∇ η2

ζ3∇η1 − ζ1∇η3

ζ1∇η2 − ζ2∇η1


=

ζ2∂x1η3 − ζ3∂x1η2 · · · ζ2∂x3η2 − ζ3∂x3η2
...

. . .
...

ζ1∂x1η2 − ζ2∂x1η1 · · · ζ1∂x3η2 − ζ2∂x3η1

 .

Proof. The proof is straightforward and follows from direct calculations. The elaborated
arguments can be found, e.g. in [Gol12, Lemma 2.0.10].
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Lemma A.1.7 (Properties of the cross product). For u, v, w ∈ R3, the following properties
are true.

(i) u× u = 0.

(ii) u× v = −v × u.

(iii) 〈u, u× v〉 = 0.

(iv) u× (v × w) = 〈u,w〉v − 〈u, v〉w.

(v) 〈u× v, w〉 = 〈w × u, v〉 = 〈v × w, u〉.

(vi) 〈u× (v × w) + v × (w × u) + w × (u× v) = 0.

Proof. The proof follows by straightforward computations.

Theorem A.1.8 (Korn’s inequality). There exists a positive C > 0 such that

‖εεε(u)‖L2(Ω) + ‖u‖L2(Ω) ≥ C‖u‖H1(Ω), (A.1.5)

where εεε denotes the symmetric part of the gradient from (6.1.5).

Proof. The proof can be found in [BS08, Theorem 11.2.16].

A.2. Functional analytic facts

Theorem A.2.1. Let X be a reflexive space. Then each bounded sequence (xn) ⊂ X admits
a weakly convergent subsequence, i.e. there exists some x ∈ X such that

xn
sub−−⇀ x weakly in X . (A.2.1)

Proof. The proof can be found in [Wer00, Theorem III.3.7].

Theorem A.2.2 (Lebesgue dominated convergence). On the open domain X, we consider
measurable functions f, fn : X → K with fn → f almost everywhere. Let further g be an
integrable and measurable function such that for all n ∈ N, we have |fn| ≤ g almost everywhere.
Then f and fn are integrable and there holds

lim
n→∞

∫
X
fn =

∫
X
f (A.2.2)

and, in particular

lim
n→∞

∫
X
|fn − f | = 0, (A.2.3)

i.e. fn converges towards f even in L1(X).

Proof. The proof can be found in [Els11, IV, Theorem 5.2].

The dominated convergence theorem even allows an extension in Lp(X).
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Corollary A.2.3 (Dominated convergence in Lp). Let 0 < p <∞, fn, f : X → K measurable
for some open domain X, with fn → f almost everywhere. Let further g ∈ Lp(X) with |fn| ≤ g
almost everywhere. Then fn, f ∈ Lp(X) and fn converges towards f even in Lp(x), i.e.

lim
n→∞

‖fn − f‖Lp(X) = 0. (A.2.4)

Proof. The proof for an even more general version of this result can be found in [Els11, VI,
Theorem 5.3].

Theorem A.2.4 (Rellich-Kondrachov compactness theorem). Let Ω be an open and bounded
subset of Rn with Lipshitz boundary. Then, the embedding

H1(Ω) ↪→ L2(Ω)

is compact.

Proof. Then proof can be found e.g. in [McL00, Theorem 3.27].

Lemma A.2.5 (Convergence of the product). Let 1 ≤ p, q, r ≤ ∞, 1/p + 1/q = 1/r, and
fn ∈ Lp(X), gn ∈ Lq(X) with

lim
n→∞

‖fn − f‖Lp(X) = 0, and lim
n→∞

‖gn − g‖Lq(X) = 0. (A.2.5)

Then, there holds

lim
n→∞

‖fngn − fg‖Lr(X) = 0, (A.2.6)

i.e. the product converges strongly in Lr(X). For 1/p+ 1/q = 1, there particularly holds

lim
n→∞

‖fngn − fg‖L1(X) = 0. (A.2.7)

Proof. The proof is done by straightforward calculation using Hölders inequality from Lemma A.1.4.
There holds

‖fngn − fg‖Lr(X) = ‖(fn − f)gn + (gn − g)f‖Lr(X)

≤ ‖(fn − f)gn‖Lr(X) + ‖(gn − g)f‖Lr(x)

≤ ‖fn − f‖Lp(X)‖gn‖Lq(X) + ‖gn − g‖Lq(X)‖f‖Lp(X) −→ 0.

This concludes the proof.

Lemma A.2.6 (Riesz). Let 0 < p <∞ and let (fn) be a sequence in Lp(Ω) which converges
towards some function f ∈ Lp(Ω), i.e.

‖fn − f‖Lp(Ω) → 0.

Then, (fn) converges towards f even in measure.

Proof. The proof can be found in [Els11, Satz VI 4.3].
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Lemma A.2.7 (Weyl). Let 0 < p ≤ ∞ and (fn)n ∈ Lp(Ω) be a convergent sequence in
Lp(Ω) with limit f ∈ Lp(Ω). Then, there exists a subsequence (fnk

)k of (fn)n which converges
towards f pointwise almost everywhere in Ω.

Proof. The proof follows from Lemma A.2.6 and is found e.g. in [Els11, VI, Korollar 2.7].

Lemma A.2.8. Let X be a Hilbert space, and let (xn)n, (yn)n ⊂ X be weakly resp. strongly
convergent subsequences with limits x, y ∈ X, i.e.

xn −→ x strongly in X,
yn ⇀ y weakly in X.

Then, there holds (xn, yn)X −→ (x, y).

Proof. There holds

|(xn, yn)X − (x, y)X | = |(xn, yn)X − (x, yn)X + (x, yn − y)X |
= |(xn − x, yn)X + (x, yn − y)X | −→ 0

due to boundedness of (yn)n in X and strong convergence of xn.

Lemma A.2.9. Let Ω be a bounded domain in Rd and an ⊆ H1(Ω) a weakly convergent
sequence with limit a ∈ H1(Ω). Then, there holds

an −→ a strongly in L2(Ω) and

∇an ⇀ ∇a weakly in L2(Ω),

i.e. the individual contributions of the norm are also convergent.

Proof. The first result is a direct consequence of the Rellich-Kondrachov theorem A.2.4. To
see the second one, we argue as follows: Due to boundedness of weakly convergent sequences,
from ‖an‖2H1(Ω) = ‖an‖2L2(Ω) + ‖∇an‖2L2(Ω) ≤ C <∞, we get ‖∇an‖L2(Ω) ≤ C. This, however
yields the existence of a function A ∈ L2(Ω) with

∇an
sub−−⇀ A weakly in L2(Ω).

It remains to investigate the equality A = ∇a. From weak convergence in L2(Ω), we get for
any testfunction ϕ ∈ C∞c (Ω)

lim
n

(∇an, ϕ) = (A,ϕ)

and via integration by parts thus∫
Ω
Aϕ = lim

n

∫
Ω
∇anϕ = − lim

n

∫
Ω
an divϕ = −

∫
Ω
adivϕ =

∫
Ω
∇aϕ.

Since the testfunction ϕ ∈ C∞c (Ω) was arbitrary, this yields A = ∇a. Moreover, the limit
is the same for each subsequence, and hence the entire sequence is convergent which is the
desired result.
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The following Lemma considers the convergence of the product of a weakly L1-convergent
sequence and a strongly L2-convergent sequence.

Lemma A.2.10. Let Ω be a bounded domain. Let further an ∈ L2(Ω) be bounded and bn ⊆
L2(Ω) with

an ⇀ a weakly in L1(Ω) and

bn −→ b strongly in L2(Ω).

Then, there holds

(an, bn) −→ (a, b),

where (·, ·) denotes the L2-scalar product.

Proof. From the boundedness of an in L2(Ω), we deduce the existence of a function A ∈ L2(Ω)
with

an
sub−−→ A in L2(Ω).

From the definition of weak limits, we get

(an, ϕ) −→ (A,ϕ) for all ϕ ∈ L2(Ω) ⊇ C∞c (Ω) and
(an, ϕ) −→ (a, ϕ) for all ϕ ∈ L∞(Ω) ⊇ C∞c (Ω)

and thus

(A− a, ϕ) ≡ 0 for all ϕ ∈ C∞c (Ω)

and hence A = a in L2(Ω). As this argument holds for any subsequence of an, we conclude
convergence of the entire sequence. Exploiting Lemma A.2.8, we conclude the desired result.

Lemma A.2.11 (Mazur). Let (xn) be a weakly convergent sequence in a normed vector space
X with xn ⇀ x. Then, the limit x lies within the closed convex hull of the members of xn, i.e.
x ∈ conv

{
xn : n ∈ N

}
.

Proof. The proof can be found in [RR04, Theorem 10.19].

By definition, the space L2(H1) contains all functions u : [0, T ] → H1(Ω), cf. e.g. [Eva02,
Section 5.9.2]. We thus have

u : [0, T ] −→H1(Ω),

u(t) ∈H1(Ω) and therefore u(t)(x) ∈ R3.

For a given function u ∈ L2(H1), the function defined on the time-space cylinder ũ ∈ L2(ΩT )
with one weak spatial derivative is implicitly defined by

ũ : ΩT −→ R3,

ũ(t,x) = u(t)(x).

To ease the presentation, as usually done in literature, we will notationally not further distin-
guish between u and ũ. The next result now states that for such functions, one can interchange
the spatial derivative and the time evaluation (at least if they are smooth enough).
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Lemma A.2.12. Let u ∈ C(C1) and ũ be defined as above, then we have

(∇ũ)(t,x) =
(
∇u(t)

)
(x), (A.2.8)

i.e. the evaluation in time and the weak spatial gradient interchange. To ease the presentation,
we write

(∇u)(t,x) =
(
∇u(t)

)
(x).

Proof. The proof is done by straightforward calculation. It obviously remains to show the
desired result for one partial derivative. By definition we get

∂ũ

∂x1
(t, x1, x2, x3) = lim

h→0

ũ(t, x1 + h, x2, x3)− ũ(t, x1, x2, x3)

h

= lim
h→0

u(t)(x1 + h, x2, x3)− u(t)(x1, x2, x3)

h

=
∂u(t)

∂x1
(x1, x2, x3).

Remark. Note, that we only apply the last result for smooth functions, i.e. strong derivatives.
Formally, the proof is not sufficient for weak gradients.

A.3. What else?

Lemma A.3.1. Let {smn}mn ⊂ R be a convergent doublesequence with simultaneous limit
lim(m,n)→(∞,∞) smn = s and assume further that the limit sm := limn→∞ smn exists in R for
all m ∈ N0. Then, the limit limm→∞ sm exists in R, and there holds

lim
m→∞

sm = lim
m→∞

(
lim
n→∞

smn
)

= lim
(m,n)→(∞,∞)

smn = s.

Proof. The proof can be found e.g. in [Sch11, Satz 3.6.6].
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