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Kurzfassung

Im Rahmen elliptischer partieller Di�erentialgleichungen (PDE) betrachten wir die Finite
Elemente Methode (FEM) und die Randelementmethode (BEM). Wir entwickeln sowie
analysieren adaptive Algorithmen, die nicht nur die adaptive Netzverfeinerung steuern,
sondern auch die Terminierung von geeigneten Lösern, d.h., die Linearisierung im Fall von
nichtlinearen Di�erentialgleichungen und das iterative Lösen der sich ergebenden linearen
Gleichungssysteme.
Zum einen betrachten wir elliptische PDEs zweiter Ordnung, bei denen die auftretenden

diskreten Systeme nicht exakt gelöst werden. Für kontrahierende iterative Löser formulie-
ren wir einen adaptiven Algorithmus, der die adaptive Netzverfeinerung sowie die inexakte
Lösung der auftretenden nichtlinearen bzw. linearen Systeme überwacht und steuert. Wir
beweisen, dass die vorgeschlagene Strategie zu linearer Konvergenz mit optimalen alge-
braischen Raten führt. Hierbei fokussieren wir uns auf Konvergenzraten in Bezug auf den
gesamten Rechenaufwand. Unsere Analysis ist anwendbar auf lineare Probleme, bei de-
nen die linearen Systeme mittels optimal vorkonditionierter CG-Verfahren (PCG) gelöst
werden, sowie nichtlineare Probleme mit stark monotoner Nichtlinearität, die mittels der
sogenannten Zarantonello-Iteration linearisiert werden.
Wir kombinieren die zuvor genannten Resultate im Rahmen elliptischer Randwertproble-

me zweiter Ordnung mit stark monotoner und Lipschitz-stetiger Nichtlinearität. Wir präsen-
tieren einen erweiterten adaptiven Algorithmus für die Berechnung der numerischen Appro-
ximation, der neben der adaptiven Gitterverfeinerung und der Zarantonello-Linearisierung
auch einen kontrahierenden algebraischen Löser für die auftretenden linearen Gleichungs-
systeme steuert. Wir ermitteln Abbruchsbedingungen für den algebraischen Löser, die ei-
nerseits nicht zu einschränkend, aber andererseits ausreichend dafür sind, dass die inexakte
Zarantonello-Linearisierung kontrahierend bleibt. In ähnlicher Weise ermitteln wir geeig-
nete Abbruchsbedingungen für die Zarantonello-Iteration, sodass der Linearisierungsfehler
sich nicht nachteilig auf den residualen a posteriori Fehlerschätzer auswirkt und die ad-
aptive Netzverfeinerung zuverlässig gesteuert wird. Wir beweisen die Kontraktion der (ge-
schachtelten) inexakten Iteration, die auf lineare Konvergenz des Gesamtverfahrens führt.
Desweiteren beweisen wir, dass das Verfahren mit der optimalen Rate in Bezug auf die
Freiheitsgrade konvergiert. Schlieÿlich beweisen wir, dass es auch mit derselben optimalen
Rate in Bezug auf den gesamten Rechenaufwand konvergiert.
Zum anderen betrachten wir Adaptivität und PCG im Rahmen von Randwertproblemen

für elliptische Integralgleichungen erster Art. Ähnlich wie zuvor steuert der präsentierte
adaptive Algorithmus die Terminierung von PCG sowie die lokale Netzverfeinerung. Neben
Konvergenz mit optimalen algebraischen Raten beweisen wir, dass das Verfahren mit fast-
optimaler Rate in Bezug auf den gesamten Rechenaufwand konvergiert.





Abstract

In the framework of elliptic partial di�erential equations (PDEs), we consider the �nite
element method (FEM) as well as the boundary element method (BEM). We design and
analyze adaptive algorithms which do not only steer the adaptive mesh-re�nement but also
the termination of appropriate iterative solvers, namely, iterative linearization of nonlinear
equations as well as iterative solvers for the arising linear systems.
On the one hand, we consider a general framework for treating linear and nonlinear

second-order elliptic PDEs, where the arising discrete systems are not solved exactly. For
contractive iterative solvers, we formulate an adaptive algorithm which monitors and steers
the adaptive mesh-re�nement as well as the inexact solution of the arising discrete systems.
We prove that the proposed strategy leads to linear convergence with optimal algebraic
rates, where we focus on convergence rates with respect to the overall computational cost.
Our analysis covers linear PDEs where the linear systems are solved by an optimally pre-
conditioned conjugate gradient method (PCG) as well as nonlinear PDEs with strongly
monotone nonlinearity which are linearized by the so-called Zarantonello iteration.
Furthermore, we combine and extend the aforementioned results in the frame of second-

order elliptic boundary value problems with strongly monotone and Lipschitz-continuous
nonlinearity. We introduce an extended adaptive algorithm for the computation of the
numerical approximation, which steers the adaptive mesh-re�nement, the Zarantonello lin-
earization, and a contractive algebraic solver to solve the arising linear systems. We identify
stopping criteria for the algebraic solver that on the one hand do not request an overly tight
tolerance, but on the other hand are su�cient for the inexact Zarantonello linearization to
remain contractive. Similarly, we identify suitable stopping criteria for the Zarantonello
iteration that leave an amount of linearization error that is not harmful for the residual
a posteriori error estimator to steer the adaptive mesh-re�nement reliably. We prove a
contraction of the (nested) inexact iterations leading to linear convergence of the overall
adaptive algorithm. Furthermore, we prove that the adaptive algorithm converges with
optimal rates with respect to the number of degrees of freedom. Finally, we prove that the
adaptive algorithm converges with the same optimal rate also with respect to the overall
computational cost.
On the other hand, we consider the interplay of adaptive mesh-re�nement and PCG in

the frame of BEM for elliptic integral equations of the �rst kind. As before, the proposed
algorithm steers the termination of PCG as well as the local mesh-re�nement. Besides
convergence with optimal algebraic rates with respect to the number of degrees of freedom,
we also prove that the algorithm converges with almost optimal rates with respect to the
overall computational cost.
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1 Introduction

1.1 Motivation

Two very important methods for numerically solving partial di�erential equations (PDEs)
arising in engineering and natural sciences are the �nite element method (FEM) and the
boundary element method (BEM). While typical �elds of application of FEM are, e.g., struc-
tural analysis, heat transfer, and �uid �ow problems, BEM can be used to solve problems
from, e.g., �uid mechanics, acoustics, or electromagnetics, where the PDEs on a possibly
unbounded exterior domain have equivalently been formulated in terms of integral equations
posed on the boundary.
This wide range of �elds of application led to the development of various numerical

schemes based on the principal ideas of �nite elements. Most of these methods discretize the
domain of interest by a mesh of polygons, thus leading to a reduction of the PDE to a �nite
dimensional system of equations, and consequently to a �nite dimensional approximation
of the in general unknown solution. The quality of this approximation can be controlled by
the mesh-width of the discretization of the domain. As a result, a simple and widely used
idea to decrease the error is to uniformly re�ne the corresponding mesh successively, which
yields convergence of the error to zero. However, the order of convergence might be heavily
spoiled by singularities of the unknown solution which can be induced by the given data,
the di�erential operator, and/or the geometry. Hence, signi�cantly more computational
e�ort is needed to reach a required accuracy, since the convergence of the error can be
arbitrarily slow. To circumvent this unnecessary computational e�ort, the mesh can be
re�ned locally at these singularities. However, doing this beforehand would require a priori
information of the unknown solution which, in general, is not available. This led to the
development of adaptive algorithms which automatically steer the local re�nement via a
posteriori error estimators, i.e., adaptive �nite element methods (AFEM). One particular
focus in AFEM is on the numerical analysis of rate-optimal convergence, where one aims
to prove that the adaptive strategy leads to convergence of order O

(
(#T`)−s

)
along the

sequence of generated triangulations, with s > 0 being maximal, where we plot the error
estimator over the number of elements #T`.
Concerning the rate-optimal convergence of AFEM, some seminal works for linear prob-

lems are, e.g., [Dör96, MNS00, BDD04, Ste07, CKNS08, CN12, FFP14]. For nonlinear prob-
lems, we refer to [Vee02, DK08, BDK12, GMZ12] as well as to [CFPP14] for a general frame-
work of convergence of AFEM with optimal convergence rates. Some works also account for
the approximate computation of the discrete solutions by iterative (and inexact) solvers,
see, e.g., [BMS10, AGL13] for linear problems and [GMZ11, GHPS18, HW20a, HW20b]
for nonlinear model problems. Moreover, there are many papers on a posteriori error es-
timation which also include the iterative and inexact solution for nonlinear problems, see,
e.g., [EAEV11, EV13, AW15, HW18] and the references therein.

1



1 Introduction

As far as optimal convergence rates are concerned, the mentioned works focus on rates
with respect to the degrees of freedom. Contrary to this, in practice, one aims for the
optimal rate of convergence with respect to the computational cost, i.e., the computational
time, which is one of the main goals of the present thesis. In [Ste07], this is already addressed
for the 2D Poisson model problem. However, this seminal work assumes that a su�ciently
accurate discrete solution can be computed in linear complexity, e.g., by a multigrid solver.
Under these so-called realistic assumptions, it is proved that the total error, which consists
of the energy error plus data oscillations, converges also with optimal rate with respect to
the computational cost.

One starting point of the present thesis is [GHPS18], where an elliptic PDE with strongly
monotone nonlinearity is considered. There, the arising nonlinear FEM problems are lin-
earized via the so-called Zarantonello iteration, which leads to a linear Poisson problem in
each step. The adaptive algorithm presented therein drives the linearization strategy as well
as the local mesh-re�nement and almost optimal convergence rates with respect to the total
computational cost are proved. In the present thesis, we prove optimal rates with respect
to the overall computational cost based on an abstract analysis in the spirit of [CFPP14].
Besides the mentioned Zarantonello iteration for nonlinear model problems, this abstract
setting also covers linear solvers like PCG with optimal preconditioner. In a next step,
we then combine these two approaches in a fully adaptive algorithm and prove optimal
convergence rates with respect to the overall computational cost. Here a key question is to
identify suitable stopping criteria for the involved and nested iterative solvers.

For problems on unbounded domains, FEM often is not well applicable. In these situa-
tions, BEM can be the better option, since it does not consider and discretize the PDE itself
but an equivalent boundary integral equation. Hence, a given problem on an unbounded do-
main can be reduced to a problem on its (possibly) bounded boundary. In a post-processing
stage, the solution of this integral equation then gives rise to an approximation of the PDE
solution on the whole space via a representation formula. Due to the dimension reduction
and a potentially higher convergence order of BEM, this can lead to higher e�ciency in
terms of the computational cost.

We refer to [Gan13, FKMP13, FFK+14, FFK+15, AFF+17] for some milestones for adap-
tive BEM. These works assume that the arising Galerkin systems are solved exactly. How-
ever, we note that this is hardly possible in practice, where matrix compression techniques
like the fast multipole method, panel clustering, or hierarchical matrix techniques are a must
to deal with the dense BEM matrices. In particular, this prevents the use of direct solvers.
Instead, we avoid the latter assumption and present an adaptive BEM algorithm to solve
elliptic integral equations of the �rst kind. This algorithm uses a preconditioned conjugate
gradient method (PCG) with optimal additive Schwarz preconditioner to approximately
solve the arising linear discrete systems. Analogously to [GHPS18], we prove convergence
with optimal rates with respect to the degrees of freedom. Due to an additional consistency
error stemming from matrix compression techniques for the dense BEM matrices, this leads
to almost optimal rates with respect to the computational complexity.

2



1.2 Outline

1.2 Outline

Chapter 2

First, in Chapter 2, we collect some preliminaries and basic notations which will be used
throughout the whole thesis and introduce Lebesgue as well as Sobolev spaces on domains
Ω ⊂ Rd with d = 2, 3 and boundary ∂Ω. We recall the most important results and properties
from PDE theory and functional analysis which are needed for the analysis of the following
chapters.

Chapter 3

In Chapter 3, we then introduce meshes T Ω of a domain Ω ⊂ Rd as well as meshes T Γ on
subsets Γ ⊆ ∂Ω of the boundary ∂Ω. Additionally, we recall structural properties (R1)�
(R3) for the mesh-re�nement from [CFPP14], which are essential for the abstract analysis
concerning optimal convergence rates in the subsequent chapters. These assumptions are,
e.g., ful�lled for the extended 1D bisection and the newest vertex bisection, which we recall
in Section 3.5 and Section 3.6, respectively.

Abstract framework for Chapter 4�6

In the following chapters, we present and analyze adaptive algorithms, which take the form

Solve −→ Estimate −→ Mark −→ Re�ne (1.1)

where Mark is based on the Dör�er criterion from [Dör96] with (quasi-)minimal cardi-
nality [Ste07, PP20]. These algorithms generate a sequence of discrete approximations u?`
to the, generally not available, exact solution u? of the given problem. Here, the index
` corresponds to the discretization of the given problem. However, since solving the aris-
ing discrete problems exactly is usually not possible or very costly, iterative solvers are
employed. Therefore, we adapt the strategy (1.1) as follows:

Iteratively Solve & Estimate −→ Mark −→ Re�ne (1.2)

This gives rise to iterative approximations uk` for the exact discrete solutions u
?
` , where the

index k corresponds to the iterative solver. The numerical analysis of (1.2) thus requires
the index set

Q :=
{

(`, k) ∈ N2
0 : discrete approximation uk` is computed by the algorithm

}
(1.3)

together with an ordering

(`, k) < (`′, k′) def⇐⇒ uk` is computed earlier than uk
′
`′ . (1.4)

Additionally, we de�ne the total step counter |(`, k)| as

|(`′, k′)| := #
{

(`, k) ∈ Q : (`, k) < (`′, k′)
}
. (1.5)

3



1 Introduction

To prove convergence with optimal algebraic rates with respect to the number of degrees
of freedom of the iterates uk` to the exact solution u?, we consider a certain quasi-error
∆k
` := |||u? − uk` ||| + η`(u

k
` ) combining the error |||u? − uk` ||| as well as the error estimator

η`(u
k
` ). The key argument for the proof is the full linear convergence

∆k′
`′ ≤ Clin q

|(`′,k′)|−|(`,k)|
lin ∆k

` for all (`, k), (`′, k′) ∈ Q with |(`, k)| ≤ |(`′, k′)|, (1.6)

where Clin ≥ 1 and 0 < qlin < 1 are generic constants.
Given N ∈ N0, let T(N) be the set of all re�nements T of T0 with #T −#T0 ≤ N . For

s > 0, de�ne

‖u?‖As := sup
N∈N0

(N + 1)s inf
Topt∈T(N)

(
|||u? − u?opt|||+ ηopt(u

?
opt)
)
∈ R≥0 ∪ {∞}, (1.7)

where u?opt is the exact discrete solution associated to the mesh Topt and ηopt(u
?
opt) is

the corresponding error estimator. It holds that ‖u?‖As < ∞ if and only if the quasi-
error ∆?

opt := |||u? − u?opt|||+ ηopt(u
?
opt) for the exact discrete solutions decays at least with

algebraic rate s > 0 along a sequence of optimal meshes. In usual applications, ∆?
opt

is equivalent to the so-called total error (i.e., error plus data oscillations) as well as to
the estimator ηopt(u

?
opt) alone. Therefore, the approximability ‖u?‖As can equivalently be

de�ned through the total error (see, e.g., [Ste07, CKNS08, CN12, FFP14]) or the estimator
(see, e.g., [CFPP14]) instead of the quasi-error (used in (1.7)). The overall result will be
the same. However, we stress that none of these equivalences hold for the solver iterates
uk` , since those lack the Galerkin orthogonality, in general.
Convergence of the adaptive loop (1.2) with optimal rates with respect to the degrees of

freedom then means that, for all s > 0, there exists a constant C(s) > 0 such that

C(s)−1 ‖u?‖As ≤ sup
(`,k)∈Q

(#T` −#T0 + 1)s ∆k
` ≤ C(s) (‖u?‖As + 1). (1.8)

Hence, the quasi-error ∆k
` for the computed discrete iterates uk` decays with rate s > 0 if

and only if rate s is possible for the exact discrete solutions on optimal meshes.
Finally, our main goal is to prove convergence with optimal rates with regard to the

computational cost. Assuming that all steps of the adaptive loop (1.2) can be performed
at linear cost O(#T`), the sum ∑

(`′,k′)∈Q
(`′,k′)≤(`,k)

#T`′

is proportional to the overall computational work to compute the approximation uk` , since
it depends on the full adaptive history. Convergence with optimal rates with regard to the
computational cost then means that, for all s > 0, there exists a constant C ′(s) > 0 such
that

C ′(s)−1 ‖u?‖As ≤ sup
(`,k)∈Q

( ∑

(`′,k′)∈Q
(`′,k′)≤(`,k)

#T`′
)s

∆k
` ≤ C ′(s) (‖u?‖As + 1).

(1.9)

Thus, the quasi-error ∆k
` for the computed discrete solutions uk` decays with rate s > 0

with respect to the overall computational cost if and only if rate s is possible with respect
to the degrees of freedom for the exact discrete solutions on optimal meshes.
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1.2 Outline

Chapter 4

This chapter is based on the recent own work [GHPS21].

Gregor Gantner, Alexander Haberl, Dirk Praetorius, and Stefan Schimanko.
Rate optimality of adaptive �nite element methods with respect to the overall
comput ational costs. Math. Comp., accepted for publication, 2021.

We consider the elliptic boundary value problem

−divA(∇u?) = f in Ω,

u? = 0 on Γ,
(1.10)

where Ω ⊂ Rd with d = 2, 3 is a bounded Lipschitz domain with boundary Γ = ∂Ω and
f ∈ L2(Ω) is a given load. We assume that the (possibly nonlinear) operator A : L2(Ω)d →
L2(Ω)d is strongly monotone and Lipschitz continuous. From this, we get the equivalent
variational formulation: Find u? ∈ H := H1

0 (Ω) such that

〈Au? , v〉H′×H :=

∫

Ω
A(∇u?) · ∇v dx =

∫

Ω
fv dx =: 〈F , v〉H′×H for all v ∈ H. (1.11)

Due to the main theorem on monotone operators [Zei90, Section 25.4], there exists a unique
solution u? to this weak formulation. For a given discrete subspace X` ⊂ H related to a
mesh T` of Ω, the same holds for the discrete formulation

〈Au?` , v`〉H′×H = 〈F , v`〉H′×H for all v` ∈ X`. (1.12)

If A is nonlinear, the exact discrete solution u?` can hardly be computed exactly. Even if A
is linear, usual FEM codes employ iterative solvers like PCG, GMRES, or multigrid. For
the abstract analysis, we assume that we have an iterative solver which is contractive in
each step with respect to the energy norm, i.e., it holds that

|||u?` − uk` ||| ≤ q |||u?` − uk−1
` ||| for all k ∈ N (1.13)

with a generic contraction constant 0 < q < 1. Then, our adaptive algorithm takes the
form (1.2). We note that (1.13) allows to control the solver error by means of

|||u? − uk` ||| ≤
q

1− q |||u
k
` − uk−1

` |||. (1.14)

We terminate the solver if |||uk` − uk−1
` ||| is small compared to η`(uk` ) and employ nested

iteration with u0
`+1 := uk` in this case. Under usual assumptions, we prove that the proposed

adaptive strategy guarantees full linear convergence (1.6) of the quasi-error ∆k
` := |||u? −

uk` ||| + η`(u
k
` ) consisting of error plus error estimator. Prior works, e.g., [Ste07, BMS10,

CG12, GHPS18], proved linear convergence of the quasi-error only for those steps, where
mesh-re�nement takes place. Unlike this, full linear convergence (1.6) even holds for the
full sequence of discrete approximations, i.e., independently of the algorithmic decision for
mesh-re�nement or one step of the discrete solver. Moreover, we prove convergence with
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1 Introduction

optimal rates with respect to the degrees of freedom (1.8) as well as the computational
cost (1.9).
In Section 4.7, we consider the linear elliptic boundary value problem (1.10), where we

assume that

A : L2(Ω)d → L2(Ω)d has the form A(v) =
[
x 7→ A(x)v(x)

]
, (1.15)

where A ∈ W 1,∞(Ω)d×d is symmetric and uniformly positive de�nite. Then, the discrete
formulation (1.12) is equivalent to the solution of a linear system

M`x
?
` = b`. (1.16)

with a positive de�nite and symmetric matrix M` ∈ RN×N . We note that the condition
number of the Galerkin matrix M` from (1.16) depends on the number of elements of T`,
as well as the minimal and maximal diameter of its elements. Therefore, we use PCG
in combination with an e�cient preconditioner P` ∈ RN×N as an iterative solver. PCG
formally applies the conjugate gradient method to the system matrix P

−1/2
` M`P

−1/2
` of the

preconditioned linear system

P
−1/2
` M`P

−1/2
` x̃?` = P

−1/2
` b`. (1.17)

We assume that the matrix-vector products with P−1
` can be computed at linear cost, and

that P` is optimal in the sense that the condition number of the preconditioned system is
uniformly bounded, i.e,

cond2(P
−1/2
` M`P

−1/2
` ) ≤ C, (1.18)

where the constant C ≥ 1 is independent of the mesh T`. This yields the contraction
property (1.13) so that the abstract main results of Chapter 4 apply to this setting. In
Sections 4.7.1�4.7.6, we formulate and analyze a multilevel diagonal scaling preconditioner
P` ∈ RN×N in the frame of multilevel additive Schwarz methods and prove its optimality.
The abstract results of Chapter 4 also apply to AFEM for quasi-linear elliptic PDEs

with strongly monotone nonlinearity (cf. Section 4.8), where we employ the Zarantonello
iteration and assume that the arising linearized discrete equations are solved exactly at
linear cost. The computation of one step of the Zarantonello iteration requires only the
solution of one Poisson equation with homogeneous Dirichlet data, i.e., to compute uk+1

`

from uk` , we have to solve the linear problem

〈〈uk+1
` , v`〉〉 = 〈〈uk` , v`〉〉 −

α

L2
〈Auk` − F , v`〉H′×H for all v` ∈ X`, (1.19)

where 〈〈· , ·〉〉 = 〈∇· , ∇·〉L2(Ω). Again, the abstract main results apply to this setting.
To underpin the theoretical results, we present some numerical examples.

Chapter 5

As an extension of Chapter 4, the aim of Chapter 5 is to combine the two aforementioned
approaches of Chapter 4, i.e., Section 4.7 as well as Section 4.8, into one fully adaptive
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1.2 Outline

algorithm for elliptic PDEs with strongly monotone nonlinearity. As before, we consider
the elliptic boundary value problem (1.10) where the nonlinearity A : Rd → Rd is Lipschitz-
continuous and strongly monotone. The presented material is based on the recent own
work [HPSV21]:

Alexander Haberl, Dirk Praetorius, Stefan Schimanko, and Martin Vohralík.
Convergence and quasi-optimal cost of adaptive algorithms for nonlinear op-
erators including iterative linearization and algebraic solver. Numer. Math.,
2021.

We propose an adaptive algorithm of the type

estimate total error and its components

↓
advance algebra/advance linearization/mark and re�ne mesh elements

which monitors and adequately stops the iterative linearization and the linear algebraic
solver as well as steers the local mesh-re�nement. We compute a sequence of discrete
appoximations uk,j` of the exact solution u? that have an index ` for the mesh-re�nement,
an index k for the Zarantonello linearization (1.19), and an index j for the algebraic solver
iteration approximating the exact solution uk,?` of (1.19) by uk,j` . First, we identify stopping
criteria for the algebraic solver, e.g., PCG with optimal preconditioner, that on the one
hand do not request an overly tight tolerance but on the other hand are su�cient for the
inexact (perturbed) Zarantonello linearization to remain contractive. Similarly, we identify
suitable stopping criteria for the Zarantonello iteration that leave an amount of linearization
error that is not harmful for the residual a posteriori error estimate to steer the adaptive
mesh-re�nement reliably.
Analogously to Chapter 4, the sequential nature of the fully adaptive algorithm gives rise

to the index set

Q :=
{

(`, k, j) ∈ N3
0 : discrete approximation uk,j` is computed by the algorithm

}

together with the ordering

(`, k, j) < (`′, k′, j′) def⇐⇒ uk,j` is computed earlier than uk
′,j′
`′ .

Analogously to (1.5), we de�ne the total step counter

|(`′, k′, j′)| := #
{

(`, k, j) ∈ Q : (`, k, j) < (`′, k′, j′)
}
, (1.20)

as well as the quasi-error

∆k,j
` := |||u? − uk,j` |||+ |||u

k,?
` − u

k,j
` |||+ η`(u

k,j
` )

consisting, in order, of the overall error, the algebraic error, and the error estimator. Our
�rst main result proves that the proposed adaptive strategy is linearly convergent in the
sense of

∆k′,j′
`′ ≤ Clin q

|(`′,k′,j′)|−|(`,k,j)|
lin ∆k,j

` for all |(`, k, j)| ≤ |(`′, k′, j′)|, (1.21)

7



1 Introduction

where Clin ≥ 1 and 0 < qlin < 1 are generic constants. Second, we prove the optimal error
decay rate with respect to the number of degrees of freedom exceeding those of the initial
mesh in the sense that there exists a constant C(s) > 0 such that

C(s)−1 ‖u?‖As ≤ sup
(`,k,j)∈Q

(#T` −#T0 + 1)s ∆k,j
` ≤ C(s) (‖u?‖As + 1). (1.22)

As before, estimate (1.21) is the key argument to prove optimal error decay rate with
respect to the overall computational cost of the fully adaptive algorithm which steers the
mesh-re�nement, the perturbed Zarantonello linearization, and the algebraic solver, i.e., for
all s > 0, there exists a constant C ′(s) > 0 such that

C ′(s)−1 ‖u?‖As ≤ sup
(`,k,j)∈Q

( ∑

(`′,k′,j′)∈Q
(`′,k′,j′)≤(`,k,j)

#T`′
)s

∆k,j
` ≤ C ′(s) (‖u?‖As + 1).

(1.23)

As above, we stress that under realistic assumptions the sum in (1.23) is indeed proportional
to the overall computational cost invested into the fully adaptive numerical approximation
of (1.10), if the cost of all procedures like matrix and right-hand-side assembly, one algebraic
solver step, evaluation of the involved a posteriori error estimates, marking, and local
adaptive mesh re�nement is proportional to the number of mesh elements in T`, i.e., the
number of degrees of freedom.
To underpin the theoretical results, we also present some numerical examples.

Chapter 6

Chapter 6 is based on the own work [FHPS19]:

Thomas Führer, Alexander Haberl, Dirk Praetorius, and Stefan Schimanko.
Adaptive BEM with inexact PCG solver yields almost optimal computational
costs. Numer. Math., 2019,

where we consider weakly-singular integral equations of �rst kind. We note that [FHPS19]
was the �rst work in the context of adaptive FEM or BEM aiming for full linear convergence
and corresponding optimal rates with respect to the computational cost. The core analysis
was later improved by the analysis of [GHPS21] presented in Chapter 4 in such a way that
the latter only needs a contractive iterative solver, whereas some of the results of [FHPS19]
are tailored to the BEM setting with inexact PCG solver.
For a bounded Lipschitz domain Ω ⊂ Rd with d = 2, 3 and polyhedral boundary ∂Ω, let

Γ ⊆ ∂Ω be a (relatively) open and connected subset. Given f : Γ→ R, we seek the density
φ? : Γ→ R of the weakly-singular integral equation

(V φ?)(x) :=

∫

Γ
G(x− y)φ?(y) dy = f(x) for all x ∈ Γ, (1.24)

where G(·) denotes the fundamental solution of the Laplace operator in Rd. Its lowest-order
Galerkin formulation for a given triangulation T` of Γ reads as follows: Find φ?` ∈ P0(T`)
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1.2 Outline

such that
∫

Γ
(V φ?` )(x)ψ`(x) dx =

∫

Γ
f(x)ψ`(x) dx for all ψ` ∈ P0(T`). (1.25)

As for FEM for linear problems in Chapter 4, the discrete formulation (1.25) can be written
as an equivalent linear system

M`x
?
` = b` (1.26)

with a positive de�nite and symmetric matrix M` ∈ RN×N which, unlike FEM, is dense for
BEM. For a given initial triangulation T0, we again consider an adaptive mesh-re�nement
strategy of the type (1.2), which generates a sequence of successively re�ned triangulations
T` for all ` ∈ N0. As before in Chapter 4, the condition number of the Galerkin matrix M`

from (1.26) depends on the number of elements of T`, as well as the minimal and maximal
diameter of the elements. Therefore, we require an e�cient preconditioner as well as an
appropriate iterative solver.
The available results for adaptive BEM [Gan13, FKMP13, FFK+14, FFK+15, AFF+17]

assume that the Galerkin system (1.26) is solved exactly. Instead, our adaptive algorithm
steers both the local mesh-re�nement and the iterations of an iterative PCG solver for the
Galerkin system (1.26). In principle, it is known [CFPP14, Section 7] that convergence
and optimal convergence rates are preserved if the linear system is solved inexactly, but
with su�cient accuracy. Analogously to Chapter 4, we guarantee this by incorporating an
appropriate stopping criterion for the PCG solver into the adaptive algorithm. Moreover,
to prove that the proposed algorithm does not only lead to optimal algebraic convergence
rates, but also to (almost) optimal computational cost, we provide a preconditioner P` ∈
RN×N such that the evaluation of the matrix-vector product with P−1

` can be done in
O(#T`) operations, and that P` is optimal in the sense of (1.18), i.e., the system matrix

P
−1/2
` M`P

−1/2
` of the preconditioned linear system has a uniformly bounded condition

number which is independent of T`.
As in Chapter 4, we prove that the quasi-error

∆k
` :=

(
|||φ? − φk` |||2 + η`(φ

k
` )

2
)1/2

consisting of energy error plus error estimator is linearly convergent in each step of the
adaptive algorithm, independent of whether the algorithm locally re�nes the mesh or does
one step of the PCG iteration, i.e., there holds (1.6). Furthermore, we also prove (1.8), i.e.,
the quasi-error decays with optimal rate with respect to the degrees of freedom.
Under realistic assumptions on the e�cient treatment of the arising discrete integral

operators, one step of the algorithm can be done in O
(
(#T`) log2(1 + #T`)

)
operations.

Hence, the cumulative computational complexity for the adaptive step (`, k) ∈ Q is of order

O
( ∑

(`′,k′)∈Q
(`′,k′)≤(`,k)

(#T`′) log2(1 + #T`′)
)
. (1.27)

As a consequence of the log-linear cost (1.27), we prove that the quasi-error converges at
almost optimal rate with respect to the computational cost, i.e., with rate s − ε for any
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ε > 0 if rate s > 0 is possible for the exact Galerkin solution. This means that there holds
the implication

‖φ?‖As <∞ =⇒ sup
(`,k)∈Q

( ∑

(`′,k′)∈Q
(`′,k′)≤(`,k)

(#T`′) log2(1 + #T`′)
)s−ε

∆k
` <∞ for all ε > 0.

The di�erence to the abstract result (1.9) is the logarithmic term in the single-step com-
plexity, which ultimately leads to the reduced order of convergence s− ε.
The �nal section underpins the theoretical �ndings by some 2D and 3D experiments.
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2 Basic notation and function spaces

In this section, we introduce some basic notations which will be used throughout the whole
thesis. Afterwards, we recall some de�nitions, notations, and results for the well-known
Lebesgue and Sobolev spaces, cf., e.g., [McL00, Chapter 3] or [SS11, Chapter 2].
First, let Ω ⊂ Rd with d = 2, 3 be a bounded Lipschitz domain with boundary ∂Ω.

Depending on the context, | · | denotes the absolute value of scalars as well as the Euclidian
norm of vectors respectively. For measurable sets in Ω or in ∂Ω, we use the same notation
| · | for the corresponding Lebesgue measure as well as the surface measure, respectively.
In general, all constants as well as their dependencies are explicitly given for all state-

ments. However, in proofs, we also abbreviate the notation, i.e., for real-valued quantities
A,B, we write A . B to abbreviate A ≤ cB with a generic constant c > 0 which is clear
from the context. Analogously, A & B is the abbreviation of A ≥ cB. Moreover, A ' B
states that both estimates A . B and A & B hold true.
For the remaining part of this section, and in this section only, let Ω be any (Lebesgue)

measurable subset of Rn with n ≥ 1 and strictly positive measure.

2.1 Lebesgue spaces and basic notation

For 1 ≤ p ≤ ∞, the ususal Lebesgue spaces on Ω are denoted by Lp(Ω) with corresponding
norms

‖v‖Lp(Ω) :=
(∫

Ω
|v(x)|p dx

)1/p
for 1 ≤ p <∞,

as well as ‖v‖L∞(Ω) being the essential supremum of u over Ω. Analogously, Lebesgue spaces
on the boundary ∂Ω are denoted by Lp(∂Ω) with corresponding norms ‖ · ‖Lp(∂Ω).
For all p ≥ 1, it is well-known that Lp(Ω) is a Banach space. For p = 2, the corresponding

Lebesgue space L2(Ω) is also a Hilbert space. Hence, for all u, v ∈ L2(Ω), we de�ne the
scalar product 〈· , ·〉L2(Ω) by

〈u , v〉L2(Ω) :=

∫

Ω
u(x)v(x) dx.

Let q ≥ 1 denote the conjugate exponent to p, i.e.,

1

p
+

1

q
= 1.

Then, for all u ∈ Lp(Ω) and all v ∈ Lq(Ω), there holds the so-called Hölder's inequality

|〈u , v〉L2(Ω)| = ‖u v‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω)
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2.2 Sobolev spaces on a domain Ω

Let v : Ω→ R, where Ω ⊂ Rd is a bounded Lipschitz domain with piecewise C∞-boundary
∂Ω, cf. [SS11, De�nition 2.2.10]. For n ∈ N and a multi-index α = (α1, . . . , αn) ∈ Nn0 , i.e.,
an n-tuple of non-negative integers, we denote the partial derivatives of v by

∂αv(x) =
( ∂

∂x1

)α1 · · ·
( ∂

∂xn

)αn

v(x),

if v is su�ciently smooth for them to exist. The order |α| of the partial derivative ∂αv(x)
is de�ned by

|α| := α1 + · · ·+ αn.

De�nition 1. Let v ∈ L2(Ω). Then, v has a weak derivative g := ∂αv ∈ L2(Ω) of order α
if there holds that

∫

Ω
g w dx = (−1)|α|

∫

Ω
v ∂αw dx for all w ∈ C∞0 (Ω),

where C∞0 (Ω) :=
{
u ∈ C∞(Ω) : u has compact support in Ω

}
is the space of in�nitely

di�erentiable functions with compact support.

Note that if the weak derivative of v ∈ L2(Ω) exists, it is unique and if v also has a
classical derivative, the weak derivative coincides (almost everywhere) with the classical
one.

De�nition 2. For ` ∈ N0, the Sobolev space H
`(Ω) is de�ned by

H`(Ω) :=
{
v ∈ L2(Ω) : ∂αv ∈ L2(Ω) exists in the weak sense for all |α| ≤ `

}
.

The inner product 〈· , ·〉H`(Ω) on H
`(Ω) is given by

〈v , w〉H`(Ω) :=
∑

|α|≤`
〈∂αv , ∂αw〉L2(Ω) for all v, w ∈ H`(Ω),

and the corresponding norm ‖ · ‖H`(Ω) is given by

‖v‖2H`(Ω) := 〈v , v〉H`(Ω) for all v ∈ H`(Ω).

For ` = 1, we hence get that

H1(Ω) =
{
v ∈ L2(Ω) : ∇v ∈ L2(Ω)d exists in the weak sense

}

with scalar product

〈v , w〉H1(Ω) =

∫

Ω
v w dx+

∫

Ω
∇v · ∇w dx,

and norm ‖v‖2H1(Ω) = 〈v , v〉H1(Ω) = ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω).

For a non-integer ` := k+s with k ∈ N0 and 0 < s < 1, the Sobolev spaceH`(Ω) is de�ned
by interpolation via the K-method, i.e., H`(Ω) := [Hk(Ω), Hk+1(Ω)]s,2, cf., e.g., [SS11,
Tri95].
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2.3 Sobolev spaces on the boundary ∂Ω

Sobolev spaces on the boundary ∂Ω can be de�ned in various ways, cf. [HW08, McL00,
SS11]. Let H0(∂Ω) := L2(∂Ω) be the space of all square-integrable functions on ∂Ω with
scalar product 〈· , ·〉∂Ω and norm ‖ · ‖L2(∂Ω). For L2(∂Ω) := L2(∂Ω)d, de�ne the scalar

product 〈v , w〉∂Ω :=
∑d

j=1〈vj , wj〉∂Ω and norm ‖v‖2
L2(∂Ω)

:= 〈v , v〉∂Ω. Then, the space

H1(∂Ω) is de�ned as in [SS11, Section 2.4] with an equivalent norm on H1(∂Ω) given by

‖v‖L2(∂Ω) + ‖∇Γv‖L2(∂Ω),

where ∇Γ : H1(∂Ω)→ L2(Γ) denotes the surface gradient. For su�ciently smooth functions
v on Ω, it holds that ∇Γv = ∇v − (∇v · n)n with the normal vector n pointing from the
domain Ω to the exterior domain Ωext := Rd \ Ω.
For s ∈ (0, 1), the corresponding Sobolev space Hs(∂Ω) is de�ned via interpolation

techniques, cf. [SS11, Proposition 2.4.3].
Additionally, we also need Sobolev spaces on subsets Γ of the boundary ∂Ω. Suppose

that ∅ 6= Γ ⊂ ∂Ω is a non-empty, relatively open set that stems from a Lipschitz dissection
∂Ω = Γ ∪ ∂Γ ∪ (∂Ω \ Γ), cf. [McL00, p. 99]. De�ne E0,Γ as the extension operator which
extends a function on Γ to ∂Ω by zero. For s ∈ {−1/2, 0, 1/2}, the spaces H1/2+s(Γ) and
H̃1/2+s(Γ) are de�ned as in [AFF+17] by

H1/2+s(Γ) :=
{
v|Γ : v ∈ H1/2+s(∂Ω)

}

H̃1/2+s(Γ) :=
{
v : E0,Γv ∈ H1/2+s(∂Ω)

}
,

with corresponding norms

‖v‖H1/2+s(Γ) := inf
w∈H1/2+s(∂Ω)

{‖w‖H1/2+s(∂Ω) : w|Γ = v}

‖v‖
H̃1/2+s(Γ)

:= ‖E0,Γv‖H1/2+s(∂Ω).

For s = 1/2, there hold the norm equivalences ‖v‖H1(∂Ω) ' ‖v‖L2(∂Ω) +‖∇Γv‖L2(∂Ω) as well
as ‖v‖

H̃1(Γ)
' ‖v‖L2(Γ) + ‖∇Γv‖L2(Γ), cf. [AFF

+17, Facts 2.1] and [SS11, Section 2.4].

For ease of notation, if it is clear from the context, we identify a function v ∈ H̃1/2+s(Γ)
with its extension E0,Γv ∈ H1/2+s(∂Ω).

2.4 Dual spaces

For a normed space X with norm ‖ ·‖X , we denote the corresponding dual space by X ′ with
the duality pairing

〈v′ , w〉X ′×X := v′(w) for all v′ ∈ X ′ and all w ∈ X ,

as well as the norm

‖v′‖X ′ = sup
06=w∈X

|〈v′ , w〉X ′×X |
‖w‖X

for all v′ ∈ X ′.
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2 Basic notation and function spaces

To simplify notation and if it is clear from the context, we write 〈· , ·〉 for the duality pairing.
If we now have a Hilbert space X with scalar product 〈· , ·〉X and a continuously embedded
Hilbert space H, the following lemma allows us to interpret the duality pairing 〈· , ·〉H′×H
as a continuous extension of the scalar product 〈· , ·〉X .

Lemma 3. Let H and X be Hilbert spaces with continuous embedding H → X . Then, the
Riesz-isomorphism JX : X → H′ is a well-de�ned, continuous, linear operator and JX (X )
is dense in H′.
If we set X = L2(∂Ω) and H = H1/2+s(∂Ω) or H = H̃1/2+s(∂Ω), we get with the formal

de�nition

〈JXx , h〉H′×H := 〈JXx , h〉X ′×X = 〈x , h〉X = 〈x , h〉L2(∂Ω) for all x ∈ X , h ∈ H
so that it is legitimate to also write 〈· , ·〉∂Ω (and analogously 〈· , ·〉Γ) for the duality pairing
〈· , ·〉H′×H.
For s ∈ {−1/2, 0, 1/2}, the negative-order Sobolev spaces on the boundary are now

de�ned by duality as

H−(1/2+s)(∂Ω) := H1/2+s(∂Ω)′,

H̃−(1/2+s)(Γ) := H1/2+s(Γ)′,

H−(1/2+s)(Γ) := H̃1/2+s(Γ)′,

with the extended L2-scalar product on ∂Ω and Γ respectively, cf. [AFF+17]. For these
spaces, the following continuous inclusions hold:

H̃±(1/2+s)(Γ) ⊆ H±(1/2+s)(Γ), as well as,

H̃±(1/2+s)(∂Ω) = H±(1/2+s)(∂Ω).

For ψ ∈ L2(Γ), the zero extension E0,Γψ satis�es

E0,Γψ ∈ H−1/2(∂Ω) as well as ‖ψ‖
H̃−1/2(Γ)

= ‖E0,Γψ‖H−1/2(∂Ω).

2.5 Trace operators and normal derivatives

Let Ω be a bounded Lipschitz domain. Then, for 1/2 < s < 3/2, there exists a linear and
continuous interior trace operator

γint
0 : Hs(Ω)→ Hs−1/2(∂Ω) such that γint

0 v = v|∂Ω for all v ∈ C0(Ω),

cf., e.g., [SS11, Theorem 2.6.8]. We de�ne H1
∆(Ω) :=

{
v ∈ H1(Ω) : −∆v ∈ L2(Ω)

}
as well

as the interior conormal derivative operator γint
1 : H1

∆(Ω)→ H−1/2(∂Ω) via the �rst Green's
formula

〈γint
1 v , γint

0 w〉∂Ω = 〈∇v , ∇w〉Ω − 〈−∆v , w〉Ω for all w ∈ H1(Ω),

cf. [AFF+17]. Analogously, the exterior trace γext
0 and exterior conormal derivative operator

γext
1 can be de�ned. Then, the interior as well as exterior traces and the conormal derivatives
respectively give rise to jump terms, i.e., for a function v that admits both traces or conormal
derivatives, we de�ne the jumps [v]0 := γext

0 v − γint
0 v and [v]1 := γext

1 v − γint
1 v respectively.
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3 Meshes

3.1 Triangulations of Ω

Throughout, let Ω ⊂ Rd with d = 2, 3 be a polygonal or polyhedral Lipschitz domain and
let conv(S) denote the convex hull of a set S ⊂ Rd. With this, we de�ne a triangulation
T Ω on a domain Ω.

De�nition 4. A set T Ω is called a triangulation or mesh of Ω, if and only if:

� Each element T ∈ T Ω is a (d+ 1)-simplex, i.e., there exist d+ 1 a�nely independent
points x1, · · · , xd+1 ∈ Ω such that

T := conv({x1, · · · , xd+1}).

We denote the set of all vertices of an element T by N (T ) := {x1, · · · , xd+1}.

� The domain Ω is covered by T Ω, i.e.,

Ω =
⋃

T∈T Ω

T.

� Two distinct elements do not overlap, i.e., for all T, T ′ ∈ T Ω with T 6= T ′, it holds
that |T ∩ T ′| = 0, i.e., the overlap is a set of measure zero.

Remark 5. Usually, we do not want to allow so-called hanging nodes, i.e., no vertex of any
element T ∈ T Ω lies in the interior of any edge or facet of another element T ′ ∈ T Ω. Hence,
we say that a triangulation T Ω is conforming or regular provided that the intersection of
two elements T, T ′ ∈ T Ω with T 6= T ′ is

� either empty,

� or a joint node,

� or a joint edge (d ≥ 2),

� or a joint facet (d = 3),

i.e., for two distinct elements T, T ′ ∈ T Ω with T 6= T ′, it holds that

T ∩ T ′ = conv(N (T ) ∩N (T ′)).
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3 Meshes

Further, we collect a couple more de�nitions. First, we de�ne the set of all nodes NT Ω of
a triangulation T Ω by

NT Ω := N (T Ω) :=
⋃

T∈T Ω

N (T ).

The (local) mesh-width function hT Ω ∈ L∞(T Ω) of a triangulation T Ω is de�ned by

hT Ω |T := hT Ω(T ) := |T |1/d for all T ∈ T Ω,

where | · | denotes the volume (for d = 3) or the area (for d = 2) of an element, respectively.
Moreover, we de�ne the element patch ωT Ω(T ) and ωT Ω(U) resp. for an element T ∈ T Ω

as well as for a set of elements U ⊆ T Ω by

ωT Ω(T ) :=
⋃{

T ′ ∈ T Ω : T ′ ∩ T 6= ∅
}

and ωT Ω(U) :=
⋃

T∈U
ωT Ω(T ), respectively.

Next, the shape-regularity constant σ(T ) of an element T ∈ T Ω is denoted by

σ(T ) :=
diam(T )d

|T | with diam(T ) := sup
x,y∈T

|x− y|.

Similarly, we de�ne the shape-regularity constant σ(T Ω) of a mesh T Ω by

σ(T Ω) := max
T∈T Ω

σ(T ),

and we say that a family T of meshes is γ-shape regular if there exists a constant γ ≥ 1
such that

sup
T Ω∈T

σ(T Ω) ≤ γ.

3.2 Triangulations of ∂Ω

Analogously to Section 2.3, we also need triangulations of the boundary ∂Ω for the boundary
element method in Chapter 6. To this end, let Ω ⊂ Rd with d = 2, 3 be a bounded
Lipschitz domain with piecewise C∞-boundary ∂Ω, and we suppose that either Γ is the
whole boundary, i.e., Γ = ∂Ω, or Γ is a subset of the boundary, i.e., ∅ 6= Γ ⊂ ∂Ω, and
relatively open such that ∂Ω = Γ ∪ ∂Γ ∪ (∂Ω \ Γ). Hence, Γ stems from a Lipschitz
dissection, cf. [McL00, p. 99].
For the de�nition of a triangulation T Γ, we also need a reference element Tref de�ned by

Tref :=
{
x ∈ Rd−1 : 0 ≤ x1, . . . , xd−1 ≤ 1 and

d−1∑

j=1

xj ≤ 1
}
.

Hence, we get that Tref = [0, 1] ⊂ R is the closed unit interval for d = 2 as well as
Tref = conv{(0, 0), (1, 0), (0, 1)} ⊂ R2 for d = 3.

De�nition 6. A set T Γ is called a triangulation or mesh of Γ, if and only if:

16



3.2 Triangulations of ∂Ω

� Every element T ∈ T Γ is the image of the reference element Tref under an a�ne,
bijective element map gT ∈ C∞(Tref , T ) with gT (Tref) = T . The set of nodes is given
by N (T ) := gT (N (Tref)), where N (Tref)) is the set of all vertices of the reference
element Tref .

� The domain Γ is covered by T Γ, i.e.,

Γ =
⋃

T∈T Γ

T

Remark 7. Analogously to Remark 5, we say that a triangulation T Γ is conforming or
regular provided that the intersection of two elements T, T ′ ∈ T Γ with T 6= T ′ is

� either empty,

� or a joint node (d ≥ 2),

� or a joint facet (d = 3),

and for d = 3, it holds that: If T ∩ T ′ is a facet for T ′ ∈ T Γ, there exist facets f, f ′ ⊆ ∂Tref

of Tref such that T ∩ T ′ = gT (f) = gT ′(f
′) and g−1

T ◦ gT ′ : f ′ → f is a�ne.

The set of nodes as well as the element patches are de�ned as in Section 3.1, while
the (local) mesh-width function hT Γ ∈ L∞(T ) is given by

hT Γ |T := hT Γ(T ) := |T |1/(d−1),

where | · | denotes the (d− 1)-dimensional surface measure of an element.
Let GT (x) := DgT (x)ᵀDgT (x) ∈ R(d−1)×(d−1) be the symmetric Gramian matrix of gT

and λmin(GT (x)) as well as λmax(GT (x)) the corresponding extremal eigenvalues. Now, we
call a regular triangulation T Γ a γ-shape regular triangulation, if the element maps gT
satisfy the following:

� For all T ∈ T Γ, it holds that

σ(T ) := sup
x∈Tref

( hT Γ(T )2

λmin(GT (x))
+
λmax(GT (x))

hT Γ(T )2

)
≤ γ.

� If d = 2, it is explicitly required that

σ̃(T Γ) := max
T,T ′∈T Γ

T∩T ′ 6=∅

|T |
|T ′| ≤ γ.

Since the Gramian matrix GT (x) is symmetric and positive de�nite, it holds that 0 ≤
λmin(GT ) ≤ λmax(GT ). This implies that σ(T ) ≥ 1. For d = 2, the additional assumption
ensures that the mesh-sizes of neighboring elements remain comparable.
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3 Meshes

3.3 Discrete function spaces

For the approximation of the exact solutions of the di�erent problems, we need �nite-
dimensional spaces which we introduce in this section. To this end, let T Ω

• be a regular
triangulation of Ω and p ≥ 1 a �xed polynomial order. We de�ne the space of globally
continuous piecewise polynomials Sp(T Ω

• ) by

Sp(T Ω
• ) :=

{
v• ∈ C(Ω) : v•|T is a polynomial of degree ≤ p for all T ∈ T Ω

•
}

It holds that Sp(T Ω
• ) ⊂ H1(Ω) and we de�ne the corresponding conforming subspace

Sp0 (T Ω
• ) of H1

0 (Ω) by

Sp0 (T Ω
• ) := Sp(T Ω

• ) ∩H1
0 (Ω).

3.4 Mesh-re�nement

Suppose that T• ∈ {T Ω, T Γ} is a given regular and γ-shape regular triangulation. Ad-
ditionally, assume that refine(·) is a �xed mesh-re�nement strategy, e.g., newest vertex
bisection, cf. [Ste08]. We write T◦ = refine(T•,M•) for the coarsest one-level re�nement
of T•, where all marked elementsM• ⊆ T• have been re�ned, i.e.,M• ⊆ T•\T◦. We write
T◦ ∈ refine(T•), if T◦ can be obtained by �nitely many steps of one-level re�nement (with
appropriate, yet arbitrary marked elements in each step). We de�ne T := refine(T0) as the
set of all meshes which can be generated from the �xed initial mesh T0 by use of refine(·).
Some important properties of γ-shape regular meshes are collected in the next lemma.

For boundary meshes, a proof can be found, e.g., in [AFF+17, Lemma 2.6].

Lemma 8. Let T• ∈ {T Ω, T Γ} be a γ-shape regular triangulation. Then, there exists a
constant C > 0 that depends only on γ and, in case of a boundary mesh, additionally on
the Lipschitz parametrization of ∂Ω, such that the following assertions hold:

(i) For all T, T ′ ∈ T• with T ∩ T ′ 6= ∅, it holds that hT•(T ) ≤ C hT•(T ′).

(ii) The number of elements in an element patch is bounded by C, i.e., #(ω•(T )) ≤ C for
all T ∈ T•.

(iii) It holds that maxT∈T•
diam(T )
hT•

≤ C.

For our analysis, we only employ the following structural properties (R1)�(R3), where
Cson ≥ 2 and Cmesh > 0 are generic constants:

(R1) splitting property: Each re�ned element is split into �nitely many sons, i.e., for all
T• ∈ T and allM• ⊆ T•, the mesh T◦ = refine(T•,M•) satis�es that

#(T• \ T◦) + #T• ≤ #T◦ ≤ Cson #(T• \ T◦) + #(T• ∩ T◦).

(R2) overlay estimate: For all meshes T ∈ T and T•, T◦ ∈ refine(T ), there exists a
common re�nement T• ⊕ T◦ ∈ refine(T•) ∩ refine(T◦) ⊆ refine(T ) such that

#(T• ⊕ T◦) ≤ #T• + #T◦ −#T .
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3.5 Extended 1D bisection (EB)

(R3) mesh-closure estimate: For each sequence (T`)`∈N0 of successively re�ned meshes,
i.e., T`+1 := refine(T`,M`) withM` ⊆ T` for all ` ∈ N0, it holds that

#T` −#T0 ≤ Cmesh

`−1∑

j=0

#Mj .

3.5 Extended 1D bisection (EB)

For re�ning meshes on a 1-dimensional boundary Γ ⊆ ∂Ω with Ω ⊂ R2, we consider the
extended bisection algorithm (EB) from [AFF+13].

Algorithm 9. Input: Mesh T• ∈ T := refine(T0), set of marked elementsM(0)
• :=M• ⊆

T•, counter k := 0.
Re�nement Loop:

(i) Repeat the following steps (a)�(c):

(a) Update the counter k 7→ k + 1.

(b) De�ne U (k) :=
⋃
T∈M(k−1)

•

{
T ′ ∈ T•\M(k−1)

• : T ′∩T 6= ∅ and h•|T ′ > σ(T0)h•|T
}
.

(c) De�neM(k)
• :=M(k−1)

• ∪ U (k)

Until U (k) = ∅.

(ii) Bisect all elements T ∈M(k)
• to obtain T◦ := refine(T•,M•).

Output: Re�ned mesh T◦ = refine(T•,M•).

Let T0 be the initial mesh on a 1-dimensional boundary Γ ⊆ ∂Ω with Ω ⊂ R2. Due to
the bisection in Algorithm 9, i.e., Step (ii), EB yields a contraction of the local mesh-size
on re�ned elements, i.e., T◦ ∈ refine(T•) implies that

h◦|T ≤ 2−1 h•|T for all T ∈ T• \ T◦. (3.1)

Additionally, [AFF+13, Theorem 2.3 (i)] guarantees uniform γ-shape regularity with γ :=
2σ(T0), i.e., for all triangulations T• ∈ T, it holds that

σ̃(T•) ≤ γ. (3.2)

Splitting property (R1)

Since Step (ii) of Algorithm 9 uses bisection, there holds (R1) with Cson = 2.

Overlay estimate (R2)

The overlay estimate (R2) is shown in [AFF+13, Theorem 2.3 (ii)].
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3 Meshes

Mesh-closure estimate (R3)

The mesh-closure estimate (R3) is shown in [AFF+13, Theorem 2.3 (iii)].

3.6 Newest vertex bisection (NVB)

One of the most popular mesh-re�nement strategies is the so-called newest vertex bisection
(NVB), cf. e.g., [Ste07] for d = 2 as well as [Ste08] for d = 3. We use NVB for d = 2
as refine(·) to re�ne triangulations of a given domain Ω ⊂ R2 in Chapter 4 as well as
Chapter 5. Additionally, we also use the same algorithm for re�ning surface triangulations
on Γ ⊆ ∂Ω with Ω ⊂ R3 in Chapter 6.
For the sake of completeness, we include the NVB algorithm for d = 2:

Algorithm 10. Initialization: Input: Initial mesh T0.

� For each triangle T ∈ T0, de�ne an arbitrary vertex as the newest vertex.

� For each triangle T ∈ T0, de�ne the edge opposite to the newest vertex as the refer-
ence edge ET . Let Eref,0 :=

{
ET : T ∈ T0

}
be the set of all reference edges of the

initial mesh T0.

Newest Vertex Bisection: Input: Mesh T• ∈ T with corresponding set of reference edges
Eref,• :=

{
ET : T ∈ T•

}
, set of marked elementsM• ⊆ T•, counter k := 0.

Re�nement Loop:

(i) De�ne the set of marked reference edgesM(0)
• :=

{
ET : T ∈M•

}
.

(ii) Repeat the following steps (a)�(b):

(a) Update the counter k 7→ k + 1.

(b) De�neM(k)
• :=

{
ET : T ∈ T• s.t. there exists E ∈M(k−1)

• with E ⊂ T
}
.

Until M(k)
• =M(k−1)

• .

(iii) Re�ne all elements T ∈ T• which have at least one marked edge in the set M(k)
•

according to the re�nement rules depicted in Figure 3.1.

Output: Re�ned mesh T◦ = refine(T•,M•).

Let T0 be the initial mesh on a domain Ω ⊂ Rd with d ≥ 2 and let T• ∈ T be a
re�nement of T0. It holds that NVB reduces the local mesh-size on re�ned elements, i.e.,
T◦ ∈ refine(T•) implies that

h◦|T ≤ 2−1/d h•|T for all T ∈ T• \ T◦. (3.3)
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3.6 Newest vertex bisection (NVB)

Figure 3.1: For each triangle T ∈ T•, there is one �xed reference edge ET , indicated by
the extra pink line. If T is marked for re�nement, we mark its reference edge,
cf. Step (i) of Algorithm 10. Additionally, if ET ⊂ T ′ for a neigbouring ele-
ment T ′ ∈ T•, the edge reference edge ET ′ is marked to avoid hanging nodes,
cf. Step (ii) of Algorithm 10. Hence, more than one edge of an element can be
marked (pink dots). Then, re�nement of T is done by bisecting the reference
edge, where its midpoint becomes a new vertex of the re�ned triangulation T◦.
The reference edges of the son triangles are opposite to this newest vertex (bot-
tom left). If more than one edge is marked (top), using iterated newest vertex
bisection, the element is then split into 2, 3, or 4 son triangles (bottom).

Figure 3.2: Newest vertex bisection does only lead (up to similarity) to a �nite number of
triangles. Above, the di�erent colors represent similarity classes. Starting with
one triangle (left), iterative use of NVB does only create (up to similarity) new
triangles in the �rst two steps (mid left and mid right). Hence in following steps,
no new similarity classes are generated.

A proof for (3.3) can be found, e.g., in [CKNS08, Ste07]. Additionally, NVB also preserves
γ-shape regularity, i.e., there exists a constant γ > 0 such that for all triangulations T• ∈ T
it holds that

σ(T•) = max
T∈T•

σ(T ) ≤ γ, (3.4)

which is proved in [Ste08]. The latter work also shows for d = 3 a similar result to Figure 3.2
which illustrates for d = 2 that (up to similarity) only a �nite number of di�erent triangles
can be constructed from the initial mesh T0 using NVB, cf. [Ste08, Theorem 2.1].

Splitting property (R1)

There holds (R1) with 2 ≤ Cson < ∞, which is proved in [GSS14]. The constant Cson > 0
depends only on T0 and d. For d = 2, it holds that Cson = 4, cf. Figure 3.1.

Overlay estimate (R2)

The proof of the overlay estimate (R2) can be found in [CKNS08, Ste07].
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3 Meshes

Mesh-closure estimate (R3)

First, the mesh-closure estimate (R3) has been proved for the case d = 2, cf. [BDD04].
Later, (R3) has been proved for d ≥ 2 in [Ste08]. While both works [BDD04, Ste08] require
a technical admissibility condition on T0 in order to prove the mesh-closure (R3), [KPP13]
proved this admissibility condition to be unnecessary for d = 2.

3.7 Other re�nement strategies

A di�erent possible re�nement strategy is red-re�nement with �rst-order hanging nodes. We
refer to [BN10], where the validity of (R1)�(R3) is shown. In the framework of isogeometric
analysis, we mention the mesh-re�nement techniques for analysis-suitable T-splines [MP15]
and refer to [BGMP16] for truncated hierarchical B-splines as well as [GHP17] for hierar-
chical B-splines. For further details on mesh-re�nement strategies which satisfy (R1)�(R3),
we refer to [BN10, MP15, Fei15] and to the discussion in [CFPP14, Section 2.5].
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4 Adaptive FEM for second-order elliptic

systems of partial di�erential equations

4.1 Introduction

This chapter is based on the recent own work [GHPS21]. While the analytical main results
are the same, we add an additional section on preconditioning and more in-depth numerical
examples are provided. We consider and analyze adaptive �nite element methods (AFEM)
for second-order elliptic systems of partial di�erential equations (PDEs), where the arising
discrete systems are not solved exactly. Our model problem reads as follows: Let Ω ⊂ Rd
be a bounded Lipschitz domain with d ∈ {2, 3} and boundary Γ := ∂Ω. We assume that
A : L2(Ω)d → L2(Ω)d is a strongly monotone and Lipschitz continuous operator, cf. Sec-
tion 4.2 for the precise de�nition. We consider the following quasi-linear elliptic boundary
value problem: Given a load f ∈ L2(Ω), �nd u? ∈ H := H1

0 (Ω) such that

−divA(∇u?) = f in Ω,

u? = 0 on Γ.
(4.1)

Therefrom, we get the equivalent variational formulation: Given a load f ∈ L2(Ω), �nd
u? ∈ H := H1

0 (Ω) such that

〈Au? , v〉H′×H :=

∫

Ω
A(∇u?) · ∇v dx =

∫

Ω
fv dx =: 〈F , v〉H′×H for all v ∈ H. (4.2)

The main theorem on monotone operators [Zei90, Section 25.4] admits a unique solution to
the weak form (4.2). Given a discrete subspace X` ⊂ H related to some triangulation T` of
Ω, also the discrete formulation

〈Au?` , v`〉H′×H = 〈F , v`〉H′×H for all v` ∈ X` (4.3)

admits a unique solution u?` ∈ X`, again due to the main theorem on monotone opera-
tors [Zei90, Section 25.4]. If A is nonlinear, then u?` can hardly be computed exactly. Even
if A is linear, usual FEM codes employ iterative solvers like PCG, GMRES, or multigrid.
Given an initial guess u0

` ∈ X`, we assume that we can compute iterates uk` := Φ`(u
k−1
` ) ∈

X` which lead to a contraction in the energy norm on H, i.e.,

|||u?` − uk` ||| ≤ q |||u?` − uk−1
` ||| for all k ∈ N (4.4)

with some X`-independent contraction constant 0 < q < 1. In explicit terms, we assume
that we have an iterative solver with iteration function Φ` : X` → X` which is uniformly
contractive in each step. Additionally, we assume that we can control the discretization
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4 Adaptive FEM for second-order elliptic systems of partial di�erential equations

error (for the exact, but never computed discrete solution u?` ∈ X` from (4.3)) by some
reliable a posteriori error estimator

C−1
rel |||u? − u?` ||| ≤ η`(u?` ) :=

( ∑

T∈T`
η`(T, u

?
` )

2

)1/2

, (4.5)

where the local indicators η`(T, ·) can also be evaluated for other discrete functions v` ∈ X`
instead of the exact Galerkin solution u?` ∈ X`.
Then, our adaptive algorithm takes the form

Iteratively Solve & Estimate −→ Mark −→ Re�ne (4.6)

where the �rst step may be understood (and stated) as an inner loop, and Mark is based
on the Dör�er criterion from [Dör96] with (quasi-) minimal cardinality [Ste07, PP20].

4.1.1 State of the art

The ultimate goal of any numerical scheme is to compute a discrete solution with error below
a prescribed tolerance at, up to a multiplicative constant, the minimal computational cost.
Since the convergence of numerical methods is usually spoiled by singularities of the (given)
data as well as the (unknown) solution, a posteriori error estimation and related adap-
tive mesh-re�nement strategies are indispensable tools for reliable numerical simulations.
For many model problems, the mathematical understanding of rate-optimal convergence of
adaptive FEM has matured. We refer to [Dör96, MNS00, BDD04, Ste07, CKNS08, CN12,
FFP14] for some seminal works for linear problems, to [Vee02, DK08, BDK12, GMZ12] for
nonlinear problems, and to [CFPP14] for a general framework of convergence of adaptive
FEM with optimal convergence rates. Some works also account for the approximate compu-
tation of the discrete solutions by iterative (and inexact) solvers, see, e.g., [BMS10, AGL13]
for linear problems and [GMZ11, GHPS18, HW20a, HW20b] for nonlinear model problems.
Moreover, there are many papers on a posteriori error estimation which also include the iter-
ative and inexact solution for nonlinear problems, see, e.g., [EAEV11, EV13, AW15, HW18]
and the references therein.
As far as optimal convergence rates are concerned, the mentioned works focus on rates

with respect to the degrees of freedom. However, in practice, one aims for the optimal
rate of convergence with respect to the computational cost, i.e., the computational time.
The issue of optimal computational cost is already addressed in the seminal work [Ste07]
for the Poisson model problem. There, it is assumed that a su�ciently accurate discrete
solution can be computed in linear complexity, e.g., by a multigrid solver. Under these
so-called realistic assumptions on the solver, it is then proved that the total error (i.e., the
sum of energy error plus data oscillations) will also converge with optimal rate with respect
to the computational cost. A similar result is obtained in [CG12] for an adaptive Laplace
eigenvalue computation.
In recent works, concrete solvers are included into the convergence analysis. In [GHPS18],

adaptive FEM for an elliptic PDE with strongly monotone nonlinearity is adressed. The
arising nonlinear FEM problems are linearized via the so-called Zarantonello iteration (or
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4.2 Abstract model problem

Banach�Picard iteration), which leads to a linear Poisson problem in each step. The
adaptive algorithm drives the linearization strategy as well as the local mesh-re�nement.
In [GHPS18], it is proved that the overall strategy leads to optimal convergence rates with
respect to the degrees of freedom and to almost optimal convergence rates with respect to
the total computational cost. The latter means that, if the total error converges with rate
s > 0 with respect to the degrees of freedom, then it converges with rate s − ε > 0 with
respect to the overall computational cost, for all ε > 0. Moreover, in [FHPS19] (cf. Chap-
ter 6), we obtained analogous results for an adaptive boundary element method, where
we employed a preconditioned conjugate gradient method (PCG) with optimal additive
Schwarz preconditioner to approximately solve the arising linear discrete systems.
We now aim to prove optimal rates with respect to the overall computational cost for the

algorithm from [GHPS18]. Moreover, we give an abstract analysis in the spirit of [CFPP14]
and show that this also covers linear solvers like PCG.

4.1.2 Outline

First, we formulate the precise assumptions on the model problem, the mesh-re�nement
and the FEM spaces (Section 4.2), and the error estimator as well as the iterative solver
(Section 4.3�4.4). Then, we formulate the adaptive algorithm in Section 4.5 and state
the abstract main results in Section 4.6, namely linear convergence of the quasi-error in
Section 4.6.1 and optimal convergence rates of the quasi-error in Section 4.6.3. Before
we then apply the abstract setting to adaptive FEM with PCG solver for linear PDEs
(Section 4.7) including numerical examples (Section 4.7.7), we construct an additive Schwarz
preconditioner in Section 4.7.1 and prove its optimality in Section 4.7.3. Afterwards, we
apply the abstract setting to the the adaptive algorithm from [GHPS18] for adaptive FEM
for problems with strongly monotone nonlinearity (Section 4.8) including some numerical
experiments in Section 4.8.1 to underline the theoretical �ndings.

4.2 Abstract model problem

Let H be a Hilbert space over K ∈ {R,C} with scalar product 〈〈· , ·〉〉 and corresponding
norm ||| · |||. The usual dual space of H is denoted by H′ with the corresponding norm ||| · |||′.
We consider nonlinear elliptic equations in the following abstract setting with variational
formulation: Given a linear and continuous functional F ∈ H′, �nd u? ∈ H such that

〈Au? , v〉H′×H = 〈F , v〉H′×H for all v ∈ H. (4.7)

To guarantee solvability, we suppose that the operator A : H → H′ satis�es the following
conditions:

(O1) A is strongly monotone: There exists a constant α > 0 such that

α |||w − v|||2 ≤ Re 〈Aw −Av , w − v〉H′×H for all v, w ∈ H.

(O2) A is Lipschitz continuous: There exists a constant L > 0 such that

|||Aw −Av|||′ ≤ L |||w − v||| for all v, w ∈ H.
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4 Adaptive FEM for second-order elliptic systems of partial di�erential equations

(O3) A has a potential: There exists a Gâteaux di�erentiable function P : H → K such
that its derivative dP : H → H′ coincides with A, i.e., it holds that

〈Aw , v〉H′×H = 〈dP (w) , v〉H′×H = lim
t→0
t∈R

P (w + tv)− P (w)

t
for all v, w ∈ H.

Let T0 be a given regular initial mesh and suppose that refine(·) is a �xed re�nement
strategy satisfying the axioms (R1)�(R3) from Section 3.4. To each T• ∈ T := refine(T0),
we associate the related �nite-dimensional conforming subspace X• ⊂ H of the given Hilbert
space H. We suppose that re�nement T◦ ∈ refine(T•) leads to nestedness of the corre-
sponding subspaces in the sense that X• ⊆ X◦.
Then, the discrete formulation of (4.7) reads as follows: Given a linear and continuous

functional F ∈ H′, �nd u?• ∈ X• such that

〈Au?• , v•〉H′×H = 〈F , v•〉H′×H for all v• ∈ X•. (4.8)

The main theorem on monotone operators [Zei90, Section 25.4] yields existence and unique-
ness of solutions u? ∈ H as well as u?• ∈ X• for both the model problem (4.7) and its discrete
version (4.8), respectively.
Let E := Re (P − F ) be the energy functional. Then, it holds that

α

2
|||u?• − v•|||2 ≤ E(v•)− E(u?•) ≤

L

2
|||u?• − v•|||2 for all v• ∈ X•, (4.9)

which is proved, e.g., in [GHPS18, Lemma 5.1]. In particular, u? ∈ H is the unique
minimizer of the minimization problem

E(u?) = min
v∈H
E(v), (4.10)

as well as u?• ∈ X• is the unique minimizer of the minimization problem

E(u?•) = min
v•∈X•

E(v•). (4.11)

As for linear elliptic problems, the present setting guarantees the following Céa lemma,
where we include the proof for the sake of completeness.

Lemma 11. Suppose that the operator A satis�es (O1)�(O2) with constants 0 < α ≤ L.
Then, it holds with CCéa := L/α that

|||u? − u?•||| ≤ CCéa min
v•∈X•

|||u? − v•|||. (4.12)

Proof. There holds the Galerkin orthogonality 〈Au? − Au?• , v•〉H′×H = 0 for all v• ∈ X•.
Let w• ∈ X• and u? 6= u?•. Then, it holds that

α|||u? − u?•|||
(O1)

≤ Re 〈Au? −Au?• , u? − u?•〉H′×H
|||u? − u?•|||

=
Re 〈Au? −Au?• , u? − w•〉H′×H

|||u? − u?•|||
(O2)

≤ L |||u? − w•|||.

Hence, we take the in�mum over all w• ∈ X•. Since X• is �nite-dimensional, the in�mum
is attained and is, in fact, a minimum.
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4.3 Error estimator

4.3 Error estimator

For each mesh T• ∈ T, suppose that we can compute re�nement indicators

η•(T, v•) ≥ 0 for all T ∈ T• and all v• ∈ X•. (4.13)

To abbreviate notation, let η•(v•) := η•(T•, v•), where

η•(U•, v•) :=

( ∑

T∈U•
η•(T, v•)2

)1/2

for all U• ⊆ T•. (4.14)

We assume the following axioms of adaptivity from [CFPP14], where Cstab, Crel > 0 and
0 < qred < 1 are generic constants:

(A1) stability on non-re�ned element domains: For all triangulations T• ∈ T and
re�nements T◦ ∈ refine(T•), arbitrary discrete functions v◦ ∈ X◦ and w• ∈ X•, and
an arbitrary set U• ⊆ T• ∩ T◦ of non-re�ned elements, it holds that

|η◦(U•, v◦)− η•(U•, w•)| ≤ Cstab|||v◦ − w•|||.

(A2) reduction on re�ned elements: For all triangulations T• ∈ T and re�nements
T◦ ∈ refine(T•), and arbitrary discrete functions v• ∈ X•, it holds that

η◦(T◦\T•, v•) ≤ qred η•(T•\T◦, v•).

(A3) reliability: For all triangulations T• ∈ T, the error of the exact discrete solution
u?• ∈ X• of (4.8) can be bound by the error estimator, i.e.,

|||u? − u?•||| ≤ Crel η•(u
?
•).

(A4) discrete reliability: For all triangulations T• ∈ T and re�nements T◦ ∈ refine(T•),
the di�erence of the exact solutions u?• ∈ X• and u?◦ ∈ X◦ can be bounded by

|||u?◦ − u?•||| ≤ Crel η•(T•\T◦, u?•).

We stress that the exact discrete solutions u?• ∈ X• and u?◦ ∈ X◦ in (A3)�(A4) will never be
computed but are only auxiliary quantities for the analysis.

Remark 12. The veri�cation of (A1)�(A4) in Section 4.7 and 4.8 relies on scaling argu-
ments and implicitly uses that all meshes T• ∈ T are uniformly shape regular. Moreover,
we note that the analysis is implicitly tailored to weighted-residual error estimators, since
the usual veri�cation of (A2) relies on exploiting the contraction of the mesh-size on re�ned
elements.
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4 Adaptive FEM for second-order elliptic systems of partial di�erential equations

4.4 Discrete iterative solver

For all triangulations T• ∈ T, let Φ• : X• → X• be the iteration function of one step
of the iterative solver, i.e., for a given initial guess u0

• ∈ X•, we can compute iterates
uk• := Φ•(uk−1

• ) ∈ X•. We require one of the following two contraction properties with some
uniform constant 0 < qctr < 1, which is independent of T•:

(C1) energy contraction: For all triangulations T• ∈ T and an arbitrary discrete function
v• ∈ X•, it holds that

E(Φ•(v•))− E(u?•) ≤ q2
ctr

(
E(v•)− E(u?•)

)
.

(C2) norm contraction: For all triangulations T• ∈ T and an arbitrary discrete function
v• ∈ X•, it holds that

|||u?• − Φ•(v•)||| ≤ qctr |||u?• − v•|||.

Remark 13. For linear symmetric problems, one usually has that E(v•)−E(u?•) = 1
2 |||v• −

u?•|||2 for v• ∈ X•, and hence (C1) and (C2) are equivalent.

To formulate the stopping criterion for the iterative solver of the adaptive algorithm, we
need an additional auxiliary quantity. Let

dl(w, v) :=

{
|E(v)− E(w)|1/2 in case of (C1),

|||w − v||| in case of (C2).
(4.15)

Then, the following lemma provides the means to stop the iterative solver.

Lemma 14. Let T• ∈ T and v• ∈ X•. Then, both (C1) and (C2), respectively, imply the
following estimates:

(i) dl(u?•,Φ(v•)) ≤ qctr dl(u?•, v•),

(ii) dl(v•,Φ(v•)) ≤ (1 + qctr) dl(u?•, v•),

(iii) dl(u?•, v•) ≤ (1− qctr)
−1 dl(v•,Φ(v•)).

Proof. First, let assumption (C1) hold true. From the de�nition of dl(·, ·) follows that

dl(u?•,Φ(v•))
(4.15)

= |E(Φ(v•))− E(u?•)|1/2
(C1)

≤ qctr |E(v•)− E(u?•)|1/2 = qctr dl(u?•, v•).

Hence, claim (i) holds true. Note that dl(·, ·) is a quasi-metric, i.e., it holds for all v•, w•, z• ∈
X• that

� dl(v•, v•) = 0,

� dl(v•, w•) = dl(w•, v•), and,
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4.5 Adaptive algorithm

� dl(v•, z•) ≤ dl(v•, w•) + dl(w•, z•),

where the triangle inequality follows from the fact that (a+ b)1/2 ≤ a1/2 + b1/2 for a, b > 0.
Therefrom, we get with claim (i) that

dl(v•,Φ(v•)) ≤ dl(v•, u?•) + dl(u?•,Φ(v•)) ≤ (1 + qctr) dl(u?•, v•),

which proves claim (ii). Claim (iii) also follows from the triangle inequality combined witch
claim (i). It holds that

dl(u?•, v•) ≤ dl(u?•,Φ(v•)) + dl(Φ(v•), v•) ≤ qctr dl(u?•, v•) + dl(v•,Φ(v•)),

which is equivalent to claim (iii).
Now, let assumption (C2) hold true. Then, claim (i) is simply the norm contraction (C2)

and claim (ii)�(iii) follow from the triangle inequality of the energy norm.

4.5 Adaptive algorithm

Now, we propose our adaptive algorithm. We will employ a lower index ` for the adaptive
mesh-re�nement as well as an upper index k for the respective steps of the iterative solver.

Algorithm 15. Input: Initial mesh T0 and initial guess u0
0 ∈ X0, adaptivity parameters

0 < θ ≤ 1, λctr > 0, and Cmark ≥ 1, counters ` := 0 =: k.
Adaptive Loop: Iterate the following Steps (i)�(v):

(i) Repeat the following steps (a)�(c):

(a) Update the counter (`, k) 7→ (`, k + 1).

(b) Do one step of the iterative solver to obtain uk` := Φ`(u
k−1
` ).

(c) Compute the local contributions η`(T, u
k
` ) of the error estimator for all T ∈ T`.

Until dl(uk` , u
k−1
` ) ≤ λctr η`(u

k
` ). (4.16)

(ii) De�ne k(`) := k.

(iii) Determine a setM` ⊆ T` with up to the multiplicative constant Cmark minimal cardi-
nality such that

θ η`(u
k
` ) ≤ η`(M`, u

k
` ). (4.17)

(iv) Generate T`+1 := refine(T`,M`) and de�ne u0
`+1 := u

k(`)
` .

(v) Update the counter (`, k) 7→ (`+ 1, 0) and continue with (i).
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4 Adaptive FEM for second-order elliptic systems of partial di�erential equations

Output: Sequences of successively re�ned triangulations T`, discrete solutions uk` , and cor-
responding error estimators η`(u

k
` ), for all ` ≥ 0 and k ≥ 0.

We de�ne the following set of indices Q by

Q :=
{

(`, k) ∈ N2
0 : index pair (`, k) is used in Algorithm 15 and k < k(`)

}
.

Since u0
`+1 = u

k(`)
` , we exclude (`, k(`)) from the index set Q, if (` + 1, 0) ∈ Q. Since

Algorithm 15 is sequential, the index set Q is naturally ordered. For (`, k), (`′, k′) ∈ Q, we
write

(`′, k′) < (`, k)
def⇐⇒ (`′, k′) appears earlier in Algorithm 15 than (`, k). (4.18)

With this order, we can de�ne the total step counter

|(`, k)| := #
{

(`′, k′) ∈ Q : (`′, k′) < (`, k)
}

= k +
`−1∑

`′=0

k(`′),

which provides the total number of solver steps up to the computation of uk` .
To abbreviate notation, we make the convention that if the mesh index ` ∈ N0 is clear

from the context, we simply write k := k(`), e.g., uk` := u
k(`)
` . In addition, we introduce

some further notation. De�ne

` := sup
{
` ∈ N0 : (`, 0) ∈ Q

}
.

Generically, it holds that ` = ∞, i.e., in�nitely many steps of mesh-re�nement occur.
Moreover, for (`, 0) ∈ Q, de�ne k(`) := sup

{
k ∈ N0 : (`, k) ∈ Q

}
+ 1. We note that the

latter de�nition is consistent with that of Algorithm 15, but additionally de�nes k(`) =∞
if ` <∞.

4.6 Abstract main results

In this section, we state the main results in the abstract framework of Section 4.2. The
analysis relies only on the assumptions (R1)�(R3) on the mesh-re�nement, (A1)�(A4) on
the error estimator, and (C1) as well as (C2) on the iterative solver respectively. Hence, for
concrete model problems, only these assumptions have to be veri�ed, cf. Section 4.7 and
Section 4.8.
First, due to the contraction property (C1) and (C2) respectively, we have a posteriori

error control of the error.

Proposition 16. Suppose (C1) or (C2) as well as (A1)�(A3). Then, the quasi-error ∆k
`

(consisting of error plus error estimator), which is de�ned via

∆k
` := |||u? − uk` |||+ η`(u

k
` ) for all (`, k) ∈ Q := Q∪

{
(`, k) : k(`) <∞

}
, (4.19)
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satis�es that

∆k
` ≤ C ′rel





η`(u
k
` ) + dl(uk` , u

k−1
` ) if 0 < k ≤ k(`),

η`(u
k
` ) if k = k(`),

η`−1(u0
` ) if k = 0 and ` > 0.

(4.20)

The constant C ′rel > 0 depends only on Cstab, Crel, qctr, and λctr under (C2), while it
additionally depends on α under (C1).

Proof. Let (`, k) ∈ Q and k > 0. Then, it holds that

|||u? − uk` ||| ≤ |||u? − u?` |||+ |||u?` − uk` |||
(A3)

≤ Crel η`(u
?
` ) + |||u?` − uk` |||

≤ Crel

(
|η`(u?` )− η`(uk` )|+ η`(u

k
` )
)

+ |||u?` − uk` |||
(A1)

≤ Crel η`(u
k
` ) + (CrelCstab + 1) |||u?` − uk` |||.

Now, we distinguish between the di�erent contraction properties. First, suppose (C1).
With (4.9) and Lemma 14(i)&(iii), it then follows that

|||u?` − uk` |||
(4.9)

≤
√

2/α dl(u?` , u
k
` )

=
√

2/α dl(u?` ,Φ(uk−1
` ))

≤
√

2/α qctr dl(u?` , u
k−1
` )

≤
√

2/α
qctr

1− qctr
dl(uk` , u

k−1
` ).

Next, suppose (C2). With Lemma 14 (i)&(iii), it then follows that

|||u?` − uk` ||| = dl(u?` ,Φ(uk−1
` ))

≤ qctr dl(u?` , u
k−1
` )

≤ qctr

1− qctr
dl(uk` , u

k−1
` ).

Since ∆k
` = |||u?−uk` |||+η`(uk` ), this proves (4.20) for the case that 0 < k ≤ k(`). If k = k(`),

the stopping criterion (4.16) in Algorithm 15(i) yields that

dl(u
k
` , u

k−1
` ) ≤ λctr η`(u

k
` ).

This proves (4.20) for k = k(`). If k = 0 and ` > 0, it holds that u0
` = u

k
`−1. Hence, it

follows from the previous step that

|||u? − u0
` ||| = |||u? − uk`−1||| . η`−1(u

k
`−1) = η`−1(u0

` ). (4.21)
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4 Adaptive FEM for second-order elliptic systems of partial di�erential equations

Moreover, the equality u0
` = u

k
`−1 implies that u0

` ∈ X`−1. Therefrom, (A1)�(A2) yield that

η`(u
0
` ) =

(
η`(T` ∩ T`−1, u

0
` )

2 + η`(T` \ T`−1, u
0
` )

2
)1/2

(A1)
=
(
η`−1(T` ∩ T`−1, u

0
` )

2 + η`(T` \ T`−1, u
0
` )

2
)1/2

(A2)

≤
(
η`−1(T` ∩ T`−1, u

0
` )

2 + η`−1(T`−1 \ T`, u0
` )

2
)1/2

= η`−1(u0
` ).

(4.22)

Since ∆0
` = |||u? − u0

` |||+ η`(u
0
` ), combining (4.21)�(4.22) concludes the proof.

4.6.1 Linear convergence of the quasi-error

The �rst main theorem states linear convergence of the quasi-error. We note that under
certain assumptions, linear convergence holds for arbitrary parameters 0 < θ ≤ 1 and
λctr > 0.

Theorem 17. Suppose (C1) or (C2) as well as (A1)�(A3). De�ne

λconv :=

{
∞ if (C1) is valid,

1−qctr

Cstabqctr
otherwise.

(4.23)

Then, for all 0 < θ ≤ 1 and 0 < λctr < λconv θ, there exist constants Clin ≥ 1 and
0 < qlin < 1 such that the quasi-error (4.19) is linearly convergent in the sense of

∆k
` ≤ Clin q

|(`,k)|−|(`′,k′)|
lin ∆k′

`′ for all (`, k), (`′, k′) ∈ Q with (`′, k′) < (`, k). (4.24)

The constants Clin and qlin depend only on CCéa = L/α, Cstab, qred, Crel, qctr, and the
adaptivity parameters θ and λctr, while it additionally depends on L in case of (C1).

The following corollary states that the exact solution u? is discrete if ` < ∞, i.e., if the
number of mesh re�nements is bounded.

Corollary 18. Suppose the assumptions of Theorem 17. Then, ` <∞ implies that u? = u?`
and η`(u

?
` ) = 0.

Proof. According to Theorem 17, it holds that

|||u? − uk` |||+ η`(u
k
` ) = ∆k

` → 0 as k →∞.

Moreover, contraction (C1) or (C2) (together with (4.9) in case of (C1)) prove that

|||u?` − uk` ||| ' dl(u?` , u
k
` ) ≤ qkctr dl(u?` , u

0
` )→ 0 as k →∞.

Uniqueness of the limit yields that u?` = u?. Moreover, it follows that

0 ≤ η`(u?` )
(A1)

≤ η`(u
k
` ) + |||u?` − uk` ||| → 0 as k →∞.

This concludes the proof.
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4.6.2 Proof of Theorem 17 (linear convergence)

Recall the de�nition of dl(·, ·) from (4.15). According to Algorithm 15, the contractive solver
stops for the minimal k = k(`) ≥ 1 such that

dl(u
k
` , u

k−1
` ) ≤ λctr η`(u

k
` ). (4.25)

In particular, since we exluded k from the index set Q, this implies that

η`(u
k
` ) < λ−1

ctr dl(uk` , u
k−1
` ) for all (`, k) ∈ Q with k > 0. (4.26)

Proof of Theorem 17 under assumption (C1)

In this section, we give a proof of Theorem 17 under the assumption (C1), i.e., that the
iterative solver Φ` leads to a uniform contraction of the discrete energy. Therefore, we �rst
recall that the solution u? ∈ H minimizes the energy E in H, i.e.,

E(u?) = min
v∈H
E(v)

as well as that the discrete Galerkin solution u?• ∈ X• minimizes the energy E in X•, i.e.,

E(u?•) = min
v•∈X•

E(v•),

cf. Section 4.2. Hence, for v• ∈ X• the energy di�erences E(v•)−E(u?), E(u?•)−E(u?), and
E(v•)−E(u?•) are all non-negative. Therefrom, the absolute values in the de�nition of dl(·, ·)
can be omitted which yields the Pythagoras-type identity

dl(u?, v•)2 = dl(u?, u?•)
2 + dl(u?•, v•)

2 for all v• ∈ X•. (4.27)

The core of the proof of Theorem 17 is the following lemma, where 0 < θ ≤ 1 and λctr > 0
are, in fact, arbitrary parameters.

Lemma 19. Suppose (A1)�(A3) and (C1). Let 0 < θ ≤ 1 and λctr > 0. Then, there exist
constants µ > 0 and 0 < qlin < 1 such that

Λk` := dl(u?, uk` )
2 + µ η`(u

k
` )

2 for all (`, k) ∈ Q (4.28)

satis�es the following statements (i)�(ii):

(i) Λk+1
` ≤ q2

lin Λk` for all (`, k + 1) ∈ Q.

(ii) Λ0
`+1 ≤ q2

lin Λ
k−1
` for all (`+ 1, 0) ∈ Q.

The constants µ and qlin depend only on L, α, Cstab, qred, Crel, and qctr as well as on the
adaptivity parameters 0 < θ ≤ 1 and λctr > 0.
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Proof of Lemma 19(i). Let µ, ε > 0 be free parameters, which will be �xed below. First,
we note that reliability (A3) and stability (A1) yield

|||u? − u?` |||2
(A3)

≤ C2
rel η`(u

?
` )

2

(A1)

≤ 2C2
rel η`(u

k+1
` )2 + 2C2

relC
2
stab |||u?` − uk+1

` |||2.

Together with the equivalence (4.9), this leads to

dl(u?, u?` )
2
(4.9)

≤ L

2
|||u? − u?` |||2

≤ LC2
rel η`(u

k+1
` )2 + LC2

relC
2
stab |||u?` − uk+1

` |||2
(4.9)

≤ LC2
rel η`(u

k+1
` )2 + 2Lα−1C2

relC
2
stab dl(u?` , u

k+1
` )2.

Let C1 := LC2
rel and C2 := 2Lα−1C2

relC
2
stab. With this, combining the last inequality and

the energy contraction (C1), we obtain that

dl(u?, uk+1
` )2 (4.27)

= (1− ε) dl(u?, u?` )
2 + εdl(u?, u?` )

2 + dl(u?` , u
k+1
` )2

≤ (1− ε) dl(u?, u?` )
2 + εC1 η`(u

k+1
` )2 + (1 + εC2) dl(u?` , u

k+1
` )2

(C1)

≤ (1− ε) dl(u?, u?` )
2 + εC1 η`(u

k+1
` )2 + (1 + εC2) q2

ctr dl(u?` , u
k
` )

2

Since (`, k+ 1) ∈ Q and according to the de�nition of Q, it holds that k+ 1 < k(`). Hence,
inequality (4.26) and Lemma 14(ii) yield that

η`(u
k+1
` )2

(4.26)
< λ−2

ctr dl(uk+1
` , uk` )

2

Lemma 14(ii)

≤ λ−2
ctr (1 + qctr)

2 dl(u?` , u
k
` )

2.

Let C3 := λ−2
ctr (1 + qctr)

2. Combining the latter two estimates, we see that

Λk+1
` = dl(u?, uk+1

` )2 + µ η`(u
k+1
` )2

≤ (1− ε) dl(u?, u?` )
2 + (µ+ εC1) η`(u

k+1
` )2 + (1 + εC2) q2

ctr dl(u?` , u
k
` )

2

≤ (1− ε) dl(u?, u?` )
2 +

{
(µ+ εC1)C3 + (1 + εC2) q2

ctr

}
dl(u?` , u

k
` )

2

Note that C1, C2, C3 depend only on the problem setting. Provided that

(µ+ εC1)C3 + (1 + εC2) q2
ctr ≤ 1− ε, (4.29)

we are thus led to

Λk+1
` ≤ (1− ε)

(
dl(u?, u?` )

2 + dl(u?` , u
k
` )

2
)

(4.27)
= (1− ε) dl(u?, uk` )

2

≤ (1− ε) Λk` .

Up to the �nal choice of µ, ε > 0 (see below), this concludes the proof of Lemma 19(i).
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Proof of Lemma 19(ii). Let µ, δ, ε > 0 be free parameters, which will be �xed below. First,
we note that

|||u? − u?` |||2
(A3)

≤ C2
rel η`(u

?
` )

2

(A1)

≤ 2C2
rel η`(u

k−1
` )2 + 2C2

relC
2
stab |||u?` − uk−1

` |||2.

Together with the equivalence (4.9), this leads to

dl(u?, u?` )
2

(4.9)

≤ L

2
|||u? − u?` |||2

≤ LC2
rel η`(u

k−1
` )2 + LC2

relC
2
stab |||u?` − uk−1

` |||2
(4.9)

≤ LC2
rel η`(u

k−1
` )2 + 2Lα−1C2

relC
2
stab dl(u?` , u

k−1
` )2

Recall that C1 = LC2
rel and C2 = 2Lα−1C2

relC
2
stab. With this, we obtain that

dl(u?, u
k
` )

2 (4.27)
= (1− ε) dl(u?, u?` )

2 + εdl(u?, u?` )
2 + dl(u?` , u

k
` )

2

≤ (1− ε) dl(u?, u?` )
2 + εC1 η`(u

k−1
` )2 + εC2 dl(u?` , u

k−1
` )2 + dl(u?` , u

k
` )

2

(C1)

≤ (1− ε) dl(u?, u?` )
2 + εC1 η`(u

k−1
` )2 + (εC2 + q2

ctr) dl(u?` , u
k−1
` )2.

(4.30)

Next, stability (A1) and reduction (A2) show that

η`+1(u
k
` )

2 = η`+1(T` ∩ T`+1, u
k
` )

2 + η`+1(T`+1\T`, uk` )2

(A1)
= η`(T` ∩ T`+1, u

k
` )

2 + η`+1(T`+1\T`, uk` )2

(A2)

≤ η`(T` ∩ T`+1, u
k
` )

2 + q2
red η`(T`\T`+1, u

k
` )

2

= η`(u
k
` )

2 − (1− q2
red) η`(T`\T`+1, u

k
` )

2.

According to the Dör�er marking criterion (4.17) in Algorithm 15(iii), we are led to

η`+1(u
k
` )

2 ≤
(
1− (1− q2

red) θ2
)
η`(u

k
` )

2 =: qθ η`(u
k
` )

2. (4.31)

Note that

|||uk` − u
k−1
` |||2 ≤ 2

(
|||u?` − uk` |||2 + |||u?` − uk−1

` |||2
)

(4.9)

≤ 4

α

(
dl(u?` , u

k
` )

2 + dl(u?` , u
k−1
` )2

)

(C1)

≤ 4

α
(q2

ctr + 1) dl(u?` , u
k−1
` )2.

Next, with δ > 0 which we specify further on, we use the following variant of Young's
inequality

(a+ b)2 ≤ (1 + δ) a2 + (1 + δ−1) b2 for all a, b ∈ R.
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This leads to

η`(u
k
` )

2
(A1)

≤
(
η`(u

k−1
` ) + Cstab |||uk` − u

k−1
` |||

)2

≤ (1 + δ) η`(u
k−1
` )2 + (1 + δ−1)C2

stab |||uk` − u
k−1
` |||2

≤ (1 + δ) η`(u
k−1
` )2 + (1 + δ−1)

4

α
(q2

ctr + 1)C2
stab dl(u?` , u

k−1
` )2.

(4.32)

Let C4 := 4α−1 (q2
ctr + 1)C2

stab. Note that Algorithm 15 guarantees that u0
`+1 = u

k
` .

Combining the latter estimates, we see that

Λ0
`+1 = dl(u?, u0

`+1)2 + µ η`+1(u0
`+1)2

(4.31)

≤ dl(u?, u
k
` )

2 + µ qθ η`(u
k
` )

2

(4.30)

≤ (1− ε) dl(u?, u?` )
2 + εC1 η`(u

k−1
` )2 + (εC2 + q2

ctr) dl(u?` , u
k−1
` )2 + µ qθ η`(u

k
` )

2

(4.32)

≤ (1− ε) dl(u?, u?` )
2 +

{
εC1 µ

−1 + qθ (1 + δ)
}
µ η`(u

k−1
` )2

+
{
εC2 + q2

ctr + µ qθ (1 + δ−1)C4

}
dl(u?` , u

k−1
` )2.

Note that C1, C2, C4 and 0 < qθ < 1 depend only on the problem setting. Provided that

εC1 µ
−1 + qθ (1 + δ) ≤ 1− ε and εC2 + q2

ctr + µ qθ (1 + δ−1)C4 ≤ 1− ε, (4.33)

we are thus led to

Λ0
`+1 ≤ (1− ε)

(
dl(u?, u?` )

2 + dl(u?` , u
k−1
` )2 + µ η`(u

k−1
` )2

)

(4.27)
= (1− ε)

(
dl(u?, u

k−1
` ) + µ η`(u

k−1
` )2

)

= (1− ε) Λ
k−1
` .

Up to the �nal choice of δ, µ, ε > 0, this concludes the proof of Lemma 19(ii).

Proof of Lemma 19 (�xing the free parameters). To �x all the free parameters and to show
that there exists a choice such that all the necessary assumptions are ful�lled, we proceed
as follows:

� Choose δ > 0 such that (1 + δ) qθ < 1.

� Choose µ > 0 such that q2
ctr + µ qθ(1 + δ)−1C4 < 1 and µC3 + q2

ctr < 1.

� Finally, choose ε > 0 su�ciently small such that (4.29) and (4.33) are satis�ed.

This concludes the proof of Lemma 19 with (1− ε) = q2
lin.

Proof of Theorem 17 under assumption (C1). According to (4.9), it holds that
dl(u?, uk` ) ' |||u?−uk` ||| and as a consequence that ∆k

` ' (Λk` )
1/2, where the hidden constants

depend only on µ, α, and L.
Since the index set Q is linearly ordered with respect to the total step counter |(·, ·)|,

linear convergence (4.24) now follows directly from Lemma 19 via induction on the index
pair.
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Proof of Theorem 17 under assumption (C2)

In order to prove Theorem 17 under assumption (C2), we �rst have to recall the following
main result from [GHPS18] whose proof is based on a perturbation argument.

Lemma 20 ([GHPS18, Lemma 4.9, Theorem 5.3]). Suppose (A1)�(A3) and (C2). Let
0 < θ ≤ 1 and 0 < λctr < λconv θ, where λconv = 1−qctr

Cstabqctr
. Then, it holds that

|||u?` − uk` ||| ≤ λctr
qctr

1− qctr
min

{
η`(u

k
` ),

1

1− λctr/λconv
η`(u

?
` )
}

(4.34)

as well as

(1− λctr/λconv) η`(u
k
` ) ≤ η`(u?` ) ≤ (1 + λctr/λconv) η`(u

k
` ). (4.35)

Moreover, there exist CGHPS > 0 and 0 < qGHPS < 1 such that

η`+n(u
k
`+n) ≤ CGHPS q

n
GHPS η`(u

k
` ) for all (`+ n+ 1, 0) ∈ Q. (4.36)

The constants CGHPS and qGHPS depend only on CCéa = L/α, Crel, Cstab, qred, and qctr, as
well as on the adaptivity parameters θ and λctr.

Lemma 20 shows that the given constraint on λctr guarantees estimator equivalence
η`(u

?
` ) ' η`(u

k
` ). Assume Dör�er marking for η`(u

k
` ) and θ, cf. Algorithm 15(iii), then

there holds with stability (A1) that

θ − λctr/λconv

1 + λctr/λconv
η`(u

?
` )

(4.35)

≤ (θ − λctr/λconv) η`(u
k
` )

(4.17)

≤ η`(M`, u
k
` )− λctr/λconv η`(u

k
` )

(A1)

≤ η`(M`, u
?
` ) + Cstab |||u?` − uk` ||| − λctr/λconv η`(u

k
` )

(4.34)

≤ η`(M`, u
?
` ).

(4.37)

In other words, Dör�er marking for η`(u
k
` ) and θ implies Dör�er marking for η`(u?` ) and

θ? := (θ − λctr/λconv)/(1 + λctr/λconv) > 0.
In the present case, the core of the proof of Theorem 17 is the following summability

result.

Lemma 21. Suppose (A1)�(A3) and (C2). Let 0 < θ ≤ 1 and 0 < λctr < λconv θ, where
again λconv = 1−qctr

Cstabqctr
. Then, there exists Csum > 0 such that

∑

(`,k)∈Q
(`,k)>(`′,k′)

∆k
` ≤ Csum ∆k′

`′ for all (`′, k′) ∈ Q. (4.38)

The constant Csum > 0 depends only on L, α, Crel, Cstab, qred, and qctr, as well as on the
adaptivity parameters θ and λctr.
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Proof. The proof is split into six steps.
Step 1. This step provides an equivalent quasi-error quantity. First, note that

|||u? − uk` ||| ≤ |||u? − u?` |||+ |||u?` − uk` |||
(A3)

. η`(u
?
` ) + |||u?` − uk` |||

(A1)

. η`(u
k
` ) + |||u?` − uk` ||| =: Ak

` .

This proves that ∆k
` = |||u?−uk` |||+ η`(u

k
` ) . Ak

` . Second, the Céa lemma (4.12) proves that

|||u?` − uk` ||| ≤ |||u? − u?` |||+ |||u? − uk` |||
(4.12)

. |||u? − uk` |||.

This concludes that

Ak
` = |||u?` − uk` |||+ η`(u

k
` ) ' ∆k

` . (4.39)

Step 2. This step collects some auxiliary estimates. We start with

A0
` . η`−1(u

k
`−1) ≤ A

k
`−1 for all (`, 0) ∈ Q with ` > 0. (4.40)

With the Céa lemma (4.12) and reliability (4.20), it follows that

|||u?` − uk`−1||| ≤ |||u? − u?` |||+ |||u? − u
k
`−1|||

(4.12)

. |||u? − uk`−1|||
(4.20)

. η`−1(u
k
`−1)

With nested iteration u0
` = u

k
`−1 and (A1)�(A2), we thus obtain that

A0
` = |||u?` − u0

` |||+ η`(u
0
` )

= |||u?` − uk`−1|||+ η`(u
k
`−1)

. η`−1(u
k
`−1)

≤ A
k
`−1

This proves (4.40). Next, we prove that

A
k
` . Ak

` for all (`+ 1, 0) ∈ Q and 0 ≤ k ≤ k(`). (4.41)

To see this, note that

|||uk` − uk` ||| ≤ |||u?` − u
k
` |||+ |||u?` − uk` |||

(C2)

≤ (q
k−k
ctr + 1) |||u?` − uk` |||.
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Hence, it follows that

A
k
` = |||u?` − uk` |||+ η`(u

k
` )

(A1)

. |||u?`−uk` |||+ |||uk`−uk` |||+ η`(u
k
` )

. |||u?` − uk` |||+ η`(u
k
` )

= Ak
` .

This proves (4.41). Finally, we prove that

Ak
` . |||u?` − uk−1

` ||| for all (`, k) ∈ Q with k > 0. (4.42)

With the inequality (4.26), which stems from the stopping criterion (4.16) of Algorithm
15(i), and Lemma 14(ii), we get that

η`(u
k
` )

(4.26)

. |||uk` − uk−1
` |||

Lemma 14(ii)

. |||u?` − uk−1
` |||.

This leads to

Ak
` = |||u?` − uk` |||+ η`(u

k
` )

(C2)

. |||u?` − uk−1
` |||+ η`(u

k
` )

. |||u?` − uk−1
` |||

and thus proves (4.42).
Step 3. Suppose that ` =∞ and hence k(`) <∞ for all ` ∈ N0. Note that

∑

(`,k)∈Q
(`,k)>(`′,k′)

Ak
` =

∞∑

`=`′+1

k(`)−1∑

k=0

Ak
` +

k(`′)−1∑

k=k′+1

Ak
`′

(4.40)

.
∞∑

`=`′+1

k(`)∑

k=1

Ak
` +

k(`′)∑

k=k′+1

Ak
`′ .

With contraction (C2), the geometric series proves for all (`, i) ∈ Q that

k(`)−1∑

k=i+1

Ak
`

(4.42)

.
k(`)−1∑

k=i+1

|||u?` − uk−1
` |||

(C2)

≤ |||u?` − ui`|||
∞∑

k=i

qk−ictr

. Ai
`.

(4.43)
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Hence, it follows that

k(`)∑

k=1

Ak`





= A1
`

(4.41)

. A0
` if k(`) = 1,

(4.41)

.
k(`)−1∑

k=1

Ak
`

(4.43)

. A0
` if k(`) > 1.

Moreover, it follows that

k(`′)∑

k=k′+1

Ak`′





= Ak
′+1
`′

(4.41)

. Ak
′
`′ if k(`′) = k′ + 1,

(4.41)

.
k(`′)−1∑

k=k′+1

Ak
`′

(4.43)

. Ak
′
`′ if k(`′) > k′ + 1.

So far, this proves that

∑

(`,k)∈Q
(`,k)>(`′,k′)

Ak
` . Ak′

`′ +

∞∑

`=`′+1

A0
` .

Exploiting the linear convergence (4.36) together with the geometric series, we prove that

∞∑

`=`′+1

A0
`

(4.40)

.
∞∑

`=`′+1

η`−1(u
k
`−1)

=
∞∑

`=`′
η`(u

k
` )

(4.36)

. η`′(u
k
`′)

∞∑

`=`′
q`−`

′
GHPS

' η`′(uk`′)
≤ A

k
`′ .

Overall, this proves that

∑

(`,k)∈Q
(`,k)>(`′,k′)

Ak
` . Ak′

`′ + A
k
`′

(4.41)' Ak′
`′ provided that ` =∞. (4.44)

Step 4. Suppose that `′ = ` < ∞ and hence k(`′) = k(`) = ∞. Then, the geometric
series proves that

∑

(`,k)∈Q
(`,k)>(`′,k′)

Ak
` =

∞∑

k=k′+1

Ak
`′

(4.43)

. Ak′
`′ . (4.45)
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Step 5. Suppose that `′ < ` <∞ and hence k(`) =∞. Then, it holds that

∑

(`,k)∈Q
(`,k)>(`′,k′)

Ak
` =

`−1∑

`=`′+1

k(`)−1∑

k=0

Ak
` +

k(`′)−1∑

k=k′+1

Ak
`′ +

∞∑

k=0

Ak
` .

First, note that

∞∑

k=0

Ak
` = A0

` +
∞∑

k=1

Ak
`

(4.43)

≤ A0
`

(4.40)

. A
k
`−1.

Provided that `′ < ` <∞, it hence holds that

∑

(`,k)∈Q
(`,k)>(`′,k′)

Ak
` .

`−1∑

`=`′+1

k(`)∑

k=0

Ak
` +

k(`′)−1∑

k=k′+1

Ak
`′

(4.40)

.
`−1∑

`=`′+1

k(`)∑

k=1

Ak
` +

k(`′)∑

k=k′+1

Ak
`′ .

Along the lines of Step 3, one concludes that

`−1∑

`=`′+1

k(`)∑

k=1

Ak
` +

k(`′)∑

k=k′+1

Ak
`′ . Ak′

`′ . (4.46)

Step 6. In any case, (4.44)�(4.46) prove for all (`′, k′) ∈ Q that

∑

(`,k)∈Q
(`,k)>(`′,k′)

∆k
` '

∑

(`,k)∈Q
(`,k)>(`′,k′)

Ak
` . Ak′

`′ ' ∆k′
`′ .

This concludes the proof of (4.38).

Proof of Theorem 17 under the assumption (C2). The proof is split into two steps.
Step 1. From [CFPP14, Lemma 4.9], we recall the following implication for sequences

(αn)n∈N0 in R≥0 and constants C > 0: Assume that

∞∑

n=N+1

αn ≤ C αN for all N ∈ N0.

Then, for N ∈ N0, it holds that

(1 + C−1)

∞∑

n=N+1

αn ≤
∞∑

n=N+1

αn + αN =

∞∑

n=N

αn.
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Inductively, it follows that

(1 + C−1)m
∞∑

n=N+m

αn ≤
∞∑

n=N+1

αn + αN =

∞∑

n=N

αn for all N,m ∈ N0.

We thus conclude that

αN+m ≤ (1 + C−1)−m
∞∑

n=N

αn ≤ (1 + C) (1 + C−1)−mαN for all N,m ∈ N0.

Step 2. Since the index set Q is linearly ordered with respect to the total step counter
|(·, ·)|, Lemma 21 and Step 1 imply that

∆k′
`′ ≤ Clin q

|(`′,k′)|−|(`,k)|
lin ∆k

` for all (`, k), (`′, k′) ∈ Q with (`′, k′) > (`, k),

where Clin = 1 + Csum and qlin = 1/(1 + C−1
sum). This concludes the proof.

4.6.3 Optimal convergence rates of the quasi-error

The second main theorem states optimal convergence rates of the quasi-error (4.19) with
respect to the overall computational costs. As usual in this context (see, e.g., [CFPP14]),
the result requires that the adaptivity parameters 0 < θ ≤ 1 and λctr > 0 are su�ciently
small. With the following de�nition, we then get Theorem 23.

De�nition 22. For N ∈ N0, let T(N) be the set of all re�nements T of T0 with

#T −#T0 ≤ N.

Then, for given s > 0, de�ne

‖u?‖As := sup
N∈N0

(N + 1)s inf
Topt∈T(N)

(
|||u? − u?opt|||+ ηopt(u

?
opt)
)
∈ R≥0 ∪ {∞}. (4.47)

Theorem 23. Suppose (C1) or (C2) as well as (R1)�(R3) and (A1)�(A4). De�ne

λopt :=





1−qctr

qctrCstab
if (C2) is valid,

1−qctr

qctrCstab

√
α/2 otherwise.

(4.48)

Let 0 < θ ≤ 1 and 0 < λctr < λopt θ such that

0 < θ′ :=
θ + λctr/λopt

1− λctr/λopt
< (1 + C2

stabC
2
rel)
−1/2. (4.49)
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Let s > 0. Then, there exist copt, Copt > 0 such that

c−1
opt ‖u?‖As ≤ sup

(`′,k′)∈Q
(#T`′ −#T0 + 1)s ∆k′

`′

≤ sup
(`′,k′)∈Q

( ∑

(`,k)∈Q
(`,k)≤(`′,k′)

#T`
)s

∆k′
`′ ≤ Copt max{‖u?‖As ,∆

0
0},

(4.50)

where ‖u?‖As is de�ned in (4.47). The constant copt > 0 depends only on CCéa = L/α,

Cson, Cstab, Crel, #T0, and s, and, if ` < ∞ or η`0(u
k
`0

) = 0 for some (`0 + 1, 0) ∈ Q,
additionally on ` or `0 respectively. The constant Copt > 0 depends only on Cstab, qred,
Crel, Cmesh, 1− λctr/λopt, Cmark, C

′
rel, Clin, qlin, #T0, and s.

Remark 24. The following comments underline the importance of the latter result:

� By de�nition (4.47), it holds that ‖u?‖As < ∞ if and only if the quasi-error (for the
exact discrete solutions) converges at least with algebraic rate s > 0 along a sequence
of optimal meshes.

� If all steps of Algorithm 15 can be performed at linear costs O(#T`), then the sum
∑

(`,k)∈Q
(`,k)≤(`′,k′)

#T`

is proportional to the overall computational work (resp. the overall computational time
spent) to perform the |(`′, k′)|-th step of the adaptive loop, since each adaptive step
depends on the full adaptive history. Note that the computation of, e.g., all residual
error indicators in Step (c) of Algorithm 15 as well as as the local mesh-re�nement
by, e.g., newest vertex bisection can be done at linear costs. The same applies to,
e.g., one step of PCG with an optimal additive Schwarz preconditioner in Step (b) of
Algorithm 15. For the Dör�er marking (4.17) in Step (iii) of Algorithm 15, we refer
to [Ste07] for an algorithm with linear cost and Cmark = 2 as well as to the recent
algorithm from [PP20] with linear cost and even Cmark = 1.

� The interpretation of (4.50) thus is that the quasi-error for the computed discrete
solutions uk` decays with rate s with respect to the overall computational costs (as well
as the degrees of freedom) if and only if rate s is possible with respect to the degrees
of freedom (for the exact discrete solutions on optimal meshes).

� Since s > 0 is arbitrary, the proposed algorithm will asymptotically regain the best
possible convergence behavior, even with respect to the computational costs.

� Prior works (see, e.g., [Ste07, BMS10, CG12, GHPS18]) proved linear convergence of
the quasi-error only for those steps, where mesh-re�nement takes place. Unlike this,
we prove linear convergence (4.24) for the full sequence of discrete approximations,
i.e., independently of the algorithmic decision for mesh-re�nement or one step of the
discrete solver.
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4 Adaptive FEM for second-order elliptic systems of partial di�erential equations

� In usual applications, the quasi-error ∆k
` (i.e., error plus estimator) is equivalent to

the so-called total error (i.e., error plus data oscillations) as well as to the estimator
alone. Therefore, the approximability ‖u?‖As in (4.47) can equivalently be de�ned
through the total error (see, e.g., [Ste07, CKNS08, CN12, FFP14]) or the estimator
(see, e.g., [CFPP14]) instead of the quasi-error (used in (4.47)). The overall result
will be the same.

4.6.4 Proof of Theorem 23 (optimal convergence rates)

Recall ‖u?‖As from (4.47) and the set T(N) =
{
T ∈ refine(T0 : #T −#T0 ≤ N

}
. Then,

the following lemma proves the �rst inequality in (4.50).

Lemma 25. Suppose (R1) as well as (A1)�(A3). Let s > 0. Then, it holds that

‖u?‖As ≤ copt sup
(`,k)∈Q

(#T` −#T0 + 1)s∆k
` , (4.51)

where copt > 0 depends only on CCéa = L/α, Cson, Cstab, Crel, #T0, and s, and, if ` < ∞
or η`0(u

k
`0

) = 0 for some (`0 + 1, 0) ∈ Q, additionally on ` or `0 respectively.

Proof. The proof is split into three steps. First, we recall Lemma 22 from [BHP17]: Let
T• ∈ T and T◦ ∈ refine(T•). Then, it holds that

#T◦/#T• ≤ #T◦ −#T• + 1 ≤ #T◦. (4.52)

Step 1. In this step, we consider the pathological cases that ` <∞ or η`0(u
k
`0

) = 0 for some
(`0 +1, 0) ∈ Q. In the �rst case, Corollary 18 gives that u? = u?` as well as η`(u

?
` ) = 0. From

Proposition 16 and Lemma 11, we know that the latter implies uk`0 = u? = u?`0 . Hence, with
`′ := ` or `′ := `0 respectively, we obtain that

‖u?‖As = sup
N∈N0

(N + 1)s inf
Topt∈T(N)

(
|||u? − u?opt|||+ ηopt(u

?
opt)
)

= max
0≤N<#T`′−#T0

(N + 1)s min
T•∈T(N)

(
|||u? − u?•|||+ η•(u?•)

)
.

The term N + 1 within the maximum can be estimated by

N + 1 ≤ #T`′ −#T0

(R1)

≤ (C`
′

son − 1) #T0.

The Céa lemma (4.12) and (A1)�(A3) give that |||u?−u?•||| . |||u?−u?0||| and η•(u?•) . η0(u?0)
(see, e.g., [CFPP14, Lemma 3.5]). Altogether, we thus arrive at

‖u?‖As .
(
|||u? − u?0|||+ η0(u?0)

)
. (4.53)

Step 2. Next, we consider the generic case that ` =∞ and η`0(u
k
`0

) > 0 for all `0 ∈ N0.
Algorithm 15 yields that #T` → ∞ as ` → ∞. Thus, we can argue analogously to the
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proof of [CFPP14, Theorem 4.1]: Let N ∈ N0. Choose the maximal ` ∈ N0 such that
#T` −#T0 + 1 ≤ N . Then, T` ∈ T(N). The choice of N guarantees that

N + 1 ≤ #T`+1 −#T0 + 1

(4.52)

≤ #T`+1

(R1)

≤ Cson #T`
(4.52)

≤ Cson #T0 (#T` −#T0 + 1).

(4.54)

This leads to

(N + 1)s min
T•∈T(N)

(
|||u? − u?•|||+ η•(u?•)

)
. (#T` −#T0 + 1)s

(
|||u? − u?` |||+ η`(u

?
` )
)
.

Taking the supremum over all N ∈ N0, we conclude that

‖u?‖As . sup
`∈N0

(#T` −#T0 + 1)s
(
|||u? − u?` |||+ η`(u

?
` )
)
. (4.55)

Step 3. With stability (A1) and the Céa lemma (4.12), we see for all (`, 0) ∈ Q that

|||u? − u?` |||+ η`(u
?
` )

(A1)

. |||u? − u?` |||+ |||u?` − u0
` |||+ η`(u

0
` )

≤ 2 |||u? − u?` |||+ |||u? − u0
` |||+ η`(u

0
` )

(4.12)

. |||u? − u0
` |||+ η`(u

0
` )

= ∆0
` .

With (4.53) and (4.55), we thus obtain that

‖u?‖As . sup
(`,0)∈Q

(#T` −#T0 + 1)s
(
|||u? − u?` |||+ η`(u

?
` )
)

≤ sup
(`,k)∈Q

(#T` −#T0 + 1)s ∆k
` .

This concludes the proof.

To prove the converse estimate, we need the so-called comparison lemma for the error
estimator of the exact discrete solution u?` ∈ X`, i.e., Lemma 4.14 from [CFPP14].

Lemma 26. Suppose (R1)�(R2) and (A1)�(A4). Let 0 < θ′ < θopt := (1 + C2
stabC

2
rel)
−1/2.

Then, there exist constants C1, C2 > 0 such that for all s > 0 with ‖u?‖As < ∞ and all
T• ∈ T, there exists a subset R• ⊆ T• which satis�es that

#R• ≤ C1C
−1/s
2 ‖u?‖1/sAs

η•(u?•)
−1/s, (4.56)

and the Dör�er marking criterion

θ′η•(u?•) ≤ η•(R•, u?•). (4.57)

The constants C1, C2 depend only on the constants of (A1)�(A4).
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Proof of Theorem 23. The proof is split into six steps.
Step 1. It holds that

sup
(`′,k′)∈Q

(#T`′ −#T0 + 1)s ∆k′
`′ ≤ sup

(`′,k′)∈Q

( ∑

(`,k)∈Q
(`,k)≤(`′,k′)

#T`
)s

∆k′
`′ .

Hence, in accordance with Lemma 25, it only remains to prove that

sup
(`′,k′)∈Q

( ∑

(`,k)∈Q
(`,k)≤(`′,k′)

#T`
)s

∆k′
`′ . max

{
‖u?‖As ,∆

0
0

}
. (4.58)

Without loss of generality, we may assume that ‖u?‖As <∞.
Step 2. Provided that (`+1, 0) ∈ Q (and as a consequence that k(`) <∞) Lemma 14(i)&(iii)

and the stopping criterion (4.16) of Algorithm 15 prove that

dl(u?` , u
k
` )

Lemma 14(i)

≤ qctr dl(u?` , u
k−1
` )

Lemma 14(iii)

≤ qctr

1− qctr
dl(u

k
` , u

k−1
` )

(4.16)

≤ qctr

1− qctr
λctr η`(u

k
` ).

Under (C2), this leads to

|||u?` − uk` ||| = dl(u?` , u
k
` )

≤ qctr

1− qctr
λctr η`(u

k
` )

(4.48)

≤ C−1
stab λctr/λopt η`(u

k
` ).

(4.59a)

Under (C1), this leads to

|||u?` − uk` |||
(4.9)

≤
√

2/α dl(u?` , u
k
` )

≤
√

2/α
qctr

1− qctr
λctr η`(u

k
` )

(4.48)

≤ C−1
stab λctr/λopt η`(u

k
` ).

(4.59b)

Step 3. With Step 2, we see that

η`(u
k
` )

(A1)

≤ η`(u
?
` ) + Cstab |||u?` − uk` |||

(4.59)

≤ η`(u
?
` ) + λctr/λopt η`(u

k
` ),

η`(u
?
` )

(A1)

≤ η`(u
k
` ) + Cstab |||u?` − uk` |||

(4.59)

≤ η`(u
k
` ) + λctr/λopt η`(u

k
` ).

With 0 < λctr/λopt < 1, this guarantees for all (`+ 1, 0) ∈ Q the equivalence

(1− λctr/λopt) η`(u
k
` ) ≤ η`(u?` ) ≤ (1 + λctr/λopt) η`(u

k
` ). (4.60)
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Step 4. Let R` ⊆ T` be the subset from Lemma 26 with θ′ from (4.49). Note that

η`(R`, u?` )
(A1)

≤ η`(R`, uk` ) + Cstab |||u?` − uk` |||
(4.59)

≤ η`(R`, uk` ) + λctr/λopt η`(u
k
` ).

(4.61)

This proves that

(1− λctr/λopt) θ
′ η`(u

k
` )

(4.60)

≤ θ′ η`(u
?
` )

(4.57)

≤ η`(R`, u?` )
(4.61)

≤ η`(R`, uk` ) + λctr/λopt η`(u
k
` ).

(4.62)

The choice of θ′ in (4.49) gives that θ = (1−λctr/λopt) θ
′−λctr/λopt. Thus, we obtain that

θ η`(u
k
` )

(4.49)
=

(
(1− λctr/λopt) θ

′ − λctr/λopt

)
η`(u

k
` )

(4.62)

≤ η`(R`, uk` ).
Hence, R` satis�es the Dör�er marking criterion (4.17) used in Algorithm 15(iii). By
(quasi-)minimality ofM` in Algorithm 15(iii), we infer that

#M` . #R`
(4.56)

. ‖u?‖1/sAs
η`(u

?
` )
−1/s (4.60)' ‖u?‖1/sAs

η`(u
k
` )
−1/s.

Nested iteration guarantees that u0
`+1 = u

k
` . Thus, reliability (4.20) and (A1)�(A2) lead to

η`(u
k
` )

(4.20)' ∆
k
`

= |||u? − u0
`+1|||+ η`(u

0
`+1)

≥ |||u? − u0
`+1|||+ η`+1(u0

`+1)

= ∆0
`+1.

Overall, we derive that

#M` . ‖u?‖1/sAs
η`(u

k
` )
−1/s . ‖u?‖1/sAs

(∆0
`+1)−1/s for all (`+ 1, 0) ∈ Q. (4.63)

The hidden constant depends only on Cstab, qred, Crel, 1− λctr/λopt, Cmark, C ′rel, and s.
Step 5. For (`, k) ∈ Q with T` 6= T0, Step 4 and the closure estimate (R3) lead to

#T` −#T0 + 1 ' #T` −#T0

(R3)

.
`−1∑

n=0

#Mn

(4.63)

. ‖u?‖1/sAs

∑̀

n=0

(∆0
n)−1/s.

Replacing ‖u?‖As with max{‖u?‖As ,∆
0
0}, the overall estimate trivially holds for T` = T0.

We thus have derived that

#T` −#T0 + 1 . max{‖u?‖As ,∆
0
0}1/s

∑̀

n=0

(∆0
n)−1/s

≤ max{‖u?‖As ,∆
0
0}1/s

∑

(`′,k′)∈Q
(`′,k′)≤(`,k)

(∆k′
`′ )
−1/s for all (`, k) ∈ Q,
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where the hidden constant depends only on Cstab, qred, Crel, Cmesh, 1 − λctr/λopt, Cmark,
C ′rel, ∆0

0, and s. Finally, we employ linear convergence (4.24) to bound the latter sum by
means of the geometric series

∑

(`′,k′)∈Q
(`′,k′)≤(`,k)

(∆k′
`′ )
−1/s

(4.24)

≤ C
1/s
lin (∆k

` )
−1/s

∑

(`′,k′)∈Q
(`′,k′)≤(`,k)

(q
1/s
lin )|(`,k)|−|(`′,k′)|

≤ C
1/s
lin

1− q1/s
lin

(∆k
` )
−1/s.

Combining the latter two estimates, we see that

#T` −#T0 + 1 . max{‖u?‖As ,∆
0
0}1/s(∆k

` )
−1/s for all (`, k) ∈ Q, (4.64)

where the hidden constant depends only on Cstab, qred, Crel, Cmark, 1 − λctr/λopt, Cmark,
C ′rel, Clin, qlin, ∆0

0, and s.
Step 6. Let (`′, k′) ∈ Q. Together with Step 5, the geometric series proves that

∑

(`,k)∈Q
(`,k)≤(`′,k′)

#T`
(4.52)

≤ (#T0)
∑

(`,k)∈Q
(`,k)≤(`′,k′)

(#T` −#T0 + 1)

(4.64)

. max{‖u?‖As ,∆
0
0}1/s

∑

(`,k)∈Q
(`,k)≤(`′,k′)

(∆k
` )
−1/s

(4.24)

. max{‖u?‖As ,∆
0
0}1/sC1/s

lin (∆k′
`′ )
−1/s

∑

(`,k)∈Q
(`,k)≤(`′,k′)

(q
1/s
lin )|(`

′,k′)|−|(`,k)|

≤ C
1/s
lin

1− q1/s
lin

max{‖u?‖As ,∆
0
0}1/s (∆k′

`′ )
−1/s.

Rearranging this estimate, we end up with

sup
(`′,k′)∈Q

( ∑

(`,k)∈Q
(`,k)≤(`′,k′)

#T`
)s

∆k′
`′ . max{‖u?‖As ,∆

0
0},

where the hidden constant depends only on Cstab, qred, Crel, Cmesh, 1 − λctr/λopt, Cmark,
C ′rel, Clin, qlin, ∆0

0, #T0, and s. This concludes the proof.
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

We present our �rst setting which �ts in the abstract framework of Section 4.2�4.6.

Model problem

We consider the elliptic boundary value problem (4.1)

−divA(∇u?) = f in Ω

u? = 0 on Γ := ∂Ω,

where Ω ⊂ Rd is a bounded Lipschitz domain with d ∈ {2, 3}, and f ∈ L2(Ω) is a given
load. Recall the corresponding variational formulation (4.2): Given a load f ∈ L2(Ω), �nd
u? ∈ H := H1

0 (Ω) such that

〈Au? , v〉H′×H :=

∫

Ω
A(∇u?) · ∇v dx =

∫

Ω
fv` dx =: 〈F , v〉H′×H for all v ∈ H.

We assume that A : L2(Ω)d → L2(Ω)d has the given form

A(v) = [x 7→ A(x)v(x)] for v ∈ L2(Ω)d,

where A ∈ W 1,∞(Ω)d×d is symmetric and uniformly positive de�nite. The choice of
W 1,∞(Ω) as the domain of A instead of L∞(Ω) is only necessary to ensure that the residual
error indicators (4.69) are well-de�ned.
We de�ne the potential P : H1

0 (Ω)→ R via

P (v) =
1

2

∫

Ω
A∇v · ∇v dx for all v ∈ H1

0 (Ω). (4.65)

Then, it holds that

lim
t→0
t∈R

P (w + tv)− P (w)

t
= lim

t→0
t∈R

∫
Ω A∇(w + tv) · ∇(w + tv) dx−

∫
Ω A∇w · ∇w dx

2 t

= lim
t→0
t∈R

∫
Ω 2 A∇w · ∇(tv) + A∇(tv) · ∇(tv) dx

2 t

= lim
t→0
t∈R

∫

Ω
A∇w · ∇v +

1

2
A∇v · ∇(tv) dx

=

∫

Ω
A∇w · ∇v dx

= 〈Au? , v〉H′×H
Hence, assumption (O3) is satis�ed.
We equip H1

0 (Ω) with the scalar product

〈〈v , w〉〉 :=

∫

Ω
A∇v · ∇w dx (4.66)

and the induced norm |||v|||2 := 〈〈v , v〉〉. Then, the assumptions (O1)�(O2) are satis�ed with
α = 1 = L.
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Triangulation and mesh-re�nement

Let T0 be a conforming initial triangulation of Ω into simplices T ∈ T0. We use newest
vertex bisection for the mesh-re�nement refine(·) such that the axioms (R1)�(R3) are
satis�ed, cf. Section 3.6. In this section, we de�ne the local mesh-width function as

h`|T := h`(T ) := diam(T ) for all T ∈ T`,

which is equivalent to the de�nition of Section 3.1. For a node z ∈ T`, we additionally de�ne
the mesh-width

h`(z) := max
T∈T`

T⊆ω`(z)

diam(T ).

It holds that

h`(T ) ≤ h`(z) . h`(T ) for all z ∈ N` and T ∈ T` with z ∈ T, (4.67)

where the hidden constant depends only on γ-shape regularity.

Discretization

For T` ∈ T, we use the corresponding ansatz space

X` :=
{
v ∈ C(Ω) : v|Γ = 0 and v|T ∈ P1 for all T ∈ T`

}
, (4.68)

i.e., the space of all continuous piecewise �rst degree polynomials that vanish on the bound-
ary Γ = ∂Ω.

Error estimator

Next, we de�ne the weighted-residual error indicators (see, e.g., [AO11, Ver13]). For all
T ∈ T` and v` ∈ X` de�ne the error indicators η`(T, v`)2 as

η`(T, v`)
2 := |T |2/d ‖f + div (A∇v`)‖L2(T ) + |T |1/d ‖[A∇v` · n]‖L2(∂T∩Ω), (4.69)

where [·] denotes the usual jump of piecewise continuous functions across element interfaces,
and n is the outer normal vector of the considered element. It is well-known that the
resulting error estimator satis�es the axioms (A1)�(A4), see, e.g., [CFPP14, Section 6.1]
and the references therein.

Galerkin system

With the usual Lagrangian basis {η`,1, . . . , η`,N} ⊆ X` of X`, we de�ne the Galerkin matrix
M` via

M` :=
(∫

Ω
A∇η`,j · ∇η`,i, dx

)N
i,j=1

∈ RN×N ,

50



4.7 AFEM for linear elliptic PDE with optimal PCG solver

as well as the right-hand side,

b` :=
(∫

Ω
fη`,i dx

)N
i=1
∈ RN

corresponding to (4.8). Hence, the coe�cient vector x?` ∈ RN of the solution u?` =∑N
i=1 x?` [i] η`,i is the unique solution of the linear system

M` x?` = b`. (4.70)

Preconditioned conjugate gradient method (PCG) for the Galerkin system

Finally, we introduce the iteration function Φ` : X` → X` for Step (i) of Algorithm 15 as
one step of the preconditioned conjugated gradient method (PCG): Given an initial guess
x0
` ∈ RN , PCG approximates the solution x?` ∈ RN of (4.70).
Let P` ∈ RN×N be an arbitrary symmetric positive de�nite preconditioner and de�ne

M̃` := P
−1/2
` M`P

−1/2
`

as well as

b̃` := P
−1/2
` b`.

Now, instead of solving the linear system (4.70), the PCG iteration considers the precondi-
tioned system

M̃` x̃?` = b̃` (4.71)

and formally applies the conjugate gradient method (CG, cf. [GVL13, Algorithm 11.3.2])
to (4.71) with the given initial guess x0

` . Note that x?` and x̃?` are connected via

x?` = P
−1/2
` x̃?` .

Also, the iterates xk` ∈ RN of PCG (for P`, M`, b`, and the initial guess x0
` ) and the iterates

x̃k` of CG (for M̃`, b̃`, and the initial guess x̃0
` := P

1/2
` x0

` ) are formally linked by

xk` = P
−1/2
` x̃k` ,

see [GVL13, Section 11.5].
Let v` ∈ X` with coe�cient vector y` ∈ RN . Then, there holds the elementary identity

|||v`|||2 = y` ·M` y` =: |y`|2M`
. (4.72)

In addition, for ỹ` ∈ RN and y` ∈ RN such that y` = P
−1/2
` ỹ`, direct computation yields

that

|ỹ`|2M̃`
:= ỹ` · M̃`ỹ`

= (P
1/2
` y`) ·P−1/2

` M` P
−1/2
` P

1/2
` y`

= y` ·M` y`

= |y`|2M`
.

(4.73)
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Hence, [GVL13, Theorem 11.3.3] for CG (applied to M̃`, b̃`, x̃0
` ) yields the following

lemma for PCG (which follows from the implicit steepest decent property of CG).

Lemma 27. Let M`,P` ∈ RN×N be symmetric and positive de�nite, b` ∈ RN , x?` :=
M−1

` b`, and x0
` ∈ RN . Suppose the `2-condition number estimate

cond2(P
−1/2
` M` P

−1/2
` ) ≤ Calg. (4.74)

Then, the iterates xk` of the PCG algorithm satisfy the contraction property

|x?` − xk+1
` |M`

≤ qpcg |x?` − xk` |M`
for all k ∈ N0, (4.75)

where qpcg := (1− 1/Calg)1/2 < 1.

Remark 28. Each step of PCG has the following computational costs:

� O(N) costs for vector operations (e.g., assignment, addition, scalar product),

� computation of one matrix-vector product with M`,

� computation of one matrix-vector product with P−1
` .

Optimal preconditioner

We suppose that the employed preconditioners P` are optimal. This means that the con-
stant Calg > 0 of Lemma 27 depends only on the coe�cient matrix A, the initial mesh T0,
and the polynomial degree p. One example of such an optimal preconditioner is the mul-
tilevel additive Schwarz preconditioner from Section 4.7.1, see also, e.g., [WC06, SMPZ08,
XCH10, CNX12]. We stress that the product of P` with one vector can be realized in linear
complexity O(N).
Hence, to �t the framework of the main results from Section 4.6, at least one of the

contraction properties (C1)�(C2) has to be ful�lled: From the contraction property (4.75)
and the identity (4.72), it follows that

|||u?` − uk+1
` ||| (4.72)= |x?` − xk+1

` |M`

(4.75)

≤ q2
pcg |x?` − xk` |M`

(4.72)
= qpcg |||u?` − uk` |||

Hence, there holds the contraction property (C2) with qctr := qpcg = (1− 1/Calg)1/2.
From (4.65)�(4.66), it directly follows that

|E(v)− E(w)| = 1

2
|||w − v|||2 for all v, w ∈ H1

0 (Ω).

Thus, the norm contraction property (C2) is equivalent to the energy contraction prop-
erty (C1). Altogether, the main results from Section 4.6 apply to the present setting and the
linear convergence (4.24) from Theorem 17 holds even for arbitrary λctr > 0 and 0 < θ ≤ 1
in Algorithm 15.
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4.7.1 Optimal multilevel additive Schwarz preconditioner

In this section, we propose a multilevel additive Schwarz preconditioner for the arising
Galerkin matrix and prove its optimality in the sense that the condition number of the
additive Schwarz matrix is uniformly bounded.

Multilevel additive Schwarz preconditioner

In order to de�ne the additive Schwarz preconditioner, we introduce the set of vertices Ñ`
for ` ∈ N0 via

Ñ0 := N0

as well as

Ñ` := N` \ N`−1 ∪
{
z ∈ N` ∩N`−1 : ω`(z) $ ω`−1(z)

}
for ` ≥ 1.

Hence, Ñ` is the set of new vertices and their direct neighbors in the mesh T`. Additionally,
we de�ne the corresponding subspaces

X̃` := span
{
η`,z : z ∈ Ñ`

}

as well as

X`,z := span{η`,z}.

Then, for all 0 ≤ L and with N` := #N`, the local multilevel diagonal preconditioner is
given by

PL :=

L∑

`=0

I`D̃
−1
`

(
I`
)ᵀ
, (4.76)

where the appearing matrices are de�ned as follows:

� D̃−1
` ∈ RN`×N` is a diagonal matrix with entries

(
D̃−1
`

)
(j, k) :=

{(
M`(j, j)

)−1
δjk if zj ∈ Ñ`,

0 otherwise,

where δjk is the usual Kronecker delta. Hence, for all degrees of freedom in Ñ`, the
corresponding diagonal elements of D̃−1

` are the inverse diagonal entries of M`.

� I` ∈ RNL×N` is the matrix representation of the embedding operator I` : X` → XL.
Instead of solving the linear system

MLxL = bL,

we instead consider the preconditioned linear system

PLMLxL = PLbL.
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Optimal cost of matrix-vector multiplication

Let I`+1
` ∈ RN`+1×N` denote the matrix representation of the embedding operator from X`−1

to X`. Then, it holds that

I` = ILL−1 IL−1
L−2 · · · I`+1

` .

Hence, we can rewrite the preconditioner PL from (4.76) as follows

PL =
L∑

`=0

I`D̃
−1
`

(
I`
)ᵀ

= ILL−1 · · · I1
0 D̃−1

0

(
I1

0

)ᵀ · · ·
(
ILL−1

)ᵀ
+ . . .+ ILL−1 D̃−1

L−1

(
ILL−1

)ᵀ
+ D̃−1

L .

Using this representation, we can evaluate the matrix-vector multiplication with the pre-
conditioner PL with the following algorithm.

Algorithm 29 (Evaluation of y = PL x). Input: y := x ∈ RNL , matrices {I`+1
` }L−1

`=0 ,

{D̃−1
` }L`=0, auxiliary memory y0 ∈ RN0 , . . . ,yL ∈ RNL .

(i) For ` = L, . . . , 1 do:

y` ←− D̃−1
` y

y ←−
(
I``−1

)ᵀ
y

End for

(ii) y0 ←− D̃−1
0 y

(iii) For ` = 0, . . . , L− 1 do:

y←− I`+1
` y

y←− y + y`+1

End for

Output: y = PL x.

In order to analyze the computational costs of Algorithm 29, we �rst note that Ñ` consists
only of newly created nodes and some of its neighbours. This yields that

Ñ` := #Ñ` ≤ C(N` −N`−1) = C#(N` \ N`−1),

where the constant C > 0 depends only on shape regularity. Since the matrices D̃−1
` have

only O(N` −N`−1) non-zero entries, the overall storage requirements are

O
(
N0 +

L∑

`=1

(N` −N`−1)
)

= O(NL).
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The same holds for the evaluations I``−1 x as well as
(
I``−1

)ᵀ
x. All values of x with indices

corresponding to nodes in N` remain unchanged during the evaluation and we hence only
needO(N`+1−N`) many arithmetic operations. Summing up all operations in Algorithm 29,
we then end up with linear complexity O(NL) for the evaluation of the preconditioner PL.

Optimal condition number

The following theorem is the main result of this section.

Theorem 30. The minimal and maximal eigenvalues of PLML satisfy

c ≤ λmin

(
PLML

)
and λmax

(
PLML

)
≤ C, (4.77)

where the constants c, C > 0 depend only on Ω, d, the initial triangulation T0, and the
di�usion coe�cient A. In particular, it holds that

condML

(
PLML

)
≤ C

c
, (4.78)

i.e., the condition number of the preconditioned matrix PLML is L-independently bounded
and therefrom the multilevel diagonal scaling preconditioner PL is optimal.

4.7.2 Auxiliary results

Level function and uniform mesh-re�nement

In this section, we de�ne the level function level`(·) as well as the sequence of uniformly
re�ned triangulations T̂m and collect some technical results.
To this end, we �rst de�ne the generation gen(T ) ∈ N0 of an element T . Let T ∈ T` be

an element of the triangulation T` and T0 ∈ T0 the unique ancestor element of the initial
triangulation T0 such that T ⊆ T0. Then, the generation of T is de�ned by

gen(T ) :=
log(|T |/|T0|)

log(1/2)
∈ N0,

i.e., |T | = 2−gen(T )|T0| and gen(T ) returns the number of bisections to generate T from T0.
Based on the generation, we now de�ne for each node z ∈ N` the level

level`(z) := dmax{gen(T )/d : T ∈ T` with T ⊆ ω`(z)}e, (4.79)

where d·e denotes the Gaussian ceil function, i.e., dxe := min{n ∈ N0 : x ≤ n} for x ≥ 0.
Next, let z ∈ NL and k ∈ N0. We de�ne the index set

K̃k(z) :=
{
` ∈ {0, 1, . . . , L} : z ∈ Ñ` and level`(z) = k

}
, (4.80)

which describes in how many sets Ñ` with level`(z) = k a given node z ∈ NL appears. The
following lemma from [WC06, Lemma 3.1] proves that the cardinality of this set can be
uniformely bounded.
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Lemma 31. It holds that

#K̃k(z) ≤ C for all z ∈ NL and k ∈ N0, (4.81)

where the constant C > 0 depends only on T0.

The sequence of uniform triangulations T̂m is de�ned as follows: Let T̂0 := T0. For m ≥ 1,
the mesh T̂m is obtained by uniformely re�ning the mesh T̂m−1, i.e., every element T ∈ T̂m−1

is successively bisected into 2d many son elements T ′ ∈ T̂m with measure |T ′| = 2−d|T |,
cf. [Ste08, Theorem 2.1]. With N̂m denoting the set of all nodes of T̂m, we de�ne the local
mesh-width

ĥ0 := max
T∈T0

h0(T ) and ĥm := 2−mĥ0 for all m ≥ 1. (4.82)

From [Ste08, Section 4], we get the equivalence

|T | ' h`(T )d = diam(T )d ' 2−gen(T ) for all T ∈ T`,

where the implicit constants depend only on T0 and d. Hence, it holds that

ĥm = 2−mĥ0 = 2−gen(T )/d ĥ0 ' diam(T ) for all T ∈ T̂m and m ≥ 0.

Lemma 32. Let z ∈ N` and m := level`(z). Then, it holds that z ∈ N̂m as well as
η`,z ∈ X̂m := S1(T̂m). Additionally, there holds the equivalence

c ĥm ≤ h`(z) ≤ C ĥm, (4.83)

where h`(z) := max
{

diam(T ) : T ∈ T`, z ∈ T
}
and the constants c, C > 0 depend only on

the initial triangulation T0.

Proof. For T̂ ∈ T̂m and T ∈ T` with T ⊆ ω`(z), it holds that

gen(T̂ ) = md ≥ gen(T ). (4.84)

Now, let z′ ∈ ω`(z) ∩ N` and T ∈ T` with T ⊆ ω`(z) such that z′ ∈ T . Let T0 ∈ T0 be
the unique ancestor of T . From (4.84), it follows that there exists a T̂ ∈ T̂m such that
T̂ ⊆ T ⊆ T0 and z′ ∈ N̂m ∩ T̂ . Hence, it holds for all nodes z′ ∈ ω`(z) ∩ N` that z′ ∈ N̂m
and consequently η`,z ∈ X̂m. To see (4.83), recall the de�nition (4.79) of m = level`(z), i.e.,
there exists T ′ ∈ T` with T ′ ⊆ ω`(z) such that

gen(T ′) + 1 > md = gen(T̂ ) ≥ gen(T ′).

Therefore, it holds that

diam(T̂ ) ' diam(T ′) ' diam(T ) for all T̂ ∈ T̂m and T ⊆ ω`(z).

This implies the equivalence (4.83).
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Let Π̂m : L2(Ω)→ X̂m denote the L2-orthogonal projection onto X̂m = S1
0 (T̂m).

Lemma 33. For all v ∈ H1
0 (Ω), it holds that

∞∑

m=0

ĥ−2
m ‖v − Π̂mv‖2L2(Ω) ≤ Cnorm ‖v‖2H1(Ω), (4.85)

where the constant Cnorm > 0 depends only on Ω and the initial triangulation T0.

Proof. Let w ∈ H1
0 (Ω). It follows from the orthogonality of the L2-projection that

N∑

k=1

‖(Π̂k − Π̂k−1)w‖2L2(Ω) = ‖
N∑

k=1

(Π̂k − Π̂k−1)w‖2L2(Ω)

= ‖Π̂Nw − Π̂0w‖2L2(Ω)

= ‖(1− Π̂0)w‖2L2(Ω) − ‖(1− Π̂N )w‖2L2(Ω).

(4.86)

Taking the limit N →∞, we hence get that

‖w − Π̂0w‖2L2(Ω) =
∞∑

k=1

‖(Π̂k − Π̂k−1)w‖2L2(Ω) for all w ∈ H1
D(Ω), (4.87)

since the last term in (4.87) converges to 0 for N →∞. From [Xu96, Theorem 4.32] follows
that

‖w − Π̂0w‖2H1(Ω) '
∞∑

k=1

ĥ−2
k ‖(Π̂k − Π̂k−1)w‖2L2(Ω) for all w ∈ H1

0 (Ω). (4.88)

With w := v − Π̂mv, and Π̂nΠ̂mv = Π̂min{m,n}v, we get that

‖v − Π̂mv‖2L2(Ω) = ‖w‖L2(Ω) = ‖w − Π̂0w‖2L2(Ω)

(4.87)
=

∞∑

k=1

‖(Π̂k − Π̂k−1)w‖2L2(Ω)

=

∞∑

k=m+1

‖(Π̂k − Π̂k−1)v‖2L2(Ω).

(4.89)

With the de�nition (4.82) of ĥm, we infer that

k−1∑

m=0

ĥ−2
m = ĥ−2

0

k−1∑

m=0

22m < ĥ−2
0 22k = ĥ−2

k . (4.90)
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Combining (4.89)�(4.90), changing the order of summation, and exploiting (4.88), we derive
that

∞∑

m=0

ĥ−2
m ‖v − Π̂mv‖2L2(Ω)

(4.89)'
∞∑

m=0

∞∑

k=m+1

ĥ−2
m ‖(Π̂k − Π̂k−1)v‖2L2(Ω)

=

∞∑

k=1

k−1∑

m=0

ĥ−2
m ‖(Π̂k − Π̂k−1)v‖2L2(Ω)

(4.90)
<

∞∑

k=1

ĥ−2
k ‖(Π̂k − Π̂k−1)v‖2L2(Ω)

(4.88)' ‖v − Π̂0v‖2H1(Ω)

. ‖v‖2H1(Ω),

where the last inequality follows from the H1-stability of the L2-orthogonal projection Π̂0,
cf. [CT87, BPS02, Car02]. This concludes the proof.

The patches ω̂km(z) corresponding to the uniformly re�ned mesh T̂m are de�ned analo-
gously to the patches ωkm(z).
For each z ∈ NL, we de�ne

r`(z) := min
{

gen(T ) : T ∈ T`−1 with T ⊆ ω2
`−1(z)

}
(4.91)

as well as

R`(z) := br`(z)/dc, (4.92)

where b·c denotes the Gaussian �oor function, i.e., bxc := max
{
n ∈ N0 : x ≥ n

}
.

Lemma 34. For all z ∈ N`, there hold (i)�(iii):

(i) It holds that level`(z) ≤ R`(z) + C1, where the constant C1 > 0 depends only on the
initial triangulation T0.

(ii) For all T ∈ T`−1 with T ⊆ ω2
`−1(z), there exists an element T̂ ∈ T̂R`(z) such that

T ⊆ T̂ .

(iii) There exists an index n ∈ N0, which depends only on the initial triangulation T0, such
that ω`(z) ⊆ ω2

`−1(z) ⊆ ω̂nlevel`(z)
(z).

Proof of (i). Let T ∈ T` with T ⊆ ω`(z) such that dgen(T )/de = level`(z) and let T ′ ∈ T`−1

with T ′ ⊆ ω2
`−1(z) such that bgen(T ′)/dc = R`(z). Let T ⊆ T0 ∈ T0 and T ′ ⊆ T ′0 ∈ T0 be

the corresponding ancestor elements in T0, respectively. Due to γ-shape regularity of the
mesh, there exists a constant C > 0 which depends only on the initial triangulation T0 such
that

gen(T ) =
log(|T |/|T0|)

log(1/2)
≤ log(C |T ′|/|T ′0|)

log(1/2)
= gen(T ′) +

log(C)

log(1/2)
.
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Therefrom, we get that

level`(z) = dgen(T )/de

≤ bgen(T ′)/dc+ 1 +

⌈
log(C)

log(1/2)

⌉

= R`(z) +

(
1 +

⌈
log(C)

log(1/2)

⌉)
.

This concludes the proof with C1 := 1 +
⌈ log(C)

log(1/2)

⌉
.

Proof of (ii). Let T ∈ T`−1 with T ⊆ ω2
`−1(z). Due to the de�nition (4.91) of r`(z), it holds

that gen(T ) ≥ r`(z) ≥ br`(z)/dc = R`(z). Since T ∈ T̂gen(T ) and gen(T ) ≥ R`(z), there

exists an ancestor element T̂ ∈ T̂R`(z) such that T ⊆ T̂ .
Proof of (iii). Since the mesh T` is a re�nement of T`−1, it holds that ω`(z) ⊆ ω`−1(z) ⊆
ω2
`−1(z). Hence, it only remains to prove the second inclusion ω2

`−1(z) ⊆ ω̂nlevel`(z)
(z). To

that end, let T ∈ T`−1 with T ⊆ ω2
`−1(z). Lemma 34(ii) provides an element T̂ ∈ T̂R`(z)

such that T ⊆ T̂ . Furthermore, it holds that T̂ ⊆ ω̂2
R`(z)

(z) and hence T ⊆ T̂ ⊆ ω̂2
R`(z)

(z).

The element T̂ can be rewritten with elements of T̂R`(z)+C1
the following way. Since the

series T̂m is generated by uniform re�nement via bisection, the element T̂ gets bisected into
2dC1 many elements T̂ ′j ∈ T̂R`(z)+C1

such that

T̂ =

2dC1⋃

j=1

T̂ ′j .

Since T̂ ∈ ω̂2
R`(z)

(z), there exists n ∈ N with n ≤ 2dC1+1 such that T̂ ⊆ ω̂nR`(z)+C1
.

Lemma 34(i) yields that level`(z) ≤ R`(z) + C1 and hence ω̂nR`(z)+C1
(z) ⊆ ω̂nlevel`(z)

(z). So

far, this proves that T ⊆ T̂ ⊆ ω̂nlevel`(z)
(z), and we conclude that ω2

`−1(z) ⊆ ω̂nlevel`(z)
(z).

Scott�Zhang projection

We recall a variant of the Scott�Zhang quasi-interpolation operator, cf. [SZ90] or [BS02,
Section 4.8]. For z ∈ N`, let T`,z ∈ T` be an element with z ∈ T`,z. Let ψ`,z denote the
(unique) L2(T`,z)-dual basis function with

∫

T`,z

ψ`,z(x) η`,z′(x) dx = δzz′ for all z′ ∈ N`,

where δzz′ denotes the Kronecker delta. De�ning the Scott�Zhang operator J` : L2(Ω) →
S1(T`) by

J`v :=
∑

z∈N`

η`,z

∫

T`,z

ψ`,z(x) v(x) dx for all v ∈ L2(Ω),

we note the following properties, where the constant C > 0 depends only on the γ-shape
regularity of T`:
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� J` is a linear projection onto S1
0 (T`), i.e.,

J`v` = v` for all v` ∈ S1
0 (T`). (4.93)

� J` is locally L2-stable, i.e., for all T ∈ T`, it holds that

‖v − J`v‖L2(T ) ≤ C ‖v‖L2(ω`(T )) for all v ∈ L2(Ω).

� J` is locally H1-stable, i.e., for all T ∈ T`, it holds that

‖∇(v − J`v)‖L2(T ) ≤ C ‖∇v‖L2(ω`(T )) for all v ∈ H1
0 (Ω).

� J` has a local �rst-order approximation property

‖v − J`v‖L2(T ) ≤ C h`(T ) ‖∇v‖L2(ω`(T )) for all v ∈ H1
0 (Ω).

The freedom in the choice of the averaging element T`,z can be exploited to ensure
additional properties. In our case, the choice of T`,z is arbitrary, but we require that
T`−1,z = T`,z ∈ T` ∩ T`−1 for all z ∈ N` \ Ñ` ⊆ N`−1. From this choice, it also follows that
η`,z = η`−1,z and ψ`,z = ψ`−1,z for all z ∈ N` \ Ñ`. Hence, we get that

(J` − J`−1)v(z) = 0 for all z ∈ N` \ Ñ`,

as well as

(J` − J`−1)v ∈ span
{
η`,z : z ∈ Ñ`

}
= X̃`. (4.94)

Lemma 35. For all v ∈ L2(Ω) and z ∈ Ñ`, it holds that

|(J` − J`−1)v(z)| ≤ |J`v(z)|+ |J`−1v(z)|
≤ Ch`(z)−d/2 ‖v‖L2(ω2

`−1(z)),
(4.95)

where C > 0 depends only on γ-shape regularity of T`.

Proof. The �rst inequality in (4.95) follows from the usual triangle inequality. Hence, it
only remains to prove the second inequality. [SZ90, Lemma 3.1] states that ‖ψ`,z‖L∞(T`,z) .

|T`,z|−1. For z ∈ Ñ`, it holds that T`,z ⊆ ω`(z) ⊆ ω2
`−1(z). Thus, the �rst summand in (4.95)

is bounded by

|J`v(z)| ≤
∫

T`,z

|ψ`,z(x)v(x)| dx

≤ ‖ψ`,z‖L∞(T`,z) |T`,z|1/2 ‖v‖L2(T`,z)

. |T`,z|−1/2 ‖v‖L2(ω2
`−1(z))

' h`(z)−d/2 ‖v‖L2(ω2
`−1(z)).

(4.96)
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To bound the second summand in (4.95), we must consider two cases: First, let z ∈ Ñ` ∩
N`−1. It holds that |T`,z| ' hd` (z) as well as T`−1,z ⊆ ω`−1(z) ⊆ ω2

`−1(z). Similarly to (4.96),
we get that

|J`−1v(z)| ≤
∫

T`−1,z

|ψ`−1,z(x)v(x)| dx

≤ ‖ψ`−1,z‖L∞(T`−1,z) |T`−1,z|1/2 ‖v‖L2(T`−1,z)

. |T`−1,z|−1/2 ‖v‖L2(ω2
`−1(z))

. h`(z)
−d/2 ‖v‖L2(ω2

`−1(z)).

(4.97)

Second, let z ∈ Ñ`\N`−1. Then, due to γ-shape regularity, there exists a uniformly bounded
number of nodes z1, z2, . . . , zn(z) ∈ N`−1 such that

J`−1v(z) =

n(z)∑

i=1

η`−1,zi(z)

∫

T`−1,zi

ψ`−1,zi(x) v(x) dx.

For i ∈ {1, 2, . . . , n(z)}, it again holds that |T`−1,zi | ' hd` (z) as well as T`−1,zi ⊆ ω`−1(zi) ⊆
ω2
`−1(z). With the same arguments as for (4.97), it follows that

|J`−1v(z)| ≤
n(z)∑

i=1

∫

T`−1,zi

|ψ`−1,zi(x)v(x)| dx

.
n(z)∑

i=1

|T`−1,zi |−1/2 ‖v‖L2(T`−1,zi
)

. h`(z)
−d/2 ‖v‖L2(ω2

`−1(z)).

(4.98)

Combining (4.96)�(4.98), we conclude (4.95).

4.7.3 Additive Schwarz operator

For all z ∈ Ñ`, we de�ne the local orthogonal projections P`,z : H1
0 (Ω)→ X`,z = span{η`,z}

by

〈〈P`,zv , w`,z〉〉 = 〈〈v , w`,z〉〉 for all w`,z ∈ X`,z

with the explicit representation

P`,zv =
〈〈v , η`,z〉〉
|||η`,z|||2

η`,z for all v ∈ H1
0 (Ω). (4.99)

Based on these projections, we de�ne the additive Schwarz operator as

QL :=

L∑

`=0

∑

z∈Ñ`

P`,z : H1
0 (Ω)→ XL. (4.100)
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Therefore, the multilevel diagonal scaling is a multilevel additive Schwarz method and
we can use the abstract analysis of these methods.
The key result reads as follows.

Proposition 36. The operator QL is linear and bounded as well as symmetric

〈〈QLv , w〉〉 = 〈〈v , QLw〉〉 for all v, w ∈ H1
0 (Ω) (4.101)

and satis�es

c |||v|||2 ≤ 〈〈QLv , v〉〉 ≤ C |||v|||2 for all v ∈ XL. (4.102)

The constants c, C > 0 depend only on Ω, the initial triangulation T0, and the di�usion
coe�cient A.

While linearity, boundedness, and symmetry of additive Schwarz operators are well-known
(cf. [GO94, Lemma 2]), we will provide the proof of (4.102) in Section 4.7.5 as well as
Section 4.7.6.

4.7.4 Proof of Theorem 30 (optimal condition number)

Let v :=
∑NL

j=0 xjηL,zj ∈ XL and w :=
∑NL

j=0 yjηL,zj ∈ XL. From the de�nition (4.76) of the
local multilevel diagonal preconditioner, it follows that MLPLML is symmetric. We de�ne
the additive Schwarz matrix QL := PLML. It then holds that

〈〈QLv , w〉〉 = 〈QLx , y〉ML
. (4.103)

Combining the identity (4.103) with (4.102), we see that

c 〈x , x〉ML
= c |||v|||2 ≤ 〈〈QLv , v〉〉 = 〈QLx , x〉ML

as well as

〈QLx , x〉ML
= 〈〈QLv , v〉〉 ≤ C |||v|||2 = C 〈x , x〉ML

.

Due to the symmetry (4.101) and again the identity (4.103), we get that

〈QLx , y〉ML
= 〈〈QLv , w〉〉 = 〈〈v , QLw〉〉 = 〈x , QLy〉ML

,

i.e., QL is symmetric with respect to 〈· , ·〉ML
. Now, [TW05, Lemma C.1] or [GVL13,

Section 8.1] yield the Rayleigh quotient estimates

λmin

(
QL

)
= min

x∈RNL

x 6=0

〈QLx , x〉ML

〈x , x〉ML

≥ c,

and

λmax

(
QL

)
= max

x∈RNL

x 6=0

〈QLx , x〉ML

〈x , x〉ML

≤ C.

In particular, it follows that

condML
(QL) =

λmax

(
QL

)

λmin

(
QL

) ≤ C

c
.

This concludes the proof.
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Lions' lemma

The last lemma we need for the proof of the lower bound in (4.102) is known as Lions's
lemma, cf. [Lio88, Wid89] and [TW05, Lemma 2.5].

Lemma 37 (Lions). Let m ∈ N0 and v ∈ V , where V is a �nite-dimensional Hilbert
space with scalar product 〈〈· , ·〉〉 and corresponding norm ||| · |||. Assume that there exists a
decomposition of V into spaces V` with 0 ≤ ` ≤ m such that V =

∑m
`=0 V` and orthogonal

projections P` : V → V` de�ned by

〈〈P` v , w`〉〉 = 〈〈v , w`〉〉 for all w` ∈ V`.

De�ne PAS :=
∑m

`=0 P`. If there exists a constant C > 0 such that every v ∈ V admits a
decomposition v =

∑m
`=0 v` with v` ∈ V` that satis�es

m∑

`=0

|||v`|||2 ≤ C |||v|||2,

then it holds that

|||v|||2 ≤ C 〈〈PAS v , v〉〉

for all v ∈ V .

4.7.5 Proof of lower bound in Proposition 36

The proof is split into 5 steps.
Step 1. With property (4.94) of the Scott�Zhang projection J`, we de�ne the di�erence

ṽ` := (J` − J`−1)v ∈ X̃` for v ∈ XL and 0 ≤ ` ≤ L, (4.104a)

where J−1 := 0. Henceforth, we can rewrite any v ∈ XL using the projection property (4.93)
of JL as a telescoping series as follows

v = JLv = (JL − J−1)v =

L∑

`=0

ṽ`. (4.104b)

Using the basis representation of ṽ`, we can decompose this further into

v =

L∑

`=0

∑

z∈Ñ`

ṽ`(z)η`,z =:

L∑

`=0

∑

z∈Ñ`

v`,z with v`,z ∈ X`,z. (4.104c)

Step 2. Let z ∈ N`. Then, there holds the inverse inequality

‖∇η`,z‖L2(ω`(z)) . h`(z)
−1 ‖η`,z‖L2(ω`(z))

which follows from a scaling argument with the hidden constant depending only on γ-shape
regularity of T`. Combining this inequality with the equivalence (4.83), it holds that

|||η`,z|||2 . ‖∇η`,z‖2L2(ω`(z))
. h`(z)

−2 ‖η`,z‖2L2(ω`(z))
≤ h`(z)−2 |ω`(z)| ' h`(z)d−2.
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Hence, we get that

|||v`,z|||2 = |||η`,z|||2 |ṽ`(z)|2 . h`(z)
d−2 |(J` − J`−1)v(z)|2. (4.105)

Step 3. Let Π̂m := Π̂0 for m < 0. From Lemma 34(i), we get that

Π̂level`(z)−C1
v ∈ X̂R`(z)

and especially that (Π̂level`(z)−C1
v)|T is a�ne on all T ∈ T`−1 with T ⊆ ω2

`−1(z) as well as
continuous on the whole patch ω2

`−1(z). In particular, the same holds also on the patch
ω2
` (z). Therefore, the projection property (4.93) of the Scott�Zhang operator yields that

(J`Π̂level`(z)−C1
v)(z) = (Π̂level`(z)−C1

v)(z) = (J`−1Π̂level`(z)−C1
v)(z).

Together with Lemma 35, this yields that

|(J` − J`−1)v(z)|2 =
∣∣(J` − J`−1

)(
v − Π̂level`(z)−C1

v
)
(z)
∣∣2

. h`(z)
−d ‖v − Π̂level`(z)−C1

v‖2L2(ω2
`−1(z)).

(4.106)

Step 4. Combining Step 2 and Step 3, we see that

|||v`,z|||2 . h`(z)
−2 ‖v − Π̂level`(z)−C1

v‖2L2(ω2
`−1(z)). (4.107)

Using the equivalence h`(z) ' ĥlevel`(z) from (4.83), we get that

L∑

`=0

∑

z∈Ñ`

|||v`,z|||2
(4.107)

.
L∑

`=0

∑

z∈Ñ`

h`(z)
−2 ‖v − Π̂level`(z)−C1

v‖2L2(ω2
`−1(z))

(4.83)'
L∑

`=0

∑

z∈Ñ`

ĥ−2
level`(z)

‖v − Π̂level`(z)−C1
v‖2L2(ω2

`−1(z))

=
∞∑

m=0

L∑

`=0

∑

z∈Ñ`
level`(z)=m

ĥ−2
m ‖v − Π̂m−C1v‖2L2(ω2

`−1(z)).

Combining Lemma 34(iii) with the de�nition (4.80) of K̃m(z), we see that

∞∑

m=0

L∑

`=0

∑

z∈Ñ`
level`(z)=m

ĥ−2
m ‖v − Π̂m−C1v‖2L2(ω2

`−1(z))

≤
∞∑

m=0

L∑

`=0

∑

z∈Ñ`
level`(z)=m

ĥ−2
m ‖v − Π̂m−C1v‖2L2(ω̂n

m(z))

(4.80)
=

∞∑

m=0

∑

z∈NL

∑

`∈K̃m(z)

ĥ−2
m ‖v − Π̂m−C1v‖2L2(ω̂n

m(z)).
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Lemma 32 states that z ∈ N` with level`(z) = m is also an element of N̂m. Together with
the boundedness (4.81) of #K̃m(z) from Lemma 31, this yields that

∞∑

m=0

∑

z∈NL

∑

`∈K̃m(z)

ĥ−2
m ‖v − Π̂m−C1v‖2L2(ω̂n

m(z))

=
∞∑

m=0

∑

z∈NL∩N̂m

∑

`∈K̃m(z)

ĥ−2
m ‖v − Π̂m−C1v‖2L2(ω̂n

m(z))

(4.81)

.
∞∑

m=0

∑

z∈NL∩N̂m

ĥ−2
m ‖v − Π̂m−C1v‖2L2(ω̂n

m(z))

≤
∞∑

m=0

∑

z∈N̂m

ĥ−2
m ‖v − Π̂m−C1v‖2L2(ω̂n

m(z)).

Due to uniform γ-shape regularity of T̂m and the de�nition Π̂m = Π̂0 for m < 0, it follows
that

∞∑

m=0

∑

z∈N̂m

ĥ−2
m ‖v − Π̂m−C1v‖2L2(ω̂n

m(z)) .
∞∑

m=0

ĥ−2
m ‖v − Π̂m−C1v‖2L2(Ω)

.
∞∑

m=0

ĥ−2
m ‖v − Π̂mv‖2L2(Ω).

Combining the last four estimates, we end up with

L∑

`=0

∑

z∈Ñ`

|||v`,z|||2 .
∞∑

m=0

ĥ−2
m ‖v − Π̂mv‖2L2(Ω). (4.108)

Step 5: Finally, Step 4 together with Lemma 33 and norm equivalence yields that

L∑

`=0

∑

z∈Ñ`

|||v`,z|||2
(4.108)

.
∞∑

m=0

ĥ−2
m ‖v − Π̂mv‖2L2(Ω)

(4.104)

. ‖v‖2H1(Ω) ' |||v|||2, (4.109)

for all v ∈ XL and the decomposition v =
∑L

`=0

∑
z∈Ñ`

v`,z from (4.104c). Due to Lions's
lemma (cf. Lemma 37) this guarantees the ellipticity of the additive Schwarz operator QL
from (4.100).

|||v|||2 . 〈〈QLv , v〉〉 for all v ∈ XL,

which concludes the proof of the lower bound in (4.102).
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Auxiliary results

We de�ne the maximal levelM := maxz∈NLs levelL(z) of all nodes z ∈ NL. From Lemma 32,
it follows that NL ⊆ N̂M and XL ⊆ X̂M . We rewrite the additive Schwarz operator QL as

QL =

L∑

`=0

∑

z∈Ñ`

P`,z =

M∑

m=0

QL,m with QL,m :=

L∑

`=0

∑

z∈Ñ`
level`(z)=m

P`,z. (4.110)

Then, there holds the following lemma, which is used to prove the strenghtened Cauchy�
Schwarz inequality (4.118).

Lemma 38. Let 0 ≤ k ≤ m ≤ M and 0 ≤ ` ≤ L. For T ∈ T̂k, v̂k ∈ X̂k, and z ∈ Ñ` with
level`(z) = m, it holds that

∫

T
A∇v̂k · ∇η`,z dx ≤ C

(
2−1/2

)m−k
ĥ−1
m ‖∇v̂k‖L2(T )‖η`,z‖L2(T ), (4.111)

where the constant C > 0 depends only on the initial triangulation T0, and ‖A‖∞.

Proof. From Lemma 32, we know that η`,z ∈ X̂m. Hence, we can decompose η`,z as follows.
We de�ne v̂m,0 ∈ X̂m such that v̂m,0 vanishes on ∂T and is equal to η`,z at the interior nodes
in T . Let v̂m,1 = η`,z − v̂m,0. Then, it holds that

∫

T
A∇v̂k · ∇η`,z dx =

∫

T
A∇v̂k · ∇v̂m,0 dx+

∫

T
A∇v̂k · ∇v̂m,1 dx. (4.112)

Note that ∇v̂k|T is constant, since T ∈ T̂k. Moreover, note that v̂m,0|∂T = 0. With
integration by parts and ∇v̂k ∈ P0(T ), we get for the �rst summand of (4.112) that

∫

T
A∇v̂k · ∇v̂m,0 dx = −

∫

T
div (A∇v̂k) v̂m,0 dx

= −
∫

T

(
(divA)∇v̂k

)
v̂m,0 dx.

(4.113)

From the Cauchy�Schwarz inequality combined with 1 . (2−(m−k))1/2 ĥ−1
m , we estimate the

latter term as follows

−
∫

T

(
(divA)∇v̂k

)
v̂m,0 dx . ‖∇v̂k‖L2(T )‖v̂m,0‖L2(T )

.
(
2−(m−k)

)1/2
ĥ−1
m ‖∇v̂k‖L2(T )‖η`,z‖L2(T ).

(4.114)

Hence, it only remains to estimate the second summand of (4.112). We de�ne Tm :=⋃{
K ∈ T̂m : K ∩ ∂T 6= ∅

}
, cf. Figure 4.1. It then holds that supp v̂m,1 ⊆ Tm and

|Tm| ' ĥd−1
k ĥm. Again, using the Cauchy�Schwarz inequality, we see that

∫

T
A∇v̂k · ∇v̂m,1 dx =

∫

Tm

A∇v̂k · ∇v̂m,1 dx

. ‖∇v̂k‖L2(Tm)‖∇v̂m,1‖L2(Tm).

(4.115)
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Figure 4.1: Illustration of the set Tm :=
⋃{

K ∈ T̂m : K ∩ ∂T 6= ∅
}
from the proof of

Lemma 38: The outer triangle (solid lines, pink) represents the element T ∈ T̂k,
while the inner triangles (dashed lines) correspond to all elements K ∈ T̂m such
that T ⊆ K. Then, the set Tm is the outer cyan area.

Since v̂k ∈ X̂k, we know that ∇v̂k is constant on K. This yields that

‖∇v̂k‖L2(Tm) =
|Tm|1/2
|T |1/2 ‖∇v̂k‖L2(T )

(4.83)'
( ĥd−1

k ĥm

ĥdk

)1/2
‖∇v̂k‖L2(T )

(4.82)
=

(
2−(m−k)

)1/2 ‖∇v̂k‖L2(T ).

(4.116)

The remaining term ‖∇v̂m,1‖L2(Tm) is estimated by an inverse estimate

‖∇v̂m,1‖L2(Tm) . ĥ−1
m ‖v̂m,1‖L2(Tm) ≤ h−1

m ‖η`,z‖L2(T ). (4.117)

Combining (4.112)�(4.117), we �nally get that
∫

T
A∇v̂k · ∇η`,z dx .

(
2−(m−k)

)1/2
ĥ−1
m ‖∇v̂k‖L2(T )‖η`,z‖L2(T ).

This concludes the proof.

Now, we are able to prove the following strenghtened Cauchy�Schwarz inequality.

Lemma 39. For all 0 ≤ k ≤ m ≤M , it holds that

〈〈v̂k , QL,mŵk〉〉 ≤ C
(
2−1/2

)m−k |||v̂k||| |||ŵk||| for all v̂k, ŵk ∈ X̂k, (4.118)

where C > 0 depends only on Ω, the initial triangulation T0, ‖A‖∞, and γ-shape regularity.
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Proof. The proof is split into three steps.
Step 1: De�ne q := 2−1/2 and let z ∈ Ñ` with 0 ≤ k ≤ m = level`(z). Then, Lemma 38,
the Cauchy�Schwarz inequality, and the Friedrichs inequality yield that

〈〈v̂k , η`,z〉〉 =
∑

K∈T̂k

∫

K
A∇v̂k · ∇η`,z dx

(4.111)

. qm−k ĥ−1
m

∑

K∈T̂k

‖∇v̂k‖L2(K)‖η`,z‖L2(K)

≤ qm−k ĥ−1
m ‖∇v̂k‖L2(Ω) ‖η`,z‖L2(Ω)

' qm−k ĥ−1
m |||v̂k||| ‖η`,z‖L2(ω`(z))

. qm−k ĥ−1
m |||v̂k|||diam(ω`(z)) ‖∇η`,z‖L2(ω`(z))

' qm−k ĥ−1
m |||v̂k||| ĥm |||η`,z|||

= qm−k |||v̂k||| |||η`,z|||.

Summing up, we have that

〈〈v̂k , η`,z〉〉 . qm−k |||v̂k||| |||η`,z||| for all z ∈ Ñ` with k ≤ m = level`(z) , (4.119)

where the hidden constant depends only on T0 and A.
Step 2: Next, we show that

L∑

`=0

∑

z∈Ñ`
level`(z)=m

|||P`,zŵk||| . |||ŵk|||, (4.120)

where the hidden constant depends only on T0 and γ-shape regularity. The representa-
tion (4.99), the Cauchy�Schwarz inequality, and Lemma 34(iii) yield that

|||P`,zŵk|||
(4.99)

=
|〈〈ŵk , η`,z〉〉|
|||η`,z|||

≤ |||ŵk|||ω`(z)

Lemma 34(iii)

≤ |||ŵk|||ω̂n
m(z).

Recall the set K̃k(z) from (4.80)

K̃k(z) =
{
` ∈ {0, 1, . . . , L} : z ∈ Ñ` and level`(z) = k

}
.

From Lemma 31, we know that supk∈N0
#K̃k(z) ≤ C(T0) <∞ for all z ∈ Ñ` with a constant

C(T0) > 0 depending only on the initial mesh T0. Hence, from the last inequality and shape

68



4.7 AFEM for linear elliptic PDE with optimal PCG solver

regularity of the mesh T̂m, it follows that
L∑

`=0

∑

z∈Ñ`
level`(z)=m

|||P`,zŵk||| =
∑

z∈NL∩N̂m

∑

`∈K̃m(z)

|||P`,zŵk|||

≤
∑

z∈NL∩N̂m

∑

`∈K̃m(z)

|||ŵk|||ω̂n
m(z)

(4.81)

.
∑

z∈N̂m

|||ŵk|||ω̂n
m(z)

' |||ŵk|||.
Step 3: Since P`,zŵk ∈ X`,z = span{η`,z}, there exists λ`,z ∈ R such that P`,zŵk = λ`,zη`,z.
Based on the previous steps, the de�nition of QL,m shows that

〈〈v̂k , QL,mŵk〉〉
(4.110)

=
L∑

`=0

∑

z∈Ñ`
level`(z)=m

〈〈v̂k , P`,zŵk〉〉

=

L∑

`=0

∑

z∈Ñ`
level`(z)=m

|λ`,z| 〈〈v̂k , η`,z〉〉

(4.119)

. qm−k |||v̂k|||
L∑

`=0

∑

z∈Ñ`
level`(z)=m

|λ`,z| |||η`,z|||

= qm−k |||v̂k|||
L∑

`=0

∑

z∈Ñ`
level`(z)=m

|||P`,zŵk|||

(4.120)

. qm−k |||v̂k||| |||ŵk|||.
This concludes the proof.

Remark 40. Due to the self-adjointness of the orthogonal projections P`,z, we know that

〈〈QL,m· , ·〉〉 is a symmetric bilinear form on X̂k for k ≤ m. By de�nition (4.110) of QL,m,
it holds that

〈〈QL,mv , v〉〉 =
L∑

`=0

∑

z∈Ñ`
level`(z)=m

〈〈P`,zv , v〉〉 =
L∑

`=0

∑

z∈Ñ`
level`(z)=m

|||P`,zv|||2 ≥ 0 for all v ∈ X̂k.

Hence, 〈〈QLm· , ·〉〉 is even positive semi-de�nite. As a consequence, there holds the Cauchy�
Schwarz inequality

〈〈QL,mv , w〉〉 ≤ 〈〈QL,mv , v〉〉1/2 〈〈QL,mw , w〉〉1/2 for all v, w ∈ X̂k. (4.121)
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4.7.6 Proof of upper bound in Proposition 36

First, we de�ne the Galerkin projection Ĝm : H1(Ω)→ X̂m with respect to the scalar product
〈〈· , ·〉〉 via

〈〈Ĝmv , ŵm〉〉 = 〈〈v , ŵm〉〉 for all ŵm ∈ X̂m.

With Ĝ−1 := 0, we can rewrite Ĝmv as a telescoping sum, i.e., Ĝm =
∑m

k=0(Ĝk − Ĝk−1). Let
v ∈ XL ⊆ X̂M . It holds that ĜMv = v.
Since QL,mv ∈ X̂M , cf. Lemma 32, the representation (4.110), the symmetry of 〈〈· , ·〉〉,

and the Cauchy�Schwarz inequality (4.121) yield that

〈〈QLv , v〉〉 =
M∑

m=0

〈〈QL,mv , v〉〉

=
M∑

m=0

〈〈QL,mv , Ĝmv〉〉

=
M∑

m=0

m∑

k=0

〈〈QL,mv , (Ĝk − Ĝk−1)v〉〉

≤
M∑

m=0

m∑

k=0

〈〈QL,mv , v〉〉1/2 〈〈QL,m(Ĝk − Ĝk−1)v , (Ĝk − Ĝk−1)v〉〉1/2.

Next, we use the strenghtened Cauchy�Schwarz inequality (4.118) with (Ĝk − Ĝk−1)v ∈ X̂k
and get that

M∑

m=0

m∑

k=0

〈〈QL,mv , v〉〉1/2 〈〈QL,m(Ĝk − Ĝk−1)v , (Ĝk − Ĝk−1)v〉〉1/2

(4.118)

≤ C

M∑

m=0

m∑

k=0

2−(m−k)/4 〈〈QL,mv , v〉〉1/2 |||(Ĝk − Ĝk−1)v|||

= C
M∑

m=0

m∑

k=0

2−(m−k)/4 〈〈QL,mv , v〉〉1/2 〈〈(Ĝk − Ĝk−1)v , v〉〉1/2,

where C > 0 is the constant from the strenghtened Cauchy�Schwarz inequality. With δ > 0,
which will be �xed later, we use the following variant of the Young inequality

ab ≤ δ

2
a2 +

δ−1

2
b2 for all a, b ∈ R.
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We get that

C
M∑

m=0

m∑

k=0

2−(m−k)/4 〈〈QL,mv , v〉〉1/2 〈〈(Ĝk − Ĝk−1)v , v〉〉1/2

≤ C
M∑

m=0

m∑

k=0

2−(m−k)/4 δ

2
〈〈QL,mv , v〉〉

+ C
M∑

m=0

m∑

k=0

2−(m−k)/4 δ
−1

2
〈〈(Ĝk − Ĝk−1)v , v〉〉.

The inner sum over k of the �rst double sum can be bounded by
∑m

k=0 2−(m−k)/4 ≤∑∞
k=0 2−k/4 =: K < ∞. Together with changing the summation order in the second sum,

we see that

〈〈QLv , v〉〉 ≤ C
M∑

m=0

m∑

k=0

2−(m−k)/4 δ

2
〈〈QL,mv , v〉〉

+ C

M∑

m=0

m∑

k=0

2−(m−k)/4 δ
−1

2
〈〈(Ĝk − Ĝk−1)v , v〉〉

≤ C K δ

2

M∑

m=0

〈〈QL,mv , v〉〉

+ C
δ−1

2

M∑

k=0

M∑

m=k

2−(m−k)/4 〈〈(Ĝk − Ĝk−1)v , v〉〉

≤ C K δ

2

M∑

m=0

〈〈QL,mv , v〉〉+ C K
δ−1

2

M∑

k=0

〈〈(Ĝk − Ĝk−1)v , v〉〉

= C K
δ

2
〈〈QLv , v〉〉+ C K

δ−1

2
〈〈
M∑

k=0

(Ĝk − Ĝk−1)v , v〉〉

= C K
δ

2
〈〈QLv , v〉〉+ C K

δ−1

2
〈〈v , v〉〉.

Let δ < 2 (C K)−1. Then, it holds that

〈〈QLv , v〉〉 ≤
(
1− C K δ

2

)−1
C K

δ−1

2
〈〈v , v〉〉

=
(
1− C K δ

2

)−1
C K

δ−1

2
|||v|||2.

Hence, there holds the upper bound in (4.102).
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4.7.7 Numerical experiments

In this section, we provide numerical experiments that underpin the theoretical �ndings of
Section 4.6, where we employ H1-conforming lowest-order FEM in 2D. For ease of notation,
we de�ne λ := λctr for this section. We present an example for AFEM with optimal PCG
solver, cf. Section 4.7, and compare the performance of Algorithm 15 for

� di�erent geometries, i.e., the domain Ω ⊂ R2 is either the Z�shaped domain or the
L�shaped domain, cf. Figure 4.2,

� di�erent values of λ ∈ {1, 10−0.5, 10−1, . . . , 10−4},

� di�erent values of θ ∈ {0.05, 0.1, 0.15, . . . , 1},

where θ = 1 corresponds to uniform mesh-re�nement.
We consider the following Poisson problem with homogeneous Dirichlet boundary conditions

−∆u? = 1 in Ω,

u? = 0 on Γ := ∂Ω,
(4.122)

for both geometries from Figure 4.2. As preconditioner for the PCG solver, we use the
multilevel additive Schwarz preconditioner of Section 4.7.1 which is optimal, cf. Theorem 30.

Poisson problem (4.122) on Z-shaped domain

In Figure 4.3, we compare Algorithm 15 for di�erent values of θ and λ, and uniform mesh-
re�nement on the Z-shaped domain, cf. Figure 4.2. To this end, the error estimator η`(u

k
` )

of the last step of the PCG solver is plotted over the number of elements. Recall that
η`(u

k
` ) ' ∆

k
` according to Proposition 16. We see that uniform mesh-re�nement leads

to the suboptimal rate of convergence O(N−2/7), while Algorithm 15 regains the optimal
rate of convergence O(N−1/2). This empirically con�rms Theorem 23. The latter rate of
convergence appears to be even robust with respect to θ ∈ {0.1, 0.3, . . . , 0.9} as well as
λ ∈ {1, 10−1, . . . , 10−4}.
In Figure 4.4, we aim to underpin that Algorithm 15 has the optimal rate of convergence

with respect to the computational complexity. To this end, we plot the error estimator
η`(u

k
` ) of the last step of the PCG solver over the cumulative sum

∑
(`′,k′)≤(`,k) #T`′ . In ac-

cordance with Theorem 23, we observe again the optimal order O
((∑

(`′,k′)≤(`,k) #T`′
)−1/2)

.
In Figure 4.5, we take a look at the number of PCG iterations. We observe that a larger

value of λ or a smaller value of θ lead to a smaller number of PCG iterations. Nonetheless,
in each case, this number stays uniformly bounded.
Summing up so far, we see

� that Algorithm 15 appears to be robust with respect to the choice of θ and λ, cf. Fig-
ure 4.3,

� that a larger value of λ leads to less computational cost and a smaller value of θ leads
to higher computational cost, cf. Figure 4.4, and,
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

Figure 4.2: Z-shaped domain Ω ⊂ R2 with initial mesh T0 (top) and L�shaped domain
Ω ⊂ R2 with initial mesh T0 (bottom).
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Figure 4.3: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Error es-

timator η`(u
k
` ) of the last step of the PCG solver with respect to the number of

elements N of the mesh T` for θ = 0.5 and λ ∈ {1, 10−1, . . . , 10−4} (top) as well
as for λ = 10−2 and θ ∈ {0.1, 0.3, . . . , 0.9} (bottom).
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Figure 4.4: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Error esti-

mator η`(u
k
` ) of the last step of the PCG solver with respect to the overall compu-

tational cost expressed as the cumulative sum
∑

(`′,k′)≤(`,k) #T`′ for θ = 0.5 and

λ ∈ {1, 10−1, . . . , 10−4} (top) as well as for λ = 10−2 and θ ∈ {0.1, 0.3, . . . , 0.9}
(bottom).
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Figure 4.5: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Number
of PCG iterations with respect to the number of elements N for θ = 0.5 and
λ ∈ {1, 10−1, . . . , 10−4} (top) as well as for λ = 10−2 and θ ∈ {0.1, 0.3, . . . , 0.9}
(bottom).
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

θ

λ
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

0.05 1.9e+08 1.9e+08 1.9e+08 1.9e+08 3.6e+08 5.7e+08 1.0e+09 1.5e+09 1.9e+09

0.1 5.3e+07 5.3e+07 5.2e+07 5.3e+07 1.5e+08 2.5e+08 3.7e+08 4.7e+08 6.0e+08

0.15 2.7e+07 2.7e+07 2.7e+07 4.3e+07 7.7e+07 1.3e+08 1.9e+08 2.5e+08 3.2e+08

0.2 1.7e+07 1.7e+07 1.7e+07 3.5e+07 5.0e+07 8.4e+07 1.3e+08 1.6e+08 2.0e+08

0.25 1.2e+07 1.2e+07 1.2e+07 2.6e+07 4.7e+07 7.1e+07 9.1e+07 1.1e+08 1.5e+08

0.3 8.5e+06 8.5e+06 9.9e+06 2.2e+07 3.6e+07 5.0e+07 7.3e+07 9.6e+07 1.2e+08

0.35 6.8e+06 6.8e+06 9.1e+06 2.1e+07 2.7e+07 4.1e+07 5.5e+07 7.1e+07 8.8e+07

0.4 6.2e+06 6.2e+06 7.8e+06 1.6e+07 2.1e+07 3.3e+07 4.6e+07 6.3e+07 7.4e+07

0.45 5.8e+06 7.1e+06 7.0e+06 1.3e+07 1.9e+07 3.0e+07 4.3e+07 5.3e+07 6.7e+07

0.5 5.9e+06 4.5e+06 7.5e+06 1.3e+07 1.8e+07 2.9e+07 3.9e+07 4.8e+07 6.2e+07

0.55 5.9e+06 4.2e+06 6.7e+06 1.0e+07 1.9e+07 2.8e+07 3.8e+07 5.0e+07 6.3e+07

0.6 1.9e+07 5.3e+06 5.7e+06 8.3e+06 1.6e+07 2.5e+07 3.2e+07 4.3e+07 5.8e+07

0.65 1.3e+07 5.0e+06 6.3e+06 1.1e+07 1.6e+07 2.4e+07 3.4e+07 4.6e+07 5.7e+07

0.7 1.5e+07 4.0e+06 7.5e+06 1.1e+07 1.8e+07 2.7e+07 3.8e+07 5.0e+07 6.1e+07

0.75 9.4e+06 1.7e+07 9.2e+06 1.0e+07 2.5e+07 3.7e+07 4.8e+07 6.3e+07 7.7e+07

0.8 1.3e+07 1.6e+07 2.2e+07 1.6e+07 2.0e+07 2.8e+07 3.7e+07 4.8e+07 5.7e+07

0.85 9.1e+06 1.5e+07 2.3e+07 2.2e+07 2.8e+07 3.8e+07 5.0e+07 6.1e+07 7.2e+07

0.9 2.9e+07 1.6e+07 1.8e+07 2.3e+07 3.2e+07 4.5e+07 5.7e+07 6.7e+07 7.7e+07

0.95 4.4e+07 3.3e+07 4.8e+07 6.4e+07 9.0e+07 1.2e+08 1.5e+08 1.9e+08 2.2e+08

min max

Figure 4.6: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Overall

computational cost
∑

(`′,k′)≤(`,k) #T`′ such that η`(u
k
` ) < τ for given precision

τ = 10−2, λ ∈ {1, 10−0.5, . . . , 10−4}, and θ ∈ {0.05, 0.1, . . . , 0.95}.
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� that a larger value of λ as well as a smaller value of θ lead to fewer PCG iterations,
cf. Figure 4.5.

Hence, the question arises, how to choose θ and λ in order to mimize the overall computa-
tional cost to reach a given bound τ > 0 for the error estimator, i.e., such that η`(u

k
` ) < τ .

In Figure 4.6, we compare the computational cost to reach the precision τ = 10−2 for
λ ∈ {1, 10−0.5, . . . , 10−4} and θ ∈ {0.05, 0.1, . . . , 0.95}. As a result, we get that the best
choice is λ = 10−0.5 and θ = 0.7. For the overall computational cost it then holds that

∑

(`′,k′)≤(`,k)

#T`′ = 4034040,

where uk` is the �rst approximation such that η`(u
k
` ) < 10−2.

Poisson problem (4.122) on L-shaped domain

In Figure 4.7, we compare Algorithm 15 for di�erent values of θ and λ, and uniform mesh-
re�nement on the L-shaped domain, cf. Figure 4.2. To this end, the error estimator η`(u

k
` )

of the last step of the PCG solver is plotted over the number of elements. Recall that
η`(u

k
` ) ' ∆

k
` according to Proposition 16. We see that uniform mesh-re�nement leads to

the suboptimal rate of convergence O(N−1/3), while Algorithm 15 regains the optimal rate
of convergence O(N−1/2). Again, this empirically con�rms Theorem 23. The latter rate
of convergence appears to be even robust with respect to θ ∈ {0.1, 0.3, . . . , 0.9} as well as
λ ∈ {1, 10−1, . . . , 10−4}.
In Figure 4.8, the error estimator η`(u

k
` ) of the last step of the PCG solver is plotted over

the cumulative sum
∑

(`′,k′)≤(`,k) #T`′ . In accordance with Theorem 23, we observe again

the optimal order O
((∑

(`′,k′)≤(`,k) #T`′
)−1/2)

.
In Figure 4.9, we take a look at the number of PCG iterations. We observe that a larger

value of λ or a smaller value of θ lead to a smaller number of PCG iterations. Nonetheless,
in each case, this number stays uniformly bounded.
As for the Z-shaped domain, we see

� that Algorithm 15 appears to be robust with respect to the choice of θ and λ, cf. Fig-
ure 4.3,

� that a larger value of λ leads to less computational cost and a smaller value of θ leads
to higher computational cost, cf. Figure 4.4, and,

� that a larger value of λ as well as a smaller value of θ lead to fewer PCG iterations,
cf. Figure 4.5.

In Figure 4.10, we compare the computational cost to reach the precision τ = 10−2 for
λ ∈ {1, 10−0.5, . . . , 10−4} and θ ∈ {0.05, 0.1, . . . , 0.95}. As a result, we get that the best
choice is λ = 10−0.5 and θ = 0.8. For the overall computational cost it then holds that

∑

(`′,k′)≤(`,k)

#T`′ = 2832761,

where uk` is the �rst approximation such that η`(u
k
` ) < 10−2.

78



4.7 AFEM for linear elliptic PDE with optimal PCG solver

101 102 103 104 105 106 107
10−3

10−2

10−1

100
unif., λ = 1

unif., λ = 10−1

unif., λ = 10−2

unif., λ = 10−3

unif., λ = 10−4

O(N−1/3)

O(N−1/2)

number of elements N

er
ro
r
es
ti
m
at
or
η `
(u

k `
)

L–shaped domain

θ = 0.5, λ = 1

θ = 0.5, λ = 10−1

θ = 0.5, λ = 10−2

θ = 0.5, λ = 10−3

θ = 0.5, λ = 10−4

101 102 103 104 105 106 107
10−3

10−2

10−1

100

O(N−1/3)

O(N−1/2)

number of elements N

er
ro
r
es
ti
m
at
or
η `
(u

k `
)

θ = 0.1, λ = 10−2

θ = 0.3, λ = 10−2

θ = 0.5, λ = 10−2

θ = 0.7, λ = 10−2

θ = 0.9, λ = 10−2

unif., λ = 10−2

Figure 4.7: Example from Section 4.7.7 (Poisson problem on L-shaped domain): Error es-

timator η`(u
k
` ) of the last step of the PCG solver with respect to the number of

elements N of the mesh T` for θ = 0.5 and λ ∈ {1, 10−1, . . . , 10−4} (top) as well
as for λ = 10−2 and θ ∈ {0.1, 0.3, . . . , 0.9} (bottom).
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Figure 4.8: Example from Section 4.7.7 (Poisson problem on L-shaped domain): Error esti-

mator η`(u
k
` ) of the last step of the PCG solver with respect to the overall compu-

tational cost expressed as the cumulative sum
∑

(`′,k′)≤(`,k) #T`′ for θ = 0.5 and

λ ∈ {1, 10−1, . . . , 10−4} (top) as well as for λ = 10−2 and θ ∈ {0.1, 0.3, . . . , 0.9}
(bottom).
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Figure 4.9: Example from Section 4.7.7 (Poisson problem on L-shaped domain): Number
of PCG iterations with respect to the number of elements N for θ = 0.5 and
λ ∈ {1, 10−1, . . . , 10−4} (top) as well as for λ = 10−2 and θ ∈ {0.1, 0.3, . . . , 0.9}
(bottom).
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θ

λ
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

0.05 1.2e+08 1.2e+08 1.2e+08 1.2e+08 2.3e+08 3.8e+08 6.6e+08 9.8e+08 1.2e+09

0.1 3.5e+07 3.5e+07 3.5e+07 3.4e+07 1.0e+08 1.6e+08 2.4e+08 3.1e+08 4.0e+08

0.15 1.8e+07 1.8e+07 1.8e+07 2.8e+07 5.3e+07 8.8e+07 1.3e+08 1.7e+08 2.1e+08

0.2 1.1e+07 1.1e+07 1.1e+07 2.2e+07 3.4e+07 5.6e+07 8.6e+07 1.1e+08 1.3e+08

0.25 7.5e+06 7.5e+06 7.8e+06 1.6e+07 2.9e+07 4.5e+07 6.2e+07 7.8e+07 1.0e+08

0.3 5.7e+06 5.7e+06 5.8e+06 1.4e+07 2.2e+07 3.5e+07 4.6e+07 5.9e+07 7.0e+07

0.35 4.7e+06 4.7e+06 4.7e+06 1.3e+07 1.8e+07 2.8e+07 4.0e+07 5.2e+07 6.4e+07

0.4 3.9e+06 3.9e+06 4.9e+06 1.2e+07 1.5e+07 2.3e+07 3.1e+07 4.0e+07 5.0e+07

0.45 3.4e+06 3.4e+06 4.5e+06 1.1e+07 1.2e+07 1.8e+07 2.6e+07 3.3e+07 4.1e+07

0.5 3.8e+06 5.4e+06 5.1e+06 7.5e+06 1.0e+07 1.6e+07 2.2e+07 2.8e+07 3.4e+07

0.55 3.0e+06 3.3e+06 4.4e+06 6.5e+06 8.7e+06 1.4e+07 1.8e+07 2.3e+07 2.8e+07

0.6 3.2e+06 3.6e+06 4.5e+06 5.6e+06 7.9e+06 1.2e+07 1.6e+07 2.1e+07 3.8e+07

0.65 5.1e+06 4.7e+06 4.7e+06 6.0e+06 7.9e+06 1.2e+07 1.6e+07 2.1e+07 2.7e+07

0.7 1.7e+07 2.9e+06 5.1e+06 6.6e+06 8.5e+06 1.5e+07 2.0e+07 2.6e+07 3.2e+07

0.75 9.5e+06 7.5e+06 3.8e+06 4.1e+06 1.4e+07 2.0e+07 2.7e+07 3.5e+07 4.3e+07

0.8 7.1e+06 2.8e+06 6.7e+06 8.0e+06 1.0e+07 1.4e+07 1.9e+07 2.4e+07 2.9e+07

0.85 4.2e+06 6.6e+06 3.8e+06 1.2e+07 1.6e+07 2.0e+07 2.6e+07 3.3e+07 3.9e+07

0.9 5.8e+06 9.2e+06 5.6e+06 1.8e+07 2.4e+07 3.4e+07 4.3e+07 5.3e+07 6.3e+07

0.95 7.6e+06 9.5e+06 1.6e+07 2.4e+07 3.1e+07 4.2e+07 5.2e+07 6.1e+07 7.2e+07

min max

Figure 4.10: Example from Section 4.7.7 (Poisson problem on L-shaped domain): Overall

computational cost
∑

(`′,k′)≤(`,k) #T`′ such that η`(u
k
` ) < τ for given precision

τ = 10−2, λ ∈ {1, 10−0.5, . . . , 10−4}, and θ ∈ {0.05, 0.1, . . . , 0.95}.
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4.8 AFEM for quasi-linear elliptic PDE with strongly
monotone nonlinearity

The second setting which we introduce in this chapter and which �ts into the abstract
framework of Section 4.2�Section 4.6 is AFEM for a boundary value problem with a strongly
monotone nonlinearity.

Model problem

We consider the following boundary value problem

−div (µ(x, |∇u?(x)|2)∇u?(x)) = f(x) in Ω,

u?(x) = 0 on ΓD,

µ(x, |∇u?(x)|2) ∂nu
?(x) = g(x) on ΓN ,

(4.123)

where Ω ⊂ Rd is a bounded Lipschitz domain with d ∈ {2, 3} and polytopal boundary
Γ = ∂Ω, and given f ∈ L2(Ω), g ∈ L2(Γ) as well as a scalar nonlinearity µ : Ω × R≥0 →
R. Let the boundary Γ be split into relatively open and disjoint Dirichlet and Neumann
boundaries ΓD,ΓN such that |ΓD| > 0 and Γ = ΓD∪ΓN . The scalar nonlinearity µ satis�es
the following properties (N1)�(N4) with generic constants γ1, γ2, γ̃1, γ̃2, Lµ, L̃µ > 0, which
have already been considered in [GMZ12, GHPS18]:

(N1) boundedness of µ(x, t): There exist constants γ1, γ2 > 0 such that

γ1 ≤ µ(x, t) ≤ γ2 for all x ∈ Ω and t ≥ 0.

(N2) boundedness of µ(x, t) + 2 t d
dt
µ(x, t): For x ∈ Ω, the function µ(x, ·) is con-

tinuously di�erentiable, i.e., µ(x, ·) ∈ C1(R≥0,R) and there exist constants γ̃1, γ̃2 > 0
such that

γ̃1 ≤ µ(x, t) + 2 t
d

dt
µ(x, t) ≤ γ̃2 for all x ∈ Ω and t ≥ 0.

(N3) Lipschitz-continuity of µ(x, t) in x: There exists a constant Lµ > 0 such that

|µ(x, t)− µ(y, t)| ≤ Lµ|x− y| for all x, y ∈ Ω and t ≥ 0.

(N4) Lipschitz-continuity of t d
dt
µ(x, t) in x: There exists a constant L̃µ > 0 such

that

|t d

dt
µ(x, t)− t d

dt
µ(y, t)| ≤ L̃µ|x− y| for all x, y ∈ Ω and t ≥ 0.
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Weak formulation

The weak formulation of (4.123) reads as follows: Find u ∈ H1
D(Ω) := {w ∈ H1(Ω) : w =

0 on ΓD} such that
∫

Ω
µ(x, |∇u?(x)|2)∇u? · ∇v dx =

∫

Ω
fv dx+

∫

ΓN

gv ds for all v ∈ H1
D(Ω). (4.124)

With respect to the abstract framework of Section 4.2, we take H = H1
D(Ω), K = R,

and 〈〈· , ·〉〉 = 〈〈∇· , ∇·〉〉 with corresponding norm |||v||| = ‖∇v‖L2(Ω). We obtain (4.7) with
operators

〈Aw , v〉H′×H =

∫

Ω
µ(x, |∇w(x)|2)∇w(x) · ∇v(x) dx, (4.125a)

F (v) =

∫

Ω
fv dx+

∫

ΓN

gv ds (4.125b)

for all v, w ∈ H. We recall from [GHPS18, Proposition 8.2] that (N1)�(N2) implies that
A is strongly monotone (with α := γ̃1) and Lipschitz continuous (with L := γ̃2), and
that there exists a potential P : H1

0 (Ω) → R, i.e., there hold (O1)�(O3) with α = γ̃1 and
L = γ̃2. The assumptions (N3)�(N4) are required to prove the well-posedness and the
properties (A1)�(A4) of the residual a posteriori error estimator.

Triangulation and mesh-re�nement

Let T0 be a conforming initial triangulation of Ω into simplices T ∈ T0. As the re�nement
strategy refine(·), we employ newest vertex bisection such that the axioms (R1)�(R3) are
ful�lled, cf. Section 3.6.

Discretization

For T` ∈ T, we consider the lowest-order FEM space

X` :=
{
v ∈ C(Ω) : v|T ∈ P1(T ) for all T ∈ T`

}
∩H1

D(Ω), (4.126)

i.e., the space of all continuous piecewise a�ne functions that vanish on the boundary
Γ = ∂Ω.

Error estimator

For all elements T ∈ T` and discrete functions v` ∈ X`, we de�ne the weighted-residual error
indicators, cf., e.g., [GMZ12, GHPS18]) via

η`(T, v`)
2 :=|T |2/d ‖f + div (µ(·, |∇v`|2)∇v`)‖L2(T ) + |T |1/d ‖[µ(·, |∇v•|2)∇v• · n]‖L2(∂T∩Ω)

+ |T |1/d‖g − µ(·, |∇v•|2)∇v• · n‖L2(∂T∩ΓN ), (4.127)

where [·] denotes the usual jump of piecewise continuous functions across element interfaces,
and n is the outer normal vector of the considered element. Due to assumption (N3) on the
nonlinearity µ(·, ·), the presented error indicators are well-de�ned.
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4.8 AFEM for quasi-linear elliptic PDE with strongly monotone nonlinearity

While reliability (A3) and discrete reliability (A4) are proved as in the linear case; cf.,
e.g., [CKNS08] for the linear case and [GMZ12, Theorem 3.3 and 3.4] for the present non-
linear setting, the veri�cation of stability (A1) and reduction (A2) requires the validity of
an appropriate inverse estimate. For scalar nonlinearities and under the assumptions (N1)�
(N4), the latter is proved in [GMZ12, Lemma 3.7]. Using this inverse estimate, the proof
of (A1)�(A2) follows as for the linear case, cf., e.g., [CKNS08] for the linear case or [GMZ12,
Section 3.3] for scalar nonlinearities.

Zarantonello iteration

Since the nonlinear system (4.8) can hardly be solved exactly, we use the Zarantonello
iteration, also called Banach�Picard iteration, as iteration function Φ` : X` → X` for Step (i)
of Algorithm 15: Recall that the Riesz mapping IH : H → H′, IHw 7→ 〈〈· , w〉〉 is an isometric
isomorphism, cf. [Yos80, Chapter III.6] and let I` : X` → X ′` , I`v` → 〈〈· , v`〉〉 denote the
discrete Riesz operator. Additionally, let A` : X` → X ′` and F` : X` → R be the restrictions
of A and F respectively to the discrete space X`. Then, de�ne

Φ` : X` → X`, v` 7→ v` −
α

L2
I−1
` (A`v` − F`). (4.128)

Given uk` ∈ X`, we thus compute the discrete iterate uk+1
` := Φ`(u

k
` ) as follows:

(i) Solve the linear system 〈〈v` , w`〉〉 = 〈Auk` − F , v`〉H×H′ for all v` ∈ X`.
(ii) De�ne uk+1

` := uk` − α
L2w`.

In explicit terms, the computation of one step of the iteration requires only the solution of
one (discretized) Poisson equation with homogeneous Dirichlet data. Then, Φ` satis�es the
norm contraction (C2) with q2

ctr = 1− α2/L2, cf., e.g., [GHPS18, Section 3.2] and it holds
that

E(Φ`(v`))− E(u?` )
(4.9)

≤ L

2
|||u?` − Φ`(v`)|||2

(C2)

≤ L

2
q2

ctr |||u?` − v`|||2

(4.9)

≤ L

α
q2

ctr

(
E(v`)− E(u?` )

)
.

In this case, the additional validity of (C1) with the modi�ed constant L
α q

2
ctr follows from

an additional condition on L/α involving the golden ratio, namely

0 ≤ L

α
q2

ctr =
L

α
− α

L
< 1 ⇐⇒ L

α
<

1 +
√

5

2
≈ 1.618. (4.129)

Moreover, with the same arguments, (C1) guarantees that

|||u?` − Φ`(v`)|||2 ≤
L

α
q2

ctr |||u?` − v`|||2.

Hence, the condition (4.129) even yields equivalence of (C1) and (C2) (but with di�erent
contraction constants qctr).
Altogether, the present setting �ts into the abstract framework of Section 4.2 and the

main results from Section 4.6 apply to it.
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4.8.1 Numerical experiments

In this section, we provide numerical experiments that again underpin the theoretical �nd-
ings of Section 4.6. For ease of notation, we de�ne λ := λctr for this section. We present
two examples for AFEM for strongly monotone nonlinearities, cf. Section 4.8, one with
homogeneous Dirichlet boundary conditions on the L-shaped domain and the second with
mixed boundary conditions on the Z-shaped domain, cf. Figure 4.11 where the Dirichlet
boundary ΓD is marked by a thick pink line. We compare the performance of Algorithm 15
for

� di�erent values of λ ∈ {1, 10−0.5, 10−1, . . . , 10−4},

� di�erent values of θ ∈ {0.05, 0.1, 0.15, . . . , 1},

where θ = 1 corresponds to uniform mesh-re�nement.

Homogeneous problem on L-shaped domain

We consider the boundary value problem

−div
(
µ(·, |∇u?|2)∇u?

)
= 1 in Ω,

u? = 0 on Γ,
(4.130)

where the scalar nonlinearity µ : Ω× R≥0 → R is de�ned by

µ(x, |∇u?|2) := 1 +
ln(1 + |∇u?|2)

1 + |∇u?|2 . (4.131)

Then, (N1)�(N4) hold with α = γ̃1 ≈ 0.9582898017 and L = γ̃2 ≈ 1.542343818.
In Figure 4.12, we compare Algorithm 15 for di�erent values of θ and λ, and uniform

mesh-re�nement. To this end, the error estimator η`(u
k
` ) of the last step of the Zarantonello

iteration is plotted over the number of elements. We see that uniform mesh-re�nement leads
to the suboptimal rate of convergence O(N−1/3) for the L�shaped domain. Algorithm 15
regains the optimal rate of convergence O(N−1/2), independently of the actual choice of θ ∈
{0.1, 0.3, . . . , 0.9} and λ ∈ {1, 10−1, . . . , 10−4}. Since η`(u

k
` ) ' ∆

k
` , this again empirically

con�rms Theorem 23.
In Figure 4.13, we plot the estimator η`(u

k
` ) of the last step of the Zarantonello iteration

over the cumulative sum
∑

(`′,k′)≤(`,k) #T`′ . As predicted in Theorem 23, we observe that

Algorithm 15 regains the optimal order of convergence O
((∑

(`′,k′)≤(`,k) #T`′
)−1/2)

with
respect to the computational complexity. The rate seems to be independent of the values
of λ or θ.
In Figure 4.14, we take a look at the number of Zarantonello iterations. Similarly to

the number of PCG iterations in Figure 4.5 and Figure 4.9, we observe that that a larger
value of λ or a smaller value of θ lead to less iterations, while the number stays uniformly
bounded in each case.
In Figure 4.15, we compare the computational cost to reach the precision τ = 10−2 for

λ ∈ {1, 10−0.5, . . . , 10−4} and θ ∈ {0.05, 0.1, . . . , 0.95}. As a result, we get that the best
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4.8 AFEM for quasi-linear elliptic PDE with strongly monotone nonlinearity

Figure 4.11: Z-shaped domain Ω ⊂ R2 with initial mesh T0 (top) and L�shaped domain
Ω ⊂ R2 with initial mesh T0 (bottom), where ΓD is marked by a thick pink
line.
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Figure 4.12: Example from Section 4.8.1 (Homogeneous problem on L-shaped domain):

Error estimator η`(u
k
` ) of the last step of the Zarantonello iteration with

respect to the number of elements N of the mesh T` for θ = 0.5 and
λ ∈ {1, 10−1, . . . , 10−4} (top) as well as for λ = 10−2 and θ ∈ {0.1, 0.3, . . . , 0.9}
(bottom).
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Figure 4.13: Example from Section 4.8.1 (Homogeneous problem on L-shaped domain):

Error estimator η`(u
k
` ) of the last step of the Zarantonello iteration with

respect to the overall computational cost expressed as the cumulative sum∑
(`′,k′)≤(`,k) #T`′ for θ = 0.5 and λ ∈ {1, 10−1, . . . , 10−4} (top) as well as for

λ = 10−2 and θ ∈ {0.1, 0.3, . . . , 0.9} (bottom).
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Figure 4.14: Example from Section 4.8.1 (Homogeneous problem on L-shaped domain):
Number of Zarantonello iterations with respect to the number of elements
N for θ = 0.5 and λ ∈ {1, 10−1, . . . , 10−4} (top) as well as for λ = 10−2 and
θ ∈ {0.1, 0.3, . . . , 0.9} (bottom).
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θ

λ
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

0.05 1.3e+07 1.3e+07 1.3e+07 1.3e+07 1.3e+07 2.8e+07 5.4e+07 8.0e+07 1.0e+08

0.1 3.8e+06 3.8e+06 3.8e+06 3.8e+06 7.2e+06 1.2e+07 1.9e+07 2.7e+07 3.4e+07

0.15 1.8e+06 1.8e+06 1.8e+06 1.9e+06 3.7e+06 7.5e+06 1.1e+07 1.3e+07 1.7e+07

0.2 1.2e+06 1.2e+06 1.2e+06 1.2e+06 2.9e+06 4.6e+06 6.8e+06 9.1e+06 1.1e+07

0.25 7.8e+05 7.8e+05 7.8e+05 8.8e+05 2.3e+06 3.9e+06 5.0e+06 6.6e+06 8.2e+06

0.3 6.5e+05 6.5e+05 6.5e+05 9.0e+05 1.9e+06 3.2e+06 4.3e+06 5.1e+06 6.5e+06

0.35 5.5e+05 5.5e+05 5.5e+05 9.2e+05 1.4e+06 2.5e+06 3.4e+06 4.3e+06 5.0e+06

0.4 3.8e+05 3.8e+05 4.0e+05 7.5e+05 1.4e+06 2.2e+06 3.1e+06 4.0e+06 4.0e+06

0.45 3.5e+05 3.5e+05 3.3e+05 6.4e+05 1.4e+06 1.9e+06 2.6e+06 3.4e+06 4.2e+06

0.5 2.9e+05 2.9e+05 2.8e+05 7.0e+05 1.4e+06 2.1e+06 2.6e+06 3.3e+06 4.0e+06

0.55 2.7e+05 2.7e+05 2.4e+05 6.5e+05 1.3e+06 2.0e+06 1.7e+06 2.1e+06 2.5e+06

0.6 3.3e+05 3.3e+05 3.0e+05 5.5e+05 8.5e+05 1.3e+06 1.7e+06 1.9e+06 2.4e+06

0.65 1.9e+05 1.9e+05 1.9e+05 6.7e+05 9.5e+05 1.4e+06 1.8e+06 2.3e+06 2.6e+06

0.7 2.9e+05 2.9e+05 4.3e+05 7.3e+05 1.0e+06 1.0e+06 1.4e+06 1.7e+06 2.0e+06

0.75 3.2e+05 3.2e+05 2.6e+05 5.1e+05 7.2e+05 9.9e+05 1.3e+06 1.7e+06 2.0e+06

0.8 2.0e+05 2.0e+05 4.1e+05 5.7e+05 8.2e+05 9.8e+05 1.3e+06 1.6e+06 1.9e+06

0.85 2.1e+05 2.1e+05 3.6e+05 5.5e+05 7.7e+05 1.1e+06 1.2e+06 1.5e+06 1.8e+06

0.9 2.1e+05 2.1e+05 4.2e+05 5.7e+05 8.6e+05 2.6e+06 3.4e+06 4.2e+06 5.1e+06

0.95 4.3e+05 4.3e+05 9.9e+05 1.6e+06 2.5e+06 2.9e+06 3.8e+06 4.8e+06 5.7e+06

min max

Figure 4.15: Example from Section 4.8.1 (Homogeneous problem on L-shaped domain):

Overall computational cost
∑

(`′,k′)≤(`,k) #T`′ such that η`(u
k
` ) < τ for given

precision τ = 10−2, λ ∈ {1, 10−0.5, . . . , 10−4}, and θ ∈ {0.05, 0.1, . . . , 0.95}.
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choice is λ = 1 and θ = 0.75. For the overall computational cost it then holds that

∑

(`′,k′)≤(`,k)

#T`′ = 1531423,

where uk` is the �rst approximation such that η`(u
k
` ) < 10−2.

Experiment with known solution on Z-shaped domain

We consider the Z-shaped domain Ω ⊂ R2 from Figure 4.11 (top) and the boundary value
problem (4.123)

−div (µ(x, |∇u?(x)|2)∇u?(x)) = f(x) in Ω,

u?(x) = 0 on ΓD,

µ(x, |∇u?(x)|2) ∂nu
?(x) = g(x) on ΓN ,

where the scalar nonlinearity µ : Ω× R≥0 → R is de�ned by

µ(x, t) := 1 +
1√

1 + t
. (4.132)

This leads to (N1)�(N4) with α = γ̃1 = 2 and L = γ̃2 = 3.
We prescribe the solution u? in polar coordinates (x, y) = r(cosφ, sinφ) with φ ∈ (−π, π)

by

u?(x, y) = rβ cos(β φ), (4.133)

where β = 4/7 and compute f and g in (4.123) accordingly. We note that u? has a generic
singularity at the re-entrant corner (x, y) = (0, 0).
In Figure 4.16, we compare Algorithm 15 for di�erent values of θ and λ, and uniform

mesh-re�nement. To this end, the error estimator η`(u
k
` ) of the last step of the Zarantonello

iteration is plotted over the number of elements. We see that uniform mesh-re�nement leads
to the suboptimal rate of convergence O(N−2/7) for the Z�shaped domain. Algorithm 15
regains the optimal rate of convergence O(N−1/2), independently of the actual choice of
θ ∈ {0.1, 0.3, . . . , 0.9} and λ ∈ {1, 10−1, . . . , 10−4}. Since η`(u

k
` ) ' ∆

k
` , this once again

empirically underpins Theorem 23.
In Figure 4.17, we plot the estimator η`(u

k
` ) of the last step of the Zarantonello iteration

over the cumulative sum
∑

(`′,k′)≤(`,k) #T`′ . As predicted in Theorem 23, we observe that

Algorithm 15 regains the optimal order of convergence O
((∑

(`′,k′)≤(`,k) #T`′
)−1/2)

with
respect to the computational complexity, while the rate seems to be independent of the
values of λ or θ.
In Figure 4.18, we take a look at the number of Zarantonello iterations. As in Figure 4.14,

we observe that that a larger value of λ or a smaller value of θ lead to less iterations, while
the number stays uniformly bounded in each case.
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Figure 4.16: Example from Section 4.8.1 (Experiment with known solution on Z-shaped

domain): Error estimator η`(u
k
` ) of the last step of the Zarantonello iteration

with respect to the number of elements N of the mesh T` for θ = 0.5 and
λ ∈ {1, 10−1, . . . , 10−4} (top) as well as for λ = 10−2 and θ ∈ {0.1, 0.3, . . . , 0.9}
(bottom).
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Figure 4.17: Example from Section 4.8.1 (Experiment with known solution on Z-shaped

domain): Error estimator η`(u
k
` ) of the last step of the Zarantonello iteration

with respect to the overall computational cost expressed as the cumulative sum∑
(`′,k′)≤(`,k) #T`′ for θ = 0.5 and λ ∈ {1, 10−1, . . . , 10−4} (top) as well as for

λ = 10−2 and θ ∈ {0.1, 0.3, . . . , 0.9} (bottom).
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Figure 4.18: Example from Section 4.8.1 (Experiment with known solution on Z-shaped
domain): Number of Zarantonello iterations with respect to the number of
elementsN for θ = 0.5 and λ ∈ {1, 10−1, . . . , 10−4} (top) as well as for λ = 10−2

and θ ∈ {0.1, 0.3, . . . , 0.9} (bottom).
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θ

λ
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

0.05 3.7e+08 3.7e+08 3.7e+08 3.7e+08 3.7e+08 7.4e+08 1.1e+09 1.9e+09 2.3e+09

0.1 1.0e+08 1.0e+08 1.0e+08 1.0e+08 1.0e+08 2.0e+08 4.1e+08 6.1e+08 7.1e+08

0.15 4.9e+07 4.9e+07 4.9e+07 4.9e+07 7.3e+07 1.5e+08 2.5e+08 3.0e+08 3.9e+08

0.2 3.0e+07 3.0e+07 3.0e+07 3.0e+07 6.0e+07 8.9e+07 1.5e+08 2.2e+08 2.4e+08

0.25 2.1e+07 2.1e+07 2.1e+07 2.1e+07 4.5e+07 8.4e+07 1.1e+08 1.5e+08 2.0e+08

0.3 1.7e+07 1.7e+07 1.7e+07 1.8e+07 3.2e+07 6.9e+07 7.8e+07 1.2e+08 1.6e+08

0.35 1.4e+07 1.4e+07 1.4e+07 1.3e+07 2.6e+07 5.3e+07 8.1e+07 9.4e+07 1.2e+08

0.4 1.2e+07 1.2e+07 1.2e+07 1.3e+07 2.8e+07 4.5e+07 6.8e+07 8.5e+07 1.0e+08

0.45 1.0e+07 1.0e+07 1.0e+07 1.0e+07 3.3e+07 4.5e+07 5.5e+07 7.3e+07 8.3e+07

0.5 9.5e+06 9.5e+06 8.2e+06 1.1e+07 2.7e+07 3.7e+07 5.5e+07 7.6e+07 9.5e+07

0.55 8.2e+06 8.2e+06 8.3e+06 1.1e+07 2.8e+07 4.3e+07 5.6e+07 7.5e+07 9.4e+07

0.6 6.7e+06 6.7e+06 6.3e+06 1.6e+07 2.3e+07 3.9e+07 4.7e+07 6.3e+07 7.9e+07

0.65 8.5e+06 8.5e+06 8.5e+06 1.1e+07 2.3e+07 3.8e+07 4.6e+07 5.7e+07 7.1e+07

0.7 7.9e+06 7.9e+06 7.9e+06 1.3e+07 2.5e+07 4.0e+07 5.7e+07 6.8e+07 8.0e+07

0.75 5.4e+06 5.4e+06 5.5e+06 1.1e+07 2.5e+07 3.6e+07 4.9e+07 6.2e+07 7.6e+07

0.8 7.2e+06 7.2e+06 7.4e+06 1.4e+07 2.1e+07 2.5e+07 3.4e+07 4.4e+07 5.3e+07

0.85 7.4e+06 7.4e+06 7.4e+06 1.9e+07 2.6e+07 3.4e+07 4.4e+07 5.3e+07 6.0e+07

0.9 1.6e+07 1.6e+07 1.5e+07 2.6e+07 3.1e+07 4.3e+07 5.6e+07 7.0e+07 8.4e+07

0.95 1.8e+07 1.8e+07 1.7e+07 7.2e+07 1.0e+08 1.2e+08 1.6e+08 1.9e+08 2.3e+08

min max

Figure 4.19: Example from Section 4.8.1 (Experiment with known solution on Z-shaped

domain): Overall computational cost
∑

(`′,k′)≤(`,k) #T`′ such that η`(u
k
` ) <

τ for given precision τ = 3 · 10−2, λ ∈ {1, 10−0.5, . . . , 10−4}, and θ ∈
{0.05, 0.1, . . . , 0.95}.
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4.8 AFEM for quasi-linear elliptic PDE with strongly monotone nonlinearity

In Figure 4.19, we compare the computational cost to reach the precision τ = 3 · 10−2

for λ ∈ {1, 10−0.5, . . . , 10−4} and θ ∈ {0.05, 0.1, . . . , 0.95}. As a result, we get that the best
choice is λ = 1 and θ = 0.75. For the overall computational cost it then holds that

∑

(`′,k′)≤(`,k)

#T`′ = 5439636,

where uk` is the �rst approximation such that η`(u
k
` ) < 3 · 10−2.
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5 Fully adaptive algorithm for AFEM for

nonlinear operators

5.1 Introduction

In Chapter 4, we considered adaptive �nite element methods for second-order elliptic PDEs
where the arising discrete systems are not solved exactly. We showed that both AFEM for
linear elliptic PDEs in combination with an optimal PCG solver for the Galerkin system,
cf. Section 4.7, as well as AFEM for certain nonlinear elliptic PDEs in combination with
the Zarantonello iteration, cf. Section 4.8, �t in the abstract framework of Algorithm 15.
The idea of this chapter, which is based on [HPSV21], is to combine these two settings into
one fully adaptive algorithm.
Let Ω ⊂ Rd with d ≥ 1 be a bounded Lipschitz domain with polytopal boundary. Given

f ∈ L2(Ω) and a nonlinear operator A : Rd → Rd, we then aim to numerically approximate
the weak solution u? ∈ H1

0 (Ω) of the nonlinear boundary value problem

−divA(∇u?) = f in Ω,

u? = 0 on ∂Ω.
(5.1)

To this end, we propose an adaptive algorithm of the type

estimate total error and its components

↓
advance algebra/advance linearization/mark and re�ne mesh elements

(5.2)

which monitors and adequately stops the iterative linearization and the linear algebraic
solver as well as steers the local mesh-re�nement. The goal of this chapter is to perform a
rigorous mathematical analysis of this algorithm in terms of convergence and quasi-optimal
computational cost.

5.1.1 Finite element approximation and Banach�Picard iteration

Suppose that the nonlinearity A in (5.1) is Lipschitz-continuous (with constant L > 0)
and strongly monotone (with constant α > 0), see Section 5.2 for details. Then, the
main theorem on monotone operators yields the existence and uniqueness of the weak
solution u? ∈ H1

0 (Ω), see, e.g., [Zei90, Theorem 25.B]. Given a triangulation T• of Ω,
the lowest-order �nite element method (FEM) for problem (5.1) reads as follows: Find
u?• ∈ X• :=

{
v• ∈ C(Ω) : v•|T is a�ne for all T ∈ T• and v•|∂Ω = 0

}
⊂ H1

0 (Ω) such that

〈A(∇u?•) , ∇v•〉Ω = 〈f , v•〉Ω for all v• ∈ X•. (5.3)
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5 Fully adaptive algorithm for AFEM for nonlinear operators

The discrete solution u?• ∈ X• again exists and is unique, but (5.3) corresponds to a nonlinear
discrete system which can typically only be solved inexactly.
The most straightforward algorithm for iterative linearization of (5.3) stems from the

proof of the main theorem on monotone operators which is constructive and relies on the
Banach �xed point theorem: De�ne the (nonlinear) operator Φ• : X• → X• by

〈∇Φ•(w•) , ∇v•〉Ω = 〈∇w• , ∇v•〉Ω −
α

L2

[
〈A(∇w•) , ∇v•〉Ω − 〈f , v•〉Ω

]
(5.4)

for all w•, v• ∈ X•. Note that (5.4) corresponds to a discrete Poisson problem and hence
Φ•(w•) ∈ XH is well-de�ned. Then, it holds that

‖∇(u?• − Φ•(w•))‖L2(Ω) ≤ qPic ‖∇(u?• − w•)‖L2(Ω) (5.5)

with

qPic := (1− α2/L2)1/2 < 1,

see, e.g., [Zei90, Section 25.4]. Based on the contraction Φ•, the Banach�Picard iteration
starts from an arbitrary discrete initial guess and applies Φ• inductively to generate a se-
quence of discrete functions which hence converge towards u?•. Note that the computation
of Φ•(wh) by means of the discrete variational formulation (5.4) corresponds to the so-
lution of a (generically large) linear discrete system with symmetric and positive de�nite
matrix that does not change during the iterations. As mentioned before, we now suppose
that also (5.4) is solved inexactly by means of a contractive iterative algebraic solver (with
contraction factor qalg < 1), e.g., PCG with optimal preconditioner, see, e.g., [OT14].

5.1.2 Fully adaptive algorithm

In our approach, we compute a sequence of discrete approximations uk,j` of u? that have an
index ` for the mesh-re�nement, an index k for the Banach�Picard linearization iteration,
and an index j for the algebraic solver iteration.
First, we design a stopping criterion for the algebraic solver such that, at linearization

step k − 1 ∈ N0 on the mesh T`, we stop for some index j ∈ N. At the next linearization
step k ∈ N, the arising linear system reads as follows:

Find uk,?` ∈ X` such that, for all v` ∈ X`,
〈∇uk,?` , ∇v`〉Ω = 〈∇uk−1,j

` , ∇v`〉Ω −
α

L2

[
〈A(∇uk−1,j

` ) , ∇v`〉Ω − 〈f , v`〉Ω
]
,

(5.6)

with uniquely de�ned but not computed exact solution uk,?` = Φ`(u
k−1,j

` ) and computed

iterates uk,j` that approximate uk,?` . Note that (5.6) is a perturbed Banach�Picard iteration

since it starts from the available u
k−1,j

` , typically not equal to the unavailable uk−1,?
` .

Second, we design a stopping criterion for the perturbed Banach�Picard iteration at some

index k, producing a discrete approximation u
k,j

` .
Finally, we locally re�ne the triangulation T` on the basis of the Dör�er marking criterion

for the local contributions of the residual error estimator η`(u
k,j

` ), and, to lower the compu-
tational e�ort, employ nested iteration in that the continuation on the new triangulation

T`+1 is started with the initial guess u0,0
`+1 := u

k,j

` .
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5.1.3 State of the art

Solving the linear system (5.6) inexactly gives rise to the so-called �inexact Newton method�,
see, e.g., in [Deu91, EW94] and the references therein. Under appropriate conditions, these
can asymptotically preserve the convergence speed of the �exact� Newton method. However,
these approaches only focus on the �nite-dimensional system of nonlinear algebraic equa-
tions of the form (5.3) but do not take into account the continuous problem (5.1), which is
our central issue here.
Solving the nonlinear algebraic systems (5.3) �exactly� (up to machine precision), only

the discretization error is left. Then, convergence and optimal decay rates of the error
‖∇(u?− u?•)‖L2(Ω) with respect to the degrees of freedom of FEM adapting the approxima-
tion space (mesh) were obtained in [Vee02, DK08, BDK12, GMZ12], following the seminal
contributions [Dör96, MNS00, BDD04, Ste07, CKNS08] for linear problems. We also re-
fer to [CFPP14] for a general framework of convergence of adaptive FEM with optimal
convergence rates.
Solving only the linear algebraic systems (5.6) �exactly� but (5.3) inexactly leaves the

discretization and linearization errors. Such a setting has been considered in, e.g., [CS07,
EAEV11], where reliable (guaranteed) and e�cient a posteriori error estimates were derived.
Adaptive algorithms aiming at a balance of the linearization and discretization errors were
proposed and their optimal performance was observed numerically, see, e.g., [BDMS15,
BCL15, CW17, HW18]. Later, theoretical proofs of plain convergence (without rates) were
given in [GMZ11, HW20b], where [HW20b] builds on the uni�ed framework of [HW20a]
encompassing also the Ka£anov and (damped) Newton linearizations in addition to the
Banach�Picard linearization (5.6).
The works [GHPS18, GHPS21], cf. Chapter 4, considered that the linear systems (5.6) are

solved exactly at linear cost (so that u
k,j

` = uk,?` with j(`, k) = O(1) in the present notation),
as in the seminal work [Ste07] for the Poisson model problem and in [CG12] for an adaptive
Laplace eigenvalue computation. Under this so-called realistic assumption on the algebraic
solver, [GHPS18] proved that the overall strategy leads to optimal convergence rates with
respect to the number of degrees of freedom as well as to almost optimal convergence rates
with respect to the overall computational cost. The latter means that, if the total error
converges with rate s > 0 with respect to the degrees of freedom, then, for all ε > 0, it also
converges with rate s − ε > 0 with respect to the overall computational cost. The proof
of [GHPS18] was based on proving �rst that the estimator η`(u

k,?
` ) for the �nal Picard

iterates decays with optimal rate s and second that the number of Picard iterates satis�es
k(`) . 1 + log[1 + η`(u

k,?
`+1)/η`(u

k,?
` )]. This logarithmic bound then led to the bound s − ε

for the convergence rate with respect to the overall computational cost.
As shown in Chapter 4, we have improved the latter result in [GHPS21] and proved

optimal computational cost (i.e., ε = 0), still relying on the assumption that the discrete
Poisson problem (5.6) is solved exactly at linear cost. The core idea of the new proof follows
ideas from adaptive Uzawa FEM for the Stokes model problem [KS08, DFFGP19]. However,
besides the nonlinearity, the structural di�erence is that the adaptive Uzawa FEM employs
an outer iteration on the continuous level (i.e., we �rst linearize and then discretize), while
the approach of [CW17, GHPS18, HW20a, HW20b, GHPS21] is �rst to discretize and then
to linearize.
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5 Fully adaptive algorithm for AFEM for nonlinear operators

As in the present setting, the �adaptive inexact Newton method� in [EV13] takes into
account all discretization, linearization, and algebraic error components, see also [CPV14,
DPVY15] and [Pol16] for regularizations on coarse meshes ensuring well-posedness of the
discrete systems in Newton-like linearizations. The goal of this chapter is to perform a
rigorous mathematical analysis of such algorithms in terms of convergence and optimal
decay rate of the error with respect to computational cost.
We stress that such results have already been derived for adaptive wavelet discretiza-

tions [CDD03, Ste14] which provide inherent control of the residual error in terms of the
wavelet coe�cients, while the present analysis for standard �nite element discretizations
has to rely on the local information of appropriate a posteriori error estimators. Also,
while the present analysis is closely related to that of [GHPS21], we stress that both
works [GHPS18, GHPS21] focused only on linearization and discretization, while here, we
also include the innermost algebraic loop into the adaptive algorithm. In particular, the
technical challenges in the present analysis are much more involved than in [GHPS21] due
to the coupling of the two nested inexact solvers.

5.1.4 Main results and outline

Similarly to Chapter 4, the sequential nature of the fully adaptive algorithm of Section 5.1.2
gives rise to an index set

Q :=
{

(`, k, j) ∈ N3
0 : discrete approximation uk,j` is computed by the algorithm

}

together with an ordering

|(`, k, j)| < |(`′, k′, j′)| def⇐⇒ uk,j` is computed earlier than uk
′,j′
`′ .

Our �rst main result, formulated in Theorem 45 below, proves that the proposed adaptive
strategy is contractive after some amount of steps and linearly convergent in the sense of

∆k′,j′
`′ ≤ Clinq

|(`′,k′,j′)|−|(`,k,j)|
lin ∆k,j

` for all |(`, k, j)| ≤ |(`′, k′, j′)|, (5.7)

where Clin ≥ 1 and 0 < qlin < 1 are generic constants and ∆k,j
` is an appropriate quasi-error

quantity involving the error ‖∇(u? − uk,j` )‖L2(Ω) as well as the error estimator η`(u
k,j
` ).

Second, we prove the optimal error decay rate with respect to the number of degrees of
freedom added with respect to the initial mesh in the sense that

sup
(`,k,j)∈Q

(#T` −#T0 + 1)s∆k,j
` <∞ (5.8)

whenever u? is approximable at algebraic rate s > 0, see Theorem 49 below for the details.
Finally, estimate (5.7) appears to be also the key argument to prove our most eminent result,
namely the optimal error decay rate with respect to the overall computational cost of the
fully adaptive algorithm which steers the mesh-re�nement, the perturbed Banach�Picard
linearization, and the algebraic solver. In short, this reads

sup
(`′,k′,j′)∈Q

( ∑

(`,k,j)∈Q
(`,k,j)≤(`′,k′,j′)

#T`
)s

∆k′,j′
`′ <∞ (5.9)
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5.2 Adaptive algorithm

whenever u? is approximable at algebraic rate s > 0; see Theorem 53 below for the details.
We stress that under realistic assumptions the sum in (5.9) is indeed proportional to the
overall computational cost invested into the fully adaptive numerical approximation of (5.1),
if the cost of all procedures like matrix and right-hand-side assembly, one algebraic solver
step, evaluation of the involved a posteriori error estimates, marking, and local adaptive
mesh re�nement is proportional to the number of mesh elements in T` (i.e., the number of
degrees of freedom).
The remainder of this section is organised as follows. In Section 5.2, we introduce the

abstract setting for our algorithm as well as the requirements on mesh-re�nement, error
estimator, and algebraic solver, before we state the fully adaptive algorithm in Section 5.2.5.
In Section 5.3, we then state the aforementioned main results, i.e., linear convergence of the
quasi-error in each step of the adaptive algorithm (Section 5.3.4), optimal convergence rates
of the quasi-error with respect to the number of degrees of freedom (Section 5.3.6), as well as
optimal convergence rates of the quasi-error with respect to the overall computational cost
of the fully adaptive algorithm (Section 5.3.7). Finally, numerical experiments in Section 5.4
underline the theoretical �ndings.

5.2 Adaptive algorithm

In this section, we introduce an abstract setting, in which all our results will be formulated,
de�ne the exact weak and �nite elements solutions, introduce our requirements on mesh-
re�nement, error estimator, and algebraic solver, state our adaptive algorithm, and present
our main results, including some discussions.

5.2.1 Abstract setting

Let H be a Hilbert space over K ∈ {R,C} with scalar product 〈〈· , ·〉〉, corresponding norm
||| · |||, and dual space H′ (with canonical operator norm ||| · |||′). Let the operator A : H → H′
satisfy (O1)�(O3) from Section 4.2 with potential P : H → K, i.e., we suppose that the
operator A is strongly monotone and Lipschitz-continuous, i.e.,

α |||w − v|||2 ≤ Re 〈Aw −Av , w − v〉H′×H and |||Aw −Av|||′ ≤ L |||w − v||| (5.10)

for all v, w ∈ H, where 0 < α ≤ L are generic real constants and P is Gâteaux-di�erentiable
with derivative A := dP : H → H′, i.e., there holds that

〈Aw , v〉H′×H = lim
t→0
t∈R

P (w + tv)− P (w)

t
for all v, w ∈ H.

Given a linear and continuous functional F ∈ H′, the main theorem on monotone opera-
tors [Zei90, Section 25.4] yields existence and uniqueness of the solution u? ∈ H of

〈Au? , v〉H′×H = F (v) for all v ∈ H. (5.11)

The result actually holds true for any closed subspace X• ⊆ H, which also gives rise to a
unique u?• ∈ X• such that

〈Au?• , v•〉H′×H = F (v•) for all v• ∈ X•. (5.12)
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5 Fully adaptive algorithm for AFEM for nonlinear operators

Finally, with the energy functional E := Re (P − F ), it holds that

α

2
|||v• − u?•|||2 ≤ E(v•)− E(u?•) ≤

L

2
|||v• − u?•|||2 for all v• ∈ X•, (5.13)

see, e.g., [GHPS18, Lemma 5.1]. In particular, u? ∈ H is the unique minimizer of the
minimization problem

E(u?) = min
v∈H
E(v) (5.14)

as well as u?• ∈ X ?• is the unique minimizer of the minimization problem

E(u?•) = min
v•∈X•

E(v•). (5.15)

As in Section 4.2, it follows from (5.10)�(5.12) that the present setting guarantees the
Céa lemma

|||u? − u?•||| ≤ CCéa |||u? − v•||| for all v• ∈ X• with CCéa := L/α. (5.16)

5.2.2 Mesh-re�nement

We brie�y recall some de�nitions of the mesh-re�nement from Section 3.4. Let T• be a
conforming simplicial mesh of Ω, i.e., a partition of Ω into compact simplices T such that⋃
T∈T• T = Ω and such that the intersection of two di�erent simplices is either empty or

their common vertex, edge, or face.
We assume that refine(·) is a �xed mesh-re�nement strategy, e.g., newest vertex bisec-

tion, cf. Section 3.6.
We write T◦ = refine(T•,M•) for the coarsest one-level re�nement of T•, where all

marked elementsM• ⊆ T• have been re�ned, i.e.,M• ⊆ T•\T◦. We write T◦ ∈ refine(T•),
if T◦ can be obtained by �nitely many steps of one-level re�nement (with appropriate, yet
arbitrary marked elements in each step). We de�ne T := refine(T0) as the set of all meshes
which can be generated from the initial simplicial mesh T0 of Ω by use of refine(·).
Finally, we associate to each T• ∈ T a corresponding �nite-dimensional subspace X• $ H,

where we suppose that X• ⊆ X◦ whenever T•, T◦ ∈ T with T◦ ∈ refine(T•).
For newest vertex bisection, we refer to Section 3.6 for the validity of (R1)�(R3) as well

as Section 3.7 for other re�nement strategies.

5.2.3 Error estimator

For each mesh T• ∈ T, suppose that we can compute re�nement indicators

η•(T, v•) ≥ 0 for all T ∈ T• and all v• ∈ X•. (5.17)

We denote

η•(V•, v•) :=

( ∑

T∈V•
η•(T, v•)2

)1/2

for all V• ⊆ T• (5.18)
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and abbreviate η•(v•) := η•(T•, v•). Analogously to Section 4.3, we assume the axioms of
adaptivity (A1)�(A4) from [CFPP14] for all T• ∈ T and all T◦ ∈ refine(T•) with generic
constants Cstab, Crel > 0, and 0 < qred < 1. We stress that the exact discrete solutions u?•
(and u?◦ respectively) in (A3)�(A4) will never be computed but are only auxiliary quantities
for the analysis.
We refer to Section 5.4 below for precise assumptions on the nonlinearity A(·) of prob-

lem (5.1) such that the standard residual error estimator satis�es (A1)�(A4) for lowest-order
Courant �nite elements, see also Section 5.4.1�5.4.2.

5.2.4 Algebraic solver

For given linear and continuous functionals G ∈ H′, we consider linear systems of algebraic
equations of the type

〈〈v?• , w•〉〉 = G(w•) for all w• ∈ X• (5.19)

with unique (but not computed) exact solution v?• ∈ X•. We suppose here that we have at
hand a contractive iterative algebraic solver for problems of the form (5.19). More precisely,
let v0

• ∈ X• be an initial guess and let the solver produce a sequence vj• ∈ X•, j ≥ 1. Then,
we suppose that there exists a generic constant 0 < qalg < 1 such that

|||v?• − vj•||| ≤ qalg |||v?• − vj−1
• ||| for all j ≥ 1. (5.20)

Examples for such solvers are suitably preconditioned conjugate gradients or multigrid, see,
e.g., Olshanskii and Tyrtyshnikov [OT14] and the references therein.

5.2.5 Adaptive algorithm

For the numerical approximation of problem (5.11), we consider an adaptive algorithm which
steers mesh-re�nement with index `, a (perturbed) contractive Banach�Picard iteration with
index k, and a contractive algebraic solver with index j. On each step (`, k, j), it yields an
approximation uk,j` ∈ X` to the unique but unavailable u?` ∈ X` on the mesh T` de�ned by

〈Au?` , v`〉H′×H = F (v`) for all v` ∈ X`. (5.21)

Reporting for the summary of notation to Table 5.1, the algorithm reads as follows:

Algorithm 41. Input: Initial mesh T0 and initial guess u0,0
0 = u

0,j

0 ∈ X0, parameters
0 < θ ≤ 1, 0 < λalg < 1, 0 < λPic, and 1 ≤ Cmark, counters ` = k = j = 0.
Adaptive loop: Iterate the following steps (i)�(vi): (adaptive mesh-re�nement loop)

(i) Repeat the following steps (a)�(c): (linearization loop)

(a) De�ne uk+1,0
` := uk,j` and update counters k := k + 1 as well as j := 0.

(b) Repeat the following steps (I)�(III): (algebraic solver loop)
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5 Fully adaptive algorithm for AFEM for nonlinear operators

counter discrete solution
available unavailable

running stopping running stopping exact

mesh ` ` u
k,j

` u
k,j

` u?` from (5.21)

linearization k k u
k,j

` u
k,j

` uk,?` from (5.22)

algebraic solver j j uk,j` u
k,j

`

Table 5.1: Counters and discrete solutions in Algorithm 41.

(I) Update counter j := j + 1.

(II) Consider the problem of �nding

uk,?` ∈ X` such that, for all v` ∈ X`,
〈〈uk,?` , v`〉〉 = 〈〈uk−1,j

` , v`〉〉−
α

L2
〈Auk−1,j

` − F , v`〉H′×H
(5.22)

and do one step of the algebraic solver applied to (5.22) starting from uk,j−1
` ,

which yields uk,j` (an approximation to uk,?` ).

(III) Compute the local indicators η`(T, u
k,j
` ) for all T ∈ T`.

Until |||uk,j` − u
k,j−1
` ||| ≤ λalg

[
η`(u

k,j
` ) + |||uk,j` − u

k−1,j

` |||
]
. (5.23)

(c) De�ne j := j(`, k) := j.

Until |||uk,j` − u
k−1,j

` ||| ≤ λPicη`(u
k,j

` ). (5.24)

(ii) De�ne k := k(`) := k.

(iii) If η`(u
k,j

` ) = 0, then set ` := ` and exit.

(iv) Determine a setM` ⊆ T` with up to the multiplicative constant Cmark minimal cardi-
nality such that

θ η`(u
k,j

` ) ≤ η`(M`, u
k,j

` ). (5.25)

(v) Generate T`+1 := refine(T`,M`) and de�ne u0,0
`+1 := u

0,j

`+1 := u
k,j

` .

(vi) Update counters ` := `+ 1, k := 0, and j := 0 and continue with (i).

Output: Sequence of discrete solutions uk,j` and corresponding error estimators η`(u
k,j
` ).

Remark 42. Some remarks in order to explain the nature of Algorithm 41:
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� The innermost loop, Algorithm 41(i)(b), steers the algebraic solver. Note that the

exact solution uk,?` of (5.22) is not computed but only approximated by the computed

iterates uk,j` . For the linear system (5.22), the contraction assumption (5.20) reads as

|||uk,?` − u
k,j
` ||| ≤ qalg |||uk,?` − u

k,j−1
` ||| for all j ≥ 1. (5.26)

Then, the triangle inequality implies that

1− qalg

qalg
|||uk,?` − u

k,j
` ||| ≤ |||u

k,j
` − u

k,j−1
` ||| ≤ (1 + qalg) |||uk,?` − u

k,j−1
` |||. (5.27)

Hence, the term |||uk,j` − uk,j−1
` ||| provides a means to estimate the algebraic error

|||uk,?` − uk,j` |||. In particular, the approximation uk,j` is accepted and the algebraic

solver is stopped if the algebraic error estimate |||uk,j` − u
k,j−1
` ||| is, up to the threshold

λalg, below the estimate on the sum η`(u
k,j
` ) + |||uk,j` −u

k−1,j

` ||| of the discretization and

linearization error, see (5.23). Since |||uk,1` − u
k,0
` ||| = |||uk,1` − u

k−1,j

` |||, the stopping
criterion (5.23) would always terminate the algebraic solver at the �rst step j = 1 if
λalg was chosen greater or equal to 1 which motivates the restriction λalg < 1.

� The middle loop, Algorithm 41(i), steers the linearization by means of the (perturbed)

Banach�Picard iteration. Lemma 44 below shows that the term |||uk,j` − u
k−1,j

` ||| esti-
mates the linearization error |||u?` − u

k,j

` |||. Note that, a priori, only the non-perturbed
Banach�Picard iteration corresponding to the (unavailable) exact solve of (5.22) yield-
ing uk,?` would lead to the contraction

|||u?` − uk,?` ||| ≤ qPic |||u?` − u
k−1,j

` ||| for all (`, k, 0) ∈ Q with k ≥ 1, (5.28)

where 0 < qPic := (1 − α2/L2)1/2 < 1 and Q the index set de�ned in (5.29). The

approximation u
k,j

` is accepted and the linearization is stopped if the linearization

error estimate |||uk,j` − u
k−1,j

` ||| is, up to the threshold λPic, below the discretization

error estimate η`(u
k,j

` ), see (5.24) (here λPic < 1 is not necessary).

� Finally, the outermost adaptive loop steers the local adaptive mesh-re�nement. To this
end, the Dör�er marking criterion (5.25) from [Dör96] is employed to mark elements

T ∈ M` for re�nement, unless η`(u
k,j

` ) = 0, in which case Proposition 43 below

ensures that the approximation u
k,j

` coincides with the exact solution u? of (5.11).

� In a practical implementation, Algorithm 41 has to be complemented by appropriate
stopping criteria in all of the loops so that the computation is terminated if uk,j` ∈ X`
is a su�ciently accurate approximation of u?. This can be done with the help of the
reliable a posteriori error estimates summarized in Proposition 43 below.
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5.2.6 Index set Q for the triple loop

To analyze the asymptotic convergence behavior of Algorithm 41, we de�ne the index set

Q :=
{

(`, k, j) ∈ N3
0 : index triple (`, k, j) is used in Algorithm 41

}
. (5.29)

Since Algorithm 41 is sequential, the index set Q is naturally ordered. For indices (`, k, j),
(`′, k′, j′) ∈ Q, we write

(`, k, j) < (`′, k′, j′) def⇐⇒ (`, k, j) appears earlier in Algorithm 41 than (`′, k′, j′). (5.30)

With this order, we can de�ne

|(`, k, j)| := #
{

(`′, k′, j′) ∈ Q : (`′, k′, j′) < (`, k, j)
}
,

which is the total step number of Algorithm 41. We make the following de�nitions, which
are consistent with that of Algorithm 41, and additionally de�ne j(`, 0) := 0:

` := sup
{
` ∈ N0 : (`, 0, 0) ∈ Q

}
∈ N0 ∪ {∞},

k(`) := sup
{
k ∈ N0 : (`, k, 0) ∈ Q

}
∈ N0 ∪ {∞} if (`, 0, 0) ∈ Q,

j(`, k) := sup
{
j ∈ N0 : (`, k, j) ∈ Q

}
∈ N0 ∪ {∞} if (`, k, 0) ∈ Q.

Generically, it holds that ` = ∞, i.e., in�nitely many steps of mesh-re�nement take place.
However, our analysis also covers the cases that either the k-loop (linearization) or the
j-loop (algebraic solver) does not terminate, i.e.,

k(`) =∞ if ` <∞ resp. j(`, k) =∞ if ` <∞ and k(`) <∞,

or that the exact solution u? is hit at Step (iii) of Algorithm 41 (note that η`(u
k,j

` ) = 0

implies u? = u
k,j

` by virtue of Proposition 43 below). To abbreviate notation, we make the
following convention: If the mesh index ` ∈ N0 is clear from the context, we simply write

k := k(`), e.g., uk,j` := u
k(`),j
` . Similarly, we simply write j := j(`, k), e.g., u

k,j

` := u
k,j(`,k)

` .

Note that there in particular holds u
k,j

`−1 = u0,0
` = u1,0

` for all (`, 0, 0) ∈ Q with ` ≥
1. Hence, these approximate solutions are indexed three times. This is our notational
choice that will not be harmful for what follows. Alternatively, one could only index the
approximate solutions that appear on Step (i)(b)(II) of Algorithm 41.

5.3 Main results

5.3.1 Reliabilty estimates of Algorithm 41

Our �rst proposition provides computable upper bounds for the energy error |||u?−uk,j` ||| of
the iterates uk,j` of Algorithm 41 at any step (`, k, j) ∈ Q. In particular, we note that the

stopping criteria (5.23)�(5.24) ensure reliability of η`(u
k,j

` ) for the �nal perturbed Banach�

Picard iterates u
k,j

` .
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Proposition 43 (Reliability at various stages of Algorithm 41). Suppose (A1)
and (A3). Then, for all (`, k, j) ∈ Q, it holds that

|||u? − uk,j` ||| ≤ C ′rel





η`(u
k,j
` ) + |||uk,j` − u

k−1,j

` |||+ |||uk,j` − u
k,j−1
` |||

if 0 < k ≤ k(`) and 0 < j ≤ j(`, k),

η`(u
k,j

` ) + |||uk,j` − u
k−1,j

` ||| if 0 < k ≤ k(`) and j = j(`, k),

η`(u
k,j

` ) if k = k(`) and j = j(`, k),

η`−1(u
k,j

`−1) if k = 0 and ` > 0.

(5.31)

The constant C ′rel > 0 depends only on Crel, Cstab, qalg, λalg, qPic, and λPic.

The proof ist postponed to Section 5.3.2, because we �rst need some auxiliary results for
Algorithm 41.

Observations on Algorithm 41

First, we collect some elementary observations on Algorithm 41 in what concerns nested
iteration and stopping criteria. The given initial value of Algorithm 41 reads

u0,0
0 = u

0,j

0 = u0,?
0 ∈ X0. (5.32)

If (`, 0, 0) ∈ Q with ` ≥ 1, then

u0,?
` := u0,0

` := u
0,j

` := u
k,j

`−1 ∈ X`−1 ⊆ X`. (5.33)

If (`, k, 0) ∈ Q, then the initial guess for the algebraic solver reads

uk,0` =





u0,0
0 for ` = 0,

u
k,j

`−1 if k = 0 and ` ≥ 1,

u
k−1,j

` if k > 0,

(5.34)

i.e., the algebraic solver employs nested iteration. The stopping criterion (5.23) of Algo-
rithm 41 guarantees that j(`, k) ≥ 1 if k > 0 and, for all (`, k, j) ∈ Q, it holds that

|||uk,j` − u
k,j−1

` ||| ≤ λalg

[
η`(u

k,j

` ) + |||uk,j` − u
k−1,j

` |||
]

for j = j(`, k), (5.35)

|||uk,j` − u
k,j−1
` ||| > λalg

[
η`(u

k,j
` ) + |||uk,j` − u

k−1,j

` |||
]

for j < j(`, k), (5.36)

i.e., the algebraic error estimate |||uk,j` − u
k,j−1
` ||| only drops below the discretization plus

linearization error estimate at the stopping iteration j = j(`, k).

The �nal iterates u
k,j

` of the algebraic solver are used to obtain the perturbed Banach�

Picard iterates u
k+1,j

` for k > 0, see (5.22). The stopping criterion (5.24) of Algorithm 41
guarantees that k(`) ≥ 1 and, for all (`, k, j) ∈ Q, it holds that

|||uk,j` − u
k−1,j

` ||| ≤ λPic η`(u
k,j

` ) for k = k(`), (5.37)

|||uk,j` − u
k−1,j

` ||| > λPic η`(u
k,j

` ) for k < k(`), (5.38)

109



5 Fully adaptive algorithm for AFEM for nonlinear operators

i.e., the linearization error estimate |||uk,j` −u
k−1,j

` ||| only drops below the discretization error
estimate at the stopping iteration k = k(`).

Contraction of the perturbed Banach�Picard iteration

Assumption (5.20) immediately implies the algebraic solver contraction (5.26) and relia-
bility (5.27) of the algebraic error estimate |||uk,j` − uk,j−1

` |||. Similarly, one step of the
non-perturbed Banach�Picard iteration (5.22) (i.e., with an exact algebraic solve of prob-

lem (5.22) with the datum u
k−1,j

` ) leads to contraction (5.28) and consequently to the
reliability

1− qPic

qPic
|||u?` − uk,?` ||| ≤ |||u

k,?
` − u

k−1,j

` ||| ≤ (1 + qPic) |||u?` − u
k−1,j

` ||| (5.39)

of the unavailable linearization error estimate |||uk,?` − u
k−1,j

` |||. As our �rst result, we now
show that, for su�ciently small stopping parameters 0 < λalg in (5.23), we also get that the
perturbed Banach�Picard iteration is a contraction.
Recall that u?` ∈ X` is the (unavailable) exact discrete solution given by (5.21), that

uk,?` ∈ X` is the (unavailable) exact linearization solution given by (5.22), and that u
k,j

` ∈ X`
is the computed solution for which the algebraic solver is stopped, see (5.23) (and (5.35)�
(5.36) respectively) for the stopping criterion.

Lemma 44. There exists λ?alg > 0 only depending on qalg and qPic such that

0 < q′Pic :=
qPic +

qalg

1−qalg
λ?alg

1− qalg

1−qalg
λ?alg

< 1. (5.40)

Moreover, for all stopping parameters 0 < λalg < 1 and 0 < λPic from (5.23)�(5.24) such
that 0 < λalg + λalg/λPic < λ?alg, it holds that

|||u?` − u
k,j

` ||| ≤ q′Pic |||u?` − u
k−1,j

` ||| for all 1 ≤ k < k(`). (5.41)

This also implies that

1− q′Pic

q′Pic

|||u?` − u
k,j

` ||| ≤ |||u
k,j

` − u
k−1,j

` ||| ≤ (1 + q′Pic) |||u?` − u
k−1,j

` |||. (5.42)

Proof. Clearly, (5.42) follows from (5.41) by the triangle inequality as in (5.27) and (5.39).
Moreover, (5.40) is obvious for su�ciently small λ?alg, since qPic = (1 − α2/L2)1/2 < 1
from (5.28) and 0 < qalg < 1 is �xed from (5.20). To see (5.41), �rst note that

|||u?` − u
k,j

` ||| ≤ |||u?` − u
k,?
` |||+ |||u

k,?
` − u

k,j

` |||
(5.28)

≤ qPic |||u?` − u
k−1,j

` |||+ |||uk,?` − u
k,j

` |||,
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where the �rst term corresponds to the unperturbed Banach�Picard iteration (5.22) and
the second to the algebraic error. Second, note that, since 1 ≤ k < k(`),

|||uk,?` − u
k,j

` |||
(5.27)

≤ qalg

1− qalg
|||uk,j` − u

k,j−1

` |||

(5.35)

≤ qalg

1− qalg
λalg

[
η`(u

k,j

` ) + |||uk,j` − u
k−1,j

` |||
]

(5.38)
<

qalg

1− qalg
(λalg + λalg/λPic) |||u

k,j

` − u
k−1,j

` |||

≤ qalg

1− qalg
(λalg + λalg/λPic)

[
|||u?` − u

k,j

` |||+ |||u?` − u
k−1,j

` |||
]
.

Combining the latter estimates with the assumption λalg + λalg/λPic < λ?alg, we see that

|||u?` − u
k,j

` ||| ≤ (qPic +
qalg

1− qalg
λ?alg) |||u?` − u

k−1,j

` |||+ qalg

1− qalg
λ?alg |||u?` − u

k,j

` |||.

If 0 < λ?alg is su�ciently small, it follows for all 1 ≤ k < k(`) that

|||u?` − u
k,j

` ||| ≤
qPic +

qalg

1−qalg
λ?alg

1− qalg

1−qalg
λ?alg

|||u?` − u
k−1,j

` |||

= q′Pic|||u?` − u
k−1,j

` |||.

This concludes the proof.

5.3.2 Proof of Proposition 43 (reliability estimates)

We are now ready to prove the estimates (5.31).

Proof of Proposition 43. First, let (`, k, j) ∈ Q with 0 < k ≤ k(`) and 0 < j ≤ j(`, k).
Due to stability (A1), reliability (A3), and the contraction properties (5.27) resp. (5.39), it
holds that

|||u? − uk,j` ||| ≤ |||u? − u?` |||+ |||u?` − u
k,j
` |||

(A3)

. η`(u
?
` ) + |||u?` − uk,j` |||

(A1)

. η`(u
k,j
` ) + |||u?` − uk,j` |||

≤ η`(u
k,j
` ) + |||u?` − uk,?` |||+ |||u

k,?
` − u

k,j
` |||

(5.39)

. η`(u
k,j
` ) + |||uk,?` − u

k−1,j

` |||+ |||uk,?` − u
k,j
` |||

≤ η`(u
k,j
` ) + |||uk,j` − u

k−1,j

` |||+ 2 |||uk,?` − u
k,j
` |||

(5.27)

. η`(u
k,j
` ) + |||uk,j` − u

k−1,j

` |||+ |||uk,j` − u
k,j−1
` |||.

(5.43)
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This proves (5.31) for the case 0 < k ≤ k(`) and 0 < j ≤ j(`, k).
If j = j(`, k), we can improve this estimate using the stopping criterion (5.35) which

yields that

|||uk,j` − u
k,j−1

` |||
(5.35)

. η`(u
k,j

` ) + |||uk,j` − u
k−1,j

` |||. (5.44)

Combined with (5.43), this proves (5.31) for j = j(`, k). If additionally k = k(`), the
stopping criterion (5.37) and the previous estimate (5.44) provide that

|||uk,j` − u
k,j−1

` |||
(5.44)

. η`(u
k,j

` ) + |||uk,j` − u
k−1,j

` |||
(5.37)

. η`(u
k,j

` ), (5.45)

which proves (5.31) for this case. Finally, for k = 0, ` > 0 and hence j = j = 0, it directly
follows from nested iteration (5.33) and the previous case k = k(`− 1) resp. j = j(`− 1, k)
that

|||u? − u0,0
` ||| = |||u? − u

k,j

`−1||| . η`−1(u
k,j

`−1). (5.46)

This concludes the proof.

5.3.3 Linear convergence of the quasi-error

The �rst main theorem states linear convergence in each step of the adaptive algorithm,
i.e., algebraic solver or linearization or mesh-re�nement.

Theorem 45 (linear convergence). Suppose (A1)�(A3). Then, there exist λ?alg, λ
?
Pic > 0

such that for arbitrary 0 < θ, λalg, λPic with

0 < θ ≤ 1,

0 < λalg < 1,

0 < λalg + λalg/λPic < λ?alg, and,

0 < λPic/θ < λ?Pic,

there exist constants Clin ≥ 1 and 0 < qlin < 1 such that the quasi-error

∆k,j
` := |||u? − uk,j` |||+ |||u

k,?
` − u

k,j
` |||+ η`(u

k,j
` ), (5.47)

composed of the overall error, the algebraic error, and the error estimator, is linearly con-
vergent in the sense of

∆k′,j′
`′ ≤ Clin q

|(`′,k′,j′)|−|(`,k,j)|
lin ∆k,j

` (5.48)

for all (`, k, j), (`′, k′, j′) ∈ Q with (`′, k′, j′) ≥ (`, k, j). The constants Clin and qlin depend
only on Crel, Cstab, qred, θ, qalg, λalg, qPic, λPic, α, and L.

Note that ∆k′,j′
`′ = ∆k,j

` when (`′, k′, j′) = (`, k, j), and then (5.48) holds with equality

for Clin = 1. There are other cases where uk
′,j′
`′ = uk,j` and where uk

′,j′
`′ = uk,j` together
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with T`′ = T`, and consequently η`′(u
k′,j′
`′ ) = η`(u

k,j
` ), related to our notational choice for

Q in (5.29) that also indexes nested iterates. The case with `′ = ` arises for instance when
j = j, j′ = 0, and k′ = k + 1, see Step (i)(a) of Algorithm 41. Note, however, that in

such a situation, typically uk
′,?
`′ 6= uk,?` , and consequently ∆k′,j′

`′ 6= ∆k,j
` . A situation where

∆k′,j′
`′ = ∆k,j

` for (`′, k′, j′) 6= (`, k, j) can nevertheless also appear, and is covered in (5.48).
For instance, in the above example, when j = j, j′ = 0, k′ = k + 1, and `′ = `, and where

moreover uk,j` = uk,?` = u?` (so that u
k,j
` = uk,?` = uk

′,?
`′ = uk

′,j′
`′ = u?` ), Algorithm 41 performs

only one step of the algebraic solver on the linearization step k′, so that Clin = 1/qlin leads
to equality in (5.48) where now |(`′, k′, j′)| − |(`, k, j)| = 1.
In order to prove Theorem 45, we �rst introduce an auxiliary adaptive algorithm which

we employ to prove a certain summability property of the quasi-error, before we prove linear
convergence in Section 45.

An auxiliary adaptive algorithm

Due to Lemma 44, the iterates u
k,j

` are contractive in the index k. Consequently, Algo-

rithm 41 �ts into the framework of [GHPS18] upon de�ning u` from [GHPS18] as u` := u
k,j

`

for the case where k(`) < ∞ and j(`, k) < ∞, i.e., both the algebraic and the lineariza-
tion solvers are stopped by (5.23)�(5.24) on the mesh T`. Note that the assumption
(` + n + 1, 0, 0) ∈ Q below ensures this for all meshes T`′ with 0 ≤ `′ ≤ ` + n. Then,
we can rewrite [GHPS18, Lemma 4.9, equation (4.10)] and [GHPS18, Theorem 5.3, equa-
tion (5.5)] in the current setting to conclude two important properties: First, the estimators

η`(u
k,j

` ) available at Step (iv) of Algorithm 41 are, up to a constant, equivalent to the esti-
mators η`(u?` ) corresponding to the unavailable exact linearization u

?
` of (5.21). And second,

the estimators η`(u
k,j

` ) are linearly convergent.

Lemma 46 ([GHPS18, Lemma 4.9, Theorem 5.3]). Recall λ?alg > 0 and 0 < q′Pic < 1
from Lemma 44. De�ne

λ?Pic :=
1− q′Pic

q′PicCstab
> 0

and note that it depends only on qPic, qalg, and Cstab. Then, for all 0 < θ, λalg, λPic with

0 < θ ≤ 1,

0 < λalg < 1,

0 < λalg + λalg/λPic < λ?alg, and,

0 < λPic/θ < λ?Pic,

and all (`, k, j) ∈ Q with k <∞ and j <∞, it holds that

(1− λPic/λ
?
Pic) η`(u

k,j

` ) ≤ η`(u?` ) ≤ (1 + λPic/λ
?
Pic) η`(u

k,j

` ). (5.49)

Moreover, there exist CGHPS > 0 and 0 < qGHPS < 1 such that

η`+n(u
k,j

`+n) ≤ CGHPS q
n
GHPS η`(u

k,j

` ) for all (`+ n+ 1, 0, 0) ∈ Q. (5.50)
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The constants CGHPS and qGHPS depend only on L, α, Crel, Cstab, qred, qalg, and qPic, as
well as on the adaptivity parameters θ, λalg, and λPic.

As a result of Lemma 46 and Proposition 43, we get the following lemma for the quasi-error
of (5.47) on stopping indices k(`), j(`, k). Please note that when ` < ∞, the summation
below only goes to `−1, as the arguments rely on (5.50) which needs �nite stopping indices
k(`) and j(`, k) on each mesh T`.

Lemma 47. Suppose that 0 < λalg +λalg/λPic < λ?alg (from Lemma 44) as well as 0 < θ ≤ 1
and 0 < λPic/θ < λ?Pic (from Lemma 46). With the convention ` − 1 = ∞ if ` = ∞, there
holds summability

`−1∑

`=`′+1

∆
k,j

` ≤ C ∆
k,j

`′ for all (`′, k, j) ∈ Q, (5.51)

where C > 0 depends only on L, α, Crel, Cstab, qred, θ, qalg, qPic, λalg, and λPic.

Proof. De�ne ∆̃k
` := |||u? − uk,j` |||+ η`(u

k,j

` ) as the sum of overall error plus error estimator.

In comparison with (5.47), ∆̃k
` omits the algebraic error term but is only de�ned for the

algebraic stopping indices j(`, k). With Proposition 43 and the linear convergence (5.50),
we get that

`−1∑

`=`′+1

∆̃
k
`

(5.31)

.
`−1∑

`=`′+1

η`(u
k,j

` )
(5.50)

. η`′(u
k,j

`′ )

`−1∑

`=`′+1

q`−`
′

GHPS . ∆̃
k
`′ .

Let (`′, k, j) ∈ Q. By de�nition (5.47), it holds that

∆
k,j

`′ = |||u? − uk,j`′ |||+ |||u
k,?
`′ − u

k,j

`′ |||+ η`′(u
k,j

`′ ) = ∆̃
k
`′ + |||u

k,?
`′ − u

k,j

`′ |||.

Moreover, note that

|||uk,?`′ − u
k,j

`′ |||
(5.27)

. |||uk,j`′ − u
k,j−1

`′ |||
(5.35)

. η`′(u
k,j

`′ ) + |||uk,j`′ − u
k−1,j

`′ |||
(5.37)

. η`′(u
k,j

`′ )

≤ ∆̃
k
`′ .

This proves the equivalence ∆
k,j

`′ ' ∆̃
k
`′ for all (`′, k, j) ∈ Q and concludes the proof.

5.3.4 Proof of Theorem 45 (linear convergence)

This section is dedicated to the proof of Theorem 45. The core is the following lemma that
extends Lemma 47 to our setting with the triple indices.
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Lemma 48. Suppose that 0 < λalg +λalg/λPic < λ?alg (from Lemma 44) as well as 0 < θ ≤ 1
and 0 < λPic/θ < λ?Pic (from Lemma 46). Then, there exists Csum > 0 such that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

∆k,j
` ≤ Csum ∆k′,j′

`′ for all (`′, k′, j′) ∈ Q. (5.52)

The constant Csum depends only on Crel, Cstab, qred, θ, qalg, λalg, qPic, λPic, α, and L.

Proof. Step 1. We prove that

Ak,j
` := |||u?` − uk,j` |||+ |||u

k,?
` − u

k,j
` |||+ η`(u

k,j
` ) ' ∆k,j

` for all (`, k, j) ∈ Q. (5.53)

Note that Ak,j
` and ∆k,j

` only di�er in the �rst term, where the overall error is replaced by
the (inexact) linearization error. According to the Céa lemma (5.16), it holds that

|||u?` − uk,j` ||| ≤ |||u? − u
k,j
` |||+ |||u? − u?` |||

(5.16)

. |||u? − uk,j` ||| ≤ ∆k,j
` .

This implies that Ak,j
` . ∆k,j

` . To see the converse inequality, note that

|||u? − uk,j` ||| ≤ |||u? − u?` |||+ |||u?` − u
k,j
` |||

(A3)

. η`(u
?
` ) + |||u?` − uk,j` |||

(A1)

. η`(u
k,j
` ) + |||u?` − uk,j` |||

≤ Ak,j
` .

This proves ∆k,j
` . Ak,j

` and concludes this step.
Step 2. We prove some auxiliary estimates. First, we prove that the algebraic error
|||uk,?` − u

k,j−1
` ||| dominates the modi�ed total error Ak,j

` , before the algebraic stopping cri-
terion (5.23) is reached, i.e.,

Ak,j
` . |||uk,?` − u

k,j−1
` ||| for all (`, k, j) ∈ Q with k ≥ 1 and 1 ≤ j < j(`, k). (5.54)

To this end, note that

|||u?` − uk,j` |||+ |||u
k,?
` − u

k,j
` ||| ≤ |||u?` − u

k,?
` |||+ 2 |||uk,?` − u

k,j
` |||

(5.39)

. |||uk,?` − u
k−1,j

` |||+ |||uk,?` − u
k,j
` |||

≤ 2 |||uk,?` − u
k,j
` |||+ |||u

k,j
` − u

k−1,j

` |||
(5.27)

. |||uk,j` − u
k,j−1
` |||+ |||uk,j` − u

k−1,j

` |||.
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Since 1 ≤ j < j(`, k), we obtain from the latter equation that

Ak,j
` = |||u?` − uk,j` |||+ |||u

k,?
` − u

k,j
` |||+ η`(u

k,j
` )

. |||uk,j` − u
k,j−1
` |||+ |||uk,j` − u

k−1,j

` |||+ η`(u
k,j
` )

(5.36)

. |||uk,j` − u
k,j−1
` |||

(5.27)

. |||uk,?` − u
k,j−1
` |||.

This proves (5.54).
Second, we consider the use of nested iteration when passing to the next perturbed

Banach�Picard step. We prove that

|||uk,?` − u
k,0
` ||| . A

k−1,j

` for all (`, k, 0) ∈ Q with k ≥ 1, (5.55)

To this end, simply note that

|||uk,?` − u
k,0
` |||

(5.34)
= |||uk,?` − u

k−1,j

` |||
(5.39)

. |||u?` − u
k−1,j

` ||| ≤ A
k−1,j

` .

This proves (5.55).
Third, we prove that

A
k,j

` . Ak,j
` for all (`, k, j) ∈ Q, (5.56)

related to the algebraic error contraction. Note that k = 0 implies j = 0, so that (5.56)
trivially holds for k = 0 with equality. Let now k ≥ 1. We �rst consider the last but one
algebraic iteration step j = j(`, k)− 1 ≥ 0. There holds that

A
k,j

` = |||u?` − u
k,j

` |||+ |||u
k,?
` − u

k,j

` |||+ η`(u
k,j

` )

≤ |||u?` − u
k,j−1

` |||+ |||uk,?` − u
k,j−1

` |||+ η`(u
k,j

` ) + 2 |||uk,j` − u
k,j−1

` |||
(A1)

. A
k,j−1

` + |||uk,j` − u
k,j−1

` |||
(5.27)

. A
k,j−1

` + |||uk,?` − u
k,j−1

` |||
' A

k,j−1

` .

This proves (5.56) for j = j(`, k)− 1 ≥ 0. Note that this argument also applies when j = 1.
If 0 ≤ j ≤ j(`, k)− 2, then we employ the last estimate and (5.54) to obtain that

A
k,j

` . A
k,j−1

`

(5.54)

. |||uk,?` − u
k,j−2

` |||
(5.26)

≤ |||uk,?` − u
k,j
` ||| ≤ Ak,j

` ,

also using that qalg ≤ 1. This concludes the proof of (5.56).
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Fourth, we prove that the linearization error |||u?` − u
k−1,j

` ||| dominates the modi�ed total

error A
k,j

` , before the linearization stopping criterion (5.24) is reached, i.e.,

A
k,j

` . |||u?` − u
k−1,j

` ||| for all (`, k, j) ∈ Q with 1 ≤ k < k(`). (5.57)

To see this, note that 1 ≤ k < k(`) yields that

A
k,j

` = |||u?` − u
k,j

` |||+ |||u
k,?
` − u

k,j

` |||+ η`(u
k,j

` )

(5.27)

. |||u?` − u
k,j

` |||+ |||u
k,j

` − u
k,j−1

` |||+ η`(u
k,j

` )

(5.35)

. |||u?` − u
k,j

` |||+ |||u
k,j

` − u
k−1,j

` |||+ η`(u
k,j

` )

(5.42)

. |||uk,j` − u
k−1,j

` |||+ η`(u
k,j

` )

(5.38)

. |||uk,j` − u
k−1,j

` |||
(5.42)

. |||u?` − u
k−1,j

` |||,

where we employ Lemma 44 and hence require 0 < λalg + λalg/λPic to be su�ciently small.
This proves (5.57).
Fifth, we consider the use of nested iteration when re�ning the mesh. We prove that

A
0,j

` . η`−1(u
k,j

`−1) ≤ A
k,j

`−1 for all (`, k, j) ∈ Q. (5.58)

To this end, note that

|||u?` − u
k,j

`−1||| ≤ |||u? − u?` |||+ |||u? − u
k,j

`−1|||
(5.16)

. |||u? − uk,j`−1|||
(5.31)

. η`−1(u
k,j

`−1). (5.59)

Next, recall from (5.33) that u0,?
` = u

0,j

` = u
k,j

`−1. From (A1) used on non-re�ned mesh
elements and (A2) used on re�ned mesh elements, we hence conclude that

A
0,j

` = |||u?` − u
0,j

` |||+ η`(u
0,j

` )

(5.33)
= |||u?` − u

k,j

`−1|||+ η`(u
k,j

`−1)

(5.59)

. η`−1(u
k,j

`−1) + η`(u
k,j

`−1)

= η`−1(u
k,j

`−1) + η`(T`−1 ∩ T`, u
k,j

`−1) + η`(T` \ T`−1, u
k,j

`−1)

(A1)

≤ η`−1(u
k,j

`−1) + η`−1(T`−1 ∩ T`, u
k,j

`−1) + η`(T` \ T`−1, u
k,j

`−1)

(A2)

≤ η`−1(u
k,j

`−1) + η`(T`−1 ∩ T`, u
k,j

`−1) + η`−1(T`−1 \ T`, u
k,j

`−1)

= 2 η`−1(u
k,j

`−1).
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This proves (5.58).
Sixth, we prove that

A
k,j

` . A
k,j

` for all (`, k, j) ∈ Q, (5.60)

related to the linearization error contraction. We �rst consider k = k(`)− 1 ≥ 0. Note that

|||uk,?` − u
k−1,j

` ||| ≤ |||u?` − uk,?` |||+ |||u?` − u
k−1,j

` |||
(5.28)

. |||u?` − u
k−1,j

` ||| ≤ A
k−1,j

` . (5.61)

Hence, the triangle inequality leads to

A
k,j

` = |||u?` − u
k,j

` |||+ |||u
k,?
` − u

k,j

` |||+ η`(u
k,j

` )

≤ |||u?` − u
k−1,j

` |||+ |||uk,?` − u
k−1,j

` |||+ 2 |||uk,j` − u
k−1,j

` |||+ η`(u
k,j

` )

(5.61)

. A
k−1,j

` + |||uk,j` − u
k−1,j

` |||+ η`(u
k,j

` )

(A1)

. A
k−1,j

` + |||uk,j` − u
k−1,j

` |||
(5.42)

. A
k−1,j

` + |||u?` − u
k−1,j

` |||
≤ 2 A

k−1,j

` .

This proves (5.60) for k = k(`)− 1. Note that the same argument also applies when k = 1.
If 0 ≤ k ≤ k(`)− 2, then

A
k,j

` . A
k−1,j

`

(5.57)

. |||u?` − u
k−2,j

` |||
(5.41)

≤ |||u?` − u
k,j

` ||| ≤ A
k,j

` ,

also using that q′Pic ≤ 1. This concludes the proof of (5.60).
Seventh, we consider the use of nested iteration when passing to the next perturbed

Banach�Picard step. We prove that

Ak,0
` . A

k−1,j

` for all (`, k, 0) ∈ Q with k ≥ 1. (5.62)

Using (5.55) and recalling the de�nition uk,0` = u
k−1,j

` , it holds that

Ak,0
` = |||u?` − u

k−1,j

` |||+ |||uk,?` − u
k,0
` |||+ η`(u

k−1,j

` )
(5.55)

. A
k−1,j

` ,

which is the claim (5.62).
Step 3. This step collects auxiliary estimates following from the geometric series and

the contraction properties of the linearization and the algebraic solver. First, with the
convention j(`, k)− 1 =∞ when j(`, k) =∞, it holds that

j(`,k)−1∑

j=i+1

Ak,j
` . |||uk,?` − u

k,i
` ||| ≤ Ak,i

` for all (`, k, i) ∈ Q with k ≥ 1. (5.63)
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This follows immediately from

j(`,k)−1∑

j=i+1

Ak,j
`

(5.54)

.

j(`,k)−1∑

j=i+1

|||uk,?` − u
k,j−1
` |||

(5.26)

≤ |||uk,?` − u
k,i
` |||

∞∑

j=i

qj−ialg

. |||uk,?` − u
k,i
` |||.

Analogously, with the convention that k(`)−1 =∞ when k(`) =∞, the contraction (5.41)
of the perturbed Banach�Picard iteration leads to

k(`)−1∑

k=i+1

A
k,j

` . |||u?` − u
i,j

` ||| ≤ A
i,j

` for all (`, i, j) ∈ Q. (5.64)

This follows immediately from

k(`)−1∑

k=i+1

A
k,j

`

(5.57)

.
k(`)−1∑

k=i+1

|||u?` − u
k−1,j

` |||

(5.41)

. |||u?` − u
i,j

` |||
∞∑

k=i

(q′Pic)
k−i

. |||u?` − u
i,j

` |||.

With the analogous convention `− 1 =∞ when ` =∞, we �nally prove that

`−1∑

`=i+1

A
k,j

` . A
k,j

i for all (i, k, j) ∈ Q. (5.65)

This follows from Step 1 and

`−1∑

`=i+1

A
k,j

`

(5.53)'
`−1∑

`=i+1

∆
k,j

`

(5.51)

. ∆
k,j

i

(5.53)' A
k,j

i .

Step 4. From now on, let (`′, k′, j′) ∈ Q be arbitrary. Suppose �rst that ` = ∞, i.e.,
both algebraic and linearization solvers terminate at some �nite values k(`) for all ` ≥ 0 and
j(`, k) for all ` ≥ 0 and all k ≤ k(`), whereas in�nitely many steps of mesh-re�nement take
place. By the de�nition of our index set Q in (5.29) (which in particular features nested
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iterates), it holds that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` =

∞∑

`=`′+1

(
A0,0
` +

k(`)∑

k=1

(
Ak,0
` +

j(`,k)∑

j=1

Ak,j
`

))

+

k(`′)∑

k=k′+1

(
Ak,0
`′ +

j(`′,k)∑

j=1

Ak,j
`′

)
+

j(`′,k′)∑

j=j′+1

Ak′,j
`′

.
∞∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
` +

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ ,

(5.66)

where we have employed estimates (5.58) and (5.62) in order to start all the summations
from k = 1 and j = 1.

We consider the three summands in (5.66) separately. For the �rst sum, we infer that

∞∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
`

(5.63)

.
∞∑

`=`′+1

k(`)∑

k=1

(A
k,j

` + |||uk,?` − u
k,0
` |||)

(5.55)

.
∞∑

`=`′+1

k(`)∑

k=1

(A
k,j

` + A
k−1,j

` )

.
∞∑

`=`′+1

(
A

0,j

` +

k(`)∑

k=1

A
k,j

`

)

(5.64)

.
∞∑

`=`′+1

(
A

0,j

` + A
k,j

`

)

(5.58)

.
∞∑

`=`′+1

(
A
k,j

`−1 + A
k,j

`

)

. A
k,j

`′ +

∞∑

`=`′+1

A
k,j

`

(5.65)

. A
k,j

`′

(5.60)

. A
k′,j
`′

(5.56)

. Ak′,j′
`′ .

(5.67)
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If k′ = k(`′), the second sum in the bound (5.66) disappears. If k′ < k(`′), we infer that

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′

(5.63)

.
k(`′)∑

k=k′+1

(A
k,j

`′ + |||uk,?`′ − u
k,0
`′ |||)

(5.55)

.
k(`′)∑

k=k′+1

(A
k,j

`′ + A
k−1,j

`′ )

. A
k′,j
`′ +

k(`′)∑

k=k′+1

A
k,j

`′

(5.64)

. A
k′,j
`′ + A

k,j

`′

(5.60)

≤ A
k′,j
`′

(5.56)

. Ak′,j′
`′ .

(5.68)

If j′ = j(`′, k′), the third sum in the bound (5.66) disappears. If j′ < j(`′, k′), we infer that

j(`′,k′)∑

j=j′+1

Ak′,j
`′

(5.63)

≤ A
k′,j
`′ + Ak′,j′

`′

(5.56)

. Ak′,j′
`′ . (5.69)

Summing up (5.66)�(5.69), we see that, provided that ` =∞,
∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` . Ak′,j′

`′ provided that ` =∞.

Step 5. Suppose that ` <∞ and k(`) =∞, i.e., for the mesh T`, the linearization loop
does not terminate. Moreover, let `′ < `. Then, it holds as in (5.66) that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

∞∑

k=1

j(`,k)∑

j=1

Ak,j
` +

`−1∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
` +

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ .

(5.70)

We argue as before to see that

`−1∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
`

(5.67)

. Ak′,j′
`′ ,

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′

(5.68)

. Ak′,j′
`′ , and,

j(`′,k′)∑

j=j′+1

Ak′,j
`′

(5.69)

. Ak′,j′
`′ .

(5.71)
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It only remains to estimate

∞∑

k=1

j(`,k)∑

j=1

Ak,j
`

(5.63)

.
∞∑

k=1

(
A
k,j

` + |||uk,?` − u
k,0
` |||

)

(5.55)

. A
0,j

` +

∞∑

k=1

A
k,j

`

(5.64)

. A
0,j

`

(5.58)

. A
k,j

`−1

≤ A
k,j

`′ +

`−1∑

`=`′+1

A
k,j

`

(5.65)

. A
k,j

`′

(5.60)

. A
k′,j
`′

(5.56)

. Ak′,j′
`′ .

(5.72)

Altogether, we hence obtain that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` . Ak′,j′

`′ provided that `′ < ` <∞ and k(`) =∞.

Step 6. Suppose that ` <∞ and k(`) =∞, i.e., for the mesh T`, the linearization loop
does not terminate, and moreover, `′ = `. Arguing as in (5.72) and (5.69), it holds that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

∞∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ . Ak′,j′

`′ . (5.73)

Step 7. Suppose that ` < ∞, where k(`) < ∞ and hence j(`, k) = ∞, i.e., the linear
solver does not terminate for the linearization step k(`). Suppose moreover `′ < `. Then,
it holds that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

∞∑

j=1

A
k,j
` +

k(`)−1∑

k=1

j(`,k)∑

j=1

Ak,j
` +

`−1∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
`

+

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ .

(5.74)
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We argue as before to see that

`−1∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
`

(5.67)

. Ak′,j′
`′ ,

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′

(5.68)

. Ak′,j′
`′ , and,

j(`′,k′)∑

j=j′+1

Ak′,j
`′

(5.69)

. Ak′,j′
`′ .

For the �rst sum in (5.74), we get that

∞∑

j=1

A
k,j
`

(5.63)

. |||uk,?` − u
k,0
` |||

(5.55)

. A
k−1,j

`

(5.67)

. Ak′,j′
`′ . (5.75)

Hence, it only remains to estimate the second sum in (5.74), which can be treated analo-

gously to (5.72) in Step 5 by Ak′,j′
`′ . This proves that

k(`)−1∑

k=1

j(`,k)∑

j=1

Ak,j
`

(5.72)

. Ak′,j′
`′ .

Altogether, we obtain that
∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` . Ak′,j′

`′ provided that `′ < ` <∞, k(`) <∞, and j(`, k) =∞.

Step 8. Suppose that ` < ∞, where k(`) < ∞ and hence j(`, k) = ∞, i.e., the linear
solver does not terminate for the linearization step k(`). Suppose moreover `′ = ` but
k′ < k(`′). Then, it holds that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

∞∑

j=1

A
k,j
`′ +

k(`′)−1∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ . (5.76)

We argue as before to see that
∞∑

j=1

A
k,j
`′

(5.75)

. Ak′,j′
`′ ,

k(`′)−1∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′

(5.68)

. Ak′,j′
`′ , and,

j(`′,k′)∑

j=j′+1

Ak′,j
`′

(5.69)

. Ak′,j′
`′ .
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Hence, we obtain that
∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` . Ak′,j′

`′ provided that `′ = ` <∞, k′ < k(`′) <∞, and j(`′, k) =∞.

Step 9. Suppose that ` < ∞, where k(`) < ∞ and hence j(`, k) = ∞, i.e., the linear
solver does not terminate for the linearization step k(`). Suppose `′ = ` and k′ = k(`′).
Then, it holds that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` =

∞∑

j=j′+1

Ak′,j
`′

(5.63)

. Ak′,j′
`′ .

(5.77)

Step 10. Suppose that `, k(`), j(`, k(`)) <∞ and that Algorithm 41 �nished on Step (iii)

when η`(u
k,j

` ) = 0. From (5.31), we see that η`(u
k,j

` ) = 0 implies u? = u
k,j

` , i.e., the exact
solution was found. Moreover, through the stopping criteria (5.24) and (5.23), we see that

u
k−1,j

` = u
k,j−1

` = u
k,j

` , so that (5.42) gives u?` = u
k,j

` , and �nally (5.22) gives uk,?` = u
k,j

` .

Thus A
k,j

` = 0.
Let `′ < `. Then, as in (5.70),

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
` +

`−1∑

`=`′+1

k(`)∑

k=1

j(`,k)∑

j=1

Ak,j
` +

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ .

Here, the last three terms are estimated as in (5.71), whereas for the �rst one, we can

proceed as in (5.72), crucially noting that the last summand A
k,j

` is zero.
If `′ = `, three cases are possible. The �rst case is k′ < k. Then

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` .

k(`′)∑

k=k′+1

j(`′,k)∑

j=1

Ak,j
`′ +

j(`′,k′)∑

j=j′+1

Ak′,j
`′ ,

which is controlled as in (5.71). The second case is k′ = k but j′ < j, where directly

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` ≤

j(`′,k′)∑

j=j′+1

Ak′,j
`′

(5.63)

. Ak′,j′
`′ ,

again using A
k′,j
`′ = 0. Finally, in the third case, k′ = k and j′ = j, the sum is void.

Altogether
∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` . Ak′,j′

`′
(5.78)
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also holds in this case.

Step 11. Combining Steps 4�10 that cover all possible runs of Algorithm 41 with Step 1,
we �nally see that

∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

∆k,j
`

(5.53)'
∑

(`,k,j)∈Q
(`,k,j)>(`′,k′,j′)

Ak,j
` . Ak′,j′

`′
(5.53)' ∆k′,j′

`′ for all (`′, k′, j′) ∈ Q.

This concludes the proof of (5.52).

Proof of Theorem 45. The proof is split into two steps.
Step 1. For the convenience of the reader, we recall an argument from the proof

of [CFPP14, Lemma 4.9]: For M ∈ N ∪ {∞}, let C > 0 and αn ≥ 0 satisfy that

M∑

n=N+1

αn ≤ C αN for all N ∈ N0 with N < min{M,∞}.

Then,

(1 + C−1)

M∑

n=N+1

αn ≤
M∑

n=N+1

αn + αN =

M∑

n=N

αn for all N ∈ N0.

Inductively, it follows for all N,m ∈ N0 with N +m < min{M + 1,∞} that

(1 + C−1)m
M∑

n=N+m

αn ≤
M∑

n=N+1

αn + αN =

M∑

n=N

αn.

We thus conclude for all N,m ∈ N0 with N +m < min{M + 1,∞} that

αN+m ≤
M∑

n=N+m

αn ≤ (1 + C−1)−m
M∑

n=N

αn ≤ (1 + C) (1 + C−1)−mαN .

Step 2. Since the index set Q is linearly ordered with respect to the total step counter
|(·, ·, ·)|, Lemma 48 and Step 1 imply that

∆k′,j′
`′ ≤ Clin q

|(`′,k′,j′)|−|(`,k,j)|
lin ∆k,j

`

for all (`, k, j),(`′, k′, j′) ∈ Q with (`′, k′, j′) ≥ (`, k, j), where Clin = 1 + Csum and qlin =
Csum/(Csum + 1). This concludes the proof.

5.3.5 Optimal convergence rates of the quasi-error

The second main result states optimal decay rate of the quasi-error ∆k,j
` of (5.47) (and

consequently of the total error |||u? − uk,j` |||) in terms of the number of degrees of freedom
added in the space X` with respect to X0. More precisely, the result states that if the
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5 Fully adaptive algorithm for AFEM for nonlinear operators

unknown weak solution u of (5.11) can be approximated at algebraic decay rate s with
respect to the number of mesh elements added in the re�nement of T0 (plus one) for a
best-possible mesh, then Algorithm 41 achieves the same decay rate s with respect to the
number of elements actually added in Algorithm 41, (#T` − #T0 + 1), up to a generic
multiplicative constant. The proof of the following Theorem 49 is given in Section 5.3.6.

Theorem 49 (optimal decay rate wrt. degrees of freedom). Suppose (A1)�(A4)
and (R1)�(R3). Recall λ?alg, λ

?
Pic > 0 from Theorem 45. Let

CPic := qPic/(1− qPic) > 0,

Calg := qalg/(1− qalg) > 0, and,

θopt := (1 + C2
stabC

2
rel)
−1.

Then, there exists θ? such that for all 0 < θ, λalg, λPic with

0 < θ < min{1, θ?},
0 < λalg < 1,

0 < λalg + λalg/λPic < λ?alg, and,

0 < λPic/θ < λ?Pic,

it holds that

0 < θ′ :=
θ + Cstab

(
(1 + CPic)Calgλalg +

[
CPic + (1 + CPic)Calgλalg

]
λPic

)

1− λPic /λ?Pic

< θopt, (5.79)

where the constant θ? > 0 depends only on Cstab, qPic, and qalg. Let s > 0 and de�ne

‖u?‖As := sup
N∈N0

(
(N + 1)s inf

Topt∈T(N)
ηopt(u

?
opt)
)
∈ R≥0 ∪ {∞}, (5.80)

where ηopt(u
?
opt) is the error estimator corresponding to the exact solution of (5.12) with

respect to the mesh Topt and

T(N) :=
{
T ∈ T : #T −#T0 ≤ N

}
.

Then, there exist copt, Copt > 0 such that

c−1
opt ‖u?‖As ≤ sup

(`,k,j)∈Q
(#T` −#T0 + 1)s∆k,j

` ≤ Copt max{‖u?‖As ,∆
0,0
0 }. (5.81)

The constant copt > 0 depends only on CCéa = L/α, Cstab, Crel, Cson, #T0, s, and, if ` <∞,
additionally on `. The constant Copt > 0 depends only on Cstab, Crel, Cmark, 1− λPic/λ

?
Pic,

CCéa = L/α, C ′rel, Cmesh, Clin, qlin, #T0, and s. The maximum in the right inequality is

only needed if ` = 0. If ` ≥ 1, the maximum max{‖u?‖As ,∆
0,0
0 } can be replaced by ‖u?‖As.
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Remark 50. Note that ∆0,0
0 can be arbitrarily bad due to a bad initial guess u0,0

0 . However,
‖u?‖As as well as the constant Copt are independent of the initial guess, so that the upper

bound in (5.81) cannot avoid max{‖u?‖As ,∆
0,0
0 } for the case ` = 0. Such a phenomenon

does not appear at later stages, since the stopping criteria (5.23) and (5.24) ensure that,

though u
k,j

` does not in general coincide with u?` , it is su�ciently accurate. If one restricts

the indices to (`, k, j) ∈ Q with ` ≥ 1, then the upper bound in (5.81) may omit ∆0,0
0 .

5.3.6 Proof of Theorem 49 (optimal convergence rates)

Lower bound in (5.81)

The �rst result of this section proves the left inequality in (5.81):

Lemma 51. Suppose (R1) as well as (A1), (A2), and (A4). Let s > 0 and assume ‖u?‖As >
0. Then, it holds that

‖u?‖As ≤ copt sup
(`′,k′,j′)∈Q

(#T`′ −#T0 + 1)s∆k′,j′
`′ , (5.82)

where the constant copt > 0 depends only on CCéa = L/α, Cstab, Crel, Cson, #T0, s, and, if
` <∞, additionally on `.

Proof. The proof is split into three steps. First, we recall from [BHP17, Lemma 22] that

#T◦/#T• ≤ #T◦ −#T• + 1 ≤ #T◦ for all T• ∈ T and all T◦ ∈ refine(T•). (5.83)

Step 1. We consider the three non-generic cases with ` < ∞. First, let k(`) < ∞, and

j(`, k) <∞. Then, Algorithm 41 was terminated in Step (iii) with η`(u
k,j

` ) = 0. Due to the
Céa lemma (5.16) and Proposition 43, it follows that

|||u? − u?` |||
(5.16)

. |||u? − uk,j` |||
(5.31)

. η`(u
k,j

` ) = 0

and hence u? = u?` = u
k,?
` = u

k,j

` and η`(u?` ) = 0.
Second, let k(`) <∞ but j(`, k) =∞, i.e., the algebraic solver does not stop. According

to Theorem 45, it holds that

∆
k,j
` = |||u? − uk,j` |||+ |||u

k,?
` − u

k,j
` |||+ η`(u

k,j
` )→ 0 as j →∞.

Hence, due to the uniqueness of the limit and the Céa lemma (5.16), we obtain that u? =

u?` = u
k,?
` . From stability (A1), it follows that

0 ≤ η`(u?` )
(A1)

. η`(u
k,j
` ) + |||u?` − uk,j` ||| → 0 as j →∞.

Hence, we see that η`(u?` ) = η`(u
k,?
` ) = 0.
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5 Fully adaptive algorithm for AFEM for nonlinear operators

Finally, let k(`) = ∞, i.e., the linearization solver does not stop. Analogously to the
previous case, we obtain that

∆
k,j

` = |||u? − uk,j` |||+ |||u
k,?
` − u

k,j

` |||+ η`(u
k,j

` )→ 0 as k →∞.

With the Céa lemma (5.16), this leads to

0 ≤ |||u?` − u
k,j

` |||
(5.16)

≤ (1 + CCéa)|||u? − u
k,j

` ||| → 0 as k →∞.

Hence, we get that u? = u?` . Again, stability (A1) yields that η`(u?` ) = 0.
In any case, ` <∞ implies that |||u? − u?` |||+ η`(u

?
` ) = 0 and hence that

‖u?‖As = sup
0≤N<#T`−#T0

(
(N + 1)s inf

Topt∈T(N)
ηopt(u

?
opt)
)

The term N + 1 within the supremum can be estimated by

N + 1 ≤ #T` −#T0

(R1)

≤ (C`son − 1) #T0.

Moreover, (A1), (A2), and (A4) yield quasi-monotonicity ηopt(u
?
opt) . η0(u?0) (see, e.g.,

[CFPP14, Lemma 3.5]). Altogether, we thus arrive at

‖u?‖As . η0(u?0) ≤ sup
`′∈N0

(#T`′ −#T0 + 1)s η`′(u
?
`′). (5.84)

Step 2. We consider the generic case that ` = ∞ and η`(u
k,j

` ) > 0 for all ` ∈ N0.
Algorithm 41 then guarantees that #T` → ∞ as ` → ∞. Thus, we can argue analogously
to the proof of [CFPP14, Theorem 4.1]: Let N ∈ N. Choose the maximal `′ ∈ N0 such that
#T`′ −#T0 + 1 ≤ N . Then, T`′ ∈ T(N). The choice of N guarantees that

N + 1 ≤ #T`′+1 −#T0 + 1

(5.83)

≤ #T`′+1

≤ Cson#T`′
(5.83)

≤ Cson#T0 (#T`′ −#T0 + 1).

(5.85)

This leads to

(N + 1)s inf
Topt∈T(N)

ηopt(u
?
opt) . (#T`′ −#T0 + 1)sη`′(u

?
`′),

and we immediately see that this also holds for N = 0 with `′ = 0. Taking the supremum
over all N ∈ N0, we conclude that

‖u?‖As . sup
`′∈N0

(#T`′ −#T0 + 1)sη`′(u
?
`′). (5.86)
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Step 3. With stability (A1) and the Céa lemma (5.16), we see for all (`′, 0, 0) ∈ Q that

η`′(u
?
`′)

(A1)

. |||u?`′ − u0,0
`′ |||+ η`′(u

0,0
`′ )

≤ |||u? − u?`′ |||+ |||u? − u0,0
`′ |||+ η`′(u

0,0
`′ )

(5.16)

. |||u? − u0,0
`′ |||+ η`′(u

0,0
`′ )

≤ ∆0,0
`′ .

With (5.84) and (5.86), we thus obtain that

‖u?‖As . sup
(`′,0,0)∈Q

(#T`′ −#T0 + 1)s η`′(u
?
`′)

≤ sup
(`′,k′,j′)∈Q

(#T`′ −#T0 + 1)s ∆k′,j′
`′ .

This concludes the proof.

Upper bound in (5.81)

To prove the right inequality in (5.81), we need the comparison lemma from [CFPP14,
Lemma 4.14] for the error estimator of the exact discrete solution u?` ∈ X`.

Lemma 52. Suppose (R1)�(R2) as well as (A1), (A2), and (A4). Let 0 < θ′ < θopt :=
(1 + C2

stabC
2
rel)
−1. Then, there exist constants C1, C2 > 0 such that for all s > 0 with

0 < ‖u?‖As <∞ and all T` ∈ T, there exists R` ⊆ T` which satis�es

#R` ≤ C1C
−1/s
2 ‖u?‖1/sAs

η`(u
?
` )
−1/s, (5.87)

as well as the Dör�er marking criterion

θ′η`(u
?
` ) ≤ η`(R`, u?` ). (5.88)

The constants C1, C2 depend only on Cstab and Crel.

We are now ready to prove the right inequality in (5.81), which is the main result of
Theorem 49:

Proof of Theorem 49. The proof is split into four steps. Without loss of generality, we
may assume that ‖u?‖As <∞.
Step 1. Due to the assumptions λalg +λalg/λPic ≤ λ?alg (from Lemma 44) and λPic/θ <

λ?Pic (from Lemma 46), we get that λalg ≤ λ?alg λPic ≤ λ?alg λ
?
Pic θ. Hence, it holds that

θ′ =
θ + Cstab

(
(1 + CPic)Calgλalg +

[
CPic + (1 + CPic)Calgλalg

]
λPic

)

1− λPic /λ?Pic

≤
θ + Cstab

(
(1 + CPic)Calgλ

?
algλ

?
Picθ +

[
CPic + (1 + CPic)Calgλ

?
algλ

?
Picθ

]
λ?Picθ

)

1− θ
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which converges to 0 as θ → 0. As a consequence, (5.79) holds for su�ciently small θ.
Clearly, the parameters λalg, λPic, θ > 0 can be chosen such that all assumptions are

ful�lled. First, choose θ > 0 such that 0 < θ < min{1, θ?}. Then, choose λPic > 0 such
that 0 < λPic/θ < λ?Pic. Finally, choose 0 < λalg < 1 such that λalg + λalg/λPic < λ?alg.
Step 2. Recall that CPic = qPic/(1 − qPic) and Calg = qalg/(1 − qalg). Provided that

(`+ 1, 0, 0) ∈ Q, it follows from the contraction properties (5.27) as well as (5.39), and the
stopping criteria (5.35) as well as (5.37) that

|||u?` − u
k,j

` ||| ≤ |||u?` − u
k,?
` |||+ |||u

k,?
` − u

k,j

` |||
(5.39)

≤ CPic |||uk,?` − u
k−1,j

` |||+ |||uk,?` − u
k,j

` |||
≤ (1 + CPic)|||uk,?` − u

k,j

` |||+ CPic |||u
k,j

` − u
k−1,j

` |||
(5.27)

≤ (1 + CPic)Calg|||u
k,j

` − u
k,j−1

` |||+ CPic |||u
k,j

` − u
k−1,j

` |||
(5.35)

≤ (1 + CPic)Calgλalg η`(u
k,j

` ) +
[
CPic + (1 + CPic)Calgλalg

]
|||uk,j` − u

k−1,j

` |||
(5.37)

≤
(

(1 + CPic)Calgλalg +
[
CPic + (1 + CPic)Calgλalg

]
λPic

)
η`(u

k,j

` )

(5.79)
= C−1

stab

(
θ′
(
1− λPic/λ

?
Pic

)
− θ
)
η`(u

k,j

` ).

Step 3. Let R` ⊆ T` be the subset from Lemma 52 with θ′ from (5.79). From Step 2,
we obtain that

η`(R`, u?` )
(A1)

≤ η`(R`, u
k,j

` ) + Cstab|||u?` − u
k,j

` |||
≤ η`(R`, u

k,j

` ) +
(
θ′
(
1− λPic/λ

?
Pic

)
− θ
)
η`(u

k,j

` ).
(5.89)

With the equivalence (5.49), Lemma 52, and estimate (5.89), we see that

θ′
(
1− λPic/λ

?
Pic

)
η`(u

k,j

` )
(5.49)

≤ θ′η`(u
?
` )

(5.88)

≤ η`(R`, u?` )
(5.89)

≤ η`(R`, u
k,j

` ) +
(
θ′
(
1− λPic/λ

?
Pic

)
− θ
)
η`(u

k,j

` ).

Thus, we are led to

θ η`(u
k,j

` ) ≤ η`(R`, u
k,j

` ).

Hence, R` satis�es the Dör�er marking criterion (5.25) used in Algorithm 41. By the
(quasi-)minimality ofM` in (5.25), we infer that

#M` . #R`
(5.87)

. ‖u?‖1/sAs
η`(u

?
` )
−1/s (5.49)' ‖u?‖1/sAs

η`(u
k,j

` )−1/s.
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Recall from (5.34) that u
0,j

`+1 = u
k,j

` . Thus, (5.58) and the equivalence (5.53) lead to

η`(u
k,j

` )−1/s
(5.58)

. (A
0,j

`+1)−1/s (5.53)' (∆
0,j

`+1)−1/s.

Overall, we end up with

#M` . ‖u?‖1/sAs
(∆

0,j

`+1)−1/s for all (`+ 1, 0, 0) ∈ Q. (5.90)

The hidden constant depends only on Cstab, Crel, Cmark, 1 − λPic/λ
?
Pic, CCéa = L/α, C ′rel

and s.
Step 4. With linear convergence (5.48) and the geometric series, we see that

∑

(˜̀,k̃,̃j)∈Q
(˜̀,k̃,̃j)≤(`,k,j)

(∆k̃,̃j˜̀ )−1/s
(5.48)

. (∆k,j
` )−1/s

∑

(˜̀,k̃,̃j)∈Q
(˜̀,k̃,̃j)≤(`,k,j)

(q
1/s
lin )|(`,k,j)|−|(

˜̀,k̃,̃j)|

. (∆k,j
` )−1/s

(5.91)

with hidden constants depending only on Clin, qlin, and s. For (`, k, j) ∈ Q such that
(`+ 1, 0, 0) ∈ Q and such that T` 6= T0, Step 3 and the closure estimate (R3) lead to

#T` −#T0 + 1 ' #T` −#T0

(R3)

.
`−1∑

˜̀=0

#M˜̀
(5.90)

. ‖u?‖1/sAs

∑̀

˜̀=0

(∆
0,j˜̀ )−1/s

≤ ‖u?‖1/sAs

∑

(˜̀,k̃,̃j)∈Q
(˜̀,k̃,̃j)≤(`,k,j)

(∆k̃,̃j˜̀ )−1/s

(5.91)

. ‖u?‖1/sAs
(∆k,j

` )−1/s.

Replacing ‖u?‖As with max{‖u?‖As ,∆
0,0
0 }, the overall estimate trivially holds for T` = T0.

This proves that

(#T` −#T0 + 1)s∆k,j
` .

{
max{‖u?‖As ,∆

0,0
0 }, if (`+ 1, 0, 0) ∈ Q and ` ≥ 0,

‖u?‖As , if (`+ 1, 0, 0) ∈ Q and ` ≥ 1.
(5.92)

It remains to consider the cases where (`, k, j) ∈ Q but (`+ 1, 0, 0) 6∈ Q, as well as the case
T` = T0. In the �rst case, it holds that 1 ≤ ` = ` < ∞, and one of the cases discussed in
detail in Step 1 of Lemma 51 arises.
First, let 2 ≤ ` = ` <∞. Since `− 1 ≥ 1 and (`, 0, 0) ∈ Q, (5.92) shows that

(#T`−1 −#T0 + 1)s∆
k,j

`−1 . ‖u?‖As .
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Moreover, Lemma 48 leads to ∆k,j
` . ∆

k,j

`−1. Therefore, we obtain from (5.85) that

#T` −#T0 + 1 ≤ Cson#T0(#T`−1 −#T0 + 1). (5.93)

Altogether, (5.92) holds for this case as well.
Second, let ` = ` = 1. Then, we can rely on the inequality

(#T1 −#T0 + 1)s∆k,j
1

(5.93)

≤ (Cson#T0)s ∆k,j
1

(5.52)

. ∆
k,j

0

(5.47)
= |||u? − uk,j0 |||+ |||u

k,?
0 − u

k,j

0 |||+ η0(u
k,j

0 )

(5.27)

. |||u? − u?0|||+ |||u?0 − u
k,j

0 |||+ |||u
k,j

0 − u
k,j−1

0 |||+ η0(u
k,j

0 )

(5.23)

. |||u? − u?0|||+ |||u?0 − u
k,j

0 |||+ |||u
k,j

0 − u
k−1,j

0 |||+ η0(u
k,j

0 )

(5.42)

. |||u? − u?0|||+ |||u
k,j

0 − u
k−1,j

0 |||+ η0(u
k,j

0 )

(5.24)

. |||u? − u?0|||+ η0(u
k,j

0 )

(5.49)

. |||u? − u?0|||+ η0(u?0)

(A3)

. η0(u?0)

≤ ‖u?‖As .

(5.94)

Thus, (5.92) holds for this case as well.
Finally, let ` = ` = 0. Then, linear convergence (5.48) proves that

∆k,j
0

(5.48)

. ∆0,0
0 . (5.95)

Hence, (5.92) also holds for this case, and we conclude the proof of (5.81)

5.3.7 Optimal computational complexity

Our last main result states that Algorithm 41 drives the quasi-error down at each possible
rate s not only with respect to the number of degrees of freedom added in the space X`
in comparison with X0, but actually also with respect to the overall computational cost
expressed as a cumulated sum of the number of degrees of freedom. This is an important
improvement of Theorem 49. More precisely, under the same conditions as above, i.e.,
if the unknown weak solution u of (5.11) can be approximated at algebraic decay rate s
with respect to the number of mesh elements added in the re�nement of T0 (plus one),
then Algorithm 41 generates a sequence of triple-(`, k, j)-indexed approximations (mesh,
linearization, algebraic solver) such that the quasi-error decays at rate s with respect to the
overall algorithmic cost expressed as the sum of the number of simplices #T` over all steps
(`, k, j) ∈ Q e�ectuated by Algorithm 41.
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Theorem 53 (optimal decay rate wrt. overall computational cost). Let the assump-
tions of Theorem 49 be veri�ed. Then

c−1
opt ‖u?‖As ≤ sup

(`′,k′,j′)∈Q

( ∑

(`,k,j)∈Q
(`,k,j)≤(`′,k′,j′)

#T`
)s

∆k′,j′
`′

≤ C ′opt max{‖u?‖As ,∆
0,0
0 }.

(5.96)

The maximum in the right inequality is only needed if ` = 0. If ` ≥ 1, the maximum
max{‖u?‖As ,∆

0,0
0 } can be replaced by ‖u?‖As . While copt > 0 is the constant of Theorem 49,

the constant C ′opt > 0 reads C ′opt := (#T0)sCoptClin

(
1− q1/s

lin

)−s
.

Remark 54. Analogously to the comments after Theorem 49, the upper estimate in (5.96)
cannot avoid max{‖u?‖As ,∆

0,0
0 } for the case `′ = ` = 0. As above, if one restricts the

indices to (`′, k′, j′), (`, k, j) ∈ Q with `′, ` ≥ 1, then the upper bound in (5.96) may omit
∆0,0

0 .
Note that for any reasonable algebraic solver on mesh T`, the cost of its one step is pro-

portional to #T`. This also holds true for matrix and right-hand-side assembly in (5.22),
evaluation of the residual estimators η`(u

k,j
` ), Dör�er marking, and local adaptive mesh

re�nement by, e.g., newest vertex bisection, while the cost of evaluation of the stopping
criteria (5.23) and (5.24) is of O(1). Thus, the sum in (5.96) is indeed proportional to
the overall computational cost invested into the numerical approximation of (5.1) by Algo-
rithm 41.

Proof of Theorem 53. Note that #T`′ − #T0 + 1 = 1 ≤ #T0 for `′ = 0 and #T`′ −
#T0 + 1 ≤ #T`′ for `′ > 0, so that the left inequality in (5.96) immediately follows from
the left inequality in (5.81). In order to prove the upper bound in (5.96), let (`′, k′, j′) ∈ Q.
Employing the right inequality in (5.81) (cf. (5.92)), the geometric series proves that

∑

(`,k,j)∈Q
(`,k,j)≤(`′,k′,j′)

#T`
(5.83)

≤ #T0

∑

(`,k,j)∈Q
(`,k,j)≤(`′,k′,j′)

(#T` −#T0 + 1)

(5.92)

≤ #T0C
1/s
opt max{‖u?‖As ,∆

0,0
0 }1/s

∑

(`,k,j)∈Q
(`,k,j)≤(`′,k′,j′)

(∆k,j
` )−1/s

(5.48)

≤ #T0C
1/s
opt C

1/s
lin

1

1− q1/s
lin

max{‖u?‖As ,∆
0,0
0 }1/s(∆k′,j′

`′ )−1/s.

Rearranging this estimate, we end up with

sup
(`′,k′,j′)∈Q

( ∑

(`,k,j)∈Q, `≥1
(`,k,j)≤(`′,k′,j′)

#T`
)s

∆k′,j′
`′ . max{‖u?‖As ,∆

0,0
0 },
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where the hidden constant depends only on Cstab, Crel, Cmark, 1− λPic/λ
?
Pic, CCéa = L/α,

C ′rel, Cmesh, Clin, qlin, #T0, and s. This proves the right inequality in (5.96).

5.4 Numerical experiments

In this section, we present numerical experiments in 2D to underpin our theoretical �ndings.
We compare the performance of Algorithm 41 for

� di�erent values of λalg ∈ {10−0.5, 10−1, 10−1.5, . . . , 10−4},

� di�erent values of λPic ∈ {1, 10−0.5, 10−1, . . . , 10−4},

� di�erent values of θ ∈ {0.05, 0.1, 0.15, . . . , 1},

As model problems serve nonlinear boundary value problems which arise, e.g., from nonlin-
ear material laws in magnetostatic computations, where the mesh-re�nement is steered by
newest vertex bisection.
As an algebraic solver for the linear problems arising from the Banach�Picard iteration,

we use PCG with an optimal multilevel additive Schwarz preconditioner, cf. [Füh14, Sec-
tion 7.4.1] and Section 4.7.1 respectively, i.e., the condition number of the preconditioned
system is uniformly bounded.

Model problem

Analogously to Section 4.8, let Ω ⊂ Rd with d ≥ 2 be a bounded Lipschitz domain with
polytopal boundary Γ = ∂Ω. We again suppose that the boundary Γ is split into relatively
open and disjoint Dirichlet and Neumann boundaries ΓD,ΓN ⊆ Γ with |ΓD| > 0, i.e.,
Γ = ΓD ∪ ΓN . While the numerical experiments in Section 5.4.3�5.4.4 only consider d = 2,
we stress that this model problem is covered by the abstract theory for any d ≥ 2. For
f ∈ L2(Ω) and g ∈ L2(Γ), �nd u? such that:

−div (µ(x, |∇u?(x)|2)∇u?(x)) = f(x) in Ω,

u?(x) = 0 on ΓD,

µ(x, |∇u?(x)|2) ∂nu
?(x) = g(x) on ΓN ,

(5.97)

where the scalar nonlinearity µ : Ω × R≥0 → R satis�es the properties (N1)�(N4) from
Section 4.8. For the sake of completeness, we recall these properties in detail:

(N1) boundedness of µ(x, t): There exist constants γ1, γ2 > 0 such that

γ1 ≤ µ(x, t) ≤ γ2 for all x ∈ Ω and t ≥ 0.

(N2) boundedness of µ(x, t) + 2t d
dt
µ(x, t): For x ∈ Ω, the function µ(x, ·) is contin-

uously di�erentiable, i.e., µ(x, ·) ∈ C1(R≥0,R) and there exist constants γ̃1, γ̃2 > 0
such that

γ̃1 ≤ µ(x, t) + 2t
d

dt
µ(x, t) ≤ γ̃2 for all x ∈ Ω and t ≥ 0.

134



5.4 Numerical experiments

(N3) Lipschitz-continuity of µ(x, t) in x: There exists a constant Lµ > 0 such that

|µ(x, t)− µ(y, t)| ≤ Lµ|x− y| for all x, y ∈ Ω and t ≥ 0.

(N4) Lipschitz-continuity of t d
dt
µ(x, t) in x: There exists a constant L̃µ > 0 such

that

|t d

dt
µ(x, t)− t d

dt
µ(y, t)| ≤ L̃µ|x− y| for all x, y ∈ Ω and t ≥ 0.

5.4.1 Weak formulation

The weak formulation of (5.97) reads as follows: Find u ∈ H1
D(Ω) := {w ∈ H1(Ω) : w =

0 on ΓD} such that
∫

Ω
µ(x, |∇u?(x)|2)∇u? · ∇v dx =

∫

Ω
fv dx+

∫

ΓN

gv ds for all v ∈ H1
D(Ω). (5.98)

With respect to the abstract framework of Section 5.2.1, we take H = H1
D(Ω), K = R, and

〈〈· , ·〉〉 = 〈〈∇· , ∇·〉〉 with |||v||| = ‖∇v‖L2(Ω). We obtain (5.11) with operators

〈Aw , v〉H′×H =

∫

Ω
µ(x, |∇w(x)|2)∇w(x) · ∇v(x) dx, (5.99a)

F (v) =

∫

Ω
fv dx+

∫

ΓN

gv ds (5.99b)

for all v, w ∈ H. We again recall from [GHPS18, Proposition 8.2] that (N1)�(N2) implies
that A is strongly monotone (with α := γ̃1) and Lipschitz continuous (with L := γ̃2), so
that (5.97) �ts into the setting of Section 5.2.1. Moreover, (N3)�(N4) are required to prove
the well-posedness and the properties (A1)�(A4) of the residual a posteriori error estimator.

5.4.2 Discretization and a posteriori error estimator

Let T0 be a conforming initial triangulation of Ω into simplices T ∈ T0. For each T` ∈ T,
consider the lowest-order FEM space

H` :=
{
v ∈ C(Ω) : v|Γ = 0 and v|T ∈ P1(T ) for all T ∈ TH

}
. (5.100)

As in Section 4.8, cf. [GMZ12, Section 3.2], we de�ne for all T ∈ T` and all v` ∈ H`, the
corresponding weighted residual error indicators

η`(T, v`)
2 := |T |2/d‖f + div (µ(·, |∇v`|2)∇v`)‖2L2(T )

+ |T |1/d‖[(µ(·, |∇v`|2)∇v`) · n]‖L2(∂T∩Ω)2 ,
(5.101)

where [·] denotes the usual jump of discrete functions across element interfaces, and n is
the outer normal vector of the considered element.
Due to (N3), the error estimator is well-posed, since the nonlinearity µ(x, t) is Lipschitz

continuous in x. Then, reliability (A3) and discrete reliability (A4) are proved as in the
linear case, see, e.g., [CKNS08] for the linear case or [GMZ12, Theorem 3.3] and [GMZ12,
Theorem 3.4], respectively, for strongly monotone nonlinearities.
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5 Fully adaptive algorithm for AFEM for nonlinear operators

Figure 5.1: Z-shaped domain Ω ⊂ R2 with initial mesh T0 (top) and L�shaped domain
Ω ⊂ R2 with initial mesh T0 (bottom), where ΓD is marked by a thick pink line.
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5.4.3 Experiment with known solution on Z-shaped domain

We consider the Z-shaped domain Ω ⊂ R2 from Figure 5.1 (top) with mixed boundary
conditions and the nonlinear problem (5.97) with

µ(x, |∇u?(x)|2) := 2 +
1√

1 + |∇u?(x)|2
.

This leads to the bounds α = 2 and L = 3 in (5.10). We prescribe the solution u? in polar
coordinates (x1, x2) = r(cos ξ, sin ξ) with ξ ∈ (−π, π) by

u?(x1, x2) = rβ cos(β ξ), (5.102)

with β = 4/7 and compute f and g in (5.97) accordingly. We note that u? has a generic
singularity at the re-entrant corner (x, y) = (0, 0).
In Figure 5.2, we compare uniform mesh-re�nement (θ = 1) to adaptive mesh-re�nement

(0 < θ < 1) for di�erent values of λalg and λPic. We plot the error estimator η`(u
k,j

` )
over the number of elements N := #T`. First (top), we �x θ = 0.5, λPic = 10−2, and
choose λalg ∈ {10−1, 10−2, 10−3, 10−4}. We see that uniform mesh-re�nement leads to
the suboptimal rate of convergence O(N−2/7), whereas Algorithm 41 with adaptive mesh-
re�nement regains the optimal rate of convergence O(N−1/2), independently of the actual
choice of λalg. We observe the very same if we �x θ = 0.5, λalg = 10−2, and choose
λPic ∈ {1, 10−1, 10−2, 10−3, 10−4} (middle), or, if we �x λalg = λPic = 10−2 and vary
θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9} (bottom). Since we know from Proposition 43 and the estimate

|||uk,?` − u
k,j

` |||
(5.27)

. |||uk,j` − u
k,j−1

` |||
(5.35)

. η`(u
k,j

` ) + |||uk,j` − u
k−1,j

` |||
(5.37)

. η`(u
k,j

` )

that η`(u
k,j

` ) ' ∆
k,j

` , this empirically underpins Theorem 49.
In Figure 5.3, analogously to Figure 5.2, we choose di�erent combinations of θ, λalg, and

λPic. We plot the error estimator η`′(u
k′,j′

`′ ) over the cumulative sum
∑

(`,k,j)≤(`′,k′,j′) #T`.
Independently of the choice of θ, λalg, and λPic, we observe the optimal order of conver-

gence O
((∑

(`,k,j)≤(`′,k′,j′) #T`
)−1/2)

with respect to the overall computational complexity
in accordance with Theorem 53.
In Figure 5.4, we also consider the total number of PCG iterations cumulated over all

Picard steps on the given mesh for di�erent combinations of θ, λalg, and λPic. We observe
that independently of the choice of these parameters, the total number of PCG iterations
stays uniformly bounded. Additionally, we see that for larger values of λalg and λPic, as
well as for smaller values of θ, the total number of PCG iterations is smaller.
In contrast to the the previous Chapters 4�6, where the corresponding algorithms steer the

adaptive mesh-re�nement and either incorporated an iterative linearization or an algebraic
solver, our proposed Algorithm 41 combines these two concepts. Hence, to try to analyze
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Figure 5.2: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do-

main): Error estimator η`(u
k,j

` ) on mesh T`, perturbed Banach�Picard iteration
k, and PCG step j of Algorithm 41 with respect to the number of elements N
of the mesh T` for various parameters θ, λPic, and λalg.

138



5.4 Numerical experiments

102 103 104 105 106 107 108 109

10−2

10−1

100

101

O((∑(`,k,j)≤(`′,k′,j′)#T`)−1/2)

overall computational cost
∑

(`,k,j)≤(`′,k′,j′)#T`

er
ro
r
es
ti
m
at
or
η `
′ (
u
k
′ ,
j′

`′
)

Z-shaped domain

θ = 0.5, λalg = 10−1, λPic = 10−2

θ = 0.5, λalg = 10−2, λPic = 10−2

θ = 0.5, λalg = 10−3, λPic = 10−2

θ = 0.5, λalg = 10−4, λPic = 10−2

102 103 104 105 106 107 108 109

10−2

10−1

100

101

O((∑(`,k,j)≤(`′,k′,j′)#T`)−1/2)

overall computational cost
∑

(`,k,j)≤(`′,k′,j′)#T`

er
ro
r
es
ti
m
at
or
η `
′ (
u
k
′ ,
j′

`′
)

Z-shaped domain

θ = 0.5, λalg = 10−2, λPic = 1
θ = 0.5, λalg = 10−2, λPic = 10−1

θ = 0.5, λalg = 10−2, λPic = 10−2

θ = 0.5, λalg = 10−2, λPic = 10−3

θ = 0.5, λalg = 10−2, λPic = 10−4

102 103 104 105 106 107 108 109

10−2

10−1

100

101

O((∑(`,k,j)≤(`′,k′,j′)#T`)−1/2)

overall computational cost
∑

(`,k,j)≤(`′,k′,j′)#T`

er
ro
r
es
ti
m
at
or
η `
′ (
u
k
′ ,
j′

`′
)

Z-shaped domain

θ = 0.1, λalg = 10−2, λPic = 10−2

θ = 0.3, λalg = 10−2, λPic = 10−2

θ = 0.5, λalg = 10−2, λPic = 10−2

θ = 0.7, λalg = 10−2, λPic = 10−2

θ = 0.9, λalg = 10−2, λPic = 10−2

Figure 5.3: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do-

main): Error estimator η`′(u
k′,j′

`′ ) on mesh T`′ , perturbed Banach�Picard iter-
ation k′, and PCG step j′ of Algorithm 41 with respect to the overall cost
expressed as the cumulative sum

∑
(`,k,j)≤(`′,k′,j′) #T` for various parameters θ,

λPic, and λalg.
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Figure 5.4: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do-
main): Number of PCG iterations wrt. the number of elements N := #T`
for θ = 0.5, λPic = 10−2, and λalg ∈ {10−1, . . . , 10−4} (top), for θ = 0.5,
λalg = 10−2, and λPic ∈ {1, 10−1, . . . , 10−4} (middle), and for λalg = λPic = 10−2

and θ ∈ {0.1, 0.3, . . . , 0.9} (bottom).
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what the best choice of the three parameters θ, λalg, and λPic could be, we have to vary
them all. First, we prescribe a precision τ = 3 · 10−2 and vary θ ∈ {0.2, 0.4, 0.6, 0.8},
λalg ∈ {10−1, 10−1.5, . . . , 10−4}, and λPic ∈ {1, 10−0.5, 10−1, . . . , 10−4}. Figure 5.5 then
shows the computational cost expressed in terms of the cumulative sum

∑
(`,k,j)≤(`′,k′,j′) #T`

to reach the given precision τ . It seems that a smaller value of λalg or λPic leads to more
computational cost to reach the same precision, independently of the choice of θ.
In Figure 5.6 (top), we vary θ ∈ {0.05, 0.1, 0.15, . . . , 0.9} and only print the correspond-

ing best choices of λalg ∈ {10−1, 10−1.5, . . . , 10−4} and λPic ∈ {1, 10−0.5, 10−1, . . . , 10−4}
together with the minimal overall computational cost to reach the given precision. As a
result, we see that the overall best choice in terms of computational cost to reach the given
precision τ = 3 · 10−2 is θ = 0.7, λalg = 10−1, and λPic = 10−0.5 with

∑

(`,k,j)≤(`′,k′,j′)

#T` = 25058328

where uk` is the �rst approximation such that η`(u
k
` ) < 3 · 10−2. We also observe that the

worst possible choice is θ = 0.05, λalg = 10−3.5, and λPic = 10−4. With these parame-
ters it takes more than 1000 times the computational cost to reach the same precision in
comparison to the best choice.

5.4.4 Experiment with unknown solution

We consider the L-shaped domain Ω ⊂ R2 from Figure 5.1 (bottom) and the nonlinear
problem (5.97) with ΓD = Γ and constant right-hand side f ≡ 1 where µ(·, ·) is given by

µ(x, |∇u?(x)|2) := 1 + arctan(|∇u?(x)|2).

Then, according to [CW17, Example 1], there hold (N1)�(N4) with α = 1 and L ≈=
1 +
√

3/2 + π/3, while the exact solution is unknown.
In Figure 5.7, we again test Algorithm 41 with varying θ, λalg, and λPic. We plot the

error estimator η`(u
k,j

` ) over the number of elements N := #T`. Uniform mesh-re�nement
leads to the suboptimal rate of convergence O(N−1/3), whereas Algorithm 41 with adaptive
mesh-re�nement regains the optimal rate of convergence O(N−1/2). Again, this empirically
con�rms Theorem 49. The latter rate of convergence even appears to be robust with respect
to θ, λalg, and λPic.

In Figure 5.8, we plot the estimator η`′(u
k′,j′

`′ ) over the cumulative sum
∑

(`,k,j)≤(`′,k′,j′) #T`.
Independently of the choice of the parameters θ, λalg, and λPic, we observe the optimal or-

der of convergence O
((∑

(`,k,j)≤(`′,k′,j′) #T`
)−1/2)

with respect to the overall computational
cost, which empirically underpins Theorem 53.
In Figure 5.9, we �nally consider the total number of PCG iterations cumulated over all

Picard steps on the given mesh. We observe that independently of the choice of θ, λalg, and
λPic, the total number of PCG iterations stays uniformly bounded. Additionally, we see
that for larger values of λalg and λPic, as well as for smaller values of θ, the total number
of PCG iterations is smaller.
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θ = 0.2

λalg

λPic
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

10−1 6.4e+07 6.4e+07 6.5e+07 6.6e+07 1.3e+08 5.0e+08 1.6e+09 2.8e+09 4.2e+09

10−1.5 6.7e+07 6.7e+07 6.7e+07 6.5e+07 1.3e+08 5.0e+08 1.6e+09 2.8e+09 4.2e+09

10−2 9.4e+07 9.4e+07 9.0e+07 9.3e+07 1.2e+08 4.8e+08 1.8e+09 3.1e+09 4.2e+09

10−2.5 1.2e+08 1.2e+08 1.2e+08 1.2e+08 2.4e+08 4.0e+08 1.4e+09 2.3e+09 3.7e+09

10−3 1.8e+08 1.8e+08 1.8e+08 1.8e+08 3.5e+08 4.3e+08 7.0e+08 1.0e+09 4.0e+09

10−3.5 2.7e+08 2.7e+08 2.7e+08 2.7e+08 5.0e+08 6.5e+08 8.7e+08 1.1e+09 1.4e+09

10−4 3.4e+08 3.4e+08 3.4e+08 3.4e+08 6.1e+08 8.4e+08 1.2e+09 1.5e+09 1.7e+09

θ = 0.4

λalg

λPic
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

10−1 6.0e+07 4.6e+07 1.1e+08 9.1e+07 1.0e+08 2.8e+08 7.3e+08 1.1e+09 1.6e+09

10−1.5 3.2e+07 3.2e+07 3.1e+07 5.0e+07 1.1e+08 2.5e+08 7.8e+08 1.2e+09 1.6e+09

10−2 4.8e+07 4.8e+07 4.8e+07 5.1e+07 1.1e+08 2.0e+08 6.6e+08 1.1e+09 1.5e+09

10−2.5 6.1e+07 6.1e+07 6.0e+07 6.4e+07 1.4e+08 1.8e+08 2.9e+08 7.3e+08 1.3e+09

10−3 8.6e+07 8.6e+07 8.5e+07 9.0e+07 1.7e+08 2.3e+08 3.1e+08 4.1e+08 1.8e+09

10−3.5 1.1e+08 1.1e+08 1.1e+08 1.2e+08 2.3e+08 3.1e+08 4.1e+08 4.8e+08 5.9e+08

10−4 1.4e+08 1.4e+08 1.4e+08 1.5e+08 2.9e+08 4.1e+08 5.4e+08 6.1e+08 7.1e+08

θ = 0.6

λalg

λPic
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

10−1 2.8e+07 2.7e+07 1.1e+08 1.4e+08 9.3e+07 1.7e+08 5.0e+08 7.7e+08 9.7e+08

10−1.5 2.7e+07 2.7e+07 2.8e+07 4.4e+07 1.0e+08 2.5e+08 5.1e+08 7.7e+08 1.0e+09

10−2 3.1e+07 3.1e+07 3.1e+07 5.8e+07 7.7e+07 1.7e+08 3.8e+08 6.3e+08 1.0e+09

10−2.5 3.7e+07 3.7e+07 3.8e+07 7.4e+07 9.5e+07 1.3e+08 2.1e+08 6.4e+08 7.2e+08

10−3 6.1e+07 6.1e+07 5.8e+07 1.0e+08 1.2e+08 1.7e+08 2.2e+08 2.8e+08 6.0e+08

10−3.5 8.6e+07 8.6e+07 8.1e+07 1.4e+08 1.7e+08 2.6e+08 2.9e+08 3.5e+08 3.9e+08

10−4 1.1e+08 1.1e+08 1.1e+08 1.8e+08 2.3e+08 3.3e+08 3.8e+08 4.5e+08 5.0e+08

θ = 0.8

λalg

λPic
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

10−1 5.2e+07 5.2e+07 3.6e+07 1.4e+08 9.6e+07 2.8e+08 4.6e+08 8.4e+08 1.3e+09

10−1.5 2.9e+07 2.9e+07 2.6e+07 4.1e+07 9.1e+07 3.8e+08 4.8e+08 9.2e+08 1.3e+09

10−2 4.9e+07 4.9e+07 4.9e+07 5.4e+07 7.0e+07 2.1e+08 4.9e+08 9.3e+08 1.3e+09

10−2.5 7.8e+07 7.8e+07 8.1e+07 8.9e+07 9.3e+07 1.1e+08 1.5e+08 5.0e+08 8.8e+08

10−3 1.1e+08 1.1e+08 1.1e+08 1.3e+08 1.5e+08 1.6e+08 2.0e+08 2.5e+08 5.3e+08

10−3.5 1.3e+08 1.3e+08 1.3e+08 1.8e+08 2.2e+08 2.5e+08 2.8e+08 3.2e+08 4.3e+08

10−4 1.5e+08 1.5e+08 1.5e+08 2.3e+08 2.9e+08 3.3e+08 3.9e+08 4.3e+08 4.7e+08

min max

Figure 5.5: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do-

main): Overall computational cost
∑

(`,k,j)≤(`′,k′,j′) #T` such that η`(u
k′

`′ ) < τ

for given precision τ = 3 · 10−2, λalg ∈ {10−1, 10−1.5, . . . , 10−4}, and λPic ∈
{1, 10−0.5, 10−1, . . . , 10−4}.
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5.4 Numerical experiments
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5 Fully adaptive algorithm for AFEM for nonlinear operators
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Figure 5.7: Example from Section 5.4.4 (Experiment with unknown solution on L-shaped

domain): Error estimator η`(u
k,j

` ) on mesh T`, perturbed Banach�Picard itera-
tion k, and PCG step j of Algorithm 41 with respect to the number of elements
N of the mesh T` for various parameters θ, λPic, and λalg.
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5.4 Numerical experiments
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Figure 5.8: Example from Section 5.4.4 (Experiment with unknown solution on L-shaped

domain): Error estimator η`′(u
k′,j′

`′ ) on mesh T`′ , perturbed Banach�Picard it-
eration k′, and PCG step j′ of Algorithm 41 with respect to the overall cost
expressed as the cumulative sum

∑
(`,k,j)≤(`′,k′,j′) #T` for various parameters θ,

λPic, and λalg.
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5 Fully adaptive algorithm for AFEM for nonlinear operators
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Figure 5.9: Example from Section 5.4.4 (Experiment with unknown solution on L-shaped
domain): Number of PCG iterations wrt. the number of elements N := #T`
for θ = 0.5, λPic = 10−2, and λalg ∈ {10−1, . . . , 10−4} (top), for θ = 0.5,
λalg = 10−2, and λPic ∈ {1, 10−1, . . . , 10−4} (middle), and for λalg = λPic = 10−2

and θ ∈ {0.1, 0.3, . . . , 0.9} (bottom).
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5.4 Numerical experiments

In Figure 5.10, we again compare the computational cost of Algorithm 41 to reach the
given precision τ = 10−2 for various θ, λalg, and λPic. Also in this experiment, it seems that
a smaller value of λalg or λPic leads to more computational cost to reach the same precision,
independently of the choice of θ.
In Figure 5.6 (bottom), we vary θ ∈ {0.05, 0.1, 0.15, . . . , 0.9} and print the corresponding

best and worst choices of λalg ∈ {10−1, 10−1.5, . . . , 10−4} and λPic ∈ {1, 10−0.5, 10−1, . . . , 10−4}
respectively, together with the overall computational cost to reach the given precision. As a
result, we see that the overall best choice in terms of computational cost to reach the given
precision τ = ·10−2 is θ = 0.7, λalg = 10−1, and λPic = 1 with

∑

(`,k,j)≤(`′,k′,j′)

#T` = 25058328

where uk` is the �rst approximation such that η`(u
k
` ) < 10−2. We also observe that the worst

possible choice is θ = 0.9, λalg = 10−4, and λPic = 10−4. With these parameters it takes
more than 200 times the computational cost to reach the same precision in comparison to
the best choice. Independently of θ, the worst choice of λalg and λPic is always λalg = λPic =
10−4.
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5 Fully adaptive algorithm for AFEM for nonlinear operators

θ = 0.2

λalg

λPic
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

10−1 2.1e+07 2.1e+07 2.1e+07 4.2e+07 3.4e+07 8.3e+07 2.0e+08 2.8e+08 4.1e+08

10−1.5 2.4e+07 2.4e+07 3.0e+07 2.5e+07 3.4e+07 8.3e+07 2.0e+08 2.8e+08 4.1e+08

10−2 2.7e+07 2.7e+07 2.9e+07 3.7e+07 4.1e+07 8.3e+07 2.0e+08 2.8e+08 4.1e+08

10−2.5 3.4e+07 3.4e+07 4.5e+07 3.6e+07 4.6e+07 9.9e+07 2.1e+08 3.0e+08 4.3e+08

10−3 5.6e+07 5.6e+07 6.1e+07 5.1e+07 4.8e+07 9.9e+07 2.9e+08 4.0e+08 5.3e+08

10−3.5 7.5e+07 7.5e+07 8.3e+07 8.6e+07 6.2e+07 1.1e+08 3.0e+08 4.7e+08 6.4e+08

10−4 9.9e+07 9.9e+07 1.1e+08 1.2e+08 9.1e+07 1.2e+08 3.2e+08 4.8e+08 7.2e+08

θ = 0.4

λalg

λPic
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

10−1 1.0e+07 2.5e+07 2.1e+07 6.1e+07 4.0e+07 6.6e+07 1.4e+08 2.2e+08 3.0e+08

10−1.5 1.4e+07 2.8e+07 4.0e+07 4.1e+07 4.0e+07 6.6e+07 1.4e+08 2.2e+08 3.0e+08

10−2 1.6e+07 3.5e+07 3.9e+07 5.9e+07 5.9e+07 6.1e+07 1.4e+08 2.2e+08 3.0e+08

10−2.5 2.4e+07 5.4e+07 5.8e+07 5.7e+07 5.9e+07 9.8e+07 1.8e+08 2.5e+08 3.3e+08

10−3 3.4e+07 8.3e+07 8.2e+07 5.1e+07 6.3e+07 1.0e+08 2.3e+08 3.2e+08 4.0e+08

10−3.5 4.6e+07 1.1e+08 1.2e+08 8.0e+07 8.1e+07 1.0e+08 2.3e+08 3.6e+08 4.7e+08

10−4 5.5e+07 1.4e+08 1.6e+08 1.2e+08 1.2e+08 1.2e+08 2.4e+08 3.8e+08 5.2e+08

θ = 0.6

λalg

λPic
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

10−1 1.5e+07 5.0e+07 7.6e+07 4.1e+07 6.7e+07 6.4e+07 1.5e+08 1.8e+08 2.4e+08

10−1.5 1.9e+07 2.8e+07 3.5e+07 4.3e+07 6.7e+07 6.4e+07 1.5e+08 1.8e+08 2.4e+08

10−2 2.5e+07 4.2e+07 3.8e+07 5.6e+07 6.3e+07 6.4e+07 1.6e+08 1.8e+08 2.4e+08

10−2.5 2.9e+07 6.0e+07 5.5e+07 5.6e+07 6.2e+07 9.5e+07 1.9e+08 2.1e+08 2.7e+08

10−3 4.1e+07 8.9e+07 8.3e+07 8.3e+07 6.6e+07 9.9e+07 3.1e+08 2.6e+08 3.2e+08

10−3.5 5.6e+07 1.2e+08 1.2e+08 1.3e+08 1.2e+08 1.0e+08 2.9e+08 3.0e+08 3.8e+08

10−4 6.9e+07 1.5e+08 1.7e+08 1.9e+08 1.4e+08 1.4e+08 3.6e+08 3.3e+08 4.3e+08

θ = 0.8

λalg

λPic
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

10−1 1.7e+07 5.9e+07 4.5e+07 4.4e+07 7.2e+07 1.3e+08 1.7e+08 2.5e+08 3.3e+08

10−1.5 2.0e+07 6.8e+07 6.5e+07 6.3e+07 7.2e+07 1.3e+08 1.7e+08 2.5e+08 3.3e+08

10−2 3.2e+07 8.2e+07 6.8e+07 7.3e+07 1.1e+08 1.3e+08 1.7e+08 2.5e+08 3.2e+08

10−2.5 4.6e+07 1.4e+08 9.8e+07 6.9e+07 1.0e+08 2.0e+08 2.3e+08 2.9e+08 3.6e+08

10−3 7.1e+07 2.1e+08 1.5e+08 1.1e+08 1.1e+08 2.2e+08 2.8e+08 3.5e+08 4.2e+08

10−3.5 9.2e+07 2.9e+08 2.2e+08 1.8e+08 1.8e+08 2.6e+08 3.1e+08 4.1e+08 5.0e+08

10−4 1.1e+08 3.6e+08 3.0e+08 2.5e+08 2.9e+08 3.9e+08 3.9e+08 4.8e+08 6.1e+08

min max

Figure 5.10: Example from Section 5.4.3 (Experiment with known solution on Z-shaped

domain): Overall computational cost
∑

(`,k,j)≤(`′,k′,j′) #T` such that η`(uk
′

`′ ) < τ

for given precision τ = 3 · 10−2, λalg ∈ {10−1, 10−1.5, . . . , 10−4}, and λPic ∈
{1, 10−0.5, 10−1, . . . , 10−4}.
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6 Adaptive BEM for elliptic �rst-kind

integral equations with optimal PCG

solver

6.1 Introduction

In this chapter, which is based on [FHPS19], we consider the boundary element method
(BEM) subject to elliptic �rst-kind integral equations. We introduce our adaptive algorithm
which steers both the adaptive mesh-re�nement as well as the termination of the precon-
ditioned conjugate gradient method (PCG) with optimal preconditioner, i.e., an inexact
solver for the arising Galerkin system. The main results are then convergence with optimal
algebraic rates as well as almost optimal computational complexity.

6.1.1 State of the art

In the last decade, the mathematical understanding of adaptive mesh-re�nement has ma-
tured. We refer to [Dör96, MNS00, BDD04, Ste07, CKNS08, FFP14] for some milestones for
adaptive �nite element methods for second-order linear elliptic equations, [Gan13, FKMP13,
FFK+14, FFK+15, AFF+17] for adaptive BEM, and [CFPP14] for a general framework of
rate-optimality of adaptive mesh-re�ning algorithms. The interplay between adaptive mesh-
re�nement, optimal convergence rates, and inexact solvers has been addressed and analyzed
for adaptive FEM for linear problems in [Ste07, ALMS13, AGL13], for eigenvalue problems
in [CG12], and recently also for strongly monotone nonlinearities in [GHPS18]. In particu-
lar, all available results for adaptive BEM [Gan13, FKMP13, FFK+14, FFK+15, AFF+17]
assume that the arising Galerkin system A` x?` = b` is solved exactly. Instead, we omit
the latter assumption and analyze an adaptive algorithm which steers both the local mesh-
re�nement and the iterations of an inexact PCG solver.
In principle, it is known [CFPP14, Section 7] that convergence and optimal convergence

rates are preserved if the linear system is solved inexactly, but with su�cient accuracy.
The aim now is to guarantee the latter by incorporating an appropriate stopping criterion
for the PCG solver into the adaptive algorithm. Moreover, to prove that the proposed
algorithm does not only lead to optimal algebraic convergence rates, but also to (almost)
optimal computational cost, we provide an appropriate symmetric and positive de�nite
preconditioner P` ∈ RN×N such that

� �rst, the matrix-vector products with P−1
` can be computed at linear cost and

� second, the system matrix P
−1/2
` A`P

−1/2
` of the preconditioned linear system

P
−1/2
` A`P

−1/2
` x̃?` = P

−1/2
` b` (6.1)
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6 Adaptive BEM for elliptic �rst-kind integral equations with optimal PCG solver

has a uniformly bounded condition number which is independent of the mesh T`.

Then, x?` = P
−1/2
` x̃?` solves the original system A` x?` = b`. To that end, we exploit the

multilevel structure of adaptively generated meshes in the framework of additive Schwarz
methods. For hyper-singular integral equations, such a multilevel additive Schwarz pre-
conditioner has been proposed and analyzed in [FFPS17a, FMPR15] for d = 2, 3 and for
weakly-singular integral equations in [FFPS17b] for d = 2. In particular, were able to close
this gap by analyzing an optimal additive Schwarz preconditioner for weakly-singular inte-
gral equations for d = 3. Besides, we refer to [SvV20] for optimal preconditioning in Hilbert
spaces of negative order. We note that the proofs of [FFPS17a, FFPS17b] do not transfer
to weakly-singular integral equations for d = 3. Instead, we build on recent results for �nite
element discretizations [HWZ12, AGS16] which are then transferred to the present BEM
setting by use of an abstract concept from [Osw99].

6.1.2 Outline

Section 6.2 introduces the functional analytic framework and �xes the necessary notation.
In Section 6.3, we introduce the weakly-singular integral equation which serves as our model
problem and give a short introduction to BEM, before we state our adaptive algorithm in
Section 6.4 which steers the local mesh-re�nement as well as the stopping of the PCG
iteration. Section 6.5 states our main results. In Section 6.5.1, we de�ne a local multilevel
additive Schwarz preconditioner (6.36) for a sequence of locally re�ned meshes. Theorem 60
states that the `2-condition number of the preconditioned systems is uniformly bounded for
all these meshes, i.e., the preconditioner is optimal. Theorem 68 proves

• that the overall error in the energy norm can be controlled a posteriori,

• that the quasi-error (which consists of energy norm error plus error estimator) is linearly
convergent in each step of the adaptive algorithm (i.e., independent of whether the
algorithm decides for local mesh-re�nement or for one step of the PCG iteration),

• that the quasi-error even decays with optimal rate (i.e., with each possible algebraic
rate) with respect to the degrees of freedom, i.e., Algorithm 57 is rate optimal in the
sense of, e.g., [Ste07, CKNS08, FKMP13, CFPP14].

Finally, Section 6.5.5 considers the computational cost. Under realistic assumptions on the
treatment of the arising discrete integral operators, Corollary 78 states that the quasi-error
converges at almost optimal rate (i.e., with rate s−ε for any ε > 0 if rate s > 0 is possible for
the exact Galerkin solution) with respect to computational cost, i.e., Algorithm 57 requires
almost optimal computational time. Section 6.6 shows that our main results also apply to
the hyper-singular integral equation. The �nal Section 6.7 underpins the theoretical �ndings
by some 2D and 3D experiments.
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6.2 Preliminaries and notation

6.2.1 Boundary integral operators and functional analytic setting

Let Ω ⊂ Rd with d = 2, 3 be a bounded Lipschitz domain with boundary Γ := ∂Ω. We
consider the usual Laplace problem

−∆u = 0 in Ω (6.2)

with appropriate boundary conditions, i.e., Dirichlet or Neumann boundary conditions on
the boundary Γ, where either u or the normal derivative ∂nu respectively are given on Γ.
Solutions to these problems can be represented via potentials which are closely related to
the fundamental solution G(·) of the Laplace operator, i.e.,

G(z) =

{
− 1

2π log |z| for d = 2,
1

4π
1
|z| for d = 3.

For smooth solutions u ∈ C2(Γ) of (6.2), there holds the following representation formula,
cf. [SS11, Theorem 3.1.6],

u(x) =

∫

Γ
G(x− y) ∂n(y)u(y) dsy −

∫

Γ
∂n(y)G(x− y)u(y) dsy for all x ∈ Ω, (6.3)

where ∂n(y) is the normal derivative with respect to y ∈ Γ. Hence, depending on the given
boundary conditions, the unknown quantity is either ∂nu or u.
First, we de�ne the single-layer potential S for φ ∈ L1(Γ) by

(Sφ)(x) :=

∫

Γ
G(x− y)φ(y) dsy for all x ∈ Rd \ Γ,

as well as the double-layer potential D for φ ∈ L1(Γ) by

(Dφ)(x) :=

∫

Γ
∂n(y)G(x− y)φ(y) dsy for all x ∈ Rd \ Γ.

Recalling the Sobolev spaces on the boundary from Section 2.3 and Section 2.4, these
potentials give rise to bounded linear operators

S : H̃−1/2+s(Γ)→ H1
loc(Rd) and D : H1/2+s(Γ)→ H1

loc(Rd) (6.4)

with −1/2 ≤ s ≤ 1/2, where H1
loc(Rd) is the space of H1-functions with compact support,

cf. [SS11, Theorem 3.1.16, Remark 3.1.18].
Recalling the trace operators γint

0 , γext
0 as well as the normal derivative operators γint

1 ,
γext

1 from Section 2.5, [SS11, Theorem 3.3.1] shows that

γint
0 Sφ = γext

0 Sφ and γint
1 Dψ = γext

1 Dψ. (6.5)

Thereof, we omit the superscript for ease of notation and de�ne the following linear and
continuous boundary integral operators:
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6 Adaptive BEM for elliptic �rst-kind integral equations with optimal PCG solver

� single-layer operator

V : H̃−1/2+s(Γ)→ H1/2+s(Γ) with V φ := γ0Sφ (6.6)

� double-layer operator

K : H1/2+s(Γ)→ H1/2+s(Γ) with Kg :=
1

2
(γint

0 D + γext
0 D)g (6.7)

� adjoint double-layer operator

K ′ : H̃−1/2+s(Γ)→ H−1/2+s(Γ) with K ′φ := −1

2
Idφ+ γint

1 Sφ (6.8)

� hyper-singular operator

W : H̃1/2+s(Γ)→ H−1/2+s(Γ) with Wψ := −γ1Dψ (6.9)

Some important properties of these operators are summerized in the following remark
and we refer to [McL00, SS11] for further details and proofs.

Remark 55. Let −1/2 ≤ s ≤ 1/2 and Γ ⊆ ∂Ω be a (relatively) open and connected subset.

� The single-layer operator V from (6.6) is a bounded linear operator which is even an
isomorphism for −1/2 < s < 1/2. For d = 2, this requires that the domain Ω is
su�ciently small, i.e., diam(Ω) < 1, which can always be ensured by scaling of Ω. For
s = 0, the operator V is even symmetric and elliptic.

� The hyper-singular operator W from (6.9) is a bounded linear operator which is even
an isomorphism for −1/2 < s < 1/2. For s = 0, the operator W is symmetric and
(since Γ is connected) positive semi-de�nite with kernel being the constant functions.
Hence, for Γ ( ∂Ω, the operator W is an elliptic isomorphism.

For ease of presentation, the main part of this chapter focuses on the so-called weakly-
singular integral equation which corresponds to Dirichlet boundary conditions, i.e., u = g
on Γ for a given function g ∈ H1/2(Γ). Due to the representation formula (6.3), we know
that the solution u is given in terms of the trace of u on Γ as well as the normal derivative
∂nu on Γ. This normal derivative φ := ∂nu is given by Symm's integral equation

V φ = (K +
1

2
Id)g on Γ, (6.10)

where Id is the usual identity operator.
However, we restrict ourself to an indirect formulation, where the solution u of the Dirich-

let problem is given in terms of the single-layer potential

u = Sφ,

where φ is the solution of

V φ = g on Γ.
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6.3 Model problem and boundary element method (BEM)

Let Ω ⊂ Rd be a bounded Lipschitz domain with d ∈ {2, 3} and polyhedral boundary ∂Ω.
Let Γ ⊆ ∂Ω be a (relatively) open and connected subset. Given f : Γ → R, we seek the
density φ? : Γ→ R of the weakly-singular integral equation

(V φ?)(x) =

∫

Γ
G(x− y)φ?(y) dy = f(x) for all x ∈ Γ. (6.11)

From Remark 55 follows that, for s = 0, the operator V is even symmetric and elliptic, i.e.,

〈〈φ , ψ〉〉 :=

∫

Γ
(V φ)(x)ψ(x) dx for all φ, ψ ∈ H̃−1/2(Γ) (6.12)

de�nes a scalar product and |||φ|||2 := 〈〈φ , φ〉〉 is an equivalent norm on H̃−1/2(Γ). For a
given right-hand side f ∈ H1/2(Γ), the weakly-singular integral equation (6.11) can thus
equivalently be reformulated as

〈〈φ? , ψ〉〉 = 〈f , ψ〉 for all ψ ∈ H̃−1/2(Γ). (6.13)

In particular, the Lax�Milgram theorem proves existence and uniqueness of the solution
φ? ∈ H̃−1/2(Γ) to (6.13).
Given a mesh T• of Γ, we employ a lowest-order Galerkin boundary element method

(BEM) to compute a T•-piecewise constant function φ?• ∈ P0(T•), where P0(T•) is de�ned
by

P0(T•) :=
{
ψ• : Γ→ R : ∀T ∈ T• ψ•|T is constant

}
. (6.14)

Note that P0(T•) ⊂ L2(Γ) ⊂ H̃−1/2(Γ). Hence, the weakly-singular integral equation (6.11)
can be reformulated for the lowest-order space P0(T•) as

∫

Γ
(V φ?•)(x)ψ•(x) dx =

∫

Γ
f(x)ψ•(x) dx for all ψ• ∈ P0(T•), (6.15)

which again can be written equivalently as

〈〈φ?• , ψ•〉〉 = 〈f , ψ•〉 for all ψ• ∈ P0(T•). (6.16)

Therefore, the Lax�Milgram theorem proves existence and uniqueness of the discrete solu-
tion φ?• ∈ P0(T•).
With the numbering T• = {T1, . . . , TN}, consider the standard basis

{
χ•,j : j = 1, . . . , N

}

of P0(T•) consisting of characteristic functions χ•,j of Tj ∈ T•. We make the ansatz

φ?• =
N∑

k=1

x?•[k]χ•,k (6.17)

with coe�cient vector

x?• = (x?•[1], . . . ,x?•[N ]) ∈ RN .
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Figure 6.1: For newest vertex bisection (NVB) in 2D, each triangle T ∈ T has one reference edge,
indicated by the double line (left). Bisection of T is achieved by halving the reference
edge (middle). The reference edges of the sons are always opposite to the new vertex.
Recursive application of this re�nement rule leads to conforming triangulations.

Then, the Galerkin formulation (6.15) is equivalent to the linear system

A•x?• = b• (6.18)

with

A•[j, k] :=

∫

Tj

(V χ•,k)(x) dx, b•[j] :=

∫

Tj

f(x) dx,

where the matrix A• ∈ RN×N is positive de�nite and symmetric. For a given initial
triangulation T0, we consider an adaptive mesh-re�nement strategy of the type

solve −→ estimate −→ mark −→ refine (6.19)

which generates a sequence T` of successively re�ned triangulations T` for all ` ∈ N0. We
note that the condition number of the Galerkin matrix A` from (6.18) depends on the
number of elements of T`, as well as the minimal and maximal diameter. Therefore, the
step solve requires an e�cient preconditioner as well as an appropriate iterative solver.

6.3.1 Mesh-re�nement

We brie�y recall some de�nitions for boundary meshes and mesh-re�nement from Section 3.2
and Section 3.4 respectively in the context of this chapter.

2D BEM

For d = 2, a mesh T• of Γ is a partition into non-degenerate compact line segments. It is
called γ-shape regular, if

max
{
hT /hT ′ : T, T ′ ∈ T• with T ∩ T ′ 6= ∅

}
≤ γ. (6.20)

Here, hT := diam(T ) > 0 denotes the Euclidean diameter of T , i.e., the length of the line
segment.
We employ the extended bisection algorithm from [AFF+13], cf. Section 3.5. For a mesh
T• and a subset M• ⊆ T•, let T◦ := refine(T•,M•) be the coarsest mesh such that all
marked elements T ∈M• have been re�ned, i.e.,M• ⊆ T•\T◦. We write T◦ ∈ refine(T•), if
there exists n ∈ N0, conforming triangulations T0, . . . , Tn and corresponding sets of marked
elementsMj ⊆ Tj such that

• T• = T0,
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• Tj+1 = refine(Tj ,Mj) for all j = 0, . . . , n− 1,

• T◦ = Tn,
i.e., T◦ is obtained from T• by �nitely many steps of re�nement. Note that the extended
1D bisection, i.e., Algorithm 9, guarantees, in particular, that all T◦ ∈ refine(T•) are
uniformly γ-shape regular, where γ depends only on T•, cf. Section 3.5.

3D BEM

For d = 3, a mesh T• of Γ is a conforming triangulation into non-degenerate compact surface
triangles. In particular, we avoid hanging nodes. To ease the presentation, we suppose that
the elements T ∈ T• are �at. For a γ-shape regular triangulation, it holds that

max
T∈T•

diam(T )

hT
≤ γ, (6.21)

cf. Lemma 8. Here, diam(T ) denotes the Euclidean diameter of T and hT := |T |1/2 with
|T | being the two-dimensional surface measure. Note that γ-shape regularity implies that
hT ≤ diam(T ) ≤ γ hT and hence excludes anisotropic elements.
For 3D BEM, we employ 2D newest vertex bisection (NVB) to re�ne triangulations locally,

cf. Section 3.6 for details and Figure 6.1 for an illustration. For a mesh T• andM• ⊆ T•,
we employ the same notation T◦ := refine(T•,M•) and T◦ ∈ refine(T•) respectively as
for d = 2.

6.3.2 A posteriori BEM error control

For ψ• ∈ P0(T•) and U• ⊆ T•, de�ne
η•(U•, ψ•)2 :=

∑

T∈U•
η•(T, ψ•)2, (6.22)

where

η•(T, ψ•)2 := hT ‖∇Γ(f − V ψ•)‖2L2(T ) for all T ∈ T•. (6.23)

Here ∇Γ(·) denotes the arclength derivative for d = 2 resp. the surface gradient for d = 3.
To abbreviate notation, let η•(ψ•) := η•(T•, ψ•). If ψ• = φ?• is the discrete solution to (6.16),
then there holds the reliability estimate (i.e., the global upper bound)

|||φ? − φ?•||| ≤ Crel η•(φ
?
•), (6.24)

where Crel > 0 depends only on Γ and γ-shape regularity of T•, cf. [CS95, Car97] for d = 2
and [CMS01] for d = 3 respectively. Provided that φ? ∈ L2(Γ), the following weak e�ciency

|||φ? − φ?•|||+ η•(φ?•) ≤ Ceff ‖h1/2
• (φ? − φ?•)‖L2(Γ) (6.25)

has recently been proved in [AFF+17], where Ceff > 0 depends only on Γ and γ-shape
regulartiy of T•. We note that the weighted L2-norm on the right-hand side of (6.25) is
only slightly stronger than ||| · ||| ' ‖ · ‖

H̃−1/2(Γ)
, so that one empirically observes η•(φ?•) .

|||φ−φ?•||| in practice, cf. [CS95, Car97, CMS01]. In certain situations (e.g., weakly-singular
integral formulation of the interior 2D Dirichlet problem), one can rigorously prove the
latter (strong) e�ciency estimate up to higher-order data oscillations, cf [AFF+13].
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6.3.3 Preconditioned conjugate gradient method (PCG) for the Galerkin
system

Suppose that P•,A• ∈ RN×N are symmetric and positive de�nite matrices. Given b• ∈ RN
and an initial guess x0

•, PCG (see [GVL13, Algorithm 11.5.1]) aims to approximate the
solution x?• ∈ RN to (6.18). We note that each step of PCG has the following computational
costs:

� O(N) cost for vector operations (e.g., assignment, addition, scalar product),

� computation of one matrix-vector product with A•,

� computation of one matrix-vector product with P−1
• .

Let x̃?• ∈ RN be the solution to (6.1) and recall that x?• = P
−1/2
• x̃?•. We note that PCG

formally applies the conjugate gradient method (CG, see [GVL13, Algorithm 11.3.2]) for

the matrix Ã• := P
−1/2
• A•P

−1/2
• and the right-hand side b̃• = P

−1/2
• b•. The iterates

xk• ∈ RN of PCG (applied to P•, A•, b•, and the initial guess x0
•) and the iterates x̃k• of

CG (applied to Ã•, b̃•, and the initial guess x̃0
• := P

1/2
• x0

•) are formally linked by

xk• = P
−1/2
• x̃k•;

see [GVL13, Section 11.5]. Moreover, for all ỹ• ∈ RN and y• = P
−1/2
• ỹ•, there holds that

‖ỹ•‖2Ã• := ỹ• · Ã•ỹ•
= (P

1/2
• y•) ·P−1/2

• A•P
−1/2
• P

1/2
• y•

= y• ·A•y•
=: ‖y•‖2A• .

(6.26)

Consequently, [GVL13, Theorem 11.3.3] for CG (applied to Ã•, b̃•, x̃0
•) yields the following

lemma for PCG (which follows from the implicit steepest decent approach of CG).

Lemma 56. Let A•,P• ∈ RN×N be symmetric and positive de�nite, b• ∈ RN , x?• :=
A−1
• b•, and x0

• ∈ RN . Suppose the `2-condition number estimate

cond2(P
−1/2
• A•P

−1/2
• ) ≤ Calg. (6.27)

Then, the iterates xk• of the PCG algorithm satisfy the contraction property

‖x?• − xk+1
• ‖A• ≤ qpcg ‖x?• − xk•‖A• for all k ∈ N0, (6.28)

where qpcg := (1− 1/Calg)1/2 < 1.

If the matrix A• ∈ RN×N stems from the Galerkin discretization (6.18) for T• =
{T1, . . . , TN}, there is a one-to-one correspondence of vectors y• ∈ RN and discrete functions
ψ• ∈ P0(T•) via

ψ• =

N∑

j=1

y•[j]χ•,j ,
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where χ•,j is the usual characteristic function of Tj ∈ T•. Let φk• ∈ P0(T•) denote the
discrete function corresponding to the PCG iterate xk• ∈ RN , while the Galerkin solution
φ?• ∈ P0(T•) of (6.16) corresponds to x?• = A−1

• b•. We note the elementary identity

|||φ?• − φk•|||2 = (x?• − xk•) ·A•(x?• − xk•) = ‖x?• − xk•‖2A• . (6.29)

6.3.4 Optimal preconditioners

We say that P• is an optimal preconditioner, if Calg ≥ 1 in the `2-condition number esti-
mate (6.27) depends only on γ-shape regularity of T• and the initial mesh T0 (and is hence
essentially independent of the mesh T•).

6.4 Adaptive algorithm

Next, we introduce the following adaptive algorithm which is driven by the weighted-residual
error estimator (6.22). We note that Algorithm 57 as well as the following results are
independent of the precise preconditioning strategy as long as the employed preconditioners
are optimal, cf. Section 6.3.4.

Algorithm 57. Input: Initial conforming mesh T0 of Γ, initial guess φ0
0 := 0, adaptivity

parameters 0 < θ ≤ 1, λctr > 0, and Cmark > 0, optimal preconditioning strategy P` for all
T` ∈ refine(T0), counters ` := 0 =: k.
Adaptive Loop: Iterate the following Steps (i)�(v):

(i) Repeat the following steps (a)�(c):

(a) Update the counter (`, k) 7→ (`, k + 1).

(b) Do one step of the PCG algorithm with the optimal preconditioner P` to obtain
φk` ∈ P0(T`) from φk−1

` ∈ P0(T`).

(c) Compute the local contributions η`(T, φ
k
` ) of the error estimator for all T ∈ T`.

Until |||φk` − φk−1
` ||| ≤ λctr η`(φ

k
` ). (6.30)

(ii) De�ne k := k(`) := k.

(iii) Determine a setM` ⊆ T` with up to the multiplicative constant Cmark minimal cardi-
nality such that

θ η`(φ
k
` ) ≤ η`(M`, φ

k
` ). (6.31)

(iv) Generate T`+1 := refine(T`,M`) and de�ne φ0
`+1 := φ

k
` .

(v) Update the counter (`, k) 7→ (`+ 1, 0) and continue with (i).
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Output: Sequences of successively re�ned triangulations T`, discrete solutions φk` , and cor-
responding error estimators η`(φ

k
` ), for all ` ≥ 0 and k ≥ 0.

Remark 58. The choice λctr = 0 corresponds to the case that the Galerkin system (6.16)
is solved exactly, i.e., φ0

`+1 = φ?` . Then, optimal convergence of Algorithm 57 has already
been proved in [FKMP13, Gan13, AFF+13, FFK+14] for weakly-singular integral equations
and [Gan13, FFK+15] for hyper-singular integral equations. The choice θ = 1 will gener-
ically lead to uniform mesh-re�nement, where for each mesh all elements M` = T` are
re�ned in Step (iv) of Algorithm 57. Instead, small 0 < θ � 1, will lead to highly adapted
meshes.

Let Q :=
{

(`, k) ∈ N0×N0 : index (`, k) is used in Algorithm 57
}
be the set of all index

pairs which appear at some point in Algorithm 57. It holds that (0, 0) ∈ Q. Moreover, for
`, k ∈ N0, it holds that

� for ` ≥ 1, (`, 0) ∈ Q implies that (`− 1, 0) ∈ Q,

� for k ≥ 1, (`, k) ∈ Q implies that (`, k − 1) ∈ Q.

If ` is clear from the context, we abbreviate k := k(`), e.g., φk` := φ
k(`)
` . In particular, it

holds that φk` = φ0
`+1. Since PCG (like any Krylov method) provides the exact solution

after at most #T` steps, it follows that 1 ≤ k(`) <∞. Finally, we de�ne the ordering

(`′, k′) < (`, k)
def⇐⇒

{
either: `′ < `
or: `′ = ` and k′ < k

}
for all (`′, k′), (`, k) ∈ Q.

Moreover, let

|(`, k)| :=
{

0, if ` = 0 = k,

#
{

(`′, k′) ∈ Q : (`′, k′) < (`, k) and k′ < k(`′)
}
, if ` > 0 or k > 0,

(6.32)

be the total number of PCG iterations until the computation of φk` . Note that `
′ > ` and

|(`′, k′)| = |(`, k)| imply that `′ = `+ 1, k = k(`), and k′ = 0 and hence φk
′
`′ = φk` .

6.5 Main results

In this section, we show the main results of this chapter, i.e., �rst, we introduce an additive
Schwarz preconditioner and prove its optimality in the sense of Section 6.3.4, and secondly,
we prove optimal convergence rates with respect to the degrees of freedom of Algorithm 57
as well as almost optimal computational complexity.

6.5.1 Optimal additive Schwarz preconditioner

We consider multilevel additive Schwarz preconditioners that build on the adaptive mesh-
hierarchy.
Let E• denote the set of all nodes (d = 2) and edges (d = 3) respectively of the mesh
T• which do not belong to the relative boundary ∂Γ. Only for Γ = ∂Ω, E• contains all
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nodes resp. edges of T•. For E ∈ E•, let T+, T− ∈ T• denote the two unique elements with
T+ ∩ T− = E. We de�ne the Haar-type function ϕ•,E ∈ P0(T•) (associated to E ∈ E•) by

ϕ•,E |T :=





|E|
|T | for T = T+,

− |E||T | for T = T−,

0 else,

(6.33)

where |E| := 1 for d = 2 and |E| := diam(E) for d = 3. Note that

ϕ•,E ∈ P0
∗ (T•) :=

{
ψ ∈ P0(T•) :

∫

Γ
ψ dx = 0

}
. (6.34)

For d = 3, we additionally suppose that the orientation of each edge E is arbitrary but
�xed. We choose T+ ∈ T• such that ∂T+ and E ⊂ ∂T+ have the same orientation.
Given a mesh T0, suppose that T` is a sequence of locally re�ned meshes, i.e., for all

` ∈ N0, there exists a setM` ⊆ T` such that T`+1 = refine(T`,M`). Then, de�ne

E?` := E`\E`−1 ∪
{
E ∈ E` : supp(ϕ`,E) $ supp(ϕ`−1,E)

}
for all ` ≥ 1,

which consist of new (interior) nodes/edges plus some of their neighbours. We note the
following subspace decomposition which is, in general, not direct.

Lemma 59. With X• := P0(T•) and X•,E := span{ϕ•,E}, it holds that

XL = X0 +
L∑

`=1

∑

E∈E?`

X`,E for all L ∈ N0. (6.35)

Additive Schwarz preconditioners are based on (not necessarily direct) subspace decom-
positions. Following the standard theory (see, e.g., [TW05, Chapter 2]), (6.35) yields a
(local multilevel) preconditioner. To provide its matrix formulation, let Ik,` ∈ R(#T`)×(#Tk)

be the matrix representation of the canonical embedding P0(Tk) ↪→ P0(T`) for k < `, i.e.,

#Tk∑

i=1

xk[i]χk,i =

#T∑̀

i=1

x`[i]χ`,i for all xk ∈ R#Tk and x` := Ik,`xk ∈ R#T` .

Let H` ∈ R(#T`)×(#E`) denote the matrix that represents Haar-type functions, i.e.,

ϕ`,Ej
=

#T∑̀

i=1

H`[i, j]χ`,i for all Ej ∈ E`.

Since only two coe�cients per column are non-zero, H` is sparse, while Ik,` is non-sparse
in general. Finally, de�ne the (non-invertible) diagonal matrix D` ∈ R(#E`)×(#E`) by

(D`)jk :=

{
|||ϕ`,Ej

|||−2 Ej ∈ E?` and j = k,

0 else.
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Then, the matrix representation of the preconditioner associated to (6.35) reads

P−1
L := I0,LA−1

0 IT0,L +
L∑

`=1

I`,LH`D`H
T
` IT`,L. (6.36)

For d = 2, the subsequent Theorem 60 is already proved in [FFPS17b, Section III.B] for
Γ = ∂Ω and in [Füh14, Section 6.3] for Γ $ ∂Ω. For d = 3, we need the following additional
assumptions:

� First, suppose that Ω ⊂ R3 is simply connected and Γ = ∂Ω.

� Second, let T̂0 be a conforming triangulation of Ω into non-degenerate compact sim-
plices such that T0 = T̂0|Γ is the induced boundary partition on Γ.

Then, the following theorem is our �rst main result.

Theorem 60. Under the foregoing assumptions, the preconditioner PL from (6.36) is op-
timal, i.e., there holds (6.27), where Calg ≥ 1 depends only on Ω and T̂0, but is independent
of L ∈ N.

We stress that the matrix in (6.36) will never be assembled in practice. The PCG al-
gorithm only needs the action of P−1

L on a vector. This can be done recursively by using
the embeddings I`,`+1 which are, in fact, sparse. Up to (storing and) inverting A0 on the
coarse mesh, the evaluation of P−1

L x can be done in O(#TL) operations, see, e.g., [FFPS17a,
Section 3.1] for a detailed discussion. If the mesh TL is �ne compared to the initial mesh
T0 (or if A0 is realized with, e.g., H-matrix techniques), then the computational costs and
storage requirements associated with A0 can be neglected.

Remark 61. Our proof for d = 3 requires additional assumptions on Ω, Γ = ∂Ω, and
T0. As stated above, the case d = 2 allows for a di�erent proof (which, however, does not
transfer to d = 3) and can thus avoid these assumptionss, see [FFPS17b, Füh14].

6.5.2 Proof of Theorem 60 (optimality of additive Schwarz preconditioner)

As mentioned before, Theorem 60 is already proved for d = 2. Hence, we refer to [FFPS17b,
Füh14] and thus focus only on d = 3 and Γ = ∂Ω. Due to our additional assumption,
T0 = T̂0|Γ is the restriction of a conforming simplicial triangulation T̂0 of Ω to the boundary
Γ. Moreover, 2D NVB re�nement of T0 (on the boundary Γ) is a special case of 3D NVB
re�nement of T̂0 (in the volume Ω) plus restriction to the boundary, see, e.g., [Ste08].
Hence, each mesh T• ∈ T = refine(T0) is the restriction of a conforming NVB re�nement
T̂• ∈ T̂ := refine(T̂0), i.e., T• = T̂•|Γ. Throughout, let T̂• ∈ T̂ be the coarsest extension of
T• ∈ T.
Recall that NVB is a binary re�nement rule. Therefore, T◦ ∈ refine(T•) also implies

that T̂◦ ∈ refine(T̂•). Finally, we note that all triangulations T̂• ∈ T̂ are uniformly γ-shape
regular, i.e.,

max
T̂∈T̂•

diam(T̂ )

|T̂ |1/3
≤ γ <∞.

where γ depends only on T̂0.

160



6.5 Main results

Discrete spaces and extensions

First, we recall the de�nition of the curl operator for a su�ciently smooth vector �eld
v = (v1, v2, v3) by

curlv := ∇× v :=




∂v3
∂x2
− ∂v2

∂x3

∂v1
∂x3
− ∂v3

∂x1

∂v2
∂x1
− ∂v1

∂x2


 .

De�nition 62. Let v ∈ L2(Ω)3. Then, we call curlv := c ∈ L2(Ω)3 the (generalized) curl
of v, if there holds that

∫

Ω
c ·w dx =

∫

Ω
v · curlw dx for all w ∈ C∞0 (Ω)3, (6.37)

as well as div v := d ∈ L2(Ω) the (generalized) divergence of v, if there holds that

∫

Ω
dw dx = −

∫

Ω
v · ∇w dx for all w ∈ C∞0 (Ω). (6.38)

Moreover, we de�ne the space of lowest-order Nédélec elements of �rst kind ND1(T̂•) by

ND1(T̂•) :=
{
v ∈H(curl ; Ω) : v|K ∈ P0(K)3 + P0(K)3 × x for all K ∈ T̂•

}
, (6.39)

where

H(curl ; Ω) :=
{
v ∈ L2(Ω)3 : curlv ∈ L2(Ω)3

}
(6.40)

is the space of square integrable vector �elds on Ω ⊂ R3 with square integrable curl and
corresponding norm

‖v‖2H(curl ; Ω) := ‖v‖2L2(Ω) + ‖curlv‖2L2(Ω). (6.41)

Lastly, we de�ne the space of lowest-order Raviart�Thomas elements RT 0(T̂•) by

RT 0(T̂•) :=
{
v ∈H(div ; Ω) : v|K ∈ P0(K)3 + P0(K) x for all K ∈ T̂•

}
, (6.42)

where

H(div ; Ω) :=
{
v ∈ L2(Ω)3 : div v ∈ L2(Ω)

}
(6.43)

is the space of square integrable vector �elds on Ω ⊂ R3 with square integrable div and
corresponding norm

‖v‖2H(div ; Ω) := ‖v‖2L2(Ω) + ‖div v‖2L2(Ω). (6.44)
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The argument of our proof of Theorem 60 adapts ideas from [HM12], where a subspace
decomposition for the lowest-order Nédélec spaceND1(T̂•) (see, e.g., [HZ09]) inH(curl ; Ω)
implies a decomposition of the corresponding discrete trace space. While the original idea
dates back to [Osw99], a nice summary of the argument is found in [HM12, Section 2].

Remark 63. (i) Our proof is based on the construction of an extension operator from P0
∗ (T•)

to ND1(T̂•), see Lemma 65 below. It is not clear if such an operator can be constructed for
the case Γ $ ∂Ω.
(ii) In [HJHM15], a subspace decomposition of the lowest-order Raviart�Thomas space

RT 0(T̂•) (see, e.g., [XCN09]) in H(div ; Ω) implies a decomposition of the corresponding
normal trace space P0(T•). Due to di�erent scaling properties of the Raviart�Thomas basis
functions (in the H(div ; Ω) norm) and their normal trace (in the H−1/2(Γ) norm), this
argument does not apply in our case.

Let Ê• (resp. N̂•) denote the set of all edges (resp. all nodes) of T̂• ∈ T̂. For each node
x ∈ N̂•, let η•,x ∈ S1(T̂•) be the corresponding hat function, i.e., η•,x is T̂•-piecewise
a�ne and globally continuous with η•,x(y) = δxy for all x,y ∈ N̂•. For E ∈ Ê•, let
u•,E ∈ ND1(T̂•) denote the corresponding Nédélec basis function, i.e., for K ∈ T̂• with
E = conv{x,y} ⊂ ∂K, it holds that

u•,E |K = C(η•,x∇η•,y − η•,y∇η•,x), (6.45)

where C > 0 is chosen such that for the path integrals holds that
∫

E′
u•,E ds = |E| δEE′ for all E,E′ ∈ Ê•. (6.46)

Scaling arguments yield the next lemma. The proof follows the lines of [HM12, Lemma 5.7].

Lemma 64. For E ∈ E•, recall the Haar function ϕ•,E ∈ P0(T•) from (6.33). Let u•,E ∈
ND1(T̂•) denote the corresponding Nédélec basis function, see (6.45). Then,

ϕ•,E = curlu•,E · n|Γ (6.47)

and

C−1‖ϕ•,E‖H−1/2(Γ) ≤ ‖u•,E‖H(curl ; Ω) ≤ C ‖ϕ•,E‖H−1/2(Γ), (6.48)

where C > 0 depends only on Ω and the γ-shape regularity of T̂•.

Proof. By using (6.45)�(6.46) we get that ϕ•,E = curlu•,E · n|Γ. Then, continuity of the
normal trace operator and the fact that the divergence of the curl is zero yield that

‖ϕ•,E‖H−1/2(Γ) . ‖curlu•,E‖H(div ; Ω)

=
(
‖curlu•,E‖2L2(Ω) + ‖div curlu•,E‖2L2(Ω)

)1/2

= ‖curlu•,E‖L2(Ω)

≤ ‖u•,E‖H(curl ; Ω).
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Furthermore, scaling arguments prove that

‖u•,E‖H(curl ; Ω) ' ‖curlu•,E‖L2(Ω)

' |E|1/2

' |E|1/2‖ϕ•,E‖L2(Γ)

. ‖ϕ•,E‖H−1/2(Γ),

where we have �nally applied an inverse estimate, cf. [HM12, Lemma 5.4]. This concludes
the proof.

The following lemma holds for (simply) connected Lipschitz domains Ω and follows es-
sentially from [AGS16]. Recall P0

∗ (T•) from (6.34).

Lemma 65. There exists a linear operator E• : P0
∗ (T•)→ND1(T̂•) such that

curl (E•ψ•) · n|Γ = ψ• (6.49)

as well as

‖E•ψ•‖H(curl ; Ω) ≤ C ‖ψ•‖H−1/2(Γ) for all ψ• ∈ P0
∗ (T•). (6.50)

The constant C > 0 depends only on Ω and γ-shape regularity of T̂•.

Proof. Let ψ• ∈ P0
∗ (T•). First, [AGS16, Theorem 2.1] provides σ• ∈RT 0(T̂•) with

σ• · n|Γ = ψ•, divσ• = 0, and ‖σ•‖H(div ; Ω) . ‖ψ•‖H−1/2(∂Ω).

Then, [AGS16, Lemma 4.3] provides E•ψ• := v• ∈ND1(T̂•) such that

curlv• = σ• and ‖v•‖H(curl ; Ω) . ‖σ•‖H(div ; Ω).

Combining these results, we get that

curl (E•ψ•) · n|Γ = curlv• · n|Γ
= σ• · n|Γ
= ψ•,

as well as

‖E•ψ•‖H(curl ; Ω) = ‖v•‖H(curl ; Ω)

. ‖σ•‖H(div ; Ω)

. ‖ψ•‖H−1/2(Γ),

which concludes the proof.

163



6 Adaptive BEM for elliptic �rst-kind integral equations with optimal PCG solver

Abstract additive Schwarz preconditioners

Let X denote some �nite dimensional Hilbert space with norm ‖ · ‖X and subspace decom-
position

X =
∑

i∈I
Xi,

where I is a �nite index set. The associated additive Schwarz operator is given by

S =
∑

i∈I
Si,

where Si is the X -orthogonal projection onto Xi, i.e.,

〈Six , xi〉X = 〈x , xi〉X for all xi ∈ Xi and all x ∈ X ,

where 〈· , ·〉X denotes the scalar product on X . Then, the operator S is positive de�nite
and symmetric (with respect to 〈· , ·〉X ). For x ∈ X , de�ne the multilevel norm

|||x|||2X := inf
{∑

i∈I
‖xi‖2X : x =

∑

i∈I
xi with xi ∈ Xi for all i ∈ I

}
. (6.51)

It is proved, e.g., in [Osw94, Theorem 16] that 〈S−1x , x〉X = |||x|||2X . If there exists a
constant C > 0 such that

C−1‖x‖X ≤ |||x|||X ≤ C ‖x‖X for all x ∈ X ,

then the extreme eigenvalues of S−1 (and hence those of S) are bounded (from above and
below). In particular, the additive Schwarz operator S is optimal in the sense that its
condition number (ratio of largest and smallest eigenvalues) depends only on C > 0.
Let S denote the matrix representation of S. Then, the norm equivalence from above

and the latter observations imply that the condition number of S is bounded. The abstract
theory on additive Schwarz operators given in [TW05, Chapter 2] shows that S has the
form S = P−1A, where A is the Galerkin matrix of 〈· , ·〉X . Therefore, boundedness of the
condition number of S implies optimality of the preconditioner P−1.
We shortly discuss the matrix representation (6.36) of the additive Schwarz preconditioner

P−1
L := I0,LA−1

0 IT0,L +
L∑

`=1

I`,LH`D`H
T
` IT`,L.

Following [TW05, Chapter 2], let Ai denote the Galerkin matrix of 〈· , ·〉X restricted to Xi,
and let Ii denote the matrix that realizes the embedding from Xi → X . We consider the
matrix representation Si of Si : X → Xi ⊂ X . Let x ∈ X with coordinate vector x, and let
xi ∈ Xi be arbitrary with coordinate vector xi. The de�ning relation of Si, i.e.,

〈Six , xi〉X = 〈x , xi〉X for all xi ∈ Xi,
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then reads in matrix-vector form as

xi · (AiSix) = (Iixi) · (Ax) for all coe�cient vectors xi,

or equivalently

AiSix = ITi Ax.

Since Ai is invertible, we have that

Si = A−1
i ITi A.

Note that the range of the operator Si is Xi and correspondingly for the matrix represen-
tation Si. We therefore apply the embedding Ii and obtain the representation

S = P−1A, where P−1 =
∑

i∈I
IiA

−1
i ITi .

To �nally prove (6.36), note that for one-dimensional subspaces Xi, Ai reduces to the
diagonal entry of the matrix A. Overall, we thus derive the matrix representation (6.36).

Subspace decomposition of ND1(T̂•) in H(curl ; Ω)

The following result is taken from [HWZ12, Theorem 4.1], see also the references therein.
In particular, we note that their proof requires the assumption that Ω is simply connected.

Proposition 66. Let Y• := ND1(T̂•), Y•,E := span{u•,E}, Y•,x := span{∇η•,x}, and

Ê?` := (Ê` \ Ê`−1) ∪
{
E ∈ Ê` : suppu`,E $ suppu`−1,E

}
,

N̂ ?
` := (N̂` \ N̂`−1) ∪

{
x ∈ N̂` : supp η`,x $ supp η`−1,x

}
.

Then, it holds that

YL = Y0 +
L∑

`=1

( ∑

E∈Ê?`

Y`,E +
∑

x∈N̂ ?
`

Y`,x
)
. (6.52)

Moreover, it holds that

C−1‖v‖H(curl ; Ω) ≤ |||v|||YL ≤ C ‖v‖H(curl ; Ω) for all v ∈ YL, (6.53)

where C > 0 depends only on Ω and T̂0.

Subspace decomposition of P0(T•) in H−1/2(Γ)

It remains to prove the following proposition to conclude the proof of Theorem 60 since then
we get from the abstract theory that the proposed additive Schwarz operator is optimal.

165



6 Adaptive BEM for elliptic �rst-kind integral equations with optimal PCG solver

Proposition 67. The multilevel norm ||| · |||XL
associated with the decomposition (6.35)

satis�es the equivalence

C−1‖ψ‖H−1/2(Γ) ≤ |||ψ|||XL
≤ C ‖ψ‖H−1/2(Γ) for all ψ ∈ P0(TL), (6.54)

where C > 0 depends only on Ω and T̂0.

Proof of lower estimate in (6.54). Let ψ ∈ P0(TL), X` := P0(T`), and X`,E := span{ϕ`,E}.
Lemma 59 shows that we can decompose ψ (not necessarily uniquely) into

ψ = ψ0 + ψ∗ (6.55)

where

ψ∗ =
L∑

`=1

∑

E∈E?`

ψ`,E with ψ0 ∈ X0 and ψ`,E ∈ X`,E .

Note that X`,E ⊂ P0
∗ (T`). Recall the extension operator E` from Lemma 65. De�ne

v∗ :=
L∑

`=1

∑

E∈E?`

E`ψ`,E ∈ YL. (6.56)

Then, due to the linearity of the curl operator and Lemma 65, it follows that

curlv∗ · n|Γ = curl
( L∑

`=1

∑

E∈E?`

E`ψ`,E

)
· n|Γ

=

L∑

`=1

∑

E∈E?`

curl (E`ψ`,E) · n|Γ

(6.49)
=

L∑

`=1

∑

E∈E?`

ψ`,E

= ψ∗

and hence the continuity of the trace operator in H(div ; Ω) yields that

‖ψ∗‖H−1/2(Γ) . ‖curlv∗‖H(div ; Ω)

= ‖curlv∗‖L2(Ω)

≤ ‖v∗‖H(curl ; Ω)

(6.53)

. |||v∗|||YL .
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Moreover, the triangle inequality, the de�nition of the multilevel norm |||·|||YL , and Lemma 65
show that

‖ψ‖2
H−1/2(Γ)

. ‖ψ0‖2H−1/2(Γ)
+ ‖ψ∗‖2H−1/2(Γ)

. ‖ψ0‖2H−1/2(Γ)
+ |||v∗|||2YL

(6.51)

≤ ‖ψ0‖2H−1/2(Γ)
+

L∑

`=1

∑

E∈E?`

‖E`ψ`,E‖2H(curl ; Ω)

(6.50)

. ‖ψ0‖2H−1/2(Γ)
+

L∑

`=1

∑

E∈E?`

‖ψ`,E‖2H−1/2(Γ)
.

Taking the in�mum over all possible decompositions (6.55), we derive the lower estimate
in (6.54) by de�nition (6.51) of the multilevel norm.

Proof of upper estimate in (6.54). Let ψ ∈ P0(TL). De�ne ψ00 := 〈ψ , 1〉Γ/|Γ| as the inte-
gral mean of ψ over Γ. Moreover, let ψ∗ := ψ − ψ00 ∈ P0

∗ (TL). Note that

‖ψ∗‖H−1/2(Γ) ≤ ‖ψ‖H−1/2(Γ) + ‖ψ00‖H−1/2(Γ)

≤
(
1 + ‖1/|Γ|‖H1/2(Γ)

)
‖ψ‖H−1/2(Γ)

. ‖ψ‖H−1/2(Γ).

(6.57)

With Lemma 65, choose v = ELψ∗ ∈ YL = ND1(T̂L). Hence, we get that

ψ∗ = curlv · n|Γ

as well as

‖v‖H(curl ; Ω) . ‖ψ∗‖H−1/2(Γ). (6.58)

The upper bound in Proposition 66 further provides v0 ∈ Y0, v`,E ∈ Y`,E , and v`,x ∈ Y`,x
such that

v = v0 +
L∑

`=1

( ∑

E∈Ê?`

v`,E +
∑

x∈N̂ ?
`

v`,x

)

as well as

‖v0‖2H(curl ; Ω) +
L∑

`=1

( ∑

E∈Ê?`

‖v`,E‖2H(curl ; Ω) +
∑

x∈N̂ ?
`

‖v`,x‖2H(curl ; Ω)

)

(6.53)

. ‖v‖2H(curl ; Ω).

(6.59)

Since v`,x ∈ Y`,x = span{∇η`,x} and the curl of the gradient vanishes, we observe that

curlv`,x = 0.
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Thus, we see that

ψ = ψ00 + ψ∗
= ψ00 + curlv · n|Γ

= ψ00 + curlv0 · n|Γ +

L∑

`=1

∑

E∈Ê?`

curlv`,E · n|Γ

= ψ00 + curlv0 · n|Γ +

L∑

`=1

∑

E∈E?`

curlv`,E · n|Γ,

where the latter sum reduces to a sum over all E ∈ E?` (instead of all E ∈ Ê?` ) due to the
restriction (·)|Γ to the boundary. Note that ψ∗0 := curlv0 · n|Γ ∈ X0 = P0(T0) and hence
ψ00 + ψ∗0 ∈ X0. Moreover, it holds that

‖ψ00 + ψ∗0‖H−1/2(Γ) ≤ ‖ψ00‖H−1/2(Γ) + ‖curlv0 · n‖H−1/2(Γ)

. ‖ψ‖H−1/2(Γ) + ‖curlv0‖H(div ; Ω)

= ‖ψ‖H−1/2(Γ) + ‖curlv0‖L2(Ω).

(6.60)

Due to Lemma 64 and v`,E ∈ Y`,E = span{u`,E}, it holds that

ψ`,E := curlv`,E · n|Γ ∈ X`,E = span{ϕ`,E}

with

‖ψ`,E‖H−1/2(Γ) ' ‖v`,E‖H(curl ; Ω).

We hence see that

ψ = (ψ00 + ψ∗0) +
L∑

`=1

∑

E∈E?`

ψ`,E

with

|||ψ|||2P0(TL)

(6.51)

≤ ‖ψ00 + ψ∗0‖2H−1/2(Γ)
+

L∑

`=1

∑

E∈E?`

‖ψ`,E‖2H−1/2(Γ)

(6.60)

. ‖ψ‖2
H−1/2(Γ)

+ ‖v0‖2H(curl ; Ω) +
L∑

`=1

∑

E∈E?`

‖v`,E‖2H(curl ; Ω)

(6.59)

. ‖ψ‖2
H−1/2(Γ)

+ ‖v‖2H(curl ; Ω)

(6.58)

. ‖ψ‖2
H−1/2(Γ)

+ ‖ψ∗‖2H−1/2(Γ)

(6.57)

. ‖ψ‖2
H−1/2(Γ)

.

This concludes the proof.
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6.5.3 Optimal convergence

In this section we present the �rst main result for the adaptive Algorithm 57. We note, that
Algorithm 57 as well as the following theorem are independent of the precise preconditioning
strategy as long as the employed preconditioners are optimal in the sense of Section 6.3.4.
First, we recall the index set Q of Section 6.4 which is de�ned by

Q :=
{

(`, k) ∈ N0 × N0 : index (`, k) is used in Algorithm 57
}

Then, we get the following theorem.

Theorem 68. The output of Algorithm 57 satis�es the following assertions (a)�(c).

(a) There exists a constant C?rel > 0 such that

|||φ? − φk` ||| ≤ C?rel

(
η`(φ

k
` ) + |||φk` − φk−1

` |||
)
. (6.61)

for all (`, k) ∈ Q with k ≥ 1.

There exists a constant C?eff > 0 such that, provided that φ? ∈ L2(Γ), it holds that

η`(φ
k
` ) ≤ C?eff

(
‖h1/2

` (φ? − φk` )‖L2(Γ) + |||φk` − φk−1
` |||

)
. (6.62)

for all (`, k) ∈ Q with k ≥ 1.

(b) For arbitrary 0 < θ ≤ 1 and arbitrary λctr > 0, there exist constants Clin ≥ 1 and
0 < qlin < 1 such that the quasi-error

Λk` :=
(
|||φ? − φk` |||2 + η`(φ

k
` )

2
)1/2

(6.63)

is linearly convergent in the sense of

Λk
′
`′ ≤ Clin q

|(`′,k′)|−|(`,k)|
lin Λk` (6.64)

for all (`, k), (`′, k′) ∈ Q with (`′, k′) ≥ (`, k).

(c) For s > 0, de�ne the approximation class

‖φ?‖As := sup
N∈N0

(
(N + 1)s min

T•∈refine(T0)
#T•−#T0≤N

η•(φ?•)
)
. (6.65)

Then, for su�ciently small 0 < θ � 1 and 0 < λctr � 1, cf. Assumption (6.86) below,
and all s > 0, it holds that

‖φ?‖As <∞
⇐⇒ (6.66)

∃Copt > 0 : sup
(`,k)∈Q

(
#T` −#T0 + 1

)s
Λk` ≤ Copt ‖φ?‖As <∞.

The constants
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� C?rel, C
?
eff > 0 depend only on qpcg, Γ, and the uniform γ-shape regularity of Tj ∈

refine(T0),

� Clin > 1 and 0 < qlin < 1 depend additionally only on θ and λctr, and

� Copt > 0 depends additionally only on s, T0, and Λ
k
0.

Remark 69. By de�nition, it holds that

η`(φ
k
` ) ≤ Λk` for all (`, k) ∈ Q.

If φk` ∈ {φ?` , φ
k
` }, then there also holds the converse inequality and hence

η`(φ
k
` ) ' Λk` .

To see this, note that φk` = φ?` and (6.24) prove that

Λk` ≤ (1 + Crel) η`(φ
k
` ).

If φk` = φ
k
` , then Theorem 68(a) and the stopping criterion (6.30) of Algorithm 57 prove

that

Λ
k
` ≤ (1 + C?rel) η`(φ

k
` ) + |||φk` − φ

k−1
` |||

≤ (1 + C?rel + λctr) η`(φ
k
` ).

6.5.4 Proof of Theorem 68 (optimal convergence rates)

First, we give an abstract analysis in the spirit of [CFPP14], where the precise problem
and discretization (i.e., Galerkin BEM with piecewise constants for the weakly-singular
integral equation for the 2D and 3D Laplacian) enter only through certain properties of
the error estimator. These properties are explicitly stated in the next subsection, before
we provide general PCG estimates afterwards. The remaining sections, i.e., the proofs of
Theorem 68(a)�(c) then only exploit these abstract frameworks.

Axioms of adaptivity

In this section, similarly to Section 4.3, we recall some structural properties of the residual
error estimator (6.22) which have been identi�ed in [CFPP14] to be important and su�cient
for the numerical analysis of Algorithm 57.
For ease of notation, let T0 be the �xed initial mesh of Algorithm 57. Let T := refine(T0)

be the set of all possible meshes that can be obtained by successively re�ning T0.

Proposition 70. There exist constants Cstb, Cred, Crel > 0 and 0 < qred < 1 which depend
only on Γ and the γ-shape regularity, such that the following properties (A1)�(A4) hold:
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(A1) stability on non-re�ned element domains: For each mesh T• ∈ T, all re�nements
T◦ ∈ refine(T•), arbitrary discrete functions v◦ ∈ P0(T◦) and w• ∈ P0(T•), and an
arbitrary set U• ⊆ T• ∩ T◦ of non-re�ned elements, it holds that

|η◦(U•, v◦)− η•(U•, w•)| ≤ Cstb |||v◦ − w•|||.

(A2) reduction on re�ned element domains: For each mesh T• ∈ T, all re�nements
T◦ ∈ refine(T•), arbitrary discrete functions v◦ ∈ P0(T◦) and w• ∈ P0(T•), it holds
that

η◦(T◦\T•, v◦)2 ≤ qred η•(T•\T◦, w•)2 + Cred |||v◦ − w•|||2.

(A3) reliability: For each mesh T• ∈ T, the error of the exact discrete solution φ?• ∈ P0(T•)
of (6.16) is controlled by

|||φ? − φ?•||| ≤ Crel η•(φ
?
•).

(A4) discrete reliability: For each mesh T• ∈ T and all re�nements T◦ ∈ refine(T•), there
exists a set R•,◦ ⊆ T• with T•\T◦ ⊆ R•,◦ as well as #R•,◦ ≤ Cdrl #(T•\T◦) such that
the di�erence of φ?• ∈ P0(T•) and φ?◦ ∈ P0(T◦) is controlled by

|||φ?◦ − φ?•||| ≤ Cdrl η•(R•,◦, φ?•).

Remark 71. For the proof of Proposition 70, we refer to [FKMP13, FFK+14]. We only
note that (A4) already implies (A3) with Crel ≤ Cdrl in general, cf. [CFPP14, Section 3.3].

Energy estimates for the PCG solver

This section collects some auxiliary results which rely on the use of PCG and, in particular,
PCG with an optimal preconditioner. We �rst note the following Pythagoras identity.

Lemma 72. Let A•,P• ∈ RN×N be symmetric and positive de�nite, b• ∈ RN , x?• :=
A−1
• b•, x0

• ∈ RN , and xk• ∈ RN the iterates of the PCG algorithm.
There holds the Pythagoras identity

|||φ?• − φk•|||2 = |||φ?• − φk+1
• |||2 + |||φk+1

• − φk•|||2 for all k ∈ N0. (6.67)

Proof. Recall that x̃?• is the solution to (6.1) and x̃k• = P
1/2
• xk•. According to the de�nition

of PCG (and CG), it then holds that

‖x̃?• − x̃k•‖Ã• = min
ỹ•∈Kk(Ã•,b̃•,x̃0•)

‖x̃?• − ỹ•‖Ã• ,
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where

Kk(Ã•, b̃•, x̃0
•) := span{r̃0

•, Ã•r̃
0
•, . . . , Ã

k−1
• r̃0

•} with r̃0
• := b̃• − Ã•x̃0

•.

According to Linear Algebra, x̃k• is the orthogonal projection of x̃?• in Kk(Ã•, b̃•, x̃0
•) with

respect to the matrix norm ‖ · ‖
Ã•

. From nestedness Kk(Ã•, b̃•, x̃0
•) ⊆ Kk+1(Ã•, b̃•, x̃0

•), it
thus follows that

‖x̃?• − x̃k•‖2Ã• = ‖x̃?• − x̃k+1
• ‖2

Ã•
+ ‖x̃k+1

• − x̃k•‖2Ã• .

Hence, together with (6.26) and (6.29), we get that

|||φ?• − φk•|||2
(6.29)

= ‖x?• − xk•‖2A•
(6.26)

= ‖x̃?• − x̃k•‖2Ã•
= ‖x̃?• − x̃k+1

• ‖2
Ã•

+ ‖x̃k+1
• − x̃k•‖2Ã•

(6.26)
= ‖x?• − xk+1

• ‖2A• + ‖xk+1
• − xk•‖2A•

(6.29)
= |||φ?• − φk+1

• |||2 + |||φk+1
• − φk•|||2

which proves (6.67).

The following lemma collects some estimates which follow from the contraction prop-
erty (6.28) of PCG.

Lemma 73. Algorithm 57 guarantees the following estimates for all (`, k) ∈ Q with k ≥ 1:

(i) |||φ?` − φk` ||| ≤ qpcg |||φ?` − φk−1
` |||

(ii) |||φk` − φk−1
` ||| ≤ (1 + qpcg) |||φ?` − φk−1

` |||

(iii) |||φ?` − φk−1
` ||| ≤ (1− qpcg)−1 |||φk` − φk−1

` |||

(iv) |||φ?` − φk` ||| ≤ qpcg(1− qpcg)−1 |||φk` − φk−1
` |||

Proof. Combining (6.29) and the contraction property (6.28) of PCG, we get that

|||φ?` − φk` |||
(6.29)

= ‖x?` − xk` ‖A`

(6.28)

≤ qpcg ‖x?` − xk−1
` ‖A`

(6.29)
= qpcg |||φ?` − φk−1

` |||

which proves (i). Estimate (ii) follows from (i) and the triangle inequality by

|||φk` − φk−1
` ||| ≤ |||φ?` − φk` |||+ |||φ?` − φk−1

` |||
(i)

≤ (1 + qpcg) |||φ?` − φk−1
` |||.
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Estimates (iii) follows again from (i) and the triangle inequality by

|||φ?` − φk−1
` ||| ≤ |||φ?` − φk` |||+ |||φk` − φk−1

` |||
(i)

≤ qpcg |||φ?` − φk−1
` |||+ |||φk` − φk−1

` |||,

which is equivalent to estimate (iii). The last estimate (iv) follows from

|||φ?` − φk` |||
(i)

≤ qpcg |||φ?` − φk−1
` |||

(iii)

≤ qpcg(1− qpcg)−1 |||φk` − φk−1
` |||.

This concludes the proof.

Proof of Theorem 68(a)

With reliability (A3) and stability (A1), we see that for all (`, k) ∈ Q it holds that

|||φ? − φk` ||| ≤ |||φ? − φ?` |||+ |||φ?` − φk` |||
(A3)

. η`(φ
?
` ) + |||φ?` − φk` |||

(A1)

. η`(φ
k
` ) + |||φ?` − φk` |||.

With Lemma 73(iv), we hence prove the reliability estimate (6.61), i.e.,

|||φ? − φk` ||| . η`(φ
k
` ) + |||φ?` − φk` |||

73(iv)

. η`(φ
k
` ) + |||φk` − φk−1

` |||.

According to [AFF+17], it holds that

η`(φ
k
` ) . ‖h

1/2
` (φ? − φk` )‖L2(Γ) + |||φ? − φk` |||

≤ ‖h1/2
` (φ? − φk` )‖L2(Γ) + |||φ? − φ?` |||+ |||φ?` − φk` |||.

Let G` : H̃−1/2(Γ) → P0(T`) be the Galerkin projection. Let Π` : L2(Γ) → P0(T`) be the
L2-orthogonal projection. With the Céa lemma and a duality argument (see, e.g., [CP06,
Theorem 4.1]), we see for all ψ ∈ L2(Γ) that

|||(1−G`)ψ||| ≤ |||(1−Π`)ψ||| . ‖h1/2
` ψ‖L2(Γ).

Hence, for ψ = φ? − φk` , it follows that

|||φ? − φ?` ||| = |||(1−G`)φ
?|||

= |||(1−G`)(φ
? − φk` )|||

. ‖h1/2
` (φ? − φk` )‖L2(Γ).
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Combining the latter estimates, we see that

η`(φ
k
` ) . ‖h

1/2
` (φ? − φk` )‖L2(Γ) + |||φ?` − φk` |||.

Lemma 73(iv) yields that

η`(φ
k
` ) . ‖h

1/2
` (φ? − φk` )‖L2(Γ) + |||φ?` − φk` |||

73(iv)

. ‖h1/2
` (φ? − φk` )‖L2(Γ) + |||φk` − φk−1

` |||

and hence concludes the proof of the e�ciency estimate (6.62).

Proof of Theorem 68(b)

The following lemma is the core part of the proof of Theorem 68(b).

Lemma 74. Consider Algorithm 57 for arbitrary parameters 0 < θ ≤ 1 and λctr > 0. There
exist constants 0 < µ, qctr < 1 such that

∆k
` := µ η`(φ

k
` )

2 + |||φ? − φk` |||2 for (`, k) ∈ Q

satis�es, for all ` ∈ N0, that

∆k+1
` ≤ qctr ∆k

` for all 0 ≤ k < k + 1 < k (6.68)

as well as

∆0
`+1 ≤ qctr ∆

k−1
` for k = 0. (6.69)

Moreover, for all (`′, k′), (`, k) ∈ Q, it holds that

∆k′
`′ ≤ q

|(`′,k′)|−|(`,k)|
ctr ∆k

` (6.70)

provided that (`′, k′) > (`, k), k′ < k(`′), and k < k(`).
The constants 0 < µ, qctr < 1 depend only on λctr, θ, qpcg, and the constants in (A1)�(A3).

Proof. The proof is split into �ve steps.
Step 1. We �x some constants, which are needed below. We note that all these con-

stants depend on 0 < θ ≤ 1 and λctr > 0, but do not require any additional constraint.
First, de�ne

0 < qest := 1− (1− qred) θ2 < 1. (6.71)

Second, choose γ > 0 such that

(1 + γ) qest

(6.71)
< 1. (6.72)

Third, choose µ > 0 such that

µ (1 + γ−1) qestC
2
stb (1 + qpcg)2 <

1− q2
pcg

2
and µλ−2

ctr ≤
1

2
. (6.73)
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Fourth, choose ε > 0 such that

ε (1− qpcg)−2 + 2 εC2
relC

2
stb (1− qpcg)−2 ≤ 1

2
and 2 εC2

rel ≤ (1− ε)µ. (6.74)

Fifth, choose κ > 0 such that

2κC2
rel

(6.72)
<

(
1− (1 + γ) qest

)
µ and 2κC2

relC
2
stb <

1− q2
pcg

2
. (6.75)

With (6.73)�(6.75), we �nally de�ne

0 < qctr := max
{

1− ε ,
(
µ (1 + γ) qest + 2κC2

rel

)
µ−1 , 1− κ,

(
µ (1 + γ−1) qestC

2
stb (1 + qpcg)2 + q2

pcg + 2κC2
relC

2
stb

)}
< 1.

(6.76)

Step 2. Due to reliability (A3), stability (A1), and Lemma 73(iii), it follows that

|||φ? − φ?` |||2 = (1− ε)|||φ? − φ?` |||2 + ε |||φ? − φ?` |||2
(A3)

≤ (1− ε)|||φ? − φ?` |||2 + εC2
rel η`(φ

?
` )

2

(A1)

≤ (1− ε)|||φ? − φ?` |||2 + 2 εC2
rel

(
η`(φ

k
` )

2 + C2
stb |||φ?` − φk` |||2

)

73(iii)

≤ (1− ε)|||φ? − φ?` |||2 + 2 εC2
rel η`(φ

k
` )

2

+ 2 εC2
relC

2
stb (1− qpcg)−2 |||φk+1

` − φk` |||2.

Step 3. We consider the case k+1 < k(`). The stopping criterion (6.30) of Algorithm 57
yields that

η`(φ
k+1
` )2 < λ−2

ctr |||φk+1
` − φk` |||2. (6.77)

Moreover, the Pythagoras identity (6.67) implies that

|||φ?` − φk+1
` |||2 = |||φ?` − φk` |||2 − |||φk+1

` − φk` |||2

= (1− ε) |||φ?` − φk` |||2 + ε |||φ?` − φk` |||2 − |||φk+1
` − φk` |||2.

(6.78)

Further, we note the Pythagoras identity

|||φ? − φ?` |||2 + |||φ?` − ψ`|||2 = |||φ? − ψ`|||2 for all ψ` ∈ P0(T`). (6.79)

Combining (6.77)�(6.79) and applying Lemma 73(iii), we see that

∆k+1
` = µ η`(φ

k+1
` )2 + |||φ?` − φk+1

` |||2 + |||φ? − φ?` |||2

< (1− ε) |||φ?` − φk` |||2 + ε |||φ?` − φk` |||2

+ (µλ−2
ctr − 1)|||φk+1

` − φk` |||2 + |||φ? − φ?` |||2
73(iii)

≤ (1− ε) |||φ?` − φk` |||2

+
(
ε (1− qpcg)−2 + µλ−2

ctr − 1
)
|||φk+1

` − φk` |||2 + |||φ? − φ?` |||2.
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Step 2 further yields that

∆k+1
` ≤ (1− ε)

(
|||φ?` − φk` |||2 + |||φ? − φ?` |||2

)
+ 2 εC2

rel η`(φ
k
` )

2

+
(
ε (1− qpcg)−2 + µλ−2

ctr − 1 + 2 εC2
relC

2
stb (1− qpcg)−2

)
|||φk+1

` − φk` |||2.

Using (6.73)�(6.74), (6.79), and (6.76), we thus see that

∆k+1
`

(6.73)−(6.74)
≤ (1− ε)

(
|||φ?` − φk` |||2 + |||φ? − φ?` |||2

)
+ (1− ε)µ η`(φk` )2

(6.79)

≤ (1− ε)
(
µ η`(φ

k
` )

2 + |||φ? − φk` |||2
)

(6.76)

≤ qctr ∆k
` ,

if k + 1 < k(`). This concludes the proof of (6.68).
Step 4. We use the de�nition φ0

`+1 := φ
k
` from Step (iv) of Algorithm 57 to see that

∆0
`+1 = µ η`+1(φ0

`+1)2 + |||φ? − φ0
`+1|||2

= µ η`+1(φ
k
` )

2 + |||φ? − φk` |||2.
(6.80)

For the �rst summand of (6.80), we use stability (A1) and reduction (A2). Together with
the Dör�er marking strategy in Step (iii) of Algorithm 57 andM` ⊆ T`\T`+1, we see that

η`+1(φ
k
` )

2 = η`+1(T`+1\T`, φk` )2 + η`+1(T`+1 ∩ T`, φk` )2

(A1)−(A2)

≤ qred η`(T`\T`+1, φ
k
` )

2 + η`(T`+1 ∩ T`, φk` )2

= η`(φ
k
` )

2 − (1− qred) η`(T`\T`+1, φ
k
` )

2

(6.31)

≤ η`(φ
k
` )

2 − (1− qred)θ2 η`(φ
k
` )

2

(6.71)
= qest η`(φ

k
` )

2.

(6.81)

With this and stability (A1), the Young inequality and Lemma 73(ii) yield that

η`+1(φ
k
` )

2
(6.81)

≤ qest η`(φ
k
` )

2

(A1)

≤ (1 + γ) qest η`(φ
k−1
` )2 + (1 + γ−1) qestC

2
stb |||φk` − φ

k−1
` |||2

73(ii)

≤ (1 + γ) qest η`(φ
k−1
` )2

+ (1 + γ−1) qestC
2
stb (1 + qpcg)2 |||φ?` − φk−1

` |||2.

(6.82)

For the second summand of (6.80), we apply the Pythagoras identity (6.79) together with
Lemma 73(i) and obtain that

|||φ? − φk` |||2
(6.79)

= |||φ? − φ?` |||2 + |||φ?` − φk` |||2
73(i)

≤ |||φ? − φ?` |||2 + q2
pcg |||φ?` − φk−1

` |||2.
(6.83)
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Combining (6.80)�(6.83), we end up with

∆0
`+1 = µ η`+1(φ

k
` )

2 + |||φ? − φk` |||2

≤ µ (1 + γ) qest η`(φ
k−1
` )2

+
(
µ (1 + γ−1) qestC

2
stb (1 + qpcg)2 + q2

pcg

)
|||φ?` − φk−1

` |||2 + |||φ? − φ?` |||2.

Using the same arguments as in Step 2, we get that

∆0
`+1 ≤ µ (1 + γ) qest η`(φ

k−1
` )2

+
(
µ (1 + γ−1) qestC

2
stb (1 + qpcg)2 + q2

pcg

)
|||φ?` − φk−1

` |||2

+ (1− κ)|||φ? − φ?` |||2 + 2κC2
rel η`(φ

k−1
` )2 + 2κC2

relC
2
stb |||φ?` − φk−1

` |||2

=
(
µ (1 + γ) qest + 2κC2

rel

)
η`(φ

k−1
` )2 + (1− κ)|||φ? − φ?` |||2

+
(
µ (1 + γ−1) qestC

2
stb (1 + qpcg)2 + q2

pcg + 2κC2
relC

2
stb

)
|||φ?` − φk−1

` |||2
(6.76)

≤ qctr µ ηj(φ
k−1
` )2 + qctr |||φ? − φ?` |||2 + qctr |||φ?` − φk−1

` |||2
(6.79)

= qctr ∆
k−1
` .

This concludes the proof of (6.69).
Step 5. Inequality (6.70) follows by induction. This concludes the proof.

Proof of Theorem 68(b). The proof is split into three steps.
Step 1. Let ` ∈ N. Recall the Pythagoras identity (6.79). We use stability (A1) and

the stopping criterion (6.30) of Algorithm 57 to see that

∆
k−1
`

(6.79)
= µ η`(φ

k−1
` )2 + |||φ?` − φk−1

` |||2 + |||φ? − φ?` |||2
(A1)

. η`(φ
k
` )

2 + |||φk` − φ
k−1
` |||2 + |||φ?` − φk` |||2 + |||φ? − φ?` |||2

(6.30)

. η`(φ
k
` )

2 + |||φ?` − φk` |||2 + |||φ? − φ?` |||2
(6.79)' ∆

k
` .

With the Pythagoras identity (6.67), we argue similarly to obtain that

∆
k
`

(6.79)
= µ η`(φ

k
` )

2 + |||φ?` − φk` |||2 + |||φ? − φ?` |||2
(A1)

. η`(φ
k−1
` )2 + |||φk` − φ

k−1
` |||2 + |||φ?` − φk` |||2 + |||φ? − φ?` |||2

(6.67)
= η`(φ

k−1
` )2 + |||φ?` − φk−1

` |||2 + |||φ? − φ?` |||2
(6.79)' ∆

k−1
` .

Hence, it follows that ∆
k
` ' ∆

k−1
` .
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Step 2. For 0 ≤ ` ≤ `′, de�ne k̂(`) := k̂ ∈ N0 by

k̂ :=

{
k(`) if ` < `′,

k′ if ` = `′.

From Step 1, Lemma 74, and the geometric series (for the sum over k), it follows that

`′∑

`=0

k̂(`)∑

k=0

(∆k
` )
−1 . (∆k′

`′ )
−1 +

`′∑

`=0

k̂(`)−1∑

k=0

(∆k
` )
−1

(6.70)

≤ (∆k′
`′ )
−1 +

`′∑

`=0

k̂(`)−1∑

k=0

q
|(`,k̂−1)|−|(`,k)|
ctr (∆k̂−1

` )−1

. (∆k′
`′ )
−1 +

`′∑

`=0

(∆k̂−1
` )−1.

For k′ < k(`′), inequality (6.70) and the geometric series (for the sum over `) yield that

`′∑

`=0

(∆k̂−1
` )−1

(6.70)

.
`′∑

`=0

q
|(`′,k′)|−|(`,k̂−1)|
ctr (∆k′

`′ )
−1 . (∆k′

`′ )
−1.

For k′ = k(`′), inequality (6.70), the geometric series, and Step 1 yield that

`′∑

`=0

(∆k̂−1
` )−1 = (∆

k−1
`′ )−1 +

`′−1∑

`=0

(∆
k−1
` )−1

(6.70)

.
(

1 +
`′−1∑

`=0

q
|(`′,k−1)|−|(`,k−1)|
ctr

)
(∆

k−1
`′ )−1

. (∆
k−1
`′ )−1

' (∆
k
`′)
−1

= (∆k′
`′ )
−1.

Overall, it follows that

`′∑

`=0

k̂(`)∑

k=0

(∆k
` )
−1 . (∆k′

`′ )
−1 for all (`′, k′) ∈ Q. (6.84)

Step 3. For the convenience of the reader, we recall an argument from the proof
of [CFPP14, Lemma 4.9]: Let s > 0. Let C > 0 and αn ≥ 0 satisfy that

N−1∑

n=0

α−1/s
n ≤ C α−1/s

N for all N ∈ N.
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Then, it holds that

(1 + C−1)

N−1∑

n=0

α−1/s
n ≤

N−1∑

n=0

α−1/s
n + αN =

N∑

n=0

α−1/s
n for all N ∈ N.

Inductively, it follows that

(1 + C−1)m
N∑

n=0

α−1/s
n ≤

N+m∑

n=0

α−1/s
n for all N,m ∈ N0.

This implies that

α
−1/s
N ≤

N∑

n=0

α−1/s
n

≤ (1 + C−1)−m
N+m∑

n=0

α−1/s
n

≤ (1 + C) (1 + C−1)−m α−1/s
N+m

for all N,m ∈ N0. This is equivalent to

α
1/s
N+m ≤ (1 + C) (1 + C−1)−m α1/s

N .

Step 4. Since the index set Q is linearly ordered with respect to the total step counter
|(·, ·)|, Step 2 and Step 3 with s = 2 imply the existence of 0 < qlin < 1 such that

(∆k′
`′ )

1/2 . q
|(`′,k′)|−|(`,k)|
lin (∆k

` )
1/2 (6.85)

for all (`, k), (`′, k′) ∈ Q with (`′, k′) > (`, k). Clearly, it holds that Λk` ' (∆k
` )

1/2 for all
(`, k) ∈ Q. This and (6.85) conclude the proof.

Proof of Theorem 68(c)

As in Chapter 4, the proof of optimal convergence rates requires the assumptions (R1)�
(R3) on the mesh-re�nement strategy. For 3D BEM (with 2D NVB from Section 3.6)
and 2D BEM (with extended 1D bisection from Section 3.5) these properties are ful�lled,
cf. Section 3.5 and Section 3.6 respectively.
Recall the constants Cstab > 0 from (A1) and Cdrl > 0 from (A4). Suppose that 0 < θ ≤ 1

and λctr > 0 are su�ciently small such that

0 < θ′′ :=
θ + λctr/λopt

1− λctr/λopt
< θopt :=

(
1 + C2

stbC
2
drl

)−1/2
, (6.86)

where

λopt :=
(
Cstab

qpcg

1− qpcg

)−1
.
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In particular, it holds that 0 < θ < θopt and 0 < λctr < λopt. We need the following
comparison lemma which is found in [CFPP14, Lemma 4.14].

Lemma 75. Suppose (R2), (A1), (A2), and (A4). Recall the assumption (6.86). There
exist constants C1, C2 > 0 such that for all s > 0 with ‖φ?‖As < ∞ and all ` ∈ N0, there
exists R` ⊆ T` which satis�es

#R` ≤ C1C
−1/s
2 ‖φ?‖1/sAs

η`(φ
?
` )
−1/s, (6.87)

as well as the Dör�er marking criterion

θ′′η`(φ
?
` ) ≤ η`(R`, φ?` ). (6.88)

The constants C1, C2 depend only on the constants of (A1), (A2), and (A4).

Another lemma, which we need for the proof of Theorem 68(c), shows that the iterates
φk` of Algorithm 57 are close to the exact Galerkin approximation φ?` ∈ P0(T`).

Lemma 76. Let 0 < λctr < λopt. For all ` ∈ N0, it holds that

|||φ?` − φk` ||| ≤ λctr
qpcg

1− qpcg
min

{
η`(φ

k
` ) ,

1

1− λctr/λopt
η`(φ

?
` )
}
. (6.89)

Moreover, there holds equivalence

(1− λctr/λopt) η`(φ
k
` ) ≤ η`(φ?` ) ≤ (1 + λctr/λopt) η`(φ

k
` ). (6.90)

Proof. Stability (A1) yields that

|η`(φ?` )− η`(φk` )| ≤ Cstab |||φ?` − φk` |||.
Therefore, Lemma 73(iv) and the stopping criterion (6.30) of Algorithm 57 imply that

|||φ?` − φk` |||
73(iv)

≤ qpcg

1− qpcg
|||φk` − φ

k−1
` |||

(6.30)

≤ λctr
qpcg

1− qpcg
η`(φ

k
` )

(A1)

≤ λctr
qpcg

1− qpcg

(
η`(φ

?
` ) + Cstab |||φ?` − φk` |||

)
.

Since 0 < λctr < λopt and hence

λctrCstab
qpcg

1− qpcg
= λctr/λopt < 1,

this yields that

|||φ?` − φk` ||| ≤
λctr

qpcg

1−qpcg

1− λctrCstab
qpcg

1−qpcg

η`(φ
?
` )

= λctr
qpcg

1− qpcg

1

1− λctr/λopt
η`(φ

?
` ).
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Altogether, this proves (6.89). Moreover, with stability (A1), we see that

η`(φ
?
` )

(A1)

≤ η`(φ
k
` ) + Cstab |||φ?` − φk` |||

(6.89)

≤ (1 + λctr/λopt) η`(φ
k
` )

as well as

η`(φ
k
` )

(A1)

≤ η`(φ
?
` ) + Cstab |||φ?` − φk` |||

(6.89)

≤
(

1 +
λctr/λopt

1− λctr/λopt

)
η`(φ

?
` )

=
1

1− λctr/λopt
η`(φ

?
` ).

This concludes the proof.

The following lemma immediately shows �⇐=� in (68).

Lemma 77. Suppose (R1). For ` ∈ N0, let T̂`+1 = refine(T̂`,M̂`) with arbitrary, but

non-empty M̂` ⊆ T̂` and T̂0 = T0. Let Q̂ ⊆ N0×N0 be an index set and φ̂k` ∈ P0(T̂`) for all
(`, k) ∈ Q̂. Let s > 0 and suppose that the corresponding quasi-errors Λ̂k` :=

(
|||φ? − φ̂k` |||2 +

η̂`(φ̂
?
` )

2
)1/2

satisfy that

sup
(`,k)∈Q̂

(
#T̂` −#T0 + 1

)s
Λ̂k` <∞. (6.91)

Then, it follows that ‖φ?‖As <∞.

Proof. Due to the Pythagoras identity (6.79) and stability (A1), it holds that

(Λ̂k` )
2 = |||φ? − φ̂k` |||2 + η̂`(φ̂

k
` )

2

(6.79)
= |||φ? − φ̂?` |||2 + |||φ̂?` − φ̂k` |||2 + η̂`(φ̂

k
` )

2

(A1)

& η̂`(φ̂
?
` )

2.

(6.92)

Additionally, [BHP17, Lemma 22] shows that

#T• −#T0 + 1 ≤ #T• ≤ #T0

(
#T• −#T0 + 1

)
for all T• ∈ T. (6.93)

Given N ∈ N0, there exists an index ` ∈ N0 such that

#T̂` −#T0 ≤ N < N + 1 ≤ #T̂`+1 −#T0 + 1

(6.93)

≤ #T̂`+1

(R1)

. #T̂`
(6.93)

. #T̂` −#T0 + 1.

(6.94)
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With (6.92)�(6.94), it follows that

(N + 1)s min
T•∈refine(T0)
#T•−#T0≤N

η•(φ?•)
(6.94)

.
(
#T̂` −#T0 + 1

)s
η̂`(φ̂

?
` )

(6.92)

. sup
(`,k)∈Q̂

(
#T̂` −#T0 + 1

)s
Λ̂k`

(6.91)
< ∞.

Since the upper bound is �nite and independent of N , this implies that ‖φ?‖As <∞.

Proof of Theorem 68(c). With Lemma 77, it only remains to prove the implication
�=⇒� in (68). The proof is split into three steps, where we suppose that ‖φ?‖As <∞.
Step 1. By Assumption (6.86), Lemma 75 provides a set R` ⊆ T` with (6.87)�(6.88).

Due to stability (A1) and λ−1
opt = Cstb

qpcg

1−qpcg
, it holds that

η`(R`, φ?` )
(A1)

≤ η`(R`, φk` ) + Cstb |||φ?` − φk` |||
(6.89)

≤ η`(R`, φk` ) + λctr/λopt η`(φ
k
` ).

Together with θ′′η`(φ?` ) ≤ η`(R`, φ?j ), this proves that

(1− λctr/λopt) θ
′′ η`(φ

k
` )

(6.90)

≤ θ′′ η`(φ
?
` )

≤ η`(R`, φ?` )
≤ η`(R`, φk` ) + λctr/λopt η`(φ

k
` )

and results in

θ η`(φ
k
` )

(6.86)
=

(
(1− λctr/λopt)θ

′′ − λctr/λopt

)
η`(φ

k
` ) ≤ η`(R`, φ

k
` ). (6.95)

Hence, R` satis�es the Dör�er marking for φk` with parameter θ. By choice of M` in
Step (iii) of Algorithm 57, we thus infer that

#M`

(6.95)

. #R`
(6.87)

. η`(φ
?
` )
−1/s (6.90)' η`(φ

k
` )
−1/s for all ` ∈ N0.

The mesh-closure estimate (R3) guarantees that

#T` −#T0 + 1
(R3)

.
`−1∑

j=0

#Mj .
`−1∑

j=0

ηj(φ
k
j )
−1/s for all ` > 0. (6.96)
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Step 2. For ` = 0, it holds that 1 . (Λ
k
0)−1/s. For ` > 0, we proceed as follows:

Remark 69 yields that ηj(φ
k
j ) ' Λ

k
j . Theorem 68(b) and the geometric series prove that

`−1∑

j=0

ηj(φ
k
j )
−1/s '

`−1∑

j=0

(Λ
k
j )
−1/s

(6.64)

.
`−1∑

j=0

(q
1/s
lin )|(`,k)−(j,k)| (Λk` )

−1/s

. (Λ
k
` )
−1/s.

Combining this with (6.96) and including the estimate for ` = 0, we derive that

#T` −#T0 + 1 . (Λ
k
` )
−1/s for all ` ∈ N0. (6.97)

Step 3. Arguing as in (6.94) and employing Theorem 68(b), we see that

#T` −#T0 + 1
(6.94)' #T`−1 −#T0 + 1

(6.97)

. (Λ
k
`−1)−1/s

(6.64)

. (Λk` )
−1/s

for all (`, k) ∈ Q with ` > 0. Since k(0) ≤ #T0 <∞, we hence conclude that

sup
(`,k)∈Q

(#T` −#T0 + 1)s Λk` <∞.

This concludes the proof of Theorem 68.

6.5.5 Almost optimal computational complexity

In order to get an e�cient implementation, we suppose that we use H2-matrices for the
e�cient treatment of the discrete single-layer integral operator. Then, the storage require-
ments (and the cost for one matrix-vector multiplication respectively) of an H2-matrix are
of order O(Np2), where N is the matrix size and p ∈ N is the local block rank. For
H2-matrices (unlike H-matrices), these costs are, in particular, independent of a possibly
unbalanced binary tree which underlies the hierarchical data structure [Hac15].
For a mesh T• ∈ T, we employ the local block rank p = O(log(1 + #T•)) to ensure that

the matrix compression is asymptotically exact as N = #T• → ∞, i.e., the error between
the exact matrix and the H-matrix decays exponentially fast, cf. [Hac15]. We stress that we
neglect this error in the following and assume that the matrix-vector multiplication (based
on the H2-matrix) yields the exact matrix-vector product.
The computational cost for storing A• (as well as for one matrix-vector multiplication)

is O((#T•) log2(1 + #T•)). In an idealized optimal case, the computation of φ?• is hence (at
least) of cost O((#T•) log2(1 + #T•)).
We consider the computational cost for one step of Algorithm 57:

� We assume that one step of the PCG algorithm with the employed optimal precon-
ditioner is of cost O

(
(#T`) log2(1 + #T`)

)
, since the evaluation of one matrix-vector

multiplication with the preconditioner PL can be done in O
(
#TL

)
, cf. Section 6.5.1.
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� We assume that we can compute η`(ψ`) for any ψ` ∈ P0(T`) (by means of numerical
quadrature) with O

(
(#Tj) log2(1 + #Tj)

)
operations.

� Clearly, the Dör�er marking in Step (iii) can be done in O
(
(#Tj) log(1+#Tj)

)
opera-

tions by sorting. Moreover, for Cmark = 2, Stevenson [Ste07] proposed a realization of
the Dör�er marking based on binning, which can be performed at linear cost O(#Tj).

� Finally, the mesh-re�nement in Step (iv) can be done in linear complexity O(#Tj) if
the data structure is appropriate.

Overall, one step of Algorithm 57 is thus done in O((#T`) log2(1 + #Tj)) operations. How-
ever, an adaptive step (`′, k′) ∈ Q depends on the full history of previous steps.

� Hence, the cumulative computational complexity for the adaptive step (`′, k′) ∈ Q is
of order

O
( ∑

(`,k)≤(`′,k′)

(#T`) log2(1 + #T`)
)
.

The following corollary proves that Algorithm 57 does not only lead to convergence of the
quasi-error Λk` with optimal rate with respect to the degrees of freedom (see Theorem 68),
but also with almost optimal rate with respect to the computational costs.

Corollary 78. For ` ∈ N0, let T̂`+1 = refine(T̂`,M̂`) with arbitrary M̂` ⊆ T̂` and T̂0 = T0.
Let s > 0 and suppose that the corresponding error estimator η̂`(φ̂

?
` ) converges at rate s with

respect to the single-step computational cost, i.e.,

sup
`∈N0

[
(#T̂`) log2(1 + #T̂`)

]s
η̂`(φ̂

?
` ) <∞. (6.98)

Suppose that λctr and θ satisfy the assumptions of Theorem 68(c). Then, the quasi-errors
Λk` generated by Algorithm 57 converge almost at rate s with respect to the cumulative
computational cost, i.e.,

sup
(`′,k′)∈Q

[ ∑

(`,k)≤(`′,k′)

(#T`) log2(1 + #T`)
)]s−ε

Λk
′
`′ <∞ for all ε > 0. (6.99)

Proof. For all δ > 0, it holds that

#T• −#T0 + 1
(6.93)' #T• ≤ (#T•) log2(1 + #T•) . (#T•)1+δ for all T• ∈ T,

where the hidden constant depends only on δ. From (6.98), it thus follows that

sup
`∈N0

[
#T̂` −#T0 + 1

]s
η̂`(φ̂

?
` ) . sup

`∈N0

[
(#T̂`) log2(1 + #T̂`)

]s
η̂`(φ̂

?
` ) <∞.

From Lemma 77, we derive that ‖φ?‖As <∞. Hence, Theorem 68(c) yields that

sup
(`,k)∈Q

[
#T`

]s
Λk` ' sup

(`,k)∈Q

[
#T` −#T0 + 1

]s
Λk` <∞. (6.100)
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Let 0 < ε < s and choose δ > 0 such that

0 < s− ε =
s

1 + δ
=: t.

This leads to

(#T`) log2(1 + #T`) . (#T`)1+δ
(6.100)

. (Λk` )
−(1+δ)/s = (Λk` )

−1/t for all (`, k) ∈ Q.

From Theorem 68(b) and the geometric series, it follows that

∑

(`,k)≤(`′,k′)

(Λk` )
−1/t

(6.64)

.
∑

(`,k)≤(`′,k′)

(q
1/t
lin )|(`

′,k′)|−|(`,k)|(Λk
′
`′ )
−1/t . (Λk

′
`′ )
−1/t for all (`′, k′) ∈ Q.

Combining the last two estimates, we see that

[ ∑

(`,k)≤(`′,k′)

(#T`) log2(1 + #T`)
)]s−ε

. (Λk
′
`′ )
−(s−ε)/t = (Λk

′
`′ )
−1 for all (`′, k′) ∈ Q.

This concludes the proof.

6.6 Hyper-singular integral equation

In this section, we brie�y introduce the setting of the hyper-singular integral equation and
show that it �ts into our abstract framework and that the main results still hold true.
Given g : Γ→ R, the hyper-singular integral equation seeks u? : Γ→ R such that

(Wu?)(x) = −∂n(x)

∫

Γ
∂n(y)G(x− y)u?(y) dy = g(x) for all x ∈ Γ, (6.101)

where ∂n denotes the normal derivative with the outer unit normal vector n(·) on Γ ⊆ ∂Ω.
Recall from Remark 55 that the hyper-singular integral operator

W : H̃1/2+s(Γ)→ H−1/2+s(Γ)

is a bounded linear operator for all −1/2 ≤ s ≤ 1/2 which is even an isomorphism for
−1/2 < s < 1/2. For s = 0, the operator W is symmetric and positive semi-de�nite
with kernel being the constant functions. Hence, for Γ $ ∂Ω, the operator W : H̃1/2(Γ)→
H−1/2(Γ) is an elliptic isomorphism. Moreover, for Γ = ∂Ω and

H
1/2
∗ (Γ) :=

{
ψ ∈ H±1/2(Γ) : 〈ψ , 1〉 = 0

}
,

the operator W : H
1/2
∗ (Γ)→ H

−1/2
∗ (Γ) is an elliptic isomorphism. Therefore,

〈〈u , v〉〉 :=

{
〈Wu , v〉, if Γ $ ∂Ω,

〈Wu , v〉+ 〈u , v〉, if Γ = ∂Ω
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de�nes a scalar product on H̃1/2(Γ), and the induced norm

|||u||| := 〈〈u , u〉〉1/2

is an equivalent norm on H̃1/2(Γ). Let g ∈ H−1/2(Γ). If Γ $ ∂Ω, suppose additionally that

g ∈ H−1/2
∗ (∂Ω). Then, (6.101) admits unique solutions u? ∈ H̃1/2(Γ) and u? ∈ H1/2

∗ (∂Ω)
respectively, such that u? ∈ H̃1/2(Γ) is also the unique solution of the variational formulation

〈〈u? , v〉〉 = 〈g , v〉 for all v ∈ H̃1/2(Γ).

Given a mesh T• of Γ, let

S̃1(T•) :=
{
v ∈ H̃1/2(Γ) : ∀T ∈ T• v|T is a�ne

}
.

The Lax�Milgram theorem yields existence and uniqueness of u?• ∈ S̃1(T•) such that

〈〈u?• , v•〉〉 = 〈g , v•〉 for all v• ∈ S̃1(T•).

With the corresponding weighted-residual error estimator, it holds that

|||u? − u?•||| ≤ Crel η•(u
?
•) :=

( ∑

T∈T•
η•(T, u?•)

2

)1/2

,

where

η•(T, u?•)
2 := hT ‖g −Wu?•‖2L2(T ),

cf. [CS95, Car97] for d = 2 and [CMPS04] for d = 3 respectively.
In [Füh14, FFPS17a], optimal additive Schwarz preconditioners are derived for this set-

ting. Hence, Algorithm 57 can also be used in the present setting. We refer to [FFK+15,
Section 3.3] for the fact that the axioms of adaptivity, i.e., (A1)�(A4) from Proposition 70
remain valid for the hyper-singular integral equation. All other arguments in Section 6.5.4
rely only on general properties of the PCG algorithm (Section 6.5.4), the properties (A1)�
(A4), and the Hilbert space setting of ||| · |||. Overall, this proves that our main results
(Theorem 68 and Corollary 78) also cover the hyper-singular integral equation.
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6.7 Numerical experiments

6.7 Numerical experiments

In this section, we present numerical experiments that underpin our theoretical �ndings. We
use lowest-order BEM for direct and indirect formulations in 2D as well as 3D. For ease of
notation, we de�ne λ := λctr for this section. We compare the performance of Algorithm 57
for

� di�erent values of λ ∈ {1, 10−0.5, 10−1, . . . , 10−4},

� di�erent values of θ ∈ {0.05, 0.1, 0.15, . . . , 1},

where θ = 1 corresponds to uniform mesh-re�nement. In particular, we monitor the condi-
tion numbers of the arising BEM systems for diagonal preconditioning [AMT99], the pro-
posed additive Schwarz preconditioning from Section 6.5.1, and no preconditioning. The
2D implementation is based on the MATLAB implementation Hilbert [AEF+14], while
the 3D implementation relies on an extension of the BEM++ library [SBA+13].

6.7.1 Slit problem in 2D

Let Γ := (−1, 1)× {0}, cf. Figure 6.2. We consider the weakly-singular integral equation

V φ = 1 on Γ. (6.102)

The unique exact solution of (6.102) reads

φ?(x, 0) := − 2x√
1− x2

.

For uniform mesh-re�nement, we thus expect a convergence order of O(N−1/2), while the
optimal rate is O(N−3/2) with respect to the number of elements.
Figure 6.2 shows the condition numbers for an arti�cial re�nement towards the left end

point (−1, 0) and for Algorithm 57 with λ = 10−3 and θ = 0.5. For the proposed additive
Schwarz preconditioner, we see that the condition number of the preconditioned Galerkin
matrix stays uniformly bounded in both cases, which underpins Theorem 60.
In Figure 6.3�6.4, we compare Algorithm 57 for di�erent values for θ and λ as well as

uniform mesh-re�nement. Uniform mesh-re�nement leads only to the rate O(N−1/2), while
adaptivity, independently of the value of θ and λ, regains the optimal rate O(N−3/2).
In Figure 6.5, we compare the computational cost to reach the precision τ = 10−4 for

λ ∈ {1, 10−0.5, . . . , 10−4} and θ ∈ {0.05, 0.1, . . . , 0.95}. As a result, we get that the best
choice is λ = 1 and θ = 0.65. For the overall computational cost it then holds that

∑

(`′,k′)≤(`,k)

(#T`′) log2(#T`′) ≈ 353116.2086,

where φk` is the �rst approximation such that η`(φ
k
` ) < 10−4.
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Figure 6.2: Example from Section 6.7.1 (Slit problem in 2D): Condition numbers of the pre-
conditioned and non-preconditioned Galerkin matrix for an arti�cial re�nement
towards the left end point (top) and for the matrices arising from Algorithm 57
(bottom).
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Figure 6.3: Example from Section 6.7.1 (Slit problem in 2D): Estimator convergence for
�xed values of λ (left: λ = 1, right: λ = 10−3) and θ ∈ {0.2, 0.4, 0.6, 0.8}
(top) and for �xed values of θ (left: θ = 0.4, right: θ = 0.6) and λ ∈
{1, 10−1, . . . , 10−4} (bottom).
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Figure 6.4: Example from Section 6.7.1 (Slit problem in 2D): Estimator convergence for
�xed values of λ (left: λ = 1, right: λ = 10−3) and θ ∈ {0.2, 0.4, 0.6, 0.8}
(top) and for �xed values of θ (left: θ = 0.4, right: θ = 0.6) and λ ∈
{1, 10−1, . . . , 10−4} (bottom).

190



6.7 Numerical experiments

θ

λ
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

0.05 5.0e+07 5.0e+07 5.0e+07 1.0e+08 1.0e+08 1.4e+08 1.8e+08 2.3e+08 3.2e+08

0.1 1.9e+07 1.9e+07 2.0e+07 3.9e+07 4.4e+07 6.0e+07 7.8e+07 1.1e+08 1.4e+08

0.15 9.5e+06 9.5e+06 1.9e+07 2.0e+07 2.5e+07 3.4e+07 4.7e+07 6.1e+07 7.6e+07

0.2 5.3e+06 5.4e+06 1.2e+07 1.2e+07 1.7e+07 2.3e+07 2.9e+07 4.0e+07 4.7e+07

0.25 3.4e+06 3.4e+06 7.8e+06 8.0e+06 1.2e+07 1.6e+07 2.0e+07 2.7e+07 3.1e+07

0.3 2.3e+06 2.3e+06 5.3e+06 5.6e+06 8.1e+06 1.1e+07 1.5e+07 1.9e+07 2.2e+07

0.35 1.7e+06 1.7e+06 3.8e+06 4.2e+06 5.7e+06 7.9e+06 1.1e+07 1.4e+07 1.6e+07

0.4 1.2e+06 1.7e+06 2.9e+06 3.1e+06 4.4e+06 6.1e+06 8.6e+06 1.0e+07 1.2e+07

0.45 9.3e+05 2.1e+06 2.2e+06 2.5e+06 3.4e+06 4.9e+06 6.6e+06 8.1e+06 9.5e+06

0.5 7.3e+05 1.7e+06 1.8e+06 2.0e+06 2.7e+06 4.1e+06 5.3e+06 6.4e+06 7.5e+06

0.55 5.4e+05 1.4e+06 1.4e+06 1.6e+06 2.2e+06 3.2e+06 4.1e+06 5.0e+06 5.9e+06

0.6 4.2e+05 1.0e+06 1.0e+06 1.4e+06 1.8e+06 2.7e+06 3.7e+06 4.3e+06 5.0e+06

0.65 3.5e+05 8.2e+05 8.5e+05 1.1e+06 1.6e+06 2.2e+06 3.0e+06 3.5e+06 4.2e+06

0.7 4.2e+05 6.4e+05 7.0e+05 9.2e+05 1.3e+06 1.8e+06 2.3e+06 2.7e+06 3.3e+06

0.75 4.4e+05 6.2e+05 6.5e+05 9.2e+05 1.3e+06 1.8e+06 2.2e+06 2.7e+06 3.0e+06

0.8 4.9e+05 5.5e+05 5.8e+05 1.0e+06 1.3e+06 1.6e+06 2.0e+06 2.3e+06 2.5e+06

0.85 4.9e+05 7.0e+05 9.3e+05 1.2e+06 1.6e+06 2.1e+06 2.5e+06 2.8e+06 3.2e+06

0.9 7.5e+05 7.9e+05 1.0e+06 1.4e+06 1.8e+06 2.4e+06 2.7e+06 3.1e+06 3.7e+06

0.95 8.1e+05 1.2e+06 1.6e+06 2.1e+06 2.6e+06 3.2e+06 4.2e+06 4.7e+06 5.3e+06

min max

Figure 6.5: Example from Section 6.7.1 (Slit problem in 2D): Overall computational cost∑
(`′,k′)≤(`,k)(#T`′) log2(#T`′) such that η`(φ

k
` ) < τ for given precision τ = 10−4,

λ ∈ {1, 10−0.5, . . . , 10−4}, and θ ∈ {0.05, 0.1, . . . , 0.95}.
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Figure 6.6: Z�shaped domain Ω ⊂ R2 with initial mesh T0 (top) and L�shaped domain
Ω ⊂ R2 with initial mesh T0 (bottom).
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Figure 6.7: Example from Section 6.7.2 (Z-shaped domain in 2D): Estimator convergence
for �xed value of λ = 10−3 and θ ∈ {0.2, 0.4, 0.6, 0.8} (top) and for �xed value
of θ = 0.6 and λ ∈ {1, 10−1, . . . , 10−4} (bottom).
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θ

λ
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

0.05 8.7e+06 8.7e+06 9.2e+06 1.6e+07 2.6e+07 3.6e+07 4.4e+07 5.3e+07 6.5e+07

0.1 5.3e+06 5.3e+06 5.9e+06 1.3e+07 1.9e+07 2.4e+07 2.9e+07 3.5e+07 4.3e+07

0.15 2.9e+06 2.9e+06 4.0e+06 8.1e+06 1.1e+07 1.4e+07 1.7e+07 2.1e+07 2.5e+07

0.2 1.8e+06 1.8e+06 3.0e+06 5.2e+06 7.2e+06 9.1e+06 1.1e+07 1.3e+07 1.6e+07

0.25 1.1e+06 1.1e+06 2.3e+06 3.8e+06 5.1e+06 6.3e+06 7.7e+06 9.2e+06 1.1e+07

0.3 8.2e+05 8.2e+05 2.0e+06 3.0e+06 3.9e+06 4.7e+06 5.6e+06 6.8e+06 7.9e+06

0.35 6.0e+05 6.1e+05 1.6e+06 2.4e+06 3.0e+06 3.6e+06 4.3e+06 5.2e+06 6.0e+06

0.4 4.4e+05 5.0e+05 1.3e+06 1.9e+06 2.3e+06 2.8e+06 3.4e+06 4.1e+06 4.7e+06

0.45 3.4e+05 4.8e+05 1.1e+06 1.5e+06 1.8e+06 2.2e+06 2.7e+06 3.2e+06 3.7e+06

0.5 2.8e+05 4.7e+05 8.5e+05 1.1e+06 1.4e+06 1.7e+06 2.1e+06 2.5e+06 2.9e+06

0.55 2.2e+05 4.1e+05 7.1e+05 9.4e+05 1.2e+06 1.5e+06 1.8e+06 2.1e+06 2.4e+06

0.6 1.9e+05 3.4e+05 5.5e+05 7.5e+05 9.2e+05 1.1e+06 1.4e+06 1.7e+06 1.9e+06

0.65 1.5e+05 3.3e+05 4.8e+05 6.3e+05 7.7e+05 9.8e+05 1.2e+06 1.4e+06 1.6e+06

0.7 1.1e+05 2.6e+05 3.6e+05 5.7e+05 7.1e+05 8.8e+05 1.1e+06 1.3e+06 1.4e+06

0.75 1.1e+05 2.2e+05 3.0e+05 3.8e+05 4.7e+05 6.3e+05 7.5e+05 8.4e+05 9.7e+05

0.8 1.1e+05 2.1e+05 2.7e+05 3.3e+05 4.3e+05 5.7e+05 6.6e+05 7.4e+05 8.5e+05

0.85 1.4e+05 2.6e+05 3.3e+05 4.7e+05 6.1e+05 7.1e+05 8.4e+05 9.4e+05 1.1e+06

0.9 1.5e+05 2.9e+05 3.5e+05 5.6e+05 6.8e+05 8.3e+05 9.6e+05 1.1e+06 1.2e+06

0.95 2.3e+05 2.8e+05 3.8e+05 5.2e+05 7.6e+05 8.9e+05 1.0e+06 1.1e+06 1.4e+06

min max

Figure 6.9: Example from Section 6.7.2 (Weakly-singular integral equation on Z-shaped
domain in 2D): Overall computational cost

∑
(`′,k′)≤(`,k)(#T`′) log2(#T`′) such

that η`(φ
k
` ) < τ for given precision τ = 10−4, λ ∈ {1, 10−0.5, . . . , 10−4}, and

θ ∈ {0.05, 0.1, . . . , 0.95}.
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6.7.2 Weakly-singular integral equation on Z-shaped domain in 2D

Let Γ := ∂Ω be the boundary of the Z-shaped domain with reentrant corner at the origin
(0, 0), cf. Figure 6.6 (top). We consider the weakly-singular integral equation (6.11) with
the right-hand side f = (K + 1/2)g where K : H1/2(Γ) → H1/2(Γ) is the double-layer
operator from Section 6.2.1. We note that the weakly-singular integral equation (6.11) is
then equivalent to the Dirichlet problem

−∆u = 0 in Ω

u = g on Γ.
(6.103)

We prescribe the exact solution u(x1, x2) in 2D polar coordinates

(x1, x2) = r(cos ξ, sin ξ) with ξ ∈ (−π, π)

as follows

u(x1, x2) := r4/7 cos(4 ξ/7). (6.104)

Then, u admits a generic singularity at the reentrant corner. The exact solution φ? of (6.11)
is just the normal derivative of the solution u.
We expect a convergence order ofO(N−4/7) for uniform mesh-re�nement, and the optimal

rate O(N−3/2) for the adaptive strategy, which is seen in Figure 6.7 for di�erent values of
θ and λ.
Figure 6.8 shows the condition numbers for an arti�cial re�nement towards the reentrant

corner as well as the condition numbers for Algorithm 57 with λ = 10−3 and θ = 0.5.
In Figure 6.9, we compare the computational cost to reach the precision τ = 10−4 for

λ ∈ {1, 10−0.5, . . . , 10−4} and θ ∈ {0.05, 0.1, . . . , 0.95}. As a result, we get that the best
choice is λ = 1 and θ = 0.8. For the overall computational cost it then holds that

∑

(`′,k′)≤(`,k)

(#T`′) log2(#T`′) ≈ 105563.4255,

where φk` is the �rst approximation such that η`(φ
k
` ) < 10−4.

6.7.3 Hyper-singular integral equation on L-shaped domain in 2D

Let Γ := ∂Ω be the boundary of the L-shaped domain with reentrant corner at the origin
(0, 0), cf. Figure 6.6 (bottom). We consider the hyper-singular integral equation (6.101) with
the right-hand side g = (1/2−K ′)φ where K ′ : H̃−1/2(Γ)→ H−1/2(Γ) is the adjoint double-
layer operator from Section 6.2.1. We note that the hyper-singular integral equation (6.101)
is then equivalent to the Neumann problem

−∆P = 0 in Ω

∂nP = φ on Γ.
(6.105)

We prescribe the exact solution P (x1, x2) of the Laplace problem in 2D polar coordinates

(x1, x2) = r(cos ξ, sin ξ) with ξ ∈ (−π, π)
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Figure 6.10: Example from Section 6.7.3 (L-shaped domain in 2D): Estimator convergence
for �xed value of λ = 10−3 and θ ∈ {0.2, 0.4, 0.6, 0.8} (top) and for �xed value
of θ = 0.6 and λ ∈ {1, 10−1, . . . , 10−4} (bottom).
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Figure 6.11: Example from Section 6.7.3 (L-shaped domain in 2D): Number of PCG iter-

ations in Algorithm 57 for nested iteration (dashed lines), i.e., u0
`+1 := u

k
` in

Step (iv) of Algorithm 57, and naive initial guess (solid lines), i.e., u0
`+1 := 0.

We compare a �xed value of θ = 0.4 and λ ∈ {1, 10−1, 10−2, 10−3} (top) as
well as a �xed value of λ = 10−3 and θ ∈ {0.2, 0.4, 0.6, 0.8} (bottom).
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θ

λ
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

0.05 1.1e+06 1.1e+06 2.2e+06 3.3e+06 4.7e+06 6.2e+06 7.9e+06 9.7e+06 1.2e+07

0.1 6.0e+05 6.2e+05 1.4e+06 2.1e+06 2.8e+06 3.7e+06 4.7e+06 5.7e+06 6.8e+06

0.15 3.8e+05 4.5e+05 9.9e+05 1.5e+06 1.9e+06 2.6e+06 3.3e+06 4.0e+06 4.8e+06

0.2 2.8e+05 3.4e+05 7.6e+05 1.1e+06 1.5e+06 2.1e+06 2.6e+06 3.1e+06 3.7e+06

0.25 2.3e+05 3.7e+05 7.1e+05 9.9e+05 1.4e+06 1.8e+06 2.3e+06 2.7e+06 3.2e+06

0.3 2.0e+05 3.4e+05 5.4e+05 7.6e+05 1.1e+06 1.4e+06 1.7e+06 2.1e+06 2.5e+06

0.35 1.5e+05 3.2e+05 5.1e+05 7.3e+05 9.9e+05 1.3e+06 1.7e+06 1.9e+06 2.3e+06

0.4 1.4e+05 2.6e+05 4.2e+05 6.2e+05 8.5e+05 1.1e+06 1.4e+06 1.6e+06 2.0e+06

0.45 1.4e+05 2.4e+05 3.4e+05 5.0e+05 6.8e+05 9.1e+05 1.1e+06 1.4e+06 1.5e+06

0.5 9.8e+04 1.9e+05 3.0e+05 4.4e+05 6.4e+05 8.6e+05 1.0e+06 1.3e+06 1.4e+06

0.55 9.4e+04 1.9e+05 2.9e+05 4.0e+05 5.7e+05 7.9e+05 1.0e+06 1.2e+06 1.3e+06

0.6 9.7e+04 1.7e+05 3.3e+05 4.6e+05 6.6e+05 9.0e+05 1.0e+06 1.2e+06 1.4e+06

0.65 9.5e+04 1.6e+05 2.6e+05 3.5e+05 4.9e+05 6.3e+05 7.8e+05 9.0e+05 9.8e+05

0.7 9.1e+04 1.6e+05 2.4e+05 3.5e+05 4.6e+05 6.0e+05 7.0e+05 8.1e+05 9.5e+05

0.75 1.3e+05 2.1e+05 3.1e+05 4.3e+05 5.9e+05 7.2e+05 9.0e+05 1.0e+06 1.2e+06

0.8 9.9e+04 2.1e+05 2.9e+05 3.9e+05 5.1e+05 6.5e+05 8.1e+05 9.0e+05 9.9e+05

0.85 1.7e+05 2.5e+05 3.7e+05 5.2e+05 7.1e+05 8.5e+05 1.0e+06 1.2e+06 1.3e+06

0.9 1.5e+05 2.2e+05 3.0e+05 4.4e+05 5.2e+05 7.1e+05 8.5e+05 9.7e+05 1.1e+06

0.95 2.1e+05 3.2e+05 5.1e+05 6.3e+05 7.5e+05 1.0e+06 1.1e+06 1.4e+06 1.6e+06

min max

Figure 6.12: Example from Section 6.7.3 (Hyper-singular integral equation on L-shaped
domain in 2D): Overall computational cost

∑
(`′,k′)≤(`,k)(#T`′) log2(#T`′) such

that η`(u
k
` ) < τ for given precision τ = 10−4, λ ∈ {1, 10−0.5, . . . , 10−4}, and

θ ∈ {0.05, 0.1, . . . , 0.95}.
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6 Adaptive BEM for elliptic �rst-kind integral equations with optimal PCG solver

as follows

P (x1, x2) := r2/3 cos(2 ξ/3). (6.106)

Then, φ is just the normal derivative of P which has a generic singularity at the reentrant
corner. The exact solution u? of the hyper-singular integral equation (6.101) is simply the
restriction of the function P to the boundary Γ minus the integral mean of P on Γ.
We expect a convergence order ofO(N−2/3) for uniform mesh-re�nement, and the optimal

rate O(N−3/2) for the adaptive strategy, which is seen in Figure 6.10 for di�erent values of
θ and λ.
A naive initial guess in Step (iv) of Algorithm 57 (i.e., if u0

`+1 := 0) leads to a logarithmical

growth of the number of PCG iterations, whereas for nested iteration u0
`+1 := u

k
` the number

of PCG iterations stays uniformly bounded, cf. Figure 6.11.
In Figure 6.12, we compare the computational cost to reach the precision τ = 10−4 for

λ ∈ {1, 10−0.5, . . . , 10−4} and θ ∈ {0.05, 0.1, . . . , 0.95}. As a result, we get that the best
choice is λ = 1 and θ = 0.7. For the overall computational cost it then holds that

∑

(`′,k′)≤(`,k)

(#T`′) log2(#T`′) ≈ 90975.1021,

where uk` is the �rst approximation such that η`(u
k
` ) < 10−4.

6.7.4 Weakly-singular integral equation on L-shaped domain in 3D

Let Γ := ∂Ω be the boundary of the L-shaped domain

Ω = (−1, 1)3\([−1, 0]× [0, 1]× [−1, 1]),

cf. Figure 6.13. We consider the weakly-singular integral equation (6.11) with the right-
hand side f = (K + 1/2)g where K : H1/2(Γ)→ H1/2(Γ) is the double-layer operator from
Section 6.2.1. Again, the weakly-singular integral equation (6.11) is then equivalent to the
Dirichlet problem

−∆u = 0 in Ω

u = g on Γ.
(6.107)

We prescribe the exact solution u(x1, x2, x3) in 3D cylindrical coordinates

(x1, x2, x3) = (r cos ξ, r sin ξ, x3) with ξ ∈ (−π, π)

as follows

u(x1, x2, x3) = x3 r
2/3 cos(2/3 (ξ − π/4)). (6.108)

Note that u admits a singularity along the reentrant edge. The exact solution φ? of (6.11)
is just the normal derivative of the exact solution u.
Figure 6.13 shows the condition numbers for (diagonal or additive Schwarz) precondi-

tioning and no preconditioning for arti�cial re�nements towards one reentrant corner or the
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Figure 6.14: Example from Section 6.7.4 (L-shaped domain in 3D): Estimator convergence
for �xed values of λ = 10−3 and θ ∈ {0.2, 0.4, 0.6, 0.8} (top) and for �xed value
of θ = 0.6 and λ ∈ {1, 10−1, . . . , 10−4} (bottom).
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6.7 Numerical experiments

reentrant edge as well as the condition numbers of the matrices arising from Algorithm 57
with λ = 10−3 and θ = 0.5.
In Figure 6.14, we compare Algorithm 57 with di�erent values for θ and λ to uniform

mesh-re�nement. Uniform mesh-re�nement leads only to a reduced rate of O(N−1/2),
while adaptivity, independently of θ and λ, leads to the improved rate of approximately
O(N−2/3). While one would expect O(N−3/4) for smooth exact solutions φ?, this would
require anisotropic elements along the reentrant edge for the present solution φ? = ∂nu.
Since NVB guarantees uniform γ-shape regularity of the meshes, the latter is not possible
and hence leads to a reduced optimal rate.
In Figure 6.15, we compare the computational cost to reach the precision τ = 10−2 for

λ ∈ {1, 10−0.5, . . . , 10−4} and θ ∈ {0.05, 0.1, . . . , 0.95}. As a result, we get that the best
choice is λ = 1 and θ = 0.8. For the overall computational cost it then holds that

∑

(`′,k′)≤(`,k)

(#T`′) log2(#T`′) ≈ 1067163.4947,

where φk` is the �rst approximation such that η`(φ
k
` ) < 10−2.

6.7.5 Computational complexity

With Figure 6.16�6.17, we aim to underpin the almost optimal computational complexity
of Algorithm 57 (see Corollary 78). To this end, we plot the error estimator η`(φ

k
` ) over the

cumulative sums
∑

(`′,k′)≤(`,k)

#T`′

as well as
∑

(`′,k′)≤(`,k)

(#T`′) log2(#T`′)

for θ = 0.4 and λ ∈ {1, 10−3}. The negative impact of the logarithmic term on the
(preasymptotic) convergence rate is clearly visible.
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6 Adaptive BEM for elliptic �rst-kind integral equations with optimal PCG solver

θ

λctr
1 10−0.5 10−1 10−1.5 10−2 10−2.5 10−3 10−3.5 10−4

0.05 7.2e+07 7.5e+07 1.6e+08 5.6e+08 1.2e+09 2.1e+09 3.4e+09 5.0e+09 6.9e+09

0.1 2.5e+07 3.0e+07 1.2e+08 3.1e+08 5.8e+08 9.8e+08 1.5e+09 2.2e+09 2.9e+09

0.15 1.2e+07 1.8e+07 8.9e+07 1.9e+08 3.5e+08 5.8e+08 8.7e+08 1.2e+09 1.6e+09

0.2 7.1e+06 1.8e+07 6.9e+07 1.4e+08 2.3e+08 3.7e+08 5.5e+08 7.6e+08 1.0e+09

0.25 5.0e+06 1.8e+07 5.2e+07 1.1e+08 1.8e+08 2.8e+08 4.1e+08 5.6e+08 7.3e+08

0.3 3.5e+06 1.6e+07 4.4e+07 8.4e+07 1.4e+08 2.2e+08 3.2e+08 4.3e+08 5.8e+08

0.35 2.7e+06 1.3e+07 3.8e+07 6.7e+07 1.1e+08 1.8e+08 2.5e+08 3.3e+08 4.3e+08

0.4 2.1e+06 1.3e+07 3.1e+07 5.5e+07 9.0e+07 1.4e+08 2.1e+08 2.7e+08 3.5e+08

0.45 1.7e+06 1.0e+07 2.6e+07 4.3e+07 7.6e+07 1.2e+08 1.6e+08 2.2e+08 2.8e+08

0.5 1.9e+06 1.0e+07 2.2e+07 3.8e+07 6.4e+07 9.8e+07 1.3e+08 1.8e+08 2.3e+08

0.55 1.4e+06 1.0e+07 1.6e+07 3.0e+07 6.3e+07 9.2e+07 1.3e+08 1.7e+08 2.2e+08

0.6 1.6e+06 8.6e+06 1.6e+07 2.8e+07 4.6e+07 7.1e+07 9.8e+07 1.3e+08 1.7e+08

0.65 2.2e+06 8.2e+06 1.7e+07 3.0e+07 4.7e+07 6.7e+07 9.3e+07 1.2e+08 1.6e+08

0.7 1.6e+06 6.5e+06 1.2e+07 2.3e+07 3.5e+07 5.1e+07 7.0e+07 9.5e+07 1.1e+08

0.75 2.4e+06 4.7e+06 8.4e+06 1.8e+07 2.5e+07 3.9e+07 5.6e+07 6.8e+07 9.1e+07

0.8 1.1e+06 4.0e+06 8.8e+06 1.5e+07 2.1e+07 3.4e+07 4.2e+07 6.0e+07 7.1e+07

0.85 2.6e+06 6.2e+06 1.5e+07 2.3e+07 4.1e+07 5.2e+07 7.6e+07 1.0e+08 1.2e+08

0.9 2.7e+06 6.3e+06 1.5e+07 2.3e+07 3.8e+07 5.5e+07 7.5e+07 1.0e+08 1.2e+08

0.95 3.2e+06 7.1e+06 1.4e+07 2.5e+07 3.6e+07 5.6e+07 7.3e+07 1.0e+08 1.4e+08

min max

Figure 6.15: Example from Section 6.7 (L-shaped domain in 3D): Overall computational

cost
∑

(`′,k′)≤(`,k)(#T`′) log2(#T`′) such that η`(φ
k
` ) < τ for given precision

τ = 10−2, λ ∈ {1, 10−0.5, . . . , 10−4}, and θ ∈ {0.05, 0.1, . . . , 0.95}.
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