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Kurzfassung

Im Rahmen elliptischer partieller Differentialgleichungen (PDE) betrachten wir die Finite
Elemente Methode (FEM) und die Randelementmethode (BEM). Wir entwickeln sowie
analysieren adaptive Algorithmen, die nicht nur die adaptive Netzverfeinerung steuern,
sondern auch die Terminierung von geeigneten Losern, d.h., die Linearisierung im Fall von
nichtlinearen Differentialgleichungen und das iterative Losen der sich ergebenden linearen
Gleichungssysteme.

Zum einen betrachten wir elliptische PDEs zweiter Ordnung, bei denen die auftretenden
diskreten Systeme nicht exakt gelost werden. Fiir kontrahierende iterative Loser formulie-
ren wir einen adaptiven Algorithmus, der die adaptive Netzverfeinerung sowie die inexakte
Losung der auftretenden nichtlinearen bzw. linearen Systeme iiberwacht und steuert. Wir
beweisen, dass die vorgeschlagene Strategie zu linearer Konvergenz mit optimalen alge-
braischen Raten fiihrt. Hierbei fokussieren wir uns auf Konvergenzraten in Bezug auf den
gesamten Rechenaufwand. Unsere Analysis ist anwendbar auf lineare Probleme, bei de-
nen die linearen Systeme mittels optimal vorkonditionierter CG-Verfahren (PCG) gelost
werden, sowie nichtlineare Probleme mit stark monotoner Nichtlinearitit, die mittels der
sogenannten Zarantonello-Iteration linearisiert werden.

Wir kombinieren die zuvor genannten Resultate im Rahmen elliptischer Randwertproble-
me zweiter Ordnung mit stark monotoner und Lipschitz-stetiger Nichtlinearitdt. Wir prasen-
tieren einen erweiterten adaptiven Algorithmus fiir die Berechnung der numerischen Appro-
ximation, der neben der adaptiven Gitterverfeinerung und der Zarantonello-Linearisierung
auch einen kontrahierenden algebraischen Loser fiir die auftretenden linearen Gleichungs-
systeme steuert. Wir ermitteln Abbruchsbedingungen fiir den algebraischen Loser, die ei-
nerseits nicht zu einschrinkend, aber andererseits ausreichend dafiir sind, dass die inexakte
Zarantonello-Linearisierung kontrahierend bleibt. In dhnlicher Weise ermitteln wir geeig-
nete Abbruchsbedingungen fiir die Zarantonello-Iteration, sodass der Linearisierungsfehler
sich nicht nachteilig auf den residualen a posteriori Fehlerschitzer auswirkt und die ad-
aptive Netzverfeinerung zuverlissig gesteuert wird. Wir beweisen die Kontraktion der (ge-
schachtelten) inexakten Iteration, die auf lineare Konvergenz des Gesamtverfahrens fiihrt.
Desweiteren beweisen wir, dass das Verfahren mit der optimalen Rate in Bezug auf die
Freiheitsgrade konvergiert. Schlieftlich beweisen wir, dass es auch mit derselben optimalen
Rate in Bezug auf den gesamten Rechenaufwand konvergiert.

Zum anderen betrachten wir Adaptivitdt und PCG im Rahmen von Randwertproblemen
fiir elliptische Integralgleichungen erster Art. Ahnlich wie zuvor steuert der prisentierte
adaptive Algorithmus die Terminierung von PCG sowie die lokale Netzverfeinerung. Neben
Konvergenz mit optimalen algebraischen Raten beweisen wir, dass das Verfahren mit fast-
optimaler Rate in Bezug auf den gesamten Rechenaufwand konvergiert.






Abstract

In the framework of elliptic partial differential equations (PDEs), we consider the finite
element method (FEM) as well as the boundary element method (BEM). We design and
analyze adaptive algorithms which do not only steer the adaptive mesh-refinement but also
the termination of appropriate iterative solvers, namely, iterative linearization of nonlinear
equations as well as iterative solvers for the arising linear systems.

On the one hand, we consider a general framework for treating linear and nonlinear
second-order elliptic PDEs, where the arising discrete systems are not solved exactly. For
contractive iterative solvers, we formulate an adaptive algorithm which monitors and steers
the adaptive mesh-refinement as well as the inexact solution of the arising discrete systems.
We prove that the proposed strategy leads to linear convergence with optimal algebraic
rates, where we focus on convergence rates with respect to the overall computational cost.
Our analysis covers linear PDEs where the linear systems are solved by an optimally pre-
conditioned conjugate gradient method (PCG) as well as nonlinear PDEs with strongly
monotone nonlinearity which are linearized by the so-called Zarantonello iteration.

Furthermore, we combine and extend the aforementioned results in the frame of second-
order elliptic boundary value problems with strongly monotone and Lipschitz-continuous
nonlinearity. We introduce an extended adaptive algorithm for the computation of the
numerical approximation, which steers the adaptive mesh-refinement, the Zarantonello lin-
earization, and a contractive algebraic solver to solve the arising linear systems. We identify
stopping criteria for the algebraic solver that on the one hand do not request an overly tight
tolerance, but on the other hand are sufficient for the inexact Zarantonello linearization to
remain contractive. Similarly, we identify suitable stopping criteria for the Zarantonello
iteration that leave an amount of linearization error that is not harmful for the residual
a posteriori error estimator to steer the adaptive mesh-refinement reliably. We prove a
contraction of the (nested) inexact iterations leading to linear convergence of the overall
adaptive algorithm. Furthermore, we prove that the adaptive algorithm converges with
optimal rates with respect to the number of degrees of freedom. Finally, we prove that the
adaptive algorithm converges with the same optimal rate also with respect to the overall
computational cost.

On the other hand, we consider the interplay of adaptive mesh-refinement and PCG in
the frame of BEM for elliptic integral equations of the first kind. As before, the proposed
algorithm steers the termination of PCG as well as the local mesh-refinement. Besides
convergence with optimal algebraic rates with respect to the number of degrees of freedom,
we also prove that the algorithm converges with almost optimal rates with respect to the
overall computational cost.
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1 Introduction

1.1 Motivation

Two very important methods for numerically solving partial differential equations (PDEs)
arising in engineering and natural sciences are the finite element method (FEM) and the
boundary element method (BEM). While typical fields of application of FEM are, e.g., struc-
tural analysis, heat transfer, and fluid flow problems, BEM can be used to solve problems
from, e.g., fluid mechanics, acoustics, or electromagnetics, where the PDEs on a possibly
unbounded exterior domain have equivalently been formulated in terms of integral equations
posed on the boundary.

This wide range of fields of application led to the development of various numerical
schemes based on the principal ideas of finite elements. Most of these methods discretize the
domain of interest by a mesh of polygons, thus leading to a reduction of the PDE to a finite
dimensional system of equations, and consequently to a finite dimensional approximation
of the in general unknown solution. The quality of this approximation can be controlled by
the mesh-width of the discretization of the domain. As a result, a simple and widely used
idea to decrease the error is to uniformly refine the corresponding mesh successively, which
yields convergence of the error to zero. However, the order of convergence might be heavily
spoiled by singularities of the unknown solution which can be induced by the given data,
the differential operator, and/or the geometry. Hence, significantly more computational
effort is needed to reach a required accuracy, since the convergence of the error can be
arbitrarily slow. To circumvent this unnecessary computational effort, the mesh can be
refined locally at these singularities. However, doing this beforehand would require a priori
information of the unknown solution which, in general, is not available. This led to the
development of adaptive algorithms which automatically steer the local refinement via a
posteriori error estimators, i.e., adaptive finite element methods (AFEM). One particular
focus in AFEM is on the numerical analysis of rate-optimal convergence, where one aims
to prove that the adaptive strategy leads to convergence of order C’)((#ﬂ)*s) along the
sequence of generated triangulations, with s > 0 being maximal, where we plot the error
estimator over the number of elements #7;.

Concerning the rate-optimal convergence of AFEM, some seminal works for linear prob-
lems are, e.g., [Dor96, MNS00, BDDO04, Ste07, CKNS08, CN12, FEP14]. For nonlinear prob-
lems, we refer to |Vee02, D08, BDK12, GMZ12]| as well as to |CFPP14] for a general frame-
work of convergence of AFEM with optimal convergence rates. Some works also account for
the approximate computation of the discrete solutions by iterative (and inexact) solvers,
see, e.g., [BMS10, AGL13] for linear problems and [GMZ11, GHPS18, HW20a, HW20b]
for nonlinear model problems. Moreover, there are many papers on a posteriori error es-
timation which also include the iterative and inexact solution for nonlinear problems, see,
e.g., |[EAEVI11, EV13, AW15, HW18| and the references therein.
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As far as optimal convergence rates are concerned, the mentioned works focus on rates
with respect to the degrees of freedom. Contrary to this, in practice, one aims for the
optimal rate of convergence with respect to the computational cost, i.e., the computational
time, which is one of the main goals of the present thesis. In [Ste07], this is already addressed
for the 2D Poisson model problem. However, this seminal work assumes that a sufficiently
accurate discrete solution can be computed in linear complexity, e.g., by a multigrid solver.
Under these so-called realistic assumptions, it is proved that the total error, which consists
of the energy error plus data oscillations, converges also with optimal rate with respect to
the computational cost.

One starting point of the present thesis is [GHPS18], where an elliptic PDE with strongly
monotone nonlinearity is considered. There, the arising nonlinear FEM problems are lin-
earized via the so-called Zarantonello iteration, which leads to a linear Poisson problem in
each step. The adaptive algorithm presented therein drives the linearization strategy as well
as the local mesh-refinement and almost optimal convergence rates with respect to the total
computational cost are proved. In the present thesis, we prove optimal rates with respect
to the overall computational cost based on an abstract analysis in the spirit of [CFPP14].
Besides the mentioned Zarantonello iteration for nonlinear model problems, this abstract
setting also covers linear solvers like PCG with optimal preconditioner. In a next step,
we then combine these two approaches in a fully adaptive algorithm and prove optimal
convergence rates with respect to the overall computational cost. Here a key question is to
identify suitable stopping criteria for the involved and nested iterative solvers.

For problems on unbounded domains, FEM often is not well applicable. In these situa-
tions, BEM can be the better option, since it does not consider and discretize the PDE itself
but an equivalent boundary integral equation. Hence, a given problem on an unbounded do-
main can be reduced to a problem on its (possibly) bounded boundary. In a post-processing
stage, the solution of this integral equation then gives rise to an approximation of the PDE
solution on the whole space via a representation formula. Due to the dimension reduction
and a potentially higher convergence order of BEM, this can lead to higher efficiency in
terms of the computational cost.

We refer to [Gan13, FKMP13, FFK 14, FFK 15, AFF " 17] for some milestones for adap-
tive BEM. These works assume that the arising Galerkin systems are solved exactly. How-
ever, we note that this is hardly possible in practice, where matrix compression techniques
like the fast multipole method, panel clustering, or hierarchical matrix techniques are a must
to deal with the dense BEM matrices. In particular, this prevents the use of direct solvers.
Instead, we avoid the latter assumption and present an adaptive BEM algorithm to solve
elliptic integral equations of the first kind. This algorithm uses a preconditioned conjugate
gradient method (PCG) with optimal additive Schwarz preconditioner to approximately
solve the arising linear discrete systems. Analogously to [GHPS18|, we prove convergence
with optimal rates with respect to the degrees of freedom. Due to an additional consistency
error stemming from matrix compression techniques for the dense BEM matrices, this leads
to almost optimal rates with respect to the computational complexity.
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Chapter 2

First, in Chapter 2, we collect some preliminaries and basic notations which will be used
throughout the whole thesis and introduce Lebesgue as well as Sobolev spaces on domains
Q c R¢ with d = 2, 3 and boundary 9§2. We recall the most important results and properties
from PDE theory and functional analysis which are needed for the analysis of the following
chapters.

Chapter 3

In Chapter 3, we then introduce meshes 7% of a domain Q C R? as well as meshes 71 on
subsets I' C 9 of the boundary 02. Additionally, we recall structural properties (R1)-
(R3) for the mesh-refinement from [CFPP14|, which are essential for the abstract analysis
concerning optimal convergence rates in the subsequent chapters. These assumptions are,
e.g., fulfilled for the extended 1D bisection and the newest vertex bisection, which we recall
in Section 3.5 and Section 3.6, respectively.

Abstract framework for Chapter 46

In the following chapters, we present and analyze adaptive algorithms, which take the form

[Sohe] — [Esmae] — [Mak] — [Refwe] (1)

where is based on the Dérfler criterion from [D6r96] with (quasi-)minimal cardi-
nality [Ste07, PP20]. These algorithms generate a sequence of discrete approximations u}
to the, generally not available, exact solution u* of the given problem. Here, the index
¢ corresponds to the discretization of the given problem. However, since solving the aris-
ing discrete problems exactly is usually not possible or very costly, iterative solvers are
employed. Therefore, we adapt the strategy (1.1) as follows:

Iteratively Solve&Estimate‘ — — (1.2)

This gives rise to iterative approximations ulj for the exact discrete solutions uj, where the
index k corresponds to the iterative solver. The numerical analysis of (1.2) thus requires
the index set

Q:={(l,k) e N2 : discrete approximation u} is computed by the algorithm}  (1.3)

together with an ordering

(k) < (UK PLN uf is computed earlier than uf . (1.4)

Additionally, we define the total step counter |(¢,k)| as

(€ K)] o= #{(6,k) € Q : (k) < (£, K)}. (1.5)
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To prove convergence with optimal algebraic rates with respect to the number of degrees
of freedom of the iterates u’g to the exact solution u*, we consider a certain quasi-error
AF = |lu* — u¥|| + ne(uf) combining the error [Ju* — uf|| as well as the error estimator
ng(ulg). The key argument for the proof is the full linear convergence
/ oK) —|(6,k .
AL < Cpn g CFITIERN AL for all (¢,k), (¢, K) € Q with [(¢,k)| < [(¢, )],  (1.6)
where Cj, > 1 and 0 < @i, < 1 are generic constants.
Given N € Ny, let T(V) be the set of all refinements 7 of 7y with #7 — #79 < N. For
s > 0, define
* S : * * *
w*||a, = sup (N +1 inf - + U € RygU {00 1.7
[[u”| NGNO( ) s (I optll + 7opt (ugpt)) € Rzo U {00}, (1.7)
where uf, is the exact discrete solution associated to the mesh Topt and mopt(ugy) is
the corresponding error estimator. It holds that [|u*||a, < oo if and only if the quasi-
error AF = [[u* — ugpll + nopt (ugye) for the exact discrete solutions decays at least with
algebraic rate s > 0 along a sequence of optimal meshes. In usual applications, Af
is equivalent to the so-called total error (i.e., error plus data oscillations) as well as to
the estimator 7opt(ugy,) alone. Therefore, the approximability |[u*[|s, can equivalently be
defined through the total error (see, e.g., [Ste07, CKNS08, CN12, FF'P14]) or the estimator
(see, e.g., [CEPP14]) instead of the quasi-error (used in (1.7)). The overall result will be
the same. However, we stress that none of these equivalences hold for the solver iterates
uf, since those lack the Galerkin orthogonality, in general.
Convergence of the adaptive loop (1.2) with optimal rates with respect to the degrees of
freedom then means that, for all s > 0, there exists a constant C(s) > 0 such that
Cls) ™ u*lle. < sup (#Ti—#To+ 1°AF < C) (w*lla, +1). (1g)
(Lk)eQ
Hence, the quasi-error Af for the computed discrete iterates ué? decays with rate s > 0 if
and only if rate s is possible for the exact discrete solutions on optimal meshes.
Finally, our main goal is to prove convergence with optimal rates with regard to the
computational cost. Assuming that all steps of the adaptive loop (1.2) can be performed

at linear cost O(#7;), the sum
> #Tw

(€' k")eQ
(k)< (LK)
is proportional to the overall computational work to compute the approximation u’g’, since
it depends on the full adaptive history. Convergence with optimal rates with regard to the
computational cost then means that, for all s > 0, there exists a constant C’(s) > 0 such
that

o Nl < s (X #7) Ak C) (el + )
(Lk)eQ (f’,k/)EQ

(¢',k")<(Lk)

(1.9)

Thus, the quasi-error Af for the computed discrete solutions ué? decays with rate s > 0
with respect to the overall computational cost if and only if rate s is possible with respect
to the degrees of freedom for the exact discrete solutions on optimal meshes.
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Chapter 4
This chapter is based on the recent own work [GHPS21].

Gregor Gantner, Alexander Haberl, Dirk Praetorius, and Stefan Schimanko.
Rate optimality of adaptive finite element methods with respect to the overall
comput ational costs. Math. Comp., accepted for publication, 2021.

We consider the elliptic boundary value problem

. . .

div A(Vu 2 =f inQ, (1.10)

u* =0 onl,

where Q C R? with d = 2,3 is a bounded Lipschitz domain with boundary I' = 99 and

f € L?(Q) is a given load. We assume that the (possibly nonlinear) operator A: L?(Q)? —

L?(9)? is strongly monotone and Lipschitz continuous. From this, we get the equivalent
variational formulation: Find u* € H := H}(Q) such that

(Au™, V) gy = / A(Vu*) - Vode = / fode = (F, v)grxy forallveH. (1.11)
Q Q

Due to the main theorem on monotone operators [Zei90, Section 25.4], there exists a unique
solution u* to this weak formulation. For a given discrete subspace Xy C H related to a
mesh Ty of , the same holds for the discrete formulation

(Auj , o) s = (F, vg)rxy  for all vy € Xp. (1.12)

If A is nonlinear, the exact discrete solution uj can hardly be computed exactly. Even if A
is linear, usual FEM codes employ iterative solvers like PCG, GMRES, or multigrid. For
the abstract analysis, we assume that we have an iterative solver which is contractive in
each step with respect to the energy norm, i.e., it holds that

llu — will < qlluf —ug ™'l forall k €N (1.13)

with a generic contraction constant 0 < ¢ < 1. Then, our adaptive algorithm takes the
form (1.2). We note that (1.13) allows to control the solver error by means of

q -
llu* = ugll < quu’? —uy - (1.14)

We terminate the solver if [Juf — ulg_lm is small compared to ny(uf) and employ nested
iteration with ug 1= u’; in this case. Under usual assumptions, we prove that the proposed
adaptive strategy guarantees full linear convergence (1.6) of the quasi-error AF = ||u* —
uf|| + me(uf) consisting of error plus error estimator. Prior works, e.g., [Ste07, BMS10,
CG12, GHPS18], proved linear convergence of the quasi-error only for those steps, where
mesh-refinement takes place. Unlike this, full linear convergence (1.6) even holds for the
full sequence of discrete approximations, i.e., independently of the algorithmic decision for
mesh-refinement or one step of the discrete solver. Moreover, we prove convergence with
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optimal rates with respect to the degrees of freedom (1.8) as well as the computational
cost (1.9).

In Section 4.7, we consider the linear elliptic boundary value problem (1.10), where we
assume that

A: L2(Q)4 = L2(Q)?  has the form  A(v) = [z — A(z)v(z)], (1.15)

where A € Wh*°(Q)?*? is symmetric and uniformly positive definite. Then, the discrete
formulation (1.12) is equivalent to the solution of a linear system

M/x} = by. (1.16)

with a positive definite and symmetric matrix M, € RY*N_ We note that the condition
number of the Galerkin matrix My from (1.16) depends on the number of elements of 7y,
as well as the minimal and maximal diameter of its elements. Therefore, we use PCG
in combination with an efficient preconditioner P, € RV*N as an iterative solver. PCG
formally applies the conjugate gradient method to the system matrix P21/2M5Pg_1/2 of the

preconditioned linear system
P, '*MP, *x; = P, *by. (1.17)

We assume that the matrix-vector products with Pe_l can be computed at linear cost, and
that Py is optimal in the sense that the condition number of the preconditioned system is
uniformly bounded, i.e,

Condg(Pe_l/QMgP;l/Q) <C, (1.18)

where the constant C' > 1 is independent of the mesh 7,. This yields the contraction
property (1.13) so that the abstract main results of Chapter 4 apply to this setting. In
Sections 4.7.1-4.7.6, we formulate and analyze a multilevel diagonal scaling preconditioner
P, € RV*N in the frame of multilevel additive Schwarz methods and prove its optimality.

The abstract results of Chapter 4 also apply to AFEM for quasi-linear elliptic PDEs
with strongly monotone nonlinearity (cf. Section 4.8), where we employ the Zarantonello
iteration and assume that the arising linearized discrete equations are solved exactly at
linear cost. The computation of one step of the Zarantonello iteration requires only the

solution of one Poisson equation with homogeneous Dirichlet data, i.e., to compute uf“

from uéf, we have to solve the linear problem

«
<<u’g+1 , Vg) = <<u]g, ve) — ﬁ<Aulg —F, v)nxy forall vy € Xy, (1.19)

where (-, ) = (V-, V-)12(q). Again, the abstract main results apply to this setting.
To underpin the theoretical results, we present some numerical examples.
Chapter 5

As an extension of Chapter 4, the aim of Chapter 5 is to combine the two aforementioned
approaches of Chapter 4, i.e., Section 4.7 as well as Section 4.8, into one fully adaptive
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algorithm for elliptic PDEs with strongly monotone nonlinearity. As before, we consider
the elliptic boundary value problem (1.10) where the nonlinearity A: R? — R? is Lipschitz-
continuous and strongly monotone. The presented material is based on the recent own
work [HPSV21]:

Alexander Haberl, Dirk Praetorius, Stefan Schimanko, and Martin Vohralik.
Convergence and quasi-optimal cost of adaptive algorithms for nonlinear op-

erators including iterative linearization and algebraic solver. Numer. Math.,
2021.

We propose an adaptive algorithm of the type

’ estimate total error and its components

0

advance algebra/advance linearization/mark and refine mesh elements

which monitors and adequately stops the iterative linearization and the linear algebraic
solver as well as steers the local mesh-refinement. We compute a sequence of discrete
appoximations ulg’] of the exact solution u* that have an index £ for the mesh-refinement,
an index k for the Zarantonello linearization (1.19), and an index j for the algebraic solver
iteration approximating the exact solution ulg’* of (1.19) by ulg’j . First, we identify stopping
criteria for the algebraic solver, e.g., PCG with optimal preconditioner, that on the one
hand do not request an overly tight tolerance but on the other hand are sufficient for the
inexact (perturbed) Zarantonello linearization to remain contractive. Similarly, we identify
suitable stopping criteria for the Zarantonello iteration that leave an amount of linearization
error that is not harmful for the residual a posteriori error estimate to steer the adaptive
mesh-refinement reliably.

Analogously to Chapter 4, the sequential nature of the fully adaptive algorithm gives rise
to the index set

k,j

Q.= {(Z, k,j) € Ng : discrete approximation u,” is computed by the algorithm}

together with the ordering

0k j) < (. K,5) &5 up? is computed earlier than ulz,/’jl.

Analogously to (1.5), we define the total step counter
(¢ K )] = #{ (L k,j) € Q: (LK, j) < (€K, )}, (1.20)
as well as the quasi-error
k.j Ky kx ki k.j
A, Ti= et~ Uy I+ g™ — g I+ ne(ug 7)

consisting, in order, of the overall error, the algebraic error, and the error estimator. Our
first main result proves that the proposed adaptive strategy is linearly convergent in the
sense of

AR < Oy g CFIONITIERIN ARG for a1l (2, k, 5)] < (€, K, §')], (1.21)
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where Cj, > 1 and 0 < gin < 1 are generic constants. Second, we prove the optimal error
decay rate with respect to the number of degrees of freedom exceeding those of the initial
mesh in the sense that there exists a constant C(s) > 0 such that

C(s) ™ [[u*]la, < S T #To 1) AT < C(s) ([[u?la, +1)- (1.22)
K 7j e

As before, estimate (1.21) is the key argument to prove optimal error decay rate with
respect to the overall computational cost of the fully adaptive algorithm which steers the
mesh-refinement, the perturbed Zarantonello linearization, and the algebraic solver, i.e., for
all s > 0, there exists a constant C’(s) > 0 such that

C'(s) ™" |

w < s ( #7@) AR < C'(s) (lu*la, + 1).

(t.k.)€Q (1.23)

(K ,5)€Q
(€' ,k" 5" <(€,k,5)

As above, we stress that under realistic assumptions the sum in (1.23) is indeed proportional
to the overall computational cost invested into the fully adaptive numerical approximation
of (1.10), if the cost of all procedures like matrix and right-hand-side assembly, one algebraic
solver step, evaluation of the involved a posteriori error estimates, marking, and local
adaptive mesh refinement is proportional to the number of mesh elements in 7y, i.e., the
number of degrees of freedom.

To underpin the theoretical results, we also present some numerical examples.

Chapter 6
Chapter 6 is based on the own work [FHPS19]:

Thomas Fiihrer, Alexander Haberl, Dirk Praetorius, and Stefan Schimanko.
Adaptive BEM with inexact PCG solver yields almost optimal computational
costs. Numer. Math., 2019,

where we consider weakly-singular integral equations of first kind. We note that [FHPS19]
was the first work in the context of adaptive FEM or BEM aiming for full linear convergence
and corresponding optimal rates with respect to the computational cost. The core analysis
was later improved by the analysis of [GHPS21] presented in Chapter 4 in such a way that
the latter only needs a contractive iterative solver, whereas some of the results of [FHPS19]
are tailored to the BEM setting with inexact PCG solver.

For a bounded Lipschitz domain Q C R? with d = 2,3 and polyhedral boundary 952, let
I' C 09 be a (relatively) open and connected subset. Given f: I' — R, we seek the density
¢*: I' = R of the weakly-singular integral equation

(V™) (z) = /FG(J: —y)o*(y)dy = f(x) forall z €T, (1.24)

where G(-) denotes the fandamental solution of the Laplace operator in R?. Its lowest-order
Galerkin formulation for a given triangulation 7; of I' reads as follows: Find ¢} € P°(7)
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such that
/ (Vr) () () dz = / F@) (@) de Tor all vy € PO(T)). (1.25)
N N

As for FEM for linear problems in Chapter 4, the discrete formulation (1.25) can be written
as an equivalent linear system

M[X? = bg (1.26)

with a positive definite and symmetric matrix M, € RV*Y which, unlike FEM, is dense for
BEM. For a given initial triangulation 7Ty, we again consider an adaptive mesh-refinement
strategy of the type (1.2), which generates a sequence of successively refined triangulations
T¢ for all £ € Ny. As before in Chapter 4, the condition number of the Galerkin matrix M,
from (1.26) depends on the number of elements of 7, as well as the minimal and maximal
diameter of the elements. Therefore, we require an efficient preconditioner as well as an
appropriate iterative solver.

The available results for adaptive BEM [Gan13, FKMP13, FFK ™14, FFK ™15, AFF17]
assume that the Galerkin system (1.26) is solved exactly. Instead, our adaptive algorithm
steers both the local mesh-refinement and the iterations of an iterative PCG solver for the
Galerkin system (1.26). In principle, it is known [CEFPP14, Section 7| that convergence
and optimal convergence rates are preserved if the linear system is solved inexactly, but
with sufficient accuracy. Analogously to Chapter 4, we guarantee this by incorporating an
appropriate stopping criterion for the PCG solver into the adaptive algorithm. Moreover,
to prove that the proposed algorithm does not only lead to optimal algebraic convergence
rates, but also to (almost) optimal computational cost, we provide a preconditioner P, €
RN*N guch that the evaluation of the matrix-vector product with Pe_l can be done in
O(#7T;) operations, and that P, is optimal in the sense of (1.18), i.e., the system matrix
P;l/ QMgPe_l/ % of the preconditioned linear system has a uniformly bounded condition
number which is independent of 7.

As in Chapter 4, we prove that the quasi-error

Af = (llg™ = $E1* + me(of)?)

consisting of energy error plus error estimator is linearly convergent in each step of the
adaptive algorithm, independent of whether the algorithm locally refines the mesh or does
one step of the PCG iteration, i.e., there holds (1.6). Furthermore, we also prove (1.8), i.e.,
the quasi-error decays with optimal rate with respect to the degrees of freedom.

Under realistic assumptions on the efficient treatment of the arising discrete integral
operators, one step of the algorithm can be done in O((#7y) log?(1 + #7:)) operations.
Hence, the cumulative computational complexity for the adaptive step (¢, k) € Q is of order

1/2

O( > (#ﬁ/)log2(1+#7@)>. (1.27)
(¢ K)eQ
(¢ K"<(e,k)

As a consequence of the log-linear cost (1.27), we prove that the quasi-error converges at
almost optimal rate with respect to the computational cost, i.e., with rate s — ¢ for any
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e > 0 if rate s > 0 is possible for the exact Galerkin solution. This means that there holds
the implication

sS—¢&
lo*||a, <00 = sup < Z (#T7) log?(1 + #72/)) AF < oo forall e > 0.
(Z,]{?)GQ (El,k‘/)GQ

(€K )< (L k)

The difference to the abstract result (1.9) is the logarithmic term in the single-step com-
plexity, which ultimately leads to the reduced order of convergence s — €.
The final section underpins the theoretical findings by some 2D and 3D experiments.

10



2 Basic notation and function spaces

In this section, we introduce some basic notations which will be used throughout the whole
thesis. Afterwards, we recall some definitions, notations, and results for the well-known
Lebesgue and Sobolev spaces, cf., e.g., [McL00, Chapter 3| or [SS11, Chapter 2|.

First, let Q@ C R? with d = 2,3 be a bounded Lipschitz domain with boundary 09.
Depending on the context, |- | denotes the absolute value of scalars as well as the Euclidian
norm of vectors respectively. For measurable sets in 2 or in 92, we use the same notation
| - | for the corresponding Lebesgue measure as well as the surface measure, respectively.

In general, all constants as well as their dependencies are explicitly given for all state-
ments. However, in proofs, we also abbreviate the notation, i.e., for real-valued quantities
A, B, we write A < B to abbreviate A < ¢ B with a generic constant ¢ > 0 which is clear
from the context. Analogously, A 2 B is the abbreviation of A > ¢ B. Moreover, A ~ B
states that both estimates A < B and A 2 B hold true.

For the remaining part of this section, and in this section only, let 2 be any (Lebesgue)
measurable subset of R” with n > 1 and strictly positive measure.

2.1 Lebesgue spaces and basic notation

For 1 < p < oo, the ususal Lebesgue spaces on 2 are denoted by LP(€2) with corresponding
norms

1/p
vl e ) = (/Q lv(x)|P da:) for 1 <p < o0,

as well as ||v|| = (o) being the essential supremum of u over 2. Analogously, Lebesgue spaces
on the boundary 02 are denoted by LP(92) with corresponding norms | - || z»(50)-

For all p > 1, it is well-known that LP(£2) is a Banach space. For p = 2, the corresponding
Lebesgue space L?(Q) is also a Hilbert space. Hence, for all u,v € L?(Q2), we define the
scalar product (-, -)r2(q) by

(u, v)r2) = /Qu(x)v(x) dz.
Let ¢ > 1 denote the conjugate exponent to p, i.e.,
1
T4
p q
Then, for all u € LP(2) and all v € L(Q2), there holds the so-called Hélder’s inequality

[(u, v) 2| = [luvllpiq) < lullr@)llvlliLoq)

11
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2.2 Sobolev spaces on a domain

Let v: Q — R, where Q C R is a bounded Lipschitz domain with piecewise C*°-boundary
0Q), cf. [SS11, Definition 2.2.10]. For n € N and a multi-index a = (a1,...,a,) € Nj, i.e.,
an n-tuple of non-negative integers, we denote the partial derivatives of v by

ovw) = (50)" () "ot

if v is sufficiently smooth for them to exist. The order || of the partial derivative 0%v(z)
is defined by

lal :=a1+ -+ .

Definition 1. Let v € L?(Q). Then, v has a weak derivative g := 0% € L*(Q) of order o
if there holds that

/ gw dz = (=1)l / v0%w dz for all w € C5°(9),
Q Q

where C§°(Q) = {u € C*(Q) : u has compact support in Q} is the space of infinitely
differentiable functions with compact support.

Note that if the weak derivative of v € L?(Q) exists, it is unique and if v also has a
classical derivative, the weak derivative coincides (almost everywhere) with the classical
one.

Definition 2. For ¢ € Ny, the Sobolev space H'(QY) is defined by
HY Q) := {ve L*(Q) : 0% € L*(Q) exists in the weak sense for all |a| < l}.
The inner product (-, -) ge(q) on HY(Q) is given by

(v, w) ey == Z (0%, 0%w) 12y for all v,w € HY(Q),
|af<e

and the corresponding norm || - || ey s given by

HUH%{Z(Q) = <U, U>HZ(Q) for all v € HZ(Q)

For ¢ =1, we hence get that
HY(Q) = {ve L*(Q) : Vv e L*(Q)? exists in the weak sense }

with scalar product
(v, wyg(Q) = / vw dx—i—/ Vv - Vw dz,
Q Q

and norm HUH?{l(Q) = (v, U>H1(Q) = HUH%?(Q) + va|’%2(g)-

For a non-integer £ := k+s with k € Ny and 0 < s < 1, the Sobolev space H*(12) is defined
by interpolation via the K-method, i.e., HY(Q) = [H*(Q), H*1(Q)]s2, cf., e.g., [SS11,
Trigs).

12



2.3 Sobolev spaces on the boundary 0€)

2.3 Sobolev spaces on the boundary 90f2

Sobolev spaces on the boundary 02 can be defined in various ways, cf. [HWO08, McL00,
SS11]. Let HO(0R) := L?(99Q) be the space of all square-integrable functions on 9Q with
scalar product (-, <)oo and norm || - [|z2(s0). For L?(09) = L*(00N)?, define the scalar

product (v, w)sq = Z;i:l (vj, wj)aq and norm | := (v, v)go. Then, the space

|Iv||i2(ag)
H'(09Q) is defined as in [SS11, Section 2.4] with an equivalent norm on H'(9Q) given by

lvllz200) + 1Vroll L2 90y,

where Vr: H'(0Q) — L*(T') denotes the surface gradient. For sufficiently smooth functions
v on €, it holds that Vv = Vo — (Vv - n)n with the normal vector n pointing from the
domain Q to the exterior domain Q% := R4\ Q.

For s € (0,1), the corresponding Sobolev space H*(02) is defined via interpolation
techniques, cf. [SS11, Proposition 2.4.3].

Additionally, we also need Sobolev spaces on subsets I' of the boundary 0€2. Suppose
that @ # I' C 0N is a non-empty, relatively open set that stems from a Lipschitz dissection
0N =Tuolr'u (02 \T), cf. [McL00, p. 99]. Define Eyr as the extension operator which
extends a function on I' to 9§ by zero. For s € {—1/2,0,1/2}, the spaces H'/?+5(T) and
H'Y2+5(T') are defined as in [AFF*17] by

HIE() o= (ol + v e HV255(00))
ﬁ1/2+5(r) = {U : Egrv € H1/2+8(8Q)}7

with corresponding norms

Pollmrzeoay = BB oo thellrzesony = wle = v}
ol 20y 2= 1Bl irzsecony

For s = 1/2, there hold the norm equivalences |[v||gr1(a0) = [[v]|z2(a0) + Vvl 2 (90 as well
as Hv||ﬁ1(r) >~ vl L2y + Vol g2y, cf. [AFF*17, Facts 2.1] and [SS11, Section 2.4].

For case of notation, if it is clear from the context, we identify a function v € HY/25(I)
with its extension Eorv € HY2+5(0Q).

2.4 Dual spaces

For a normed space X with norm || - || x, we denote the corresponding dual space by X’ with
the duality pairing

(W, wyxrxx =0 (w) forallv € X and all w € X,
as well as the norm

/
Wil = sup K0l

for all v' € X".
0£weX [w|| x

13
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To simplify notation and if it is clear from the context, we write (-, -) for the duality pairing.
If we now have a Hilbert space X with scalar product (-, -) ¥ and a continuously embedded
Hilbert space H, the following lemma allows us to interpret the duality pairing (-, -)a/xn
as a continuous extension of the scalar product (-, ).

Lemma 3. Let H and X be Hilbert spaces with continuous embedding H — X. Then, the
Riesz-isomorphism Jx: X — H' is a well-defined, continuous, linear operator and Jx(X)
is dense in H'. [

If we set X = L2(8Q) and H = H'/2+5(9Q) or H = H'/2+5(9Q), we get with the formal
definition

(Jxw, h)gyxa = (Jxx, Marxx = (@, h)x = (2, h)[29q) forallz e X,heH

so that it is legitimate to also write (-, -)gq (and analogously (-, -)r) for the duality pairing

<‘ ) ‘>’H’><'H'
For s € {—1/2,0,1/2}, the negative-order Sobolev spaces on the boundary are now
defined by duality as

H-O/29)(9Q) == H'?T(00),
H*(1/2+s)(r) — 1-_11/2+3(F)/7
H*(1/2+s)<r) — }?[1/2+5(F)I7

with the extended L2-scalar product on 9 and I respectively, cf. [AFF*17]. For these
spaces, the following continuous inclusions hold:

HT2+(T) € B2, as well as,
ﬁi(1/2+5)(89) _ Hi(l/2+s) (8(2)
For ¢ € L*(T'), the zero extension Ey 1) satisfies

Eorp € HY2(8Q)  as well as 11l g-1/2(0y = 1B0,0%l| -1/ (562)-

2.5 Trace operators and normal derivatives

Let © be a bounded Lipschitz domain. Then, for 1/2 < s < 3/2, there exists a linear and
continuous interior trace operator

At H9(Q) — H*"Y2(8Q)  such that M0 = v|gq for all v € CO(Q),

cf., e.g., [SS11, Theorem 2.6.8]. We define HA(Q2) := {v € H'(Q) : —Av € L*(Q)} as well
as the interior conormal derivative operator 4" : HA () — H~Y/2(99) via the first Green’s
formula

(", 1" w)an = (Vv, Vw)g — (—Av, w)g  for allw € H'(Q),

cf. [AFF'17]. Analogously, the exterior trace 7§** and exterior conormal derivative operator

7%t can be defined. Then, the interior as well as exterior traces and the conormal derivatives

respectively give rise to jump terms, i.e., for a function v that admits both traces or conormal

derivatives, we define the jumps [v]o := 7§ — ¥{"v and [v]; := 7% — v respectively.

14



3 Meshes

3.1

Triangulations of 2

Throughout, let Q € R? with d = 2,3 be a polygonal or polyhedral Lipschitz domain and
let conv(S) denote the convex hull of a set S C R?. With this, we define a triangulation
T% on a domain €.

Definition 4. A set T is called a triangulation or mesh of Q, if and only if:

Each element T € T is a (d+ 1)-simplex, i.e., there exist d+ 1 affinely independent

points 1, -+ ,Tqr1 € Q such that

T :=conv({z1, - ,Tas1})-
We denote the set of all vertices of an element T by N(T) := {x1, - ,xq11}-

The domain Q is covered by T, i.e.,

a= |y
TeT®

Two distinct elements do not overlap, i.e., for all T,T' € T with T # T', it holds
that |TNT'| =0, i.e., the overlap is a set of measure zero.

Remark 5. Usually, we do not want to allow so-called hanging nodes, i.e., no vertex of any
element T € T lies in the interior of any edge or facet of another element T' € T. Hence,
we say that a triangulation T is conforming or regular provided that the intersection of
two elements T,T' € T with T # T’ is

either empty,
or a joint node,
or a joint edge (d > 2),

or a joint facet (d =3),

i.e., for two distinct elements T, T' € T with T # T', it holds that

TNT = conv(N(T) NN(T")).

15



3 Meshes

Further, we collect a couple more definitions. First, we define the set of all nodes Nra of
a triangulation 7 by

Nra =N(T% = [J M)

TeT?
The (local) mesh-width function hyo € L%®(T%) of a triangulation 7% is defined by
hralr = hpa(T) == |T|Y?  forall T € T,

where | - | denotes the volume (for d = 3) or the area (for d = 2) of an element, respectively.
Moreover, we define the element patch wyo(T') and wy«(U) resp. for an element T € T
as well as for a set of elements U C T by

wra(T) = U (T'eT? . T'NT #0} and wreld) = U wya(T), respectively.
Teu

Next, the shape-regularity constant o(T) of an element 7' € T is denoted by

diam(7')?
o(T) := diam (7T) with diam(7T) := sup |z —y|.
T z,yel

Similarly, we define the shape-regularity constant o(7%) of a mesh 7 by

Q
o(T*°) := max o(T),
(T%) = max o(T)
and we say that a family T of meshes is y-shape regular if there exists a constant v > 1
such that

sup o(T%) <.

TReT

3.2 Triangulations of 912

Analogously to Section 2.3, we also need triangulations of the boundary 952 for the boundary
element method in Chapter 6. To this end, let Q@ C R¢ with d = 2,3 be a bounded
Lipschitz domain with piecewise C'*°-boundary 0f2, and we suppose that either I" is the
whole boundary, i.e., I' = 9Q, or I" is a subset of the boundary, i.e., ) # I' C 99, and
relatively open such that 0Q = I' U OI' U (02 \ T'). Hence, I' stems from a Lipschitz
dissection, cf. [McL00, p. 99].

For the definition of a triangulation 771, we also need a reference element Tyo¢ defined by

d—1
Trer 1= {x eR . 0< T1,...,24-1 <1 and Z:cj < 1}.
j=1
Hence, we get that T = [0,1] C R is the closed unit interval for d = 2 as well as
Tyt = conv{(0,0), (1,0),(0,1)} Cc R? for d = 3.

Definition 6. A set T' is called a triangulation or mesh of I', if and only if:

16



3.2 Triangulations of 02

o FEvery element T € TV is the image of the reference element Tyt under an affine,
bijective element map gr € C°(Tyet, T') with gr(Tret) = T. The set of nodes is given
by N(T) := gp(N(Tyet)), where N (Tyet)) is the set of all vertices of the reference

element Tref.

e The domain T' is covered by T, i.e.,

r=Jr
TeTT

Remark 7. Analogously to Remark 5, we say that a triangulation T is conforming or
regular provided that the intersection of two elements T,T' € TV with T # T is

o cither empty,
e or a joint node (d > 2),
e or a joint facet (d=3),

and for d =3, it holds that: If TNT" is a facet for T' € TT, there exist facets f, f' C 0T et
of Tyet such that TNT = gr(f) = g (f') and g}l ogr: f'— f is affine.

The set of nodes as well as the element patches are defined as in Section 3.1, while
the (local) mesh-width function hrr € L°°(T) is given by

hyrlr := hyr(T) == |T Y1),

where | - | denotes the (d — 1)-dimensional surface measure of an element.

Let Gr(z) := Dgr(z)T Dgr(x) € REA-D*(@=1) be the symmetric Gramian matrix of gr
and Amin (G (7)) as well as Amax(Gr(x)) the corresponding extremal eigenvalues. Now, we
call a regular triangulation 7' a y-shape regular triangulation, if the element maps gr
satisfy the following:

e For all T € 7T, it holds that

( hyr (T)? Amax(G:r(sc)))S 5.

o) = 5 N nlCr@) T o (T2

zeTref

o If d =2, it is explicitly required that

- 7|
(T ;= max — <=~.
( ) TTeTT ]T’| =7
TNT'#0

Since the Gramian matrix Gr(x) is symmetric and positive definite, it holds that 0 <

Anmin(GT) < Amax(Gr). This implies that o(7T") > 1. For d = 2, the additional assumption
ensures that the mesh-sizes of neighboring elements remain comparable.

17
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3.3 Discrete function spaces

For the approximation of the exact solutions of the different problems, we need finite-
dimensional spaces which we introduce in this section. To this end, let TS be a regular
triangulation of 2 and p > 1 a fixed polynomial order. We define the space of globally
continuous piecewise polynomials SP(T&) by

SP(TE) = {ve € C(Q) : ve|r is a polynomial of degree < p for all T’ € T,Q}

It holds that SP(TE) ¢ H'(Q) and we define the corresponding conforming subspace
SH(T3Y) of Hy(Q) by

So(T) = S"(TJ%) N Hy ().

3.4 Mesh-refinement

Suppose that 7, € {72, 7T} is a given regular and 4-shape regular triangulation. Ad-
ditionally, assume that refine(-) is a fixed mesh-refinement strategy, e.g., newest vertex
bisection, cf. [Ste08]. We write 7o = refine(7,, M,) for the coarsest one-level refinement
of 7o, where all marked elements M, C T, have been refined, i.e., Mo C To\75. We write
Ts € refine(T,), if 7o can be obtained by finitely many steps of one-level refinement (with
appropriate, yet arbitrary marked elements in each step). We define T := refine(7y) as the
set of all meshes which can be generated from the fixed initial mesh 7Ty by use of refine(-).

Some important properties of y-shape regular meshes are collected in the next lemma.
For boundary meshes, a proof can be found, e.g., in [AFF"17, Lemma 2.6].

Lemma 8. Let T, € {TQ,TF} be a y-shape regular triangulation. Then, there exists a
constant C' > 0 that depends only on v and, in case of a boundary mesh, additionally on
the Lipschitz parametrization of 0S), such that the following assertions hold:

(i) For all T,T" € To with T NT" # 0, it holds that hr,(T) < C hr,(T").

(ii) The number of elements in an element patch is bounded by C, i.e., #(we(T)) < C for
al T €T,.

(iii) It holds that maxpeT, &ZLT.(T) <C. O

For our analysis, we only employ the following structural properties (R1)—(R3), where
Cson = 2 and Clhesn > 0 are generic constants:

(R1) splitting property: Each refined element is split into finitely many sons, i.e., for all
To € T and all M, C 7,, the mesh 75 = refine(7,, M,) satisfies that

H#(Te\To) + #Te < #To < Coon #(Te \ To) + #(Ta N To).

(R2) overlay estimate: For all meshes 7 € T and 7,,7; € refine(7), there exists a
common refinement Tq @ 7o € refine(7,) Nrefine(7;) C refine(7) such that

H(Te®Ts) < #To + #To — #T.
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3.5 Extended 1D bisection (EB)

(R3) mesh-closure estimate: For each sequence (7;)sen, of successively refined meshes,
i.e., Tpy1 = refine(Ty, My) with My C 7y for all £ € Ny, it holds that

/-1
#To — #7T0 < Crnesn Y #M;.

Jj=0

3.5 Extended 1D bisection (EB)

For refining meshes on a 1-dimensional boundary I' C 99 with Q C R?, we consider the
extended bisection algorithm (EB) from [AFFT13].

Algorithm 9. Input: Mesh To € T := refine(7y), set of marked elements MO = M, C
Te, counter k := 0.
Refinement Loop:

(i) Repeat the following steps (a)—(c):
(a) Update the counter k — k + 1.
(b) Definet™ :=,_ o {T" € TAME™D 2 T'AT # 0 and halr > o(To) halr}.
(c) Define MP = mED uy®
Until U™ =0.

(ii) Bisect all elements T' € Msk) to obtain T = refine(T,, Ma).

Output: Refined mesh To = refine(T,, Ma,).

Let Tg be the initial mesh on a 1-dimensional boundary I' C 9} with Q C R2. Due to
the bisection in Algorithm 9, i.e., Step (ii), EB yields a contraction of the local mesh-size
on refined elements, i.e., 7o € refine(7,) implies that

holr <2V help forall T € To \ To. (3.1)

Additionally, [AFF 13, Theorem 2.3 (i)] guarantees uniform ~y-shape regularity with v :=
20(7p), i.e., for all triangulations 74 € T, it holds that

7(Te) <. (3.2)

Splitting property (R1)
Since Step (ii) of Algorithm 9 uses bisection, there holds (R1) with Cyon = 2.

Overlay estimate (R2)
The overlay estimate (R2) is shown in [AFF 13, Theorem 2.3 (ii)].
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3 Meshes

Mesh-closure estimate (R3)

The mesh-closure estimate (R3) is shown in [AFF 13, Theorem 2.3 (iii)].

3.6 Newest vertex bisection (NVB)

One of the most popular mesh-refinement strategies is the so-called newest vertex bisection
(NVB), cf. e.g., [Ste07] for d = 2 as well as [Ste08] for d = 3. We use NVB for d = 2
as refine(-) to refine triangulations of a given domain  C R? in Chapter 4 as well as
Chapter 5. Additionally, we also use the same algorithm for refining surface triangulations
on T' C 9N with Q C R3 in Chapter 6.

For the sake of completeness, we include the NVB algorithm for d = 2:

Algorithm 10. Initialization: Input: Initial mesh Tp.
o For each triangle T € Ty, define an arbitrary vertex as the newest vertex.

e For each triangle T € Ty, define the edge opposite to the newest verter as the refer-
ence edge Er. Let Eerp := {ET T e 76} be the set of all reference edges of the
initial mesh To.

Newest Vertex Bisection: Input: Mesh T, € T with corresponding set of reference edges
Eret,e = {ET : T e ’T.}, set of marked elements Mq C To, counter k := 0.
Refinement Loop:

(i) Define the set of marked reference edges ./\/lso) = {ET T e /\/l.}.
(ii) Repeat the following steps (a)—(b):
(a) Update the counter k — k + 1.
(b) Define /\/lsk) = {ET : T € To s.t. there exists E € Mskfl) with E C T}.
Until M = m{Y.

(iil) Refine all elements T € Ty which have at least one marked edge in the set ./\/lsk)
according to the refinement rules depicted in Figure 3.1.

Output: Refined mesh To = refine(Te, M,).

Let 7y be the initial mesh on a domain Q C R? with d > 2 and let 7, € T be a
refinement of 7p. It holds that NVB reduces the local mesh-size on refined elements, i.e.,
7o € refine(7,) implies that

holr <2 Y%he|r forall T € To \ To. (3.3)
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Figure 3.1: For each triangle T € 7T,, there is one fixed reference edge Er, indicated by
the extra pink line. If T" is marked for refinement, we mark its reference edge,
cf. Step (i) of Algorithm 10. Additionally, if Ep C T’ for a neigbouring ele-
ment 7" € 7T,, the edge reference edge E7+ is marked to avoid hanging nodes,
cf. Step (ii) of Algorithm 10. Hence, more than one edge of an element can be
marked (pink dots). Then, refinement of T' is done by bisecting the reference
edge, where its midpoint becomes a new vertex of the refined triangulation 7.
The reference edges of the son triangles are opposite to this newest vertex (bot-
tom left). If more than one edge is marked (top), using iterated newest vertex
bisection, the element is then split into 2, 3, or 4 son triangles (bottom).

. A AR

Figure 3.2: Newest vertex bisection does only lead (up to similarity) to a finite number of
triangles. Above, the different colors represent similarity classes. Starting with
one triangle (left), iterative use of NVB does only create (up to similarity) new
triangles in the first two steps (mid left and mid right). Hence in following steps,
no new similarity classes are generated.

A proof for (3.3) can be found, e.g., in [CKNS08, Ste07]. Additionally, NVB also preserves
~-shape regularity, i.e., there exists a constant v > 0 such that for all triangulations 7, € T
it holds that

o(T2) = maxo(T) <, (3.4)

which is proved in [Ste08]. The latter work also shows for d = 3 a similar result to Figure 3.2
which illustrates for d = 2 that (up to similarity) only a finite number of different triangles
can be constructed from the initial mesh 7y using NVB, cf. [Ste08, Theorem 2.1].

Splitting property (R1)

There holds (R1) with 2 < Cson < 00, which is proved in [GSS14]|. The constant Cgonp > 0
depends only on Ty and d. For d = 2, it holds that Cs,, = 4, cf. Figure 3.1.

Overlay estimate (R2)
The proof of the overlay estimate (R2) can be found in [CKNS08, Ste07].



3 Meshes

Mesh-closure estimate (R3)

First, the mesh-closure estimate (R3) has been proved for the case d = 2, cf. [BDDO04].
Later, (R3) has been proved for d > 2 in [Ste08]. While both works [BDD04, Ste08] require
a technical admissibility condition on Ty in order to prove the mesh-closure (R3), [KPP13]
proved this admissibility condition to be unnecessary for d = 2.

3.7 Other refinement strategies

A different possible refinement strategy is red-refinement with first-order hanging nodes. We
refer to |[BN10], where the validity of (R1)-(R3) is shown. In the framework of isogeometric
analysis, we mention the mesh-refinement techniques for analysis-suitable T-splines [MP15]
and refer to [BGMP16] for truncated hierarchical B-splines as well as [GHP17] for hierar-
chical B-splines. For further details on mesh-refinement strategies which satisfy (R1)-(R3),
we refer to [BN10, MP15, Feil5] and to the discussion in [CFPP14, Section 2.5].
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4 Adaptive FEM for second-order elliptic
systems of partial differential equations

4.1 Introduction

This chapter is based on the recent own work [GHPS21|. While the analytical main results
are the same, we add an additional section on preconditioning and more in-depth numerical
examples are provided. We consider and analyze adaptive finite element methods (AFEM)
for second-order elliptic systems of partial differential equations (PDEs), where the arising
discrete systems are not solved exactly. Our model problem reads as follows: Let Q C R?
be a bounded Lipschitz domain with d € {2,3} and boundary T" := 9. We assume that
A: L2(Q)? — L*(Q)? is a strongly monotone and Lipschitz continuous operator, cf. Sec-
tion 4.2 for the precise definition. We consider the following quasi-linear elliptic boundary
value problem: Given a load f € L*(Q), find u* € H := H}(Q) such that

—divA(Vu*) = f in Q,

4.1
u* =0 onT. (4.1)

Therefrom, we get the equivalent variational formulation: Given a load f € L%(Q), find
u* € H := H}(Q) such that

(AU* | V)i = / A(Vu*)-Vode = / fode = (F, v)grxy forallveH. (4.2)
Q Q

The main theorem on monotone operators [Zei90, Section 25.4] admits a unique solution to
the weak form (4.2). Given a discrete subspace Xy C H related to some triangulation 7, of
), also the discrete formulation

(Au}, Uf>7'l/><7-t = (F, ,U€>’H/><'H for all Uy € Xg (43)

admits a unique solution u; € A}, again due to the main theorem on monotone opera-

tors [Zei90, Section 25.4|. If A is nonlinear, then uj can hardly be computed exactly. Even

if A is linear, usual FEM codes employ iterative solvers like PCG, GMRES, or multigrid.
Given an initial guess ug € X, we assume that we can compute iterates ulg = @g(uf_l) €

Xy which lead to a contraction in the energy norm on H, i.e.,
lluf — wfll < qllu; —wi '] forall k € N (4.4)

with some Aj-independent contraction constant 0 < g < 1. In explicit terms, we assume
that we have an iterative solver with iteration function ®, : Xy — A, which is uniformly
contractive in each step. Additionally, we assume that we can control the discretization
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

error (for the exact, but never computed discrete solution u; € A from (4.3)) by some
reliable a posteriori error estimator

1/2
Cat b = il < mlu) o= (X mlTi?) (5)
TeT,

where the local indicators ny(7, -) can also be evaluated for other discrete functions vy € A
instead of the exact Galerkin solution uj; € A}.
Then, our adaptive algorithm takes the form

Iteratively Solve&Estimate‘ — — (4.6)

where the first step may be understood (and stated) as an inner loop, and is based
on the Dorfler criterion from [Dor96] with (quasi-) minimal cardinality [Ste07, PP20].

4.1.1 State of the art

The ultimate goal of any numerical scheme is to compute a discrete solution with error below
a prescribed tolerance at, up to a multiplicative constant, the minimal computational cost.
Since the convergence of numerical methods is usually spoiled by singularities of the (given)
data as well as the (unknown) solution, a posteriori error estimation and related adap-
tive mesh-refinement strategies are indispensable tools for reliable numerical simulations.
For many model problems, the mathematical understanding of rate-optimal convergence of
adaptive FEM has matured. We refer to [Dor96, MNS00, BDD04, Ste07, CKNS08, CN12,
FEP14] for some seminal works for linear problems, to [Vee02, DK08, BDK12, GMZ12] for
nonlinear problems, and to [CFPP14] for a general framework of convergence of adaptive
FEM with optimal convergence rates. Some works also account for the approximate compu-
tation of the discrete solutions by iterative (and inexact) solvers, see, e.g., [BMS10, AGL13]
for linear problems and [GMZ11, GHPS18, HW20a, HW20b| for nonlinear model problems.
Moreover, there are many papers on a posteriori error estimation which also include the iter-
ative and inexact solution for nonlinear problems, see, e.g., [EAEV11, EV13, AW15 HW18§|
and the references therein.

As far as optimal convergence rates are concerned, the mentioned works focus on rates
with respect to the degrees of freedom. However, in practice, one aims for the optimal
rate of convergence with respect to the computational cost, i.e., the computational time.
The issue of optimal computational cost is already addressed in the seminal work [Ste07]
for the Poisson model problem. There, it is assumed that a sufficiently accurate discrete
solution can be computed in linear complexity, e.g., by a multigrid solver. Under these
so-called realistic assumptions on the solver, it is then proved that the total error (i.e., the
sum of energy error plus data oscillations) will also converge with optimal rate with respect
to the computational cost. A similar result is obtained in [CG12| for an adaptive Laplace
eigenvalue computation.

In recent works, concrete solvers are included into the convergence analysis. In [GHPS18],
adaptive FEM for an elliptic PDE with strongly monotone nonlinearity is adressed. The
arising nonlinear FEM problems are linearized via the so-called Zarantonello iteration (or
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4.2 Abstract model problem

Banach—Picard iteration), which leads to a linear Poisson problem in each step. The
adaptive algorithm drives the linearization strategy as well as the local mesh-refinement.
In [GHPS18], it is proved that the overall strategy leads to optimal convergence rates with
respect to the degrees of freedom and to almost optimal convergence rates with respect to
the total computational cost. The latter means that, if the total error converges with rate
s > 0 with respect to the degrees of freedom, then it converges with rate s —e > 0 with
respect to the overall computational cost, for all € > 0. Moreover, in [FHPS19| (c¢f. Chap-
ter 6), we obtained analogous results for an adaptive boundary element method, where
we employed a preconditioned conjugate gradient method (PCG) with optimal additive
Schwarz preconditioner to approximately solve the arising linear discrete systems.

We now aim to prove optimal rates with respect to the overall computational cost for the
algorithm from |[GHPS18|. Moreover, we give an abstract analysis in the spirit of [CFPP14]
and show that this also covers linear solvers like PCG.

4.1.2 Qutline

First, we formulate the precise assumptions on the model problem, the mesh-refinement
and the FEM spaces (Section 4.2), and the error estimator as well as the iterative solver
(Section 4.3-4.4). Then, we formulate the adaptive algorithm in Section 4.5 and state
the abstract main results in Section 4.6, namely linear convergence of the quasi-error in
Section 4.6.1 and optimal convergence rates of the quasi-error in Section 4.6.3. Before
we then apply the abstract setting to adaptive FEM with PCG solver for linear PDEs
(Section 4.7) including numerical examples (Section 4.7.7), we construct an additive Schwarz
preconditioner in Section 4.7.1 and prove its optimality in Section 4.7.3. Afterwards, we
apply the abstract setting to the the adaptive algorithm from [GHPS18| for adaptive FEM
for problems with strongly monotone nonlinearity (Section 4.8) including some numerical
experiments in Section 4.8.1 to underline the theoretical findings.

4.2 Abstract model problem

Let H be a Hilbert space over K € {R,C} with scalar product (-, -) and corresponding
norm || - ||. The usual dual space of H is denoted by H’ with the corresponding norm || - ||.
We consider nonlinear elliptic equations in the following abstract setting with variational
formulation: Given a linear and continuous functional F' € H’, find u* € H such that

<Au*, U>’H,’><H = <F, U>’H’><’H for all v € H. (47)

To guarantee solvability, we suppose that the operator A: H — H' satisfies the following
conditions:

(01) A is strongly monotone: There exists a constant o > 0 such that

aflw —v|* < Re (Aw — Av, w — v)prxy for all v,w € H.

(02) A is Lipschitz continuous: There exists a constant L > 0 such that

Aw — Av||" < Ljw — || for all v,w € H.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

(0O3) A has a potential: There exists a Gateaux differentiable function P: H — K such
that its derivative dP: H — H' coincides with A, i.e., it holds that

P(w + tv) — P(w)

(Aw , V)33 = (dAP(w) , ) xy = lim for all v,w € H.

=

Let 7y be a given regular initial mesh and suppose that refine(-) is a fixed refinement
strategy satisfying the axioms (R1)-(R3) from Section 3.4. To each T4 € T := refine(7y),
we associate the related finite-dimensional conforming subspace X, C H of the given Hilbert
space H. We suppose that refinement 7, € refine(7,) leads to nestedness of the corre-
sponding subspaces in the sense that Ay C A5.

Then, the discrete formulation of (4.7) reads as follows: Given a linear and continuous
functional F' € H’, find u} € X, such that

(Auy, ve)rrxm = (F, ve)mrxy  Tor all ve € X,. (4.8)

The main theorem on monotone operators [Zei90, Section 25.4] yields existence and unique-
ness of solutions u* € H as well as u} € X, for both the model problem (41.7) and its discrete
version (4.8), respectively.

Let £ := Re (P — F) be the energy functional. Then, it holds that

L
e = vl < E(w) = E2) < 5 lluz —wal® - for all vy € X, (19)

which is proved, e.g., in [GHPS18, Lemma 5.1]. In particular, u* € H is the unique
minimizer of the minimization problem

E(ur) = {)Iéi?t-llg(v), (4.10)

as well as uj € X, is the unique minimizer of the minimization problem

E(uy) r.nin E(va). (4.11)

_'UEX.

As for linear elliptic problems, the present setting guarantees the following Céa lemma,
where we include the proof for the sake of completeness.

Lemma 11. Suppose that the operator A satisfies (O1)—(02) with constants 0 < o < L.
Then, it holds with Ccey := L/ that

lu* = ugll < Ceea min flu” —v,. (4.12)
Ve EX,

Proof. There holds the Galerkin orthogonality (Au* — Auj, ve)srxy = 0 for all v, € A
Let we € Xy and u* #£ u}. Then, it holds that

affur — ) s B ZAvG, Wl

flur — w3l

Re (Au* — Ak, u* — we)prp (02
_ e< U Ug ; U ’LU>’H XH < Lmu*_w.m

flur = w3l

Hence, we take the infimum over all we € X,. Since A, is finite-dimensional, the infimum
is attained and is, in fact, a minimum. O
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4.3 Error estimator

4.3 Error estimator
For each mesh T, € T, suppose that we can compute refinement indicators
Ne(T,ve) >0 for all T € T, and all ve € A. (4.13)

To abbreviate notation, let 7e(ve) := 1¢(7e, Ve ), Where
1/2
Ne(Us,Ve) := ( > ne(T, v.)2> for all Uy C Te. (4.14)

We assume the following azioms of adaptivity from [CFPP14], where Csap, Crel > 0 and
0 < greq < 1 are generic constants:

(A1) stability on non-refined element domains: For all triangulations 7, € T and
refinements 7, € refine(7,), arbitrary discrete functions v, € X, and we € X, and
an arbitrary set U, C Ty N To of non-refined elements, it holds that

|770(Z/{07v0) - 77.(2/{01 wo)’ < Cstabmvo - wom

(A2) reduction on refined elements: For all triangulations 7, € T and refinements
7o € refine(7,), and arbitrary discrete functions ve € X, it holds that

7]0(7?3\7:7 Uo) < Gred 770(7:\7;7 UO)'

(A3) reliability: For all triangulations 7, € T, the error of the exact discrete solution
uy € Xy of (4.8) can be bound by the error estimator, i.e.,

lu* = ugll < Crerme ().

(A4) discrete reliability: For all triangulations T, € T and refinements 7, € refine(7,),
the difference of the exact solutions u} € Xy and u} € X, can be bounded by

lug = ugll < Cret e (To\Ts, ug).-

We stress that the exact discrete solutions uy € X, and u} € A, in (A3)-(A4) will never be
computed but are only auxiliary quantities for the analysis.

Remark 12. The verification of (A1)—(A4) in Section 4.7 and 4.8 relies on scaling argu-
ments and implicitly uses that oll meshes To € T are uniformly shape reqular. Moreover,
we note that the analysis is implicitly tailored to weighted-residual error estimators, since
the usual verification of (A2) relies on exploiting the contraction of the mesh-size on refined
elements.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

4.4 Discrete iterative solver

For all triangulations T, € T, let ®q: Xy — X, be the iteration function of one step
of the iterative solver, i.e., for a given initial guess vl € X,, we can compute iterates
uk = ®,(ulb~1) € A,. We require one of the following two contraction properties with some

uniform constant 0 < gty < 1, which is independent of 7,:

(C1) energy contraction: For all triangulations 7, € T and an arbitrary discrete function
Ve € X, it holds that

E(Pa(va)) = E(ug) < ¢r (E(va) — E(u]))-

(C2) norm contraction: For all triangulations 7, € T and an arbitrary discrete function
Ve € X, it holds that

llug = Po(va)ll < et [lug — vell-

Remark 13. For linear symmetric problems, one usually has that £(ve) — E(uy) = 5 [lve —
ul||? for ve € X, and hence (C1) and (C2) are equivalent.

To formulate the stopping criterion for the iterative solver of the adaptive algorithm, we
need an additional auxiliary quantity. Let

d(w,v) = {\S(v) — E(w)|V/? in case of (C1),

. (4.15)
lw — ol in case of (C2).

Then, the following lemma provides the means to stop the iterative solver.

Lemma 14. Let To € T and ve € Xo. Then, both (C1) and (C2), respectively, imply the
following estimates:

(i) d(ug, ®(ve)
(i) d(ve, @(ve)) < (1 + Getr) d(ug, ve),
(iii) d(uk, ve) < (1 — qetr) " d(ve, @(vs)).

) < Qetr (Ut,U.);

Proof. First, let assumption (C1) hold true. From the definition of d(-,-) follows that

a3, (00)) "L |E@(00)) — E@)M < g 1) — £ = sy A(utd,v0).

Hence, claim (i) holds true. Note that d(-,) is a quasi-metric, i.e., it holds for all ve, we, ze €
X, that

e d(ve,ve) =0,
e d(ve,ws) = d(ws,ve), and,
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4.5 Adaptive algorithm

e d(ve,2e) < d(ve,wse) + d(ws, ze),

where the triangle inequality follows from the fact that (a +b)'/2 < a'/2 +b'/2 for a,b > 0.
Therefrom, we get with claim (i) that

d(ve, ®(ve)) < d(ve, uy) + d(uy, P(ve)) < (1 4 getr) d(uy, ve),

which proves claim (ii). Claim (iii) also follows from the triangle inequality combined witch
claim (i). It holds that

d(ug, ve) < di(ug, @(vs)) + d(P(ve), ve) < getx A(ug, ve) + di(ve, D(va)),
which is equivalent to claim (iii).

Now, let assumption (C2) hold true. Then, claim (i) is simply the norm contraction (C2)
and claim (ii)—(iii) follow from the triangle inequality of the energy norm. O

4.5 Adaptive algorithm

Now, we propose our adaptive algorithm. We will employ a lower index ¢ for the adaptive
mesh-refinement as well as an upper index k for the respective steps of the iterative solver.

Algorithm 15. Input: Initial mesh Ty and initiol guess u8 € Xy, adaptivity parameters
0<60<1, Aty >0, and Crark > 1, counters £:=0=: k.
Adaptive Loop: Iterate the following Steps (i)—(v):
(i) Repeat the following steps (a)—(c):
(a) Update the counter ({,k) — (£, k+1).
(b) Do one step of the iterative solver to obtain uf := @g(ulg_l),

(c) Compute the local contributions ny(T,uf) of the error estimator for all T € Ty.

Until dl(uéf,ulzfl) < Aete Me(uf). (4.16)
(ii) Define k(¢) := k.

(iii) Determine a set My C Ty with up to the multiplicative constant Cark minimal cardi-
nality such that

0 ne(uy) < ne(Mg,up). (4.17)

(iv) Generate Ti4y := refine(T;, My) and define up, , := uf(g).

(v) Update the counter (¢,k) — (£ + 1,0) and continue with (i).
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Output: Sequences of successively refined triangulations Ty, discrete solutions ui?, and cor-
responding error estimators m(uéf), for all >0 and k > 0.

We define the following set of indices Q by
Q:={(£,k) € N§ : index pair (¢, k) is used in Algorithm 15 and k < k(¢)}.
Since uf,, = uf(g), we exclude (£,k(¢)) from the index set Q, if (¢ + 1,0) € Q. Since

Algorithm 15 is sequential, the index set Q is naturally ordered. For (¢, k), (¢, k') € Q, we
write

def
<~

('K < (¢,k) (¢', k") appears earlier in Algorithm 15 than (¢, k). (4.18)

With this order, we can define the total step counter

-1

(k) = #{( k) e Q: (' K)<(tk)}=k+> Kk,

=0

which provides the total number of solver steps up to the computation of uf.
To abbreviate notation, we make the convention that if the mesh index ¢ € Ny is clear
from the context, we simply write k := k({), e.g., u% = u%(f). In addition, we introduce

some further notation. Define
{ = sup {€ eNp: (£,,0) € Q}.

Generically, it holds that £ = oo, i.e., infinitely many steps of mesh-refinement occur.
Moreover, for (£,0) € Q, define k(¢) := sup {k € Ny : ((,k) € Q} + 1. We note that the
latter definition is consistent with that of Algorithm 15, but additionally defines k(¢) = oo
if £ < 0.

4.6 Abstract main results

In this section, we state the main results in the abstract framework of Section 4.2. The
analysis relies only on the assumptions (R1)-(R3) on the mesh-refinement, (A1)-(A4) on
the error estimator, and (C1) as well as (C2) on the iterative solver respectively. Hence, for
concrete model problems, only these assumptions have to be verified, cf. Section 4.7 and
Section 4.8.

First, due to the contraction property (C1) and (C2) respectively, we have a posteriori
error control of the error.

Proposition 16. Suppose (C1) or (C2) as well as (A1)~(A3). Then, the quasi-error Ak
(consisting of error plus error estimator), which is defined via

AY = ||u* — uf|| + ne(uf)  for all (L,k) € Q:= QU {(t,k) : k({) < o}, (4.19)
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satisfies that

ne(uf) + d(uf,uy™) if 0 <k <k(0),
Af < Cly { moluy) if k= k), (4.20)
Ne— 1(U) if k=0 and > 0.
The constant C}, > 0 depends only on Cgsap, Chrel, Getr, 0nd Aty under (C2), while it

additionally depends on o under (C1).

Proof. Let (£,k) € Q and k > 0. Then, it holds that
llw* — gl <l —wgll + llug — ]

(A3)
< Cramne(up) + fluj — |

< Crar (Ine(up) = ne(uf)] + ne(ug)) + llug —
(A1)
< C’rel 77@(“2) + (Crelcstab + 1) mu; - U’;m

Now, we distinguish between the different contraction properties. First, suppose (C1).
With (4.9) and Lemma 14(i)&(iii), it then follows that

luf — g ||| \/ 2/ad( W,W
=V 2/Oédl Ug, 1))
2/0( qctr (ué ) U]Z 1)

2/« ot dl(u’Z,u]g b,
]'_QCtI“

Next, suppose (C2). With Lemma 14 (i)&(iii), it then follows that

lluy — ufll = d(uz, D(uy~))
S Gctr dl(uévuzj 1)

qctr k k 1
< d(uy, .
T 1- qctr ( et )

Since A} = [|u* —uf|| +ne(uk), this proves (4.20) for the case that 0 < k < k(£). If k = k(¢),
the stopping criterion (4.16) in Algorithm 15(i) yields that

dug, uf ™) < A meu).

This proves (4.20) for k = k(¢). If k = 0 and £ > 0, it holds that u) = us . Hence, it

follows from the previous step that

k k
et — @l =l =l < e () = e (). (1.21)
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Moreover, the equality u) = “%—1 implies that u) € AXy_;. Therefrom, (A1)-(A2) yield that

ne(ud) = (ne(Te O Too1,u0)® + me(Te \ Toor, u)?)

L\
L (0ot (T2 O Tozr, ud)? + 0o (T \ Ty, u)2) /2

(4.22)
(42 0y2 0y2)1/2
< (=1 (Te N Toe,ug)? + ne—1 (To—1 \ Te, ug)?)
= -1 (ug).
Since AY = [|lu* — ud|| + n¢(u?), combining (4.21)—(4.22) concludes the proof. O

4.6.1 Linear convergence of the quasi-error

The first main theorem states linear convergence of the quasi-error. We note that under
certain assumptions, linear convergence holds for arbitrary parameters 0 < 6 < 1 and
)\Cf,r > 0.

Theorem 17. Suppose (C1) or (C2) as well as (A1)~(A3). Define

00 if (C1) is valid,
Acon = {1q°“ otherwise (423)
Cstachtr '

Then, for all 0 < 0 < 1 and 0 < Aty < Aconv 0, there exist comstants Cy, > 1 and
0 < qiin < 1 such that the quasi-error (4.19) is linearly convergent in the sense of

AF < Crip g IR AR for all (0,%), (¢, F) € Q with (¢, F) < (0,k).  (4.24)

The constants Cy, and qun depend only on Ccea = L/a, Cstab, Greds Crel, Getr, and the
adaptivity parameters 0 and Ay, while it additionally depends on L in case of (C1).

The following corollary states that the exact solution u* is discrete if £ < oo, i.e., if the
number of mesh refinements is bounded.

Corollary 18. Suppose the assumptions of Theorem 17. Then, £ < oo implies that u* = uz
and ng(uj) = 0.

Proof. According to Theorem 17, it holds that
|l — UZ||| + ng(uf) = Az —0 ask — oo.
Moreover, contraction (C1) or (C2) (together with (4.9) in case of (C1)) prove that
luy — ulzm o~ dl(uz,ug) <, dl(uz,ug) —0 ask— oo.

Uniqueness of the limit yields that uj = u*. Moreover, it follows that

(A1)
0 < me(up) < me(uf) + [luf — uill = 0 as k — co.

This concludes the proof. O
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4.6.2 Proof of Theorem 17 (linear convergence)

Recall the definition of d(-, ) from (4.15). According to Algorithm 15, the contractive solver
stops for the minimal k£ = k(¢) > 1 such that

dl(u%, uﬁ_l) < Aetr ng(uﬁ). (4.25)
In particular, since we exluded k from the index set Q, this implies that

ne(uf) < Ak dl(uf,uf ™) for all (£,k) € Q with k > 0. (4.26)

ctr

Proof of Theorem 17 under assumption (C1)

In this section, we give a proof of Theorem 17 under the assumption (C1), i.e., that the
iterative solver ®, leads to a uniform contraction of the discrete energy. Therefore, we first
recall that the solution u* € ‘H minimizes the energy £ in H, i.e.,

E(ur) = %1?1{1 E(v)

as well as that the discrete Galerkin solution u} € Xy minimizes the energy &£ in X,, i.e.,

E(uy) = vl.rélgvl. E(ve),

cf. Section 4.2. Hence, for ve € X, the energy differences E(ve) — E(u*), E(u}) — E(u*), and
E(ve) — E(u}) are all non-negative. Therefrom, the absolute values in the definition of di(, -)
can be omitted which yields the Pythagoras-type identity

d(u*,ve)? = d(u*,u)? + d(uk,ve)? for all v, € X,. (4.27)

The core of the proof of Theorem 17 is the following lemma, where 0 < 8 < 1 and Acy > 0
are, in fact, arbitrary parameters.

Lemma 19. Suppose (A1)—(A3) and (C1). Let 0 < 0 <1 and Aety > 0. Then, there exist
constants ;1 > 0 and 0 < qu, < 1 such that

AY = d(u*, ub)? + pne(uf)?  for all (0,k) € Q (4.28)
satisfies the following statements (i)—(ii):
(i) APt < @2 AF forall (0,k+1) € Q.
(i) AY,, < gl Aj " for all (£+1,0) € Q.

The constants p and qun depend only on L, o, Cgsiab, Gred, Crel, and ety a$ well as on the
adaptivity parameters 0 < 0 <1 and Mgy > 0.
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Proof of Lemma 19(i). Let pu,e > 0 be free parameters, which will be fixed below. First,
we note that reliability (A3) and stability (A1) yield

(A3)
upll* < Clame(up)?

flw — <
(A1)
<

k k
2 Crel UZ(WH) +2 Crel SQtab muf - UZ—H mz

Together with the equivalence (4.9), this leads to

) L
d(w,up)® < < 5 llu” — ull?
k
<L Crel 775(“£+1) + L Cr2el C(sztab W’U’Z - u€+1”‘2

(4.9)
< LCelW(u?—H) +2La” 1Crelctabdl(u€7 IZH)'

Let Cy := LC?% and Cy :=2La ' C?% C% . With this, combining the last inequality and

the energy contraction (C1), we obtain that

(4.27)

d(u*, up )2 (1 — &) d(u*,up)? + e d(u*,up)? + d(uf, uf )2

< (1—e)d(u*, up)? + e Crne(ub ™) + (1 + & Cp) d(uf, uf ™)?
C

N

(C
< (L—e)d(u*,up)® +eCrmluy ™) + (1 + ¢ Oa) g2, A(u, uf)?

Since (¢, k+1) € Q and according to the definition of Q, it holds that k+ 1 < k(¢). Hence,
inequality (4.26) and Lemma 14(ii) yield that

('—1.26)
TM( ’ZJrl) < Actr dl( k+1 IZ)Q

Lemma 14(ii)

< A (14 gew)® d(u, uf)?.

ctr
Let C3 := Agtf (1 4 getr)?. Combining the latter two estimates, we see that
A?-‘rl _ dl(u u?-‘rl) +N77€( k-‘rl)

<(1-e)d(u* ,un + (e O me(uy ™) + (14 € Ca) g2y A(uf, uf)?

< (1 —e)d(u*,u))? + {(p+eC1)Cs+ (1 +£C2) g4} d(uf, uf)?
Note that C1, Cy,Cs depend only on the problem setting. Provided that

(W+eC)Cs+(1+eCy) g4, <1—c¢, (4.29)

we are thus led to

AT < (1 —e) (A(ut,up)? + d(uf, uf)?)
(4.

Hw

Y- a ufy?
< (1—¢)AS.

Up to the final choice of u,e > 0 (see below), this concludes the proof of Lemma 19(i). [
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Proof of Lemma 19(ii). Let p,d,e > 0 be free parameters, which will be fixed below. First,
we note that

x o2 (A3) 2 *\2
< C
(k@ ugl| re1 Me(uy)

(Al)
< 208 me(up ) + 207 Ca lluj — wy ||

Together with the equivalence (4.9), this leads to

(19)
d(u,up)? < = 5 llu” — ug|l®
< L Crel 77@(“4 ) Crel tab ”‘ué - ué H‘Q

(4.9) _ k—1
< LCm(uf 242007t O 2L duf, up )2

Recall that C, = L C? &y and Co = 2La™ Lo2 2 G ab- With this, we obtain that

rel

d(ur,ub)? 2 (1 o) d(ut,up)? + e d(ut,up)? + d(uf, ub)?
k

< (1—e)d(u*,u})® +eCy m(uffl)2 +eCy dl(ug,ué N2 4 di(ug Jug)? (4.30)
5 * 0 H\2 k—1\2 2 * k=12
< (L—g)d(u,up)” +eCrme(uy )" + (e C2 + qgp) duj,uy )”

Next, stability (A1) and reduction (A2) show that

k k k
Ne1 (ug)? = 1e1 (Te N Tors 1) + mesr (Tea \Tes ug)?
(A1)

= 0e(Te N Teg1, U§)2 + e 1 (Ter 1\ T, Uf)z
(A2)
< ne(Te NV T, U§)2 + @i 1e(T\ T4, U%)Q
= no(uf)? = (1= q2a) me(T\Tesr, uf)?.

According to the Dérfler marking criterion (4.17) in Algorithm 15(iii), we are led to

e (ug)? < (1= (1= ghq) 0%) me(ug)® = gome(up)™. (4.31)
Note that
llug — g 12 < 2 (g — wgl® + g —ug ')
R CIRT R R D

(C1) 4 e
< (gl + ) d(uf,ug )

Next, with § > 0 which we specify further on, we use the following variant of Young’s
inequality

(a+0)*<(A+68)a®>+(1+0Hv* forallabeR.
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This leads to

(A1)
k
ne(uy)?

k—1 ko k=12

< (me(us ™) + Cogap lug —ug )
k—1 _

< (14 6) me(up ™) + (14071 Cop llu — w17 (4.32)
k-1 1, 4 k—

< (L0 me(uy )+ (1407 = (g +1) Cap A, g™ ).

Let Cy := 4a7 ' (¢4, + 1) C4,,- Note that Algorithm 15 guarantees that up,, = u%.

Combining the latter estimates, we see that

A2+1 = d(u*, Uz+1) + MWH(U?H)Q

(4.31)
< d(ur, ub)? + pge me(ug)?
(4.30) %2 k—1.2 2 * k—1\2 ky\2
< (=g d(wup)” +eCimlu, )"+ (€ Co + qep) duj uy )™+ pagme(uy)
(4.32)

< (1—e)dwu)? +{eCrut + a0 (1+0)} pme(uy )?
+{eCot gt pap (1+ 671 Ca} d(uf,ug )
Note that C1,Cy,Cy and 0 < g9 < 1 depend only on the problem setting. Provided that
eCip P +g(l+6)<l—ec and eCotg, +pg(l+61)0y<1—c¢, (4.33)

we are thus led to

ADyy < (1 — ) (d(u,ud)? + d(uf, ub ™) + pme(ub™)?)

(4.27) 1
(1 =) (d(u, ug ™) + pe(uy )%
= (1—e)AF.
Up to the final choice of §, i, e > 0, this concludes the proof of Lemma 19(ii). O

Proof of Lemma 19 (fizing the free parameters). To fix all the free parameters and to show
that there exists a choice such that all the necessary assumptions are fulfilled, we proceed
as follows:

e Choose § > 0 such that (14+9)gp < 1.
e Choose p > 0 such that ¢, + pge(1+6)1Cy <1 and pCs+ g3, < 1.
e Finally, choose ¢ > 0 sufficiently small such that (4.29) and (4.33) are satisfied.

This concludes the proof of Lemma 19 with (1 —¢) = ¢2_. O

Proof of Theorem 17 under assumption (C1). According to (4.9), it holds that
d(u*, uf) =~ [|u* —uf|| and as a consequence that Af ~ (A¥)!/2 where the hidden constants
depend only on pu, o, and L.

Since the index set Q is linearly ordered with respect to the total step counter |(-,-)],
linear convergence (4.24) now follows directly from Lemma 19 via induction on the index
pair. O
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Proof of Theorem 17 under assumption (C2)

In order to prove Theorem 17 under assumption (C2), we first have to recall the following
main result from [GHPS18] whose proof is based on a perturbation argument.

Lemma 20 ([GHPS18, Lemma 4.9, Theorem 5.3]). Suppose (A1)—(A3) and (C2). Let
0<0<1and0<Aetr < Acony 0, where Aeony = A—2"— . Then, it holds that

CstabQCtr
k qctr . k 1 *
I = gl < Aew 20— min {e(u), 5 —me(u) } (4.34)
as well as
(1= Actr/Aeonv) Mo () < me(uf) < (14 Actr/Aeony) ne(uh). (4.35)

Moreover, there exist Cqups > 0 and 0 < gagps < 1 such that

Moty ,) < Canps qGups ne(uy)  for all ((+n+1,0) € Q. (4.36)

The constants Caups and qeups depend only on Ccea = L/, Crel, Cstab, Gred, and qetr, aS
well as on the adaptivity parameters 0 and . O

Lemma 20 shows that the given constraint on Ay guarantees estimator equivalence
ne(uj) ~ ng(u%). Assume Dorfler marking for W(u%) and 6, cf. Algorithm 15(iii), then
there holds with stability (A1) that

0 — )‘Ctr/)‘conv (4.35) X
Z  rctr/ 7iconv < 0 — )\C N )\COHV Kk
1+ Aetr/Acony meug) < ( or/ ) ne(uy)
(4.17) f .
< W(Me, UZ) - Actr/)\conv ne(uz) (437)

(A1) i i
< W(Mea uz) + C'staub |”’U,z - UZW - )\ctr/)\conv e (UZ)

(4.34)
< ne(Mg,up).

In other words, Dorfler marking for ng(uf) and @ implies Dorfler marking for n,(u}) and
0 = (9 - )\ctr/Aconv)/(l + ACtr/)\conv) > 0.

In the present case, the core of the proof of Theorem 17 is the following summability
result.

Lemma 21. Suppose (A1)—(A3) and (C2). Let 0 < 6 <1 and 0 < Aety < Acony 0, where

again Acony = ﬁ. Then, there exists Csum > 0 such that
Y A< CamAf forall (,K) € Q. (4.38)
(L,k)eQ

(0,k)>(' k")

The constant Coum > 0 depends only on L, o, Cial, Csab, Gred, nd qetr, 08 well as on the
adaptivity parameters 60 and Acir.
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Proof. The proof is split into six steps.
Step 1. This step provides an equivalent quasi-error quantity. First, note that

ll* — il < Mo =l + e — gl
(A3)
< me(up) + [l — ug]
(A1)
< meuf) + g — ufll =t Af.

This proves that A} = [Ju* — u}|| +ne(uf) < Af. Second, the Céa lemma (4.12) proves that

X . (4.12) X
llug —wpll < llu” —ugll + lu* —udll < llu” —ug]l-
This concludes that
A = flup — gl + ne(ug) ~ A (4.39)

Step 2. This step collects some auxiliary estimates. We start with

A) Sme—a(uy ) < AF | forall (£,0) € Q with £ > 0. (4.40)

With the Céa lemma (4.12) and reliability (4.20), it follows that

k k
e =gy Il < e = wgll + flu” = wy_y |

(4.12) .
S v =y |l

(4.20) &
S M-t (UZ_l)

With nested iteration uf = u%_l and (A1)—(A2), we thus obtain that

AY = Jlug — ugll + ne(up)
k k
= [lu — w1 Il + me(uy_y)
k
N 772—1(qu1)

k
= A

This proves (4.40). Next, we prove that

AF < AF forall ((+1,0) € Qand 0 <k < k(/). (4.41)

~

To see this, note that

(C2)
k ok k k—k
llug = wfll < Mg = wpll + llug = wfll < (gege” + 1) llug = wg -
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Hence, it follows that

k k k
Ay = |lup — ugf| + ne(uy)
(;’\
k k k k
S g —ug | + g —ug || + ne(ug)
k k
S My — ugll 4 neuy)
= A},

—_
~—

This proves (4.41). Finally, we prove that

A S lup —ub™Y| for all (¢,k) € Q with k > 0. (4.42)

With the inequality (4.26), which stems from the stopping criterion (4.16) of Algorithm
15(i), and Lemma 14(ii), we get that

. 4.26) . Lemma 14(ii) .
ne(uf) S flup —ug ) S g — g~
This leads to

k k k
A7 = lluz — wgll + me(ug)
(C:

@)
)
~

S H!u(z—uz U e ()
<

lluz — g

and thus proves (4.42).
Step 3. Suppose that £ = oo and hence k(¢) < oo for all £ € Ny. Note that

k(6)—1 k(-1
Z Ak = Z Z Ak 4 Z Ab,
(,k)eQ 0=0'+1 k=0 k=k'+1

(e, k)> (Z’ k")

l

o k(@)
Z ZA’; Z Ak,

=041 k=1 k=k"+1

(4.40)

With contraction (C2), the geometric series proves for all (£,7) € Q that

EO—-1  (4.40) k(¢

> AL S Z llez — g

k=i+1 k=i+1

|||W — ] Z Ger'

< Al

(4.43)
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Hence, it follows that

k() =A; < A if k(¢) =1,
k
A (1.41) EO—-1 (4 43)
k=1 SOY A S A if k() > 1.
k=1
Moreover, it follows that
K +1 (40 k
! : ! !
k(¢) =4y S A if k(0) = k' + 1,
k
Z Ap (4.41) B guz)
k=k'+1 SOY AL S AR if k(0') > k' + 1.
k=k'+1
So far, this proves that
Y OAFSAY+ D A
(£,k)eQ =041
(L,k)>(¢ k")

Exploiting the linear convergence (1.36) together with the geometric series, we prove that

4.40) X

e (
Z A? S Z 77571(“%_1)

=041 =041

o
k
= > _ne(uy)
=0
(4.36) o0
k 0

S ne(ug) Z dGHPS

=0

k

=~ 1 ()
< A%

Overall, this proves that

, 4.41 /
ST OAF<SA + A o A% provided that £ = oo. (4.44)
(L,k)eQ
(R)> (€' k)

Step 4. Suppose that ¢ = £ < oo and hence k(') = k({) = co. Then, the geometric
series proves that

© (443)
dOAF= D AL < AL (4.45)
(6,k)eQ k=k'+1
(L,k)>(¢' k")
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Step 5. Suppose that ¢ < £ < oo and hence k(£) = co. Then, it holds that

1 k(0)-1 k(e —
YoooAb= 3 Y Ab+ Z AE,+ZAZ
(ék EQ (=0'+1 k=0 k=k'+1

(0.k)> (0 k')

First, note that

1 k() k(¢)—1
Yo AFS Af+ > AL
(L,k)eQ 0=0'+1 k=0 k=k'+1
(L,k)>(¢ k")
(140) L1 k(O k(2"
< Z ZAQH Z Ak
{=0'+1 k=1 k=k'+1

Along the lines of Step 3, one concludes that

=1 k(6 k()
YD AN+ Y AL SAL. (4.46)
(=0+1k=1 k=k'+1

Step 6. In any case, (4.44)—(4.46) prove for all (¢, k") € Q that

doooab~ Y AFS AL ~ AL
k)€ (L,k)eQ
(6,k)> (¢ k) (6,k)> (¢ k)
This concludes the proof of (4.38). O

Proof of Theorem 17 under the assumption (C2). The proof is split into two steps.
Step 1. From [CFPP14, Lemma 4.9], we recall the following implication for sequences
(on)nen, in R>p and constants C' > 0: Assume that

o0
Z o, < Capy forall N € Ng.
n=N+1

Then, for N € Ny, it holds that

1+C Z oy < Z an+aN—Zan

n=N+1 n=N+1
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Inductively, it follows that

1+C’ Z ay < Z an+aN—Zozn for all N,m € Ny.
n=N-+m n=N+1

We thus conclude that

o0

AN < N an <(14+C)(1+C7)May  for all N,m € N,
n=N

Step 2. Since the index set Q is linearly ordered with respect to the total step counter
|(-,-)], Lemma 21 and Step 1 imply that

A < Cln g CFITIEPIAE for all (0,k), (¢, F) € Q with (¢, ) > (¢, k),

where Clin = 1+ Csum and g = 1/(1 + Co.L). This concludes the proof.

4.6.3 Optimal convergence rates of the quasi-error

The second main theorem states optimal convergence rates of the quasi-error (4.19) with
respect to the overall computational costs. As usual in this context (see, e.g., [CEFPP14]),
the result requires that the adaptivity parameters 0 < 0 < 1 and A > 0 are sufficiently
small. With the following definition, we then get Theorem 23.

Definition 22. For N € Ny, let T(N) be the set of all refinements T of To with

#T —#To < N.
Then, for given s > 0, define
[ua, = Sup (N+1)° inf (e = ugpull + mopt (uGpe)) € R=oU{oo}.  (4.47)
0 opt

Theorem 23. Suppose (C1) or (C2) as well as (R1)-(R3) and (Al)-(A4). Define

PG if (C2) s valid,
howt 1= (4.48)
qcltr_ﬁ a/2 otherwise.

Let 0 <0 <1 and 0 < Aetr < Aopt 0 such that

9 + )\ctr/>\0pt

1 2 )=1/2, 4.4
Actr/)\opt ( +Ctabc ) ( 9)

rel

0<¢ .=
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Let s > 0. Then, there exist copt, Copt > 0 such that

@&Wrmssw?yé#Tw—#%+¢fAz
/,,E

s N 4.50

< sw (X #7) AF < Copmax(lu ),
ke (¢,k)eQ

(LR)<(€ k")

where ||u*||a, s defined in (1.47). The constant copy > 0 depends only on Ccea = L/a,
Csons Cstabs Crel, #70, and s, and, if { < oo or Wo(ufo) = 0 for some ({p + 1,0) € Q,
additionally on £ or ly respectively. The constant Cope > 0 depends only on Cgab, Gred;
Crel; C'mesh; 1- )\ctr/)\opt; Cmark; ! Clin; Qlin #76; and s.

rel’

Remark 24. The following comments underline the importance of the latter result:

o By definition (4.47), it holds that ||u*||a, < 0o if and only if the quasi-error (for the
exact discrete solutions) converges at least with algebraic rate s > 0 along a sequence
of optimal meshes.

o If all steps of Algorithm 15 can be performed at linear costs O(#7Ty), then the sum

is proportional to the overall computational work (resp. the overall computational time
spent) to perform the |(¢',k")|-th step of the adaptive loop, since each adaptive step
depends on the full adaptive history. Note that the computation of, e.g., all residual
error indicators in Step (c) of Algorithm 15 as well as as the local mesh-refinement
by, e.g., newest verter bisection can be done at linear costs. The same applies to,
e.g., one step of PCG with an optimal additive Schwarz preconditioner in Step (b) of
Algorithm 15. For the Dérfler marking (1.17) in Step (iii) of Algorithm 15, we refer
to [Ste07] for an algorithm with linear cost and Cpark = 2 as well as to the recent
algorithm from [PP20] with linear cost and even Cpak = 1.

e The interpretation of (4.50) thus is that the quasi-error for the computed discrete
solutions ui? decays with rate s with respect to the overall computational costs (as well
as the degrees of freedom) if and only if rate s is possible with respect to the degrees
of freedom (for the exact discrete solutions on optimal meshes).

o Since s > 0 is arbitrary, the proposed algorithm will asymptotically reqain the best
possible convergence behavior, even with respect to the computational costs.

o Prior works (see, e.g., [Ste07, BMS10, CG12, GHPS18]) proved linear convergence of
the quasi-error only for those steps, where mesh-refinement takes place. Unlike this,
we prove linear convergence (4.24) for the full sequence of discrete approzimations,
i.e., independently of the algorithmic decision for mesh-refinement or one step of the
discrete solver.
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e In usual applications, the quasi-error A’; (i.e., error plus estimator) is equivalent to
the so-called total error (i.e., error plus data oscillations) as well as to the estimator
alone. Therefore, the approzimability ||u*||a, in (4.47) can equivalently be defined
through the total error (see, e.g., [Ste07, CKNS08, CN12, FFP1}]) or the estimator
(see, e.g., [CFPP1]]) instead of the quasi-error (used in (4.47)). The overall result
will be the same.

4.6.4 Proof of Theorem 23 (optimal convergence rates)

Recall [[u*[|a, from (4.47) and the set T(N) = {7 € refine(Ty : #7 — #7o < N}. Then,
the following lemma proves the first inequality in (4.50).

Lemma 25. Suppose (R1) as well as (A1)-(A3). Let s > 0. Then, it holds that

[u*lla, < copt sup (#To— #To +1)°AF, (4.51)
(L,k)eQ

where Copt > 0 depends only on Coea = L/@y Cson, Cstab, Crel, #70, and s, and, Zfé < o0
or ne, (u%o) = 0 for some (bp + 1,0) € Q, additionally on £ or £y respectively.

Proof. The proof is split into three steps. First, we recall Lemma 22 from [BHP17]: Let
Te € T and 75 € refine(7,). Then, it holds that

H#To/#Te < H#To — #To +1 < #To. (4.52)

Step 1. In this step, we consider the pathological cases that £ < oo or 7y, (ui) = 0 for some
(lo+1,0) € Q. In the first case, Corollary 18 gives that u* = uj as well as ng(uy;) = 0. From

Proposition 16 and Lemma 11, we know that the latter implies u%o = u* = uj . Hence, with
0" :={ or V' :== {y respectively, we obtain that

* S : * * *
u*||a, = sup (N +1 inf u —u + Nopt (U
” H NGNO( ) %ptGT(N) (|H optm op ( opt))

= ma. N +1)° min (|Ju* —u|| + ne(u})).
pen 2 (V1) min (] I+ 7e())
The term N + 1 within the maximum can be estimated by

R1

(R1) ,
N4+1<#Tp —#To < (CL,—1)#To.

The Céa lemma (4.12) and (A1)—(A3) give that ||u* —uj|| < lu* — ug|| and ne(uwy) < no(uf)
(see, e.g., |[CEPP14, Lemma 3.5]). Altogether, we thus arrive at

I, < (e = ugll + no(ug))- (4.53)

Step 2. Next, we consider the generic case that £ = oo and 7y, (u%o) > 0 for all 45 € Ng.
Algorithm 15 yields that #7; — oo as £ — oo. Thus, we can argue analogously to the
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proof of [CFPP14, Theorem 4.1]: Let N € Ny. Choose the maximal ¢ € Ny such that
#To—#To+ 1 < N. Then, 7, € T(N). The choice of N guarantees that

N+1 < #Ta—#To+1
(4.52)
< #Tin
(RY) (4.54)
S CSOH #’72
(4.52

)
S Cson #76 (#72 - #76 + 1)'
This leads to

(N +1)° Fmin (e =l + e (w?)) S FETe = #To + 1)° (flw* — ugll + ne(wy))-

Taking the supremum over all N € Ny, we conclude that

[u*]la, S gsgg(#ﬁ —#T0+ 1)° ([lw” — wzll +ne(u))- (4.55)
€No

Step 3. With stability (Al) and the Céa lemma (4.12), we see for all (¢,0) € Q that
(A1) 0 0
o = will +ne(uy) < Mou® = uill + lluz = wgll + ne(ue)
< 2lu* = ugll + flu* — wfll + e ()
(4.12) . .
S e = ugll + ne(ur)

= AY.
With (4.53) and (4.55), we thus obtain that

lu*]a, < (KSSPQ(#E = #To +1)° (llu* — uill + me(uy))
,0)e

< sup (#T;— #To+1)° A},
(6,k)eQ

This concludes the proof. ]

To prove the converse estimate, we need the so-called comparison lemma for the error
estimator of the exact discrete solution uj € Ay, i.e., Lemma 4.14 from [CFPP14].

Lemma 26. Suppose (R1)~(R2) and (A1)-(Ad). Let 0 < @' < Oopt := (1+ C2,, C2)71/2.

Then, there exist constants C1,Co > 0 such that for all s > 0 with ||u*||a, < oo and all
Te € T, there exists a subset Re C To which satisfies that

#Re < C1 Cy 7 [ Pne(ug) 7, (4.56)

and the Ddrfler marking criterion
0'ne(uz) < 16(Re, uy). (4.57)
The constants C1,Cy depend only on the constants of (Al)—(A4). O
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Proof of Theorem 23. The proof is split into six steps.
Step 1. It holds that

sup (#Ty — #To+1)°Af < sup < Z #72) Al
(¢.k)eQ (e .k)eQ (K)eQ
(Lk)< (£ K

Hence, in accordance with Lemma 25, it only remains to prove that

sup ( >, #72) A < max {||u*]|a,. A3}, (4.58)
(¢ ke (Lk)eQ
(LR)S (W E)

Without loss of generality, we may assume that ||u*||s, < oco.
Step 2. Provided that (¢+1,0) € Q (and as a consequence that k(¢) < co) Lemma 14(i)&(iii)
and the stopping criterion (4.16) of Algorithm 15 prove that
Lemma, 14(i)
k k—
(ﬂ(uz7 UZ) < Gctr dl(’u?v Uy 1)

Lemma 14(iii)

<

Gctr kE k-1
d(uy,,u,
1- Gctr ( ¢ ¢ )

qetr k
< Actr e (UZ) .

-1 Gctr

Under (C2), this leads to

k k
lui — wgll = d(u, ug)
qctr

k
< =
ST g M) (4.592)

(4.48) N
< Cst;b Actr/)\opt Te (UZ)

Under (C1), this leads to

(4.9)
* k k
lu7 —ugll < v2/ad(uj,uy)
< V20— () (4.59D)

1- Gctr

(4.48)

A8) N
< Cstab )‘Ctr//\OPt 776(“2)
Step 3. With Step 2, we see that

k (A1) * * k (4.59) * k
ne(ug) < 1e(uy) + Csean [luz —wgll - < ne(uz) + Acte/Aopt 1e (),

N (A]) k N k (4.59) k k
ne(uy) < ne(up) + Cstan luy —ugll < me(uy) + Aetr/Aopt me(uy)-

With 0 < Aetr/Aopt < 1, this guarantees for all (¢ +1,0) € Q the equivalence

(1= Aetr/Nopt) me(u) < me(u7) < (14 Actr/Aopt) me(uif)- (4.60)
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Step 4. Let Ry C Ty be the subset from Lemma 26 with €' from (1.19). Note that

(A1)
ﬁe(Rz, UE) < W(Rea Ug) + Cstab |”u£ — Uy |”

(4.61)
(4.59)
< m(Ry, U@) + Actr/Aopt 776(“@)
This proves that
/ k (4.60) / *
(1 - Actr/)\opt) 0 TM(UZ) S 0 UE(W)
(4.57)
< (R, up) (4.62)
(4.61) . )
< ne(Rey uy) + Actr/ Aopt e (uy).-

The choice of ¢ in (4.49) gives that 0 = (1 — Actr/Aopt) @' — Actr/Aopt. Thus, we obtain that

4.49 (4.62)
977@(”%) ( = ) ((1 - )\ctr/)\opt) 0 — )\ctr/)\opt) 772(”%) < 776(7?/67 U%)

Hence, Ry satisfies the Dorfler marking criterion (4.17) used in Algorithm 15(iii). By
(quasi-)minimality of M, in Algorithm 15(iii), we infer that

(456) s (460) s s
FMeSHRe S I meCup) ™ ) (k)Y

~

Nested iteration guarantees that u) , = u%. Thus, reliability (4.20) and (A1)-(A2) lead to

(4.20)
ne(uf) =" Af

= Jlu* = ugyll + ne(udyy)
> flu* — gy | + e (upye)
- A2+1'
Overall, we derive that
#M < a1 ne(uf) V5 S (37 (A )T for all (¢4 1,0) € Q. (4.63)

The hidden constant depends only on Cstab, Gred; Crel, 1 — Actr/Aopt, Cmark, Cip, and s.
Step 5. For (¢, k) € Q with Ty # 7o, Step 4 and the closure estimate (R3) lead to

(R3) £=1 (4.63) ¢
BT~ #To+ Lo #Ti—#T S > #Ma S [ty S (a1,
n=0 n=0

Replacing |[u*||a, with max{|u*|a,, A}, the overall estimate trivially holds for 7 = To.
We thus have derived that

0
#To — #To + 1 S max{||u*|la,, AJY/* Y (AD)H/°
n=0
< max{|ju*|la,, AT D (AF)TVE forall (£,k) € Q,
' K)eQ

(€' ,k" )< (4k)
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where the hidden constant depends only on Cgab, Gred, Crel; Cmesh, 1 — Actr/Aopt; Crmarks

' 1 A), and s. Finally, we employ linear convergence (4.24) to bound the latter sum by

means of the geometric series

o 8(4.24) s “1/s s —1(p 1!
S @)V <l a3 (g enI=IE
(¢ k)eQ (¢ k')eQ
(€' K)<(R) (¢ K)<(R)
o L
< hnl/s (A?) 1/ )
1 - hin

Combining the latter two estimates, we see that
#To — #To + 1 < max{|[u*|a,, AG}/*(AF) V< for all (¢,k) € Q, (4.64)

where the hidden constant depends only on Cgtab, Gred, Crel, Cmarks 1 — Actr/Aopt, Cmarks
Clo> Clins Qlin; A8, and s.

Step 6. Let (¢ k') € Q. Together with Step 5, the geometric series proves that

(4.52)
Yo #T < #T) Y, #Ti—#To+1)

(6,k)eQ (,k)eQ
(LR)<(¢' k") (6,k)< (€ K")
(4<64) * AO 1/s Ak —1/s
< max{|[ut|la,, A DT (A])
(¢,k)eQ
(LR) (k")
(424) * S 1 S /N — S 1 S ! Y| —
< max{[|u*|a,, AJPVE G (AF)TYE ST (gl I@RIIIER)
(6,k)eQ
(6k)< (¢ K")
1/s
< % max{[[u*||a,, AGH/* (AF) 5.
~ Qi

Rearranging this estimate, we end up with

sp (30 #T) A S w09,
(k€L N (4 pea
(L,k)<(€ K"

where the hidden constant depends only on Cgab, Gred, Crel, Cmesh, 1 — Actr/Aopts Cmarks
C’ s Clin, Qiin, A, #7To, and s. This concludes the proof. O
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

We present our first setting which fits in the abstract framework of Section 4.2-4.6.

Model problem
We consider the elliptic boundary value problem (4.1)
—divA(Vu*)=f inQ

uw =0 onl:=099,

where  C R? is a bounded Lipschitz domain with d € {2,3}, and f € L?() is a given
load. Recall the corresponding variational formulation (4.2): Given a load f € L?(Q), find
u* € H = H}(Q) such that

(AU* V) gy = /

A(Vu*) - Vode = / foedx =: (F', v)gpxy forallv e H.
Q Q
We assume that A: L2(Q)¢ — L2(Q)¢ has the given form

A(WV) = [z — A(z)v(z)] for v e L?(Q),

where A € WH°(Q)9*? is symmetric and uniformly positive definite. The choice of
W1>(Q) as the domain of A instead of L>(£2) is only necessary to ensure that the residual
error indicators (4.69) are well-defined.

We define the potential P: H}(Q) — R via

P(v) = ;/QAVU Vv dz for all v € H} (). (4.65)

Then, it holds that
P(w+tv) — P(w) lim JoAV(w +tv) - V(w + tv) dz — [ AVw - Vw dz

lim
t—0 t t—0 2t
teR teR

Y Jo2AVw - V(tv) + AV(tv) - V(tv) da
~ 150 2t
teR

1
=lim | AVw-Vv+ -AVv-V(tv) dz
tek /9 2

:/AVw-Vvd:E
Q

= (Au™, v)yrxn

Hence, assumption (O3) is satisfied.
We equip HE () with the scalar product

(v, w) = /QAV’U -Vw dx (4.66)

and the induced norm ||v||? := (v, v). Then, the assumptions (O1)—(02) are satisfied with
a=1=1L.
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Triangulation and mesh-refinement

Let 7o be a conforming initial triangulation of Q into simplices T' € Ty. We use newest
vertex bisection for the mesh-refinement refine(-) such that the axioms (R1)-(R3) are
satisfied, cf. Section 3.6. In this section, we define the local mesh-width function as

helr = he(T) := diam(T") for all T € Ty,

which is equivalent to the definition of Section 3.1. For a node z € Ty, we additionally define
the mesh-width

he(z) == max diam(7).
4
TCwy(z)

It holds that

he(T) < he(2) S he(T) forall ze Ny and T € Ty with z € T, (4.67)

where the hidden constant depends only on v-shape regularity.

Discretization

For 7, € T, we use the corresponding ansatz space
Xp:={veC(Q) : v|r=0and vy € P! for all T € Tz}, (4.68)

i.e., the space of all continuous piecewise first degree polynomials that vanish on the bound-
ary I' = 0Q2.
Error estimator

Next, we define the weighted-residual error indicators (see, e.g., [AO11, Verl3]). For all
T € T; and vy € X, define the error indicators n,(T, v)? as

(T, 00)? = TP/ f + div (AVv) | z20ry + [TV I[AV g - n]|| 2om00) (4.69)

where [-] denotes the usual jump of piecewise continuous functions across element interfaces,
and n is the outer normal vector of the considered element. It is well-known that the
resulting error estimator satisfies the axioms (Al)-(A4), see, e.g., [CFPP14, Section 6.1]
and the references therein.

Galerkin system

With the usual Lagrangian basis {ng1,...,m¢n} € Xy of Xy, we define the Galerkin matrix
Mg via

7,7=1

N
M, = (/ AV - Vi, d;v) e RVXN,
Q
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as well as the right-hand side,

by = (/ang,i dw)il e RN

corresponding to (4.8). Hence, the coefficient vector x; € RY of the solution u} =
Zi]\il X} [i] ¢, is the unique solution of the linear system

M, x} = by. (4.70)

Preconditioned conjugate gradient method (PCG) for the Galerkin system

Finally, we introduce the iteration function ®, : X, — A} for Step (i) of Algorithm 15 as
one step of the preconditioned conjugated gradient method (PCG): Given an initial guess
xg € RN, PCG approximates the solution X; € RN of (4.70).

Let P, € RV*N be an arbitrary symmetric positive definite preconditioner and define

M, := P, '*M,P, '
as well as
gg = le/ng.

Now, instead of solving the linear system (4.70), the PCG iteration considers the precondi-
tioned system

M, X} = by (4.71)

and formally applies the conjugate gradient method (CG, cf. [GVLI13, Algorithm 11.3.2])
to (4.71) with the given initial guess xJ. Note that x} and X} are connected via

Xz( = P21/2i£
Also, the iterates x}? € RY of PCG (for Py, My, by, and the initial guess x9) and the iterates
iéf of CG (for Mg, Bg, and the initial guess X) := P;/ng) are formally linked by

E_ p—1/2zk
Xg = PZ Xf,

see [GVL13, Section 11.5].
Let vy € X, with coefficient vector yy € RY. Then, there holds the elementary identity

loell> = ye - Meye =: lyels,- (4.72)

In addition, for y, € RV and y, € RN such that y, = P21/2 y¢, direct computation yields
that

el3g, = Yo Meye
= (P"y0) PP Ry
=ye My

(4.73)
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Hence, [GVL13, Theorem 11.3.3] for CG (applied to My, by, X)) yields the following
lemma for PCG (which follows from the implicit steepest decent property of CG).

Lemma 27. Let My, P, € RN be symmetric and positive definite, b, € RY, X; =
MZI by, and xg € RN. Suppose the ly-condition number estimate

condy(P, > M, P, %) < Cu. (4.74)

Then, the iterates xlg of the PCG algorithm satisfy the contraction property
|x; — xéf“h\/[/Z < Qpeg |X) — xF|n,  for all k € Ny, (4.75)
where gpeg 1= (1 — 1/Cg)'/? < 1. O

Remark 28. Fach step of PCG has the following computational costs:

o O(N) costs for vector operations (e.g., assignment, addition, scalar product),
e computation of one matriz-vector product with My,

e computation of one matriz-vector product with P;l.

Optimal preconditioner

We suppose that the employed preconditioners Py are optimal. This means that the con-
stant Cag > 0 of Lemma 27 depends only on the coefficient matrix A, the initial mesh 7o,
and the polynomial degree p. One example of such an optimal preconditioner is the mul-
tilevel additive Schwarz preconditioner from Section 4.7.1, see also, e.g., [WC06, SMPZ08,
XCHI10, CNX12]. We stress that the product of P, with one vector can be realized in linear
complexity O(N).

Hence, to fit the framework of the main results from Section 4.6, at least one of the
contraction properties (C1)—(C2) has to be fulfilled: From the contraction property (4.75)
and the identity (4.72), it follows that

k (4.72) k
g —wg ™M =" g — x5 g
(4.75)
k
< q}%cg |X§ - Xy |M£
(4.72)

dpeg lui — U?m
Hence, there holds the contraction property (C2) with getr 1= gpeg = (1 — I/Calg)l/z.
From (4.65)-(4.66), it directly follows that
1
IE(v) — E(w)| = 3 lw—||* for all v,w € H}(S).

Thus, the norm contraction property (C2) is equivalent to the energy contraction prop-
erty (C1). Altogether, the main results from Section 4.6 apply to the present setting and the
linear convergence (4.24) from Theorem 17 holds even for arbitrary Aty > 0 and 0 < 0 <1
in Algorithm 15.
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4.7.1 Optimal multilevel additive Schwarz preconditioner

In this section, we propose a multilevel additive Schwarz preconditioner for the arising
Galerkin matrix and prove its optimality in the sense that the condition number of the
additive Schwarz matrix is uniformly bounded.

Multilevel additive Schwarz preconditioner

In order to define the additive Schwarz preconditioner, we introduce the set of vertices ng
for £ € Ny via

./Vo = No
as well as
Ne= Ne\Nesi U{z € NeNNezy  welz) Gweei(2)} for 0> 1

Hence, /\7@ is the set of new vertices and their direct neighbors in the mesh 7,. Additionally,
we define the corresponding subspaces

??g = Span{ng% VS J\N/'g}
as well as
XZ,Z = Spaﬂ{w,z}~

Then, for all 0 < L and with N, := #MN;, the local multilevel diagonal preconditioner is
given by

L
P =Y I,D;'(1)7, (4.76)
=0

where the appearing matrices are defined as follows:

. f);1 € RNexNe i g diagonal matrix with entries

(D) (k) = {(()Me(jJ))l(Sjk if 2; € Ny,

otherwise,

where ;1 is the usual Kronecker delta. Hence, for all degrees of freedom in KQ, the
corresponding diagonal elements of De_l are the inverse diagonal entries of M.

o I, € RNVLXNe jg the matrix representation of the embedding operator Z,: Xp — AT
Instead of solving the linear system
Myxy, = by,
we instead consider the preconditioned linear system

PLMLXL = PLbL.
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Optimal cost of matrix-vector multiplication

Let Igﬂ € RNe+1xNe denote the matrix representation of the embedding operator from Xp_;
to Xp. Then, it holds that

<L yL-1 041
=1y ,I;5--- I,

Hence, we can rewrite the preconditioner Py, from (4.76) as follows
L ~
P,=> LD, (L)"
=0

=1 LD (@) (@ )+ T DY (T )T+ D

Using this representation, we can evaluate the matrix-vector multiplication with the pre-
conditioner Py, with the following algorithm.

Algorithm 29 (Evaluation of y = P x). Input: y := x € RVL, matrices {Iﬁ“}fz_ol,
{]5[1}5:0, auziliary memory yo € RNo .y € RNL,
(i) For £ =1L,...,1 do:
ye+—D;ly
y «— (4)"y
End for
(ii) yo+— D'y
(iii) For £=0,...,L —1 do:
y+— Iy
Y=Yty
End for

Output: y = P x.

In order to analyze the computational costs of Algorithm 29, we first note that /\N/g consists
only of newly created nodes and some of its neighbours. This yields that

Nei= #Ni < C(Ne = Ne-1) = C#(Ne \ Newa),
where the constant C' > 0 depends only on shape regularity. Since the matrices f)g_1 have

only O(Ny — Ny_1) non-zero entries, the overall storage requirements are

L
O(No+ Y (Ny— Ne_1)) = O(NL).
/=1
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

The same holds for the evaluations Ig_l x as well as (Ig_l)T x. All values of x with indices
corresponding to nodes in Ny remain unchanged during the evaluation and we hence only
need O(Nyy1—Ny) many arithmetic operations. Summing up all operations in Algorithm 29,
we then end up with linear complexity O(Ny,) for the evaluation of the preconditioner Py,.

Optimal condition number

The following theorem is the main result of this section.

Theorem 30. The minimal and mazimal eigenvalues of Pr My satisfy
C S )\min (PLML) and )\max (PLML) S C, (477)

where the constants ¢,C > 0 depend only on Q, d, the initial triangulation To, and the
diffusion coefficient A. In particular, it holds that

| Q

condng, (PLML) < o (4.78)

i.e., the condition number of the preconditioned matriz Py My is L-independently bounded
and therefrom the multilevel diagonal scaling preconditioner Py, is optimal.

4.7.2 Auxiliary results
Level function and uniform mesh-refinement

In this section, we define the level function levely(-) as well as the sequence of uniformly
refined triangulations Tr and collect some technical results.

To this end, we first define the generation gen(7T") € Ny of an element T. Let T' € Ty be
an element of the triangulation 7, and Ty € 7y the unique ancestor element of the initial
triangulation Tg such that T' C Ty. Then, the generation of T is defined by

_ log(T1/|Tv])

gen(T) := log(1/2) € Np,

ie., |T| = 278T)|Ty| and gen(T') returns the number of bisections to generate T from Tp.
Based on the generation, we now define for each node z € Ay the level

levely(z) := [max{gen(T")/d : T € Ty with T' C wy(2)}], (4.79)

where [-] denotes the Gaussian ceil function, i.e., [z] := min{n € Ny :  <n} for x > 0.
Next, let z € N, and k € Ny. We define the index set

Ki(z):={€{0,1,...,L} : z € Ny and levely(2) = k}, (4.80)

which describes in how many sets N, with levely(z) = k a given node z € N, appears. The
following lemma from [WC06, Lemma 3.1] proves that the cardinality of this set can be
uniformely bounded.
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Lemma 31. I{ holds that
#Kip(2) < C  for all z € N, and k € Ny, (4.81)

where the constant C' > 0 depends only on To. O

The sequence of uniform triangulations T is defined as follows: Let ’76 = To. Form > 1,
the mesh 7,,, is obtained by uniformely refining the mesh ’Tm 1,1.e., every element T' € Tt
is successively bisected into 2¢ many son elements 7" € Ty, Wlth measure |T| = 2747,
of. [Ste08, Theorem 2.1]. With A/, denoting the set of all nodes of 7,,, we define the local
mesh-width

ho := max ho(T) and hm :=2""hy  for all m > 1. (4.82)
T€eTo

From [Ste08, Section 4], we get the equivalence
IT| ~ hy(T)? = diam(T)% ~ 278T)  for all T € Ty,
where the implicit constants depend only on 7y and d. Hence, it holds that

~

hyp = Q*mﬁo = g—gen(T)/d Eo ~ diam(7T") for all T € T and m > 0.

Lemma 32. Let z € Ny and m = levely(z). Then, it holds that z € Nin as well as
Ne,> € Xm = 81(7' ). Additionally, there holds the equivalence

Ch < ho(2) < C b, (4.83)

where hy(z) := max {diam(T) : T € Ty,z € T} and the constants c,C > 0 depend only on
the initial triangulation Tg.

Proof. For T € T,, and T € T; with T C wy(z), it holds that
gen(T) = md > gen(T). (4.84)

Now, let 2" € wy(z) NNy and T € Ty with T' C wy(z) such that 2/ € T. Let Ty € Ty be
the unique ancestor of T". From (4.84), it follows that there exists a T e 7A'm such that
TCTCTyand 7 € N NT. Hence, it holds for all nodes 2’ € wy(z) NN} that 2/ € N,
and consequently 7, € X,,. To see (4.83), recall the definition (4.79) of m = levely(z), i.e.,
there exists 77 € T; with 7" C wy(z) such that

gen(T') + 1 > md = gen(T) > gen(T").
Therefore, it holds that
diam(7') ~ diam(T") ~ diam(T) for all T € T, and T C wy(2).

This implies the equivalence (4.83). O
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

Let ﬁm: L?(Q) — Q?m denote the L?-orthogonal projection onto /'/Y\m = S& ('7A'm)

Lemma 33. For all v € H}(Q), it holds that
> k2o = Tnv]3209) < Coom 1911310 (4.85)

where the constant Cyorm > 0 depends only on Q and the initial triangulation To.

Proof. Let w € H}(Q). It follows from the orthogonality of the L?-projection that

N N
DI = e )wlfFa i) = 1> (M = T1)w| 32
= = (4.86)
= [[TTyw — Tow]32 g
= (1 = Ho)wlfF2q) — (1 = In)wllZaq)
Taking the limit N — oo, we hence get that
lw = Tow|F20) = > ([T — Mp_p)wl 3z, for all w e HA(Q), (4.87)

k=1

since the last term in (4.87) converges to 0 for N — co. From [Xu96, Theorem 4.32| follows
that

lw = Tow|F gy = > by 1[0k = e 1)w][F2iq)  for all w € HY(Q). (4.88)
k=1

With w:=v — ﬁmv, and ﬁnﬁmv = ﬁmin{myn}v, we get that

o = FanolBz(ay = ol iz = o - Howlag

487
(T = The—1)wl| 32
; ( (4.89)
= Y (0T = T 1)ol[72 (-
k=m+1
With the definition (4.82) of Ay, we infer that
k—1 k—1
S hpt=hg? Y 2P < hg? o =T, (4.90)
m "0 0 - "k :
m=0 m=0
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Combining (1.89)-(1.90), changing the order of summation, and exploiting (4.88), we derive
that

o~ 2 s (89 SN o sag s o 2
> ho v = pvl[720) > (I = Mg—1)v][72(0
m=0 m=0 k=m-1
o0 k’fl/\ R R
= D> by ([ = T1)o][ 72
k=1m=0
(490) S~ o~ o~
< P = 1)l 720
k=1
(4.88)

lv = Tov| |71 g
< vl oy

where the last inequality follows from the H!'-stability of the L?-orthogonal projection ﬁo,
cf. [CT87, BPS02, Car02|. This concludes the proof. O

The patches @F (z) corresponding to the uniformly refined mesh 7,, are defined analo-
gously to the patches wF ().
For each z € N, we define

re(2) :=min {gen(T) : T € Tr_q with T Cwj_;(2)} (4.91)
as well as
Ry(2) := [re(2)/d], (4.92)

where |-] denotes the Gaussian floor function, i.e., |z] := max {n € Ny : > n}.

Lemma 34. For all z € Ny, there hold (i)—(iii):

(1) It holds that levely(z) < Ry(z) + C1, where the constant C1 > 0 depends only on the
initial triangulation Tg.

i) For all T € To_q with T C w? (2 , there exists an element T ¢ A7R ») such that
w -1 0(2)
TCT.

(iii) There exists an index n € Ny, which depends only on the initial triangulation Ty, such
that we(z) Cw? (2) C @ﬁveldz) (2).

Proof of (1). Let T € Ty with T' C wy(2) such that [gen(T")/d] = levely(z) and let TV € Ty,
with 77 C w? | (2) such that [gen(T")/d] = Ry(z). Let T C Ty € To and T" C T € To be
the corresponding ancestor elements in 7y, respectively. Due to y-shape regularity of the
mesh, there exists a constant C' > 0 which depends only on the initial triangulation 7o such
that

log(C)

= gen(T') + Tog(1/2)"

log(IT)/|Tl) _ loa(C|T'}/|Ty)
Bon) = gD S log(i/2)
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

Therefrom, we get that

levely(z) = [gen(T)/d]

< lgen(7")/d] + 1+ [m—‘

log(C)
=R 1 — .
@+ (1+ |
This concludes the proof with C7 :=1+ [kl)og((l(;%ﬂ. O
Proof of (ii). Let T € T;—y with T'C w? ;(z). Due to the definition (1.91) of ry(2), it holds

that gen(7) > r¢(z) > |re(z)/d] = Ry(z). Since T € ’?Tgen(T) and gen(T) > Ry(z), there

exists an ancestor element T’ € ,?\-RE(Z) such that T C 7. O
Proof of (iii). Since the mesh 7; is a refinement of 7,_1, it holds that wy(z) C wy_1(2) C
w? | (2). Hence, it only remains to prove the second inclusion w? |(z) C @l’évelz(z)(z). To
that end, let T € T;—y with T C w? ;(z). Lemma 34(ii) provides an element T e 7A'RZ(Z)
such that T C T. Furthermore, it holds that 7' C @2 ,_,(z) and hence T C T C @% ,_(2).
" “Re(2) Ry(2)
The element T' can be rewritten with elements of T, (.)+c, the following way. Since the

series Ty, is generated by uniform refinement via bisection, the element T gets bisected into
24C1 many elements TJ’ € TRry(2)+c, such that

2dCl
- -,
r= 1

j=1

Since T € @2 . (z), there exists n € N with n < 27¢1+1 such that T C &" .
) Rz(z) R R Ry(2)+C1
Lemma 34(i) yields that level;(z) < Ry(z) + C; and hence w?ﬁ(zHCl(z) - wﬁvell(z)(z). So

far, this proves that T C T C @fgvele(z)(z), and we conclude that w? |(z) C @fgvele(z)(z). O

Scott—Zhang projection

We recall a variant of the Scott—Zhang quasi-interpolation operator, cf. [SZ90] or [BS02,
Section 4.8]. For z € Ny, let Ty, € T; be an element with z € Ty ,. Let ¢, denote the
(unique) L*(T}..)-dual basis function with

VYo (x) N () do =8, for all 2" € Ny,
TZ,Z

where §,,, denotes the Kronecker delta. Defining the Scott—Zhang operator Jy: LQ(Q) —
SY(Te) by
Jpv = Z e,z Ve (z)v(z) dz for all v € L*(Q),
ZEN@ TZ’Z

we note the following properties, where the constant C' > 0 depends only on the ~-shape
regularity of Tp:
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Jy is a linear projection onto S}(7p), i.e.,

Jyvg = vp  for all vy € 86(72) (4.93)

Jy is locally L?-stable, i.e., for all T' € Ty, it holds that

”U — JgU||L2(T) <C ||UHL2(UJ5(T)) for all v € L2(Q)

Jy is locally H'-stable, i.e., for all T € Ty, it holds that

HV(’U - J@’U)HLQ(T) S C HVUHL2(LU@(T)) for all v S H&(Q)

Jp has a local first-order approximation property

lv — JgU”L2(T) < Chy(T) ||VU||L2(W(T)) for all v € H&(Q)

The freedom in the choice of the averaging element T, can be exploited to ensure
additional properties. In our case, the choice of Tp . is arbitrary, but we require that

Tr—1. =Ty, € TeN Ty for all z € Ny \N’g C N;_1. From this choice, it also follows that
Moz = Ni—1,, and Yy, = y_1 , for all z € Ny \ Ny. Hence, we get that

(Jo— J_)v(z) =0 for all z € Ny \ Ny,
as well as

(Jo— Je—1)v € span{n&Z: z € ./\~/'g} = X (4.94)

Lemma 35. For all v € L%(Q) and z € Ny, it holds that

[(Je = Je-1)v(2)] < [Jev(2)| + [Je-10(2)]

_ (4.95)
< Che(2)™ " ol 22 (o))

where C' > 0 depends only on ~y-shape reqularity of Ty.

Proof. The first inequality in (4.95) follows from the usual triangle inequality. Hence, it
only remains to prove the second inequality. [SZ90, Lemma 3.1] states that |1,z |z (1, ) S

|Ty..| 7. For z € Ny, it holds that Ty» C we(z) Cw? ((2). Thus, the first summand in (4.95)
is bounded by

T (2)] < /T g0 (@)o(@)] da

< |‘71Z)Z,z||L°°(T£,Z) |Té,z|1/2 HUHL?(T[,Z) (4.96)
S, |T€,z

12 [0l 22wz (2

~ hy(z) "2 ol L2z (2))-
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

To bound the second summand in (41.95), we must consider two cases: First, let z € Nen
Ni—1. It holds that |7y .| ~ h(2) as well as Ty—1 , C wp—1(2) C w? | (2). Similarly to (4.96),
we get that

pyv(2)] < /T o2 (x)0(z)] da

< wafl,ZHLOO(Tzfl,z) ’TK*LZ‘l/Q H’UHLZ(TZ—LZ) (4.97)

NE)
S he(z ) vz HUHLz(w (=)

Second, let z € ./\N/'g\./\fg,l. Then, due to y-shape regularity, there exists a uniformly bounded

number of nodes 21, 22, . . ., 2p(z) € Ny—1 such that
n(z)
Jo—1v(2 ZW 1,2 (% / Ye-1,z, (%) v(z) da.
TE—l,zi

For i € {1,2,...,n(2)}, it again holds that [Ty_; ,,| ~ hg(z) as well as Tp—1 », € wp—1(z) C
wi | (z). With the same arguments as for (4.97), it follows that

e1o(z <Z/ e ae(@) do

n( (4.98)
< Z Lotz ™2 0l 2ty
i=1
< hy(z) "2 1ol 2wz (2))-
Combining (4.96)—-(4.98), we conclude (4.95). O

4.7.3 Additive Schwarz operator

For all z € ./\Nfg, we define the local orthogonal projections Py, : H&(Q) — Xy, = span{n .}
by

(Pov, we) = (v, we,) forall wy, e Xy,

with the explicit representation

(v, ne.2)
llme.- I

Based on these projections, we define the additive Schwarz operator as

Py v = ne. forall v e HH(Q). (4.99)

L
QL= Y Pu.: Hy(Q) — Xp. (4.100)

=0 ZG./\NQ
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4 Adaptive FEM for second-order elliptic systems of partial differential equations

Therefore, the multilevel diagonal scaling is a multilevel additive Schwarz method and
we can use the abstract analysis of these methods.
The key result reads as follows.

Proposition 36. The operator Qp, is linear and bounded as well as symmetric

(Qrv, w) = (v, Qrw) for all v,w € HI(Q) (4.101)
and satisfies

cllvf* < (Qrv, v) < C|v|* for all v € Ay. (4.102)

The constants ¢,C > 0 depend only on €, the initial triangulation Ty, and the diffusion
coefficient A.

While linearity, boundedness, and symmetry of additive Schwarz operators are well-known
(cf. |GO94, Lemma 2|), we will provide the proof of (4.102) in Section 4.7.5 as well as
Section 4.7.6.

4.7.4 Proof of Theorem 30 (optimal condition number)

Let v := Z;V:LO XjNL,z; € XL and w = Z;-V:LO YjNL,z; € Xr. From the definition (4.76) of the
local multilevel diagonal preconditioner, it follows that MyPrMp is symmetric. We define
the additive Schwarz matrix Qr, := PrMy. It then holds that

(Qrv, w) ={(Qrx, y)m, - (4.103)
Combining the identity (4.103) with (4.102), we see that
cix, x)m, = cllv]* < (Qrv, v) = (Qrx, x)m,
as well as
(Qux, x)m, = (Qrv, v) < Clv]* = C (x, x)m, -
Due to the symmetry (4.101) and again the identity (4.103), we get that
<QLX7 y>ML = «QLU, w>> = <<Ua QL’LU» = <X7 QLy>ML7
i.e., Qp is symmetric with respect to (-, -)n,. Now, [TWO05, Lemma C.1] or [GVL13,
Section 8.1] yield the Rayleigh quotient estimates

)\min(QL) — min M_ ,
XEIE;I(\;L <X7 X>ML

and

)\max = Inax S C.
(QL) xeRVL (X, X)M,
x#0
In particular, it follows that
Amax (QL) C
condn, (Qp) = < —.
B ( ) Amin (QL) c

This concludes the proof. O
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

Lions’ lemma

The last lemma we need for the proof of the lower bound in (4.102) is known as Lions’s
lemma, cf. [Lio88, Wid89] and [TW05, Lemma 2.5].

Lemma 37 (Lions). Let m € Ny and v € V, where V is a finite-dimensional Hilbert
space with scalar product (-, -) and corresponding norm || - ||. Assume that there exists a
decomposition of V into spaces Vy with 0 < £ < m such that V = Z;nzo Vi and orthogonal
projections Py V- — Vy defined by

(Pev, we) = (v, we) for all wy € V.

Define Pas := >y~ Pe. If there exists a constant C' > 0 such that every v € V admits a
decomposition v ="y, vy with vy € V; that satisfies

m

D loell® < C ol

=0
then it holds that

l0]I> < C {Pas v, v)
foralveV. O

4.7.5 Proof of lower bound in Proposition 36

The proof is split into 5 steps.
Step 1. With property (4.94) of the Scott—Zhang projection Jy, we define the difference

= (Jy—JeweX, forveX,and0<(<L, (4.104a)
where J_; := 0. Henceforth, we can rewrite any v € X, using the projection property (4.93)
of Jr, as a telescoping series as follows

L
v=Jw=(Jp—J)v=> T (4.104b)
=0

Using the basis representation of vy, we can decompose this further into

L

L
v = Z Z ve(2)ne,2 =: Z Z ve, with vy, € Xp .. (4.104c¢)

£=0 Lc N, (=0 e AN,

Step 2. Let 2z € Ny. Then, there holds the inverse inequality

IV 22 (e (2)) S Pe(2) ™ 1,2l 2w (2))

which follows from a scaling argument with the hidden constant depending only on ~-shape
regularity of 7;. Combining this inequality with the equivalence (4.83), it holds that

7,207 S V212 0y 2y S 2e(2) 72 102 T2 g ) < e(2) 2 Jwe(2)] = Be(2)72.
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Hence, we get that
1 = e, % [0e(2)1? S he(2) 72 [(Je = Je—1)o ()], (4.105)

lloe.-
Step 3. Let II,, := IIj for m < 0. From Lemma 34(i), we get that
Hlevelg(z)fclv S XR@(z)

and especially that (ﬁlevele(z)_clv)h is affine on all T € T;—; with T C w? ,(2) as well as
continuous on the whole patch w%_l(z). In particular, the same holds also on the patch
w?(z). Therefore, the projection property (4.93) of the Scott-Zhang operator yields that

(JEHIevelg(z)—C&U)(Z) = (Hlevelg(z)—Clv)(z) = (Jﬁ—lnlevelg(z)—Clv)(Z)'
Together with Lemma 35, this yields that

[(Je — Je—1)v(2))* = [(Je = Jo—1) (v — ﬁlevelg(z)fCHU)(z)E

—d =~ 9 (4.106)
S he(2)™% v — Hlevelg(z)—Cl'U‘|L2(w§71(z))-
Step 4. Combining Step 2 and Step 3, we see that
|||U€,Z ”|2 SJ h@(2)72 HU - Hlevelg(z)fClU||%2(w§71(z))' (4107)

Using the equivalence hy(z) ~ ﬁlevelz(z) from (4.83), we get that

L L(4107) L L - )
Z Z |HU€,Z|H 5 Z Z hg(Z) HU - Hlevelg(z)—ClU||L2(w371(z))
=0 ZE./\N/’Z =0 zGJ\N/’g
L
(4.83) ~_y . )
= Z Z hlevelg(z) HU o Hlevelg(z)—(h’U”L2(w§71(z))
£=0 ZE./\NQ
o L
= byl l[o =T, 0l
m V7 Hm=CVlL2 w2 | ()
m=04=0 LN,

levely(z)=m

Combining Lemma 34(iii) with the definition (4.80) of K,,(z), we see that

co L
>0 Y hlv—Tmcvliawg o)

m=0(=0 e,
levely(z)=m

L

<D0 D Wl Tl )

m:0 £=0 ZGNZ
levely(z)=m

o0

(4.80) by, I

=D DD DI D il U (SRt
m=0 ZGNL KEIETVL(Z)
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4.7 AFEM for linear elliptic PDE with optimal PCG solver

Lemma 32 states that z € N, with levely(z) = m is also an element of Nin. Together with
the boundedness (4.81) of #K,,(z) from Lemma 31, this yields that

Z Z Z ﬁﬁ?””—ﬁm—&v”%%%(z))

m=02€NL gk, (2)
OO o~ o~
= 2 D hd eIl
m=0 ze LNy, €K m (2)

(4.81) 0

S Z Z h;ﬁ HU - HmfclvH%?(CzﬁL(z))
m=0 e NNy,

o
<Y b o =Ty 0ll e @ )
miozeﬁm

Due to uniform ~-shape regularity of 7A’m and the definition ﬁm = ﬁo for m < 0, it follows
that

oo [e.e]
D> bl =Tcyvliz@n ) S D ha 10 = ey 01720

m=0 e A/, m=0
o0
S Z hot [0 = Hmv||%2(g)~
m=0
Combining the last four estimates, we end up with
L [e's)
DS ol £ et v = T3 (4.108)

Step 5: Finally, Step 4 together with Lemma 33 and norm equivalence yields that
L ) (4.108) > ) R ) (4.104) ) )
Yo Ml S Y h e —Taollizey S ol = ol (4.109)
£=0 26/\72 m=0
for all v € A, and the decomposition v = Zf:o Zze/\ﬁ ve, from (4.104c). Due to Lions’s
lemma (cf. Lemma 37) this guarantees the ellipticity of the additive Schwarz operator Qp,
from (4.100).

”|UH|2 S (Qrv, v) forallwve XE,

which concludes the proof of the lower bound in (4.102). O
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Auxiliary results
We define the maximal level M := MaX; e s levely, (z) of all nodes z € N. From Lemma 32,
it follows that N7, C NM and Xy, C XM We rewrite the additive Schwarz operator Qj, as

L

L M
Qr=> > Piz=Y Qum with Qrmi=Y > P (4.110)

(=0 ,e N, m=0 (=0 LN,
levely(z)=m

Then, there holds the following lemma, which is used to prove the strenghtened Cauchy—
Schwarz inequality (4.118).

Lemma 38. Let 0 < k<m <M and 0 < ¢ < L. ForTEﬁ, ﬁkefk, andze./\~/'g with
levely(z) = m, it holds that

(4.111)

/ AV, - Vi, de < C (272" " e
T

where the constant C' > 0 depends only on the initial triangulation Ty, and || Al/s.

Proof. From Lemma 32, we know that 7, € /'?m Hence, we can decompose 1), as follows.
We define vy, g € X, such that v, o vanishes on 97T and is equal to 7 , at the interior nodes
in T'. Let U1 = N, — Umo- Then, it holds that

/ AV, - VUg’z dr = / AV - V?)\mp dz +/ AV, - V@\mJ dzx. (4.112)
T T T

Note that Vug|r is constant, since T' € ’7A7C Moreover, note that vy olor = 0. With
integration by parts and Vu € PY(T), we get for the first summand of (4.112) that

/ AV, - VU, o do = —/ div (AVUy) Uy 0 do
T T (4.113)

= —/ ((diV A)Vﬁk) i)\m70 dx.
T

From the Cauchy-Schwarz inequality combined with 1 < (2 (m=k))1/2 E;Ll , we estimate the
latter term as follows

—/ ((div A)Vﬁk) @mo dz < IIVﬁkIIm(T)II@m,on(T)

T (4.114)
—(m— 12

< (27N 2R VB 2y el 2y

~

Hence, it only remains to estimate the second summand of (4.112). We define T), :=
U{K € Tm : KNOT # 0}, cf. Figure 4.1. It then holds that supp¥,,1 C T, and

| T | ~ Ez_lﬁm. Again, using the Cauchy—Schwarz inequality, we see that
/ AV, - Vi, do = AV, - VU, 1 do
T Tm (4.115)
S IVUl 2 ) [ VOl L2 (13,
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Figure 4.1: Illustration of the set T,,, := J{K € T+ KNOT # 0} from the proof of

Lemma 38: The outer triangle (solid lines, pink) represents the element T' € Ty,
while the inner triangles (dashed lines) correspond to all elements K € 7, such
that T'C K. Then, the set T}, is the outer cyan area.

Since vy, € .)?k, we know that V7 is constant on K. This yields that

_ Tl 2 |
VO] 22T,y = NGEE VO L2 (1)
(4.83) ﬁd_lﬁm 2
~ ( kﬁd ) vakHLz(T) (4116)
k

(4.82) (2—(m—k))1/2

V| L2 (1)

The remaining term ||V, 1][z2(7,,) is estimated by an inverse estimate

IVOmallL2 (1) S B Bm 2,y < o lnezll 2y (4.117)

Combining (4.112)—(4.117), we finally get that

o~

/TAV@@ Ve, dz S (2_(m_k))1/2 hoi IV L2y 16,z 22 (ry-

This concludes the proof.

O
Now, we are able to prove the following strenghtened Cauchy—Schwarz inequality.
Lemma 39. For all0 < k <m < M, it holds that
(B, Qrmn) < C (272" Faull 1@l for all 0, @y € K, (4.118)

where C' > 0 depends only on Q, the initial triangulation Ty, ||Alls, and y-shape regqularity.
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Proof. The proof is split into three steps.
Step 1: Define ¢ := 27/2 and let z € Ny with 0 < k < m = levely(z). Then, Lemma 38,
the Cauchy—Schwarz inequality, and the Friedrichs inequality yield that

(O s mez) = > / AV, - Vi, do
KeTh
(4.111) R
S "Ry Z VO L2 (k) 1776, 2
KeTh

L2 (K)

< q" T VO 2 ) ezl 220

kT — ~
~ g™ g 1Bl 16,20 22 2

S 4" g 0k diamm(we(2)) V76,2 22wy 2)
= " oy 0l R Nl

= " " 5l line,=-

Summing up, we have that

@ s e2) S F WOkl Imezll - for all 2 € N with k < m = levely(2) |, (4.119)

~

where the hidden constant depends only on 7y and A.
Step 2: Next, we show that

L
SN ST WPl < N, (4.120)
£=0 ZE./\7[
levely(z)=m

where the hidden constant depends only on 7y and ~-shape regularity. The representa-
tion (4.99), the Cauchy—Schwarz inequality, and Lemma 34(iii) yield that

o (299) |{(Wg, Moz
[P ) 2 K el

(|
< N @kl ()
Lemma 34(iii) —~
< 1wk llzs, (2)-

Recall the set Kp(z) from (4.80)
Ki(z) = {tef0,1,...,L} : z € Ny and levely(z) = k}.
From Lemma 31, we know that supycy, #K5(2) < C(To) < oo for all z € N with a constant

C (7o) > 0 depending only on the initial mesh 7. Hence, from the last inequality and shape

68



4.7 AFEM for linear elliptic PDE with optimal PCG solver

regularity of the mesh ’7A'm, it follows that

L
Yoo dPeawdi= Y Y WPkl

=0 eN, 2ENTNNo LK m (2)

levely(z)=m
< DD ke
2ENL NN £EKm (2)
(4.81)
S Y Nkl
Zeﬁm
~ ||wk |-
Step 3: Since Py wy € Xy, = span{ny .}, there exists Ay, € R such that Py W = A 70 -
Based on the previous steps, the definition of Qy, ,, shows that

L
@, Q@) 20N ST (B, )

=0 LeN,
levely(z)=m

L
=3 > Pl @komez)
=0

ZE./\NQ
levely(z)=m
(4.119) i L
S @Y. Y el e

£=0 ZE./\7[
levely(z)=m

L
=¢" M Yo D 1Pl

=0 2N,
levely(z)=m

(4.120) i
S " vkl lwe -

This concludes the proof. O

Remark 40. Due to the self-adjointness of the orthogonal projections Py ., we know that
(Qrm:» -) is a symmetric bilinear form on Xy, for k < m. By definition (4.110) of Qr m,
it holds that

L L
(Qrmv, v) = Z Z (Pev, v) = Z Z 1Pev||> >0 for allv e X

=0 ZG/\N/E =0 ZG./\7£
levely (z)=m levely(z)=m

Hence, (QL- . -) is even positive semi-definite. As a consequence, there holds the Cauchy-
Schwarz inequality

(Qrmv, w) < (Qrmv, v))1/2 (Qrmw, w>>1/2 for all v,w € )?k (4.121)
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4.7.6 Proof of upper bound in Proposition 36

First, we define the Galerkin projection Gy, : H HQ) — X, with respect to the scalar product

(-, ) via
(Grmv, W) = (v, W) for all T, € X,
With G_; = 0, we can rewrite Gy as a telescoping sum, i.e., Gon = Zzlzo(ak — Q\k,l). Let

ve X C AA,’M. It holds that éMv = .

Since Q. mv € )?M, cf. Lemma 32, the representation (4.110), the symmetry of (-, -),
and the Cauchy-Schwarz inequality (4.121) yield that

=

(Qrv,v) = » (Qrmv,v)

3
Il
o

<< QL,mv , G\mv»

-

3
Il
o

M= i
Mz I14:

(Qrmv, (G — Gr_1)v)

IN

(Qrmv, V)*(QLm (G — Go_1)v, (G — Gr_1)v) /2.

3
I
=)
e
I
o

Next, we use the strenghtened Cauchy—Schwarz inequality (4.118) with (Gx — Gr_1)v € X
and get that

M m
> (Qrmv, )2 (Qrm(Gr — Gr-1)v, (Gr — Gr—1)v)/?

m=0 k=0
(a118)y M om —(m—k)/4 VaniE A
oy (Qpmv, )2 (G — G 1)l
m=0 k=0
M m
¢3S 2 Iy o, o)V (G~ G, )
m=0 k=0

where C' > 0 is the constant from the strenghtened Cauchy—Schwarz inequality. With § > 0,
which will be fixed later, we use the following variant of the Young inequality

§ o, b,
Clb<§(l +7b foralla,bER.
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We get that
M m ~ ~
C S S 27RO, L )2 (Gy — Ger)u, v)?

m=0 k=0
M m 5
Z Z (m— k)/4 QL v, ’U>>

m=0 k=0

M m
+C ZZQ m- ’”45 ((Gr — Gr_1)v, v).

m=0 k=0

The inner sum over k of the first double sum can be bounded by 7,2~ (m=k/4 <
02~ k/4 —. K < oo. Together with changing the summation order in the second sum,
we see that

:C'Kg«QLv,v))-i—C'K%((v,v».

Let 6 < 2(C K)~!. Then, it holds that

(Qrv, v) < (1—CK§)_ICK5;<<U,U>>

o 5t
:(1—CK) C’K—H\vm2

Hence, there holds the upper bound in (4.102). O
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4.7.7 Numerical experiments

In this section, we provide numerical experiments that underpin the theoretical findings of
Section 4.6, where we employ H!-conforming lowest-order FEM in 2D. For ease of notation,
we define A := A, for this section. We present an example for AFEM with optimal PCG
solver, cf. Section 4.7, and compare the performance of Algorithm 15 for

e different geometries, i.e., the domain § C R? is either the Z-shaped domain or the
L-shaped domain, cf. Figure 4.2,

e different values of A € {1,1079% 1071 ..., 1074},
e different values of 6 € {0.05,0.1,0.15,...,1},

where § = 1 corresponds to uniform mesh-refinement.
We consider the following Poisson problem with homogeneous Dirichlet boundary conditions

—Au*=1 1in Q,

(4.122)
u* =0 onl:=0Q,

for both geometries from Figure 4.2. As preconditioner for the PCG solver, we use the
multilevel additive Schwarz preconditioner of Section 4.7.1 which is optimal, cf. Theorem 30.

Poisson problem (4.122) on Z-shaped domain

In Figure 4.3, we compare Algorithm 15 for different values of  and A, and uniform mesh-
refinement on the Z-shaped domain, cf. Figure 4.2. To this end, the error estimator ng(uf)
of the last step of the PCG solver is plotted over the number of elements. Recall that
ng(uf) o~ Af according to Proposition 16. We see that uniform mesh-refinement leads
to the suboptimal rate of convergence O(N~2/T), while Algorithm 15 regains the optimal
rate of convergence O(N~1/2). This empirically confirms Theorem 23. The latter rate of
convergence appears to be even robust with respect to # € {0.1,0.3,...,0.9} as well as
A€ {1,1071,... 1074}

In Figure 4.4, we aim to underpin that Algorithm 15 has the optimal rate of convergence
with respect to the computational complexity. To this end, we plot the error estimator
ng(u%) of the last step of the PCG solver over the cumulative sum - )< (o) #7e- In ac-

cordance with Theorem 23, we observe again the optimal order (’)(( 2(5,7,{/5(@7@ #7'/) 71/2).
In Figure 4.5, we take a look at the number of PCG iterations. We observe that a larger
value of X\ or a smaller value of # lead to a smaller number of PCG iterations. Nonetheless,
in each case, this number stays uniformly bounded.
Summing up so far, we see

e that Algorithm 15 appears to be robust with respect to the choice of 6 and A, cf. Fig-
ure 4.3,

e that a larger value of X leads to less computational cost and a smaller value of 8 leads
to higher computational cost, cf. Figure 4.4, and,
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1.5} .

-1 -0.5 0 0.5

—

Figure 4.2: Z-shaped domain Q C R? with initial mesh 7y (top) and L-shaped domain
Q C R? with initial mesh 7 (bottom).
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Figure 4.3: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Error es-
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timator m(u%) of the last step of the PCG solver with respect to the number of
elements N of the mesh 7, for § = 0.5 and A € {1,107%,...,1074} (top) as well
as for A= 1072 and 6 € {0.1,0.3,...,0.9} (bottom).
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Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Error esti-

mator 7y (u%) of the last step of the PCG solver with respect to the overall compu-
tational cost expressed as the cumulative sum Z(g,’k,)g(&@ # Ty for 8 = 0.5 and
A e {1,107,...,107*} (top) as well as for A = 1072 and 6 € {0.1,0.3,...,0.9}
(bottom).
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Figure 4.5: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Number
of PCG iterations with respect to the number of elements NV for § = 0.5 and
A€ {1,107L,...,107*} (top) as well as for A = 10~2 and 6 € {0.1,0.3,...,0.9}
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Figure 4.6: Example from Section 4.7.7 (Poisson problem on Z-shaped domain): Overall
computational cost Z(z’,k’)g(z,k) #7Ty such that m(u%) < 7 for given precision
7=10"2, A€ {1,107°%%,...,107%}, and 6 € {0.05,0.1,...,0.95}.
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e that a larger value of A as well as a smaller value of 6 lead to fewer PCG iterations,
cf. Figure 4.5.

Hence, the question arises, how to choose # and A in order to mimize the overall computa-
tional cost to reach a given bound 7 > 0 for the error estimator, i.e., such that m(u%) <T.
In Figure 4.6, we compare the computational cost to reach the precision 7 = 10~2 for
A€ {1,107%5,...,107%} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best
choice is A = 1079 and 6 = 0.7. For the overall computational cost it then holds that

> #To = 4034040,

(&K< (6,k)

where u% is the first approximation such that ng(u%) <1072

Poisson problem (4.122) on L-shaped domain

In Figure 4.7, we compare Algorithm 15 for different values of 6 and A, and uniform mesh-
refinement on the L-shaped domain, cf. Figure 4.2. To this end, the error estimator ng(uf)
of the last step of the PCG solver is plotted over the number of elements. Recall that
W(u%) o~ A% according to Proposition 16. We see that uniform mesh-refinement leads to
the suboptimal rate of convergence @(N~1/3), while Algorithm 15 regains the optimal rate
of convergence O(N~1/2). Again, this empirically confirms Theorem 23. The latter rate
of convergence appears to be even robust with respect to # € {0.1,0.3,...,0.9} as well as
A€ {1,1071,...,1074}.

In Figure 4.8, the error estimator ng(u%) of the last step of the PCG solver is plotted over
the cumulative sum Z(Z’,k’)g(&k) #7Tp. In accordance with Theorem 23, we observe again

the optimal order (9(( 2(5,7,6,)3(&&) #72/)_1/2).

In Figure 4.9, we take a look at the number of PCG iterations. We observe that a larger
value of A\ or a smaller value of 8 lead to a smaller number of PCG iterations. Nonetheless,
in each case, this number stays uniformly bounded.

As for the Z-shaped domain, we see

e that Algorithm 15 appears to be robust with respect to the choice of 6 and A, cf. Fig-
ure 4.3,

e that a larger value of X leads to less computational cost and a smaller value of 6 leads
to higher computational cost, cf. Figure 4.4, and,

e that a larger value of A as well as a smaller value of 6 lead to fewer PCG iterations,
cf. Figure 4.5.

In Figure 4.10, we compare the computational cost to reach the precision 7 = 1072 for
A€ {1,107%5,...,107*} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best
choice is A = 1079 and 6 = 0.8. For the overall computational cost it then holds that

D #Te = 2832761,
(¢ k)< (k)

where u? is the first approximation such that ng(u%) <1072
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Figure 4.7: Example from Section 4.7.7 (Poisson problem on L-shaped domain): Error es-

timator m(u%) of the last step of the PCG solver with respect to the number of
elements N of the mesh 7; for # = 0.5 and A € {1,107},..., 1074} (top) as well
as for A = 1072 and 6 € {0.1,0.3,...,0.9} (bottom).
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L—shaped domain
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Figure 4.8: Example from Section 4.7.7 (Poisson problem on L-shaped domain): Error esti-

mator m(u%) of the last step of the PCG solver with respect to the overall compu-
tational cost expressed as the cumulative sum Z(Z',k')g(e,g) #Tp for § = 0.5 and
A€ {1,107L,...,107*} (top) as well as for A = 1072 and 6 € {0.1,0.3,...,0.9}
(bottom).
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L—shaped domain

T T T T T T T T T T T T T T
o A=1 -+ 2A=10"" v A=10"7 4+ A=10"° = A=10"
w 15| 8
=]
2
)
<
—
&
& 10 :
Q
ol
(-
o
—
£ 5| f
g
i
) ATA e
oo ¥ o 000000000000 000bdesdossonbos
OT\\\\\‘ Lol Lol Lol Lol Lol .

101 102 103 104 10° 106
number of elements N

~—0-60=01 +-0=03 —~v0=05 »-0=07 w-0=0.9

8| /\/\ B
wn
=t
o
= - -
<
g
26 |
@)
g
; 1.
: /
23 4 I (133 |
E nl
g (@ ‘((1((00(((( [ ‘(‘(.'.(‘(‘( —
g T,

VAT DAL
2 | @@ @@ @@ @ O @@ O@I@@O @ « |

Ll Lol Ll Ll Ll Lol L1l
10! 102 103 10* 10° 10°
number of elements N

Figure 4.9: Example from Section 4.7.7 (Poisson problem on L-shaped domain): Number
of PCG iterations with respect to the number of elements N for § = 0.5 and
A€ {1,1071,...,1074} (top) as well as for A = 1072 and 6 € {0.1,0.3,...,0.9}
(bottom).
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Figure 4.10: Example from Section 4.7.7 (Poisson problem on L-shaped domain): Overall
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4.8 AFEM for quasi-linear elliptic PDE with strongly monotone nonlinearity

4.8 AFEM for quasi-linear elliptic PDE with strongly
monotone nonlinearity

The second setting which we introduce in this chapter and which fits into the abstract
framework of Section 4.2—Section 4.6 is AFEM for a boundary value problem with a strongly
monotone nonlinearity.

Model problem

We consider the following boundary value problem

—div (u(x, |Vu*(2) ") Vur () = f(x)  inQ,
*( 0 on I'p, (4.123)
p(a, [Vu*(x)?) Ogu*(x) = g(x)  on Ty,

where Q C R? is a bounded Lipschitz domain with d € {2,3} and polytopal boundary
[ = 09, and given f € L*(Q), g € L*(T") as well as a scalar nonlinearity p: Q x Rsq —
R. Let the boundary I' be split into relatively open and disjoint Dirichlet and Neumann
boundaries I'p, 'y such that |T'p| > 0 and I' = Tp UT . The scalar nonlinearity p satisfies
the following properties (N1)-(N4) with generic constants 1,72, 71, 7%2, Ly, Ly > 0, which
have already been considered in [GMZ12, GHPSI8]:

(N1) boundedness of u(x,t): There exist constants 1,72 > 0 such that

v < p(x,t) <7y forall z € Qandt>0.

(N2) boundedness of u(x,t) + 2t%u(m,t): For z € Q, the function p(z,-) is con-
tinuously differentiable, i.e., u(z,-) € C'(R>g,R) and there exist constants 71,52 > 0
such that

Y1 < p(x,t) + Zt%u(:p,t) <7y forallzeQandt>0.

(N3) Lipschitz-continuity of pu(x,t) in x: There exists a constant L, > 0 such that

lw(x,t) — p(y,t)| < Lyle —y| forall z,y € Qand t > 0.

(N4) Lipschitz-continuity of t%u(w,t) in x: There exists a constant E# > 0 such
that

’t%,u(x,t) - t%u(y,t)] < Lu|z—y| forallz,yeQandt>0.
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Weak formulation

The weak formulation of (4.123) reads as follows: Find u € H5(Q) := {w € HY{(Q) : w =
0 on I'p} such that

/ w(z, |Vu*(x)|?) Vu* - Vodr = / fodxr + / gvds forallve HH(Q).  (4.124)
Q Q r

N

With respect to the abstract framework of Section 4.2, we take H = H}(2), K = R,
and (-, -) = (V-, V-) with corresponding norm |[|v|| = [[Vvl|12(q). We obtain (4.7) with
operators

(AW, O)pren = /ﬂ u(z, [V (@)2) Vu(z) - Volz) dz, (4.125a)

F(v):/ﬂfvdx+/r guvds (4.125b)

for all v,w € H. We recall from [GHPSIS8, Proposition 8.2] that (N1)-(N2) implies that
A is strongly monotone (with « := 7;) and Lipschitz continuous (with L := 73), and
that there exists a potential P: H(Q) — R, i.e., there hold (O1)-(03) with o = 7; and
L = 7%,. The assumptions (N3)—(N4) are required to prove the well-posedness and the
properties (A1l)—(A4) of the residual a posteriori error estimator.

Triangulation and mesh-refinement

Let 7o be a conforming initial triangulation of {2 into simplices T' € Ty. As the refinement
strategy refine(-), we employ newest vertex bisection such that the axioms (R1)—(R3) are
fulfilled, cf. Section 3.6.

Discretization
For 7, € T, we consider the lowest-order FEM space
Xp={veC() : v|r € PIT) for all T € Ty} N HH (), (4.126)
i.e., the space of all continuous piecewise affine functions that vanish on the boundary
I'=09.
Error estimator

For all elements T' € T; and discrete functions v, € X, we define the weighted-residual error
indicators, cf., e.g., [GMZ12, GHPS18]) via

ne(T,00)” =T f + div (-, [Voe*)Voo) 2y + 1T [ [Vvel*) Voo - 0| 220700
+|T1Y g = p(-, | Voal*) Voo - 1 2701 v ) (4.127)

where [-] denotes the usual jump of piecewise continuous functions across element interfaces,
and n is the outer normal vector of the considered element. Due to assumption (N3) on the
nonlinearity u(-,-), the presented error indicators are well-defined.
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While reliability (A3) and discrete reliability (A4) are proved as in the linear case; cf.,
e.g., [CKNSO8| for the linear case and [GMZ12, Theorem 3.3 and 3.4] for the present non-
linear setting, the verification of stability (A1) and reduction (A2) requires the validity of
an appropriate inverse estimate. For scalar nonlinearities and under the assumptions (N1)-
(N4), the latter is proved in [GMZ12, Lemma 3.7|. Using this inverse estimate, the proof
of (A1)-(A2) follows as for the linear case, cf., e.g., [CIKKNS08| for the linear case or [GMZ12,
Section 3.3] for scalar nonlinearities.

Zarantonello iteration

Since the nonlinear system (4.8) can hardly be solved exactly, we use the Zarantonello
iteration, also called Banach—Picard iteration, as iteration function ®;: Xy — X} for Step (i)
of Algorithm 15: Recall that the Riesz mapping Iy;: H — H', Iyw — (-, w) is an isometric
isomorphism, cf. [Yos80, Chapter IIL.6] and let I,: Xy — &j, Irvg — (-, ve) denote the
discrete Riesz operator. Additionally, let A;: Xy — &) and Fy: Xy — R be the restrictions
of A and F respectively to the discrete space Xy. Then, define

% I Y (A — Fy). (4.128)

Given uf € Xy, we thus compute the discrete iterate ulgﬂ = ®y(uf) as follows:

(I)K:Xg—%)(g, Vy — Vp —

(i) Solve the linear system (vg, we) = (Auf — F, vg)zxpy for all vy € Ay

(ii) Define uIZH = uf — T2 W
In explicit terms, the computation of one step of the iteration requires only the solution of
one (discretized) Poisson equation with homogeneous Dirichlet data. Then, ®; satisfies the
norm contraction (C2) with ¢%, = 1 — a?/L?, cf., e.g., [GHPS18, Section 3.2] and it holds
that

* (19 L * 2
E(@elve)) = E(ug) < 5 llug — (vl

C2) I,

< gqitr llug = vell®

(4.9) L

< . qutr (S(W) - 5(“2))

In this case, the additional validity of (C1) with the modified constant gqu follows from
an additional condition on L/« involving the golden ratio, namely

L L L 1 5
0<Z2="-%<1 = Zc V5
« a L «

Moreover, with the same arguments, (C1) guarantees that

~ 1.618. (4.129)

L
lluf = @ewoll® < = g lluf = vell”.

Hence, the condition (4.129) even yields equivalence of (C1) and (C2) (but with different
contraction constants gety)-

Altogether, the present setting fits into the abstract framework of Section 4.2 and the
main results from Section 1.6 apply to it.
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4.8.1 Numerical experiments

In this section, we provide numerical experiments that again underpin the theoretical find-
ings of Section 4.6. For ease of notation, we define A := A, for this section. We present
two examples for AFEM for strongly monotone nonlinearities, cf. Section 4.8, one with
homogeneous Dirichlet boundary conditions on the L-shaped domain and the second with
mixed boundary conditions on the Z-shaped domain, cf. Figure 4.11 where the Dirichlet
boundary I'p is marked by a thick pink line. We compare the performance of Algorithm 15
for

e different values of A € {1,1079%, 1071 ... 1074},
e different values of 6 € {0.05,0.1,0.15,...,1},

where # = 1 corresponds to uniform mesh-refinement.

Homogeneous problem on L-shaped domain

We comnsider the boundary value problem

—div (u(, |Vu* ) Vu*) =1 in Q,

4.130
=0 onT, ( )
where the scalar nonlinearity p: €2 x R>g — R is defined by
In(1 *|2
p(z, |Vur]?) =1+ w (4.131)

1+ |Vu*|?

Then, (N1)-(N4) hold with o =77 &~ 0.9582898017 and L = 7, ~ 1.542343818.

In Figure 4.12, we compare Algorithm 15 for different values of 8 and A, and uniform
mesh-refinement. To this end, the error estimator ng(u%) of the last step of the Zarantonello
iteration is plotted over the number of elements. We see that uniform mesh-refinement leads
to the suboptimal rate of convergence @(N~1/3) for the L-shaped domain. Algorithm 15
regains the optimal rate of convergence O(N -1/ 2), independently of the actual choice of § €
{0.1,0.3,...,0.9} and A € {1,107},...,107*}. Since 17@(11,%) ~ A%, this again empirically
confirms Theorem 23.

In Figure 4.13, we plot the estimator 77[(11,%) of the last step of the Zarantonello iteration
over the cumulative sum Z(Z’,k’)g(l,@) #Tp. As predicted in Theorem 23, we observe that

Algorithm 15 regains the optimal order of convergence O((E(E’,k/)é(é,k) #7}/)71/2) with
respect to the computational complexity. The rate seems to be independent of the values
of A or 6.

In Figure 4.14, we take a look at the number of Zarantonello iterations. Similarly to
the number of PCG iterations in Figure 4.5 and Figure 1.9, we observe that that a larger
value of A or a smaller value of 0 lead to less iterations, while the number stays uniformly
bounded in each case.

In Figure 4.15, we compare the computational cost to reach the precision 7 = 1072 for
A€ {1,107%5 ... /107*} and @ € {0.05,0.1,...,0.95}. As a result, we get that the best

86



4.8 AFEM for quasi-linear elliptic PDE with strongly monotone nonlinearity

1.5} .

-1 -0.5 0 0.5

—

Figure 4.11: Z-shaped domain Q C R? with initial mesh 75 (top) and L-shaped domain
Q C R? with initial mesh 7o (bottom), where I'p is marked by a thick pink
line.
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Figure 4.12: Example from Section 4.8.1 (Homogeneous problem on L-shaped domain):

88

Error estimator W(u%) of the last step of the Zarantonello iteration with
respect to the number of elements N of the mesh 7, for § = 0.5 and
A€ {1,1071,...,107*} (top) as well as for A = 1072 and 6 € {0.1,0.3,...,0.9}
(bottom).
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Figure 4.13: Example from Section 4.8.1 (Homogeneous problem on L-shaped domain):

Error estimator ng(u%) of the last step of the Zarantonello iteration with
respect to the overall computational cost expressed as the cumulative sum
2(5,7,{,)3(2@ #Ty for = 0.5 and A € {1,1071,...,107*} (top) as well as for
A=10"2 and 0 € {0.1,0.3,...,0.9} (bottom).
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Figure 4.14: Example from Section 4.8.1 (Homogeneous problem on L-shaped domain):
Number of Zarantonello iterations with respect to the number of elements
N for # = 0.5 and A € {1,107!,...,107%} (top) as well as for A = 1072 and
6 € {0.1,0.3,...,0.9} (bottom).
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Figure 4.15: Example from Section 4.8.1 (Homogeneous problem on L-shaped domain):
Overall computational cost s <o) #7e such that ng(u§) < 7 for given
precision 7 = 1072, A € {1,107 ...,107%}, and 6 € {0.05,0.1,...,0.95}.
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choice is A = 1 and 6 = 0.75. For the overall computational cost it then holds that

> #Tv = 1531423,
(€ k)< (k)

where u% is the first approximation such that ng(u%) <1072

Experiment with known solution on Z-shaped domain

We consider the Z-shaped domain  C R? from Figure 4.11 (top) and the boundary value
problem (4.123)

—div (u(z, [Vu*(2) ) Vu*(2)) = f(z)  inQ,
u*(z) =0 on I'p,
w(z, |Vu*(z)[?) Oqu*(z) = g(z) on I'y,

where the scalar nonlinearity p: {2 x R>g — R is defined by

1
VIi+t

This leads to (N1)—(N4) with « =743 =2 and L =72 = 3.
We prescribe the solution u* in polar coordinates (x,y) = r(cos ¢, sin ¢) with ¢ € (—m, )
by

p(x,t) =1+ (4.132)

u*(z,y) = 17 cos(B ¢), (4.133)

where f = 4/7 and compute f and g in (4.123) accordingly. We note that u* has a generic
singularity at the re-entrant corner (z,y) = (0,0).

In Figure 4.16, we compare Algorithm 15 for different values of 8 and A, and uniform
mesh-refinement. To this end, the error estimator W(u%) of the last step of the Zarantonello
iteration is plotted over the number of elements. We see that uniform mesh-refinement leads
to the suboptimal rate of convergence O(N~%/7) for the Z-shaped domain. Algorithm 15
regains the optimal rate of convergence O(N~1/ 2), independently of the actual choice of
0 € {0.1,0.3,...,0.9} and A € {1,1071,...,107*}. Since m(u%) ~ A%, this once again
empirically underpins Theorem 23.

In Figure 4.17, we plot the estimator ng(uf) of the last step of the Zarantonello iteration
over the cumulative sum Z(f’,k’)g(é,@) #Te. As predicted in Theorem 23, we observe that

Algorithm 15 regains the optimal order of convergence O((Z(E',k’)g(é,@ #T/)_I/Q) with
respect to the computational complexity, while the rate seems to be independent of the
values of A or 6.

In Figure 4.18, we take a look at the number of Zarantonello iterations. As in Figure 4.14,
we observe that that a larger value of A or a smaller value of 6 lead to less iterations, while
the number stays uniformly bounded in each case.
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Z—shaped domain
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Figure 4.16: Example from Section 4.8.1 (Experiment with known solution on Z-shaped

domain): Error estimator ng(u%) of the last step of the Zarantonello iteration
with respect to the number of elements N of the mesh 7T, for § = 0.5 and
Ae {1,1071,...,107*} (top) as well as for A = 1072 and # € {0.1,0.3,...,0.9}
(bottom).
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Figure 4.17: Example from Section 4.8.1 (Experiment with known solution on Z-shaped
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domain): Error estimator ng(uﬁ) of the last step of the Zarantonello iteration
with respect to the overall computational cost expressed as the cumulative sum
Z(ﬂ,k')g(z,@ #Ty for = 0.5 and A € {1,1071,...,107*} (top) as well as for
A=10"2 and # € {0.1,0.3,...,0.9} (bottom).
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Figure 4.18: Example from Section 4.8.1 (Experiment with known solution on Z-shaped

domain): Number of Zarantonello iterations with respect to the number of
elements N for § = 0.5and A € {1,1071,...,1074} (top) as well as for A\ = 102
and 0 € {0.1,0.3,...,0.9} (bottom).
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Figure 4.19: Example from Section 4.8.1 (Experiment with known solution on Z-shaped
domain): Overall computational cost >_p <o x) #Te such that ng(ug) <
7 for given precision 7 = 3-1072, X € {1,107%%...,107%}, and 6 €
{0.05,0.1,...,0.95).
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In Figure 4.19, we compare the computational cost to reach the precision 7 = 3 - 1072
for A € {1,107%5,...,107%} and 0 € {0.05,0.1,...,0.95}. As a result, we get that the best
choice is A =1 and # = 0.75. For the overall computational cost it then holds that

Z #Ty = 5439636,

(€' k) <(4,k)

where u% is the first approximation such that ng(u%) <3-1072
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5 Fully adaptive algorithm for AFEM for
nonlinear operators

5.1 Introduction

In Chapter 4, we considered adaptive finite element methods for second-order elliptic PDEs
where the arising discrete systems are not solved exactly. We showed that both AFEM for
linear elliptic PDEs in combination with an optimal PCG solver for the Galerkin system,
cf. Section 4.7, as well as AFEM for certain nonlinear elliptic PDEs in combination with
the Zarantonello iteration, cf. Section 4.8, fit in the abstract framework of Algorithm 15.
The idea of this chapter, which is based on [HPSV21], is to combine these two settings into
one fully adaptive algorithm.

Let Q C R? with d > 1 be a bounded Lipschitz domain with polytopal boundary. Given
f € L*(Q) and a nonlinear operator A: R? — R?, we then aim to numerically approximate
the weak solution u* € H}(Q2) of the nonlinear boundary value problem

—divA(Vu*) = f in Q,

(5.1)
uw* =0 on ON.

To this end, we propose an adaptive algorithm of the type

’ estimate total error and its components

! (5.2)

advance algebra/advance linearization/mark and refine mesh elements‘

which monitors and adequately stops the iterative linearization and the linear algebraic
solver as well as steers the local mesh-refinement. The goal of this chapter is to perform a
rigorous mathematical analysis of this algorithm in terms of convergence and quasi-optimal
computational cost.

5.1.1 Finite element approximation and Banach—Picard iteration

Suppose that the nonlinearity A in (5.1) is Lipschitz-continuous (with constant L > 0)
and strongly monotone (with constant o > 0), see Section 5.2 for details. Then, the
main theorem on monotone operators yields the existence and uniqueness of the weak
solution u* € HE(), see, e.g., [Zei90, Theorem 25.B]. Given a triangulation T, of Q,
the lowest-order finite element method (FEM) for problem (5.1) reads as follows: Find
uy € Xy := {ve € C(Q) : 4|7 is affine for all T € T, and ve|go = 0} C H}(Q) such that

(A(Vu)), Vue)a = (f, ve)o for all ve € X,. (5.3)
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The discrete solution u} € X, again exists and is unique, but (5.3) corresponds to a nonlinear
discrete system which can typically only be solved inexactly.

The most straightforward algorithm for iterative linearization of (5.3) stems from the
proof of the main theorem on monotone operators which is constructive and relies on the
Banach fixed point theorem: Define the (nonlinear) operator ® : Xy — Xo by

(VDo (ws), Vo) = (Ve , Vo) — % [(A(Vws), Vve)o — ([, ve)a ] (5.4)

for all we,ve € Xo. Note that (5.4) corresponds to a discrete Poisson problem and hence
D4 (we) € Xy is well-defined. Then, it holds that

[V (ug — Pe(ws)) 2y < gpic |V (ug — we) |l £2(0) (5.5)
with
qPic := (1 — a2/L2)1/2 < 1,

see, e.g., [Z¢190, Section 25.4]. Based on the contraction ®o, the Banach—Picard iteration
starts from an arbitrary discrete initial guess and applies ®4 inductively to generate a se-
quence of discrete functions which hence converge towards u}. Note that the computation
of ®4(wy) by means of the discrete variational formulation (5.4) corresponds to the so-
lution of a (generically large) linear discrete system with symmetric and positive definite
matrix that does not change during the iterations. As mentioned before, we now suppose
that also (5.4) is solved inezactly by means of a contractive iterative algebraic solver (with
contraction factor gue < 1), e.g., PCG with optimal preconditioner, see, e.g., [OT14].

5.1.2 Fully adaptive algorithm

In our approach, we compute a sequence of discrete approximations u]Z’j of u* that have an
index /¢ for the mesh-refinement, an index k for the Banach—Picard linearization iteration,
and an index j for the algebraic solver iteration.

First, we design a stopping criterion for the algebraic solver such that, at linearization
step kK — 1 € Ny on the mesh 7y, we stop for some index j € N. At the next linearization
step k € N, the arising linear system reads as follows: -

Find ulZ’* € Xy such that, for all v, € Ay,

k—1,j k—1,j
(Vg™ , Vo = (Vu, %, Vg — % [(A(Vu, ), Voo = (f, vdal,

(5.6)

k—1,j
with uniquely defined but not computed exact solution ulg’* = ®y(u, l) and computed

iterates uf’j that approximate ulg’*. Note that (5.6) is a perturbed Banach—Picard iteration

. . . k-1, . . -
since it starts from the available u, l, typically not equal to the unavailable uif Lx,

Second, we design a stopping criterion for the perturbed Banach-Picard iteration at some
index k, producing a discrete approximation uf’l.

Finally, we locally refine the triangulation 7 on the basis of the Dorfler marking criterion
for the local contributions of the residual error estimator 775<U%l), and, to lower the compu-
tational effort, employ nested iteration in that the continuation on the new triangulation

. . .. k.j
Tey1 is started with the initial guess ugfl =,
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5.1.3 State of the art

Solving the linear system (5.6) inexactly gives rise to the so-called “inexact Newton method”,
see, e.g., in [Deu9l, EW94] and the references therein. Under appropriate conditions, these
can asymptotically preserve the convergence speed of the “exact” Newton method. However,
these approaches only focus on the finite-dimensional system of nonlinear algebraic equa-
tions of the form (5.3) but do not take into account the continuous problem (5.1), which is
our central issue here.

Solving the nonlinear algebraic systems (5.3) “exactly” (up to machine precision), only
the discretization error is left. Then, convergence and optimal decay rates of the error
[V (u* —ug)||2(q) with respect to the degrees of freedom of FEM adapting the approxima-
tion space (mesh) were obtained in [Vee02, DK08, BDK12, GMZ12], following the seminal
contributions [D6r96, MNS00, BDDO04, Ste07, CKNSO08] for linear problems. We also re-
fer to [CEPP14] for a general framework of convergence of adaptive FEM with optimal
convergence rates.

Solving only the linear algebraic systems (5.6) “exactly” but (5.3) inexactly leaves the
discretization and linearization errors. Such a setting has been considered in, e.g., [CS07,
EAEV11], where reliable (guaranteed) and efficient a posteriori error estimates were derived.
Adaptive algorithms aiming at a balance of the linearization and discretization errors were
proposed and their optimal performance was observed numerically, see, e.g., [BDMSI15,
BCL15, CW17, HW18]. Later, theoretical proofs of plain convergence (without rates) were
given in [GMZ11, HW20b|, where [HW20b] builds on the unified framework of [HW20a|
encompassing also the Kacanov and (damped) Newton linearizations in addition to the
Banach-Picard linearization (5.6).

The works [GHPS18, GHPS21], cf. Chapter 4, considered that the linear systems (5.6) are

solved exactly at linear cost (so that uf’l = u?’* with j(¢, k) = O(1) in the present notation),
as in the seminal work [Ste07] for the Poisson model problem and in [CG12] for an adaptive
Laplace eigenvalue computation. Under this so-called realistic assumption on the algebraic
solver, [GHPS18| proved that the overall strategy leads to optimal convergence rates with
respect to the number of degrees of freedom as well as to almost optimal convergence rates
with respect to the owverall computational cost. The latter means that, if the total error
converges with rate s > 0 with respect to the degrees of freedom, then, for all € > 0, it also
converges with rate s — e > 0 with respect to the overall computational cost. The proof
of [GHPS18| was based on proving first that the estimator m(u%’*) for the final Picard
iterates decays with optimal rate s and second that the number of Picard iterates satisfies
k(0) S 1+logl+ ng(ufrl)/m(u%*)]. This logarithmic bound then led to the bound s — ¢
for the convergence rate with respect to the overall computational cost.

As shown in Chapter 4, we have improved the latter result in [GHPS21] and proved
optimal computational cost (i.e., ¢ = 0), still relying on the assumption that the discrete
Poisson problem (5.6) is solved exactly at linear cost. The core idea of the new proof follows
ideas from adaptive Uzawa FEM for the Stokes model problem [KS08, DEFGP19]. However,
besides the nonlinearity, the structural difference is that the adaptive Uzawa FEM employs
an outer iteration on the continuous level (i.e., we first linearize and then discretize), while
the approach of [CW17, GHPS18, HW20a, HW20b, GHPS21] is first to discretize and then

to linearize.
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As in the present setting, the “adaptive inexact Newton method” in [EV13] takes into
account all discretization, linearization, and algebraic error components, see also [CPV14,
DPVY15] and |Poll6] for regularizations on coarse meshes ensuring well-posedness of the
discrete systems in Newton-like linearizations. The goal of this chapter is to perform a
rigorous mathematical analysis of such algorithms in terms of convergence and optimal
decay rate of the error with respect to computational cost.

We stress that such results have already been derived for adaptive wavelet discretiza-
tions [CDDO03, Stel4] which provide inherent control of the residual error in terms of the
wavelet coefficients, while the present analysis for standard finite element discretizations
has to rely on the local information of appropriate a posteriori error estimators. Also,
while the present analysis is closely related to that of [GHPS21|, we stress that both
works [GHPS18, GHPS21] focused only on linearization and discretization, while here, we
also include the innermost algebraic loop into the adaptive algorithm. In particular, the
technical challenges in the present analysis are much more involved than in [GHPS21] due
to the coupling of the two nested inexact solvers.

5.1.4 Main results and outline

Similarly to Chapter 4, the sequential nature of the fully adaptive algorithm of Section 5.1.2
gives rise to an index set

k,j

Q= {(E, k,j) € Ng : discrete approximation u,” is computed by the algorithm}

together with an ordering

|6, k, 5)| < |(¢' K, 5] & uf’j is computed earlier than uif,,’jl.
Our first main result, formulated in Theorem 45 below, proves that the proposed adaptive
strategy is contractive after some amount of steps and linearly convergent in the sense of

AR < Ol FINEIERDT AR gor all (0, k, 5)| < (2, K, ), (5.7)

where Cliy > 1 and 0 < ¢, < 1 are generic constants and A?’j is an appropriate quasi-error

quantity involving the error ||V (u* — u?’j)HLZ(Q) as well as the error estimator ng(u?’j).
Second, we prove the optimal error decay rate with respect to the number of degrees of
freedom added with respect to the initial mesh in the sense that

sup  (#T0 — #7To + 1)°A)7 < o0 (5.8)
(£,k,5)€Q
whenever u* is approximable at algebraic rate s > 0, see Theorem 49 below for the details.
Finally, estimate (5.7) appears to be also the key argument to prove our most eminent result,
namely the optimal error decay rate with respect to the overall computational cost of the
fully adaptive algorithm which steers the mesh-refinement, the perturbed Banach-Picard
linearization, and the algebraic solver. In short, this reads

sup ( > #72> AR < o0 (5.9)
(e k' 5)EQ (¢,k.5)€EQ
(k. 7)<( K 5"
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whenever u* is approximable at algebraic rate s > 0; see Theorem 53 below for the details.
We stress that under realistic assumptions the sum in (5.9) is indeed proportional to the
overall computational cost invested into the fully adaptive numerical approximation of (5.1),
if the cost of all procedures like matrix and right-hand-side assembly, one algebraic solver
step, evaluation of the involved a posteriori error estimates, marking, and local adaptive
mesh refinement is proportional to the number of mesh elements in 7; (i.e., the number of
degrees of freedom).

The remainder of this section is organised as follows. In Section 5.2, we introduce the
abstract setting for our algorithm as well as the requirements on mesh-refinement, error
estimator, and algebraic solver, before we state the fully adaptive algorithm in Section 5.2.5.
In Section 5.3, we then state the aforementioned main results, i.e., linear convergence of the
quasi-error in each step of the adaptive algorithm (Section 5.3.4), optimal convergence rates
of the quasi-error with respect to the number of degrees of freedom (Section 5.3.6), as well as
optimal convergence rates of the quasi-error with respect to the overall computational cost
of the fully adaptive algorithm (Section 5.3.7). Finally, numerical experiments in Section 5.4
underline the theoretical findings.

5.2 Adaptive algorithm

In this section, we introduce an abstract setting, in which all our results will be formulated,
define the exact weak and finite elements solutions, introduce our requirements on mesh-
refinement, error estimator, and algebraic solver, state our adaptive algorithm, and present
our main results, including some discussions.

5.2.1 Abstract setting

Let H be a Hilbert space over K € {R,C} with scalar product (-, -), corresponding norm
Il - I, and dual space H' (with canonical operator norm || - ||'). Let the operator A: H — H’
satisfy (O1)-(03) from Section 4.2 with potential P: H — K, i.e., we suppose that the
operator A is strongly monotone and Lipschitz-continuous, i.e.,

alw = vl < Re (Aw — Av, w = v)wxy and  [JAw — Av||' < Ljw -] (5.10)

for all v,w € H, where 0 < a < L are generic real constants and P is Gateaux-differentiable
with derivative A :=dP: H — H’', i.e., there holds that

(AW, Vagrn = lim P(w + tv) — P(w)

t—0 t
teR

for all v,w € H.

Given a linear and continuous functional F' € H’, the main theorem on monotone opera-
tors [Zei90, Section 25.4] yields existence and uniqueness of the solution u* € H of

(Au* V) = F(v) for all v € H. (5.11)

The result actually holds true for any closed subspace Xy C H, which also gives rise to a
unique uy € X, such that

(Auy, ve)rrxp = F(ve) for all ve € A. (5.12)
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Finally, with the energy functional £ := Re (P — F), it holds that
-~ * |12 * L *(12
% e — 2l < () ~ E(ud) < Tl —uil? forallvee X (513

see, e.g., |[GHPSI18, Lemma 5.1|. In particular, u* € H is the unique minimizer of the
minimization problem

E(u) = irélﬁ E(v) (5.14)

as well as uj € X7 is the unique minimizer of the minimization problem

E(u}) = min &(v,). 5.15
(1) = min £(va) (5,19

As in Section 4.2, it follows from (5.10)—(5.12) that the present setting guarantees the
Céa lemma

llw* — wX]| < Ccea lu* — va|| for all ve € Xo  with Coea := L/av. (5.16)

5.2.2 Mesh-refinement

We briefly recall some definitions of the mesh-refinement from Section 3.4. Let 7, be a
conforming simplicial mesh of , i.e., a partition of Q into compact simplices T' such that
Urer, T = Q and such that the intersection of two different simplices is either empty or
their common vertex, edge, or face.

We assume that refine(-) is a fixed mesh-refinement strategy, e.g., newest vertex bisec-
tion, cf. Section 3.6.

We write 7o = refine(7,, M,) for the coarsest one-level refinement of 7,, where all
marked elements M, C T, have been refined, i.e., Mo C To\75. We write 75 € refine(7,),
if 75 can be obtained by finitely many steps of one-level refinement (with appropriate, yet
arbitrary marked elements in each step). We define T := refine(7p) as the set of all meshes
which can be generated from the initial simplicial mesh 7g of 2 by use of refine(-).

Finally, we associate to each T, € T a corresponding finite-dimensional subspace X, ; H,
where we suppose that Xo C X, whenever T,, 7o € T with 75 € refine(7,).

For newest vertex bisection, we refer to Section 3.6 for the validity of (R1)—(R3) as well
as Section 3.7 for other refinement strategies.

5.2.3 Error estimator

For each mesh 7, € T, suppose that we can compute refinement indicators

Ne(T,ve) >0 for all T € T, and all v, € A. (5.17)
We denote
1/2
Ne(Ve, Ve) := ( Z ne (T, v.)2> for all V, C T, (5.18)
TEV,
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and abbreviate 7e(ve) := 7e(Te,Ve). Analogously to Section 4.3, we assume the azioms of
adaptivity (Al)—(A4) from [CEFPP14] for all 7o € T and all 75 € refine(7,) with generic
constants Cgiab, Crel > 0, and 0 < ¢req < 1. We stress that the exact discrete solutions uj
(and w} respectively) in (A3)—(A4) will never be computed but are only auxiliary quantities
for the analysis.

We refer to Section 5.4 below for precise assumptions on the nonlinearity A(-) of prob-
lem (5.1) such that the standard residual error estimator satisfies (A1)—(A4) for lowest-order
Courant finite elements, see also Section 5.4.1-5.4.2.

5.2.4 Algebraic solver

For given linear and continuous functionals G € H’, we consider linear systems of algebraic
equations of the type

(vy, we) = G(wse) for all we € X (5.19)

with unique (but not computed) exact solution v} € X,. We suppose here that we have at
hand a contractive iterative algebraic solver for problems of the form (5.19). More precisely,
let v{ € X, be an initial guess and let the solver produce a sequence v € X,, j > 1. Then,
we suppose that there exists a generic constant 0 < ga; < 1 such that

o3 = vlll < guig o3 = w7 for all j > 1. (5.20)
Examples for such solvers are suitably preconditioned conjugate gradients or multigrid, see,
e.g., Olshanskii and Tyrtyshnikov [OT14] and the references therein.
5.2.5 Adaptive algorithm

For the numerical approximation of problem (5.11), we consider an adaptive algorithm which
steers mesh-refinement with index ¢, a (perturbed) contractive Banach—Picard iteration with
index k, and a contractive algebraic solver with index j. On each step (¢, k, j), it yields an
approximation uf’j € A&y to the unique but unavailable uj; € Xy on the mesh 7, defined by

(Auj ) vo)rxp = F(vg) for all vy € A (5.21)

Reporting for the summary of notation to Table 5.1, the algorithm reads as follows:

Algorithm 41. Input: Initial mesh Ty and initial guess ug’o = ug’i € Xy, parameters
0<0<1,0< Mg <1, 0<Apic, and 1 < Cark, counters £ =k = j = 0.
Adaptive loop: Iterate the following steps (i)—(vi): (adaptive mesh-refinement loop)

(i) Repeat the following steps (a)—(c): (linearization loop)

(a) Define u?“’o = u?’j and update counters k :=k + 1 as well as j := 0.

(b) Repeat the following steps (1)—(111): (algebraic solver loop)
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(i)
(i)
(iv)

(v)
(vi)

counter discrete solution
available unavailable
running stopping running stopping exact

k7 ] E7 ]

mesh l l uzl 0y 4 uj from (5.21)

linearization k k U, . U, z ulg’* from (5.22)
: : : k,j k.

algebraic solver J J Uy Uy

Table 5.1: Counters and discrete solutions in Algorithm 41.

(I) Update counter j = j + 1.
onsider the problem of finding
IT) Consider th bl f findi

ulg’* € Xy such that, for all vy € X,

" k—1,j k—1,j (5.22)
(uf™ ve) = (g v) =S5 (A P = F v

and do one step of the algebraic solver applied to (5.22) starting from uf’jfl,
which yields u?’j (an approximation to uIZ’*),
(III) Compute the local indicators ne(T, ulg’j) for all'T € 7.
. k.,j kj—1 k,j k.j k-1,
Until  flu,” —u,? 7 < )‘alg[W(ue )+l =, ] (5.23)

(c) Define j := j({,k) := j.

k-1
¢

Until [Ju,” —u, 2| < Apicne(u,?). (5.24)

Define k := k(¢) .= k.
If ng(uf’i) =0, then set £ := { and exit.

Determine a set My C Ty with up to the multiplicative constant Cpare minimal cardi-
nality such that

y .
0ne(uig ™) < me(Me, uy™). (5.25)

0,3 kyj

: 00 ._ Y . _
Generate Ty = refine(Ty, My) and define u,, = u, 7, == u,”.

Update counters £ :={+ 1, k:=0, and j := 0 and continue with (i).

Output: Sequence of discrete solutions uf’j and corresponding error estimators ng(uﬁ’j),

Remark 42. Some remarks in order to explain the nature of Algorithm J1:
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e The innermost loop, Algorithm /1(i)(b), steers the algebraic solver. Note that the
exact solution u?’* of (5.22) is not computed but only approzimated by the computed

iterates uif’j. For the linear system (5.22), the contraction assumption (5.20) reads as
™ — b < g ™ — BN for all > 1. (5.26)

Then, the triangle inequality implies that

1= qag | &, k,j ki kj—1 k, kyj—1
e 22 g™ = wg || < g — ug? T < (1 Garg) flug™ — w7 (5.27)
alg

k,j kj—1 : . :
Hence, the term |lu,” — w,7""|| provides a means to estimate the algebraic error

k? k?' 7.
|||Uz* - Uzj| !

|. In particular, the approzimation u? 1s accepted and the algebraic

solver is stopped if the algebraic error estimate |Hu§] - u?’jflm is, up to the threshold

; C k-1
Aalg; below the estimate on the sum ng(uif’]) + H|u§y —u, || of the discretization and

k—1,5
linearization error, see (5.23). Since H|u§’1 - u?’o | = |||u/§’1 — U, L, the stopping

criterion (5.23) would always terminate the algebraic solver at the first step j = 1 if
Aalg was chosen greater or equal to 1 which motivates the restriction Ay < 1.

e The middle loop, Algorithm /1(i), steers the linearization by means of the (perturbed)
k,j k—1,5
Banach—Picard iteration. Lemma 4/ below shows that the term |||u£’l —u, | esti-

k.j .o
mates the linearization error ||u} — u, Ll. Note that, a priori, only the non-perturbed
Banach—Picard iteration corresponding to the (unavailable) exact solve of (5.22) yield-
. ]{;7* .
ing u,” would lead to the contraction

llwp — ug*”\ < gpic ||lu; — ulz_l’;m for all (¢,k,0) € Q with k > 1, (5.28)

where 0 < gpic == (1 — a?/L*)Y? < 1 and Q the index set defined in (5.29). The

approximation ue’l 1s accepted and the linearization is stopped if the linearization
. k,j k=14, . . ..

error estimate |”uel —u, | is, up to the threshold Apic, below the discretization

k
error estimate ng(ue’l), see (5.24) (here Apic < 1 is not necessary).

e Finally, the outermost adaptive loop steers the local adaptive mesh-refinement. To this
end, the Dérfler marking criterion (5.25) from [Dir96] is employed to mark elements

k
T € My for refinement, unless m(uz’l) = 0, in which case Proposition /3 below

k, .. . .
ensures that the approrimation u;l coincides with the exact solution u* of (5.11).

e In a practical implementation, Algorithm /1 has to be complemented by appropriate
stopping criteria in all of the loops so that the computation is terminated if uf’ﬂ e Xy
s a sufficiently accurate approximation of u*. This can be done with the help of the
reliable a posteriori error estimates summarized in Proposition /3 below.
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5.2.6 Index set Q for the triple loop

To analyze the asymptotic convergence behavior of Algorithm 41, we define the index set
Q:={(4,k,j) € N} : index triple (¢, k,j) is used in Algorithm 41}. (5.29)

Since Algorithm 41 is sequential, the index set Q is naturally ordered. For indices (¢, k, j),

(0K, 5") € Q, we write

6k, §) < (€K, 5) <L (0K, j) appears earlier in Algorithm 41 than (¢, &', ). (5.30)

With this order, we can define

(6 k)| = #{(C K, j') € Q : (€K, 5') < (,k,])},

which is the total step number of Algorithm 41. We make the following definitions, which
are consistent with that of Algorithm 41, and additionally define j(¢,0) := 0:

C:=sup{l €Ny : (£,0,0) € Q} € Ng U {oo},
k(0) :==sup{k € Ny : ({,k,0) € Q} € NgU {oo} if (£,0,0) € Q,

)
J(4, k) :=sup {j eNg: (0 k,j) € Q} € NoU {oo} if (£,k,0) € Q.

Generically, it holds that £ = oo, i.e., infinitely many steps of mesh-refinement take place.
However, our analysis also covers the cases that either the k-loop (linearization) or the
j-loop (algebraic solver) does not terminate, i.e.,

k(f) =00 if £<oo resp. j({,k)=o0 if £ < oo and k({) < oo,

or that the exact solution u* is hit at Step (iii) of Algorithm 41 (note that ng(ué ) =0

implies u* = “e by virtue of Proposition 43 below). To abbreviate notation, we make the

following convention: If the mesh index ¢ € Ny is clear from the context, we simply write
k Lk
k:=Ek(), eg., ulZ’] : (g)j Similarly, we simply write j —j(€ k), e.g., ug’] = WJ( ),

Note that there in partlcular holds “27]1 = ugo = ué O for all (¢,0,0) € Q with £ >
1. Hence, these approximate solutions are indexed three times. This is our notational
choice that will not be harmful for what follows. Alternatively, one could only index the
approximate solutions that appear on Step (i)(b)(II) of Algorithm 41.

5.3 Main results

5.3.1 Reliabilty estimates of Algorithm 41

Our first proposition provides computable upper bounds for the energy error ||u* — k I of
the iterates ug 7 of Algorithm 41 at any step (¢, k,j) 6 Q In particular, we note that the
stopping criteria (5.23)—(5.24) ensure reliability of ng(ug =) for the final perturbed Banach-

. . k.,j
Picard iterates u, ~.
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Proposition 43 (Reliability at various stages of Algorithm 41). Suppose (Al)
and (A3). Then, for all (¢,k,j) € Q, it holds that

ne(ub?) + e — g Y — Y
if 0<k<Ek()and0<j<jlk),
o — | < Cla § meu?) + lhig” =™ 2N if 0 < b < k(0) and j = j(LK),  (5.31)
ne(ug ) if k=k(0) and j=j(¢k),
ng_l(ufgl) if k=0 and{>0.

The constant C’ > 0 depends only on Ciel, Cstab, Galg, Aalgs qPic, and Apic.

The proof ist postponed to Section 5.3.2, because we first need some auxiliary results for
Algorithm 41.
Observations on Algorithm 41

First, we collect some elementary observations on Algorithm 41 in what concerns nested
iteration and stopping criteria. The given initial value of Algorithm 41 reads

80 = ug’j = uo € Ap. (5.32)
If (¢,0,0) € Q with £ > 1, then
ug* = ugo = ug’i = u?’_ll € X1 C AL (5.33)

If (¢,k,0) € Q, then the initial guess for the algebraic solver reads

ug’o for £ =0,
uf? = u;:’_Jll ifk=0and (> 1, (5.34)
u, I k>0,

i.e., the algebraic solver employs nested iteration. The stopping criterion (5.23) of Algo-
rithm 41 guarantees that j(¢,k) > 1if k > 0 and, for all (£, k,j) € Q, it holds that

1,j

| for j=j(4,k), (5.35)
| for j < j(4,k), (5.36)

k.j k,j—1 k,j k.j
g ® = ug I < Natg [me(g ) + g —

k,j J—1 ) )
H|u£ — Uy kg = |H > )‘alg [W(Ug J) + |||uﬁ 7 -

k—
L)
k—1,j
L)

i.e., the algebraic error estimate [|uj’ — wujy”~"|| only drops below the discretization plus

linearization error estimate at the stopplng iteration j = j(ﬁ k).
k,j
The final 1terates Uy~ of the algebraic solver are used to obtain the perturbed Banach-

Picard iterates ue “ofor k> 0, see (5.22). The stopping criterion (5.24) of Algorithm 41
guarantees that k(¢) > 1 and, for all (£, k,j) € Q, it holds that

b bl o
llg™ =g 2 < Apicme(u, ™) for k = k(£), (5.37)

k.j k 1,5 k.j
g =, > Npse o) for k < k(0), (5.38)
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. . . . k,j k—=1,j
i.e., the linearization error estimate ||u,” —u, ™~

estimate at the stopping iteration k = k(¢).

| only drops below the discretization error

Contraction of the perturbed Banach—Picard iteration

Assumption (5.20) immediately implies the algebraic solver contraction (5.26) and relia-
bility (5.27) of the algebraic error estimate H|u?3 - u?’jflm. Similarly, one step of the
non-perturbed Banach-Picard iteration (5.22) (i.e., with an exact algebraic solve of prob-

lem (5.22) with the datum uﬁ_l’l) leads to contraction (5.28) and consequently to the
reliability

k—1,j

k., k—1,5
| < ”|Ue — Uy

1 —gpi k,
—— g =y I < (1 +gpic) lug —u, =l (5.39)

1C
. . L . k=1,
of the unavailable linearization error estimate |||uf;H — U, l. As our first result, we now
show that, for sufficiently small stopping parameters 0 < A\yjg in (5.23), we also get that the
perturbed Banach—Picard iteration is a contraction.
Recall that uj € A} is the (unavailable) exact discrete solution given by (5.21), that

k
u§7* € A} is the (unavailable) exact linearization solution given by (5.22), and that w, Te X
is the computed solution for which the algebraic solver is stopped, see (5.23) (and (5.35)—
(5.36) respectively) for the stopping criterion.

Lemma 44. There exists )\;lg > 0 only depending on qas and qpic such that

Galg *
dpic + 1—qa alg
0 < gpic == [ e g)\* <1 (5.40)
17‘1a1g alg

Moreover, for all stopping parameters 0 < Ayjg < 1 and 0 < Apic from (5.23)~(5.24) such

that 0 < Aalg + Aalg/Apic < /\ngz 1t holds that

kj k—1,j
i = ug =l < apic lluf —ug =l for all 1 < k < K(0). (5.41)
This also implies that

k—1,j
¢

1 — gp k.j k.j k—1,j
2 g — g < ™ —w < (1 +gpic) llug —u, =

. (5.42)
Pic

Proof. Clearly, (5.42) follows from (5.41) by the triangle inequality as in (5.27) and (5.39).
Moreover, (5.10) is obvious for sufficiently small A}, since gpic = (1 — o?/LH? < 1
from (5.28) and 0 < gaie < 1 is fixed from (5.20). To see (5.41), first note that

k.j k, k, k.j
g =yl < g = wg ™|+ g™ =,
(5:28) k1] k k.j
< gpicllup —ug 7+ g™ = w7,
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where the first term corresponds to the unperturbed Banach—Picard iteration (5.22) and
the second to the algebraic error. Second, note that, since 1 < k < k(¢),

k, kg, O20 qal kj  kj—1
g™ =, =l < ﬁ g™ =™ |l
(535 g Y
< 7 _aqgl Natg [ e(g D)+l =y~ ]
alg
(5.38) Qal k.j k—1,j
< 1 _aqgl (Aalg + Aatg/ Apic) |Hug — Uy jHl
alg
qal k—1,j
<7 _aqgl (atg + Aatg/Apic) [llaf — g 2|+l — g~ 2.
alg
Combining the latter estimates with the assumption Aag + Aatg/Apic < )\al , we see that
* k,j Galg k-1, Galg
— < ; .
|”uZ uf ”‘ = (qPIC + 1— Galg alg) ”"LL@ ué + 1 — Galg alg |” ”‘
If 0 < A7), is sufficiently small, it follows for all 1 <k < k(¢) that
* ) qPiC + qaqulg zlg k 17
llug —we ™l < ———am e i -l
1- —(Qalg alg
k 1,
= qpicllui — “I-
This concludes the proof. ]

5.3.2 Proof of Proposition 43 (reliability estimates)

We are now ready to prove the estimates (5.31).

Proof of Proposition /3. First, let (£,k,j) € Q with 0 < k < k(¢) and 0 < j < j(/, k).
Due to stability (A1), reliability (A3), and the contraction properties (5.27) resp. (5.39), it
holds that

k.j ”

o = g ) < e =l + o =
A
(A3) i

S ome(up) + llup — uy
Al)
N Wf(ue’]) + fluz — uz’] Il

< nelup?) + flug — up ™| + fluf™ — up?| (5.43)
(5.39) . .
k, k, k 1, k,
S ne(uy?) + Jluy™ — I+ g™ =y
< ne(uy”?) + lug” — ue M) 42 flug™ — g |
(5.27) ) )
k, k, k 17 kj—1
S ne(ug?) 4 Jlug? — I+ g — g =)
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This proves (5.31) for the case 0 < k < k(¢) and 0 < j < j(4, k).
If j = j({, k), we can improve this estimate using the stopping criterion (5.35) which
yields that

. . (5.35) . , ,
k?] k}]il k7] k:] kil:]
g™ =™ S meuy™) + Mug™ =y - (5.44)

Combined with (5.43), this proves (5.31) for j = j(¢,k). If additionally & = k(¢), the
stopping criterion (5.37) and the previous estimate (5.44) provide that

ki kg1, O2D g ki k=15, O20 g
g™ == S meuy™) + luy™ =g S me(u,™), (5.45)

~

which proves (5.31) for this case. Finally, for £ =0, £ > 0 and hence j = j = 0, it directly
follows from nested iteration (5.33) and the previous case k = k(¢ — 1) resp. j = j(£ —1,k)
that

kg

0,0 k,j
=Ml == < me—1(u, ). (5.46)

llu* = u,

This concludes the proof. O

5.3.3 Linear convergence of the quasi-error

The first main theorem states linear convergence in each step of the adaptive algorithm,
i.e., algebraic solver or linearization or mesh-refinement.

Theorem 45 (linear convergence). Suppose (Al)~(A3). Then, there exist A}, A > 0
such that for arbitrary 0 < 0, Aag, Apic with

0<bh<1,
0< )\alg <1,
0< )\alg + /\alg//\Pic < )‘zlgv and,
0 < Apic/6 < Xl;iw
there exist constants Chiy, > 1 and 0 < qin < 1 such that the quasi-error

ki _ kg ko kg
A=l = g I+ g™ = g |+ me(ug?), (5.47)

composed of the overall error, the algebraic error, and the error estimator, is linearly con-
vergent in the sense of

Alz/lvj/ S Chn ql‘l(f/vk,7.7,)|_|(£7k7])l AI;J (548)

for all (L, k,5), (0 K 5") € Q with (¢, K,j") > (¢,k,j). The constants Cy, and qu, depend
only on Crel, Cstab, Gred; U, Galg, Aalgs qPic, APic, @, and L.

Note that AF7" = A7 when (¢, %, ') = (¢,k,7), and then (5.48) holds with equality

k/ j/ k‘] k/ jl kj
for Cyi, = 1. There are other cases where u,” = u,” and where u,” = u,” together
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with 7y = Ty, and consequently 7y (uf,/’j ’) = ng(ul;’j ), related to our notational choice for
Q in (5.29) that also indexes nested iterates. The case with ¢/ = ¢ arises for instance when
j=14,j =0,and ¥ = k + 1, see Step (i)(a) of Algorithm 41. Note, however, that in

such a situation, typically uif,/’* #+ uif’*, and consequently A]Z/’j / #+ A?’j . A situation where

AIZ,/’j[ = A]Z’j for (¢, K',j") # (¢, k, j) can nevertheless also appear, and is covered in (5.48).

For instance, in the above example, when j = j, 5/ = 0, &' = k + 1, and ¢ = /, and where

, : , s
moreover uy”? = up’* =} (so that uf? = u)* = wj,* = uj,? = u}), Algorithm 41 performs

only one step of the algebraic solver on the linearization step &', so that Cy, = 1/quin leads
to equality in (5.48) where now |(¢, k', ") — (¢, k,j)| = 1.

In order to prove Theorem 45, we first introduce an auxiliary adaptive algorithm which
we employ to prove a certain summability property of the quasi-error, before we prove linear
convergence in Section 45.

An auxiliary adaptive algorithm

. k.j . .
Due to Lemma 44, the iterates u, ? are contractive in the index k. Consequently, Algo-

rithm 41 fits into the framework of [GHPS18| upon defining uy from [GHPS18] as uy := uf’l

for the case where k({) < oo and j(¢,k) < oo, i.e., both the algebraic and the lineariza-
tion solvers are stopped by (5.23)-(5.24) on the mesh 7;. Note that the assumption
(¢ +n+1,0,0) € Q below ensures this for all meshes Ty with 0 < ¢/ < £+ n. Then,
we can rewrite [GHPS18, Lemma 4.9, equation (4.10)] and [GHPS18, Theorem 5.3, equa-
tion (5.5)] in the current setting to conclude two important properties: First, the estimators

k, . . . . .
ne(u, l) available at Step (iv) of Algorithm 41 are, up to a constant, equivalent to the esti-
mators 7,(u}) corresponding to the unavailable exact linearization u} of (5.21). And second,

. k, .
the estimators ny(u, %) are linearly convergent.

Lemma 46 ([GHPS18, Lemma 4.9, Theorem 5.3]). Recall A}, > 0 and 0 < gp;. < 1
from Lemma /4. Define

1 — gp.
* Pic
L= >0
Pie q%iccstab
and note that it depends only on qpic, qalg, and Csiar,. Then, for all 0 < 8, Mg, Apic with

0<0<1,
0 < Aag <1,
0 < Aalg + )\alg/)\Pic < )‘;lg> and,
0 < Apic/0 < Apic
and all ({,k,j) € Q with k < oo and j < oo, it holds that
(1= Apic/Nie) ety ) < o) < (14 Apie/ Nse) meuy ™). (5.49)

Moreover, there exist Cqups > 0 and 0 < gagps < 1 such that

77@+n(uzfn) < Canps 9Gups Me (U, l) forall (¢ +n+1,0,0) € Q. (5.50)
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The constants Cgups and qgups depend only on L, o, Crel, Cstab, Gred, Galg, and qpic, as
well as on the adaptivity parameters 0, Aag, and Ap;c. O

As aresult of Lemma 416 and Proposition 43, we get the following lemma for the quasi-error
of (5.47) on stopping indices k(¢), j(¢,k). Please note that when £ < oo, the summation
below only goes to £ — 1, as the arguments rely on (5.50) which needs finite stopping indices
k(¢) and j(¢, k) on each mesh 7.

Lemma 47. Suppose that 0 < Aalg + Aalg/ APic < Molg (from Lemma //) as well as0 < 6 < 1
and 0 < Apic/0 < Ap;. (from Lemma 46). With the convention { —1 = oo if £ = oo, there
holds summability

S |
S oA <oay forall (U k) € Q, (5.51)
=0+1

where C > 0 depends only on L, o, Cret, Catabs Greds 0 Gaig. dpics Maig: and Apic.

Proof. Define Ak = ||u* — u?*”] + ng(uf’l) as the sum of overall error plus error estimator.
In comparison with (5.47), ﬁ’; omits the algebraic error term but is only defined for the
algebraic stopping indices j(¢, k). With Proposition 43 and the linear convergence (5.50),
we get that B

N T o S 3 NI N =S
DA S DD mlu) £ me(ug) Y daips S Ap-
{=0'+1 (=0'+1 (=0'+1

Let (¢, k, j) € Q. By definition (5.47), it holds that

kyj k.j k
A

E, k.j k.j ~k k, k.j
= lu* =y + g™ = ™l + ne (up™) = Ag + Jlug™ =~

Moreover, note that

kx kg O20 0 kj o kj-1
lug™ =l S M= —up= |l
53k ki k-lj
S one(ug™) + llug™ —up =l
(5.37) iy
< e (up?)
<AL

This proves the equivalence Af,’i ~ ﬁ% for all (¢',k,j) € Q and concludes the proof.

5.3.4 Proof of Theorem 45 (linear convergence)

This section is dedicated to the proof of Theorem 45. The core is the following lemma that
extends Lemma 47 to our setting with the triple indices.
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Lemma 48. Suppose that 0 < Aaig + Aalg/Apic < /\;lg (from Lemma //) as well as 0 < 6 < 1

and 0 < Apic/0 < Ap,. (from Lemma /6). Then, there exists Csum > 0 such that

S© AN < Cam ALY forall (0K, 5) € Q. (5.52)

(bk.j)eQ
(Ck,3)> (€ k' 5")

The constant Csum depends only on Crel, Cstab, Greds 0, alg, Aalg, qpic, Apic, @, and L.

Proof. Step 1. We prove that

APT =g — a7 + b = )+ ne(uf?) =~ APT for all (4,k,5) € Q. (5.53)

Note that Af’j and Alg’j only differ in the first term, where the overall error is replaced by
the (inexact) linearization error. According to the Céa lemma (5.16), it holds that

(5.16) Iy ki
|+l —wfll < llu” =l < A7

~

g — ugl < flu* =y

This implies that A]Z’j < A?’j . To see the converse inequality, note that

k,j k.j
lu* — T < fha* — ]+ g — )
(A3)

k,j
S ne(up) + llug — ||
A ki N
S ome(up”) + lug — w7l
S A’ij‘

This proves Alg’j < Alg’j and concludes this step.

Step 2. We prove some auxiliary estimates. First, we prove that the algebraic error
]Hu?’* - uf’y ~!|| dominates the modified total error A];’J , before the algebraic stopping cri-
terion (5.23) is reached, i.e.,

APT < lup™ —up? ™| for all (£,k,§) € Qwith k>1and 1 <j < j(6,k).|  (5.54)

To this end, note that

k,j k, k,j k, k, k,j
g = ug? I+ g™ = ug? I < Mg = wg™ |+ 2 g™ — wg |

(5.39) . .
k, k—1,j k, k,
S g™ =y Nl = )
k-1,

<2 H|W *— Uy JHI + |||Ue 7 - Uy

(5.27) . ) ) :
k, kj—1 k, k—1,j
Sl = w7 g =y
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Since 1 < j < j(¢, k), we obtain from the latter equation that

Ae )= g — Uy J‘” + WW *— Uy ]|H + W(W ])

k.j kj—1 k,j k-1, k,j
S H|Ue] _“z] Il + IHWJ — Uy I "‘W(Ue])
(5.36)

S 7 =)
(5.27) - ko1
Sl — .

This proves (5.54).
Second, we consider the use of nested iteration when passing to the next perturbed
Banach—Picard step. We prove that

b — O < AYTM for all (4,k,0) € Q with k > 1, (5.55)
To this end, simply note that
kx k0 (530 k=14, 029 h1,4 k-1
b — o) C2) g S g — g < Ay
This proves (5.55).
Third, we prove that
ki  pKij :
AP < AR for all (4,k,5) € Q, (5.56)

related to the algebraic error contraction. Note that £ = 0 implies j = 0, so that (5.56)
trivially holds for k£ = 0 with equality. Let now k > 1. We first consider the last but one
algebraic iteration step j = j(¢,k) —1 > 0. There holds that

k,j k,j
A =g —W*H\ + lup —UHH +ne(uy?)
’.7 1 7] 1 kv.j_l

< Mg — g+ I +77z( 2) £ 2 Ju z —u, " |
A k-1 kg o k-1
N A57 ‘|‘H|Uz*_ue* |||

O20 ki1 ks kgl
5 Ae . H|W’* — Uy~ H|

k.j—

~ AP

This proves (5.56) for j = j(¢,k) —1 > 0. Note that this argument also applies when j = 1.
If 0 <5 <j(lk)—2, then we employ the last estimate and (5.54) to obtain that

ki o gki=1 O29 kg2 (520 ko kg
AT SAT S ey = Tl llug™ — ug? || < AFY,

also using that g,, < 1. This concludes the proof of (5.56).
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k—1,5 . .
Fourth we prove that the linearization error |[uj —u, || dominates the modified total

error Ag , before the linearization stopping criterion (5.24) is reached, i.e.,

AVL < g —uy )| for all (€,k,5) € Q with 1 < k < k(0). (5.57)

To see this, note that 1 < k < k(¢) yields that

Ay =l — w2l 4 ™ = gl 4 o)
g mue—ufnuuu CaF )
U g — g 1”u|+m<u’; /)
T
(5;8) |||Ug ' uif_l’l
) g — oy,

where we employ Lemma 44 and hence require 0 < Au1g + Aalg/Apic to be sufficiently small.
This proves (5.57).
Fifth, we consider the use of nested iteration when refining the mesh. We prove that

AVE <oy (L) < AR forall (0%, j) € Q. (5.58)

To this end, note that

5.16) (5.31)

k,j ,J k,j k.j
llu = w5 < e = wzll + llw” = w, = | S v = w5 S nea(up=). (5.59)
k
Next, recall from (5.33) that ug’* = ug’] = uzjl From (A1) used on non-refined mesh

elements and (A2) used on refined mesh elements, we hence conclude that
0,j 0,
AT = g — g+ (o)

(’ _3 7)]

k,j
mU(Z L7 1|” +77€(Uz:1)

(5.59) k.j
< TNe— 1(“5 1)+77€(ug 1)

= et (L)) + 0o (Tomy O Tosue ) + 0o(To \ T, s )
(\l) k.j

< Te— 1(“[ 1)+77£ 1(72 1m727u£ 1)+77€ 72\72 17ug 1)
(A2)

< - 1(“e 1)+77£(72 1ﬂ72,ug 1)+77£ 1(Te— 1\727% 1)

E?
= 2m_1(u, %)
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This proves (5.58).
Sixth, we prove that

AP < AT for all (4, k,j) € Q, (5.60)

related to the linearization error contraction. We first consider k = k(¢) — 1 > 0. Note that

14 k— LJ

k, E 1j k=15, O
g™ — Il < llui — W W+ g - W l <

< Mt —up < Ay (5.61)
Hence, the triangle inequality leads to
k.j
AT = llug = g+ ™ = g+ ey
k-1, , E 1j J k.j
< g =g+ g™ - I+ 2 2+ ()
(5:61) 4 k
S Ag |||Ug - Uz 7”‘ +77£(Ue )
(Al) p_ k—1,j
S A Dl =g
(342) 4 b1,
S ALl
<2AF M

This proves (5.60) for k = k(¢) — 1. Note that the same argument also applies when k = 1.
If 0 <k < k({) — 2, then

5.57)
N *ll\

~

k1, (

k7]<A

Ay HIW —uy || < Ay?

also using that ¢p;. < 1. This concludes the proof of (5.60).
Seventh, we consider the use of nested iteration when passing to the next perturbed
Banach—Picard step. We prove that

k—1,j

APO <A, for all (¢,k,0) € Q with k > 1. (5.62)
. - . . ko k—1j .
Using (5.55) and recalling the definition u,”” =w, ', it holds that
k.0 k: 1,j k-1, O59) ko1
AP =g =y g™ = ey ) S A

which is the claim (5.62).

Step 3. This step collects auxiliary estimates following from the geometric series and
the contraction properties of the linearization and the algebraic solver. First, with the
convention j(¢, k) — 1 = oo when j(/, k) = oo, it holds that

Jlk)—1

> AV Sl

j=i+1

< APT for all (4,k,i) € Q with k > 1. (5.63)
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This follows immediately from

J(lk)— (5.54) J(lk)—1
k,j k, k,j—1
> AJ S >y =
j=i+1 J=i+1

(5:26)
< flug™ - wy |||an1g

k, :
S g™ =g

Analogously, with the convention that k(¢{)—1 = oo when k(¢) = oo, the contraction (5.41)
of the perturbed Banach—Picard iteration leads to

KO-1
S A S g —u) < A for all (44, 5) € Q. (5.64)
k=i+1

This follows immediately from

k(6)— (5 57) k(¢
7j k 17
Z LY Z lluf — |l
k=i+1 k=i+1
(5.41)

.. >

2y —1

S Mg = w1 (i)
k=i

iﬂj
S llwg =,

With the analogous convention £ — 1 = co when £ = oo, we finally prove that

e
> AT S AT forall ik, j) € Q. (5.65)
{=i+1

This follows from Step 1 and

/-1 -1 5.51

kj (5.53) ki OS50 ki (5.53) &
> A~ AT S AT A
(=i+1 (=i+1

Step 4. From now on, let (¢ k', j') € Q be arbitrary. Suppose first that £ = oo, i.e.,
both algebraic and linearization solvers terminate at some finite values k(¢) for all £ > 0 and
Jj(4, k) for all £ > 0 and all k < k(¢), whereas infinitely many steps of mesh-refinement take
place. By the definition of our index set Q in (5.29) (which in particular features nested
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iterates), it holds that

5 3(6.k)
oAy = Y <A00+Z(AkO+ZA’”)>

(£,k,5)€Q 0=0'+1
(6kg)> (O K ')

B

) J k) )

n (A?,O+ Z Ak,y) Z Ak R (5.66)

k=k'+1 j=1 j=4'+1
k(o) j(4.k k() Jk) J k)

k k K j

SZZZA“Z STAR Y Al
=011 k=1 j=1 k=k'+1 j=1 j=4'+1

where we have employed estimates (5.58) and (5.62) in order to start all the summations
from k =1and j = 1.

We consider the three summands in (5.66) separately. For the first sum, we infer that

m — .
> > B D SV WERE)
(=0+1 k=1 j=1 (=0+1 k=1
555) &2 &0 k 1
7]
Yy )
(=0+1 k=1
o MO
S > Af*ZAel)
=041 =1
(5.64) 0k
S Z (A7 +A7)
=041 (5.67)
(5-58) & k.j k,j
S Z (A5 +AY)
(=011
k =k
(=041
(5.65) . .
< A
(5.60)
< Ay
(6.56)
< ApY
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If ¥ = k(¢'), the second sum in the bound (5.66) disappears. If k¥’ < k(¢), we infer that

k() (k) (5.63) k(') Y

k, J K *
SN AV S S A+ e -l
k=k'+1 j=1 k=k'+1

ki | k-Lj
S Z (A[‘f'Ag/ °)

k=k'+1
O R
<AF 4, Z Aé,’l (5.68)
k=k'+1
(5.64) ; X
< Ayl
(5.60) s
< AZ -
(5.56) ;.
< ALY

If ' = j(¢, k), the third sum in the bound (5.66) disappears. If j' < j(¢', k'), we infer that

G

P s O g g O ey

S AR U< AL AR < ARY (5.69)
= +1

Summing up (5.66)-(5.69), we see that, provided that £ = oo

S AV S ALY provided that £ — oc

(6k,5)€Q
(6 k,3)> (0K 5")

Step 5. Suppose that £ < co and k(¢) = oo, i.e., for the mesh 7y, the linearization loop
does not terminate. Moreover, let ¢/ < £. Then, it holds as in (5.66) that

v J(LK) 1 R k() 3(ER) ALK
T AWMLY Y AR ZA‘”+ >3 A+ Y Al
(Lkj)EQ k=1 j=1 (=U'+1k=1 j=1 k=k+1 g=1 =i
(,k,5)>( K 5"
(5.70)
We argue as before to see that
=1 k(0) J(6R) NG I
)] J
A S Agl Y
(=041 k=1 j=1
k(er) §('k) R R
Az/’] S Azl’]7 and, (5.71)
k=k'+1 j=1
Z(E/JC/) 5
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It only remains to estimate

oo I C(5.63) ® ki k.0
ZZ R Z (Ag” + llug™ =yl
k=1 : k=1
(595 0, - k,j
S Af"‘ZAf
N k=1
(5.64) . .
< A7
(5:58) .
< A (5.72)
k o
=041

—
ot

NG NG NG
>
|

(=}
~~

—
(o))
(=}

R

Altogether, we hence obtain that

Z A?’j < A?,l’j, provided that ¢/ < £ < oo and k(£) = cc.

(6,k,5)€Q
(k.5)> (K ,5")

Step 6. Suppose that £ < co and k(¢) = oo, i.e., for the mesh 7y, the linearization loop
does not terminate, and moreover, ¢/ = £. Arguing as in (5.72) and (5.69), it holds that

0o JW.K) (z/ K
Z AkJ < Z Z Akvj _|__ Z Ak 7] < Aklyj (573>
(€,k,5)€Q k=k'+1 j=1 j=j'+1
(Lk,5)>" K 5"

Step 7. Suppose that £ < oo, where k(£) < oo and hence j({, k) = oo, i.e., the linear
solver does not terminate for the linearization step k(£). Suppose moreover ¢/ < {. Then,
it holds that

0—1  k(0) j(&k)
> A’”<ZA”+ Z ZA’”+ > YAy
(Lk,j)eQ =041 k=1 j=1
(€,k,5)>(C' K ,5") (5.74)
k() (k) J k)
+ > > A+ Y AR
k=k'4+1 j=1 J=j'+1
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We argue as before to see that

-1 k() 3(6F) (67
AkJ 5 Ak,],
(=0'+1k=1 j=1
/ vk .
k() (k) k‘(06) o
A S AT, and,
k=k'+1 j=1
j(¢ k! .
J( k") k/j(oﬁ v
> AT S Ay
Jj=i'+1

For the first sum in (5.71), we get that

~ ~

© (5.63) (5.55) . (5.67) ,
k, Ex kO k=15 K
SAP S ub -l S A S AR (5.75)

Hence, it only remains to estimate the second sum in (5.74), which can be treated analo-
gously to (5.72) in Step 5 by Alz, /", This proves that

k(0)—13(Lk)

Z ZA'” PAIVE
S At

Altogether, we obtain that

ST AP S ALY provided that £ < € < oo, k(£) < 0o, and j(£,k) =

(4 k,5)€Q
(ke 3)> (€K' ,5")

Step 8. Suppose that £ < oo, where k({) < oo and hence j(£, k) = oo, i.e., the linear
solver does not terminate for the linearization step k(£). Suppose moreover ¢ = £ but
k' < k(). Then, it holds that

00 k(0)—13(¢ k) J K"
k.j k.j k.j K
DooOATSYI AT DY Y AT D A (5.76)
(L,k,5)eQ j=1 k=k'+1 j=1 j=j'+1

(€7k7j)>(£/7k/7j/)
We argue as before to see that
Ak (3<3) A’“ 7
>k
7=1
E((’)—l ](él ) (7(8)

S Y Ay < AR and,

k=k'+1 j=1
(e k) .
Z A 7] < A 7]
Jj=j'+1
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Hence, we obtain that

Z A?’j < A?,,’j, provided that ¢ = £ < oo, k' < k(') < 00, and j(¢', k) = oc.

(6,k,5)€Q
(k,5)> (K ,5")

Step 9. Suppose that £ < oo, where k({) < oo and hence j(£,k) = oo, i.e., the linear
solver does not terminate for the linearization step k(£). Suppose ¢ = £ and k' = Ek({).
Then, it holds that

‘ 0 , (563
D D DI VAR VAR (5.77)
(0k,j)EQ j=5'+1 '
(0k.5)> (0 k' 5"

Step 10. Suppose that £, k(£), j(£, k(£)) < oo and that Algorithm 41 finished on Step (iii)

k,j k,j k
when m(u;’ﬂ) = 0. From (5.31), we see that 776(“5 =) = 0 implies u* = u737 i.e., the exact

solution was found. Moreover, through the stopping criteria (5.24) and (5.23), we see that

u? b ulg’] ! ?’J, so that (5.42) gives uj = u?*, and finally (5.22) gives uf’ = u]Z’J.
Thus A} = 0.
Let ¢/ < £. Then, as in (5.70),
k(Y Ik) -1 k(¢) 3(6k) k(ery 3 k) 3k
SERCED 35 DTS 9 5 SECESD ol oR UER o U1
(Lk,5)€Q k=1 j=1 (=041 k=1 j=1 k=k'+1 j=1 j=5'+1

(Ck,5)> (0K 5")

Here, the last three terms are estimated as in (5.71), Whereas for the first one, we can

proceed as in (5.72), crucially noting that the last summand A is zero.
If ¢/ =/, three cases are possible. The first case is k¥’ < k. Then

k() (k) GRS

k: k/7'

d. AYS D ZA Y ALY
(Zk’])GQ k=k'+1 j=1 j=j'+1

(ke 5)> (€K' ,5")

which is controlled as in (5.71). The second case is &' = k but j’ < j, where directly

J k) (5.63)
k K - K
Z A 2J < Z A 2J ,-S A 7]
(L,k,5)€Q J=j'+1

(k,5)> (¢ K 5")

K'\j
again using A, 2 — 0. Finally, in the third case, ¥ = k and j/ = J, the sum is void.
Altogether

k.j K
>, A SAY g
(Lk7)€Q (5.78)
(L,k,5)>(' K 5")
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also holds in this case.

Step 11. Combining Steps 4-10 that cover all possible runs of Algorithm 41 with Step 1,
we finally see that

- (5.53 : 1 s (5.53 ’ st
S Ak Ak Ak O AR foran (0K, € @

(L:k,5)€Q (L:k,5)eQ
(C,k,3)> (€K' 5") (C,k,3)> (€K' 5")
This concludes the proof of (5.52). O

Proof of Theorem /5. The proof is split into two steps.
Step 1. For the convenience of the reader, we recall an argument from the proof
of [CFPP14, Lemma 4.9]: For M € NU {oo}, let C' > 0 and «,, > 0 satisfy that

M
Z an < Cay for all N € Ny with N < min{M, co}.
n=N+1

Then,

1+C Z oy, < Z ozn+ozN—Zan for all N € Ng.
n=N+1 n=N+1

Inductively, it follows for all N;m € Ny with N +m < min{M + 1,00} that

1+cCt Z ap < Z an+aN—Zan

n=N+m n=N+1

We thus conclude for all N,m € Ny with N +m < min{M + 1,00} that

AN1tm < Z an < ( 1+C’ Zan_ (1+0O) (1+C’_1)_maN.
n=N-+m

Step 2. Since the index set Q is linearly ordered with respect to the total step counter
|(-,-,-)|, Lemma 48 and Step 1 imply that

A? 3’ <Oy 1€/ 5"~ |(€,k.5)] A?’j

lin 9jip
for all (E k -]) (El’k/’j/> € Q with (elvklvj,) > (Eak>j)7 where C’lin =1+ Csum and Qlin =
Csum/(Csum + 1). This concludes the proof. ]
5.3.5 Optimal convergence rates of the quasi-error

The second main result states optimal decay rate of the quasi-error A]z’j of (5.47) (and

consequently of the total error |Ju* — uf’j [I) in terms of the number of degrees of freedom
added in the space X, with respect to Xy. More precisely, the result states that if the
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unknown weak solution u of (5.11) can be approximated at algebraic decay rate s with
respect to the number of mesh elements added in the refinement of 7y (plus one) for a
best-possible mesh, then Algorithm 41 achieves the same decay rate s with respect to the
number of elements actually added in Algorithm 41, (#7; — #7o + 1), up to a generic
multiplicative constant. The proof of the following Theorem 49 is given in Section 5.3.6.

Theorem 49 (optimal decay rate wrt. degrees of freedom). Suppose (Al)—(A4)

and (R1)=(R3). Recall X}, Ap;. > 0 from Theorem /5. Let

Cpic := qpic/(1 — gpic) > 0,
Calg = Qalg/(1 — qaig) >0, and,
Gopt = (1 + 02 bC2 )_1.

stab“~rel

Then, there exists 0% such that for all 0 < 0, \yig, Apic with

0 < 6 < min{1, 60"},

0 <A <1,

0 < Aalg + Aalg/Apic < )\zlg, and,
0 < Apic/0 < Aoy,

it holds that

0+ Cstab ((1 + CPiC)Calg)\alg + [CPic + (1 + CPic)Calg)\alg] )\Pic)

0<6 :=
T— e /o

< Qopt, (579)

where the constant 0* > 0 depends only on Cgap, qpic, and gag. Let s > 0 and define

ul|a. := su (N+15 inf u’ )€R U {0}, 5.80
ol = s (V40 it () €BaoU ek (550)

where Nopt(Uspt) 45 the error estimator corresponding to the evact solution of (5.12) with
respect to the mesh Topy and

T(N):={T €T : #T —#Ty < N}.
Then, there exist copt, Copt > 0 such that

Copt [0l < e Q(#n — #T0+ 1)° AP < Copy max{||[u*||a,, A0} (5.81)
k.J)€

The constant copr > 0 depends only on Ccea = L/, Cgtab, Crel, Cson, #70, s, and, if £ < oo,
additionally on £. The constant Cope > 0 depends only on Csiab, Crel, Cmark, 1 — Apic/Apic,
Ccea = L/, Cl, Cmesh, Ciin, Qiin, #70, and s. The mazimum in the right inequality is
only needed if £ = 0. If £ > 1, the mazimum maX{Hu*HAS,Ag’O} can be replaced by ||u*||a,-
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5.3 Main results

Remark 50. Note that Ag’o can be arbitrarily bad due to a bad initial guess ug’o. However,
llu*||la, as well as the constant Copy are independent of the initial guess, so that the upper
bound in (5.81) cannot avoid max{||u*| 4., AO’O} for the case £ = 0. Such a phenomenon
does not appear at later stages, since the stopping criteria (5.23) and (5.24) ensure that,
though ug = does not in general coincide with uy, it is sufficiently accurate. If one restmcts
the indices to ({,k,j) € Q with £ > 1, then the upper bound in (5.81) may omit A

5.3.6 Proof of Theorem 49 (optimal convergence rates)
Lower bound in (5.81)

The first result of this section proves the left inequality in (5.81):

Lemma 51. Suppose (R1) as well as (A1), (A2), and (A4). Let s > 0 and assume ||u*||, >
0. Then, it holds that

[ lla, < copt  sup  (#To — #To +1)°A5 7, (5.82)
(e/’kl’j/)eg

where the constant copt > 0 depends only on Cces = L/, Cgtab, Crel, Cson, #70, s, and, if
£ < oo, additionally on L.

Proof. The proof is split into three steps. First, we recall from [BHP17, Lemma 22| that
HTo/#Te < #To — #Te+1 < #T, forall Ty € T and all 7, € refine(7,). (5.83)

Step 1. We consider the three non-generic cases with £ < oo. First, let k(¢) < oo, and

j(£, k) < oo. Then, Algorithm 41 was terminated in Step (iii) with ng(uz’]) = 0. Due to the

Céa lemma (5.16) and Proposition 43, it follows that

(5.16) (5.31)

k.j k.j
lo* —ugll < llu* —w =l < me(u,”) =0

~

and hence u* —ug—uif*— fla nd ne(uy) = 0.
Second, let k(£) < oo but j(£, k) = oo, i.e., the algebraic solver does not stop. According

to Theorem 45, it holds that

k,j k.j kox , k, .
AT = Nt = g+ g™ = w4+ me(ug?) 0 as G oc.

Hence, due to the uniqueness of the limit and the Céa lemma (5.16), we obtain that u* =
uy = ue . From stability (A1), it follows that

(A1)
0 <ne(up) < nel *’j) + [lug — ug’j||| —0 as j— oo.

Hence, we see that ny(uy) = ne(u k*) =0.
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5 Fully adaptive algorithm for AFEM for nonlinear operators

Finally, let k({) = oo, i.e., the linearization solver does not stop. Analogously to the
previous case, we obtain that

k k. k:,l‘”

7‘ k k"
A% = I = g+ g = e+ () 0wk o

With the Céa lemma (5.16), this leads to

k?,' (016) kf
0< flup —u "l < (1+ Ceea)llu —u,? | 50 as k — oo.

Hence, we get that u* = uj. Again, stability (A1) yields that n(uj) = 0.
In any case, £ < oo implies that [|u* — uj|| + m¢(u;) = 0 and hence that

llla, = sup (V1) ind () )
OSN<#Te—#To Topt €T(N) P Topt

The term N + 1 within the supremum can be estimated by

R1)

(
N+1<H#T—#To < (CL, —1)#To.

Moreover, (Al), (A2), and (A4) yield quasi-monotonicity nopt(usy) S mo(ug) (see, e.g.,
[CFPP14, Lemma 3.5]). Altogether, we thus arrive at

lu*]la, < mo(ug) < JSup (#Te — #7T0 + 1) ne (uj). (5.84)
'eNg

Step 2. We consider the generic case that £ = oo and m(uf’l) > 0 for all ¢ € No.
Algorithm 41 then guarantees that #7; — 0o as £ — oo. Thus, we can argue analogously
to the proof of [CFPP14, Theorem 4.1]: Let N € N. Choose the maximal ¢’ € Ny such that
#To —#To+1 < N. Then, Ty € T(NN). The choice of N guarantees that

N+1<#Tp1—#To+1
(5.83)
< #Tvq1
< Cson#Te

(5.83)
< Cson#% (#72’ - #76 + 1)

(5.85)

This leads to

(N1 inf o () S (4T = #To + 1) (),

and we immediately see that this also holds for N = 0 with ¢ = 0. Taking the supremum
over all N € Ny, we conclude that

[u*|la, S JSup (#To — #T0 + 1)°np (upy). (5.86)
0
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Step 3. With stability (A1) and the Céa lemma (5.16), we see for all (¢,0,0) € Q that

(A1)
ne(up) S llup —up® +W(u2i0)
<t = | + = w4+ me ()
(5.16)
S Mt —uy

~

0,0
< A%

(ug' )

With (5.84) and (5.86), we thus obtain that

[wlla, S sup (#Te — #To +1)" 1 (up)

(¢,0,00€Q

< sup  (#Te —#To+1)° A?,/’jl.
(0K ,5)eQ

This concludes the proof. ]

Upper bound in (5.81)

To prove the right inequality in (5.81), we need the comparison lemma from |[CFPP14,
Lemma 4.14] for the error estimator of the exact discrete solution uj € Ap.

Lemma 52. Suppose (R1)-(R2) as well as (A1), (A2), and (A4d). Let 0 < 0 < Ogpy =
(1+ C2,,C2)~'. Then, there exist constants C1,C2 > 0 such that for all s > 0 with
0 < [|[u*]|a, < o0 and all Ty € T, there exists Ry C Ty which satisfies

#Re < L0y ([ me(p) 7, (5.87)
as well as the Dorfler marking criterion
0'ne(up) < me(Re,uy). (5.88)

The constants C1,Co depend only on Cgian, and Cher. ]

We are now ready to prove the right inequality in (5.81), which is the main result of
Theorem 49:

Proof of Theorem /9. The proof is split into four steps. Without loss of generality, we

may assume that ||u*|[y, < 0.
Step 1. Due to the assumptions \uig + Aalg/Apic < )‘alg (from Lemma 44) and Apic/6 <

Apie (from Lemma 46), we get that \yp < )\ag Apic < )\alg Apic 0. Hence, it holds that

0+ Cstab ((1 + CPic)Calg)\alg + [CPiC + (1 + CPic)Calg)\alg] )\Pic>
1 — Apic /)‘igic
0+ C’stab ((1 + CPic)CalgAalgA;’lce =+ [CPiC + (1 + CPiC)Calg)‘;lgA)l;lce] )‘,P(’lce)
<
- 1-6

9 =
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5 Fully adaptive algorithm for AFEM for nonlinear operators

which converges to 0 as § — 0. As a consequence, (5.79) holds for sufficiently small 6.
Clearly, the parameters Mg, Apic,@ > 0 can be chosen such that all assumptions are
fulfilled. First, choose 6 > 0 such that 0 < # < min{1,60*}. Then, choose Apic > 0 such
that 0 < Apic/0 < Ap;.. Finally, choose 0 < A\a1g < 1 such that Aajg + Aalg/Apic < Mg
Step 2. Recall that Cpic = qpic/(1 — gpic) and Chalg = Galg/(1 — Galg). Provided that
(£+1,0,0) € Q, it follows from the contraction properties (5.27) as well as (5.39), and the
stopping criteria (5.35) as well as (5.37) that

77]
|

k,j
lluz = i

< g — ™l + o
(5.39) b Bl

< Cbpic lug™ —u, - u@ HI
k* k—1j
< (14 Cpio) lluf™* — ) + CPIC g —
(5.27) k kj—1 k—1,j
< (1+ Cric) Cagllutg® — ™ || + Coie g — g7
(5.35) k.j k.j k—1,5
S (1 + CPic)Calg)\alg né(ug 7) + [CPiC + (1 + CPiC)CalgAalg] H|ug ug |”
(5.37) k.j
S ((1 + CPic)Calg)\alg + [CPic + (1 + CPic)Calg)\alg} APic)ﬁE(uZl)
(5.79)

C1staub (0/ ( )\Pic/)\;’ic) o 0) nf(u%l)

Step 3. Let Ry C T; be the subset from Lemma 52 with 6" from (5.79). From Step 2,
we obtain that

N (A1) k.j
ne(Reyuf) < m(m,w )+ Cuanllg —

y (5.89)
< (R i)+ (8/(1= eie/Ape) — 0)mluss ™).

With the equivalence (5.49), Lemma 52, and estimate (5.89), we see that

12 * Ev] ( 49) /
0 (1 — )\Pic//\Pic)né(ug 7)< 0'ne(uy)
(5.88) .
< ne(Re,up)

(5.89) k.j k.j
< ne(Ry, uzl) + (0’(1 - )\Pic/)‘f’ic) - 9) 776(“21)'

Thus, we are led to

9, k7
Ono(usl) < np(Ry, s

).

Hence, Ry satisfies the Dorfler marking criterion (5.25) used in Algorithm 41. By the
(quasi-)minimality of M, in (5.25), we infer that

(5.87) , (5.49) . ki 1/s
#MeSHRe S Y meCud) ™V ] ()Y

~
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Recall from (5.34) that qu = ug . Thus, (5.58) and the equivalence (5.53) lead to

Evl‘)fl/s ®

.58) 0 «_ (5.53) 0
ne(v, < ATV T ATV

/41

Overall, we end up with

HM S (ALY for all (£41,0,0) € Q. (5.90)

The hidden constant depends only on Cgab, Crel, Cmarks 1 — Apic/Apies Ccea = L/ay,
and s.
Step 4. With linear convergence (5.48) and the geometric series, we see that

AE:Y' _1/8 (5<48) Ak7] _1/8 1/8 |(£7k7])|_|(zg73)|
ST @by Al @
_(Ekj)eQ _(EkjeQ (5.91)
(Z7k7.j)§(€7k’-j) (Z’k?.])g(e7k7-])
< (ag?)7re

el

with hidden constants depending only on Ciy,, qin, and s. For (4,k,j) € Q such that
(£+1,0,0) € Q and such that 7; # To, Step 3 and the closure estimate (R3) lead to

#72—#76+12#72—#76

(R3)

< Z#M~

<52°> U5 S A0 -1/
S T B

=0

x11/s ’];:‘7’“. —1/s
<l Y Ay
_(@kjeQ
(0,k,5)<(4,k,7)

(5.91) i 1/s ) i 1/s
Sl [ AN Yl

Replacing ||u*]|a, with max{|u*||a,, Ag’o}, the overall estimate trivially holds for 7, = To.
This proves that

max{|u*||a,, A"}, if (£+1,0,0) € Q and £ >0,

5.92
[[w* |, if ((41,0,0) € Qand ¢ > 1. (5.92)

(#To — #T0 + 1)°AR < {

It remains to consider the cases where (¢, k,j) € Q but (£+1,0,0) ¢ Q, as well as the case
Te = To. In the first case, it holds that 1 < ¢ = £ < oo, and one of the cases discussed in
detail in Step 1 of Lemma 51 arises.

First, let 2 < ¢ = /¢ < co. Since £ —1 > 1 and (5,0,0) € 9, (5.92) shows that

(#Te—1 = #To + 1)°A, 5 < |||,
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5 Fully adaptive algorithm for AFEM for nonlinear operators

Moreover, Lemma 48 leads to A?’j < Af’}l. Therefore, we obtain from (5.85) that

#72 - #76 +1 < Cson#’ﬁ)(#n—l - #76 + 1) (593)

Altogether, (5.92) holds for this case as well.
Second, let ¢ = ¢ = 1. Then, we can rely on the inequality

. (5.93) .
(#T — #To +1)°A07 <7 (Coon#To)® A
(5.52) ,
S A
(5.47) k,j k, k,j k,j
=t — g+ W™ = gl + o)
5.27) k.j ki  kj-1 kj
Sl =gl + lug — uo ™I+ llug™ = ug™ Il + mo(ug™)
S =gl + g — g+ g — g+ moli6?) (5 04
(5-42) kj  k—1j k.j
St =gl + g™ —ug =+ mo(up™)
(5:20) . ki
Sl =gl +mo(ug™)
(5.49)
* * *
Sl =gl + mo(ug)
(A3)
S ?70(“6)
S ||U*HA5

Thus, (5.92) holds for this case as well.
Finally, let £ = £ = 0. Then, linear convergence (5.48) proves that

(5.48)

ART <A (5.95)
Hence, (5.92) also holds for this case, and we conclude the proof of (5.81) O

5.3.7 Optimal computational complexity

Our last main result states that Algorithm 41 drives the quasi-error down at each possible
rate s not only with respect to the number of degrees of freedom added in the space A}
in comparison with Xy, but actually also with respect to the overall computational cost
expressed as a cumulated sum of the number of degrees of freedom. This is an important
improvement of Theorem 49. More precisely, under the same conditions as above, i.e.,
if the unknown weak solution w of (5.11) can be approximated at algebraic decay rate s
with respect to the number of mesh elements added in the refinement of 7y (plus one),
then Algorithm 41 generates a sequence of triple-(4, k, j)-indexed approximations (mesh,
linearization, algebraic solver) such that the quasi-error decays at rate s with respect to the
overall algorithmic cost expressed as the sum of the number of simplices #7; over all steps
(0, k,j) € Q effectuated by Algorithm 41.
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Theorem 53 (optimal decay rate wrt. overall computational cost). Let the assump-
tions of Theorem /9 be verified. Then

S
— k/ -/
il s (X #7) Al

(EHRINEC N 1k j)eQ
0k, )< (€ K 5" (5.96)
< Chpy max{|[u*a,, A"}

The mazimum in the right inequality is only needed if £ = 0. If £ > 1, the mazimum
max{||u*||a,, Ag’o} can be replaced by ||u*||a,. While copr > 0 is the constant of Theorem 49,

the constant Cl . > 0 reads Cl == (#70)* Copt Clin (1 — qllh/ls)_s.

Remark 54. Analogously to the comments after Theorem /9, the upper estimate in (5.96)
cannot avoid maX{Hu*HAS,Ag’O} for the case ¢! = £ = 0. As above, if one restricts the
indices to (', k',7"), (L, k,j) € Q with ', > 1, then the upper bound in (5.96) may omit
AYP.

Note that for any reasonable algebraic solver on mesh Ty, the cost of its one step is pro-
portional to #Ty. This also holds true for matriz and right-hand-side assembly in (5.22),
evaluation of the residual estimators m(u?’j), Dérfler marking, and local adaptive mesh
refinement by, e.g., newest vertex bisection, while the cost of evaluation of the stopping
criteria (5.23) and (5.24) is of O(1). Thus, the sum in (5.96) is indeed proportional to
the overall computational cost invested into the numerical approzimation of (5.1) by Algo-
rithm /1.

Proof of Theorem 53. Note that #7y — #To+1 =1 < #7, for £/ = 0 and #Tp —
#To+ 1 < #Tp for £/ > 0, so that the left inequality in (5.96) immediately follows from
the left inequality in (5.81). In order to prove the upper bound in (5.96), let (¢, k', ') € Q.
Employing the right inequality in (5.81) (cf. (5.92)), the geometric series proves that

(5.83)
SN H#T < #To Y. #T—#To+1)
(4,k,5)€Q (4,k,5)€Q
(Z7k7j)§(€,7k,7j/) ('€7k7j)g('€l7k,7j,)
(5.92) 5 ) i /s
< #To Ol max{|lu*la,, AJOYY ST (aph)Y
(4,k,5)€Q
(€7k7j)§('€l7k,7j,)

(5.48) s s ) i TN
< #T0 oy Oyl —7 maxc{|u?[la,, A} /> (A7) 715

lin
Rearranging this estimate, we end up with
S
K5’ 0,0
o (% #7) AL Smax{or . A5,

(EK3IEQN (g1 e, e>1
Lk K 5"
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5 Fully adaptive algorithm for AFEM for nonlinear operators

where the hidden constant depends only on Cgab, Crel, Cmark, 1 — APic/Apies Cea = L/,
C’ 1, Cueshs Clin, Qiin, #70, and s. This proves the right inequality in (5.96). O

rel’

5.4 Numerical experiments

In this section, we present numerical experiments in 2D to underpin our theoretical findings.
We compare the performance of Algorithm 41 for

e different values of Ay € {1070%,1071,10715, .., 1074},
e different values of Apj. € {1,107%5,107% ... 1074},
e different values of 6 € {0.05,0.1,0.15,...,1},

As model problems serve nonlinear boundary value problems which arise, e.g., from nonlin-
ear material laws in magnetostatic computations, where the mesh-refinement is steered by
newest vertex bisection.

As an algebraic solver for the linear problems arising from the Banach—Picard iteration,
we use PCG with an optimal multilevel additive Schwarz preconditioner, cf. [Fiith14, Sec-
tion 7.4.1] and Section 4.7.1 respectively, i.e., the condition number of the preconditioned
system is uniformly bounded.

Model problem

Analogously to Section 4.8, let Q € R? with d > 2 be a bounded Lipschitz domain with
polytopal boundary I' = 0€2. We again suppose that the boundary I is split into relatively
open and disjoint Dirichlet and Neumann boundaries I'p,I'y € I' with [I'p| > 0, i.e.,
I' =Tp UTy. While the numerical experiments in Section 5.4.3-5.4.4 only consider d = 2,
we stress that this model problem is covered by the abstract theory for any d > 2. For
f € L*Q) and g € L*(T), find v* such that:

—div (u(z, |[Vu*(2) ) Vu* () = f(z)  inQ,
“(2) =0 on T'p, (5.97)
w(z, |Vu*(z)[?) Opu*(z) = g(z) on Iy,

where the scalar nonlinearity p: Q x R>g — R satisfies the properties (N1)—(N4) from
Section 4.8. For the sake of completeness, we recall these properties in detail:

(N1) boundedness of pu(x,t): There exist constants 1,72 > 0 such that

v1 < p(x,t) <7y forallz e Qandt>0.

(N2) boundedness of u(x,t) + 2t%p,(:c, t): For x € Q, the function u(z,-) is contin-
uously differentiable, i.e., u(z,-) € C*(R>,R) and there exist constants 51,52 > 0
such that

Y1 < p(x,t) + Qt%,u(x,t) <7y forallzeQandt>0.
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5.4 Numerical experiments

(N3) Lipschitz-continuity of pu(x,t) in : There exists a constant L, > 0 such that

lw(x,t) — p(y,t)| < Lyle —y| forall z,y € Qand t > 0.

(N4) Lipschitz-continuity of t%u(m,t) in : There exists a constant Eu > 0 such
that

d d ~
]ta,u(a:,t) — tau(y,t)’ < Lylz—y| forall z,y € Qandt>0.

5.4.1 Weak formulation

The weak formulation of (5.97) reads as follows: Find u € H5(Q) := {w € HY(Q) : w =
0 on I'p} such that

/ w(z, |Vu*(x)|?) Vu* - Vodr = / fodx + / guds for all v € HLH(Q). (5.98)
Q Q r

N

With respect to the abstract framework of Section 5.2.1, we take H = H},(Q), K = R, and
() =A(V-, V) with [Jv[| = [[Vv]|2(q). We obtain (5.11) with operators

(Aw , V)yrwp = /Q,u(fﬁ, |Vw(z)?) Vw(z) - Vo(z) dz, (5.99a)

F(U)Z/vader/FN gvds (5.99b)

for all v,w € H. We again recall from |[GHPS1S8, Proposition 8.2] that (N1)-(N2) implies
that A is strongly monotone (with a := 7;1) and Lipschitz continuous (with L := 73), so
that (5.97) fits into the setting of Section 5.2.1. Moreover, (N3)—(N4) are required to prove
the well-posedness and the properties (A1)-(A4) of the residual a posteriori error estimator.

5.4.2 Discretization and a posteriori error estimator

Let 7o be a conforming initial triangulation of € into simplices 7 € Ty. For each 7, € T,
consider the lowest-order FEM space

He:={veC(Q) : vlr =0and vjp € P(T) forall T € Ty }. (5.100)

As in Section 4.8, cf. [GMZ12, Section 3.2|, we define for all T' € 7; and all vy € H,, the
corresponding weighted residual error indicators

ne(T,v0)> = [T f + div (u(-, [Voe ) Voo) [ 72y

(5.101)
+ TN [, IVoe ) Vor) - nlll L ornays

where [-] denotes the usual jump of discrete functions across element interfaces, and n is
the outer normal vector of the considered element.

Due to (N3), the error estimator is well-posed, since the nonlinearity pu(z,t) is Lipschitz
continuous in x. Then, reliability (A3) and discrete reliability (A4) are proved as in the
linear case, see, e.g., [CKNSO08] for the linear case or [GMZ12, Theorem 3.3] and [GMZ12,
Theorem 3.4], respectively, for strongly monotone nonlinearities.
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1.5+ ]

-1 -0.5 0 0.5

[y

Figure 5.1: Z-shaped domain Q C R? with initial mesh 7y (top) and L-shaped domain
Q) C R? with initial mesh 7o (bottom), where I'p is marked by a thick pink line.
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5.4.3 Experiment with known solution on Z-shaped domain

We consider the Z-shaped domain  C R? from Figure 5.1 (top) with mixed boundary
conditions and the nonlinear problem (5.97) with
1

* 2y .
e, [V @) = 24 e

This leads to the bounds @ =2 and L = 3 in (5.10). We prescribe the solution «* in polar
coordinates (x1,x2) = r(cos§,sin§) with £ € (—m, ) by

ut (1, 29) = 1P cos(B ), (5.102)

with 8 = 4/7 and compute f and g in (5.97) accordingly. We note that u* has a generic
singularity at the re-entrant corner (z,y) = (0,0).
In Figure 5.2, we compare uniform mesh-refinement (§ = 1) to adaptive mesh-refinement

(0 < 8 < 1) for different values of Ay and Apic. We plot the error estimator ng(ufi)
over the number of elements N := #7,. First (top), we fix # = 0.5, Apic = 1072, and
choose Ay € {1071,1072,1073,107*}. We see that uniform mesh-refinement leads to
the suboptimal rate of convergence O(N~2/7), whereas Algorithm 41 with adaptive mesh-
refinement regains the optimal rate of convergence O(N -1/ 2), independently of the actual
choice of Az We observe the very same if we fix 0 = 0.5, Ay = 1072, and choose
Apic € {1,1071,1072,1073,107*} (middle), or, if we fix Aag = Apic = 1072 and vary
0 € {0.1,0.3,0.5,0.7,0.9} (bottom). Since we know from Proposition 43 and the estimate

b kgy O20 0k kgl
lug™ —u™ Nl S Mey™ =™ |
C2) ok ki k-1j
S omeluy ™)+ fluy ™ =y
(5.37) ;
S me(u,™)

k,j kj . .. .
that n,(u, l) ~ A, l, this empirically underpins Theorem 49.
In Figure 5.3, analogously to Figure 5.2, we choose different combinations of 8, A,, and

Apic. We plot the error estimator m/(uf, ’l) over the cumulative sum Z(é,k,j)g(ﬂ,&’@/) #7Ty.
Independently of the choice of 8, Aajg, and Apjc, we observe the optimal order of conver-
gence (9(( Z(M’j)g(@’@’j,) #72)_1/2) with respect to the overall computational complexity
in accordance with Theorem 53.

In Figure 5.4, we also consider the total number of PCG iterations cumulated over all
Picard steps on the given mesh for different combinations of 8, Aae, and Apjc. We observe
that independently of the choice of these parameters, the total number of PCG iterations
stays uniformly bounded. Additionally, we see that for larger values of Az and Apic, as
well as for smaller values of 6, the total number of PCG iterations is smaller.

In contrast to the the previous Chapters 4—6, where the corresponding algorithms steer the
adaptive mesh-refinement and either incorporated an iterative linearization or an algebraic
solver, our proposed Algorithm 41 combines these two concepts. Hence, to try to analyze
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Figure 5.2: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do-
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k
main): Error estimator ng(uz’l) on mesh 7, perturbed Banach—Picard iteration
k, and PCG step j of Algorithm 41 with respect to the number of elements N

of the mesh 7, for various parameters 6, Apic, and Agjg-
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Figure 5.3: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do-

. . K5’ . .
main): Error estimator 7y (u, ) on mesh 7Ty, perturbed Banach-Picard iter-
ation k', and PCG step j' of Algorithm 41 with respect to the overall cost
expressed as the cumulative sum Z(ﬂ,k, N K5 #7Ty for various parameters 6,

)\Pic y and )\alg .
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Figure 5.4: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do-
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main): Number of PCG iterations wrt. the number of elements N = #7;
for 6 = 0.5, A\pic = 1072, and Ay € {1071,...,107%} (top), for 6 = 0.5,
Aalg = 1072, and Apic € {1,1071,...,107*} (middle), and for Ayg = Apic = 1072
and 0 € {0.1,0.3,...,0.9} (bottom).



5.4 Numerical experiments

what the best choice of the three parameters 0, Ay, and Apic could be, we have to vary
them all. First, we prescribe a precision 7 = 3 - 1072 and vary 6 € {0.2,0.4,0.6,0.8},
Aalg € {1071,10715,...,1071}, and Apic € {1,107%%,107%,...,107*}. Figure 5.5 then
shows the computational cost expressed in terms of the cumulative sum Z(z, ko)< (0K 5 #Ty
to reach the given precision 7. It seems that a smaller value of A,z or Api. leads to more
computational cost to reach the same precision, independently of the choice of 6.

In Figure 5.6 (top), we vary 6 € {0.05,0.1,0.15,...,0.9} and only print the correspond-
ing best choices of A,y € {10-1,107%5,...,107*} and Api. € {1,10705 1071, ...,1074}
together with the minimal overall computational cost to reach the given precision. As a
result, we see that the overall best choice in terms of computational cost to reach the given
precision 7 =3-1072is 6 = 0.7, Aaig = 1071, and Apic = 107°® with

> #T; = 25058328

(k)< K 5")

where u% is the first approximation such that ng(u%) < 3-1072. We also observe that the
worst possible choice is 6 = 0.05, Ay = 10735, and Apjc = 107%. With these parame-
ters it takes more than 1000 times the computational cost to reach the same precision in
comparison to the best choice.

5.4.4 Experiment with unknown solution

We consider the L-shaped domain Q C R? from Figure 5.1 (bottom) and the nonlinear
problem (5.97) with I'p = I' and constant right-hand side f = 1 where u(-, ) is given by

p(z, |Vu*(x)|?) := 1 + arctan(|Vu*(x)|?).

Then, according to [CW17, Example 1], there hold (N1)-(N4) with @ = 1 and L ~=
1 ++/3/2 + m/3, while the exact solution is unknown.

I

In Figure 5.7, we again test Algorithm 41 with varying 0, Aag, and Apj.. We plot the

. k, .
error estimator n,(u, l) over the number of elements N := #7,. Uniform mesh-refinement
leads to the suboptimal rate of convergence O(N -1/ 3), whereas Algorithm 41 with adaptive
mesh-refinement regains the optimal rate of convergence O(N -1/ 2). Again, this empirically
confirms Theorem 49. The latter rate of convergence even appears to be robust with respect
to 6, )\algy and Apic.
. . K5’ .
In Figure 5.8, we plot the estimator 7y (u,, L ) over the cumulative sum Z(M,j)g(zlﬂ’i/) #7Ty.

Independently of the choice of the parameters 6, A1g, and Ap;ic, we observe the optimal or-
der of convergence (9(( Z(é,m)g(e',@’,g’) #72)—1/2) with respect to the overall computational

cost, which empirically underpins Theorem 53.

In Figure 5.9, we finally consider the total number of PCG iterations cumulated over all
Picard steps on the given mesh. We observe that independently of the choice of 0, A,4, and
Apic, the total number of PCG iterations stays uniformly bounded. Additionally, we see
that for larger values of A, and Ap;c, as well as for smaller values of 6, the total number
of PCG iterations is smaller.
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Figure 5.5: Example from Section 5.4.3 (Experiment with known solution on Z-shaped do-
main): Overall computational cost Z(z,k,j)g(l',k’,j’) #7Ty such that ng(u%,,) <T
for given precision 7 = 3 - 1072, Aalg € {1071,10755,...,107%}, and Api. €
{1,107%2 1071, ..., 1074}.
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Figure 5.7: Example from Section 5.4.4 (Experiment with unknown solution on L-shaped

k
domain): Error estimator ng(uz’l) on mesh 7y, perturbed Banach-Picard itera-
tion k, and PCG step j of Algorithm 41 with respect to the number of elements

N of the mesh 7, for various parameters ¢, Apic, and .
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10° E 1
S
—
% 1071} §
E .
5 o0 =0.5, /\alg = 1071, Apic = 1072 \\\\' 5 ;\ \i\\i
%‘ —0=0.5, /\alg = 10727 Apic = 1072 o R R L
102 =0 =0.5 Ay = 1073, Apjc = 1072 o((s ayy Ay A :
F ’ 4 0.k.j 0k 14 AN 1
L 0=05, Ay = 1074, Apie = 1072 (Brsessn #T0) ]
overall computational cost Z k)< k) #T,
L-shaped domain
100} — g
5
&@
5 101} |
z
R=!
"g 0 = 05, Aalg = 1072, )\Pic =1
P 0 = 0.5, /\alg = 10727 Apic = 101 Sal . -
0 =0.5, Ay = 1072, Apjc = 107° N ]
0= 0.5, Mg = 102 Apye = 1074 OUZehsen ) #7077 7
s o
overall computational cost 3y ;. iy<(ox ;1) # T¢
L-shaped domain
10° £ g
5
RSy
S
T
—
% 10"; B
g
A -0 =0.1, )\alg = 1072, Apic = 1072
5 S 0=0.3, g = 1072, Apye = 1072 LN
%‘ 0 =0.5, )\alg = 10727 Apic = 1072 \\\\\\
1072 =0 =0.7, )\alg = 10727 Apic = 1072 o 4T —1/2\ "~ E
I ki pr. ! i ! ]
009 Ay — 102, Apy — 10°2 (Zerpzew) #T0)77)

overall computational cost Xy, < x.i) #T¢

Figure 5.8: Example from Section 5.4.4 (Experiment with unknown solution on L-shaped

E'.j' . .
domain): Error estimator 1y (u, ) on mesh Ty, perturbed Banach—Picard it-
eration k’, and PCG step J' of Algorithm 41 with respect to the overall cost
expressed as the cumulative sum Z(z, k)< (€ ") #7Ty for various parameters 6,

/\Pica and )\alg~
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Figure 5.9: Example from Section 5.4.4 (Experiment with unknown solution on L-shaped
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domain): Number of PCG iterations wrt. the number of elements N := #7;
for 6 = 0.5, A\pic = 1072, and Ay € {1071,...,107%} (top), for 6 = 0.5,
Aalg = 1072, and Apic € {1,1071,...,107*} (middle), and for Ayg = Apic = 1072
and 0 € {0.1,0.3,...,0.9} (bottom).



5.4 Numerical experiments

In Figure 5.10, we again compare the computational cost of Algorithm 41 to reach the
given precision 7 = 102 for various 6, Aalg, and Apic. Also in this experiment, it seems that
a smaller value of A,z or Apjc leads to more computational cost to reach the same precision,
independently of the choice of 6.

In Figure 5.6 (bottom), we vary 6 € {0.05,0.1,0.15,...,0.9} and print the corresponding
best and worst choices of Aa € {1071,10715, ... 1074} and Ap;c € {1,10795,1071, ..., 1074}
respectively, together with the overall computational cost to reach the given precision. As a
result, we see that the overall best choice in terms of computational cost to reach the given
precision 7 = -1072is # = 0.7, Aalg = 1071, and Apic = 1 with

Z #T; = 25058328
(GRS K )

where u% is the first approximation such that m(u%) < 1072, We also observe that the worst
possible choice is 6 = 0.9, A\ = 1074, and Apjc = 10™%. With these parameters it takes
more than 200 times the computational cost to reach the same precision in comparison to
the best choice. Independently of 6, the worst choice of \ag and Apjc is always Aajg = Apic =
1074,
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Figure 5.10: Example from Section 5.4.3 (Experiment with known solution on Z-shaped
domain): Overall computational cost Z(Z,k,j)g(z’,k’,j’) #7Ty such that ng(u%,l) <T
for given precision 7 = 3 - 1072, Aalg € {1071,10755,...,107*}, and Apic €
{1,1079% 1071, ..., 1074}.
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6 Adaptive BEM for elliptic first-kind
integral equations with optimal PCG
solver

6.1 Introduction

In this chapter, which is based on [FHPS19], we consider the boundary element method
(BEM) subject to elliptic first-kind integral equations. We introduce our adaptive algorithm
which steers both the adaptive mesh-refinement as well as the termination of the precon-
ditioned conjugate gradient method (PCG) with optimal preconditioner, i.e., an inexact
solver for the arising Galerkin system. The main results are then convergence with optimal
algebraic rates as well as almost optimal computational complexity.

6.1.1 State of the art

In the last decade, the mathematical understanding of adaptive mesh-refinement has ma-
tured. We refer to [D6r96, MINS00, BDD04, Ste07, CKNS08, FFP14] for some milestones for
adaptive finite element methods for second-order linear elliptic equations, |Ganl3, FKMP13,
FFKT14, FFKT15, AFF 17| for adaptive BEM, and [CFPP14] for a general framework of
rate-optimality of adaptive mesh-refining algorithms. The interplay between adaptive mesh-
refinement, optimal convergence rates, and inexact solvers has been addressed and analyzed
for adaptive FEM for linear problems in [Ste07, ALMS13, AGL13], for eigenvalue problems
in [CG12], and recently also for strongly monotone nonlinearities in [GHPS18|. In particu-
lar, all available results for adaptive BEM [Gan13, FKMP13, FFK ™14, FFK ™15, AFF17]
assume that the arising Galerkin system A,x; = by is solved exactly. Instead, we omit
the latter assumption and analyze an adaptive algorithm which steers both the local mesh-
refinement and the iterations of an inexact PCG solver.

In principle, it is known [CEFPP14, Section 7| that convergence and optimal convergence
rates are preserved if the linear system is solved inexactly, but with sufficient accuracy.
The aim now is to guarantee the latter by incorporating an appropriate stopping criterion
for the PCG solver into the adaptive algorithm. Moreover, to prove that the proposed
algorithm does not only lead to optimal algebraic convergence rates, but also to (almost)
optimal computational cost, we provide an appropriate symmetric and positive definite
preconditioner P, € RV*Y such that

e first, the matrix-vector products with PZ1 can be computed at linear cost and

e second, the system matrix le/ QAKPZU % of the preconditioned linear system

P, '?AP, ' *x; =P, /b, (6.1)
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6 Adaptive BEM for elliptic first-kind integral equations with optimal PCG solver

has a uniformly bounded condition number which is independent of the mesh 7.

Then, xj = Pe_l/ 2)?27 solves the original system A,xj = by. To that end, we exploit the
multilevel structure of adaptively generated meshes in the framework of additive Schwarz
methods. For hyper-singular integral equations, such a multilevel additive Schwarz pre-
conditioner has been proposed and analyzed in [FFPS17a, FMPRI15] for d = 2,3 and for
weakly-singular integral equations in [FFPS17b] for d = 2. In particular, were able to close
this gap by analyzing an optimal additive Schwarz preconditioner for weakly-singular inte-
gral equations for d = 3. Besides, we refer to [SvV20] for optimal preconditioning in Hilbert
spaces of negative order. We note that the proofs of [FFPS17a, FFPS17b] do not transfer
to weakly-singular integral equations for d = 3. Instead, we build on recent results for finite
element discretizations |[HWZ12, AGS16| which are then transferred to the present BEM
setting by use of an abstract concept from [Osw99].

6.1.2 Qutline

Section 6.2 introduces the functional analytic framework and fixes the necessary notation.
In Section 6.3, we introduce the weakly-singular integral equation which serves as our model
problem and give a short introduction to BEM, before we state our adaptive algorithm in
Section 6.4 which steers the local mesh-refinement as well as the stopping of the PCG
iteration. Section 6.5 states our main results. In Section 6.5.1, we define a local multilevel
additive Schwarz preconditioner (6.36) for a sequence of locally refined meshes. Theorem 60
states that the f2-condition number of the preconditioned systems is uniformly bounded for
all these meshes, i.e., the preconditioner is optimal. Theorem 68 proves

that the overall error in the energy norm can be controlled a posteriori,

that the quasi-error (which consists of energy norm error plus error estimator) is linearly
convergent in each step of the adaptive algorithm (i.e., independent of whether the
algorithm decides for local mesh-refinement or for one step of the PCG iteration),

that the quasi-error even decays with optimal rate (i.e., with each possible algebraic
rate) with respect to the degrees of freedom, i.e., Algorithm 57 is rate optimal in the
sense of, e.g., [Ste07, CKNS08, FKMP13, CEFPP14].

Finally, Section 6.5.5 considers the computational cost. Under realistic assumptions on the
treatment of the arising discrete integral operators, Corollary 78 states that the quasi-error
converges at almost optimal rate (i.e., with rate s—e for any ¢ > 0 if rate s > 0 is possible for
the exact Galerkin solution) with respect to computational cost, i.e., Algorithm 57 requires
almost optimal computational time. Section 6.0 shows that our main results also apply to
the hyper-singular integral equation. The final Section 6.7 underpins the theoretical findings
by some 2D and 3D experiments.
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6.2 Preliminaries and notation

6.2 Preliminaries and notation

6.2.1 Boundary integral operators and functional analytic setting

Let © C RY with d = 2,3 be a bounded Lipschitz domain with boundary I' := 9Q. We
consider the usual Laplace problem

—Au=0 inQ (6.2)

with appropriate boundary conditions, i.e., Dirichlet or Neumann boundary conditions on
the boundary I", where either u or the normal derivative Oyu respectively are given on T'.
Solutions to these problems can be represented via potentials which are closely related to
the fundamental solution G(-) of the Laplace operator, i.e.,

— £ log |2| ford =2
2w ’
G(Z):{ll for d = 3.

4m |z|

For smooth solutions u € C?(T') of (6.2), there holds the following representation formula,
cf. [SS11, Theorem 3.1.6],

u(z) = / G(z — y) Oy uly) dsy — / On(y)G(r — y)u(y)ds, for all z € €, (6.3)
r r

where 0y, is the normal derivative with respect to y € I'. Hence, depending on the given
boundary conditions, the unknown quantity is either Ohu or w.
First, we define the single-layer potential S for ¢ € L!(T") by

(S¢)(x) := / G(z —y) p(y)ds, forall z € RI\T,
r
as well as the double-layer potential D for ¢ € L'(T") by

(Do) (z) = /1“8n(y)G($ —y) ¢(y)ds, forall z € R4\ T,

Recalling the Sobolev spaces on the boundary from Section 2.3 and Section 2.4, these
potentials give rise to bounded linear operators

S: H V() » HL (RY)  and D: HY/?**(I') - HL _(R?) (6.4)

with —1/2 < s < 1/2, where Hlloc(]Rd) is the space of H'-functions with compact support,
cf. [SS11, Theorem 3.1.16, Remark 3.1.18].
Recalling the trace operators 7', 7¢* as well as the normal derivative operators ™,

78X from Section 2.5, [SS11, Theorem 3.3.1] shows that
%" S =15"S¢ and "Dy =Dy (6.5)

Thereof, we omit the superscript for ease of notation and define the following linear and
continuous boundary integral operators:
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single-layer operator

V:H V2T 5 HY?PS(D)  with V=456 (6.6)

double-layer operator

1 .
K: HY/*5() — HY?*()  with Kg:= 5(75“1) +198D)g (6.7)

adjoint double-layer operator

K': H-V2s(T) — H71V275(0)  with  K'¢:= —%qus + 48y (6.8)
e hyper-singular operator
W: HY/23(0) — H Y2451 with  Wep := —y Dip (6.9)

Some important properties of these operators are summerized in the following remark
and we refer to [McL00, SS11] for further details and proofs.

Remark 55. Let —1/2 < s<1/2 and T' C 9N be a (relatively) open and connected subset.

e The single-layer operator V' from (6.6) is a bounded linear operator which is even an
isomorphism for —1/2 < s < 1/2. For d = 2, this requires that the domain § is
sufficiently small, i.e., diam(Q) < 1, which can always be ensured by scaling of Q0. For
s =0, the operator V 1is even symmetric and elliptic.

e The hyper-singular operator W from (6.9) is a bounded linear operator which is even
an isomorphism for —1/2 < s < 1/2. For s = 0, the operator W is symmetric and
(since T is connected) positive semi-definite with kernel being the constant functions.
Hence, for T' C 0N, the operator W is an elliptic isomorphism.

For ease of presentation, the main part of this chapter focuses on the so-called weakly-
singular integral equation which corresponds to Dirichlet boundary conditions, i.e., u = g
on T for a given function g € H'/2(I'). Due to the representation formula (6.3), we know
that the solution w is given in terms of the trace of w on I' as well as the normal derivative
Onu on I'. This normal derivative ¢ := Opu is given by Symm’s integral equation

1
Vo= (K+ ild)g on T, (6.10)

where Id is the usual identity operator.
However, we restrict ourself to an indirect formulation, where the solution u of the Dirich-
let problem is given in terms of the single-layer potential

u= 59,
where ¢ is the solution of

V=g onT.
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6.3 Model problem and boundary element method (BEM)

Let Q € R? be a bounded Lipschitz domain with d € {2, 3} and polyhedral boundary 99.
Let T' C 09 be a (relatively) open and connected subset. Given f : ' — R, we seek the
density ¢*: I' = R of the weakly-singular integral equation

(Vo*)(z) = /FG(:U —y)¢*(y)dy = f(z) forall z €T. (6.11)
From Remark 55 follows that, for s = 0, the operator V' is even symmetric and elliptic, i.e.,
(6,0} = [(Vow)vlayds  forall 6.0 € FA(T) (6.12)
defines a scalar product and [|¢]|? := (¢, ¢) is an equivalent norm on H~Y/%(T'). For a

given right-hand side f € H'/?(T"), the weakly-singular integral equation (6.11) can thus
equivalently be reformulated as

(6", ) = (f,¥) foralle H VXI). (6.13)

In particular, the Lax-Milgram theorem proves existence and uniqueness of the solution
¢* € H-Y2(I) to (6.13).

Given a mesh T, of I', we employ a lowest-order Galerkin boundary element method
(BEM) to compute a To-piecewise constant function ¢3 € P%(7,), where PY(7,) is defined
by

PYUT,) = {w. P —=>R:VI'eTy tolris constant}. (6.14)

Note that P°(7,) € L2(I') € H~Y/2(T"). Hence, the weakly-singular integral equation (6.11)
can be reformulated for the lowest-order space PY(7,) as

/ (V2) () a(z) da = / (@) da(z)de for all e € PO(T2), (6.15)
r r
which again can be written equivalently as

(0%, ) = (f, ths) for all ¥y € PY(TS). (6.16)

Therefore, the Lax—Milgram theorem proves existence and uniqueness of the discrete solu-
tion ¢% € PU(T).

With the numbering 7o = {71, ..., Tn}, consider the standard basis {Xo,j i =1,... ,N}
of PY(T,) consisting of characteristic functions e ; of 7; € To. We make the ansatz

N
¢ = Xulk] Xok (6.17)
k=1

with coefficient vector
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N A

Figure 6.1: For newest vertex bisection (NVB) in 2D, each triangle T € T has one reference edge,
indicated by the double line (left). Bisection of T is achieved by halving the reference
edge (middle). The reference edges of the sons are always opposite to the new vertex.
Recursive application of this refinement rule leads to conforming triangulations.

Then, the Galerkin formulation (6.15) is equivalent to the linear system
A—.Xt — bo (618)

with

Adicki= [ Vxen@ds, buli)i= [ f@)de

J

where the matrix A, € RV*Y is positive definite and symmetric. For a given initial

triangulation Tg, we consider an adaptive mesh-refinement strategy of the type

’ solve ‘H’ estimate ‘—>’ mark ‘—)’ refine ‘ (6.19)

which generates a sequence Ty of successively refined triangulations 7, for all £ € Ny. We
note that the condition number of the Galerkin matrix A, from (6.18) depends on the
number of elements of 7Ty, as well as the minimal and maximal diameter. Therefore, the
step requires an efficient preconditioner as well as an appropriate iterative solver.

6.3.1 Mesh-refinement
We briefly recall some definitions for boundary meshes and mesh-refinement from Section 3.2
and Section 3.4 respectively in the context of this chapter.

2D BEM

For d = 2, a mesh 7, of I is a partition into non-degenerate compact line segments. It is
called y-shape regular, if

max {hp/hp : T,T' € To with TNT" #0} <. (6.20)

Here, hy := diam(7") > 0 denotes the Euclidean diameter of T, i.e., the length of the line
segment.

We employ the extended bisection algorithm from [AFF 13|, cf. Section 3.5. For a mesh
Te and a subset Mo C 7o, let 75 := refine(7,, M,) be the coarsest mesh such that all
marked elements T' € M, have been refined, i.e., Mo C To\To. We write 7o € refine(T,), if

there exists n € Ny, conforming triangulations 7o, ..., T, and corresponding sets of marked
elements M, C 7T, such that
7: = 7-07
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Tj+1 = refine(7;, M;) for all j =0,...,n —1,

To = Tn,

i.e., 7o is obtained from 7, by finitely many steps of refinement. Note that the extended
1D bisection, i.e., Algorithm 9, guarantees, in particular, that all 75 € refine(7,) are
uniformly v-shape regular, where v depends only on 7,, cf. Section 3.5.

3D BEM

For d = 3, a mesh 7, of I' is a conforming triangulation into non-degenerate compact surface
triangles. In particular, we avoid hanging nodes. To ease the presentation, we suppose that
the elements T' € T, are flat. For a y-shape regular triangulation, it holds that

diam(7)

5{163% T < (6.21)
cf. Lemma 8. Here, diam(7T") denotes the Euclidean diameter of T and hy := |T|"/? with
|T| being the two-dimensional surface measure. Note that y-shape regularity implies that
hr < diam(T) < v hp and hence excludes anisotropic elements.

For 3D BEM, we employ 2D newest vertex bisection (NVB) to refine triangulations locally,
cf. Section 3.6 for details and Figure 6.1 for an illustration. For a mesh 7, and Mg C T,
we employ the same notation 75 := refine(7,, M,) and T, € refine(7,) respectively as
for d = 2.

6.3.2 A posteriori BEM error control
For 1 € P°(T,) and U, C T, define

770(u071/10)2 = Z T].(T, 1/10)27 (6'22)
Tele
where
1e(T,100)* = hr [V (f = Vo) |72y for all T € T, (6.23)

Here Vr(-) denotes the arclength derivative for d = 2 resp. the surface gradient for d = 3.
To abbreviate notation, let 1e(10e) := 7e(Te, e ). If 10e = ¢} is the discrete solution to (6.16),
then there holds the reliability estimate (i.e., the global upper bound)

llg™ — &3l < Crerme(43), (6.24)
where Cye1 > 0 depends only on I' and 7-shape regularity of T, cf. [CS95, Car97] for d = 2
and [CMS01] for d = 3 respectively. Provided that ¢* € L?(I'), the following weak efficiency

6% — G5l + ne(6%) < Cett |14 (6% — &)l 22y (6.25)

has recently been proved in [AFF17], where Ceg > 0 depends only on T' and y-shape
regulartiy of 7,. We note that the weighted L?-norm on the right-hand side of (6.25) is
only slightly stronger than || - || ~ || - Hﬁ*l/?(l‘)’ so that one empirically observes 1 (¢F) <
ll¢ — &%l in practice, cf. [CS95, Car97, CMSO01]. In certain situations (e.g., weakly-singular
integral formulation of the interior 2D Dirichlet problem), one can rigorously prove the
latter (strong) efficiency estimate up to higher-order data oscillations, cf [AFF13].
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6.3.3 Preconditioned conjugate gradient method (PCG) for the Galerkin
system

Suppose that P,, Ay € RV*N are symmetric and positive definite matrices. Given b, € R
and an initial guess xY, PCG (see [GVL13, Algorithm 11.5.1]) aims to approximate the
solution x3 € RY to (6.18). We note that each step of PCG has the following computational
costs:

e O(N) cost for vector operations (e.g., assignment, addition, scalar product),
e computation of one matrix-vector product with A,,

e computation of one matrix-vector product with P,

Let X5 € RY be the solution to (6.1) and recall that x} = P:l/Qiﬁ. We note that PCG

formally applies the conjugate gradient method (CG, see [GVLI13, Algorithm 11.3.2]) for

the matrix ;&. = P._1/2A.P._1/2 and the right-hand side B. = P._l/2b.. The iterates

xk € RN of PCG (applied to P,, A,, b,, and the initial guess x) and the iterates X¥ of
CG (applied to A,, b,, and the initial guess X0 := Pi/QX(.)) are formally linked by

k P:1/2~k.

X. = X.’
see [GVTL13, Section 11.5]. Moreover, for all y, € RY and y, = P._l/2§., there holds that
~ 2 = T~
HyoHK. = Ye- Aoyo
= (P%y.) - PO PAP PPy,
= Ye- Aoyo

= |[yella.-

(6.26)

Consequently, [GVL13, Theorem 11.3.3] for CG (applied to A., b., X0) yields the following
lemma for PCG (which follows from the implicit steepest decent approach of CG).

Lemma 56. Let A,, Py € RN*N be symmetric and positive definite, by € RN, x} =
A7'b,, and x¥ € RN. Suppose the lo-condition number estimate

condy (Py2AP %) < Cl,. (6.27)

Then, the iterates xE of the PCG algorithm satisfy the contraction property
s = xa*[[aw < gpeg X0 — x¢lla,  for all k € No, (6.28)
where Gpeg = (1 — 1/Caig)V/? < 1. O

If the matrix A, € RN stems from the Galerkin discretization (6.18) for T, =
{Ty,...,Tn}, there is a one-to-one correspondence of vectors y, € R and discrete functions

e € PU(T) via

N
the = Z y-[j] Xe,j>
j=1
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where X, ; is the usual characteristic function of T; € 7,. Let qﬁlf € 770(7'.) denote the
discrete function corresponding to the PCG iterate x§ € RY, while the Galerkin solution
@5 € PO(T,) of (6.16) corresponds to x5 = A, 'b,. We note the elementary identity

llos — o2ll? = (x2 —xJ) - Aa(x3 —xJ) =[x — x]][,- (6.29)

6.3.4 Optimal preconditioners

We say that P, is an optimal preconditioner, if Cyz > 1 in the /3-condition number esti-
mate (6.27) depends only on 7-shape regularity of 7, and the initial mesh 7y (and is hence
essentially independent of the mesh 7).

6.4 Adaptive algorithm

Next, we introduce the following adaptive algorithm which is driven by the weighted-residual
error estimator (6.22). We note that Algorithm 57 as well as the following results are
independent of the precise preconditioning strategy as long as the employed preconditioners
are optimal, cf. Section 6.3.4.

Algorithm 57. Input: Initial conforming mesh To of T, initial guess ¢3 = 0, adaptivity
parameters 0 < 0 <1, Aetr > 0, and Cparkx > 0, optimal preconditioning strategy Py for all
Ty € refine(7y), counters £ :=0 =: k.
Adaptive Loop: Iterate the following Steps (i)—(v):
(i) Repeat the following steps (a)—(c):
(a) Update the counter (£, k) — (£, k+1).

(b) Do one step of the PCG algorithm with the optimal preconditioner Py to obtain
of € PUTe) from ¢5~" € PO(To).

(c) Compute the local contributions ny(T, ¢5) of the error estimator for all T € T.
Until  [|of — &) Il < Aetr me(65). (6.30)

(ii) Define k := Ek({) := k.

(iii) Determine a set My C Ty with up to the multiplicative constant Cark minimal cardi-
nality such that

010(6%) < ne(My, 65). (6.31)

(iv) Generate Toyy := refine(Ty, My) and define ¢9, | := d)%.

(v) Update the counter (¢,k) — (£ + 1,0) and continue with (i).
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Output: Sequences of successively refined triangulations Ty, discrete solutions <b’;, and cor-
responding error estimators m(qﬁf), for all >0 and k > 0.

Remark 58. The choice Aety = 0 corresponds to the case that the Galerkin system (6.16)
15 solved exactly, i.e., ¢2+1 = ¢;. Then, optimal convergence of Algorithm 57 has already
been proved in [FKMP153, Ganl3, AFF" 13, FFK" 1]] for weakly-singular integral equations
and [Ganl3, FFK™15] for hyper-singular integral equations. The choice 6 = 1 will gener-
tcally lead to uniform mesh-refinement, where for each mesh all elements My = Ty are
refined in Step (iv) of Algorithm 57. Instead, small 0 < 0 < 1, will lead to highly adapted
meshes.

Let Q := {({,k) € Ng xNp : index (£, k) is used in Algorithm 57} be the set of all index
pairs which appear at some point in Algorithm 57. It holds that (0,0) € Q. Moreover, for
{, k € Ny, it holds that

e for £>1, (¢£,0) € Q implies that ({ —1,0) € Q,
e for k > 1, ({,k) € Q implies that ((,k—1) € Q.

If ¢ is clear from the context, we abbreviate k := k(¢), e.g., (b? = <Z>§(g). In particular, it

holds that (b% = ¢ 1. Since PCG (like any Krylov method) provides the exact solution
after at most #7y steps, it follows that 1 < k(¢) < co. Finally, we define the ordering

def either: ¢ < /¢
0K < (k) & { o V0 and K < K } for all (¢, k), (£, k) € Q.

Moreover, let

(k)] =" . o / / HE=0="k, (6.32)
#{(U',K) e Q: (U',k) < ((,k)and K < k({')}, if£>0o0rk>0,

be the total number of PCG iterations until the computation of gb’g. Note that ¢ > ¢ and
(¢, k') = |(¢, k)| imply that £ = £+ 1, k = k(¢£), and k' = 0 and hence ¢, = ¢F.

6.5 Main results

In this section, we show the main results of this chapter, i.e., first, we introduce an additive
Schwarz preconditioner and prove its optimality in the sense of Section 6.3.4, and secondly,
we prove optimal convergence rates with respect to the degrees of freedom of Algorithm 57
as well as almost optimal computational complexity.

6.5.1 Optimal additive Schwarz preconditioner

We consider multilevel additive Schwarz preconditioners that build on the adaptive mesh-
hierarchy.

Let & denote the set of all nodes (d = 2) and edges (d = 3) respectively of the mesh
Te which do not belong to the relative boundary OI'. Only for I' = 0, & contains all
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nodes resp. edges of T,. For E € &, let T, T~ € T, denote the two unique elements with
Tt NT~ = E. We define the Haar-type function pe g € P%(7s) (associated to E € &) by

||T’ for T =TT,
poplri={ —tH for T=T", (6.33)
0 else,

where |E| :=1 for d = 2 and |E| := diam(F) for d = 3. Note that

vor € PATY) = {¢ € P*(T) : /Fz/zdx =0}. (6.34)

For d = 3, we additionally suppose that the orientation of each edge F is arbitrary but
fixed. We choose T € 7, such that 9T and E C T have the same orientation.

Given a mesh Ty, suppose that 7T, is a sequence of locally refined meshes, i.e., for all
¢ € Ny, there exists a set M, C Ty such that Tp11 = refine(7;, My). Then, define

& =EN& 1 U{E €& : supp(pre) S supp(pe-1,p)} forall £>1,

which consist of new (interior) nodes/edges plus some of their neighbours. We note the
following subspace decomposition which is, in general, not direct.

Lemma 59. With X, := P°(T,) and X, g := span{pe g}, it holds that

L

Xp=X+> > Xp forall LeN,. (6.35)
(=1 Be&;}

]

Additive Schwarz preconditioners are based on (not necessarily direct) subspace decom-
positions. Following the standard theory (see, e.g., [TWO05, Chapter 2|), (6.35) yields a
(local multilevel) preconditioner. To provide its matrix formulation, let I ¢ € RGFTe)x(#Tk)
be the matrix representation of the canonical embedding P%(7x) < P°(T;) for k < ¢, i.e.,

#Tk #Te
Z Xi[t) Xk = Z x¢[t] xe; for all x; € R#Tx and x; := I oxy € R#Te.
i=1 i=1

Let Hy € R#T)x(#€0) denote the matrix that represents Haar-type functions, i.e.,

#Te

wom, = Y Hyli,jlxe; forall Ej € &.
=1

Since only two coefficients per column are non-zero, Hy is sparse, while I, ; is non-sparse
in general. Finally, define the (non-invertible) diagonal matrix D, € R#E)X#E) by

llpe,z,lI7* Ej € & and j =k,
Dy)ir = Y
( E)Jk {0 else.
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Then, the matrix representation of the preconditioner associated to (6.35) reads
L
P =T A T, + > T, HDMH]T],. (6.36)
(=1
For d = 2, the subsequent Theorem 60 is already proved in [FFPS17b, Section II1.B| for
I' = 9 and in [Fiih14, Section 6.3] for I' S 0. For d = 3, we need the following additional
assumptions:

e First, suppose that Q C R? is simply connected and I = 99.
e Second, let 7AB be a conforming triangulation of € into non-degenerate compact sim-
plices such that 7o = To|r is the induced boundary partition on I'.

Then, the following theorem is our first main result.

Theorem 60. Under the foregoing assumptions, the preconditioner P, from (6.36) is op-
timal, i.e., there holds (6.27), where Cag > 1 depends only on 2 and Ty, but is independent
of L € N.

We stress that the matrix in (6.36) will never be assembled in practice. The PCG al-
gorithm only needs the action of Pgl on a vector. This can be done recursively by using
the embeddings Iy 41 which are, in fact, sparse. Up to (storing and) inverting Ay on the
coarse mesh, the evaluation of lex can be done in O(#77) operations, see, e.g., [FFPS17a,
Section 3.1| for a detailed discussion. If the mesh 77 is fine compared to the initial mesh
To (or if Ay is realized with, e.g., H-matrix techniques), then the computational costs and
storage requirements associated with Ay can be neglected.

Remark 61. Our proof for d = 3 requires additional assumptions on Q, T' = 00, and
To- As stated above, the case d = 2 allows for a different proof (which, however, does not
transfer to d = 3) and can thus avoid these assumptionss, see [FF'PS17b, Fih1/].

6.5.2 Proof of Theorem 60 (optimality of additive Schwarz preconditioner)

As mentioned before, Theorem 60 is already proved for d = 2. Hence, we refer to [FFPS17h,
Fiih14] and thus focus only on d = 3 and I' = 9Q. Due to our additional assumption,
To = To|r is the restriction of a conforming simplicial triangulation 76 of Q to the boundary
I'. Moreover, 2D NVB refinement of 7y (on the boundary I') is a special case of 3D NVB
refinement of 7o (in the volume ) plus restriction to the boundary, see, e.g., [Ste08].
Hence, each mesh 7, € T = ref 1ne(7[)) Is the restriction of a conforming NVB refinement
’7; T = reflne(’]f)) ie., Te = ’7'.]p Throughout, let ’7; € T be the coarsest extension of
Toe €T

Recall that NVB is a binary refinement rule. Therefore, 7, € refine(7,) also implies
that 7, € ref ine(7A’.). Finally, we note that all triangulations 7. € T are uniformly ~-shape
regular, i.e.,

diam(7)

max —= < v <o0.
Tet. |T|V/3

where v depends only on 7\6.
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Discrete spaces and extensions

First, we recall the definition of the curl operator for a sufficiently smooth vector field
V= (1}1,’1}2,'1)3) by

Ovz _ Ovy

81‘2 613

— — | Qv _ Ovs
curlv:=V x v := Jos ~ Do
Ovg _ vy

o1 0o

Definition 62. Let v € L%(Q)3. Then, we call curlv := ¢ € L*(Q)3 the (generalized) curl
of v, if there holds that

/ c-wdr = / v-curlwdz  for all w € C(Q)3, (6.37)
Q Q
as well as divv :=d € L*(Q) the (generalized) divergence of v, if there holds that

/dwdx:—/v-de:I: for all w € CF° (). (6.38)
Q Q

Moreover, we define the space of lowest-order Nédélec elements of first kind N’Dl(’ﬁ) by
NDYT,) = {v e H(curl; Q) : v|x € PUK)? +PUK)? xx for all K € T},  (6.39)
where
H(curl; Q) := {v € L*(Q)? : curlv € L*(Q)*} (6.40)

is the space of square integrable vector fields on Q C R3 with square integrable curl and
corresponding norm

101wt 0) = [0l 720 + llcurlv][72 (). (6.41)
Lastly, we define the space of lowest-order Raviart—Thomas elements ’RTO('?.) by
RT(T.) == {w € H(div; Q) : v[g € PO(K)® + PO(K)x for all K € 7.}, (6.42)
where
H(div; Q) := {v € L*(Q)? : divv € L*(Q)} (6.43)

is the space of square integrable vector fields on Q C R? with square integrable div and
corresponding norm

1ol iy 0) = [0]172(0) + |divol|72(g)- (6.44)
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The argument of our proof of Theorem 60 adapts ideas from [HM12], where a subspace
decomposition for the lowest-order Nédélec space N’Dl(T.) (see, e.g., [HZ09]) in H (curl; Q)
implies a decomposition of the corresponding discrete trace space. While the original idea
dates back to [Osw99], a nice summary of the argument is found in [HM12, Section 2|.

Remark 63. (i) Our proof is based on the construction of an extension operator from PU(T,)
to N'D! ( .) see Lemma 65 below. It is not clear if such an operator can be constructed for
the case I' G 0.

(ii) In [HIHM15], a subspace decomposition of the lowest-order Raviart—Thomas space
RTO(T) (see, e.g., [XCN09]) in H(div; Q) implies a decomposition of the corresponding
normal trace space P°(T,). Due to different scaling properties of the Raviart-Thomas basis
functions (in the H(div; Q) norm) and their normal trace (in the H='/?(T') norm), this
argument does not apply in our case.

Let &, (resp. Na) denote the set of all edges (resp. all nodes) of 7. € T. For each node
X € N., let nex € St (7'.) be the corresponding hat function, i.e., 7ex is 7; piecewise
affine and globally continuous with n.,x( ) = Oxy for all x,y € ./\f.. For E € EA., let
Ue | € N”Dl(’ﬁ) denote the corresponding Nédélec basis function, i.e., for K € 7o with
E = conv{x,y} C 0K, it holds that

Ue E|K = C(NexVTey — Moy Ve x), (6.45)

where C' > 0 is chosen such that for the path integrals holds that
/ Ue E ds = ’E‘ 5EE/ for all E,El S é\.. (6.46)
E/

Scaling arguments yield the next lemma. The proof follows the lines of [HM12, Lemma 5.7].

Lemma 64. For E € &,, recall the Haar function pe g € PY(Ts) from (6.33). Let ue p €
NDL(T,) denote the corresponding Nédélec basis function, see (6.45). Then,

e = curlue - np (6.47)

and
C™Hpe,m < Jue Bl H(ew; ) < C ll@e,Ellir-1/2(r), (6.48)
where C' > 0 depends only on Q and the ~y-shape regularity of 7. O

Proof. By using (6.45)—(6.46) we get that pe g = curlue g - n|r. Then, continuity of the
normal trace operator and the fact that the divergence of the curl is zero yield that

HQOO,E||H*1/2(F) S lleurl e, gl m(aiv; )
. 1/2
= (lleurlue Bl|72(q) + |diveurlue g7 /
= [|curl uo,EHL‘Z(Q)

< ||u°,E”H(curl;Q)'
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Furthermore, scaling arguments prove that
”u',E”H(curl;Q) =~ ||curl u-,EHL2(Q)
~ ’E‘l/Q
= ’E‘l/ZHSO%EHLQ(F)
S H‘PO,EHH*U?(F)»

where we have finally applied an inverse estimate, cf. |[HM12, Lemma 5.4]. This concludes
the proof. O

The following lemma holds for (simply) connected Lipschitz domains € and follows es-
sentially from [AGS16]. Recall PY(7,) from (6.34).

Lemma 65. There ezists a linear operator Eq : PO(Te) — N'D'(T.) such that
curl (Eqt)e) - n|p = 1 (6.49)
as well as

IEatiallreutson < Clloall oy for all b € PO(TL). (6.50)

The constant C > 0 depends only on Q and y-shape regularity of 7Te.

Proof. Let 1y € PY(T,). First, [AGS16, Theorem 2.1] provides oy € RT?(7,) with
oo nlr =1the, diveoe=0, and |[oe|m@iv;0) S [Vellu-1/2(00)-
Then, [AGS16, Lemma 4.3] provides Eqt, := vo € N'D(7,) such that
curlve = oo and  ||vel|H(curt;0) S [Tl H(div:0)-
Combining these results, we get that

curl (Eqt)) - n|p = curlv, - n|p

— O Il|1"
= @Do,
as well as
HEOwOHH(curl;Q) = HU'HH(Curl;Q)
5 ||0-'HH(div;Q)
S L ey,
which concludes the proof. O
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Abstract additive Schwarz preconditioners

Let X denote some finite dimensional Hilbert space with norm || - ||x and subspace decom-
position

X=> X,

i€T

where 7 is a finite index set. The associated additive Schwarz operator is given by

S=>_8;,

€L
where S; is the X-orthogonal projection onto A}, i.e.,
(Siz, zi)x = (x, z;)xr forall x; € X; and all z € X,

where (-, -)x denotes the scalar product on X'. Then, the operator S is positive definite
and symmetric (with respect to (-, -)x). For x € X, define the multilevel norm

el == inf {3 : o= a; with 2; € &; for all i € T}, (6.51)
1€T 1€

It is proved, e.g., in [Osw94, Theorem 16] that (S~'z, z)x = |z|%. If there exists a
constant C' > 0 such that

CHzllx < |zlla £ Cllz||lx forall z € X,

then the extreme eigenvalues of S~! (and hence those of S) are bounded (from above and
below). In particular, the additive Schwarz operator S is optimal in the sense that its
condition number (ratio of largest and smallest eigenvalues) depends only on C' > 0.

Let S denote the matrix representation of §. Then, the norm equivalence from above
and the latter observations imply that the condition number of S is bounded. The abstract
theory on additive Schwarz operators given in [TWO05, Chapter 2] shows that S has the
form S = P~!A| where A is the Galerkin matrix of (-, -)x. Therefore, boundedness of the
condition number of S implies optimality of the preconditioner P!,

We shortly discuss the matrix representation (6.36) of the additive Schwarz preconditioner

L
Pl i=To A TS, + > T, HDMH]T],.
/=1

Following [TW05, Chapter 2], let A; denote the Galerkin matrix of (-, -) x restricted to Xj,
and let I; denote the matrix that realizes the embedding from &; — X. We consider the
matrix representation S; of S;: X — AX; C X. Let x € X with coordinate vector x, and let
x; € X; be arbitrary with coordinate vector x;. The defining relation of S;, i.e.,

<Sil', «Ti>X = <$, xi);( for all x; € Xi,
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then reads in matrix-vector form as
x; - (A;S;x) = (I;x;) - (Ax) for all coefficient vectors x;,
or equivalently
A;Six =T Ax.
Since A; is invertible, we have that
S; = A;'TTA.

Note that the range of the operator §; is X; and correspondingly for the matrix represen-
tation S;. We therefore apply the embedding I; and obtain the representation

S=P'A, where P7'=> LA T
€L
To finally prove (6.36), note that for one-dimensional subspaces Xj, A; reduces to the
diagonal entry of the matrix A. Overall, we thus derive the matrix representation (6.36).
Subspace decomposition of ND'(7,) in H(curl; Q)

The following result is taken from [HWZ12, Theorem 4.1], see also the references therein.
In particular, we note that their proof requires the assumption that €2 is simply connected.

Proposition 66. Let ), := NDI(’?\:), Ve £ :=span{te £}, Ve x :=span{Vnex}, and

E = (& \ &)U {E € & : suppug,p S supp Ug,LE},
N = N\ Nm) U {x € Ny = suppiex S suppne—1.x } -

Then, it holds that

L
Y=+ Z ( Z Ve + Z yz,x>- (6.52)

=1 *Egegr xeN}
Moreover, it holds that
C vl Eew; o) < Ivlly, < Clvlleew;o) for adlv e Vi, (6.53)
where C' > 0 depends only on Q and 7\6. O

Subspace decomposition of P°(T) in H~/%(T)

It remains to prove the following proposition to conclude the proof of Theorem 60 since then
we get from the abstract theory that the proposed additive Schwarz operator is optimal.
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Proposition 67. The multilevel norm || - ||x, associated with the decomposition (6.35)
satisfies the equivalence

C MYl g=1r20y < Wl < CllPllg-rs2ry  for all ¢ € P(T1), (6.54)

where C' > 0 depends only on Q and ’ff).

Proof of lower estimate in (6.54). Let ¢ € PY(Ty), & := P°(Ty), and Xy g := span{¢s g}
Lemma 59 shows that we can decompose 1 (not necessarily uniquely) into

Y =vo + s (6.55)

where

L
e = Z Z Yop  with ¢ € Xp and Yy p € X .

=1 E€&;

Note that Xy g C PO(Ty). Recall the extension operator E; from Lemma 65. Define

L
Vy 1= Z Z Eg?/)&E € JVr. (656)

=1 Beg}

Then, due to the linearity of the curl operator and Lemma 65, it follows that

L
curlv, - n|p = curl <Z Z EZW,E) -‘n|p

(=1 Be€}

L

=Y > curl (Bethy ) - mlr
(=1 Eeg}

L

=

D3I

1 Ee&

S

=,

and hence the continuity of the trace operator in H (div; Q) yields that

”1/)*”1171/2@) S chrlv*HH(div;Q)

= [lcurl vyl L2(q)

< HU* HH(curl Q)
(6.53)
S llvelly. -
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Moreover, the triangle inequality, the definition of the multilevel norm ||-||y, , and Lemma 65
show that

||1/1”3{71/2(p) § H%H%fm(p) + Hw*H?{*UQ(F)

) A N

(6.51) L
< Mol ey + 2 D Bl e o
(=1 Ee€;

L

(6.50)
5 ‘WOH%{—W(F) +Z Z HW,EHJQLI—I/?(F)'

=1 E€&}

Taking the infimum over all possible decompositions (6.55), we derive the lower estimate
in (6.54) by definition (6.51) of the multilevel norm. O

Proof of upper estimate in (6.54). Let ¢ € PY(TL). Define 1o := (¥, 1)r/|T| as the inte-
gral mean of 1 over I'. Moreover, let 1, := ¢ — ¥ € P2(T1). Note that

[Vl 120y < Nl 120y + Yool 172
< (L 1/ vz ey) 19172y (6.57)

S Yl -2y
With Lemma 65, choose v = Ept, € Vi, = N'D! (7A'L) Hence, we get that
Yy = curlv - n|p
as well as
[l (cunt; ) S W]l -2y (6.58)

The upper bound in Proposition 66 further provides vg € M, vy g € Vi, and vy x € Vox
such that

L
vV =179+ <ZU£,E+ Z’Ug’x>
/=1

EEEAZ* xE/\A/Z*
as well as
L
H,UOH%-I(curl;Q) + Z ( Z ||U€,E||%—I(curl;9) + Z ||'UK,X||%—I(curl;Q)>
=1 " peéy xeN} (6.59)
(6.53)

2
5 ||vHH(curl;Q)'
Since vy x € Vix = span{Vnyx} and the curl of the gradient vanishes, we observe that

curlvg x = 0.

167



6 Adaptive BEM for elliptic first-kind integral equations with optimal PCG solver

Thus, we see that

Y = oo +
= oo + curlv - n|p
L
= 1o + curlvg - n|p + Z Z curlvy g - njp
=1 pegy
L

= g + curlvg - n|p + Z Z curlvy g - np,
(=1 B€E}

where the latter sum reduces to a sum over all E € & (instead of all E € g’z) due to the
restriction (-)|r to the boundary. Note that 1o := curlvg - n|p € Xy = P%(T5) and hence
Yoo + Ys0 € Xp. Moreover, it holds that

100 + ¥soll 1720y < Y00l gr-172(ry + lleurlvg - nf| -1z
S ‘|1/}HH*1/2(F) + [leurlvol| g (aiv ; @) (6.60)
= 10l g-1/2(0y + llewrlvo||z2(q)-
Due to Lemma 64 and vy g € Vg = span{ug g}, it holds that
Yo g = curlvg g -nlr € Xy p = span{yy g}
with
wa,E||H*1/2(F) ~ ||vg el Hcw; 0)-

We hence see that

L
¥ = (oo +¥u0) + > Y Yur

(=1 B¢}
with
) (6.51) ) L )
|||,¢”|’P0(TL) S Woo + ¢*0||H—1/2(F) + Z Z H?’D&EHH*UQ(F)
=1 EEEE‘
(6.60) ) ) L )
5 HwHHflﬂ(F) + HUOHH(curl;Q) + Z Z Hvé,EHH(curl;Q)
(=1 Ec€;
(6.59) ) )
5 ”w”H—l/Q(F) + HvHH(curl;Q)
(6.58) ) )
< 100y + 122y
(6.57) )
< -
This concludes the proof. O
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6.5.3 Optimal convergence

In this section we present the first main result for the adaptive Algorithm 57. We note, that

Algorithm 57 as well as the following theorem are independent of the precise preconditioning

strategy as long as the employed preconditioners are optimal in the sense of Section 6.3.4.
First, we recall the index set Q of Section 6.4 which is defined by

Q:={(£,k) € Ng x Ny : index (¢, k) is used in Algorithm 57}

Then, we get the following theorem.

Theorem 68. The output of Algorithm 57 satisfies the following assertions (a)—(c).
(a) There exists a constant C; > 0 such that
lo* = &4l < Cay (ne(0f) + llof — &5 1)- (6.61)
for all (¢,k) € Q with k > 1.
There exists a constant C*; > 0 such that, provided that ¢* € L*(T'), it holds that
* 1/2/ % _
ne(@f) < Clr (Ihg"*(&* = #D)llnzqry + lof — o I (6.62)
for all (¢,k) € Q with k > 1.

(b) For arbitrary 0 < 0 < 1 and arbitrary ety > 0, there exist constants Cy, > 1 and
0 < qiin < 1 such that the quasi-error

* 1/2
Af = (6" = SFI> +me(@h)?) ! (6.63)
is linearly convergent in the sense of

A < Crnalyy ™1 A (6.64)

for all (LK), (¢ K") € Q with (¢, k") > (£, k).

(c) For s >0, define the approzimation class
o, := su N +1)* min o(P3) ). 6.65
0¥, = sup ((N+1)° _min - aa(0)) (6.65)
#Te—#To<N

Then, for sufficiently small 0 < 0 < 1 and 0 < Aty < 1, ¢f. Assumption (6.86) below,
and all s > 0, it holds that

[¢*[la, < o0
= (6.66)
FCopt >0 ( s%pg (#T0 — #To + 1) A} < Cops [|¢*]|a, < ©.
L,k)e

The constants
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6 Adaptive BEM for elliptic first-kind integral equations with optimal PCG solver

o C,Cog > 0 depend only on qpeg, I', and the uniform ~y-shape regularity of T; €

refine(7y),
e Ciin > 1 and 0 < qin < 1 depend additionally only on 6 and A, and

e Copt > 0 depends additionally only on s, Ty, and Ag.

Remark 69. By definition, it holds that
ne(of) < AF - for all (0,k) € Q.
If qblg € {9}, (ZS%}, then there also holds the converse inequality and hence
ne(0)) = Af.
To see this, note that qﬁlg = ¢; and (6.24) prove that
Af < (L + Cra) 1mel(65).

If gi)]lf = gb%, then Theorem 68(a) and the stopping criterion (6.30) of Algorithm 57 prove
that

AF <L+ Cr) me(eh) + 1ok — o8|
< (1+ Cly + Actr) me(65).

6.5.4 Proof of Theorem 68 (optimal convergence rates)

First, we give an abstract analysis in the spirit of [CFPP14], where the precise problem
and discretization (i.e., Galerkin BEM with piecewise constants for the weakly-singular
integral equation for the 2D and 3D Laplacian) enter only through certain properties of
the error estimator. These properties are explicitly stated in the next subsection, before
we provide general PCG estimates afterwards. The remaining sections, i.e., the proofs of
Theorem 68(a)—(c) then only exploit these abstract frameworks.

Axioms of adaptivity

In this section, similarly to Section 4.3, we recall some structural properties of the residual
error estimator (6.22) which have been identified in [CFPP14] to be important and sufficient
for the numerical analysis of Algorithm 57.

For ease of notation, let Ty be the fixed initial mesh of Algorithm 57. Let T := refine(7p)
be the set of all possible meshes that can be obtained by successively refining 7g.

Proposition 70. There exist constants Cgp, Cred, Crel > 0 and 0 < qreq < 1 which depend
only on T' and the vy-shape reqularity, such that the following properties (A1)—(A4) hold:
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(A1) stability on non-refined element domains: For each mesh 7, € T, all refinements
To € refine(T,), arbitrary discrete functions v, € PY(75) and we € P°(T,), and an
arbitrary set U, C Tq N To of non-refined elements, it holds that

(N0 (Ue; Vo) — Ne(Ue, we)| < Cist [[vo — well

(A2) reduction on refined element domains: For each mesh 7, € T, all refinements
7o € refine(7,), arbitrary discrete functions v, € P°(T5) and we € PY(Ts), it holds
that

770(7:3\7;7 UO)2 < Gred 770(7:\7;7 wo)2 + C’red H|Uo - wo|”2-

(A3) reliability: For each mesh 7, € T, the error of the exact discrete solution ¢} € P9(7,)
of (6.16) is controlled by

¢ = &Ll < Crerme(95)-

(A4) discrete reliability: For each mesh 7, € T and all refinements 75 € refine(7,), there
exists a set Reo C To With To\To € Reo as well as #Re o < Car #(Te\ 7o) such that

the difference of ¢} € P°(7,) and ¢% € P°(T5) is controlled by
65 = &3l < Cari M0 (Rao, 7).

O

Remark 71. For the proof of Proposition 70, we refer to [FKMP13, FFK'1/]. We only
note that (A4) already implies (A3) with Cieq < Cqy in general, cf. [CFPP1/, Section 3.5].

Energy estimates for the PCG solver

This section collects some auxiliary results which rely on the use of PCG and, in particular,
PCG with an optimal preconditioner. We first note the following Pythagoras identity.

Lemma 72. Let A,,P, € RV*N be symmetric and positive definite, by € RY, x¥ :=
A7'b,, x0 € RN, and xk € RN the iterates of the PCG algorithm.
There holds the Pythagoras identity

llos — oCll? = llo% — o5 THI* + llgs™ — @LlI?  for all k € No. (6.67)

Proof. Recall that X% is the solution to (6.1) and X¥ = Pi/Qx’f. According to the definition
of PCG (and CG), it then holds that

X5 — xSl &, = min [%e — ¥ollx
* A y.elck(i.,ﬁ.,i‘}) * TA
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where
Ki(Aa, b, 70) := span{7?, Ag70, ..., AF 170} with 70 :=b, — A,XY

According to Linear Algebra, X¥ is the orthogonal projection of x3 in ICk(K., B.,i ) with
respect to the matrix norm |[| - ||z, . From nestedness Ki(Aq,be,X0) C Kiy1(As, be, X0), it

thus follows that
~k < — %k i I
%5 —%el%, = 1% ==L+ IR - %% -

Hence, together with (6.26) and (6.29), we get that

(6. 29

k
”M)o ¢0|H2 ” *_on2A.
(6.26) ~k
2 s~ 1,
= |xq —§k+1||2 + x5 - =LA
(6.26)

= s = xS, + T - x

(6. 29
Ml - 5P + okt - ok

which proves (6.67). O

k
.HA.

The following lemma collects some estimates which follow from the contraction prop-
erty (6.28) of PCG.

Lemma 73. Algorithm 57 guarantees the following estimates for all (¢, k) € Q with k > 1:
) N7 — 25l < gpes 57 — &5l

(i) 06§ — &5 'l < (1 + dpeg) 1o} — &5l
) 1165 — 57U < (1= apes) ™ sk — 047
)

. — k—
(iv) 16} — Sl < dpeg(1 = apeg) " o — &'l

(iii

Proof. Combining (6.29) and the contraction property (6.28) of PCG, we get that

gy — oF H| ”Xe — x}||a,
(6.28) B
< Gpcg HXE - Xz HAe

(6.29) k—
=" dpeg 167 — 7

which proves (i). Estimate (ii) follows from (i) and the triangle inequality by
llof — &5 < 6% — S5l + ot — o7~

(i) _
< (1 + Qpcg) HW? - ¢§ I\H
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Estimates (iii) follows again from (i) and the triangle inequality by
k— k—
o7 — &5~ < llgg — oIl + llog — o5l

(i o _
< dpeg 107 — 51l + lof — o3I,

which is equivalent to estimate (iii). The last estimate (iv) follows from

. (i) . B
67 — $E I < dpeg ll67 — &5
(iii) - ~
< qpcg(l - qpcg) ! H“ﬁ - Qs? 1H|

This concludes the proof. O

Proof of Theorem 68(a)
With reliability (A3) and stability (Al), we see that for all (¢, k) € Q it holds that

lg* — &fll < llo* — o7l + o — il
(A3)
< ne(97) + llof — ol

(AL k " k
S ne(og) + llor — ¢l

With Lemma 73(iv), we hence prove the reliability estimate (6.61), i.e.,

llo* — oF Il < me(ef) + oy — il
73(iv)

< me(@f) + gk — o5 -

According to [AFFT17], it holds that

ne(6F) S I1hy" (8% = )2y + 16" — ok
< |Ihg"* (6" = )2y + 16" — 851l + 165 — SF1l-

Let Gy : H-Y2(I') — P°(T;) be the Galerkin projection. Let II, : L2(I') — P°(7;) be the
L2-orthogonal projection. With the Céa lemma and a duality argument (see, e.g., [CP06,
Theorem 4.1]), we see for all 1 € L?(T) that

1/2
10 = Goywll < I =Tl < Iy vl 2.
Hence, for v = ¢* — gbﬁ, it follows that

le* — ¢5ll = Il — Go)g*|l
— [I(1 = Gg)(¢* — &)
S Mm@ = ) 2oy
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Combining the latter estimates, we see that

1/2 *
1e(68) S by (8% — o) L2y + l6F — o1l
Lemma 73(iv) yields that

ne(65) S 1Ihy"> (8" = )l 2oy + 165 — o

|
iv)

1 2 * —
< (% = D)oy + 6k — oF )

and hence concludes the proof of the efficiency estimate (6.62). O

W

Proof of Theorem 68(b)

The following lemma is the core part of the proof of Theorem 68(b).

Lemma 74. Consider Algorithm 57 for arbitrary parameters 0 < 0 <1 and Aty > 0. There
exist constants 0 < p, getr < 1 such that

A} = pne(9F) + lo* = S¢1I> for (£,k) € Q
satisfies, for all £ € Ny, that
A< gAY forall0<k<k+1<k (6.68)
as well as
ALy < g AFTY fork=o0. (6.69)
Moreover, for all (', k'), (¢, k) € Q, it holds that
A < N o o)

provided that (', k') > (L, k), kK < k({'), and k < k(¢).
The constants 0 < 1, qetr < 1 depend only on Acir, 0, Gpeg, and the constants in (A1)—(A3).

Proof. The proof is split into five steps.

Step 1. We fix some constants, which are needed below. We note that all these con-
stants depend on 0 < 6 < 1 and Aqr > 0, but do not require any additional constraint.
First, define

0 < (@est:=1- (1 - Qred) 6> < 1. (671)

Second, choose v > 0 such that

(6.71)
(1+7)gest < 1. (6.72)
Third, choose p > 0 such that
-1 2 2 1- qzcg ) 1
p(1+777) gest Cipy (1 + gpeg)” < — and pA, < 3 (6.73)
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Fourth, choose € > 0 such that

_ _ 1
e (1= gpeg) 2 +2e 0y C3pp (1 — gpeg) > < B and 2¢Chy < (1—e)p. (6.74)
Fifth, choose k > 0 such that
(6.72) 1—¢2.
2kC% < (1= (1+47)gest) p and 2kC% C%y < 2qp g (6.75)

With (6.73)-(6.75), we finally define

0< Getr = ma’X{l —&, (M(1+7)Qest +2’£Cr2el)uil7 1- K,
(6.76)

(iu (1 + 7_1) Gest C;,th (1 + qug)2 + q1:2)cg +2k Cl?elCSth)} <L

Step 2. Due to reliability (A3), stability (A1), and Lemma 73(iii), it follows that

llo* — @5l1* = (1 —e)ll¢* — d4lI* + e llo* — I

(A3)

< (L=o)ll¢* = @7 + e Cry me(¢7)?
(A1)

< (L—e)llg™ = GilI° + 2 Chy (ne(0f)* + Cp, 107 — ¢4 1I°)
73(iii)

< (L=9)ll¢* — ¢7l + 2 Chyme(9)”

2k
+2eChy Cp, (1= gpeg) 2165 — 1.

Step 3. We consider the case k+1 < k(¢). The stopping criterion (6.30) of Algorithm 57
yields that

ne(@y ™) < Aatller ™ — et (6.77)
Moreover, the Pythagoras identity (6.67) implies that

k k k k
oy — o517 = lloy — &FI1° — llgg ™ — o2l

. N (6.78)
= (1 =) ll¢7 — ¢FI* +ellgr — o717 = llgg ™t — of11>.
Further, we note the Pythagoras identity
llo* = S lI* + 67 — ell® = l6™ — el for all 4y € P(Te). (6.79)

Combining (6.77)-(6.79) and applying Lemma 73(iii), we see that

AR = (@52 4 ok — 5T + 1ot — @12
<(1-e)llg; — s£1I> + < ot — 4112
+ (A = Dlof ™ = @517 + llo* — 412
73(iii

)
< (1-o)llg; - ot
+ (e (1= gpeg) 2 + g = Dllgg™ = oflI” + o™ — o711,
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Step 2 further yields that

AL < (=) (07 — dF I + llo* — ¢7lI?) + 2 Chame(0f)?

re

+ (e (1= gpeg) 2 + pAcy — 14+ 26 Oy O, (1= gpeg) )05+ — o117

Using (6.73)—(6.74), (6.79), and (6.76), we thus see that

AR+ (6'73);(6'74 1— x k2 *x a2 1— k\2
¢ < (A=e)(ler = &ill” + o™ — dill*) + (1 =€) wne(ef)
(6.79)
< (1 =) (pne(f)? + llo* — o¢11%)
(6.76) .
S qctr Aé?

if K+ 1 < k(¢). This concludes the proof of (6.68).
Step 4. We use the definition ¢2+1 = qb% from Step (iv) of Algorithm 57 to see that

Appr = uner1(dp1)” + 16" — o II?
k k
= uier1(60)* + o™ — o lI”.

For the first summand of (6.80), we use stability (A1) and reduction (A2). Together with
the Dorfler marking strategy in Step (iii) of Algorithm 57 and My C Ty\Tyy1, we see that

(6.80)

e+ (052 = N1 (Ter1\Ta, )2 + s (Ton N Tos 05)°
(A]>_(‘_\2) k 2 k 2
< Ged Me(Te\Tex1, 09)" + 1e(Ter O Te, &)
= (¢ — (1~ drea) 7e(TE\ Te1, 6¢)° (6.81)
(6.31) ko ) ko
< (@) — (1 — Grea)0” me(9y)
(621) Gest ﬁ£(¢%)2

With this and stability (A1), the Young inequality and Lemma 73(ii) yield that

(6.81)
M1 (652 < est me(95)?
(A1) _ _ _
(14 7) dest (052 4+ (1 + 771 qess C2p 105 — 072

(1 +7) est (5712

B k—1
+(1+77") gest Copy (14 gpeg)” 167 — 67 I

Al
= (6.82)
73(ii)
<

For the second summand of (6.80), we apply the Pythagoras identity (6.79) together with

Lemma 73(i) and obtain that

>* (679) * * >*
o — 51> V27 ler — G512 + ot — o211 53
730) * * 112 2 * kE—1p2 ( . )
< 16" = 511 + g 0% — 512
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Combining (6.80)—(6.83), we end up with

k k
Ay = pnes1(99)? + [|¢* — o712
k—1
< (1 +7) gest me(dy)?
_ k—1
+ (47" Gest Cop (14 apeg)® + ) 107 — & IP + o — o411

Using the same arguments as in Step 2, we get that

A?H S (1 47) Gest 77£(¢%_1)2
(0 (1770 gest O2p (1 + dpeg)® + Peg) 107 — 0712
+ (1= r)l¢" — Sl + 2K C2me(ey ) + 26 CL CRy 07 — o 12
= (1 (1+7) Gest + 25 C2) me(dE )2 + (1= w)[l¢* — 312

_ k—1
+ (:LL (1 + Y 1) Gest CSth (1 + QPCg)Q + qgcg + 2K CzelcSth) H|¢z - ¢Z ”|2
(6.76) k—1\2 * * (12 * k—1y12
< Qetr /“flj(d)g ) + Qetr H|¢ - ¢£ |” + Qetr H|¢K - d)g H|
6.79 _
( :( ) Gctr A% 1'

This concludes the proof of (6.69).
Step 5. Inequality (6.70) follows by induction. This concludes the proof. O

Proof of Theorem 68(b). The proof is split into three steps.
Step 1. Let ¢ € N. Recall the Pythagoras identity (6.79). We use stability (Al) and
the stopping criterion (6.30) of Algorithm 57 to see that

—1 (6.79) - * - " *
AFTUEY e + oy — o IR + ot — o112

(A1) B
< (¢ + [loF — o2 + oy — el + llo* — 11
(620) k\2 * k2 * * 112
S m(oB)? + 65 — ofI% + et — il

With the Pythagoras identity (6.67), we argue similarly to obtain that

k (6.79) k " k * *
Ay =7 (89 + 7 — ¢l + llo™ — 7117
(A1) B 3
< melog D2+ llog — a8 1P + oy — ol + Nl — ol
(6.67) _ _
=7 (o 2 + ot — of 1P + Nt — o5l
(6.79) A%_l.

Hence, it follows that A% ~ A%_l.
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6 Adaptive BEM for elliptic first-kind integral equations with optimal PCG solver

Step 2. TFor 0 < ¢ </, define /k\(ﬁ) .=k € Ny by

£ k() ife<,
K if 0=/,

From Step 1, Lemma 74, and the geometric series (for the sum over k), it follows that

0 ¢ ko
P DIUREIIGENS o S8
(=0 k=0 =0 k=0
670, £ Ho1 (R—1)|-|(e.8)]
< @YY Al S
(=0 k=0

v
SAR)T+Y (AT
=0

For k' < E(¢"), inequality (6.70) and the geometric series (for the sum over £) yield that
e o -

Ak g S I a1 g (Al

=0 =0

For k' = k(¢'), inequality (6.70), the geometric series, and Step 1 yield that

I e’—1
=0
6<’0 — (¢ k—1)|—| (L k—1)| AL-1y-1
~ <1+Z Qetr )( ya )
=0
S@ghT
~ (M)
= (A"
Overall, it follows that
1 E(f)
> “L<(ARYTY forall (¢,K) € Q. (6.84)
£=0 k:O

Step 3. For the convenience of the reader, we recall an argument from the proof
of [CFPP14, Lemma 4.9]: Let s > 0. Let C' > 0 and «, > 0 satisfy that

S, <Cay!/t forall NeN.
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Then, it holds that
(1+c7t Za*1/5<2a Vs 4oy = Za;l/s for all N € N.

Inductively, it follows that

N+m
(1+C1 Za*”wza /5 for all N,m € N.

This implies that

_1/5 < Zafl/s
N+m

(1+4+cCc1 Za_l/s

<(14+0)A+C ) mays
for all N,m € Ny. This is equivalent to
i (14O L+ O M ay”

Step 4. Since the index set Q is linearly ordered with respect to the total step counter
|(-,-)], Step 2 and Step 3 with s = 2 imply the existence of 0 < gy, < 1 such that

/ KN~ (4K
(A2 S iy T (a2 (6.85)

for all (0,k), (¢, k') € Q with (¢, ') > (£, k). Clearly, it holds that Ak ~ (A¥)1/2 for all
(¢, k) € Q. This and (6.85) conclude the proof. O

Proof of Theorem 68(c)

As in Chapter 4, the proof of optimal convergence rates requires the assumptions (R1)-
(R3) on the mesh-refinement strategy. For 3D BEM (with 2D NVB from Section 3.6)
and 2D BEM (with extended 1D bisection from Section 3.5) these properties are fulfilled,
cf. Section 3.5 and Section 3.6 respectively.

Recall the constants Cytap, > 0 from (A1) and Cgy > 0 from (A4). Suppose that 0 < 6 <1
and Acty > 0 are sufficiently small such that

0 + Actr/)\opt
1-— /\ctr/ )\opt

1/2

0<0 .= < Oopt = (1+C2, CT) 7, (6.86)

where

Apcg -1
Aopt 1= (C’ 7) .
opt stab 1_ peg
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6 Adaptive BEM for elliptic first-kind integral equations with optimal PCG solver

In particular, it holds that 0 < 6 < fypt and 0 < Actr < Agpt- We need the following
comparison lemma which is found in [CFPP14, Lemma 4.14].

Lemma 75. Suppose (R2), (Al), (A2), and (A4). Recall the assumption (6.86). There
exist constants C1,Co > 0 such that for all s > 0 with ||¢*||a, < 0o and all £ € Ny, there
exists Re C Tp which satisfies

#Re < GOy 0¥ el )7, (6.87)

as well as the Dérfler marking criterion
0"ne(d7) < ne(Re, ¢7)- (6.88)
The constants C1,Ca depend only on the constants of (A1), (A2), and (A4). O

Another lemma, which we need for the proof of Theorem 68(c), shows that the iterates
(bi? of Algorithm 57 are close to the exact Galerkin approximation ¢j € PUTy).

Lemma 76. Let 0 < Actr < Aopt- For all £ € Ny, it holds that

* k dpcg : k 1 *
— < Actr ) . 6.89
67 = ¢¢ll < Actr 77 e {nzw 1 — Aetr/Aopt ww} (6.89)
Moreover, there holds equivalence
(1= et/ Ropt) e(65) < 1e(67) < (14 Aete/Aopt) me(5). (6.90)

Proof. Stability (A1) yields that

k k
7e(97) — ne(9y)] < Cstan |07 — ¢4 ll-
Therefore, Lemma 73(iv) and the stopping criterion (6.30) of Algorithm 57 imply that

k 73(iv) q k k1
16F - bl < gk - g
Apcg
(6.30)

q k
< Actr 1 _p;g W(@bz)
pcg

(A1)

q C * *
< Netr —2E— (no(67) + Catab 16 — 051)).
1 — gpeg

Since 0 < Actr < Aopt and hence

q
)\ctr Cstab e = )\ctr/)\opt < 17
1 = gpeg

this yields that

Adpcg
k I T—gpeg *
llg7 — ¢ ll < = 1e(97)
¢ ¢ 1- )\ctr C'stab &Tgcg ¢
dpcg 1 *
= At 0(9r)-
- Qpcg 1- )\ctr/Aopt K ( E)
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6.5 Main results

Altogether, this proves (6.89). Moreover, with stability (A1), we see that

* (A1) k * k
ne(¢7) < 772((;52) + Cstan |97 — ¢ZH|
(6.89) L
< (1 + )‘ctr/>‘0pt) 7]€(¢Z)

as well as

(A1)
<
(6.8

<

1e(6%) + Ctan 165 — 60X

9) Actr/)\o t
1 1% *
<+vwmmﬁmm)

1 *

1e(67)

This concludes the proof.

The following lemma immediately shows “<=" in (68).

Lemma 77. Suppose (R1). For ¢ € Ny, let 7A2+1 = refine(ﬁ,ﬁ/l\g) with arbitrary, but
non-empty My C Ty and To = To. Let Q C Ng x Ny be an index set and ¢ € P(Ty) for all
(6,k) € Q. Let s >0 and suppose that the corresponding quasi-errors A} := ([|¢* — ¢5||* +

ﬁe($§)2) 1/2 satisfy that

sup (#’7} — #T0+ I)SJAX? < 0.
(t,k)ed

Then, it follows that ||¢*||a, < 0.

(6.91)

Proof. Due to the Pythagoras identity (6.79) and stability (A1), it holds that

(RE)* = llg* — GFII* + 7e(9F)?
(6.79) * T x 7 ~ 7
=7 lo" = &7 + oy — SEI* + ()
(A1 ~ 1T\ 2
2 (7).
Additionally, [BHP17, Lemma 22] shows that
#Te —#To+ 1 < #To < #To (#Te —#To+1) forall 7, €T.
Given N € Ny, there exists an index £ € Ny such that

BT — #To < N < N+1< #Tp1 — #T0 + 1

(6.93) . (R1) __ (6.93)

< H#Tom S #T S #T—#To+ 1.

(6.92)

(6.93)

(6.94)
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With (6.92)—(6.94), it follows that

(6.94) N
N 1 S : . : < _ 1 S~ *
(N + )T'Ergigem)n (03) S (#Te—#To+ 1) 0e(97)
H#Te—#To<N
(6.92) R o~
< sup (#T0— #To+1)"Af
(tk)ed
(6.91)
< 0Q.

Since the upper bound is finite and independent of N, this implies that |[¢*||a, < oco. O

Proof of Theorem 68(c). With Lemma 77, it only remains to prove the implication
“—" in (68). The proof is split into three steps, where we suppose that ||¢*||a, < oo.

Step 1. By Assumption (6.86), Lemma 75 provides a set Ry C Ty with (6.87)—(6.88).
Due to stability (A1) and AL = Cyp, —2%— | it holds that

opt = 1—gpcg
L (A i o
ne(Re, ;) < ne(Re, &) + Cawn |67 — &4l
(6.89)

< e (R& Qs%) + Actr/)\opt W(¢%)

Together with 0”n¢(¢7) < me(Ry, ¢5), this proves that

(6.90)
(1= Actr/Aopt) 0" ne(85) < 0" ne(85)
< (R, ¢7)
< 1e(Re, 85) + Aetr/ Aopt ne(6)
and results in

0me(0F) = (1= At/ Nop)0" = Nets/Aopt ) me(0F) < (R ). (6.95)

Hence, R, satisfies the Dérfler marking for ¢§ with parameter 6. By choice of My in
Step (iii) of Algorithm 57, we thus infer that

(6.95) (6.87) (6.90)
#Me S H#HRe S melep) V= m(qﬁf)’l/s for all ¢ € Ny.

The mesh-closure estimate (R3) guarantees that

(R%) f*l Z*l
#To—#To+1 < > #M; <D 0@~ forall £>0. (6.96)
=0 =0
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Step 2. For ¢ = 0, it holds that 1 < (Ak)_l/s. For ¢ > 0, we proceed as follows:
Remark 69 yields that nj(qb = A Theorem 68(b) and the geometric series prove that

-1 -1
Z —1/s Z —1/s
Jj=0 Jj=0

(6.64) £=1

Combining this with (6.96) and including the estimate for £ = 0, we derive that
#To—#To+ 1S (A5 for all £ € Np. (6.97)
Step 3. Arguing as in (6.94) and employing Theorem 68(b), we see that

NP O Y
#Ti — #76+1 #72 1—#To+1 5 (M)~ < (A7

for all (¢,k) € Q with £ > 0. Since k(0) < #7 < oo, we hence conclude that

sup (#Te — #To+1)° AL? < 00.
(¢,k)eQ

This concludes the proof of Theorem 68. O

6.5.5 Almost optimal computational complexity

In order to get an efficient implementation, we suppose that we use H?-matrices for the
efficient treatment of the discrete single-layer integral operator. Then, the storage require-
ments (and the cost for one matrix-vector multiplication respectively) of an H2-matrix are
of order O(Np?), where N is the matrix size and p € N is the local block rank. For
H2-matrices (unlike H-matrices), these costs are, in particular, independent of a possibly
unbalanced binary tree which underlies the hierarchical data structure [Hacl5].

For a mesh 7, € T, we employ the local block rank p = O(log(1 + #7,)) to ensure that
the matrix compression is asymptotically exact as N = #7T, — 00, i.e., the error between
the exact matrix and the H-matrix decays exponentially fast, cf. [Hac15]. We stress that we
neglect this error in the following and assume that the matrix-vector multiplication (based
on the H2-matrix) yields the exact matrix-vector product.

The computational cost for storing Ae (as well as for one matrix-vector multiplication)
is O((#74)log?(1+#7,)). In an idealized optimal case, the computation of ¢} is hence (at
least) of cost O((#7)log?(1 + #T4)).

We consider the computational cost for one step of Algorithm 57:

o We assume that one step of the PCG algorithm with the employed optimal precon-
ditioner is of cost O((#7e) log®(1 + #7T7)), since the evaluation of one matrix-vector
multiplication with the preconditioner Py, can be done in (’)(#TL), cf. Section 6.5.1.
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6 Adaptive BEM for elliptic first-kind integral equations with optimal PCG solver

e We assume that we can compute 1,(10;) for any v, € P°(T;) (by means of numerical
quadrature) with O((#7;)log?(1 + #7;)) operations.

e Clearly, the Dérfler marking in Step (iii) can be done in O((#7;) log(1+#T7,)) opera-
tions by sorting. Moreover, for Cak = 2, Stevenson [Ste07] proposed a realization of
the Dérfler marking based on binning, which can be performed at linear cost O(#7;).

e Finally, the mesh-refinement in Step (iv) can be done in linear complexity O(#7;) if
the data structure is appropriate.

Overall, one step of Algorithm 57 is thus done in O((#7T;) log®(1 + #7;)) operations. How-
ever, an adaptive step (¢, k") € Q depends on the full history of previous steps.

e Hence, the cumulative computational complexity for the adaptive step (¢, k') € Q is
of order

O( Y #T)log*(1+#Ty)).

(LR)<(CK)

The following corollary proves that Algorithm 57 does not only lead to convergence of the
(uasi-error A’g with optimal rate with respect to the degrees of freedom (see Theorem 68),
but also with almost optimal rate with respect to the computational costs.

Corollary 78. For ¢ € Ny, let ’7AZ+1 = refine(’?, .//\/\lg) with arbz’tﬁary M\g - 7AZ and 7AE) =Tp.
Let s > 0 and suppose that the corresponding error estimator 1y(¢;) converges at rate s with
respect to the single-step computational cost, i.e.,
sup [(#7¢) 1og®(1 + #70)]" 1e(¢7) < oo. (6.98)
€No
Suppose that Aty and 0 satisfy the assumptions of Theorem 68(c). Then, the quasi-errors

A]g generated by Algorithm 57 converge almost ot rate s with respect to the cumulative
computational cost, i.e.,

2 STE K
sup S (#T) log?(1 + #7;))} A < oo foralle > 0. (6.99)
(ERIEQ ™ @< )

Proof. For all § > 0, it holds that

6.93
470 — 375 +1 2 BTL < (BT log? (1 + #72) S (#Ta)' 0 forall Ty € T,
where the hidden constant depends only on ¢. From (6.98), it thus follows that

sup [#7; — #To + 1]° e(0F) < sup [(#70) log?(1 + #7T0)]° () < oo.

£eNg £eNp

From Lemma 77, we derive that ||¢*||a, < co. Hence, Theorem 68(c) yields that

sup [#7¢)°Af ~ sup [#T0 —#To +1]° A} < 0. (6.100)
(L,k)eQ (6,k)eQ
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Let 0 < € < s and choose § > 0 such that

S

=:t.
1+6

O<s—e=

This leads to

(6.100)
(#T0)log?(1+#T0) S #T)'™ < (A7 = A7V for all (6,k) € Q
From Theorem 68(b) and the geometric series, it follows that
k\—1/t (664 L/t (0 k)|~ | (6k)| f A K/ \—1/t E'\—1/t Ty
Y. (A S > (@) HHAG) TS (Ap) for all (¢, k) € Q.
(LR)<(€ k") (LR)<(C,K)
Combining the last two estimates, we see that
S (#T)log?(1 + #7;))}“ < (AR)=6=9/t — (AR~ for all (¢, &) € Q.
(LR)< (k)

This concludes the proof. O

6.6 Hyper-singular integral equation

In this section, we briefly introduce the setting of the hyper-singular integral equation and
show that it fits into our abstract framework and that the main results still hold true.
Given g: I' — R, the hyper-singular integral equation seeks v* : I' — R such that

(Wu*)(x) = —On(a) / On()G(z —y)u*(y)dy = g(x) forallz €T, (6.101)
r

where 0y, denotes the normal derivative with the outer unit normal vector n(-) on I' C 9.
Recall from Remark 55 that the hyper-singular integral operator

W - f_j’l/2+s<r) N H71/2+8(P)

is a bounded linear operator for all —1/2 < s < 1/2 which is even an isomorphism for
—1/2 < s < 1/2. For s = 0, the operator W is symmetric and positive semi-definite
with kernel being the constant functions. Hence, for T' G 0Q, the operator W: HY2(I') —
H~1/2(T) is an elliptic isomorphism. Moreover, for I' = 9Q and

HY(D) = {p € HEVA(D) : (), 1) = 0},

1

the operator W: H*/2(F) — H*_l/z(I‘) is an elliptic isomorphism. Therefore,

( ) e (Wu, v), if I' G 09,
Y W, o) (u, v), BT = 00

185



6 Adaptive BEM for elliptic first-kind integral equations with optimal PCG solver

defines a scalar product on H/? (T"), and the induced norm
llull == (u, w)'/?

is an equivalent norm on HY2(T"). Let g € H~Y2(I'). If T G 09, suppose additionally that
g € H*_l/2(8(2). Then, (6.101) admits unicue solutions u* € H'Y2(I') and u* € Hiﬂ(aQ)
respectively, such that u* € H/2 (T") is also the unique solution of the variational formulation

(u*,v) =(g,v) forallve H/*T).
Given a mesh 7, of T, let
SUT,) = {ve HY2(T) : VT € T vy is affine }.
The Lax-Milgram theorem yields existence and uniqueness of u} € S* (7s) such that
(uk, ve) = (g, ve) for all vy € SY(Ta).

With the corresponding weighted-residual error estimator, it holds that

1/2
o = il < Cretma(ul) = ( S (T, u:>2> 7

TeTe

where
ne(T,u})? :=hrlg - Wu:”%?(T)a

cf. [CS95, Car97] for d = 2 and [CMPS04] for d = 3 respectively.

In |Fith14, FFPS17a], optimal additive Schwarz preconditioners are derived for this set-
ting. Hence, Algorithm 57 can also be used in the present setting. We refer to [FFK 15,
Section 3.3] for the fact that the azioms of adaptivity, i.e., (A1)—(A4) from Proposition 70
remain valid for the hyper-singular integral equation. All other arguments in Section 6.5.4
rely only on general properties of the PCG algorithm (Section 6.5.4), the properties (Al)-
(A4), and the Hilbert space setting of || - ||. Overall, this proves that our main results
(Theorem 68 and Corollary 78) also cover the hyper-singular integral equation.
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6.7 Numerical experiments

6.7 Numerical experiments

In this section, we present numerical experiments that underpin our theoretical findings. We
use lowest-order BEM for direct and indirect formulations in 2D as well as 3D. For ease of
notation, we define A := A, for this section. We compare the performance of Algorithm 57
for

e different values of A € {1,107%5,1071,...,107},
e different values of 6 € {0.05,0.1,0.15,...,1},

where 6§ = 1 corresponds to uniform mesh-refinement. In particular, we monitor the condi-
tion numbers of the arising BEM systems for diagonal preconditioning [AMT99], the pro-
posed additive Schwarz preconditioning from Section 6.5.1, and no preconditioning. The
2D implementation is based on the MATLAB implementation HILBERT [AEFT14], while
the 3D implementation relies on an extension of the BEM+ library [SBAT13].

6.7.1 Slit problem in 2D

Let I' := (—1,1) x {0}, cf. Figure 6.2. We consider the weakly-singular integral equation
V=1 onl. (6.102)

The unique exact solution of (6.102) reads

2z

¢*(x,0) := et

For uniform mesh-refinement, we thus expect a convergence order of O(N~1/2), while the
optimal rate is O(N ~3/2) with respect to the number of elements.

Figure 6.2 shows the condition numbers for an artificial refinement towards the left end
point (—1,0) and for Algorithm 57 with A = 1072 and # = 0.5. For the proposed additive
Schwarz preconditioner, we see that the condition number of the preconditioned Galerkin
matrix stays uniformly bounded in both cases, which underpins Theorem 60.

In Figure 6.3-6.4, we compare Algorithm 57 for different values for 6 and A\ as well as
uniform mesh-refinement. Uniform mesh-refinement leads only to the rate O(N~/2), while
adaptivity, independently of the value of 6 and ), regains the optimal rate O(N—3/2).

In Figure 6.5, we compare the computational cost to reach the precision 7 = 10~* for
A€ {1,107%5,...,1074} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best
choice is A = 1 and # = 0.65. For the overall computational cost it then holds that

> (#7Te)log?(#Tw) ~ 353116.2086,

(€K< (4,k)

where qb% is the first approximation such that ng(gb%) <1074
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Slit in 2D
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Figure 6.2: Example from Section 6.7.1 (Slit problem in 2D): Condition numbers of the pre-
conditioned and non-preconditioned Galerkin matrix for an artificial refinement
towards the left end point (top) and for the matrices arising from Algorithm 57
(bottom).

188



6.7 Numerical experiments

Slit in 2D
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Figure 6.3: Example from Section 6.7.1 (Slit problem in 2D): Estimator convergence for
fixed values of A\ (left: A = 1, right: A = 1073) and 6 € {0.2,0.4,0.6,0.8}

(top) and for fixed values of 6 (left: 6 = 0.4, right: 6 = 0.6) and \ €
{1,107,...,107*} (bottom).
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T T T T T T T T T T T T T T T T T T TTTT
100 - - unif., A=10"% 4
< 107t} o T E
;5 i Te O(N-/2)
g 107
g i i
'g 10-3 | —o-0=0.1,A=10"3 -
5 -+ 0=03,A=10"" ]
5 10— | —v—0=05A=10""° ]
- >0 =07,A=10""°
= 0=09,A=10""° O(N—3/2) "~ :
10~° & Lol Lol Lol Lol NN
10t 102 103 10* 10°
number of elements N
Slit in 2D
102§ T T T T TTTTTH
i -o-unif.,, A=1 |
10" b -4 unif., A=10""
a3 g - - unif., A = 1072 .
s 10 g - umif., A =10"°
S 10_1; Lot A=107"
g Tl T
E 10-2) o oWy
7 e 0=06 =1
5 1073 —*+60=06,A=10" :
3 v 0=06,A=10"2 |
107 a9 =06, A=10"" Ny £
| TOTUSASNT  owm T
10t 102 103 10* 10°
number of elements N
Figure 6.4: Example from Section 6.7.1 (Slit problem in 2D): Estimator convergence for
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fixed values of A\ (left: A = 1, right: A = 1073) and § € {0.2,0.4,0.6,0.8}
(top) and for fixed values of 6 (left: 6 = 0.4, right: 6 = 0.6) and \ €
{1,107%,...,107%} (bottom).
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Figure 6.5: Example from Section 6.7.1 (Slit problem in 2D): Overall computational cost
2o <ok #HTer) log?(#7¢) such that ng(gb%) < 7 for given precision 7 = 1074,
A€ {1,107%5 ... 1074}, and 6 € {0.05,0.1,...,0.95}.
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Figure 6.6: Z-shaped domain  C R? with initial mesh 7y (top) and L-shaped domain
Q) C R? with initial mesh 7y (bottom).
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Z-shaped domain in 2D
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Figure 6.7: Example from Section 6.7.2 (Z-shaped domain in 2D): Estimator convergence
for fixed value of A = 1073 and 6 € {0.2,0.4,0.6,0.8} (top) and for fixed value
of # = 0.6 and A € {1,107%,..., 107} (bottom).
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Figure 6.8: Example from Section 6.7.2 (Z-shaped domain in 2D): Condition numbers of the preconditioned and non-
preconditioned Galerkin matrix for an artificial refinement towards the reentrant corner (top) and for Algorithm 57

(bottom), where A = 1073 and 6 = 0.5.
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Figure 6.9: Example from Section 6.7.2 (Weakly-singular integral equation on Z-shaped
domain in 2D): Overall computational cost > < (ox) (#7e) log?(#7Ty) such

that ng(d)%) < 1 for given precision 7 = 1074 X € {1,107%5,...,107%}, and
6 € {0.05,0.1,...,0.95}.
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6.7.2 Weakly-singular integral equation on Z-shaped domain in 2D

Let I' := 09 be the boundary of the Z-shaped domain with reentrant corner at the origin
(0,0), cf. Figure 6.6 (top). We consider the weakly-singular integral equation (6.11) with
the right-hand side f = (K + 1/2)g where K: HY/?(T) — HY2(T') is the double-layer
operator from Section 6.2.1. We note that the weakly-singular integral equation (6.11) is
then equivalent to the Dirichlet problem

—Au=0 1in

i—g onT (6.103)
We prescribe the exact solution u(z1, z2) in 2D polar coordinates
(x1,m2) = r(cos&,sin) with &€ (—m, )
as follows
w(wy, w) =17 cos(4£/7). (6.104)

Then, v admits a generic singularity at the reentrant corner. The exact solution ¢* of (6.11)
is just the normal derivative of the solution w.

We expect a convergence order of O(N —4/ 7 for uniform mesh-refinement, and the optimal
rate O(N~3/2) for the adaptive strategy, which is seen in Figure 6.7 for different values of
6 and .

Figure 6.8 shows the condition numbers for an artificial refinement towards the reentrant
corner as well as the condition numbers for Algorithm 57 with A = 1072 and 6 = 0.5.

In Figure 6.9, we compare the computational cost to reach the precision 7 = 10~* for
A€ {1,107%5,...,107%} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best
choice is A =1 and § = 0.8. For the overall computational cost it then holds that

> (#Tw)log®(#Tw) ~ 105563.4255,
(€ k)< (e k)

where gf)% is the first approximation such that T]g((b%) <1074

6.7.3 Hyper-singular integral equation on L-shaped domain in 2D

Let T := 092 be the boundary of the L-shaped domain with reentrant corner at the origin
(0,0), cf. Figure 6.6 (bottom). We consider the hyper-singular integral equation (6.101) with
the right-hand side g = (1/2— K’)¢ where K': HY/2(T') — H~Y/2(T) is the adjoint double-
layer operator from Section 6.2.1. We note that the hyper-singular integral equation (6.101)
is then equivalent to the Neumann problem

—AP=0 in{

(6.105)
OnP=¢ onl.

We prescribe the exact solution P(z1,z2) of the Laplace problem in 2D polar coordinates

(x1,m2) = r(cos&,sin) with ¢ € (—m,m)
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L-shaped domain in 2D
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Figure 6.10: Example from Section 6.7.3 (L-shaped domain in 2D): Estimator convergence

for fixed value of A = 1072 and @ € {0.2,0.4,0.6,0.8} (top) and for fixed value
of = 0.6 and A € {1,107%,...,107} (bottom).
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L-shaped domain in 2D
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Figure 6.11: Example from Section 6.7.3 (L-
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well as a fixed value of A = 1072 and 0 € {0.2,0.4,0.6,0.8} (bottom).

shaped domain in 2D): Number of PCG iter-
ations in Algorithm 57 for nested iteration (dashed lines), i.e., ug 1= u% in
Step (iv) of Algorithm 57, and naive initial guess (solid lines), i.e., u) ; := 0.
We compare a fixed value of § = 0.4 and A € {1,107!,1072,1073} (top) as
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Figure 6.12: Example from Section 6.7.3 (Hyper-singular integral equation on L-shaped
domain in 2D): Overall computational cost > <o) (#7er) log?(#7) such

that W(u%) < 7 for given precision 7 = 1074, X\ € {1,107%5 ... 107*}, and
0 € {0.05,0.1,...,0.95}.
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6 Adaptive BEM for elliptic first-kind integral equations with optimal PCG solver

as follows
P(x1,22) := r?3 cos(2£/3). (6.106)

Then, ¢ is just the normal derivative of P which has a generic singularity at the reentrant
corner. The exact solution u* of the hyper-singular integral equation (6.101) is simply the
restriction of the function P to the boundary I minus the integral mean of P on I'.

We expect a convergence order of O(N~2/3) for uniform mesh-refinement, and the optimal
rate O(N~3/2) for the adaptive strategy, which is seen in Figure 6.10 for different values of
6 and .

A naive initial guess in Step (iv) of Algorithm 57 (i.e., if uy,, := 0) leads to a logarithmical
growth of the number of PCG iterations, whereas for nested iteration u} = u% the number
of PCG iterations stays uniformly bounded, cf. Figure 6.11.

In Figure 6.12, we compare the computational cost to reach the precision 7 = 10™* for
A€ {1,107%5,...,107*} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best
choice is A =1 and 6 = 0.7. For the overall computational cost it then holds that

S (#70) log? (#7T0) ~ 909751021,
(k" <(L,k)

where u% is the first approximation such that ng(u%) <107

6.7.4 Weakly-singular integral equation on L-shaped domain in 3D
Let ' := 09 be the boundary of the L-shaped domain

Q= (=1,1)*\([~1,0] x [0,1] x [~1,1]),

cf. Figure 6.13. We consider the weakly-singular integral equation (6.11) with the right-
hand side f = (K 4 1/2)g where K : H'/?(T') — H'Y2(I) is the double-layer operator from
Section 6.2.1. Again, the weakly-singular integral equation (6.11) is then equivalent to the
Dirichlet problem

—Au=0 in Q
(6.107)
u=g¢g onl.
We prescribe the exact solution w(z1,x2,23) in 3D cylindrical coordinates
(x1,x9,23) = (rcos§,rsing,x3) with £ ¢€ (—m,m)
as follows
w(w1, T, w3) = 23723 cos(2/3 (€ — w/4)). (6.108)

Note that v admits a singularity along the reentrant edge. The exact solution ¢* of (6.11)
is just the normal derivative of the exact solution w.

Figure 6.13 shows the condition numbers for (diagonal or additive Schwarz) precondi-
tioning and no preconditioning for artificial refinements towards one reentrant corner or the
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L-shaped domain in 3D
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Figure 6.14: Example from Section 6.7.4 (L-shaped domain in 3D): Estimator convergence
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for fixed values of A = 1073 and 6 € {0.2,0.4,0.6, 0.8} (top) and for fixed value

of # = 0.6 and A € {1,107%,...,107*} (bottom).



6.7 Numerical experiments

reentrant edge as well as the condition numbers of the matrices arising from Algorithm 57
with A = 1072 and 6 = 0.5.

In Figure 6.14, we compare Algorithm 57 with different values for § and A to uniform
mesh-refinement. Uniform mesh-refinement leads only to a reduced rate of O(N~1/2),
while adaptivity, independently of § and A, leads to the improved rate of approximately
O(N~2/3). While one would expect O(N~3/%) for smooth exact solutions ¢*, this would
require anisotropic elements along the reentrant edge for the present solution ¢* = O,u.
Since NVB guarantees uniform ~-shape regularity of the meshes, the latter is not possible
and hence leads to a reduced optimal rate.

In Figure 6.15, we compare the computational cost to reach the precision 7 = 10~2 for
A€ {1,107%5,...,107*} and 6 € {0.05,0.1,...,0.95}. As a result, we get that the best
choice is A = 1 and # = 0.8. For the overall computational cost it then holds that

ST (#T0) log2(#70) ~ 1067163.4947,
(e K= (k)

where qﬁf is the first approximation such that ng(gb%) <1072

6.7.5 Computational complexity

With Figure 6.16—6.17, we aim to underpin the almost optimal computational complexity
of Algorithm 57 (see Corollary 78). To this end, we plot the error estimator W(gf)%) over the
cumulative sums

> #Tw

(¢ ,k")<(&,k)

as well as

> (#Te) log®(#7Tw)

(€K <(&,k)

for 6 = 0.4 and A € {1,1073}. The negative impact of the logarithmic term on the
(preasymptotic) convergence rate is clearly visible.
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Figure 6.15: Example from Section 6.7 (L-shaped domain in 3D): Overall computational
cost Z(e/’k/)g(z,k)(#ﬁr)log2(#T/) such that 17@(¢§) < 7 for given precision
=102, A€ {1,107%5...,107*}, and 6 € {0.05,0.1,...,0.95}.
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Slit in 2D Z-shaped domain in 2D
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Examples from Section 6.7: Error estimator 7y of the last step of the PCG iteration with respect to the cumulative sum
2o <ok #HTer) log?(#7y) for the different experiments of Section 6.7 with # = 0.4 and A € {1,107',...,1074}.
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