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Kurzfassung

Zeitabhängige mikromagnetische Phänomene werden üblicherweise durch die nichtlineare
Landau–Lifshitz–Gilbert Gleichung (LLG) beschrieben. Die Dynamik von LLG wird vom ef-
fektiven Feld induziert, welches vom mikromagnetischen Energiefunktional abgeleitet wird,
meist gekoppelt an andere partielle Differentialgleichungen wie dem Maxwell-System.
Diese Dissertation behandelt numerische Herausforderungen der zuverlässigen und effi-

zienten Integration von LLG. Der Fokus liegt auf drei Familien von numerischen Finite-
Elemente-Verfahren, welche (unbedingt) gegen eine schwache Lösung von LLG konvergie-
ren: das Midpoint-Verfahren von Bartels & Prohl (2006), das Tangent-Plane-Verfahren von
Alouges (2008), und zwei Prädiktor-Korrektor-Verfahren von Kim & Wilkening (2018).
Wir erweitern das Tangent-Plane-Verfahren und das Midpoint-Verfahren auf allgemeinere

Energiebeiträge, sodass die nicht standardmäßige Dzyaloshinskii–Moriya Wechselwirkungs-
energie (DMI) abgedeckt wird, welche essenziell für die Enukleation und die Stabilisierung
von chiralen magnetischen Skyrmionen ist. Unsere Konvergenzanalysis ist konstruktiv und
zeigt die Existenz von schwachen Lösungen für LLG mit DMI, was — soweit wir wissen
— in der Literatur fehlte. Unsere numerischen Experimente deuten darauf hin, dass in den
meisten Szenarien das günstigere Tangent-Plane-Verfahren hinreichend genaue Simulatio-
nen ermöglicht. In einer vergleichenden numerischen Studie beobachten wir jedoch, dass für
sehr sensitive Dynamiken, welche wesentlich von einer akkuraten Energieevolution abhän-
gen, das Midpoint-Verfahren die zuverlässigsten Resultate liefert.
Wir formulieren und analysieren effiziente Strategien für die Lösung diskreter Systeme,

welche im Tangent-Plane-Verfahren oder im Midpoint-Verfahren vorkommen: Wir führen
die — soweit wir wissen — erste rigorose Analysis für das nichtlineare Midpoint-Verfahren
für dreidimensionalen Mikromagnetismus mit einer Newton-Linearisierung durch. Des Wei-
teren leiten wir für das nicht-symmetrische lineare Tangent-Plane-System, welches im zeit-
abhängigen diskreten Tangentialraum gestellt ist, mögliche Vorkonditionierungsstrategien
her, die zu linearer Konvergenz des vorkonditionierten GMRES-Algorithmus führen.
Für die Prädiktor-Korrektor-Verfahren von Kim & Wilkening schließen wir eine funda-

mentale analytische Lücke indem wir deren unbedingte Wohldefiniertheit zeigen. Unsere
Analysis deckt selbst den Fall eines verschwindenden Gilbert-Dämpfungsparameters ab.
Zusätzlich schlagen wir implizit-explizite Adaptionen der Verfahren vor, welche den Re-
chenaufwand drastisch reduzieren und dabei deren formale Konvergenzordnung erhalten.
Unsere theoretischen Beiträge werden stets durch numerische Experimente belegt und

weitergehend untersucht. Ein zentraler Punkt dieser Dissertation ist die Entwicklung eines
leicht zu benutzenden open-source Softwaremoduls für die Simulation von mikromagneti-
schen Phänomenen: Das Modul Commics basiert auf der Finite-Elemente-Bibliothek NGS-
olve, ist frei verfügbar auf GitLab, implementiert die in dieser Dissertation untersuchten
Finite-Elemente-Integratoren, und stellt ein Werkzeug zur Verfügung, um die Forschung
zur numerischen Integration von LLG zu verbessern und zu fördern.



Abstract

Time-dependent micromagnetic phenomena are usually described by the nonlinear Landau–
Lifshitz–Gilbert equation (LLG). The driving force of LLG is the effective field, which is
derived from the micromagnetic energy functional, usually coupled to other partial differ-
ential equations like the Maxwell system.
This thesis addresses some of the numerical challenges of the reliable and efficient integra-

tion of LLG. The focus is on three families of finite element-based numerical schemes that
are proven to be (unconditionally) convergent towards a weak solution of the problem: the
midpoint scheme by Bartels & Prohl (2006), the tangent plane scheme by Alouges (2008),
and two recent predictor-corrector methods by Kim & Wilkening (2018).
We extend the tangent plane scheme and the midpoint scheme to more general energy

contributions, covering the non-standard Dzyaloshinskii–Moriya interaction (DMI) energy,
which is the essential ingredient for the enucleation and the stabilization of chiral magnetic
skyrmions. Our constructive convergence analysis proves the existence of weak solutions in
presence of DMI, which — to the best of our knowledge — was missing in the literature.
Our numerical experiments hint that in most scenarios the cheaper tangent plane scheme
provides sufficiently accurate simulations. In a comparative numerical study we observe,
however, that for very sensitive dynamics crucially relying on an accurate energy evolution
the midpoint scheme yields the most reliable results.
We propose and analyze strategies for the efficient solution of discrete systems obtained

from the tangent plane scheme or from the midpoint scheme: We provide — to the best
of our knowledge — the first rigorous analysis of the nonlinear midpoint scheme for three
dimensional micromagnetics linearized by Newton’s method. Further, for the constrained
and non-symmetric linear system arising from the tangent plane scheme and posed in the
time-dependent discrete tangent space, we derive possible preconditioning strategies, which
guarantee linear convergence of the preconditioned GMRES algorithm.
For the predictor-corrector methods recently proposed by Kim & Wilkening, we close a

fundamental gap in the original work by establishing unconditional well-posedness of the
schemes. Our analysis even covers the case of a vanishing Gilbert damping parameter.
Moreover, we propose implicit-explicit versions of the predictor-corrector methods, drasti-
cally reducing the computational cost, while preserving the formal convergence order.
All our theoretical contributions are accompanied by supportive numerical experiments.

As a central element of the thesis, inspired by our theoretical findings, an easy-to-use open-
source software module for the simulation of micromagnetic phenomena is developed: The
module Commics is based on the multiphysics finite element library NGSolve, is freely
available on GitLab, implements the state-of-the-art finite element integrators discussed in
this thesis, and thus provides a means to enhance and promote research on the numerical
integration of LLG.
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1 Introduction

This thesis is concerned with the efficient numerical simulation of magnetization dynamics
in ferromagnets at sub-micrometer length scales, which is encountered in many technological
applications, like, e.g., magneto-resistive storage devices (HDD, MRAM), magnetic sensors,
and recording heads. At this length scale, ranging from few nanometers to micrometers,
singular magnetic structures like domain walls and vortices are resolved. At the same time,
the scale allows to average the atomic structure of a ferromagnet. A well-accepted descrip-
tion of this so-called continuum approximation or continuous medium approximation is the
nonlinear Landau–Lifshitz–Gilbert equation (LLG). Apart from the theoretical understand-
ing of magnetization dynamics, numerical integration of LLG plays an essential role in the
investigation and prediction of micromagnetic phenomena and hence in the improvement
of existing and the development of future magnetic devices.

1.1 On dynamical micromagnetism

A three-dimensional micromagnetic configuration inside some bounded Lipschitz domain
Ω ⊂ R3 is mathematically described by a vector field M : Ω → R3. If the temperature
is assumed to be constant inside the ferromagnetic medium Ω and far below the Curie
temperature, then the magnetization length is constrained to be uniform |M | ≡ Ms >
0 over all of Ω, where the constant Ms is the so-called saturation magnetization. After
normalization m := M/Ms, the micromagnetic state is solely described by the function
m : Ω→ S2 := {x ∈ R3 : |x| = 1}, which we call magnetization; see Section 1.3.1 below for
details on the nondimensionalization of the physical problem. Any such magnetization state
can be assigned a value E(m) ∈ R representing its micromagnetic energy, which comprises
several energy contributions specified in Section 1.2 below.
The most fundamental contribution to the micromagnetic energy functional is the so-

called exchange (energy) contribution

Eex(m) := A

∫
Ω
|∇m|2 dx , (1.1)

with the material-dependent exchange stiffness constant A (in J/m). This exchange energy
contribution models that neighbouring magnetic moments tend to align locally with each
other.
If the micromagnetic configuration m is not at equilibrium, a configuration (locally)

minimizing the micromagnetic energy E(m), then over time the magnetization is driven
towards such a (locally) minimal energetic state.
A well-accepted description of the magnetization dynamics up to time T > 0 is the phe-

nomenological Landau–Lifshitz–Gilbert equation (LLG) [Gil55, LL08], which in Landau–

1
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Lifshitz form reads

(1 + α2)∂tm = −m× heff(m)− αm× (m× heff(m)) in (0, T )× Ω. (LL)

Here, 0 < α ≤ 1 denotes the Gilbert damping parameter. The so-called effective field heff(m)
is given by the (rescaled) negative functional derivative of the system’s micromagnetic
energy

heff(m) := − 1

µ0M2
s

δE(m)

δm
, (1.2)

where µ0 = 4π · 10−7 N/A2 denotes the vacuum permeability. The system (LL) is endowed
with an initial condition

m(0) = m0 : Ω→ S2 in Ω, (1.3)

and natural boundary conditions that, in the exchange-only case E(m) = Eex(m), turn out
to be homogeneous Neumann boundary conditions on the parabolic boundary

∂nm = 0 on (0, T )× ∂Ω , (1.4)

where n : ∂Ω→ R3 denotes the outward-pointing unit normal vector on ∂Ω. In the litera-
ture, this setting, where all energy contributions but the exchange energy are neglected, is
referred to as small particle limit of LLG. In the mathematics community, this simplified
model is popular as it allows for a clear presentation of theory and new results. In par-
ticular, introducing the so-called exchange-length `ex :=

√
2A/(µ0M2

s ) (measured in m),
by (1.1) and (1.2) the exchange energy yields the highest-order (i.e., second-order) contri-
bution `2ex∆m of the effective field heff(m), and hence, this simplified model covers the
characteristic nature of LLG. Consequently, any micromagnetic model must cover at least
this fundamental energy contribution Eex(m).
The sole structure of (LL) gives insight on the evolution dynamics: Taking the scalar

product of (LL) with the magnetization m reveals the orthogonality

m · ∂tm = 0 in (0, T )× Ω. (1.5)

The immediate consequence ∂t(|m|2) = 2m · ∂tm = 0 shows that the evolution dynamics
is constrained, as the unit-length |m0| ≡ 0 in Ω is intrinsically preserved by (LL), i.e., the
magnetization always takes values on the unit sphere

|m(t,x)| = 1 for all (t,x) ∈ (0, T )× Ω. (1.6)

Geometrically speaking, the two terms on the right-hand side of (LL) describe the com-
bination of two effects: Considering a fixed point x ∈ Ω, the first term induces a precession
t 7→m(t,x) around the effective field t 7→ heff(m(t, ·))(x), while the second term describes
a damping t 7→m(t,x) towards heff(m(t, ·))(x). In combination we obtain a damped pre-
cession dynamics ofm around and towards heff(m) resulting in a relative spiral-like motion
until they align in the limit. This description is illustrated in Figure 1.1 for a coordinate
system aligned with the effective field. We note that this illustration is only schematic, as

2
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(a) Precession (b) Damping (c) Damped precession

Figure 1.1: The blue dashed line illustrates the magnetization dynamics t 7→ m(t,x) for
some fixed x ∈ Ω relative to t 7→ heff(m(t, ·))(x) in green. Starting fromm0(x)
in red, after some time τ > 0, the magnetization obtains the blue valuem(τ,x).

the effective field heff(m) nonlocally depends on the magnetization m and thus evolves in
time.
Next, we observe that taking the scalar product of (LL) with heff(m) followed by inte-

gration over (0, T )× Ω and using (1.2), we obtain the continuous energy law

Ê(m(T )) +
α

1 + α2

∫ T

0
‖m(t)× heff(m(t))‖2L2(Ω) dt = Ê(m0) , (1.7)

revealing the dissipative nature of LLG, where Ê := E/(µ0M
2
s ) denotes the rescaled energy.

We note that in the presence of a non-constant in-time external applied field f : (0, T )×Ω→
R3, the left-hand side of (1.7) is augmented by the term

∫ T
0 〈∂tf(t),m(t)〉 dt; see (1.13)

below.
As we are dealing with a highly nonlinear partial differential equation, theory on strong

solutions of LLG is rather limited: Under severe assumptions on the initial condition m0,
existence of a local in-time strong solution was established in [CF01a]. Global in-time ex-
istence of strong solutions has only been shown in 2D [CF01a], or if Ω = R3 [CF01b] (i.e.,
without boundary conditions), both, under severe smallness assumptions on the initial data
m0. In the work [FT17b], the authors proved that local strong solutions are arbitrarily
smooth, if the initial data m0 is sufficiently smooth and sufficiently close to a constant
function. In the seminal work on weak solutions for LLG [AS92], it was shown that weak
solutions exist globally in time, but are non-unique in general — more precisely, there even
exist initial data m0 ∈ H1(Ω; S2) allowing for an uncountably infinite number of weak
solutions. Weak-strong uniqueness (i.e., if a strong solution exists up to time T , then any
weak solution coincides with it until time T ) was established for the exchange-only case
heff(m) = `2ex∆m and Ω = R3 in [DS14], and extended to Ω ⊂ R3 and more general effec-
tive fields in [DIP20]. In particular, no analytical means to explicitly integrate LLG in time
t 7→ m(t) is available in the literature. Hence, to study micromagnetic processes, besides
possibly costly real-life experiments, one can resort to numerical integration of LLG. This
gives rise to the challenging field of computational micromagnetics, aiming to approximate
the dynamics of LLG by fully discrete numerical schemes.

3
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Throughout the thesis, we use the standard notation for Lebesgue, Sobolev, and Bochner
spaces and norms. To highlight (spaces of) vector-valued or matrix-valued functions, we
use bold letters, e.g., we denote both L2(Ω;R3) and L2(Ω;R3×3) by L2(Ω). We denote
by 〈·, ·〉 the scalar product in L2(Ω). For a matrix-valued function G : Ω → R3×3 and a
vector-valued function g : Ω→ R3, the cross product G×g : Ω→ R3×3 is to be understood
column-wise. Further, we use upper-case letters for physical quantities, e.g., M and Heff ,
and lower-case letters for their rescaled, nondimensional counterparts, e.g., m and heff .

1.2 The micromagnetic energy

In dynamical micromagnetism, the magnetization evolves towards an equilibrium state, a
configuration (locally) minimizing the system’s total energy E(m). The total energy, or
Gibbs free energy E(m), comprises several energy contributions.

Heisenberg exchange energy

We start with the symmetric exchange interaction, which we already discussed briefly in
Section 1.1. The tendency of neighbouring magnetic moments to align locally with each
other is described by the symmetric exchange energy contribution

Eex(m) = A

∫
Ω
|∇m|2dx , (1.8a)

which is minimized for constant vector fields m. The exchange energy yields the highest-
order effective field contribution

− 1

µ0M2
s

δEex(m)

δm
= `2ex∆m , (1.8b)

which makes it the fundamental contribution in LLG analysis. In fact, in many of the
proofs in the analysis of LLG, as well as in the analysis of numerical schemes for LLG, the
central argument is to control the exchange energy of the micromagnetic system. Hence,
results are often first formulated for the exchange-only setting E(m) = Eex(m), and only
later extended to more general energy contributions.
As the Laplacian is a local operator, from a computational point of view its discretization

and evaluation are straightforward and do not pose any major issues. However, as it is
the highest-order contribution, like for the heat equation, a stable numerical scheme must
employ implicit in-time integration on it.

Anisotropy energy

The crystalline structure of a ferromagnetic body can favor one or more directions, called
easy axes, where the magnetization prefers to align with in order to minimize energy. In case
of a uniaxial anisotropy with easy axis a ∈ S2, it costs energy to move the magnetization
from this easy axis, which is described by the uniaxial anisotropy contribution

Eani(m) = K

∫
Ω

[
1− (a ·m)2

]
dx, (1.9a)

4
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where K > 0 denotes the material-dependent anisotropy constant (in J/m3). Uniaxial
anisotropy leads to the effective field contribution

hani(m) := − 1

µ0M2
s

δEani(m)

δm
=

2K

µ0M2
s

(a ·m)a , (1.9b)

which is a zero-order, local, linear, and self-adjoint operator. For these reasons it does not
pose any analytical or computational difficulties. In our presentation it is covered, among
other terms, by a bounded, linear, and self-adjoint operator π : L2(Ω)→ L2(Ω).

Magnetostatic energy

According to the Maxwell equations, the magnetization induces a magnetic field. As the
electromagnetic wavelength is much larger than the dimensions of a ferromagnet, this so-
called demagnetizing field or stray field Hs(m) is appropriately described by the magneto-
static Maxwell equations

∇ ·Hs(m) = −Ms∇ · (χΩm) and ∇×Hs(m) = 0 in R3,

with χΩ the characteristic function on Ω. The stray field can be written asHs(m) = −∇u|Ω,
where the magnetostatic potential u : R3 → R solves the full-space transmission problem

−∆u = −Ms∇ ·m in Ω, (1.10a)

−∆u = 0 in R3 \ Ω, (1.10b)

uext − uint = 0 on ∂Ω, (1.10c)

(∇uext −∇uint) · n = −Msm · n on ∂Ω, (1.10d)
u(x) = O(1/|x|) as |x| → ∞, (1.10e)

where uext and uint, respectively, denote the trace of u|R3\Ω and u|Ω on ∂Ω. The operator
Hs is linear, self-adjoint and yields the energy of the magnetization interacting with its own
demagnetizing field

Estray(m) =
µ0

2

∫
R3

|Hs(m)|2 dx = −µ0Ms

2

∫
Ω
Hs(m) ·m dx . (1.11a)

This leads to the effective field contribution

hs(m) = − 1

µ0M2
s

δEstray(m)

δm
=
Hs(m)

Ms
, (1.11b)

which is a nonlocal, linear, and self-adjoint operator [Pra04]. Consequently, it does not
pose any analytical difficulties and in our presentation, like the anisotropy contribution, it
is covered by the bounded, linear, and self-adjoint operator π : L2(Ω)→ L2(Ω).
In practice, however, the nonlocality of hs poses a serious computational challenge. One

possibility to reliably approximate hs(m), which we also employ in Chapter 2–6, is pro-
posed in [FK90], where a hybrid finite element / boundary element method (FEM/BEM)
is formulated. There, the potential is decomposed as u = u1 +u2 to approximate u1 by the

5
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FEM solution to a Neumann problem, while u2 is approximated by the FEM solution to
an inhomogeneous Dirichlet problem. The expensive part is the computation of the bound-
ary data for the inhomogeneous Dirichlet problem, which is obtained from a discretization
of the double-layer potential evaluated on u1 restricted to ∂Ω. We note that the approach
from [FK90] leads to a discrete operator πh : L2(Ω)→ L2(Ω) introducing an additional con-
sistency error (π−πh)(m). Alternatively, one could employ a coupled FEM-BEM method
with the drawback of solving the more expensive coupled system.

Zeeman energy

Under influence of an externally applied magnetic field Hext (in A/m), the magnetization
tends to align in the direction of the applied field. This tendency is described by the so-called
Zeeman energy contribution

Eext(m) = −µ0Ms

∫
Ω
Hext ·m dx , (1.12a)

which leads to the effective field contribution

f = − 1

µ0M2
s

δEext(m)

δm
=
Hext

Ms
, (1.12b)

which is independent of the magnetization m and bounded, as usually Hext is assumed to
be bounded in L2(Ω). Hence, it does not lead to analytical or computational difficulties in
our presentation. However, although in theory no additional difficulty is introduced by the
applied field, it yields some technical pitfalls in the presentation: In presence of an applied
field, the effective field is not linear anymore, i.e., with our notation there holds

heff(u) + heff(v) = heff(u+ v) + f ,

which has to be kept in mind. Moreover, if Hext is not constant in time, additional energy
is supplied to or drawn from the system

− 1

µ0M2
s

d

dt
E(m,f) = heff(m) · ∂tm+m · ∂tf , (1.13)

which manifests in the energy law (1.7), i.e., the term
∫ T

0 〈∂tf(t),m(t)〉 dt has to be added
to the left-hand side of (1.7).

Dzyaloshinskii–Moriya interaction energy

The antisymmetric exchange interaction yields the most important energy contribution for
the enucleation and the stabilization of chiral magnetic skyrmions. It was phenomenolog-
ically introduced to the LLG model by Dzyaloshinskii [Dzy58] and Moriya [Mor60], and
comprises a linear combination of the so-called Lifshitz invariants, the components of the
chirality tensor m ×∇m : Ω → R3×3. Taking the trace of the chirality tensor, we obtain
the so-called bulk Dzyaloshinskii–Moriya (DMI) energy contribution

Edm(m) = D

∫
Ω

(
∇×m) ·m dx , (1.14a)

6



1 Introduction

where D ∈ R is the DMI constant (in J/m2). With the DMI length `dm = 2D/(µ0M
2
s )

(measured in m), the bulk DMI energy leads to the effective field contribution

hdm(m) = − 1

µ0M2
s

δEdm(m)

δm
= −`dm∇×m , (1.14b)

which is a first-order, local, linear, non-self-adjoint operator. As hdm(m) includes spatial
derivatives, in presence of DMI the imposed natural boundary conditions of the LLG sys-
tem (1.4) are adjusted in order to be consistent with the Euler–Lagrange equations obtained
from the energy minimization problem

min
|m|=1

E(m) .

In case of the bulk DMI energy contribution, this leads to the consistent boundary conditions

`2ex∂nm = −`dm

2
m× n on (0, T )× ∂Ω , (1.15)

replacing the homogeneous Neumann boundary conditions (1.4).
Different to the symmetric exchange energy Eex(m), the antisymmetric exchange energy
Edm(m) can be positive or negative. Despite the lower-order of the contribution, this lack of
a sign complicates the analysis, e.g., when derivingH1(Ω)-bounds onm from boundedness
of the total energy. Due to its locality, the DMI contribution does not pose major compu-
tational issues. However, in a variational formulation of LLG boundary integrals obtained
from (1.15) must be reformulated as volume integrals by Green’s formula; see, e.g., (2.12)
in Section 2.
DMI is essential for an appropriate description of magnetic skyrmions in ferromagnetic

bodies. These vortex-like structures are topologically protected and occur as (local) min-
imizers of the micromagnetic energy. Lately, the investigation of skyrmion dynamics has
attained quite some attention, as in [SCR+13], by numerical investigations the authors
showed that there are nanostructures allowing for two topologically different stable states
— a skyrmion state and a uniform state — both locally minimizing the total micromag-
netic energy; see Figure 1.2. This bi-stability in presence of DMI lead to great interest in
the simulation of skyrmion dynamics, e.g., in the research for future memory technologies,
where the two possible states of a logical bit could be encoded as the presence or absence
of a magnetic skyrmion.

For the remainder of this chapter, we restrict our presentation to the classical energy
contributions

E(m) = Eex(m) + Eani(m) + Estray(m) + Eext(m) .

Additionally, from now on we consider the rescaled energy Ê := E/(µ0M
2
s ), but to simplify

the notation it will be denoted by E ; see, e.g., (1.18) and (1.20) below. Collecting the
anistropy contribution and the stray field contribution in the bounded, linear, and self-
adjoint operator π : L2(Ω)→ L2(Ω), the classical energy yields the effective field

heff(m) = `2ex∆m+ π(m) + f .

For the extension of the numerical integrators in presence of DMI, we refer to Chapter 2
and Chapter 3 of this thesis.
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Figure 1.2: Two topologically different stable states in a ferromagnetic nanodisk inspiring
technological applications. Left: Almost uniform equilibrium state with slight
inward tilt on the boundary of the disk, viewed from top. Middle: Skyrmion
equilibrium state, viewed from top. Right: Skyrmion equilibrium state, 3D view
diagonally from above. For details, see the numerical studies in Section 2.4.2
and Section 3.4.1.

1.3 Landau–Lifshitz–Gilbert equation

The Landau–Lifshitz–Gilbert equation is a phenomenological nonlinear parabolic partial
differential equation, which is a well-accepted model for the description of micromagnetic
phenomena. We briefly touch on the historical side of the model, where we follow the
presentation in the review article [Cim08].
In 1935, Lev D. Landau and Evgeny M. Lifshitz proposed the first dynamical model

to describe precessional motion of the magnetization including energy dissipation [LL35].
With the physical vector fields M and Heff (both in A/m), physical constants and param-
eters γ0 denoting the rescaled gyromagnetic ratio (in m/(A s)), the dimensionless damping
parameter α, and the saturation magnetization Ms (in A/m), the proposed system reads

∂tM = −γ0M ×Heff − γ0
α

Ms
M × (M ×Heff) .

It includes a conservative rotational precession term matching the theory of gyromagnetic
precession, and a phenomenological term describing energy dissipation by forcing the mag-
netization towards the effective field. Mathematically, it is more convenient to work with
normalized quantities, i.e., with m := M/Ms and the physical parameters αL := γ0α and
βL := γ0 we obtain

∂tm = −βLm×Heff − αLm× (m×Heff) . (1.16)

Later in 1955, Thomas L. Gilbert proposed to augment the conservative precession by
viscous damping effects consistently derived from the Rayleigh dissipation function [Gil55].
This led him to the equation

∂tm = −βGm×Heff + αGm× ∂tm , (1.17)

incorporating the physical parameters αG and βG. In this model, the damped precession
dynamics is incorporated implicitly, i.e., in contrast to (1.16) the two terms on the right-hand
side are not explicitly orthogonal to each other by the cross product structure. Nevertheless,
for βG 6= 0 the two equations are mathematically equivalent with αG = αL/βL and βG =
(α2

L + β2
L)/βL as shown in [Cim08].
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1.3.1 Equivalent formulations

In (1.17), nondimensionalization of the time via the transformation t (1+α2)Msγ0 t yields
the dimensionless Gilbert form (G) below, where heff(m) := Heff(m)/Ms. The numerical
schemes investigated in this thesis are based on the following three different dimensionless
forms of LLG.

• The Landau–Lifshitz form of LLG reads

(1 + α2)∂tm = −m× heff(m)− αm× (m× heff(m)) , (LL)

and gives rise to the family of recent predictor-corrector methods from [KW18] pre-
sented in Section 1.5.4, Section 1.6.4, and investigated in Chapter 5.

• The Gilbert form of LLG reads

∂tm = −m× heff(m) + αm× ∂tm , (G)

and gives rise to the family of midpoint schemes [BP06] presented in Section 1.5.2,
Section 1.6.2, and investigated in Chapter 3.

• The so-called alternative form of LLG reads

α∂tm+m× ∂tm = heff(m)− (m · heff(m))m , (A)

and gives rise to the family of tangent plane schemes [Alo08] presented in Section 1.5.3,
Section 1.6.3, and investigated in Chapter 2 and Chapter 4.

The Landau–Lifshitz form (LL) and the Gilbert form (G) are equivalent to each other, while
the alternative form (A) does not explicitly preserve unit-length (1.6), but is equivalent
to the other forms if additionally |m| = 1 is assumed. For the Gilbert form (G), the
orthogonality (1.5) and intrinsic preservation of unit-length (1.6) are obtained analogously
to the computations in Section 1.1 for the Landau–Lifshitz form (LL).
Taking the scalar product of (αdtm + heff(m)) with (G) gives a slightly different (but

equivalent) form of the energy law (1.7), namely

E(m(T )) + α

∫ T

0
‖∂tm(t)‖2L2(Ω)dt = E(m0) , (1.18)

where we again assumed an external applied field, which is constant in time; see (1.13).
If orthogonality (1.5) is assumed, the same energy law is obtained from the alternative
form (A) by taking the scalar product with α∂tm. We briefly summarize how the three
forms are derived from each other using the triple product expansion formula

a× (b× c) = (a · c)b− (a · b)c for all a, b, c ∈ R3.

• (G) is obtained from the Landau–Lifshitz form via [(LL)− αm× (LL)]/(1 + α2).

• (LL) is obtained from the Gilbert form via [(G) + αm× (G)].

• (A) is obtained from the Gilbert form via [m× (G)].

• (LL) and (G) can be derived from the alternative form, if additionally |m| = 1 (or,
equivalently m · ∂tm = 0) is assumed. Then, (G) is obtained via [m× (A)].

9
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1.3.2 Weak solutions to LLG

We give the notion of a weak solution of LLG, which extends the one introduced in [AS92].
We refer to Chapter 2 and Chapter 3 for the notion of a weak solution in presence of DMI.

Definition 1.3.1. Letm0 ∈H1(Ω;S2) and f ∈ C1([0, T ];L2(Ω)). A vector fieldm : (0, T )×
Ω→ R3 is called a (local) weak solution of (LL) with (1.3)–(1.4), if the following properties
are satisfied:

(i) m ∈H1((0, T )× Ω) ∩ L∞(0, T ;H1(Ω)) with |m| = 1 a.e. in (0, T )× Ω;

(ii) m(0) = m0 in the sense of traces;

(iii) for all w ∈H1((0, T )× Ω), it holds that∫ T

0
〈∂tm(t),w(t)〉 dt− α

∫ T

0
〈m(t)× ∂tm(t),w(t)〉 dt

= `2ex

∫ T

0
〈m(t)×∇m(t),∇w(t)〉 dt−

∫ T

0
〈m(t)× π(m(t)),w(t)〉 dt

−
∫ T

0
〈m(t)× f(t),w(t)〉 dt;

(1.19)

(iv) it holds that

E(m(T )) + α

∫ T

0
‖∂tm(t)‖2dt+

∫ T

0
〈∂tf(t),m(t)〉 dt ≤ E(m0). (1.20)

We note that (1.19) is a variational formulation in space-time of the Gilbert form (G) of
LLG, and that (1.20) is a weaker version of the energy law (1.18). In the literature, a vector
field m ∈ L∞((0,∞);H1(Ω; S2)) is called a global weak solution of (LL) with (1.3)–(1.4),
if it is a local weak solution in the sense of Definition 1.3.1 for any T > 0.

1.4 Discretization

Uniform time discretization

Given J ∈ N, we consider the uniform partition {ti = iT/J : i = 0, . . . , J} of the time
interval [0, T ] with time-step size k := T/J > 0, i.e., ti = ik for all i = 0, . . . , J . Given a
finite sequence of corresponding spatial functions {ui}Ji=0, we define

ui+1/2 :=
ui+1 + ui

2
and dtu

i+1 :=
ui+1 − ui

k
for all i = 0, . . . J − 1.

Space discretization by finite elements

In this thesis, the focus is on finite element-based numerical schemes for LLG. Compared
to finite difference-based schemes, which are computationally cheaper in general, finite

10
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elements are much more flexible in the discretization and allow for computations of far
more complicated domains Ω ⊂ R3.
For the spatial discretization, we consider a regular tetrahedral triangulation Th of Ω with

mesh size h > 0. We denote by Nh the set of vertices of Th and by {φz}z∈Nh
the classical

nodal basis of the space S1(Th) of Th-piecewise linear and globally continuous discrete
functions, i.e., φz(z′) = δz,z′ for all z, z′ ∈ Nh. With {ej}j=1,2,3 the standard basis of R3,
{φzej}z∈Nh,j=1,2,3 gives a basis of S1(Th)3. Note that S1(Th)3 is a 3N -dimensional space,
with N denoting the number of vertices in Nh. Inspired by (1.6) and (1.5), we introduce
the set of admissible discrete magnetizations

Mh :=
{
mh ∈ S1(Th)3 : |mh(z)| = 1 for all z ∈ Nh

}
and, for mh ∈Mh, the discrete tangent space

Kh[mh] :=
{
ϕh ∈ S1(Th)3 : mh(z) ·ϕh(z) = 0 for all z ∈ Nh

}
. (1.21)

We consider the nodal interpolant Ih : C0(Ω) → S1(Th), which is defined by Ih(v) =∑
z∈Nh

v(z)φz for all v ∈ C0(Ω). We denote the vector-valued realization of the nodal
interpolant by Ih : C0(Ω)→ S1(Th)3. On C0(Ω), besides the standard L2(Ω)-scalar prod-
uct 〈·, ·〉, we consider the mass-lumped scalar product 〈·, ·〉h defined by

〈u,w〉h =

∫
Ω
Ih(u ·w) dx for all u,w ∈ C0(Ω).

Using the definition of the nodal interpolant, we see that

〈u,w〉h =
∑
z∈Nh

βz u(z) ·w(z) for all u,w ∈ C0(Ω), (1.22)

where βz :=
∫

Ω φz dx > 0 for all z ∈ Nh. For discrete functions, the induced norm ‖·‖h is
equivalent to the standard L2(Ω)-norm; see [Bar15, Lemma 3.9], i.e., it holds that

‖wh‖L2(Ω) ≤ ‖wh‖h ≤
√

5‖wh‖L2(Ω) for all wh ∈ S1(Th)3. (1.23)

We define the (negative) discrete Laplacian −∆h : H1(Ω)→ S1(Th)3 by

− 〈∆hw,wh〉h = 〈∇w,∇wh〉 for all w ∈H1(Ω) and wh ∈ S1(Th)3. (1.24)

Some integrators enforce the nodewise unit-length constraint via a nodewise projection
onto the unit sphere S2. The stability analysis of those integrators relies on the so-called
angle condition: It is satisfied, if all off-diagonal entries of the stiffness matrix (az,z′)z,z′∈Nh

are nonpositive, i.e., if it holds that

az,z′ := 〈∇wz′ ,∇wz〉 ≤ 0 for all z, z′ ∈ Nh with z 6= z′. (1.25)

This requirement ensures that the nodal projection wh 7→ Ih
[
wh/|wh|

]
does not increase

the exchange energy of a discrete function, i.e., it holds that

‖∇Ih
[
wh/|wh|

]
‖L2(Ω) ≤ ‖∇wh‖L2(Ω) , (1.26)
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for all wh ∈ S1(Th)3 with |wh(z)| ≥ 1 for all z ∈ Nh; see [Bar05, Lemma 3.2]. Note
that (1.26) is motivated by the pointwise estimate∣∣∇[w/|w|]∣∣ ≤ ∣∣∇w∣∣ for all w ∈ C1(Ω) with |w| ≥ 1 in Ω,

which follows from a straightforward computation. The assumption (1.25) is usually referred
to as angle condition, because in 3D it is satisfied, e.g., if all dihedral angles of all tetrahedra
of Th are bounded above by π/2.

Weak sub-convergence

Under appropriate assumptions and given discretization parameters h, k > 0, the numerical
schemes for LLG discussed in this thesis generate discrete approximations {mi

h}Ji=0 at the
uniform time-steps ti. After an affine interpolation in time

mhk(t) :=
t− ti
k
mi+1

h +
ti+1 − t

k
mi

h for all i = 0, . . . , J − 1 and t ∈ [ti, ti+1],

we obtain an approximationm ≈mhk ∈H1((0, T )×Ω). Ideally, one would havemhk →m
strongly as h, k → 0. For most of the numerical integrators discussed in this thesis, however,
due to the strong nonlinearity of LLG, the approximations generated by the algorithm usu-
ally only satisfy a far weaker notion of convergence: Considering a family of approximations
{mhk}h,k>0 ⊂ H1((0, T )× Ω), weak convergence of a subsequence of {mhk}h,k>0 towards
a weak solution of LLG, in the sense of Definition 1.3.1, is established. In the presentation
of the numerical integrators in Section 1.5 and Section 1.6 below, if not stated otherwise,
we refer to this notion of convergence.

1.5 Three original finite element integrators

In the design of a numerical integrator, one aims to meet a number of analytical and prac-
tical requirements: First of all, analytically, a numerical scheme should be well-defined for
any admissible input. Further, the discrete output should approximate the analytical so-
lution to the continuous problem in some sense. Due to the nonlinearity of LLG, these
first two fundamental demands already pose a non-trivial task. Additionally for LLG, one
desires to resemble the intrinsic characteristics of the continuous magnetization dynamics
on a discrete level, i.e., the unit-length constraint (1.6) and the energy law (1.7).

Let us elaborate on how these fundamental analytical challenges are addressed by the
three different (families of) numerical schemes discussed in this thesis. Later, in Section 1.6,
further requirements towards practical feasibility of the schemes are formulated, leading to
extensions of the three original approaches.
For some J ∈ N the magnetization is approximated at uniformly distributed time-steps
{ti := iT/J : i = 0, . . . , J} ⊂ [0, T ]. The continuous formulation is reduced to a finite
dimensional discrete problem by considering lowest-order vector-valued H1(Ω)-conforming
finite elements S1(Th)3 on a spatial triangulation Th of the domain Ω ⊂ R3 as introduced in
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Section 1.4. Then, starting from a discretization m0 ≈ m0
h ∈ S1(Th)3 of the initial state,

one iterates through the discrete time steps

m0 ≈m0
h  m1

h  · · · mJ
h ≈m(T ) ,

with iterates belonging to the discrete spacemi
h ∈ S1(Th)3 for all i = 0, . . . , J . The schemes

discussed in this thesis now differ by the rule they prescribe to advance in timemi
h  mi+1

h .

1.5.1 Fundamental analytical requirements

The formulation of a fully discrete, practically applicable numerical scheme for LLG poses
several difficulties. Above, we identified three fundamental challenges in the design of a
numerical scheme for LLG: Dealing with the nonlinearity of LLG; respecting the unit-length
constraint (1.6); and reflecting the energy law (1.7).
First of all, the nonlinearity of LLG has to be handled appropriately as on the compu-

tational level we are essentially limited to the solution of linear systems of equations of
finite dimension. Due to the nonlinearity of LLG, the rigorous quantification of numerical
approximation errors turns out to be non-trivial: While for all three original integrators pre-
sented in Section 1.5.2 through Section 1.5.4 below only weak convergence towards a weak
solution for a subsequence of the computed approximates is known so far, experimentally
the integrators are first- or second-order accurate in time, and first-order accurate (w.r.t.
the energy error) in space.
Considering only those approximations, which satisfy the pointwise unit-length constraint

m(x) ∈ S2 for all x ∈ Ω, would lead to a degeneration of the solution space, since in the
finite element space S1(Th)3 only a constant function can satisfy this side constraint. Hence,
the continuous unit-length constraint is weakened to a nodewise constraint m(z) ∈ S2 for
all vertices z ∈ Nh of the triangulation Th.
Lastly, the fully discrete, practically applicable schemes recover only partially the contin-

uous energy identity (1.7) on a discrete level either by a perturbed discrete energy equality,
or by a discrete energy estimate. In both cases, eventually after imposing an appropriate
coupling on the discretization parameters, the energy dissipation of the discrete scheme
inherited from the continuous model allows to prove stability and convergence.
In this thesis three families of finite element-based schemes for the numerical integration

of LLG are investigated:

• the midpoint scheme from [BP06],

• the tangent plane scheme from [Alo08],

• and two predictor-corrector methods recently proposed in [KW18].

In the following we (informally) describe the different approaches taken by the three
(families of) numerical schemes discussed in this thesis to resolve the nonlinearity of LLG.
Then, we elaborate how these approaches are combined with different update formulas
mi

h  mi+1
h preserving discrete unit-length. Finally, for each approach we discuss the

effects on stability.
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Nonlinearity. The three schemes use different approaches to handle the nonlinearity of
LLG. For the midpoint scheme, the Gilbert form (G) of LLG is discretized to arrive at a
finite dimensional system of nonlinear equations. In practice, this nonlinear system is then
linearized by an iterative solver.
On the other hand, the tangent plane scheme is based on the alternative form (A) of

LLG and in each time-step approximates the time derivative ∂tm. By using a variational
formulation of (A), which is posed in the tangent space ofm, the (highly nonlinear) second
term on the right-hand side of (A) is dropped. Hence, even with implicit integration in
time, this variational form is linear in ∂tm and the nonlinearity of LLG is circumvented
as discretization of (A) already leads to a discrete system of equations, which is linear in
terms of the unknown approximating ∂tm.
The third family of integrators from [KW18] takes an approach in between: As for the

tangent plane integrator, in each time-step the time derivative ∂tm is approximated. But
to compute this approximation, the Landau–Lifshitz form (LL) is discretized. To arrive at
a linear system of equations, only the effective field heff(m) is integrated implicitly in time,
while instances of the magnetization m are treated explicitly.

Unit-length constraint. The considered schemes take also different approaches for the
preservation of the discrete unit-length constraint. For the tangent plane scheme nodewise
unit-length is enforced explicitly by nodal projection. When advancing in time mi

h  
mi+1

h , the tangent plane scheme uses linear time stepping to define an intermediate state
m̂i+1

h := mi
h + kvih, with v

i
h the computed approximation to the time derivative ∂tm(ti).

Then, for each node z ∈ Nh, this intermediate state is renormalized by projection onto the
unit sphere mi+1

h (z) := m̂i+1
h (z)/|m̂i+1

h (z)| ∈ S2.
Differently, the midpoint scheme guarantees preservation of nodewise unit-length implic-

itly as the discrete system defining the advancement mi
h  mi+1

h ensures |mi+1
h (z)| =

|mi
h(z)| for all z ∈ Nh. The crucial ingredient for this identity to hold, is the mass-lumped

integration rule (1.22) replacing exact spatial integration in the definition of the discrete
(nonlinear) system of equations.
Again, for the family of integrators from [KW18] a mixed approach applies: Their first-

order integrator, after computing vih ≈ ∂tm(ti), applies the same projection update as the
tangent plane scheme to enforce nodewise unit-length. Their second-order scheme, on the
other hand, first computes vih analogous to its first-order counterpart. Then, defining an
intermediate state m̂i+1/2

h := mi
h + (k/2)vih, another mass-lumped discrete variational for-

mulation is solved to obtain mi+1
h , implicitly ensuring |mi+1

h (z)| = |mi
h(z)|. As for the

midpoint scheme, this implicit preservation of discrete unit-length crucially relies on the
mass-lumped integration rule (1.22).

Energy law and stability. A strength of the midpoint scheme in idealized form is its
realization of a discrete energy equality resembling the continuous energy law (1.7). This is
a consequence of the fully implicit approach taken to discretize (G). Only for the practical
midpoint schemes, the nonlinear solver error and explicit treatment of nonlocal effective
field contributions introduce slight perturbations to this discrete energy identity.
The tangent plane scheme introduces artificial dissipation and only provides a discrete
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energy estimate. Precisely, on meshes satisfying the angle condition (1.25), the projection
updatemi+1

h (z) := Ih(m̂i+1
h /|m̂i+1

h |) does not increase the energy (and is energy decreasing
in general).
Analogously to the tangent plane scheme, the first-order integrator from [KW18] sat-

isfies a discrete energy estimate on meshes satisfying the angle condition (1.25). For the
second-order scheme proposed in [KW18], although our numerical experiments in Chapter 5
support its practical applicability, the stability of the scheme remains open.

In the remainder of this section, we present the original versions of the three (families) of
schemes. For the sake of clarity, here we restrict the presentation to the exchange-only case
heff(m) = `2ex∆m. In Section 1.6 below, as well as in the works presented in Chapter 2–6,
the (extended) integrators are presented in such a way that more general effective fields are
covered. For any of the presented schemes, we consider a triangulation Th as defined in
Section 1.4, and for some fixed J ∈ N, we define the time-step size k := T/J > 0.

1.5.2 Midpoint scheme

The following algorithm states the implicit midpoint scheme (MPS) proposed by Bartels &
Prohl in [BP06].

Algorithm 1.5.1 (MPS, [BP06]). Input: m0
h ∈Mh.

Loop: For all time-steps i = 0, . . . , J − 1, compute mi+1
h ∈ Mh such that, for all wh ∈

S1(Th)3, it holds that

〈dtmi+1
h ,wh〉h = −`2ex〈m

i+1/2
h ×∆hm

i+1/2
h ,wh〉h + α〈mi+1/2

h × dtmi+1
h ,wh〉h. (1.27)

Output: Sequence of approximations
{
mi

h

}J
i=0

.

The discrete variational formulation (1.27) is based on the Gilbert form (G) of LLG. The
fundamental ingredients of the scheme are the midpoint rule for the time discretization, the
mass-lumped scalar product 〈·, ·〉h, and the discrete Laplace operator (1.24). Utilization of
the mass-lumped integration rule 〈·, ·〉h preserves nodewise unit-length |mi+1

h (z)| = |mi
h(z)|

for any z ∈ Nh, which is immediately obtained by testing with wh := m
i+1/2
h (z)φz. More-

over, testing (1.27) withwh := αdtm
i+1
h −`

2
ex∆hm

i+1/2
h and summation over i = 0, . . . , J−1

reveals that Algorithm 1.5.1 realizes a discrete energy equality

`2ex

2
‖∇mJ

h‖2L2(Ω) + αk

J−1∑
i=0

‖dtmi+1
h ‖

2
h =

`2ex

2
‖∇m0

h‖2L2(Ω) , (1.28)

resembling the continuous energy law (1.18). The MPS is unconditionally convergent towards
a weak solution of LLG and formally of second order in time, but it requires the solution
of the nonlinear system (1.27) of equations in each time-step. Existence of solutions of the
discrete variational formulation (1.27) can be shown using the Brouwer fixed-point theorem;
see, e.g., [PRS18b, Proposition 3]. Existence and uniqueness of a solution can be obtained by
means of the Banach fixed-point theorem, but require the strong CFL condition k = o(h2);
see [BP06, Lemma 4.1]. Linearization strategies for the nonlinear system (1.27), necessary
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to arrive at a practically applicable scheme, are discussed in Section 1.6.2. We note that the
nonlinearity is a consequence of the first term on the right-hand side of (1.27). The second
term m

i+1/2
h × dtmi+1

h on the right-hand side, at first glance also nonlinear in mi+1
h , can

equivalently be rewritten, e.g., as k−1mi
h ×m

i+1
h .

1.5.3 Tangent plane scheme

In the mathematical literature, a fully explicit version of the tangent plane scheme was
already proposed by Alouges & Jaisson in [AJ06] and analyzed in [BKP08]. Here, we
present the semi-implicit tangent plane scheme from [Alo08] that covers the original version
from [AJ06] with the choice θ = 0. In the following algorithm, we state the first-order
tangent plane scheme (TPS1) proposed and analyzed by Alouges in [Alo08].

Algorithm 1.5.2 (TPS1, [Alo08]). Input: m0
h ∈Mh and 0 ≤ θ ≤ 1.

Loop: For all time-steps i = 0, . . . , J − 1, iterate:

(i) Compute vih ∈ Kh[mi
h] such that, for all ϕh ∈ Kh[mi

h], it holds that

α〈vih,ϕh〉 + 〈mi
h × vih,ϕh〉 + `2exθk〈∇vih,∇ϕh〉 = −`2ex〈∇mi

h,∇ϕh〉 . (1.29)

(ii) Define mi+1
h ∈Mh by

mi+1
h (z) :=

mi
h(z) + kvih(z)

|mi
h(z) + kvih(z)|

∈ S2 for all z ∈ Nh. (1.30)

Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}J−1

i=0
.

As for the classical θ-method for the heat equation, the parameter θ ∈ [0, 1] in (1.29)
modulates the ‘degree of implicitness’ of the scheme: The choice θ = 0 leads to a fully ex-
plicit scheme (explicit Euler scheme); the choice θ = 1/2 is a Crank–Nicolson-type method,
which in the case of the heat equation is of second-order in time; the choice θ = 1 is a
sort of implicit Euler method. The discrete variational formulation (1.29) of step (i) is a
weak formulation of the alternative form (A) of LLG posed in the discrete tangent space
Kh[mi

h]. It provides an approximation vih ≈ ∂tm(ti) of the time derivative, which is then
used for the time-stepping of step (ii). To ensure that the magnetization belongs to the set
of admissible discrete magnetizations Mh, the time-stepping in (1.30) employs the nodal
projection.
The scheme requires the solution of only one (constrained, but always well-posed) linear

system (1.29) per time-step, and is formally first-order accurate in time for any 0 ≤ θ ≤ 1.
In contrast to the classical θ-method for the heat equation, however, the choice θ = 1/2
does not lead to any improvement of the first-order convergence in time, because of the
tangent plane constraint vih ∈ Kh[mi

h] and the presence of the nodal projection in (1.30).
Convergence towards a weak solution for the original version (θ = 0) was proved in [AJ06]

first passing the time-step size to the limit k → 0, and only then separately taking the limit
h→ 0 of the mesh-size, i.e., their analysis imposes a not precisely quantified coupling of the
discretization parameters to obtain convergence. Later in [BKP08], the necessary coupling

16



1 Introduction

condition was quantified as k = o(h5/2). Finally in [Alo08], the algorithm of [AJ06] is gen-
eralized to Algorithm 1.5.2. There, imposing the angle-condition (1.25) from [Bar05] on the
family of meshes {Th}h>0, a further improvement of the necessary coupling is established,
namely, the coupling k = o(h2) for all 0 ≤ θ < 1/2, as well as the coupling condition
k = o(h) for θ = 1/2, and unconditional convergence as h, k → 0 for 1/2 < θ ≤ 1.

1.5.4 Recent predictor-corrector scheme

Only recently in [KW18], Kim & Wilkening proposed a finite element-based numerical
scheme discretizing the Landau–Lifshitz form (LL). We note that in the mathematical
literature this is not the first such integrator: Already in [Cim09], similar to the mid-
point scheme, the author proposes a mass-lumped integrator based on the Landau–Lifshitz
form (LL) and the implicit midpoint rule in time. We state the first-order predictor-
corrector method (PC1) from [KW18].

Algorithm 1.5.3 (PC1, [KW18]). Input: m0
h ∈Mh and 0 ≤ θ ≤ 1.

Loop: For all time-steps i = 0, . . . , J − 1, iterate:

(i) Compute vih ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3, it holds that

(1 + α2)〈vih,wh〉h = −`2ex〈mi
h ×∆h(mi

h + θkvih),wh〉h (1.31)

− α`2ex〈mi
h × (mi

h ×∆h(mi
h + θkvih)),wh〉h .

(ii) Define mi+1
h ∈Mh by

mi+1
h (z) :=

mi
h(z) + kvih(z)

|mi
h(z) + kvih(z)|

∈ S2 for all z ∈ Nh. (1.32)

Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}J−1

i=0
.

In the same work [KW18], also a second-order variant of Algorithm 1.5.3 is proposed,
which we will present in Section 1.6 below together with implicit-explicit (IMEX) extensions
of these schemes.
As for the tangent plane scheme, the parameter 0 ≤ θ ≤ 1 modulates the implicitness of

the scheme, the unknown vih approximates the time derivative ∂tm(ti), and the update is
defined via nodal projection. Differently to the tangent plane scheme, Algorithm 1.5.3 relies
on the mass-lumped integration in space, and is originally formulated to integrate (nonlocal)
lower-order effective field contributions implicitly in time. In view of Remark 5.3.4 in
Chapter 5, it is not surprising that for Algorithm 1.5.3 a convergence result analogous to
the one for the first-order tangent plane scheme from [Alo08] is obtained, i.e., unconditional
convergence for 1/2 < θ ≤ 1, weak coupling k = o(h) to guarantee convergence for θ = 1/2,
and strong coupling k = o(h2) to guarantee convergence for 0 ≤ θ < 1/2. We note that the
formulation of the main theorem [KW18, Theorem 2.2] (erroneously) does not require any
CFL condition for θ = 1/2. This is due to an inaccuracy in their proof when passing the
inequality [KW18, (4.62)] to the limit k, h → 0. In our analysis in Section 5.3.4, we cure
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the proof of the theorem by tracing the stability of PC1 back to arguments from [Alo08] for
the tangent plane scheme.
This is an appropriate point in this work to mention one of the new theoretical contribu-

tions of this thesis: While the original work [KW18] lacks any discussion of the non-obvious
well-posedness of Algorithm 1.5.3, in the preprint [MPPR21] of our work presented in Chap-
ter 5 we show unconditional well-posedness of Algorithm 1.5.3. Precisely, the system (1.31)
always admits a unique solution vih ∈ S1(Th)3, for all discretization parameters h, k > 0, for
any parameter of implicitness 0 ≤ θ ≤ 1, and — surprisingly — for any Gilbert damping
parameter α ≥ 0 including the limit case α = 0.

1.6 Extensions of the original integrators

With a fully discrete, well-posed, and stable scheme at hand, usually further steps are
necessary to arrive not only at a practically applicable integrator, but at a computationally
feasible one.

1.6.1 Practical requirements

Taking into account that computational resources — hardware and time — are limited,
certain aspects of a numerical scheme have to be considered with special care.

• Nonlocal effective field contributions should not, if by any means possible, be inte-
grated implicitly in time. This is because their implicit treatment leads to infeasible
computational costs, i.e., either inducing a densely populated (linear) system of equa-
tions, or relying on a costly inner iteration in the iterative (linear or nonlinear) solver.

• Higher-order (in time) accurate schemes are to be preferred over first-order schemes,
if their computational costs are roughly comparable. We note that one has to be
careful not to spoil the formal second-order accuracy by explicit in-time integration
of (nonlocal) effective field contributions.

• Integrators requiring weaker coupling of the discretization parameters — usually the
time-step size k is restricted by the mesh size h — are to be preferred over those
requiring stronger coupling. This allows for coarser time discretizations, and hence,
fewer time-steps resulting in faster simulations.

• As the space discretization leads to linear systems of dimension scaling proportionally
to 1/h3, direct solvers are only of limited use for the schemes presented in Section 1.5
in practice. Hence, for resource-efficient simulations, the arising (non-symmetric)
linear systems are numerically solved by iterative solvers like, e.g., GMRES [SS86].
Appropriate preconditioners can drastically reduce the number of necessary iterations
to reach a certain accuracy, and hence, reduce computational time.

The possibility to choose from multiple numerical schemes is always an advantage, as the
following brief discussion of two state-of-the-art numerical integrators for LLG motivates.
Even with respect to the weakened discrete requirements, none of the integrators available
in the literature is perfect: For example, the tangent plane scheme variant from [AKST14]
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realizes the discrete unit-length constraint, is formally second-order accurate in time, and
imposes only a weak coupling of the discretization parameters. With a further modification
from [DPP+20], it can even treat nonlocal effective field contributions explicitly in time.
Stability of this integrator, however, is theoretically only guaranteed for certain types of
triangulations Th. Moreover, artificial damping is introduced to the system, as the theory
only provides a discrete energy inequality.
Another example is the (ideal) midpoint scheme proposed in [BP06], which realizes a

discrete energy equality, preserves discrete unit-length, is formally second-order accurate in
time, and allows for more general triangulations. Nonlocal effective field contributions can
be integrated explicitly in time [PRS18b]. On the downside, a practical realization of the
midpoint scheme has to linearize the arising nonlinear discrete system, and hence, requires
an inner iteration in each time-step. Moreover, any linearization suggested in the literature
requires a strong coupling of the discretization parameters k = o(h2) to ensure convergence
of the nonlinear solver.
In the remainder of this section, we present modifications and extensions of the three

original schemes from Section 1.5. Any variant aims to improve the practical feasibility
of the corresponding original scheme. As often in mathematics and life in general, usually
nothing comes for free and an improvement of one aspect is made possible by accepting a
(slight) drawback in another.
To clearly and adequately present the intention of the various modified schemes be-

low, we consider the more general effective field heff(m) = `2ex∆m + π(m) + f . Here,
f ∈ C1([0, T ];L2(Ω)) denotes some applied external field, and π : L2(Ω)→ L2(Ω) denotes
a linear, self-adjoint, and bounded operator collecting lower-order effective field contribu-
tions like, e.g., uniaxial anisotropy (1.9a) or the nonlocal stray field (1.11a). Moreover, let
πh : S1(Th)3 → S1(Th)3 and f ih denote some (here not further specified) approximations
of the continuous operator π and data f(ti), respectively. For precise requirements on the
approximations πh and fh, we refer to the theorems in Section 2–6.
We note that this setting covers all standard energy contributions, i.e., all energy con-

tributions introduced in Section 1.2, with exception of the non-standard DMI energy con-
tribution (1.14a). A rigorous extension of the family of midpoint schemes to cover DMI is
proposed in Chapter 3 of this thesis. The family of tangent plane integrators has been ex-
tended to DMI in the joint work [HPP+19], which is presented in Chapter 2. An extension
of the family of predictor-corrector methods from [KW18] to cover DMI is still missing in
the literature, but is expected to be possible, in particular not requiring essentially different
tools from those used in Chapter 2 and Chapter 3.

1.6.2 Extensions of the midpoint scheme

Implicit-explicit midpoint scheme

In [PRS18b], the authors apply a modification to Algorithm 1.5.1 in order to overcome one
of its practical drawbacks, the implicit integration of (nonlocal) lower-order effective field
contributions πh(m

i+1/2
h ), while preserving the second-order accuracy of MPS. The under-

lying idea is to apply a two-step Adams–Bashforth method in combination with linearity of

19



1 Introduction

πh to approximate

πh(m
i+1/2
h ) ≈ Πh(mi

h,m
i−1
h ) := (3/2)πh(mi

h)− (1/2)πh(mi−1
h ) .

Application of this approximation to Algorithm 1.5.1 results in the following second-order
implicit-explicit midpoint scheme (MPS+IMEX).

Algorithm 1.6.1 (MPS+IMEX, [PRS18b]). Input: m0
h ∈Mh.

Loop: For all time-steps i = 0, . . . , J − 1, compute mi+1
h ∈ Mh such that, for all wh ∈

S1(Th)3, it holds that

〈dtmi+1
h ,wh〉h = −〈mi+1/2

h × [`2ex∆hm
i+1/2
h + Πh(mi

h,m
i−1
h ) + f

i+1/2
h ],wh〉h

+ α〈mi+1/2
h × dtmi+1

h ,wh〉h (1.33)

Output: Sequence of approximations {mi
h}Ji=0.

The implicit-explicit scheme improves the original integrator MPS in a practical sense as
it requires only one evaluation of πh(mi

h) per time-step. We note that the discrete system
is still nonlinear, as the highest-order exchange contribution is still treated implicitly in
time in order to preserve unconditional stability of the scheme. A nonlinear solver for
MPS+IMEX, however, is considerably cheaper than for MPS, since inside the solver no expensive
stray field evaluations are necessary for MPS+IMEX. Due to the second-order accuracy of
the Adams–Bashforth method, the second-order accuracy of the original midpoint scheme
(Algorithm 1.5.1), is (heuristically and empirically) preserved. A drawback of this implicit-
explicit approximation is a slight perturbation of the discrete energy equality (1.28) realized
by the ideal midpoint scheme (Algorithm 1.5.1). Anyhow, we note that also apart from the
IMEX approach a perturbation of (1.28) is unavoidable in practice, as linearization of either,
(1.27) or (1.33), introduces a perturbation of (1.28).

Practical implicit-explicit midpoint schemes

Both, Algorithm 1.5.1 and Algorithm 1.6.1, require the solution of a nonlinear system of
equations in each time-step. In the original work [BP06], the authors propose a fixed-point
iteration for the approximate solution of the discrete nonlinear equation, which is well-
defined if the discretization parameters satisfy the strong coupling condition k = o(h2).
Then, the fixed-point iteration converges towards the solution of the nonlinear system,
which is unique by the Banach fixed-point theorem. The fixed-point iteration from [BP06]
does not preserve the discrete unit-length constraint, but the authors prove that the discrete
magnetization length remains uniformly bounded.
In [Bar06] a constraint preserving fixed-point iteration for the midpoint scheme is pro-

posed, which is shown to be convergent under the same coupling condition k = o(h2).
Based on the Newton scheme, in [BBNP14, Section 1.4.1] the authors employ a lineariza-

tion of the nonlinear system of the midpoint scheme. Their 2D numerical experiments give
hope for a less restrictive CFL condition than for the fixed-point iterations from [BP06]
and [Bar06].
In an ongoing work presented in Chapter 3 of this thesis, for micromagnetic simula-

tions in 3D and considering a general effective field, we apply Newton’s method and a
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constraint preserving fixed-point iteration, respectively, to the implicit-explicit nonlinear
midpoint scheme MPS+IMEX to obtain two practical versions of the midpoint scheme. Our
well-posedness and convergence analysis leads to the same coupling condition k = o(h2)
for the constraint preserving fixed-point iteration, while it requires the even stronger condi-
tion k = o(h7/3) to ensure convergence of the Newton linearization. Experimentally, both
linearization strategies require the same coupling condition k = o(h2), qualitatively and
also quantitatively, i.e., with the same hidden constant. However, the experiments show
that in terms of iteration numbers required to achieve a prescribed tolerance, the Newton
linearization clearly outperforms the fixed-point iteration.
Finally, in a fully practical adaption of the original MPS from Section 1.5.2, two sources

of perturbation are introduced to the discrete energy identity (1.28); see (3.17), (3.28), and
(3.33) in Chapter 3 for a precise quantification. Moreover, depending on the linearization
strategy, discrete unit-length might only be conserved asymptotically; see Theorem 3.3.9(i)–
(ii) in Chapter 3 for the practical midpoint scheme with Newton linearization.

1.6.3 Extensions of the first-order tangent plane scheme

In [AKT12], and independently in [Gol12], Algorithm 1.5.2 is extended to cover the more
general effective field heff(m) = `2ex∆m+π(m)+f as considered in this section. Both works
integrate lower-order effective field contributions explicitly in time. In particular, [Gol12]
covers the approximate computation of lower-order terms, including the stray field, which is
inevitable in practice. Here, we do not explicitly state this generalization of Algorithm 1.5.2,
but note that it can be obtained from combining Algorithm 1.6.2(i) and Algorithm 1.5.2(ii).

Projection-free first-order tangent plane scheme

In the following algorithm, we state a projection-free variant of the first-order tangent plane
scheme (TPS1PF), which was proposed in [AHP+14] adapting original ideas from [Bar16] to
LLG. Analogously to the original first-order tangent plane scheme from [Alo08], first an
approximate vih ∈ Kh[mi

h] of the time derivative is computed. In contrast to TPS1, when
advancing mi

h  mi+1
h the nodal projection in the update step is omitted. At the price of

losing nodal unit-length, i.e., here mi
h 6∈Mh in general, this modification leads to a linear

update formula.

Algorithm 1.6.2 (TPS1PF, [AHP+14]). Input: m0
h ∈Mh and 0 ≤ θ ≤ 1.

Loop: For all time-steps i = 0, . . . , J − 1, iterate:

(i) Compute vih ∈ Kh[mi
h] such that, for all ϕh ∈ Kh[mi

h], it holds that

α〈vih,ϕh〉 + 〈mi
h × vih,ϕh〉 + `2exθk〈∇vih,∇ϕh〉

= −`2ex〈∇mi
h,∇ϕh〉 + 〈πh(mi

h),ϕh〉 + 〈f ih,ϕh〉 .

(ii) Define mi+1
h ∈ S1(Th)3 by

mi+1
h := mi

h + kvih.

Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}J−1

i=0
.
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First of all, we note that for mi
h ∈ S1(Th) the discrete tangent space Kh[mi

h] can be
defined analogously to (1.21) as long as mi

h(z) 6= 0 for all nodes z ∈ Nh. The analysis
of TPS1PF even shows |mi

h(z)| ≥ 1 for all nodes z ∈ Nh and all time-steps i = 0, . . . , J − 1.
Hence, in step (i) the discrete tangent space Kh[mi

h] is always well-defined.
Although nodewise unit-length is lost, the analysis of TPS1PF reveals that the constraint

violation is uniformly controlled by the time-step size k > 0. The convergence result and
the formal order in time of TPS1 are preserved, and additionally, the analysis of TPS1PF
does not impose an angle condition (1.25) on the family of meshes {Th}h>0. Moreover, only
recently in [FT17a], the authors were able to prove strong convergence of TPS1PF, and even
establish the expected convergence rates as a priori error estimates.

Almost second-order tangent plane scheme

We state the almost second-order tangent plane scheme (TPS2) proposed and analyzed by
Alouges et al. in [AKST14]. The underlying idea was already mentioned in [AKT12] and is
motivated by a Taylor expansion of the projection-update (1.30) with respect to k, yielding
that the extrapolation

m(t+ k) ≈ m(t) + kv

|m(t) + kv|
with v := ∂tm(t) +

k

2

(
∂ttm(t)− (m(t) · ∂ttm(t))m(t)

)
is third-order accurate O(k3) in the time-step size k > 0. Then, again from the alternative
form (A) of LLG a discrete system is derived, defining

∂tm(ti) +
k

2

(
∂ttm(ti)− (m(ti) · ∂ttm(ti))m(ti)

)
≈ vih ∈ Kh[mi

h] .

Defining the notations

ρ(k) := |k log k| and W̃k(s) :=

{
α+ k

2 min{s,B} for s ≥ 0,
2α2

2α+kmin{−s,B} for s < 0,

with some cut-off B ∈ R+ and Wk(mh) := W̃k(mh ·heff(mh)), they arrive at the following
second-order tangent plane scheme (TPS2).

Algorithm 1.6.3 (TPS2, [AKST14]). Input: m0
h ∈Mh.

Loop: For all time-steps i = 0, . . . , J − 1, iterate:

(i) Compute vih ∈ Kh[mi
h] such that, for all ϕh ∈ Kh[mi

h], it holds that

〈Wk(m
i
h)vih,ϕh〉 + 〈mi

h × vih,ϕh〉 +
`2ex

2
k[1 + ρ(k)]〈∇vih,∇ϕh〉 −

k

2
〈πh(vih),ϕh〉

= −`2ex〈∇mi
h,∇ϕh〉 + 〈πh(mi

h),ϕh〉 + 〈f i+1/2
h ,ϕh〉 . (1.34)

(ii) Define mi+1
h ∈Mh by

mi+1
h (z) :=

mi
h(z) + kvih(z)

|mi
h(z) + kvih(z)|

∈ S2 for all z ∈ Nh. (1.35)
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Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}J−1

i=0
.

Like in its first-order counterpart, Algorithm 1.5.2, the variational formulation (1.34)
is posed in the discrete tangent space Kh[mi

h], and the update (1.35) employs the nodal
projection to enforce the pointwise constraint at the nodes of the triangulation. The Gilbert
damping parameter α is replaced by the weight function Wk(m

i
h), which gives rise to

the second-order of the scheme and ensures coercivity of the system by use of the cut-off
parameter B ∈ R+. The Crank–Nicolson type choice θ = 1/2 is fixed in TPS2, with an
additional stabilization term ρ(k) added to the highest-order exchange contribution. This
additional stabilization allows to prove unconditional convergence of TPS2 at the cost of
reducing the formal order of the scheme from full second-order to ‘almost second-order’,
i.e., for any ε > 0 the rate 2− ε is realized as k → 0. Assuming the angle condition (1.25)
on the family of triangulations {Th}h>0, the method is unconditionally convergent towards
a weak solution of LLG and formally of almost second-order in time. We note that there
is some flexibility in the definition of Wk(·) and ρ(k), which we describe in more detail
in [DPP+20, (2.7)], where we additionally propose a natural choice to avoid the additional
parameter B ∈ R+. In particular, the choice ρ(k) := 0 formally leads to full second-order
in-time accuracy at the cost of imposing the weak coupling condition k = o(h) to obtain
stability of the scheme; see [AKST14, Theorem 2] and [HPP+19, Remark 3(ii)–(iii)].
A considerable drawback of TPS2, however, is its implicit integration of lower-order effec-

tive field contributions πh(mi
h + (k/2)vih), in particular including the nonlocal stray field.

Despite the linearity of (1.34), practically this has to be dealt with by a costly inner iteration
in the (linear) solver.

Almost second-order implicit-explicit tangent plane scheme

In [DPP+20], we applied another modification to Algorithm 1.6.3 in order to overcome
its practical drawback, namely the implicit integration of (nonlocal) lower-order effective
field contributions πh(mi

h+(k/2)vih), while preserving the almost second-order accuracy of
TPS2. The underlying idea is to apply a two-step Adams–Bashforth method in combination
with linearity of πh to approximate

πh(mi
h + (k/2)vih) ≈ Πh(mi

h,m
i−1
h ) := (3/2)πh(mi

h)− (1/2)πh(mi−1
h ) .

With the definitions of Wk(·) and ρ(k) from Algorithm 1.6.3, applying the approximation
to TPS2 results in the following almost second-order implicit-explicit tangent plane scheme
(TPS2+IMEX).

Algorithm 1.6.4 (TPS2+IMEX, [DPP+20]). Input: m0
h ∈Mh. Define m−1

h := m0
h.

Loop: For all time-steps i = 0, . . . , J − 1, iterate:

(i) Compute vih ∈ Kh[mi
h] such that, for all ϕh ∈ Kh[mi

h], it holds that

〈Wk(m
i
h)vih,ϕh〉 + 〈mi

h × vih,ϕh〉 +
`2ex

2
k[1 + ρ(k)]〈∇vih,∇ϕh〉

= −`2ex〈∇mi
h,∇ϕh〉 + 〈Πh(mi

h,m
i−1
h ),ϕh〉 + 〈f i+1/2

h ,ϕh〉 .
(1.36)
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(ii) Define mi+1
h ∈Mh by

mi+1
h (z) :=

mi
h(z) + kvih(z)

|mi
h(z) + kvih(z)|

∈ S2 for all z ∈ Nh. (1.37)

Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}J−1

i=0
.

The scheme inherits all analytical properties from TPS2, and requires only one evaluation
of πh(mi

h) per time-step. Hence, besides the evaluation of πh(mi
h), the scheme requires the

solution of only one (constrained, but always well-posed) linear system per time-step. The
method is almost second-order accurate in time, and is computationally only slightly more
expensive than the first-order tangent plane scheme TPS1, because the mass term needs to
be updated at each time-step.

1.6.4 Extensions of the recent predictor-corrector scheme

Second-order predictor-corrector scheme PC2

In [KW18], the authors propose a second-order variant PC2 of their first-order predictor-
corrector scheme PC1. In PC2, the predictor step of Algorithm 1.5.3 remains unchanged,
computing an approximation vih ∈ S1(Th)3 of the time derivative ∂tm(ti). The projection
update of PC1 is replaced by a linear system of equations definingmi+1

h . This linear system
for the corrector is also a discretization of the Landau–Lifshitz form (LL), where the effective
field is explicitly evaluated on the predictormi

h+(k/2)vih. Using the cross product structure
of (LL) in combination with the mass-lumped integration rule, the remaining terms are
approximated such that the resulting discrete system is linear and discrete unit-length
mi+1

h ∈Mh is ensured. The obtained algorithm reads as follows.

Algorithm 1.6.5 (PC2, [KW18]). Input: m0
h ∈Mh and 0 ≤ θ ≤ 1.

Loop: For all time-steps i = 1, . . . , J − 1, iterate:

(i) Compute vih ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3, it holds that

(1 + α2)〈vih,wh〉h = −〈mi
h × [`2ex∆h(mi

h + θkvih) + πh(mi
h + θkvih) + f i+θh ],wh〉h

− α〈mi
h ×

(
mi

h × [`2ex∆h(mi
h + θkvih) + πh(mi

h + θkvih) + f i+θh ]
)
,wh〉h .

(ii) Define m̂i+1/2
h := mi

h + (k/2)vih and compute mi+1
h ∈Mh such that, for all wh ∈

S1(Th)3, it holds that

(1 + α2)〈dtmi+1
h ,wh〉h = −〈mi+1/2

h × [`2ex∆hm̂
i+1/2
h + πh(m̂

i+1/2
h ) + f

i+1/2
h ],wh〉h

− α〈mi+1/2
h ×

(
m̂

i+1/2
h × [`2ex∆h(m̂

i+1/2
h ) + πh(m̂

i+1/2
h ) + f

i+1/2
h ]

)
,wh〉h .

Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}J−1

i=0
.
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The numerical experiments in [KW18] show second-order accuracy of the scheme. How-
ever, no well-posedness and no convergence analysis is given in [KW18]. In the recent
work [MPPR21] presented in Chapter 5 of this thesis, we prove unconditional well-posedness
of Algorithm 1.6.5, again including the limit case α = 0. Further, our well-posedness anal-
ysis extends to the case where mi

h ∈ S1(Th)3, but not necessarily mi
h 6∈ Mh. This is

necessary, since mi+1
h ∈Mh only holds in theory as it is implicitly derived from the cor-

rector system in Algorithm 1.6.5(ii), which, in practice, is approximately solved by use of
an inexact (iterative) solver. The stability analysis of PC2, however, still remains open.

Implicit-explicit first- and second-order predictor-corrector schemes

Both integrators from [KW18], PC1 and PC2, integrate (nonlocal) lower-order effective field
contributions πh(·) implicitly in time, restricting their practical feasibility. In the recent
work [MPPR21] presented in Chapter 5, we also apply a modification to Algorithm 1.5.3
and Algorithm 1.6.5, respectively, in order to overcome their practical drawback, while
preserving their formal first- and second-order accuracy. Using the backward difference
quotient and using linearity of πh yields the approximation

πh(mi
h + θkvih) ≈ Πθ

h(mi
h,m

i−1
h ) := (1 + θ)πh(mi

h)− θπh(mi−1
h ).

Application to Algorithm 1.5.3 and Algorithm 1.6.5, respectively, results in the implicit-
explicit predictor-corrector methods PC1+IMEX and PC2+IMEX.

Algorithm 1.6.6 (PC1+IMEX, [MPPR21]). Input: m0
h ∈Mh and 0 ≤ θ ≤ 1.

Define m−1
h := m0

h.
Loop: For all time-steps i = 0, . . . , J − 1, iterate:

(i) Compute vih ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3, it holds that

(1 + α2)〈vih,wh〉h = −〈mi
h × [`2ex∆h(mi

h + θkvih) + Πθ
h(mi

h,m
i−1
h ) + f i+θh ],wh〉h

− α〈mi
h ×

(
mi

h × [`2ex∆h(mi
h + θkvih) + Πθ

h(mi
h,m

i−1
h ) + f i+θh ]

)
,wh〉h .

(ii) Define mi+1
h ∈Mh by

mi+1
h (z) :=

mi
h(z) + kvih(z)

|mi
h(z) + kvih(z)|

∈ S2 for all z ∈ Nh.

Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}J−1

i=0
.

We note that (a slightly different version of) PC1+IMEX can be obtained from PC1 by the
approximation kπh(vih) ≈ 0. This would not deteriorate the order of the scheme, as PC1
is already restricted to first-order in time. Our analysis in Chapter 5 shows that PC1+IMEX
inherits all analytical properties of PC1. Practically, PC1+IMEX is advantageous, as besides
the evaluation of πh(mi

h), it requires the solution of only one sparse linear system per
time-step.
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Algorithm 1.6.7 (PC2+IMEX, [MPPR21]). Input: m0
h ∈Mh and 0 ≤ θ ≤ 1.

Define m−1
h := m0

h.
Loop: For all time-steps i = 0, . . . , J − 1, iterate:

(i) Compute vih ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3, it holds that

(1 + α2)〈vih,wh〉h = −〈mi
h × [`2ex∆h(mi

h + θkvih) + Πθ
h(mi

h,m
i−1
h ) + f i+θh ],wh〉h

− α〈mi
h ×

(
mi

h × [`2ex∆h(mi
h + θkvih) + Πθ

h(mi
h,m

i−1
h ) + f i+θh ]

)
,wh〉h .

(ii) Define m̂i+1/2
h := mi

h + (k/2)vih and compute mi+1
h ∈Mh such that, for all wh ∈

S1(Th)3, it holds that

(1 + α2)〈dtmi+1
h ,wh〉h = −〈mi+1/2

h × [`2ex∆hm̂
i+1/2
h + πh(m̂

i+1/2
h ) + f

i+1/2
h ],wh〉h

− α〈mi+1/2
h ×

(
m̂

i+1/2
h × [`2ex∆h(m̂

i+1/2
h ) + πh(m̂

i+1/2
h ) + f

i+1/2
h ]

)
,wh〉h .

Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}J−1

i=0
.

We note that a variant of PC2+IMEX is obtained from PC2, if also in the corrector scheme
of Algorithm 1.6.5(ii) the approximation πh(m̂

i+1/2
h ) ≈ Π

1/2
h (mi

h,m
i−1
h ) is applied. This

approximation is second-order accurate, and hence, would not deteriorate the order of the
scheme. Practically, PC2+IMEX is to be preferred over PC2, as besides the evaluation of πh(·),
it requires the solution of only two sparse linear systems per time-step.

1.7 Contributions of this thesis and future work

Chapter 2

As a novel contribution, we introduce and analyze all versions of the tangent plane scheme
[Alo08, AHP+14, AKST14, DPP+20] for LLG in the presence of DMI, which is the essen-
tial ingredient for the enucleation and the stabilization of magnetic skyrmions. Moreover,
DMI contributions represent a challenging testing ground for numerical schemes for LLG.
Indeed, besides requiring accurate adaptations in the numerical analysis, DMI determines
magnetization configurations — magnetic skyrmions — that turn out to be very sensitive
to small perturbations of the micromagnetic energy.
For any tangent plane algorithm, we prove that the sequence of finite element solutions,

upon extraction of a subsequence, converges towards a weak solution of the problem. For
the projection-free algorithm, we prove that the convergence is even unconditional, while
the stability analysis requires a mild CFL-type condition on the discretization parameters
and imposes the angle condition (1.25) on the underlying mesh for the projection-based
approaches. The extension of the LLG analysis is not straightforward, since the DMI term
involves magnetization derivatives, is neither self-adjoint nor positive definite, and requires
to impose different boundary conditions on LLG, which entail a careful treatment. A by-
product of our constructive analysis is the proof of existence of weak solutions, which —
to the best of our knowledge — was missing in the literature for LLG with DMI. Finally,
numerical experiments show that our approach can be used to study enucleation processes,
stability, and dynamics of magnetic skyrmions.
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Chapter 3

We extend the midpoint scheme and its analysis to more general energy contributions, in
particular, covering the non-standard DMI energy contribution [Dzy58, Mor60], which is
not covered by the analysis in [BP06, Bar06, Cim09, PRS18b]. In a collection of numeri-
cal experiments we accurately test the energy conservation properties of the mass-lumped
midpoint scheme and extensively compare it with the tangent plane schemes from [Alo08,
AKST14, HPP+19, DPP+20]. We conclude that the tangent plane schemes are preferable
for uncritical simulations as in Section 3.4.1 or [HPP+19, Section 4.2], where small deterio-
rations of the energy are acceptable, as they lead to already accurate results for much coarser
time discretizations. However, when it comes to the simulation of dynamics, which are very
sensitive to small inaccuracies and crucially depend on an accurate energy evolution, the
midpoint scheme yields the most reliable results.
Besides extending the analysis of the (ideal) midpoint scheme to more general energy con-

tributions, we provide a rigorous stability and well-posedness analysis for two fully practical
versions of the original midpoint scheme, which both incorporate an efficient implicit-explicit
treatment of the effective field contributions. The first practical midpoint scheme analyzed,
uses a constraint-preserving fixed-point iteration in the spirit of [Bar06] to discretize the
nonlinear system of the ideal midpoint scheme. The second approach is based on lineariza-
tion by the Newton method. While this linearization strategy only preserves the unit-length
constraint asymptotically, in a 2D numerical experiment in [BBNP14, Section 1.4.1] the au-
thors observe a less restrictive coupling condition on the time-step size k > 0. Although,
in our 3D numerical study we experimentally observe a coupling condition analogous to
the one for the constraint preserving fixed-point iteration, namely k = o(h2), the Newton
iteration is of practical interest as our study reveals that it leads to considerably lower
iteration numbers. As far as theory is concerned, for convergence of the Newton iteration
with canonical starting value mi

h, our analysis imposes the sufficient coupling conditions
k = o(h7/3) and ε = O(h3/2), with ε > 0 the nonlinear solver accuracy. Although our
numerical study indicates that the first coupling condition might not be sharp and can
possibly be improved to k = o(h2), our analysis provides — to the best of our knowledge
— the first rigorous analysis of Newton’s method applied to the midpoint scheme for three
dimensional micromagnetics to the literature.

Chapter 4

In each time-step, (any variant of) the tangent plane scheme requires the solution of a linear
system of equations posed in the discrete tangent space Kh[mi

h] $ S1(Th)3. The nature of
this linear system — it is non-symmetric and posed in a time-dependent subspace Kh[mi

h]
of the finite element space S1(Th)3 — makes efficient numerical solution, which has not
been discussed in the literature before, a non-trivial task. Finite element software pack-
ages like NGSolve [ngs] usually assemble linear systems in the full discrete space S1(Th)3.
Starting from such a linear system in S1(Th)3, based on nodewise Householder reflections
we construct the constrained linear system of the tangent plane scheme posed in Kh[mi

h],
recovering the effective dimension of the problem. The tangent plane constraint aggravates
the construction of suitable and effective preconditioners, which, if possible, should not
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depend on the time-step, or, at least, only need an update every once in a while (after
several time-steps). We derive possible preconditioners, which are (essentially) independent
of the time-step, and prove linear convergence of the preconditioned GMRES algorithm.
Numerical experiments underpin the theoretical findings in an academic setup, as well as
in micromagnetic benchmark problems from [MUM].

Chapter 5

We improve the theoretical understanding of the predictor-corrector methods proposed
in [KW18] by establishing unconditional well-posedness of both, PC1 and PC2, i.e., for each
time-step, the variational problems to be solved admit a unique solution, which is left open
in the original paper. By closing this fundamental gap, we show that PC1 is not only closely
related to the first-order tangent plane scheme of [Alo08, BFF+14], but actually can even
be interpreted as a slight modification of it. Our well-posedness analysis is based on a refor-
mulation of the predictor system, which crucially exploits nodewise unit-lengthmi

h ∈Mh.
As in practice linear systems are not solved exactly, practically nodewise unit-length can
formally not be satisfied for iterates of PC2, but only in theory. To cope with this problem,
we establish a decomposition of the finite element space, which does not only allow us to
prove unconditional well-posedness of the practical version of PC2, but also to extend the
result, for both PC1 and PC2 (theoretical and practical), to the limit case α = 0 (Schrödinger
map equation).
Furthermore, following [BFF+14, PRS18b, DPP+20], we propose implicit-explicit ver-

sions of PC1 and PC2. When considering magnetization dynamics involving the full effective
field — more precisely, dynamics including the nonlocal stray field — the proposed IMEX
versions PC1+IMEX and PC2+IMEX are computationally much more attractive than their orig-
inal counterparts. Experimentally, we demonstrate the improved efficiency of the IMEX
schemes and their applicability to a physically relevant benchmark problem. The experi-
ments also validate their preservation of the experimental first- and second-order accuracies
of PC1 and PC2, respectively.
Finally, we shed some light on the stability of PC2(+IMEX) by a numerical study. In

particular, our experiments reveal that stability of the second-order predictor-corrector
method is an issue, at least if the ‘degree of implicitness’ 0 ≤ θ ≤ 1 is chosen far from (not
chosen as) θ = 1/2. From a theoretical point of view, stability and convergence of PC2, not
addressed in [KW18], remain open also in our analysis and will be the subject of future
research.

Chapter 6

As a central element of this thesis, the theoretical contributions of our research are accompa-
nied by the development of an easy-to-use open-source software for the simulation of micro-
magnetic phenomena described by LLG. In Chapter 6, we present our open-source Python
module Commics for the study of the magnetization dynamics in ferromagnetic materi-
als via micromagnetic simulations. Commics implements state-of-the-art unconditionally
convergent finite element methods for the numerical integration of the Landau–Lifshitz–
Gilbert equation. The implementation is based on the multiphysics finite element software
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Netgen/NGSolve. The simulation scripts are written in Python, which leads to very read-
able code and direct access to extensive post-processing. Together with documentation and
example scripts, the code is freely available on GitLab [Pfe].

Future work

Since the “perfect” integrator for LLG was not proposed yet, there is demand for numerical
schemes satisfying unique combinations of theoretical requirements and practical desires.
Hence, the proposition of new schemes as well as the (further) improvement of existing
integrators is of great interest. We point out two questions, which, despite considerable
effort, remain unanswered in our analysis:

• Stability of PC2(+IMEX). While we could not provide a rigorous stability analysis of
PC2, our numerical study in Section 5.5.3 motivates the following future approach to
the question: The experiments unambiguously reveal increased stability of simulations
with PC2, where the parameter of implicitness 0 ≤ θ ≤ 1 is chosen close to 1/2. Hence,
in future research a possible first step towards theoretically understanding stability of
PC2 might be to establish stability of PC2 for the special case θ = 1/2, possibly under
some CFL condition. This seems reasonable, as in this special case only the same
highest-order term ∆h(m`

h + (k/2)v`h) appears in the predictor and the corrector of
PC2 and thus potentially cancels out (partially) in a rigorous stability analysis.

• Coupling conditions for MPS(+IMEX) with Newton linearization. Our numer-
ical study in Section 3.4.3 confirms that in terms of iteration numbers the Newton
linearization of MPS outperforms the linearization by a (constraint preserving) fixed-
point iteration. This is in accordance with theory, predicting quadratic convergence of
Newton’s method for appropriate initial guesses. At the same time, in the experiments
we observe that both linearization strategies are equally restrictive on the time-step
size. Hence, possibly the CFL conditions for the Newton solver k = o(h7/3) imposed
in our analysis are not sharp and might be weakened to k = o(h2) in an improved
analysis.
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2 Convergent tangent plane integrators
for the simulation of chiral magnetic
skyrmion dynamics

This chapter consists of the article [HPP+19] together with Gino Hrkac, Dirk Praetorius,
Michele Ruggeri, Antonio Segatti and Bernhard Stiftner.

Abstract. We consider the numerical approximation of the Landau–Lifshitz–Gilbert equa-
tion, which describes the dynamics of the magnetization in ferromagnetic materials. In addi-
tion to the classical micromagnetic contributions, the energy comprises the Dzyaloshinskii–
Moriya interaction, which is the most important ingredient for the enucleation and the
stabilization of chiral magnetic skyrmions. We propose and analyze three tangent plane
integrators, for which we prove (unconditional) convergence of the finite element solutions
towards a weak solution of the problem. The analysis is constructive and also establishes
existence of weak solutions. Numerical experiments demonstrate the applicability of the
methods for the simulation of practically relevant problem sizes.

2.1 Introduction

2.1.1 State of the art

Magnetic skyrmions are topologically protected vortex-like magnetization configurations
[NT13, FBT+16, Wie16], which have been theoretically predicted [BY89, BH94, BR01,
RBP06] and experimentally observed [MBJ+09, RHM+13] in several magnetic systems. The
most important ingredient for the enucleation and the stabilization of magnetic skyrmions
is the so-called Dzyaloshinskii–Moriya interaction (DMI); see [Dzy58, Mor60]. It is a short-
range effect, sometimes also referred to as antisymmetric exchange, which exerts a torque
on the magnetization inducing neighboring spins to be perpendicular to each other. It is
thus in direct competition with the classical Heisenberg exchange interaction, which con-
versely favors uniform configurations. The DMI is modeled by an energy contribution,
which is linear in the first spatial derivatives of the magnetization and is added to the
micromagnetic energy for chiral ferromagnets. Magnetic skyrmions are currently subject
of intense scientific research, which includes theoretical, computational, and experimental
studies; see, e.g., [HvBM+11, SCR+13, KP15, HKK+16, BAB+17]. As for the mathe-
matical literature, the existence of isolated skyrmions emerging as energy minimizers of
two-dimensional micromagnetic models and their dynamic stability have been investigated
in [Mel14, DM17], whereas chiral domain walls in ultrathin ferromagnetic films have been
studied in [MS17]. The growing interest in skyrmions in the magnetic storage and magnetic
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2 Tangent plane integrators for the simulation of skyrmion dynamics

logic community is connected with their potential as possible candidate to store the bits
of future devices, with the information being encoded as presence/absence of a skyrmion;
see, e.g., [FCS13, TMZ+14] for the proposal of skyrmion racetrack memories, which are
believed to overcome the original domain-wall-based device of [PHT08] and pave new ways
in magnetic data logic [HKBB15].
A well-accepted model for the magnetization dynamics is the Landau–Lifshitz–Gilbert

equation (LLG) [LL35, Gil55]. The numerical approximation of LLG poses several chal-
lenges: nonlinearities, a nonconvex pointwise constraint, an intrinsic energy law, which
resembles the one of a gradient flow and combines conservative and dissipative effects, and
the possible coupling with other partial differential equations (PDEs), e.g., the Maxwell
equations.
The numerical integration of LLG has been the subject of several mathematical studies;

see, e.g., [Pro01, KP06, GC07]. A well-established approach is represented by the integrators
usually referred to as tangent plane schemes. These methods are based on equivalent
reformulations of the equation in the tangent space.
The integrator proposed in [Alo08], which considers the case in which the energy only

comprises the exchange contribution, requires only the solution of one linear system per
time-step, is formally of first order in time, and is unconditionally convergent towards a
weak solution of the problem, i.e., the numerical analysis of the scheme does not require to
impose any restrictive CFL-type coupling condition on the time-step size and the spatial
mesh size. The pointwise constraint is enforced by applying the nodal projection to the
computed solution at each time-step. The scheme generalizes the explicit scheme proposed
in [AJ06] and analyzed in [BKP08]. Implicit-explicit approaches of the algorithm of [Alo08]
for the full effective field were independently introduced and analyzed in [AKT12, BFF+14].
Extensions of the scheme for the discretization of the coupling of LLG with other PDEs
were studied in [LT13, BPPR14, LPPT15, BPP15]. Inspired by [Bar16], the projection-
free version of the algorithm of [Alo08], which avoids the use of the nodal projection, was
introduced, analyzed, and applied to the decoupled integration of the coupling of LLG
with a spin diffusion equation for the spin accumulation in [AHP+14]. The violation of
the constraint at the nodes of the mesh occurring in this case is uniformly controlled by
the time-step size. The projection-free tangent plane scheme of [AHP+14] was combined
with a FEM-BEM coupling method for the discretization of the coupling of LLG with
the magnetoquasistatic Maxwell equations in full space in [FT17a]. There, assuming the
existence of a unique sufficiently smooth solution, the authors proved optimal first-order
convergence rates of the method. A tangent plane scheme characterized by an enhanced
convergence order in time was proposed in [AKST14]. The method is unconditionally
convergent and formally of (almost) second order in time. A more efficient implicit-explicit
version of this method has been proposed in [DPP+20]. Adapting ideas from [BP06, Alo08],
the recent work [KW18] proposes a similar predictor-corrector scheme based on a linear
mass-lumped variational formulation of LLG.

2.1.2 Contributions and general outline

In this work, as a novel contribution, we introduce and analyze three tangent plane schemes
for LLG in the presence of DMI. The integrators extend to this case the first-order scheme
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2 Tangent plane integrators for the simulation of skyrmion dynamics

of [Alo08] (Algorithm 2.3.1), its projection-free variant from [AHP+14] (Algorithm 2.3.2),
and the (almost) second-order scheme of [AKST14] (Algorithm 2.3.3). For any algorithm,
we prove that the sequence of finite element solutions, upon extraction of a subsequence,
converges towards a weak solution of the problem. For the projection-free algorithm, we
prove that the convergence is even unconditional, while the stability analysis requires a mild
CFL-type condition on the discretization parameters and a geometric restriction on the
underlying mesh for the other two approaches. The present extension of the LLG analysis
is not straightforward, since the DMI term involves magnetization derivatives, is neither
self-adjoint nor positive definite, and requires to impose different boundary conditions on
LLG, which entail a careful treatment. A by-product of our constructive analysis is the
proof of existence of weak solutions, which to our knowledge was missing in the literature.
Finally, numerical experiments show that our approach can be used to study enucleation
processes, stability, and dynamics of magnetic skyrmions.
The remainder of the work is organized as follows: For the convenience of the reader,

we conclude this section by collecting the notation used throughout the paper. In Sec-
tion 2.2, we propose an organic presentation of the physical background and the mathemat-
ical framework of the problem under consideration. In Section 2.3, we derive three tangent
plane schemes and state the convergence result (Theorem 2.3.5). Section 2.4 is devoted to
numerical experiments. Finally, in Section 2.5, we present the convergence analysis of the
algorithms and, in particular, we establish the proof of Theorem 2.3.5.

2.1.3 Notation

We use the standard notation for Lebesgue, Sobolev, and Bochner spaces and norms; see,
e.g., [Eva10, Chapter 5] or [BBF13, Chapter 2]. In the case of (spaces of) vector-valued
or matrix-valued functions, we use bold letters, e.g., for any domain U , we denote both
L2(U ;R3) and L2(U ;R3×3) by L2(U). For the differential operators, we use the following
notation: For a scalar function f , we denote by ∇f the gradient and by ∆f the Laplace
operator. For a vector-valued function f , we denote by ∇ · f the divergence, by ∇× f the
curl, by ∇f the Jacobian, and by ∆f the vector-valued Laplace operator. Given another
vector-valued function h, we also define (f · ∇)h by [(f · ∇)h]i = f · ∇hi for all 1 ≤ i ≤ 3.
We denote the unit sphere by S2 = {x ∈ R3 : |x| = 1} and by {ei}1≤i≤3 ∈ R3 the standard
basis of R3, i.e., (ei)j = δij for all 1 ≤ i, j ≤ 3. Given a vector b ∈ R3 and a matrix
A ∈ R3×3 (with columns ai ∈ R3 for all 1 ≤ i ≤ 3), we denote by A × b ∈ R3×3 the
matrix whose columns are ai × b for all 1 ≤ i ≤ 3. By C > 0 we always denote a generic
constant, which is independent of the discretization parameters, but not necessarily the
same at each occurrence. We also use the notation . to denote smaller than or equal to up
to a multiplicative constant, i.e., we write A . B if there exists a constant C > 0, which is
clear from the context and always independent of the discretization parameters, such that
A ≤ CB.
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2 Tangent plane integrators for the simulation of skyrmion dynamics

2.2 Mathematical model

2.2.1 Physical background

Let Ω ⊂ R3 be a bounded domain with boundary Γ := ∂Ω. The dynamics of the normalized
magnetization m = (m1,m2,m3) ∈ S2 is governed by LLG, which in the so-called Gilbert
form reads

∂tm = −γ0m×Heff(m) + αm× ∂tm; (2.1)

see [LL35, Gil55]. Here, γ0 ≈ 2.21 · 105 m/(A s) is the rescaled gyromagnetic ratio of the
electron, 0 < α ≤ 1 is the dimensionless Gilbert damping parameter, and Heff is the
energy-based effective field (in A/m), i.e., it holds that

µ0MsHeff(m) = −δE(m)

δm
, (2.2)

where E(·) is the total energy, µ0 = 4π · 10−7 N/A2 is the vacuum permeability, andMs > 0
is the saturation magnetization (in A/m). In micromagnetics, the total energy is usually
the sum of the following standard terms:

• the Heisenberg exchange contribution

Eex(m) = A

∫
Ω
|∇m|2dx,

where A > 0 denotes the exchange stiffness constant (in J/m);

• the magnetocrystalline anisotropy contribution, which for the uniaxial case reads

Eani(m) = K

∫
Ω

[
1− (a ·m)2

]
dx,

where K > 0 denotes the anisotropy constant (in J/m3) and a ∈ S2 is the easy axis,

• the Zeeman contribution

Eext(m) = −µ0Ms

∫
Ω
Hext ·m dx,

where Hext denotes an applied external field (in A/m);

• the magnetostatic contribution

Emag(m) =
µ0

2

∫
R3

|Hs(m)|2dx,

whereHs(m) = −∇u denotes the stray field (in A/m), with u being the magnetostatic
potential (in A), which solves the full-space transmission problem

−∆uint = −Ms∇ ·m in Ω, (2.3a)

−∆uext = 0 in R3 \ Ω, (2.3b)

uext − uint = 0 on Γ, (2.3c)

(∇uext −∇uint) · n = −Msm · n on Γ, (2.3d)
u(x) = O(1/|x|) as |x| → ∞. (2.3e)

Here, n : Γ→ S2 denotes the outward-pointing unit normal vector to Γ.
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In this work, the total energy E(·) in (2.2) also comprises a term associated with the
DMI [Dzy58, Mor60]. This energy contribution is phenomenologically introduced for sys-
tems with a broken symmetry due to different interface crystal configurations as a linear
combination of the so-called Lifshitz invariants, i.e., the components of the chirality tensor
A = (aij)1≤i,j≤3 = ∇m×m; see [BY89, BH94]. The choice of the appropriate DMI form
depends on the crystal structure of the material and on the geometry of the sample under
consideration. This choice in turn determines the specific expression of the effective field
(according to (2.2)) and the boundary conditions on Γ, which are chosen in agreement with
those satisfied by the solution of the Euler–Lagrange equations associated with the energy
minimization problem

min
|m|=1

E(m). (2.4)

In micromagnetics, two main DMI forms are usually considered:

• For helimagnetic materials [Mor60], the DMI is obtained by taking as Lifshitz invari-
ants the trace of the matrix A, i.e.,

tr A =
∑

1≤i≤3

aii = (∇×m) ·m.

The so-called bulk DMI energy contribution then takes the form

EbDMI(m) = D

∫
Ω

(∇×m) ·m dx, (2.5)

so that the resulting effective field term and boundary conditions on Γ are given by

Heff,bDMI(m) = − 2D

µ0Ms
∇×m and 2A∂nm+Dm× n = 0.

• Another type of DMI is due to the interfaces between different materials which break
inversion symmetry [CL98]. For a magnetic thin film aligned with the x1x2-plane, the
Lifshitz invariants are given by

a12 − a21 = m3(∂1m1 + ∂2m2)− (m1 ∂1m3 +m2 ∂2m3).

The so-called interfacial DMI energy contribution thus takes the form

EiDMI(m) = D

∫
Ω

[m3(∂1m1 + ∂2m2)− (m1 ∂1m3 +m2 ∂2m3)] dx, (2.6)

so that the resulting effective field term and boundary conditions on Γ are given by

Heff,iDMI(m) = − 2D

µ0Ms

 −∂1m3

−∂2m3

∂1m1 + ∂2m2

 and 2A∂nm+D(e3 × n)×m = 0.

In (2.5)–(2.6), the constantD ∈ R is the DMI constant (in J/m2)1. The sign ofD determines
the chirality of the system, which, in the case of a skyrmion state, defines the sense of
rotation of the magnetization along the skyrmion diameter [SCR+13, KP15].

1Consider the energy wD in [BH94, equation (4)] for the crystallographic class Cn (n = 3, 4, 6). The
bulk DMI energy (2.5) corresponds to the last two terms of wD, i.e., D1 = 0 and D2 = D3 = −D
(crystallographic subclass Dn). The interfacial DMI energy (2.6) corresponds to the first term of wD,
i.e., D1 = D and D2 = D3 = 0 (crystallographic subclass Cnv).
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2.2.2 Problem formulation

To simplify the notation, in our analysis, we restrict ourselves to the case in which the en-
ergy solely comprises exchange and DMI. We refer to [AKT12, BFF+14, AHP+14, AKST14,
DPP+20] for the design and the analysis of effective tangent plane integrators for the stan-
dard energy terms (exchange, anisotropy, Zeeman, and magnetostatic). Moreover, without
loss of generality, we assume that D > 0 and consider the prototypical case of bulk DMI, be-
cause it is characterized by a short notation involving the curl operator. The same approach
and the same results hold for all possible choices of the Lifshitz invariants.
After a suitable nondimensionalization2, the initial boundary value problem in which we

are interested takes the form

∂tm = −m× heff(m) + αm× ∂tm in Ω× (0,∞), (2.7a)

2`2ex ∂nm = −`dmm× n on Γ× (0,∞), (2.7b)

m(0) = m0 in Ω, (2.7c)

where the effective field heff(m) is determined by the energy functional

E(m) =
`2ex

2
‖∇m‖2L2(Ω) +

`dm

2
〈∇ ×m,m〉 (2.8)

according to the relation

heff(m) = −δE(m)

δm
= `2ex∆m− `dm∇×m. (2.9)

The positive quantities `ex =
√

2A/(µ0M2
s ) and `dm = 2D/(µ0M

2
s ) denote the exchange

length and the DMI length (both measured in m), respectively.
Since ‖∇ ×m‖L2(Ω) ≤

√
2‖∇m‖L2(Ω), using the weighted Young inequality

ab ≤ εa2

2
+
b2

2ε
for any a, b ∈ R and ε > 0, (2.10)

it is easy to see that the energy (2.8) satisfies the condition

`2ex

4
‖∇m‖2L2(Ω) −

`2dm

2`2ex

‖m‖2L2(Ω) ≤ E(m) ≤
`2ex + `2dm

2
‖∇m‖2L2(Ω) +

1

4
‖m‖2L2(Ω). (2.11)

For any T > 0, we define the space-time cylinder by ΩT := Ω× (0, T ). Moreover, we denote
by 〈·, ·〉 the scalar product in L2(Ω), by 〈〈·, ·〉〉 the duality pairing between H−1/2(Γ) and
H1/2(Γ), and by γT : H(curl,Ω)→H−1/2(Γ) the tangential trace operator, which satisfies
γT [u] = u× n|Γ for any smooth function u as well as the Green formula

〈〈γT [u],φ〉〉 = 〈u,∇× φ〉 − 〈∇ × u,φ〉 for all u ∈H(curl,Ω) and φ ∈H1(Ω); (2.12)

see, e.g., [BBF13, Lemma 2.1.4].
We conclude this section by extending the notion of a weak solution introduced in [AS92]

to the present setting.
2We rescale the time according to the transformation t′ = γ0Mst. We define the rescaled effective field
by heff = Heff/Ms and the rescaled energy by E ′ = E/(µ0M

2
s ). However, to simplify the notation, we

neglect all ′-superscripts.
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Definition 2.2.1. Let m0 ∈ H1(Ω) satisfy |m| = 1 a.e. in Ω. A vector field m : Ω ×
(0,∞) → R3 is called a weak solution of (2.7) if, for any T > 0, the following properties
are satisfied:

(i) m ∈H1(ΩT ) ∩ L∞(0, T ;H1(Ω)) with |m| = 1 a.e. in ΩT ;

(ii) m(0) = m0 in the sense of traces;

(iii) For all ϕ ∈H1(ΩT ), it holds that∫ T

0
〈∂tm(t),ϕ(t)〉 dt

= `2ex

∫ T

0
〈m(t)×∇m(t),∇ϕ(t)〉 dt− `dm

∫ T

0
〈∇ ×m(t),m(t)×ϕ(t)〉 dt

− `dm

2

∫ T

0
〈〈γT [m(t)],m(t)×ϕ(t)〉〉 dt+ α

∫ T

0
〈m(t)× ∂tm(t),ϕ(t)〉 dt;

(2.13)

(iv) It holds that

E(m(T )) + α

∫ T

0
‖∂tm(t)‖2L2(Ω)dt ≤ E(m0). (2.14)

The variational formulation (2.13) comes from a weak formulation of (2.7a) in the space-
time domain. The boundary conditions (2.7b) are enforced as natural boundary conditions.
In particular, the term with 〈〈·, ·〉〉 arises from integrating by parts the exchange contribution
and using (2.7b). The energy inequality (2.14) is a weak counterpart of the dissipative
energy law

d

dt
E(m(t)) = −α‖∂tm(t)‖2L2(Ω) ≤ 0 for all t > 0

satisfied by any sufficiently smooth solution of (2.7).

Remark 2.2.2. Taking the scalar product of (2.7a) with m, we deduce that m · ∂tm = 0.
In particular, since ∂t|m|2 = 2m · ∂tm = 0, it follows that a sufficiently smooth solution
of (2.7a) satisfies the constraint |m| = 1, provided that it is satisfied by the initial condition.

2.3 Numerical algorithms and main result

In this section, we introduce three algorithms for the numerical approximation of the prob-
lem discussed in Section 2.2.2 and we state the main convergence result.

2.3.1 Preliminaries

For the time discretization, given an integer N > 0 and a final time T > 0, we consider a
uniform partition of the time interval (0, T ) with time-step size k := T/N , i.e., ti := ik for
all 0 ≤ i ≤ N . For the spatial discretization, we assume Ω to be a polyhedral domain with
Lipschitz boundary and consider a κ-quasi-uniform family {Th}h>0 of regular tetrahedral
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meshes of Ω parametrized by the mesh size h > 0, i.e., there exists κ ≥ 1, independent of h,
such that Th is κ-shape-regular and κ−1h ≤ diam(K) for all K ∈ Th. We denote by Nh the
set of vertices of Th. For any K ∈ Th, we denote by P1(K) the space of linear polynomials
on K. We consider the space

S1(Th) =
{
vh ∈ C0(Ω) : vh|K ∈ P1(K) for all K ∈ Th

}
of piecewise linear and globally continuous functions from Ω to R. The classical basis for
this finite-dimensional linear space is given by the set of the nodal hat functions {ϕz}z∈Nh

,
which satisfy ϕz(z′) = δz,z′ for all z, z′ ∈ Nh. We assume that all off-diagonal entries of
the so-called stiffness matrix are nonpositive, i.e.,

〈∇ϕz,∇ϕz′〉 ≤ 0 for all z, z′ ∈ Nh with z 6= z′. (2.15)

This requirement is usually referred to as angle condition, since it is satisfied if the measure
of all dihedral angles of all tetrahedra of the mesh is less than or equal to π/2.
Any solution of LLG is characterized by the nonconvex pointwise constraint |m| = 1 and

by the orthogonality propertym ·∂tm = 0. To mimic these properties at the discrete level,
we require them to be satisfied only at the nodes of the mesh. To this end, we introduce
the set of admissible discrete magnetizations

Mh :=
{
φh ∈ S1(Th)3 : |φh(z)| = 1 for all z ∈ Nh

}
and, for ψh ∈ S1(Th)3, the linear space

Kh(ψh) :=
{
φh ∈ S1(Th)3 : ψh(z) · φh(z) = 0 for all z ∈ Nh

}
, (2.16)

which we call the discrete tangent space of ψh.

2.3.2 Three tangent plane integrators

Using the well-known formula

a× (b× c) = (a · c)b− (a · b)c for all a,b, c ∈ R3,

(2.7a) can be formally rewritten in the form

α∂tm+m× ∂tm = heff(m)− [heff(m) ·m]m. (2.17)

Observing that this equation is linear with respect to the time derivative ∂tm, we introduce
the free variable v = ∂tm. For any t ∈ (0, T ), v(t) belongs to the tangent space of S2 at
m(t). Taking this orthogonality and the expression (2.9) of the effective field into account,
we obtain the following variational formulation: Find v(t) ∈ L2(Ω) with m(t) · v(t) = 0
a.e. in Ω such that

α〈v(t),φ〉 + 〈m(t)× v(t),φ〉

= −`2ex〈∇m(t),∇φ〉 − `dm

2
〈∇ ×m(t),φ〉 − `dm

2
〈m(t),∇× φ〉

(2.18)
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for all φ ∈H1(Ω) satisfyingm(t) ·φ = 0 a.e. in Ω. To obtain (2.18), the boundary integral
which arises from integrating by parts the exchange contribution and using the boundary
conditions (2.7b) is rewritten as a volume integral by using (2.12). Note that, since the
test function φ belongs to the tangent space of the sphere at m(t), in (2.18) the term
corresponding to the last term (strongly nonlinear in m) on the right-hand side of (2.17)
vanishes.
For any time-step 0 ≤ i ≤ N − 1, given the approximate current magnetization mi

h ≈
m(ti), we compute vih ≈ v(ti) by a Galerkin discretization of (2.18) based on the discrete
tangent space Kh(mi

h) introduced in (2.16). The computed quantity vih ∈ Kh(mi
h) is then

used to update the current magnetization mi
h ≈ m(ti) to the new value mi+1

h ≈ m(ti+1)
via a first-order time-stepping. To ensure that the discrete magnetization belongs to the
set of admissible discrete magnetizations Mh, the nodal projection is applied.
The resulting scheme, summarized in the following algorithm, extends the method pro-

posed by [Alo08] to the present situation.

Algorithm 2.3.1 (first-order tangent plane scheme, TPS1). Input: m0
h ∈Mh.

Loop: For all 0 ≤ i ≤ N − 1, iterate:

(i) Compute vih ∈ Kh(mi
h) such that, for all φh ∈ Kh(mi

h), it holds that

α〈vih,φh〉 + 〈mi
h × vih,φh〉 + `2exθk〈∇vih,∇φh〉

= −`2ex〈∇mi
h,∇φh〉 −

`dm

2
〈∇ ×mi

h,φh〉 −
`dm

2
〈mi

h,∇× φh〉.
(2.19)

(ii) Define mi+1
h ∈Mh by mi+1

h (z) :=
mi

h(z) + kvih(z)

|mi
h(z) + kvih(z)|

for all z ∈ Nh.

Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}
0≤i≤N−1

.

In (2.19), the parameter 0 ≤ θ ≤ 1 modulates the ‘degree of implicitness’ of the method
in the treatment of the leading-order exchange contribution of the effective field.
In the following algorithm, we state a projection-free variant of Algorithm 2.3.1, where

step (ii) is replaced by a simple linear first-order time-stepping. Note that, omitting the
nodal projection, the pointwise constraint |m| = 1 is not explicitly enforced by the numerical
scheme.

Algorithm 2.3.2 (projection-free first-order tangent plane scheme, PF-TPS1). Input:
m0

h ∈ S1(Th)3.
Loop: For all 0 ≤ i ≤ N − 1, iterate:

(i) Compute vih ∈ Kh(mi
h) such that, for all φh ∈ Kh(mi

h), it holds that

α〈vih,φh〉 + 〈mi
h × vih,φh〉 + `2exθk〈∇vih,∇φh〉

= −`2ex〈∇mi
h,∇φh〉 −

`dm

2
〈∇ ×mi

h,φh〉 −
`dm

2
〈mi

h,∇× φh〉.
(2.20)

(ii) Define mi+1
h := mi

h + kvih ∈ S1(Th)3.
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Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}
0≤i≤N−1

.

The idea of removing the nodal projection from the tangent plane scheme goes back
to [AHP+14] for LLG and has been inspired by [Bar16], where the same principle is applied
to a certain class of geometrically constrained PDEs, e.g., the harmonic map heat flow.
In [AKST14], the authors extend the tangent plane scheme of [Alo08] to improve the

formal convergence order in time of the method. If the tangential update v takes the form

v(t) = ∂tm(t) +
k

2
Pm(t)[∂ttm(t)], (2.21)

where Pu : R3 → span(u)⊥ denotes the orthogonal projection onto span(u)⊥ for any u ∈ S2,
a sufficiently smooth solution m of LLG satisfies the Taylor expansion

m(t+ k) =
m(t) + kv(t)

|m(t) + kv(t)|
+O(k3). (2.22)

Differentiating (2.17) with respect to time and proceeding as in [AKST14, Section 6], one
obtains that, up to a residual term of order O(k2), the tangential update (2.21) can be
characterized as the solution of the following variational problem: Find v(t) ∈H1(Ω) with
m(t) · v(t) = 0 a.e. in Ω such that

α〈v(t),φ〉 +
1

2
k〈[−`2ex|∇m(t)|2 − `dm(∇×m(t)) ·m(t)]v(t),φ〉

+ 〈m(t)× v(t),φ〉 +
`2ex

2
k〈∇v(t),∇φ〉 +

`dm

4
k〈∇ × v(t),φ〉 +

`dm

4
k〈v(t),∇× φ〉

= −`2ex〈∇m(t),∇φ〉 − `dm

2
〈∇ ×m(t),φ〉 − `dm

2
〈m(t),∇× φ〉

(2.23)

for all φ ∈ H1(Ω) satisfying m(t) · φ = 0 a.e. in Ω. To obtain an effective numerical
method, we use the same predictor-corrector approach used for Algorithms 2.3.1–2.3.2: For
any time-step 0 ≤ i ≤ N −1, given the approximationmi

h ≈m(ti), we compute vih ≈ v(ti)
by a Galerkin discretization of (2.23) based on Kh(mi

h). Then, with (2.22) in mind, we
define mi+1

h ≈m(ti+1) in Mh as the nodal projection of mi
h + kvih.

However, in order to obtain a well-defined scheme, following [AKST14], we perform two
higher-order modifications of (2.23). Firstly, to ensure the well-posedness of the variational
problem, we proceed as follows: Given M > 0, we define the cut-off function WM : R→ R
by

WM (s) =

{
α+ kmin{s,M}/2 if s ≥ 0,

2α2/(2α+ kmin{−s,M}) if s < 0.

By construction, it holds that

WM (s) ≥ 2α2/(2α+Mk) and
∣∣WM (s)− α

∣∣ ≤Mk/2 for all s ∈ R; (2.24)

see, e.g., [DPP+20, Lemma 12]. In the variational formulation (2.23), we then replace

α〈v(t),φ〉+
1

2
k〈[−`2ex|∇m(t)|2− `dm(∇×m(t)) ·m(t)]v(t),φ〉 by 〈WM (λ(m(t)))v(t),φ〉,
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where
λ(m) = heff(m) ·m = −`2ex|∇m|2 − `dm(∇×m) ·m.

Note that the function λ(m) is also the Lagrange multiplier associated with the constraint
|m| = 1 in the constrained minimization problem (2.4). If M > 0 is sufficiently large, this
modification introduces a consistency error of order O(k2) in (2.23). In particular, to ensure
this, we define M : R>0 → R>0 by M(k) := |k log k|−1 for all k > 0. Note that M satisfies
the convergence properties

M(k)→∞ and M(k)k → 0 as k → 0. (2.25)

Secondly, in the variational formulation (2.23), we replace

`2ex

2
k〈∇v(t),∇φ〉 by

`2ex

2
[1 + ρ(k)]k〈∇v(t),∇φ〉,

where the stabilization function ρ : R>0 → R>0 is defined by ρ(k) := |k log k| for all k > 0.
This artificial stabilization introduces a formal consistency error of order O(k2−ε) for any
0 < ε < 1.
In the following algorithm, we summarize the proposed extension of the tangent plane

scheme of [AKST14] to the present setting.

Algorithm 2.3.3 ((almost) second-order tangent plane scheme, TPS2). Input: m0
h ∈Mh.

Loop: For all 0 ≤ i ≤ N − 1, iterate:

(i) Set λih = −`2ex|∇mi
h|2 − `dm(∇×mi

h) ·mi
h.

(ii) Compute vih ∈ Kh(mi
h) such that, for all φh ∈ Kh(mi

h), it holds that

〈WM(k)(λ
i
h)vih,φh〉 + 〈mi

h × vih,φh〉 +
`2ex

2
k[1 + ρ(k)]〈∇vih,∇φh〉

+
`dm

4
k〈vih,∇× φh〉 +

`dm

4
k〈∇ × vih,φh〉

= −`2ex〈∇mi
h,∇φh〉 −

`dm

2
〈∇ ×mi

h,φh〉 −
`dm

2
〈mi

h,∇× φh〉.

(2.26)

(iii) Define mi+1
h ∈Mh by mi+1

h (z) :=
mi

h(z) + kvih(z)

|mi
h(z) + kvih(z)|

for all z ∈ Nh.

Output: Sequence of discrete functions
{

(vih,m
i+1
h )

}
0≤i≤N−1

.

For the proof that the three proposed algorithms are well-posed (if the time-step size is
sufficiently small in the case of TPS2), we refer to Proposition 2.5.1 below.

Remark 2.3.4. The natural starting point for a hypothetical projection-free version of TPS2
would be the expansion

m(t+ k) = m(t) + kv(t) +O(k3),

for which a nontangential update of the form

v(t) = ∂tm(t) +
k

2
∂ttm(t)
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would be required. In particular, it is not clear how to apply the tangent plane paradigm to
this situation, where the update v(t) has a nonzero component parallel to m(t) in general,
i.e., m(t) · v(t) = k

2∂ttm(t) ·m(t) 6= 0, which needs to be taken into account in order to
achieve a second-order accuracy.

2.3.3 Convergence result

From any algorithm, we obtain two sequences of discrete functions {mi
h}0≤i≤N as well as

{vih}0≤i≤N−1. We define the piecewise linear time reconstruction mhk and the piecewise
constant time reconstructions m±hk and v−hk by

mhk(t) :=
t− ti
k
mi+1

h +
ti+1 − t

k
mi

h,

m−hk(t) := mi
h, m+

hk(t) := mi+1
h , and v−hk(t) := vih

(2.27)

for all 0 ≤ i ≤ N − 1 and t ∈ [ti, ti+1). The following theorem, which is the main result
of the paper, states that the time reconstructions mhk obtained by the three algorithms
converge in an appropriate sense towards a weak solution of (2.7) as h, k → 0.

Theorem 2.3.5. Let the approximate initial condition satisfy the convergence property

m0
h →m0 in H1(Ω) as h→ 0. (2.28)

Moreover, for each algorithm, consider the following specific assumptions:

• For TPS1 (Algorithm 2.3.1), assume that the angle condition (2.15) is satisfied, that
1/2 ≤ θ ≤ 1, and that it holds that k/h→ 0 as h, k → 0.

• For PF-TPS1 (Algorithm 2.3.2), assume that 1/2 < θ ≤ 1.

• For TPS2 (Algorithm 2.3.3), assume that the angle condition (2.15) is satisfied and
that it holds that k/h→ 0 as h, k → 0.

Then, for each algorithm, there exist a weak solution m of (2.7) and a subsequence of
{mhk} which converges weakly in H1(ΩT ) towards m as h, k → 0.

Remark 2.3.6. (i) For the sake of brevity, we have considered the case in which the energy
consists of only exchange and DMI. Adopting the implicit-explicit approaches of [AKT12,
BFF+14, AHP+14, DPP+20], the schemes and the convergence result of Theorem 2.3.5
can be extended to the case in which also the standard lower-order energy terms (and their
discretizations) are included into the setting.
(ii) One important aspect of the research on numerical integrators for LLG is related to

the development of unconditionally convergent methods, for which the numerical analysis
does not require to impose any CFL-type condition on h and k. Theorem 2.3.5 states
that this goal is achieved by PF-TPS1. For TPS1 and TPS2, our analysis requires a mild
CFL condition, which arises from the use of the nodal projection and the presence of the
DMI. If the energy comprises only the standard micromagnetic contributions (exchange,
uniaxial anisotropy, Zeeman, and magnetostatic), but no DMI, then the convergence towards
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a weak solution of LLG is unconditional also for TPS1 (for 1/2 < θ ≤ 1) and TPS2;
see [AKT12, BFF+14, AKST14, DPP+20].
(iii) Since the treatment of the DMI requires the CFL condition k/h→ 0 as h, k → 0 in

our analysis, the result of Theorem 2.3.5 holds for TPS2 also without artificial stabilization,
i.e., ρ ≡ 0; see [AKST14, DPP+20] for more details. In this case, TPS2 is of full second
order in time.
(iv) In Theorem 2.3.5, we state the best result that we are able to prove in terms of

stability, i.e., with the weakest CFL condition on the discretization parameters. The same
convergence result can be also established at the price of more severe restrictions. In partic-
ular, the result of Theorem 2.3.5 holds

(a) without angle condition (2.15) for TPS1 and TPS2, if k/h2 → 0 as h, k → 0;

(b) also for 0 ≤ θ < 1/2 for TPS1 and PF-TPS1, if k/h2 → 0 as h, k → 0;

(c) also for θ = 1/2 for PF-TPS1, if k/h→ 0 as h, k → 0.

2.4 Numerical experiments

Before proceeding with the convergence analysis, we aim to show the effectivity of the
proposed algorithms with three numerical experiments. The computations presented in this
section have been performed with our micromagnetic software Commics [Pfe, PRS+20]. Our
Python code is based on the open-source finite element library Netgen/NGSolve [ngs]. The
computation of the stray field, i.e., the numerical solution of the transmission problem (2.3),
is based on the hybrid FEM-BEM method of [FK90], which requires the evaluation of the
double-layer integral operator associated with the Laplace equation; see, e.g., [BFF+14,
Section 4.4.1] or [PRS18b, Algorithm 12]. This part of the code exploits the open-source
Galerkin boundary element library BEM++ [ŚBA+15]. For all three schemes, to discretize
the classical lower-order contributions (anisotropy, Zeeman, and magnetostatic), we follow
the explicit approaches of [BFF+14, AHP+14, DPP+20]. Magnetization configurations are
visualized with ParaView [AGL05].

2.4.1 Comparison of the integrators

We discretize the rescaled form (2.7) of LLG for a rectangular cuboid Ω of dimensions
80 nm × 80 nm × 10 nm, material parameters `ex = 10 nm, `dm = 20 nm, and α = 0.08,
dimensionless final time T = 200, and constant initial condition m0 ≡ (q,−q,

√
1− 2q2)

with q = 0.01. For snapshots of the resulting magnetization dynamics, we refer to Figure 2.1.
For the spatial discretization, we consider three types of tetrahedral meshes; see Fig-

ure 2.2. For meshes of type I, the domain is first uniformly decomposed into cubes. Then,
each cube is split into six tetrahedra in such a way that any tetrahedron has three mutually
perpendicular edges. Any mesh of this type satisfies the angle condition (2.15); see [Bar05,
Lemma 3.5]. Meshes of type II are obtained from the previous one bisecting the longest
edge of each of the six tetrahedra i.e., the main diagonal of the original cube. As a result the
cube is uniformly split into twelve tetrahedra. Meshes of this type do not satisfy (2.15). For
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t = 0 t = 15 t = 27 t = 38 t = 51 t = 100 t = 150 t = 200

Figure 2.1: Experiment of Section 2.4.1. Snapshots of the magnetization dynamics. The
color scale refers to the third component m3 of the magnetization.

(a) (b) (c)

Figure 2.2: Experiment of Section 2.4.1. Mesh types: (a) Type I; (b) Type II; (c) Type III.

type III, we consider unstructured meshes obtained with Netgen, which are generated with
the advancing front method (see [Sch97] for details) and in general do not satisfy (2.15).
In Figure 2.3, we plot the time evolutions of the third component of the spatially averaged

magnetization of the sample, i.e., 〈m3(t)〉 = |Ω|−1
∫

Ωm3(x, t) dx, and the energy (2.8)
obtained with the three algorithms for different mesh types and sizes, and a constant time-
step size k = γ010−7 ≈ 0.0221. In Figure 2.3a–2.3b, we compare the results obtained with
TPS1 (θ = 1), PF-TPS1 (θ = 1), and TPS2 for the mesh types I–III. For each mesh type, we
consider a mesh size of h ≈ 3.46 nm. Note that the meshes of types II–III violate (2.15). In
Figure 2.3c, we compare the results obtained with TPS1 (θ = 1/2) and TPS2. We consider
a structured mesh of type I and compare the results obtained for different mesh sizes.
Although the convergence result of Theorem 2.3.5 does not cover meshes of types II–III

for TPS1 and TPS2, the numerical results show that, in terms of stability, the methods
behave identically, independently of the mesh type used. To better understand this aspect,
we also monitored a posteriori the validity of the inequality

‖∇mi+1
h ‖L2(Ω) ≤ ‖∇(mi

h + kvih)‖L2(Ω),

which is the inequality effectively used in the stability analysis of TPS1 and TPS2; see
Proposition 2.5.2 and Proposition 2.5.4 below, respectively. It turned out that the inequality
is always satisfied, even for meshes violating (2.15).
The omission of the nodal projection in PF-TPS1 manifests itself as a phase error in the

evolution of 〈m3〉 accumulating over time (see Figure 2.3a), and as a lower energy level of
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Figure 2.3: Experiment of Section 2.4.1. Time evolutions of 〈m3〉 and E(m): (a) Time
evolution of 〈m3〉 for all schemes, all mesh types, and a fixed mesh size of h ≈
3.46 nm; (b) Time evolution of E(m) for all schemes, all mesh types; and a fixed
mesh size of h ≈ 3.46 nm; (c) Time evolution of E(m) for TPS1 (θ = 1/2) and
TPS2, a mesh of type I, and different mesh sizes.

the final magnetization configuration (see Figure 2.3b). However, the overall qualitative
outcome of the experiment is preserved.
The results also show that TPS1 with θ = 1 is more dissipative than TPS2. However, the

choice of θ = 1/2, which would be favorable from an energetic point of view (no artificial
damping), is not feasible, because it affects the stability of the scheme; see Figure 2.3b.
The instability is more severe for smaller mesh sizes, giving numerical evidence of the CFL-
condition required for stability in this case; see Remark 2.3.6(ii).
Finally, in Figure 2.4, we study the violation of the unit-length constraint which occurs

for PF-TPS1. We consider a structured mesh of type I with mesh size h ≈ 4.33 nm and plot
the error

∥∥Ih[|m+
hk(T )|2

]
− 1
∥∥
L1(Ω)

for different time-step sizes k. Note that this error is
identically zero for TPS1 and TPS2, because of the nodal projection. We observe a linear
dependence of the error on k which is in total agreement with the theory, see estimate (2.50)
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Figure 2.4: Experiment of Section 2.4.1. Empirical convergence rate as k → 0 for the error∥∥Ih[|m+
hk(T )|2

]
− 1
∥∥
L1(Ω)

for PF-TPS1 (θ = 1).

in the proof of Proposition 2.5.6 below.
For numerical experiments testing the experimental convergence rates in time of the

schemes (in the absence of DMI), we refer to [Rug16, Section 6.2.1] (for TPS1 and PF-
TPS1) and [DPP+20, Section 7.1] (for TPS1 and TPS2). There, the observed rates with
respect to a reference solution match the formal consistency error of the schemes, i.e., first-
order convergence for TPS1 and PF-TPS1, second-order convergence for TPS2. A similar
numerical study for the present model problem (which includes DMI) confirms the first-order
convergence for TPS1 and PF-TPS1, but does not reveal a full second-order convergence
for TPS2. We believe that this is due to a lack of regularity of the solution in time.

2.4.2 Stability of isolated skyrmions in nanodisks

We reproduce a numerical experiment from [SCR+13]. We investigate the relaxed states
of a thin nanodisk of diameter 80 nm (aligned with x1x2-plane) and thickness 0.4 nm (x3-
direction) centered at (0, 0, 0) for different values of the DMI constant and initial condi-
tions. The effective field in (2.1) consists of exchange interaction, perpendicular uniaxial
anisotropy, interfacial DMI, and stray field, i.e.,

Heff(m) =
2A

µ0Ms
∆m+

2K

µ0Ms
(a ·m)a− 2D

µ0Ms

 −∂1m3

−∂2m3

∂1m1 + ∂2m2

+Hs(m).

The values of the involved material parameters mimic those of cobalt: Ms = 5.8 · 105 A/m,
α = 0.3, A = 1.5 · 10−11 J/m, K = 8 · 105 J/m3, and a = (0, 0, 1). For the DMI constant,
we consider the values D = 0, 1, . . . , 8 mJ/m2. We test two different initial magnetization
configurations:

(i) a uniform out-of-plane ferromagnetic state, i.e., m0 ≡ (0, 0, 1),

(ii) a skyrmion-like state, i.e., given r =
√
x2

1 + x2
2, we define m0(x) = (0, 0,−1) if

r ∈ [0, 15] nm and m0(x) = (0, 0, 1) if r ∈ (15, 40] nm.
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For all simulations, we choose T = 2 ns for D = 0, . . . , 6 mJ/m2 and T = 5 ns for D = 7, 8
mJ/m2, which experimentally turn out to be sufficiently large times to relax the system. The
computational domain is discretized by a regular partition consisting of 32 575 tetrahedra
(mesh size of 1 nm). For the time discretization, we consider a uniform partition of the time
interval (0, T ) with a time-step size of 0.1 ps.

D = 0 D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7 D = 8

Figure 2.5: Experiment of Section 2.4.2. Magnetization m3 of the relaxed state for the uni-
form out-of-plane initial condition (i) and different values of the DMI constant
(in mJ/m2). The pictures refer to the states computed with TPS1 (θ = 1).

D = 0 D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7 D = 8

Figure 2.6: Experiment of Section 2.4.2. Magnetization m3 of the relaxed state for the
skyrmion-like initial condition (ii) and different values of the DMI constant (in
mJ/m2). The pictures refer to the states computed with TPS1 (θ = 1).

In the case of the uniform out-of-plane initial condition, the stable state remains a quasi-
uniform ferromagnetic state for the values D = 0, . . . , 6 mJ/m2 and turns into a multido-
main state for the values D = 7, 8 mJ/m2; see Figure 2.5. For D = 0, . . . , 6 mJ/m2, the
slight decrease of the total energy for increasing values of D corresponds to an inward tilt
of the magnetization on the boundary of the disk. In the case of the skyrmion-like initial
condition, the stable state is a quasi-uniform ferromagnetic state for the values D = 0, 1,
2 mJ/m2, a skyrmion for the values D = 3, . . . , 6 mJ/m2, and a multidomain state for the
values D = 7, 8 mJ/m2; see Figure 2.6. The skyrmion size, i.e., the diameter of the circle
{m3 = 0} in the x1x2-plane, increases from the minimum value of circa 14 nm for D =
3 mJ/m2 to the maximum value of circa 48 nm for D = 6 mJ/m2. As observed in [SCR+13],
the fact that for D = 3, . . . , 6 mJ/m2, which are realistic values for the DMI constant,
both the ferromagnetic state and the skyrmion state can be stabilized is very relevant for
applications. Indeed, this bistability can be exploited to code the information in future
recording devices (the presence and the absence of a skyrmion can be used to encode one
bit); see, e.g., [FCS13, TMZ+14].
In Figure 2.7, we plot the total energy of the relaxed state for different values of the

DMI constant. The energy values obtained with TPS1 (the results refer to the case θ = 1)
and TPS2 are in perfect quantitative agreement with each other and with those reported
in [SCR+13, Figure 1]. The use of PF-TPS1 preserves the qualitative outcome of the
experiment, but the quantitative agreement of the energy values with those of [SCR+13,
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Figure 2.7: Experiment of Section 2.4.2. Total energy of the relaxed state as a function
of the DMI constant D for the two considered initial conditions and the three
proposed algorithms.

Figure 1], as a result of the violation of the pointwise constraint |m| = 1, is inevitably lost.

2.4.3 Field-induced dynamics of skyrmions in nanodisks

We numerically investigate the stability and the induced dynamics of isolated magnetic
skyrmions in helimagnetic materials in response to an applied field pulse. The sample
under consideration is a magnetic nanodisk of diameter 140 nm (x1x2-plane) and thickness
10 nm (x3-direction). The effective field in (2.1) consists of exchange interaction, bulk DMI,
applied external field, and stray field, i.e.,

Heff(m) =
2A

µ0Ms
∆m− 2D

µ0Ms
∇×m+Hext +Hs(m).

We use the material parameters of iron-germanium (FeGe), i.e., A = 8.78 · 10−12 J/m, D =
1.58 · 10−3 J/m2, and Ms = 3.84 · 105 A/m; see, e.g., [BAB+17]. The initial condition
for our experiment is obtained by setting Hext ≡ (0, 0, 0) and relaxing a uniform out-of-
plane ferromagnetic state m0 ≡ (0, 0, 1) for 3 ns. For the relaxation process, we choose
the large value α = 1 for the Gilbert damping constant, since we are not interested in the
precise magnetization dynamics. The resulting relaxed state is the skyrmion depicted in
Figure 2.8a. Starting from this configuration, we perturb the system from its equilibrium
by applying an in-plane field pulse Hext(t) = (H(t), 0, 0) of maximum intensity Hmax > 0
for 150 ps; see Figure 2.9. Then, we turn off the applied external field, i.e., Hext ≡ (0, 0, 0),
and let the system relax to equilibrium. In order to capture all possible excitation modes,
during the application of the field and the subsequent relaxation process, we set the value
of the Gilbert damping constant to α = 0.002, which is considerably smaller than the
experimental value of α = 0.28 measured for FeGe; see [BAB+17]. To probe the limit of
the stability of the skyrmion, we test different values for the maximum intensity of the field
Hmax, namely µ0Hmax = 1, 2, 5, 10, 20, 50, 100, 200 mT. For the spatial discretization,
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(a) Relaxed skyrmion state that we use as initial condition obtained by relaxing a uniform out-of-
plane state for 1 ns.

(b) Metastable horseshoe state obtained by applying a field pulse of maximum intensity µ0Hmax =
200 mT to the skyrmion of (a) and relaxing the system for 10 ns.

Figure 2.8: Experiment of Section 2.4.3. Relaxed magnetization states: 2D view (left) and
3D view (right). The pictures refer to the states computed with TPS2.

we consider a regular partition of the nanodisk consisting of 36 501 tetrahedra (mesh size
of 3 nm). For the time discretization, we consider a uniform time-step size of 0.1 ps.
In Figure 2.10, we plot the first 10 ns of the time evolution of the second component of

the spatially averaged magnetization of the sample, i.e., 〈m2(t)〉 = |Ω|−1
∫

Ωm2(x, t) dx. We
see that, for the values µ0Hmax = 1, 2, 5, 10, 20, 50 mT, the induced dynamics is a periodic
damped precession of the skyrmion around the center of the sample, which comes back to
the initial stable configuration by the relaxation process. As expected, both the deflection
from the stable symmetric initial state and the amplitude of the oscillations increase for
larger values of Hmax. For the value µ0Hmax = 100 mT, the skyrmion is critically deformed
by the applied field pulse, but the initial stable configuration is recovered by the relaxation
process. Note that a different oscillating mode comes into play in this case. For µ0Hmax =
200 mT, the skyrmion is destroyed. After approximately 3.5 ns of chaotic dynamics, the
magnetization configuration turns into a horseshoe state which then starts to rotate around
the center of the sample; see Figure 2.8b.
As observed for the experiment of Section 2.4.2, also in this case the results obtained with

TPS1 and TPS2 are in full quantitative agreement with each other. The use of PF-TPS1
preserves the qualitative outcome of the experiment, but the computed quantities, e.g., the
amplitudes of the oscillations depicted in Figure 2.10, are slightly perturbed.
The presented experiment is a preliminary study to investigate the stability and the dy-
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0 40 110 150
0

Hmax

t (ps)

H(t)

Figure 2.9: Experiment of Section 2.4.3. Structure of the applied field pulse: The field
intensity increases linearly in time for 40 ps to reach the maximum value Hmax.
It is then constant and equal to Hmax for 70 ps. Finally, it decreases linearly for
40 ps to reach the value 0.

namics of a skyrmion in the presence of a field pulse. This is done to explore the possibility
to use time-resolved scanning Kerr microscopy [KSH+17] which is based on the interplay be-
tween laser and field pulses to directly map the dynamics of magnetic skyrmions [KSH+16].

2.5 Convergence analysis

In this section, we show that all proposed algorithms are well-posed and we present the
proof of Theorem 2.3.5. To establish the convergence result, we use the standard energy
method for proving existence of solutions of linear second-order parabolic problems; see, e.g.,
[Eva10, Section 7.1.2]. The main difference is that, following [Alo08, AHP+14, AKST14],
the construction of approximate solutions is not obtained by applying the Galerkin method
based on a basis of appropriately normalized eigenfunctions of the Laplace operator, but
rather by using the finite element solutions delivered by the numerical schemes.

2.5.1 Preliminaries

We introduce some further notation and collect some auxiliary results. We consider the
nodal interpolant Ih : C0(Ω)→ S1(Th), which is defined by Ih[v](z) = v(z) for all z ∈ Nh
and v ∈ C0(Ω). It is well known that, for κ-shape-regular meshes and any integer 0 ≤ m ≤ 2,
the nodal interpolant satisfies the approximation property

‖Dm(v − Ih[v])‖L2(Ω) ≤ Ch2−m‖D2v‖L2(Ω) for all v ∈ H2(Ω), (2.29)

where the constant C > 0 depends only on κ. We denote the vector-valued realization of
the nodal interpolant by Ih : C0(Ω) → S1(Th)3. The following classical inverse estimate
requires the quasi-uniformity of the underlying family of meshes: For any 1 ≤ p ≤ ∞, it
holds that

‖∇φh‖Lp(Ω) ≤ Cinvh
−1‖φh‖Lp(Ω) for all φh ∈ S1(Th)3, (2.30)
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Figure 2.10: Experiment of Section 2.4.3. Time evolution of 〈m2〉 for applied field pulses
with different intensities ranging from µ0Hmax = 1 mT to µ0Hmax = 200 mT.
The plots refer to the results computed with TPS2.

where Cinv > 0 depends only on κ and p. Standard scaling arguments show that, for any
1 ≤ p <∞, we have the discrete norm equivalence

C−1
norm‖φh‖Lp(Ω) ≤

h3
∑
z∈Nh

|φh(z)|p
1/p

≤ Cnorm‖φh‖Lp(Ω) for all φh ∈ S1(Th)3,

(2.31)
where Cnorm > 0 depends only on κ and p.
To ensure that the approximate magnetization belongs to Mh, TPS1 and TPS2 employ

the nodal projection. We refer to [Bar05, Lemma 3.2] for the proof that the nodal projection
φh 7→ Ih

[
φh/|φh|

]
does not increase the exchange energy of a discrete function if the

underlying mesh fulfills a weak acuteness condition. Specifically, the angle condition (2.15)
ensures that any φh ∈ S1(Th)3 with |φh(z)| ≥ 1 for all z ∈ Nh satisfies that

‖∇Ih
[
φh/|φh|

]
‖L2(Ω) ≤ ‖∇φh‖L2(Ω). (2.32)
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Owing to the application of the nodal projection, for all 0 ≤ i ≤ N−1, the iterates of TPS1
and TPS2 satisfy ‖mi+1

h ‖L∞(Ω) = 1 and the geometric estimates

|mi+1
h (z)−mi

h(z)| ≤ k|vih(z)| and |mi+1
h (z)−mi

h(z)− kvih(z)| ≤ 1

2
k2|vih(z)|2

for any z ∈ Nh; see [AJ06, BKP08]. With (2.31), these nodewise inequalities are turned
into

‖mi+1
h −mi

h‖Lp(Ω) ≤ Cgeok‖vih‖Lp(Ω), (2.33a)

‖mi+1
h −mi

h − kvih‖Lp(Ω) ≤ Cgeok
2‖vih‖2L2p(Ω), (2.33b)

where Cgeo > 0 depends only on κ and p. In the case of PF-TPS1, where the nodal projection
is omitted, the geometric estimates (2.33) become trivial, but the equality ‖mi+1

h ‖L∞(Ω) = 1
does not hold anymore. However, for any 1 ≤ j ≤ N , the linear time-stepping yields the
recursive relation

|mj
h(z)|2 = |m0

h(z)|2 + k2
j−1∑
i=0

|vih(z)|2 for all z ∈ Nh. (2.34)

Together with (2.31), this leads to the estimate

C−4
norm‖m

j
h‖

2
L2(Ω)≤ ‖m

0
h‖2L2(Ω) + k2

j−1∑
i=0

‖vih‖2L2(Ω). (2.35)

2.5.2 Well-posedness

In the following proposition, we prove that the three proposed algorithms are all well-posed.

Proposition 2.5.1. Let 0 ≤ i ≤ N − 1. There exists a unique solution vih ∈ Kh(mi
h)

of (2.19) and (2.20). There exists a threshold time-step size k0 > 0, which depends only on
α, `ex, and `dm, such that, if k ≤ k0, there exists a unique solution vih ∈ Kh(mi

h) of (2.26).
The time-steppings of all algorithms are well-defined.

Proof. For any 0 ≤ i ≤ N − 1, let aihk(·, ·) be the bilinear form appearing on the left-hand
side of (2.19) and (2.20). For any φh ∈ S1(Th)3, it holds that

aihk(φh,φh) = α‖φh‖2L2(Ω) + `2exθk‖∇φh‖2L2(Ω).

Hence, the bilinear form is elliptic, even on the full space S1(Th)3. Existence and unique-
ness of the solution vih ∈ Kh(mi

h) of (2.19) and (2.20) thus follow from the Lax–Milgram
theorem.
Similarly, for any 0 ≤ i ≤ N − 1, let bihk(·, ·) denote the bilinear form on the left-hand

side of (2.26). For any ε > 0 and φh ∈ S1(Th)3, using (2.10) and (2.24), we deduce that

bihk(φh,φh) = 〈WM(k)(λ
i
h)φh,φh〉 +

`2ex

2
k[1 + ρ(k)]‖∇φh‖2L2(Ω) +

`dm

2
k〈φh,∇× φh〉

≥
(

2α2

2α+M(k)k
− `dm

4ε
k

)
‖φh‖2L2(Ω) +

1

2

(
`2ex −

ε`dm

2

)
k‖∇φh‖2L2(Ω).
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We choose ε = `2ex/`dm. With the properties (2.25) of the cut-off function M(k), it follows
that both coefficients in front of the norms are positive if the time-step size k is sufficiently
small. Then, the bilinear form is elliptic and (2.26) admits a unique solution vih ∈ Kh(mi

h).
The linear time-stepping in step (ii) of PF-TPS1 is clearly well-defined. In the case of

TPS1 and TPS2, which include the nodal projection, since mi
h ∈Mh and vh ∈ Kh(mi

h),
it holds that

|mi
h(z) + kvih(z)|2 = |mi

h(z)|2 + k2|vih(z)|2 = 1 + k2|vih(z)|2 ≥ 1 for any z ∈ Nh.

The time-steppings of TPS1 and TPS2 are therefore also well defined.

2.5.3 Discrete energy law and stability

In this section, we establish the discrete energy laws and study the stability for the discrete
iterates delivered by the algorithms. We first observe that, given C0 > 0, assumption (2.28)
provides some h0 > 0 such that ‖m0

h‖H1(Ω) ≤ C0 for all h ≤ h0.
In the following proposition, we prove the result for TPS1.

Proposition 2.5.2 (Discrete energy law and stability of TPS1). Let 1 ≤ j ≤ N . There
exists a constant C > 0, which depends only on κ and `dm, such that the iterates of TPS1
satisfy the discrete energy law

E(mj
h) +

(
α− Ch−1k

)
k

j−1∑
i=0

‖vih‖2L2(Ω) + `2ex(θ − 1/2)k2
j−1∑
i=0

‖∇vih‖2L2(Ω) ≤ E(m0
h). (2.36)

Moreover, there exists a constant C ′ > 0, which depends only on α, κ, and `dm, such that,
if h ≤ h0 and k ≤ C ′h, the iterates of TPS1 satisfy the stability estimate

‖mj
h‖

2
H1(Ω) + k

j−1∑
i=0

‖vih‖2L2(Ω) + (θ − 1/2)k2
j−1∑
i=0

‖∇vih‖2L2(Ω) ≤ C
′′, (2.37)

where the constant C ′′ > 0 depends only on α, C0, κ, `ex, `dm, and |Ω|.

Proof. For any 0 ≤ i ≤ j− 1, we test (2.19) with φh = vih ∈ Kh(mi
h) to obtain the identity

α‖vih‖2L2(Ω) + `2exθk‖∇vih‖2L2(Ω)

= −`2ex〈∇mi
h,∇vih〉 −

`dm

2
〈∇ ×mi

h,v
i
h〉 −

`dm

2
〈∇ × vih,mi

h〉.

Since the angle condition (2.15) is satisfied, we obtain that

`2ex

2
‖∇mi+1

h ‖
2
L2(Ω)

(2.32)
≤ `2ex

2
‖∇mi

h + k∇vih‖2L2(Ω)

=
`2ex

2
‖∇mi

h‖2L2(Ω) + `2exk〈∇mi
h,∇vih〉 +

`2ex

2
k2‖∇vih‖2L2(Ω).

(2.38a)
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Hence, it follows that

`2ex

2
‖∇mi+1

h ‖
2
L2(Ω) −

`2ex

2
‖∇mi

h‖2L2(Ω) + αk‖vih‖2L2(Ω) + `2ex(θ − 1/2)k2‖∇vih‖2L2(Ω)

≤ −`dm

2
k〈∇ ×mi

h,v
i
h〉 −

`dm

2
k〈∇ × vih,mi

h〉.
(2.38b)

We obtain the energy inequality

E(mi+1
h )− E(mi

h) + αk‖vih‖2L2(Ω) + `2ex(θ − 1/2)k2‖∇vih‖2L2(Ω)

≤ −`dm

2
k〈∇ ×mi

h,v
i
h〉 −

`dm

2
k〈∇ × vih,mi

h〉

+
`dm

2
〈∇ ×mi+1

h ,mi+1
h 〉 −

`dm

2
〈∇ ×mi

h,m
i
h〉.

(2.38c)

With some simple algebraic manipulations, we rewrite the last four terms of the right-hand
side (those which involve the curl operator) as

〈∇ ×mi+1
h ,mi+1

h 〉 − 〈∇ ×m
i
h,m

i
h〉 − k〈∇ ×mi

h,v
i
h〉 − k〈∇ × vih,mi

h〉
= 〈∇ × (mi+1

h −mi
h − kvih),mi+1

h 〉 + 〈∇ ×mi
h,m

i+1
h −mi

h − kvih〉
+ k〈∇ × vih,mi+1

h −mi
h〉.

(2.39)

Using the inverse estimate (2.30) and the geometric estimates (2.33), we infer that

|〈∇ × (mi+1
h −mi

h − kvih),mi+1
h 〉| ≤ ‖∇ × (mi+1

h −mi
h − kvih)‖L1(Ω)‖mi+1

h ‖L∞(Ω)

≤
√

2Cinvh
−1‖mi+1

h −mi
h − kvih‖L1(Ω)

≤
√

2CinvCgeoh
−1k2‖vih‖2L2(Ω).

Similarly, it holds that

|〈∇ ×mi
h,m

i+1
h −mi

h − kvih〉| ≤ ‖∇ ×mi
h‖L∞(Ω)‖mi+1

h −mi
h − kvih‖L1(Ω)

≤
√

2CinvCgeoh
−1k2‖vih‖2L2(Ω)

and

k|〈∇ × vih,mi+1
h −mi

h〉| ≤ k‖∇ × vih‖L2(Ω)‖mi+1
h −mi

h‖L2(Ω)

≤
√

2CinvCgeoh
−1k2‖vih‖2L2(Ω).

With C = 3CinvCgeo`dm/
√

2, we thus obtain that

E(mi+1
h )− E(mi

h) + αk‖vih‖2L2(Ω) + `2ex(θ − 1/2)k2‖∇vih‖2L2(Ω) ≤ Ch
−1k2‖vih‖2L2(Ω).

Summation over 0 ≤ i ≤ j − 1 leads to (2.36).
To show (2.37), we first note that ‖mj

h‖L∞(Ω) = 1 yields that

‖mj
h‖

2
L2(Ω) ≤ |Ω|. (2.40)
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We multiply (2.40) by `2dm/`
2
ex and add the resulting equation to (2.36). Using the charac-

terization (2.11) of the energy, we obtain that

`2ex

4
‖∇mj

h‖
2
L2(Ω) +

`2dm

2`2ex

‖mj
h‖

2
L2(Ω) +

(
α− Ch−1k

)
k

j−1∑
i=0

‖vih‖2L2(Ω)

+ `2ex(θ − 1/2)k2
j−1∑
i=0

‖∇vih‖2L2(Ω) ≤
`2ex + `2dm

2
‖∇m0

h‖2L2(Ω) +
1

4
‖m0

h‖2L2(Ω) +
`2dm

`2ex

|Ω|.

Let C ′ = α/(2C) and k ≤ C ′h. Since θ ≥ 1/2, all terms on the left-hand side are nonneg-
ative. We obtain (2.37), where the constant C ′′ > 0 (which we do not compute explicitly)
depends only on α, C0, κ, `ex, `dm, and |Ω|.

In the following proposition, we prove the corresponding result for PF-TPS1.

Proposition 2.5.3 (Discrete energy law and stability of PF-TPS1). Let 1 ≤ j ≤ N and
1/2 < θ ≤ 1. The iterates of PF-TPS1 satisfy the discrete energy law

E(mj
h) + αk

j−1∑
i=0

‖vih‖2L2(Ω) + `2ex(θ − 1/2)k2
j−1∑
i=0

‖∇vih‖2L2(Ω)

= E(m0
h) +

`dm

2
k2

j−1∑
i=0

〈∇ × vih,vih〉.

(2.41)

Moreover, there exists a threshold time-step size k0 > 0, which depends only on α, κ, `ex,
`dm, and θ, such that, if h ≤ h0 and k ≤ k0, the iterates of PF-TPS1 satisfy the stability
estimate

‖mj
h‖

2
H1(Ω) + k

j−1∑
i=0

‖vih‖2L2(Ω) + k2
j−1∑
i=0

‖∇vih‖2L2(Ω) ≤ C, (2.42)

where the constant C > 0 depends only on α, C0, κ, `ex, `dm, and θ.

Proof. Let 0 ≤ i ≤ j − 1. We follow the argument of the proof of Proposition 2.5.2: Due
to the linear time-stepping of PF-TPS1, all the computations in (2.38) hold with equality
sign and without resorting to the angle condition (2.15). Moreover, all but the last term on
the right-hand side of (2.39) vanish. As a result, we obtain the energy identity

E(mi+1
h )− E(mi

h) + αk‖vih‖2L2(Ω) + `2ex(θ − 1/2)k2‖∇vih‖2L2(Ω) =
`dm

2
k2〈∇ × vih,vih〉.

Summing this identity over 0 ≤ i ≤ j− 1, we prove (2.41). To estimate the right-hand side,
we apply the weighted Young inequality (2.10), which, for any ε > 0, yields that

〈∇ × vih,vih〉 ≤
√

2‖∇vih‖L2(Ω)‖vih‖L2(Ω) ≤ ε‖∇vih‖2L2(Ω) +
1

2ε
‖vih‖2L2(Ω).
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Choosing ε = `2ex(θ − 1/2)/`dm, the characterization (2.11) of the energy shows that

`2ex

4
‖∇mj

h‖
2
L2(Ω) −

`2dm

2`2ex

‖mj
h‖

2
L2(Ω) +

(
α−

`2dm

2`2ex(2θ − 1)
k

)
k

j−1∑
i=0

‖vih‖2L2(Ω)

+
`2ex

2
(θ − 1/2)k2

j−1∑
i=0

‖∇vih‖2L2(Ω) ≤
`2ex + `2dm

2
‖∇m0

h‖2L2(Ω) +
1

4
‖m0

h‖2L2(Ω).

(2.43)

We multiply (2.35) by C4
norm`

2
dm/`

2
ex and add the resulting equation to (2.43) to obtain that

`2ex

4
‖∇mj

h‖
2
L2(Ω) +

`2dm

2`2ex

‖mj
h‖

2
L2(Ω) +

(
α−

`2dm[1 + 2C4
norm(2θ − 1)]

2`2ex(2θ − 1)
k

)
k

j−1∑
i=0

‖vih‖2L2(Ω)

+
`2ex

2
(θ − 1/2)k2

j−1∑
i=0

‖∇vih‖2L2(Ω)

≤
`2ex + `2dm

2
‖∇m0

h‖2L2(Ω) +
`2ex + 4C4

norm`
2
dm

4`2ex

‖m0
h‖2L2(Ω).

If k ≤ k0 = α `2ex(2θ − 1)/{`2dm[1 + 2C4
norm(2θ − 1)]}, then all terms on the left-hand side

are nonnegative. This leads to (2.42), where the (explicitly computable) constant C > 0
depends only on α, C0, κ, `ex, `dm, and θ.

Finally, in the following proposition, we prove the stability result for TPS2.

Proposition 2.5.4 (Discrete energy law and stability of TPS2). Let 1 ≤ j ≤ N . Suppose
that the time-step size k is sufficiently small, so that (2.26) is well-posed by Proposition 2.5.1.
Then, there exists a constant C > 0, which depends only on κ and `dm, such that the iterates
of TPS2 satisfy the discrete energy law

E(mj
h) + k

j−1∑
i=0

〈WM(k)(λ
i
h)vih,v

i
h〉 +

`2ex

2
ρ(k)k2

j−1∑
i=0

‖∇vih‖2L2(Ω)

≤ E(m0
h) + Ch−1k2

j−1∑
i=0

‖vih‖2L2(Ω).

(2.44)

Moreover, there exists a threshold time-step size k0 > 0, which depends only on α, `ex, and
`dm, and a constant C ′ > 0, which depends only on α, κ, and `dm, such that, if h ≤ h0,
k ≤ k0, and k ≤ C ′h, the iterates of TPS2 satisfy the stability estimate

‖mj
h‖

2
H1(Ω) + k

j−1∑
i=0

‖vih‖2L2(Ω) + ρ(k)k2
j−1∑
i=0

‖∇vih‖2L2(Ω) ≤ C
′′, (2.45)

where the constant C ′′ > 0 depends only on α, C0, κ, `ex, `dm, and |Ω|.
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Proof. Let 0 ≤ i ≤ j − 1. We follow step by step the argument of the proof of Proposi-
tion 2.5.2 to obtain the inequality

E(mi+1
h )− E(mi

h) + k〈WM(k)(λ
i
h)vih,v

i
h〉 +

`2ex

2
ρ(k)k2‖∇vih‖2L2(Ω)

≤ −`dm

2
k2〈∇ × vih,vih〉 −

`dm

2
k〈∇ ×mi

h,v
i
h〉 −

`dm

2
k〈mi

h,∇× vih〉

+
`dm

2
〈∇ ×mi+1

h ,mi+1
h 〉 −

`dm

2
〈∇ ×mi

h,m
i
h〉.

We reformulate the terms of the right-hand side which involve the curl operator, i.e.,

〈∇ ×mi+1
h ,mi+1

h 〉 − 〈∇ ×m
i
h,m

i
h + kvih〉 − k〈∇ × vih,mi

h〉 − k2〈∇ × vih,vih〉
= 〈∇ × (mi+1

h −mi
h − kvih),mi+1

h 〉 + 〈∇ ×mi
h,m

i+1
h −mi

h − kvih〉
+ k〈∇ × vih,mi+1

h −mi
h〉 − k2〈∇ × vih,vih〉

and proceed with their direct estimation: Using (2.30) and (2.33), we obtain that

|〈∇ × (mi+1
h −mi

h − kvih),mi+1
h 〉| ≤

√
2CinvCgeoh

−1k2‖vih‖2L2(Ω),

|〈∇ ×mi
h,m

i+1
h −mi

h − kvih〉| ≤
√

2CinvCgeoh
−1k2‖vih‖2L2(Ω),

k|〈∇ × vih,mi+1
h −mi

h〉| ≤
√

2CinvCgeoh
−1k2‖vih‖2L2(Ω),

k2|〈∇ × vih,vih〉| ≤
√

2Cinvh
−1k2‖vih‖2L2(Ω).

It follows that

E(mi+1
h )− E(mi

h) + k〈WM(k)(λ
i
h)vih,v

i
h〉 +

`2ex

2
ρ(k)k2‖∇vih‖2L2(Ω) ≤ Ch

−1k2‖vih‖2L2(Ω),

with C = Cinv(3Cgeo + 1)`dm/
√

2. Summation over 0 ≤ i ≤ j − 1 leads to (2.44).
If k is sufficiently small, it holds that WM(k)(·) ≥ α/2; see (2.24)–(2.25). With the

characterization (2.11) of the energy and the inequality ‖mj
h‖

2
L2(Ω) ≤ |Ω|, we obtain that

`2ex

4
‖∇mj

h‖
2
L2(Ω) +

`2dm

2`2ex

‖mj
h‖

2
L2(Ω) +

α− 2Ch−1k

2
k

j−1∑
i=0

‖vih‖2L2(Ω)

+
`2ex

2
ρ(k)k2

j−1∑
i=0

‖∇vih‖2L2(Ω) ≤
`2ex + `2dm

2
‖∇m0

h‖2L2(Ω) +
1

4
‖m0

h‖2L2(Ω) +
`2dm

`2ex

|Ω|.

Let C ′ = α/(4C). If k ≤ C ′h, then all terms on the left-hand side are nonnegative. Hence,
we obtain (2.45), where the constant C ′′ > 0 (which we do not compute explicitly) depends
only on α, C0, κ, `ex, `dm, and |Ω|.

2.5.4 Extraction of weakly convergent subsequences

Exploiting the established stability estimates of the three algorithms, we are now able to
prove that the time reconstructions defined by (2.27) are uniformly bounded.
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Proposition 2.5.5. Suppose that the assumptions of Theorem 2.3.5 are satisfied. For any
algorithm, if h and k are sufficiently small, the sequences {mhk}, {m±hk}, and {v

−
hk} are

uniformly bounded in the sense that

‖mhk‖L∞(0,T ;H1(Ω)) + ‖m±hk‖L∞(0,T ;H1(Ω)) + ‖∂tmhk‖L2(ΩT ) + ‖v−hk‖L2(ΩT ) ≤ C. (2.46)

The constant C > 0 is independent of h and k. Moreover, it holds that

lim
h,k→0

k‖∇v−hk‖L2(ΩT ) = 0. (2.47)

Proof. The estimate (2.46) follows directly from (2.37), (2.42), and (2.45). For TPS1 and
TPS2, also the geometric estimate (2.33a) is used to conclude that ‖∂tmhk‖L2(ΩT ) ≤ C.
The convergence (2.47) for PF-TPS1 follows from Proposition 2.5.3. Indeed, it holds that

k2‖∇v−hk‖
2
L2(ΩT ) = k3

N−1∑
i=0

‖∇vih‖2L2(Ω)

(2.42)
≤ Ck.

For TPS1 (resp. TPS2), we first resort to an inverse estimate to obtain that

k2‖∇v−hk‖
2
L2(ΩT ) = k3

N−1∑
i=0

‖∇vih‖2L2(Ω)

(2.30)
≤ Cinvh

−2k3
N−1∑
i=0

‖vih‖2L2(Ω).

The result then follows from Proposition 2.5.2 (resp. Proposition 2.5.4) and the fact that
k/h→ 0 as h, k → 0 by assumption.

With this result, we can now extract weakly convergent subsequences.

Proposition 2.5.6. Suppose that the assumptions of Theorem 2.3.5 are satisfied. Then,
for any algorithm, there exists m ∈ H1(ΩT ) ∩ L∞(0, T ;H1(Ω)), which satisfies |m| = 1
a.e. in ΩT , such that the sequences of time reconstructions {mhk}, {m±hk}, and {v

−
hk} admit

subsequences (not relabeled) for which it holds that

mhk ⇀m in H1(ΩT ), (2.48a)
mhk →m in Hs(ΩT ) for all 0 < s < 1, (2.48b)

mhk →m in L2(0, T ;Hs(Ω)) for all 0 < s < 1, (2.48c)

mhk,m
±
hk →m in L2(ΩT ), (2.48d)

mhk,m
±
hk →m pointwise a.e. in ΩT , (2.48e)

mhk,m
±
hk

?
⇀m in L∞(0, T ;H1(Ω)), (2.48f)

v−hk ⇀ ∂tm in L2(ΩT ) (2.48g)

as h, k → 0.

Proof. For the sake of clarity, we divide the proof into three steps.

• Step 1: Proof of the convergence results (2.48a)–(2.48f).

57



2 Tangent plane integrators for the simulation of skyrmion dynamics

The uniform boundedness (2.46) established by Proposition 2.5.5 allows us to extract weakly
convergent subsequences (not relabeled) of {mhk},

{
m±hk

}
, with possibly different limits,

and
{
v−hk
}
in H1(ΩT ), L2(0, T ;H1(Ω)), and L2(ΩT ), respectively.

Letm ∈H1(ΩT ) denote the weak limit of {mhk} inH1(ΩT ). The continuous inclusions
H1(ΩT ) ⊂ L2(0, T ;H1(Ω)) ⊂ L2(ΩT ) and the compact embedding H1(ΩT ) b L2(ΩT )
show that mhk ⇀ m in L2(0, T ;H1(Ω)) and mhk → m in L2(ΩT ). In particular, upon
extraction of a further subsequence, we obtain that mhk →m pointwise a.e. in ΩT .
Let 0 < s < 1. From the interpolation result [L2(ΩT ),H1(ΩT )]s = Hs(ΩT ), we ob-

tain the compact embedding H1(ΩT ) b Hs(ΩT ); see, e.g., [BL76, Theorem 6.4.5 and
Theorem 3.8.1]. Since [L2(ΩT ), L2(0, T ;H1(Ω))]s = L2(0, T ;Hs(Ω)), which follows, e.g.,
by [BL76, Theorem 5.1.2], we deduce that the inclusion Hs(ΩT ) ⊂ L2(0, T ;Hs(Ω)) is
continuous. Hence, it holds that H1(ΩT ) b Hs(ΩT ) ⊂ L2(0, T ;Hs(Ω)), from which we
conclude that mhk →m in both Hs(ΩT ) and L2(0, T ;Hs(Ω)). Moreover, since

‖mhk −m±hk‖L2(ΩT )

(2.27)
≤ k‖∂tmhk‖L2(ΩT )

(2.46)
. k,

it follows thatm±hk ⇀m in L2(0, T ;H1(Ω)) as well asm±hk →m in L2(ΩT ) and pointwise
a.e. in ΩT . Finally, since the sequences {mhk} and

{
m±hk

}
are uniformly bounded also

in L∞(0, T ;H1(Ω)), we can extract further weakly-star convergent subsequences, whose
limits coincide with the weak limits in L2(0, T ;H1(Ω)), i.e., it holds that mhk,m

±
hk

?
⇀m

in L∞(0, T ;H1(Ω)).

• Step 2: Proof of (2.48g).

Let v ∈ L2(ΩT ) such that v−hk ⇀ v in L2(ΩT ). In the case of TPS1 and TPS2, which
includes the nodal projection, it holds that

‖∂tm− v‖L1(ΩT ) ≤ lim inf
h,k→0

‖∂tmhk − v−hk‖L1(ΩT )

(2.33b)
≤ C2

geok‖v−hk‖
2
L2(ΩT )

(2.46)
. k,

which shows that v = ∂tm a.e. in ΩT . For PF-TPS1, the result directly follows from the
equality mi+1

h = mi
h + kvih.

• Step 3: m satisfies |m| = 1 a.e. in ΩT .

In the case of TPS1 and TPS2, since Ih
[
|mi

h|2
]

= 1 and ∇mi
h is piecewise constant for all

0 ≤ i ≤ N − 1, it holds that

∥∥|m−hk|2 − 1
∥∥
L2(ΩT )

. h‖∇m−hk‖L2(ΩT )

(2.46)
. h,

which yields the convergence |m−hk|
2 → 1 in L2(ΩT ). Sincem−hk →m pointwise a.e. in ΩT ,

we deduce that |m| = 1 a.e. in ΩT .
In the case of PF-TPS1, we start with a triangle inequality, which shows that∥∥|m|2 − 1

∥∥
L1(ΩT )

≤
∥∥|m|2 − |m+

hk|
2
∥∥
L1(ΩT )

+
∥∥|m+

hk|
2 − Ih

[
|m+

hk|
2
]∥∥
L1(ΩT )

+
∥∥Ih[|m+

hk|
2
]
− 1
∥∥
L1(ΩT )

.
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The first two terms on the right-hand side converge to 0. Indeed, on the one hand, it holds
that∥∥|m|2 − |m+

hk|
2
∥∥
L1(ΩT )

≤ ‖m+m+
hk‖L2(ΩT )‖m−m+

hk‖L2(ΩT ) . ‖m−m+
hk‖L2(ΩT )

and m+
hk → m in L2(ΩT ). On the other hand, using the approximation properties (2.29)

of the nodal interpolant and the fact that ∇mi+1
h is piecewise constant, one shows that

∥∥|m+
hk|

2 − Ih
[
|m+

hk|
2
]∥∥
L1(ΩT )

. h2‖∇m+
hk‖

2
L2(ΩT )

(2.46)
. h2.

To conclude, it remains to show that∥∥Ih[|m+
hk|

2
]
− 1
∥∥
L1(ΩT )

→ 0. (2.49)

For any t ∈ (0, T ), let 0 ≤ i ≤ N − 1 such that t ∈ [ti, ti+1). It holds that∥∥Ih[|m+
hk(t)|

2
]
− 1
∥∥
L1(Ω)

=
∥∥Ih[|mi+1

h |
2
]
− 1
∥∥
L1(Ω)

≤
∥∥Ih[|mi+1

h |
2
]
− Ih

[
|m0

h|2
]∥∥
L1(Ω)

+
∥∥Ih[|m0

h|2
]
− |m0

h|2
∥∥
L1(Ω)

+
∥∥|m0

h|2 − 1
∥∥
L1(Ω)

.

For the first term on the right-hand side, it holds that

∥∥Ih[|mi+1
h |

2
]
− Ih

[
|m0

h|2
]∥∥
L1(Ω)

(2.31)
. h3

∑
z∈Nh

||mi+1
h (z)|2 − |m0

h(z)|2|

(2.34)
= h3

∑
z∈Nh

k2
i∑

`=0

|v`h(z)|2

(2.31)
. k2

i∑
`=0

‖v`h‖2L2(Ω)

(2.42)
≤ Ck.

(2.50)

Using the approximation properties of Ih, we estimate the second term by

∥∥Ih[|m0
h|2
]
− |m0

h|2
∥∥
L1(Ω)

. h2‖∇m0
h‖2L2(Ω)

(2.28)
. h2.

Finally, since |m0| = 1 a.e. in Ω by assumption, the third term satisfies that∥∥|m0
h|2 − 1

∥∥
L1(Ω)

=
∥∥|m0

h|2 − |m0|2
∥∥
L1(Ω)

≤ ‖m0
h +m0‖L2(Ω)‖m0

h −m0‖L2(Ω)

. ‖m0
h −m0‖L2(Ω).

Thanks to (2.28), this yields the convergence |m0
h|2 → 1 in L1(Ω). Altogether, this

proves (2.49) and thus concludes the proof.
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2.5.5 Identification of the limit with a weak solution of LLG

We start with establishing an auxiliary convergence result for the time reconstructions
obtained by PF-TPS1.

Lemma 2.5.7. Suppose that the assumptions of Theorem 2.3.5 are satisfied and let {m±hk}
be the time reconstructions generated by PF-TPS1. For all 0 < s < 1, it holds that

m±hk →m in L2(0, T ;Hs(Ω)) as h, k → 0.

Proof. Let 0 < s < 1. It holds that

‖mhk −m±hk‖
2
L2(0,T ;Hs(Ω))

=

∫ T

0
‖mhk(t)−m±hk(t)‖

2
Hs(Ω)dt

(2.27)
≤ k2

∫ T

0
‖∂tmhk(t)‖2Hs(Ω)dt

= k2
N−1∑
i=0

∫ ti+1

ti

‖∂tmhk(t)‖2Hs(Ω)dt = k3
N−1∑
i=0

‖(mi+1
h −mi

h)/k‖2Hs(Ω)

= k3
N−1∑
i=0

‖vih‖2Hs(Ω) . k
3
N−1∑
i=0

‖vih‖2H1(Ω) = k2‖v−hk‖
2
L2(ΩT ) + k2‖∇v−hk‖

2
L2(ΩT ).

Since mhk → m in L2(0, T ;Hs(Ω)) by Proposition 2.5.6, the result follows from (2.46)–
(2.47).

We have collected all ingredients to finalize the proof of Theorem 2.3.5.

Proof of Theorem 2.3.5. By Proposition 2.5.6, for any algorithm, we deduce the desired
convergence towards a functionm ∈ L∞(0, T ;H1(Ω))∩H1(0, T ;L2(Ω)) satisfying |m| = 1
a.e. in ΩT . Since mhk ⇀m in H1(ΩT ), we also have the weak convergence of the traces,
i.e., mhk(0) ⇀ m(0) in H1/2(Ω). By assumption (2.28), we deduce that m(0) = m0 in
the sense of traces. It remains to show that m fulfills the variational formulation (2.13)
and the energy inequality (2.14). For the sake of clarity, we consider the three algorithms
separately.

• Step 1: Proof of the result for TPS1.

Let ϕ ∈ C∞(ΩT ) be an arbitrary test function. For any 0 ≤ i ≤ N −1 and t ∈ (ti, ti+1), we
test (2.19) with φh = Ih[m−hk(t)× ϕ(t)] ∈ Kh(mi

h). Integrating in time over t ∈ (ti, ti+1),
summing over 0 ≤ i ≤ N − 1, and using the approximation property (2.29) of the nodal
interpolant, we obtain the identity

α

∫ T

0
〈v−hk(t),m

−
hk(t)×ϕ(t)〉 dt+

∫ T

0
〈m−hk(t)× v

−
hk(t),m

−
hk(t)×ϕ(t)〉 dt

+ `2ex

∫ T

0
〈∇[m−hk(t) + θkv−hk(t)],∇[m−hk(t)×ϕ(t)]〉 dt+O(h)

= −`dm

2

∫ T

0
〈∇ ×m−hk(t),m

−
hk(t)×ϕ(t)〉 dt

− `dm

2

∫ T

0
〈m−hk(t),∇× [m−hk(t)×ϕ(t)]〉 dt.

(2.51)
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Using the available convergence results, we would like to pass the latter to the limit as
h, k → 0 to obtain (2.13). For the left-hand side, it holds that

α

∫ T

0
〈v−hk(t),m

−
hk(t)×ϕ(t)〉 dt→ −α

∫ T

0
〈m(t)× ∂tm(t),ϕ(t)〉 dt,∫ T

0
〈m−hk(t)× v

−
hk(t),m

−
hk(t)×ϕ(t)〉 dt→

∫ T

0
〈∂tm(t),ϕ(t)〉 dt,

`2ex

∫ T

0
〈∇[m−hk(t) + θkv−hk(t)],∇m

−
hk(t)×ϕ(t)〉 dt→ `2ex

∫ T

0
〈m(t)×∇m(t),∇ϕ(t)〉 dt;

see [Alo08, BFF+14] for details. For the first term on the right-hand side, since ∇×m−hk ⇀
∇×m and m−hk ×ϕ→m×ϕ in L2(ΩT ), it holds that

−`dm

2

∫ T

0
〈∇ ×m−hk(t),m

−
hk(t)×ϕ(t)〉 dt→ −`dm

2

∫ T

0
〈∇ ×m(t),m(t)×ϕ(t)〉 dt.

Since ∇× (m−hk ×ϕ) ⇀ ∇× (m×ϕ) in L2(ΩT ), it follows that

−`dm

2

∫ T

0
〈m−hk(t),∇× [m−hk(t)×ϕ(t)]〉 dt→ −`dm

2

∫ T

0
〈m(t),∇× [m(t)×ϕ(t)]〉 dt.

By (2.12), it holds that

− `dm

2

∫ T

0
〈∇ ×m(t),m(t)×ϕ(t)〉 dt− `dm

2

∫ T

0
〈m(t),∇× [m(t)×ϕ(t)]〉 dt

= −`dm

∫ T

0
〈∇ ×m(t),m(t)×ϕ(t)〉 dt− `dm

2

∫ T

0
〈〈γT [m(t)],m(t)×ϕ(t)〉〉 dt,

which proves (2.13) for any smooth test function ϕ. The desired result then follows by
density.
The energy inequality (2.14) is obtained by passing (2.36) to the limit as h, k → 0 and

using the available convergence results (2.48), assumption (2.28) on the initial condition,
the fact that k/h→ 0, in combination with standard lower semicontinuity arguments.

• Step 2: Proof of the result for PF-TPS1.

The proof follows the lines of the one for TPS1 discussed in Step 1. In the proof of the
variational formulation (2.13), the only difference is the convergence of the second term on
the left-hand side of (2.51), which is more subtle here, since omitting the nodal projection
the uniform boundedness of m−hk in L∞(ΩT ) is lost. To show the desired convergence, we
start with recalling the so-called Lagrange identity

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c) for all a,b, c,d ∈ R3 (2.52)

and the continuous embedding Hs(Ω) ⊂ L4(Ω), which holds for all s ≥ 3/4. Choosing an
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2 Tangent plane integrators for the simulation of skyrmion dynamics

arbitrary 3/4 ≤ s < 1, we obtain the estimate

∥∥|m−hk|2 − 1
∥∥2

L2(ΩT )
=
∥∥|m−hk|2 − |m|2∥∥2

L2(ΩT )
=

∫ T

0

∥∥|m−hk(t)|2 − |m(t)|2
∥∥2

L2(Ω)
dt

=

∫ T

0

∥∥[m−hk(t) +m(t)] · [m−hk(t)−m(t)]
∥∥2

L2(Ω)
dt

≤
∫ T

0
‖m−hk(t) +m(t)‖2L4(Ω)‖m

−
hk(t)−m(t)‖2L4(Ω)dt

≤
∫ T

0
‖m−hk(t) +m(t)‖2H1(Ω)‖m

−
hk(t)−m(t)‖2Hs(Ω)dt

≤ ‖m−hk +m‖2L∞(0,T ;H1(Ω))‖m
−
hk −m‖

2
L2(0,T ;Hs(Ω))

. ‖m−hk −m‖
2
L2(0,T ;Hs(Ω)).

Thanks to Lemma 2.5.7, we deduce that |m−hk|
2 → 1 in L2(ΩT ) as h, k → 0. Together with

the weak convergence v−hk ·ϕ⇀ ∂tm ·ϕ in L2(ΩT ), it follows that∫ T

0
〈m−hk(t)× v

−
hk(t),m

−
hk(t)×ϕ(t)〉 dt

(2.52)
=

∫ T

0
〈|m−hk(t)|

2,v−hk(t) ·ϕ(t)〉 dt→
∫ T

0
〈∂tm(t),ϕ(t)〉 dt.

Finally, passing the discrete energy law (2.41) to the limit as h, k → 0, thanks to (2.28),
(2.47), the available convergence results (2.48), and standard lower semicontinuity argu-
ments, we obtain (2.14).

• Step 3: Proof of the result for TPS2.

The verification of the variational formulation (2.13) follows by the same method used in
Step 1 for TPS1. Given an arbitrary ϕ ∈ C∞(ΩT ), for any 0 ≤ i ≤ N − 1 and t ∈ (ti, ti+1),
we test (2.26) with φh = Ih[m−hk(t)×ϕ(t)] ∈ Kh(mi

h) to obtain

α

∫ T

0
〈WM(k)(λ

−
hk(t))v

−
hk(t),m

−
hk(t)×ϕ(t)〉 dt

+

∫ T

0
〈m−hk(t)× v

−
hk(t),m

−
hk(t)×ϕ(t)〉 dt

+ `2ex

∫ T

0
〈∇[m−hk(t) + (1 + ρ(k))(k/2)v−hk(t)],∇[m−hk(t)×ϕ(t)]〉 dt+O(h)

= −`dm

2

∫ T

0
〈∇ × [m−hk(t) + (k/2)v−hk(t)],m

−
hk(t)×ϕ(t)〉 dt

− `dm

2

∫ T

0
〈m−hk(t) + (k/2)v−hk(t),∇× [m−hk(t)×ϕ(t)]〉 dt,

(2.53)

where, in analogy with (2.27), we define the piecewise time reconstruction λ−hk by λ−hk(t) :=
λih for all 0 ≤ i ≤ N − 1 and t ∈ [ti, ti+1).
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2 Tangent plane integrators for the simulation of skyrmion dynamics

With the available convergence result (2.48) and the convergence properties of WM(k)(·)
and ρ(·), each of the three terms on the left-hand side converges towards the corresponding
term of (2.13) as h, k → 0; see [AKST14] for details. We discuss the convergence of the two
terms on the right-hand side. Since ∇×m−hk ⇀ ∇×m andm−hk×ϕ→m×ϕ in L2(ΩT ),
it holds that

−`dm

2

∫ T

0
〈∇ ×m−hk(t),m

−
hk(t)×ϕ(t)〉 dt→ −`dm

2

∫ T

0
〈∇ ×m(t),m(t)×ϕ(t)〉 dt.

Moreover, it holds that

−`dm

4
k

∫ T

0
〈∇ × v−hk(t),m

−
hk(t)×ϕ(t)〉 dt→ 0,

which follows from (2.47), since

|k
∫ T

0
〈∇ × v−hk(t),m

−
hk(t)×ϕ(t)〉 dt| . k‖∇v−hk‖L2(ΩT )‖m−hk‖L∞(ΩT )‖ϕ‖L2(ΩT )

. k‖∇v−hk‖L2(ΩT ).

Hence, the first term on the right-hand side of (2.53) converges towards

−`dm

2

∫ T

0
〈∇ ×m(t),m(t)×ϕ(t)〉 dt.

Similarly, we show that the second term on the right-hand side converges towards

−`dm

2

∫ T

0
〈m(t),∇× [m(t)×ϕ(t)]〉 dt.

As shown in Step 1 for TPS1, it holds that

−`dm

2

∫ T

0
〈m−hk(t),∇× [m−hk(t)×ϕ(t)]〉 dt→ −`dm

2

∫ T

0
〈m(t),∇× [m(t)×ϕ(t)]〉 dt.

On the other hand, we have that

|k
∫ T

0
〈v−hk(t),∇× [m−hk(t)×ϕ(t)]〉 dt| . k‖v−hk‖L2(ΩT )‖m−hk‖H1(ΩT )‖ϕ‖W 1,∞(ΩT ) . k,

which shows that

−`dm

4
k

∫ T

0
〈v−hk(t),∇× [m−hk(t)×ϕ(t)]〉 dt→ 0.

This proves (2.13) for any smooth test function ϕ. By density, we obtain the desired result.
Finally, the energy inequality (2.14) is obtained by passing to the limit as h, k → 0 the

discrete energy law (2.44) and using standard lower semicontinuity arguments.
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3 The mass-lumped midpoint scheme for
computational micromagnetics:
Newton linearization and application to
magnetic skyrmion dynamics

This chapter consists of an ongoing work together with Giovanni Di Fratta, Dirk Praetorius,
and Michele Ruggeri.

We discuss a mass-lumped midpoint scheme for the numerical approximation of the Landau–
Lifshitz–Gilbert equation, which models the dynamics of the magnetization in ferromagnetic
materials. In addition to the classical micromagnetic field contributions, our setting covers
the non-standard Dzyaloshinskii–Moriya interaction, which is the essential ingredient for
the enucleation and stabilization of magnetic skyrmions. Our analysis also includes the
inexact solution of the arising nonlinear systems, for which we discuss both a constraint
preserving fixed-point solver from the literature and a novel approach based on the New-
ton method. We numerically compare the two linearization techniques and show that the
Newton solver leads to a considerably lower number of nonlinear iterations. Moreover, in a
numerical study on magnetic skyrmions, we demonstrate that, for magnetization dynamics
that are very sensitive to energy perturbations, the midpoint scheme, due to its conservation
properties, is superior to the dissipative tangent plane schemes from the literature.

3.1 Introduction

3.1.1 Energetics of a ferromagnet

In the continuum theory of micromagnetism, whose origin dates back to the seminal work
of Landau–Lifshitz [LL35] on small ferromagnetic particles, the amount of magnetic mo-
ment (per unit volume) of a rigid ferromagnetic body occupying a bounded region Ω ⊂ R3

is represented by a classical vector field, the magnetization M : Ω → R3. Its module,
Ms := |M |, describes the so-called saturation magnetization. In single-crystal ferromag-
nets [AFM06, AD15], Ms depends only on the temperature and is assumed to be constant
when the specimen is well below the so-called Curie temperature of the material. In this
case, the magnetization can be represented in the form M := Msm, where m : Ω → S2 is
a vector field with values in the unit sphere of R3, and the observable magnetization states
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3 The midpoint scheme for the simulation of skyrmion dynamics

minimize the micromagnetic energy functional [Bro63, HS98]

E(m) := EΩ(m) +KΩ(m) +WΩ(m) +AΩ(m) + ZΩ(m) (3.1)

:=

∫
Ω
A|∇m|2 +D(∇×m) ·m− µ0

2
MsHs(m) ·m+ ϕan(m)− µ0MsHext ·m dx ,

defined for every m ∈ H1(Ω; S2).
The exchange energy, EΩ(m), penalizes spatial variations of the direction of the magneti-

zation, with A > 0 representing a material-dependent constant that summarizes the stiffness
of short-range (symmetric) exchange interactions. The second term, KΩ(m), represents the
bulk Dzyaloshinskii–Moriya interaction (DMI) [Dzy58, Mor60], and accounts for antisym-
metric exchange interactions caused by possible lacks of inversion symmetry in the crystal
structure of the ferromagnet. The sign of the constant D ∈ R affects the chirality of the fer-
romagnetic system [TRJF12, SCR+13]. The third term, WΩ(m), is the magnetostatic self-
energy, i.e., the energy due to the stray fieldHs(m) induced byMsm. From the mathemat-
ical point of view, Hs(m) can be characterized as the projection of (−Msm) ∈ L2(R3;R3)
on the closed subspace of gradient vector fields ∇H1(R3;R) := {∇u : u ∈ H1(R3;R)}
(see, e.g., [Pra04, DMRS20])1. Here, µ0 denotes the vacuum permeability. Additionally,
the micromagnetic energy includes two additional energy contributions: the magnetocrys-
talline anisotropy energy AΩ(m) and the Zeeman energy ZΩ(m). The energy density
ϕan : S2 → R≥0 models the existence of easy directions of the magnetization due to the
crystallographic structure of the ferromagnet, while ZΩ(m) models the tendency of a spec-
imen to have the magnetization aligned with the external applied field Hext ∈ L2(Ω;R3),
assumed to be unaffected by variations of m. The competition among the energy con-
tributions in (3.1) explains most of the striking spin textures observable in ferromagnetic
materials [HS98], in particular, the emergence of magnetic skyrmions [FCS13, FRC17].

3.1.2 A more general energy functional

When a ferromagnetic system consists of several magnetic materials, the material-dependent
quantities A, D, and Ms are no longer constant in the region Ω occupied by the ferro-
magnet, and one has to model spin interactions among different magnetic materials at
their touching interface [AFM06]. The easiest way is to assume a strong coupling con-
dition [AD15, ADMN21, DD20]: Although Ms can be discontinuous across an interface,
the direction of the magnetization never jumps through it. Under this constitutive as-
sumption, the analysis of the composite can be carried out under the classical conditions
Ms ∈ L∞(Ω;R>0) and m ∈ H1(Ω; S2). In this setting, the observable states of a rigid
ferromagnetic body can be characterized as the local minimizers of the micromagnetic en-
ergy functional still defined by (3.1), but with the quantities A = A(x), D = D(x), and
Ms = Ms(x) to be understood as functions defined on Ω.
In this paper, we are interested in a more general energy functional which, other than

incorporating the previous one as a special case, also accounts for the presence of anisotropies
in the lattice structures of the constituents. To introduce the model, we first observe that

1Here, with a slight abuse of notation, we identify m with its extension by zero to the whole R3.
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3 The midpoint scheme for the simulation of skyrmion dynamics

the bulk DMI energy density can be equivalently rewritten as

D(∇×m) ·m = D
3∑
d=1

(ed × ∂dm) ·m,

where {ed}d=1,2,3 denotes the standard basis of R3. It is therefore a special case of the
energy density

gasym(x, s, ξ) =
3∑
d=1

Kd(x)ξd · s for all x ∈ Ω, s ∈ R3, and ξ = (ξ1, ξ2, ξ3) ∈ R3×3,

with {Kd}d=1,2,3 being 3-by-3 antisymmetric matrices, i.e., Kd = −KT
d . Similarly, the

symmetric exchange energy density can be generalized to the density

gsym(x, ξ) =
1

2

3∑
d=1

Ad(x)ξd · ξd for all x ∈ Ω and ξ = (ξ1, ξ2, ξ3) ∈ R3×3,

with {Ad}d=1,2,3 being 3-by-3 invertible symmetric matrices, i.e., Ad = AT
d . Hence, for

g := gsym + gasym, it holds that

g(x, s, ξ) =
1

2

3∑
d=1

(
Ad(x)ξd · ξd − 2Kd(x)s · ξd

)
=

1

2

3∑
d=1

Ad(x)
(
ξd −A−1

d (x)Kd(x)s
)
·
(
ξd −A−1

d (x)Kd(x)s
)

+
1

2

3∑
d=1

Kd(x)A−1
d (x)Kd(x)s · s.

(3.2)

Note that Kd(x)A−1
d (x)Kd(x) is a symmetric matrix. This discussion suggests the oppor-

tunity to investigate an energy functional covering the above generalized form; see (3.4)
below. It is worth to notice that the structure of this energy functional does not only allow
for the description of a mixture of ferromagnetic materials, but also covers typical homoge-
neous models arising as Γ-limit of composite ferromagnetic materials with highly oscillating
heterogeneities [ADMN21, DD20].

3.1.3 Landau–Lifshitz–Gilbert equation and its numerical integration

When the magnetization m does not minimize the micromagnetic energy functional, the
ferromagnetic system is in a non-equilibrium state. A well-accepted model for its time
evolution is the Landau–Lifshitz–Gilbert equation (LLG) [LL35, Gil55], which in the so-
called Gilbert form reads

∂tm = −γ0m×Heff(m) + αm× ∂tm. (3.3)

This phenomenological equation describes the magnetization dynamics as a dissipative pre-
cession driven by the effective field Heff(m) := −µ−1

0 M−1
s

δE(m)
δm , and modulated by the
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gyromagnetic ratio of the electron γ0 > 0 and the Gilbert damping parameter α > 0. The
numerical approximation of LLG is not a trivial task. Nonlinearities, the numerical real-
ization of the unit-length constraint, the possible coupling with other (nonlinear) partial
differential equations, and the need of unconditionally stable numerical schemes make the
problem very challenging. For this reason, in the last twenty years, the problem has been the
subject of several mathematical studies; see, e.g., [Pro01, AJ06, KP06, BP06, GC07, Alo08,
BKP08, Cim08, Cim09, AKT12, AKST14, BFF+14, AHP+14, FT17a, KW18, HPP+19,
DPP+20, AFKL21].
In this work, we consider the mass-lumped midpoint scheme proposed in [BP06]. The

method is based on a mass-lumped first-order finite element method for the spatial dis-
cretization and the second-order midpoint rule for the time discretization, and involves
the solution of one nonlinear system per time-step. Besides introducing the method, the
work [BP06] proves unconditional convergence of the finite element approximation towards
a weak solution of LLG in the sense of [AS92] and proposes a fixed-point iteration to
linearize the nonlinear problem arising from the scheme. The scheme has also been the
subject of further research: On the one hand, the works [Bar06, Cim09] incorporate the
inexact solution of the nonlinear system into the convergence result. On the other hand,
the work [PRS18b] focuses on the design and the analysis of effective approaches to treat
the nonlocal field contributions.

3.1.4 Contributions

In this work, as a novel contribution, we extend the midpoint scheme and its analysis to more
general energy contributions; see the discussion in Section 3.1.2. In particular, the present
analysis covers DMI, which is not covered by the analysis in [BP06, Bar06, Cim09, PRS18b].
We note that DMI is the essential ingredient for the enucleation and the stabilization
of magnetic skyrmions. At this point, it is worth pointing out that DMI contributions
represent a challenging testing ground for numerical schemes for LLG. Indeed, besides
requiring accurate adaptations in the numerical analysis, they determine magnetization
configurations — magnetic skyrmions — that turn out to be very sensitive to small per-
turbations of the micromagnetic energy. In addition, we also discuss the linearization
of the nonlinear scheme: We extend the fixed-point iteration proposed in [Bar06] to the
present setting and propose an approach based on the Newton method, for which we pro-
vide a first full analysis (well-posedness, stability, convergence). Finally, in a collection
of numerical experiments, we accurately test the energy conservation properties of the
mass-lumped midpoint scheme and extensively compare it with the tangent plane schemes
from [Alo08, AKST14, HPP+19, DPP+20].

3.1.5 Outline

The remainder of the work is organized as follows: We conclude this section by collecting
the notation used throughout the paper. In Section 3.2, we describe the mathematical
problem under consideration. In Section 3.3, we present the proposed algorithms and state
their stability and convergence results. Section 3.4 is devoted to numerical experiments.
Finally, in Sections 3.5–3.6, we collect the proofs of the results stated in Section 3.3.
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3.1.6 Notation

Throughout the paper, we use the standard notation for Lebesgue, Sobolev, and Bochner
spaces and norms. To highlight (spaces of) vector-valued or matrix-valued functions, we use
bold letters, e.g., we denote both L2(Ω;R3) and L2(Ω;R3×3) by L2(Ω). We denote by 〈·, ·〉Ω
the scalar product in L2(Ω) and by 〈·, ·〉 the duality pairing between H1(Ω) and its dual.
By C > 0 we always denote a generic constant, which is independent of the discretization
parameters, but not necessarily the same at each occurrence.

3.2 Problem formulation

Let Ω ⊂ R3 be a bounded Lipschitz domain. The energy of m ∈H1(Ω;S2) is given by

E(m) =
1

2
a(m,m)− 〈f ,m〉Ω, (3.4)

where f ∈ L2(Ω), while the bilinear form a : H1(Ω) × H1(Ω) → R is defined, for all
ψ,φ ∈H1(Ω), by

a(ψ,φ) =
3∑
d=1

〈Ad(∂dψ − Jdψ), ∂dφ− Jdφ〉Ω − 〈π(ψ),φ〉Ω. (3.5)

Here, π : L2(Ω) → L2(Ω) is a linear, bounded, and self-adjoint operator, while, for d =
1, 2, 3, the 3-by-3 matrices Ad and Jd have coefficients in L∞(Ω), with Ad being also sym-
metric and uniformly positive definite, i.e., it holds that AT

d = Ad and

Ad(x)u · u ≥ A0|u|2 for almost all x ∈ Ω and all u ∈ R3,

where A0 > 0 is a fixed constant. The energy (3.4) covers the extensions of the classical
micromagnetic functional discussed in Section 3.1.2; cf. the expression in (3.2).
The existence of minimizers of (3.4) in H1(Ω; S2) follows from the direct method of

calculus of variations. Moreover, any minimizerm ∈H1(Ω; S2) satisfies the Euler–Lagrange
equations

〈heff(m),φ〉 = 0 for all φ ∈H1(Ω) such that m · φ = 0 a.e. in Ω.

Here, heff(m) := − δE(m)
δm is the (negative) Gâteaux derivative of the energy, i.e.,

− 〈heff(m),φ〉 =
〈δE(m)

δm
,φ
〉

= lim
δ→0

E(m+ δφ)− E(m)

δ

(3.4)
= a(m,φ)− 〈f ,φ〉Ω. (3.6)

Turning to the dynamical case, a non-equilibrium configuration m(t) ∈ H1(Ω; S2) evolves
according to (3.3), which, after a suitable rescaling, reads

∂tm = −m× heff(m) + αm× ∂tm, (3.7)

with α > 0 being the Gilbert damping parameter. The dynamics is dissipative in the sense
that any sufficiently smooth solution of (3.7) satisfies the energy law

d

dt
E(m(t)) = −α‖∂tm(t)‖2L2(Ω) ≤ 0 for all t > 0. (3.8)

We conclude this section by recalling the notion of a weak solution of (3.7); see [AS92].
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Definition 3.2.1. Let m0 ∈H1(Ω;S2). A vector field m : Ω×R>0 → S2 is called a global
weak solution of (3.7) ifm ∈ L∞(R>0;H1(Ω; S2)) and, for all T > 0, with ΩT := Ω×(0, T )
the following properties are satisfied:

(i) m ∈H1(ΩT );

(ii) m(0) = m0 in the sense of traces;

(iii) For all ϕ ∈H1(ΩT ), it holds that∫ T

0
〈∂tm(t),ϕ(t)〉Ω dt

= −
∫ T

0
〈heff(m(t)),ϕ(t)×m(t)〉 dt+ α

∫ T

0
〈m(t)× ∂tm(t),ϕ(t)〉Ω dt;

(3.9)

(iv) It holds that

E(m(T )) + α

∫ T

0
‖∂tm(t)‖2L2(Ω)dt ≤ E(m0). (3.10)

We note that (3.6) implicitly includes natural boundary conditions on m, which are ho-
mogeneous Neumann boundary conditions ∂n = 0 if Ad = `2exId and Jd = 0 for d = 1, 2, 3.
For a more explicit presentation, we refer to [HPP+19]. The variational formulation (3.9)
comes from a weak formulation of (3.7) in the space-time cylinder. The energy inequal-
ity (3.10) is a weak counterpart of the dissipative energy law (3.8).

Remark 3.2.2. (i) For ease of presentation, we restrict ourselves to the case of a time-
independent field f ∈ L2(Ω). For time-dependent fields, the strong form (3.8) and the weak
form (3.10) of the energy law of LLG read

d

dt
Ẽ(m(t)) = −α‖∂tm(t)‖2L2(Ω) + 〈f(t), ∂tm(t)〉Ω

and

Ẽ(m(T )) + α

∫ T

0
‖∂tm(t)‖2L2(Ω)dt−

∫ T

0
〈f(t), ∂tm(t)〉Ω dt ≤ Ẽ(m0),

respectively, where Ẽ(m) = E(m) + 〈f ,m〉Ω = a(m,m)/2.
(ii) The present setting covers and generalizes the model problems considered in previous
mathematical works on the numerical integration of LLG.

• With the choices Ad = `2exId and Jd = 0 for d = 1, 2, 3, where `ex > 0 is the so-called
exchange length and Id is the 3-by-3 identity matrix, π ≡ 0, and f ≡ 0, we obtain
that

〈heff(ψ),ϕ〉 = −`2ex〈∇ψ,∇φ〉Ω.

This is the so-called small particle limit of LLG, for which finite element schemes have
been proposed, e.g., in the seminal papers [BP06, Alo08].
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• With the choices Ad = `2exId and Jd = 0 for d = 1, 2, 3, we obtain that

〈heff(ψ),φ〉 = −`2ex〈∇ψ,∇φ〉Ω + 〈π(ψ),φ〉Ω + 〈f ,φ〉Ω.

This setting covers the classical energy contributions considered in micromagnetics
(exchange, uniaxial anisotropy, magnetostatic, Zeeman) and numerical integrators for
this case have been analyzed, e.g., in [AKT12, BFF+14, AKST14, PRS18b, DPP+20].

• With the choices Ad = `2exId and Jd = `dm [ed]×/(2`
2
ex) for d = 1, 2, 3, where `dm ∈ R

is a characteristic length associated with DMI, π(m) = `dmm/(2`2ex), and f ≡ 0, we
obtain that2

〈heff(ψ),φ〉 = −`2ex〈∇ψ,∇φ〉Ω −
`dm

2
〈∇ ×ψ,φ〉Ω −

`dm

2
〈ψ,∇× φ〉Ω,

which is the setting analyzed in [HPP+19] for the simulation of chiral magnetic skyrmions
by the means of a family of tangent plane integrators.

3.3 Numerical algorithms and main results

3.3.1 Preliminaries

Let κ ≥ 1. For the spatial discretization, assuming Ω to be a polyhedral domain, we consider
a κ-quasi-uniform family {Th}h>0 of regular tetrahedral triangulations of Ω parametrized
by the mesh size h = maxK∈Th diam(K), i.e., κ−1h ≤ vol(K)1/3 ≤ h for all K ∈ Th. We
denote by Nh the set of vertices of Th. For any K ∈ Th, we denote by P1(K) the space
of first-order polynomials on K. We consider the space of Th-piecewise affine and globally
continuous finite elements

S1(Th) :=
{
vh ∈ C0(Ω): vh|K ∈ P1(K) for all K ∈ Th

}
.

The classical basis for this finite-dimensional subspace of H1(Ω) is the set of nodal hat
functions {ϕz}z∈Nh

, which satisfy ϕz(z′) = δz,z′ for all z, z′ ∈ Nh. The nodal interpolant
Ih : C0(Ω)→ S1(Th) is defined by Ih[u] =

∑
z∈Nh

u(z)ϕz for all u ∈ C0(Ω).
Let Vh := S1(Th)3. For each time-step, approximate solutions of (3.7) are sought in the

set of admissible approximate magnetizations

Mh := {φh ∈ Vh : |φh(z)| = 1 for all z ∈ Nh} ,

which consists of all elements of Vh satisfying the unit-length constraint at the nodes of the
triangulation.
Besides the standard scalar product 〈·, ·〉Ω, given a mesh Th and the associated nodal

interpolant Ih[·], we consider the mass-lumped product 〈·, ·〉h defined by

〈ψ,φ〉h =

∫
Ω
Ih[ψ · φ] dx for all ψ,φ ∈ C0(Ω).

2Here, [ed]× denotes the 3-by-3 matrix such that [ed]×u = ed × u for all u ∈ R3.
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Using the definition of the nodal interpolant, we see that

〈ψ,φ〉h =
∑
z∈Nh

βz ψ(z) · φ(z), where βz :=

∫
Ω
ϕz dx > 0. (3.11)

On Vh, 〈·, ·〉h is a scalar product and the induced norm ‖·‖h is equivalent to the standard
norm of L2(Ω). In particular, it holds that

‖φh‖L2(Ω) ≤ ‖φh‖h ≤
√

5 ‖φh‖L2(Ω) for all φh ∈ Vh; (3.12)

see [Bar15, Lemma 3.9]. Finally, we define the mapping Ph : H1(Ω)? → Vh by

〈Phu,φh〉h = 〈u,φh〉 for all u ∈H1(Ω)? and φh ∈ Vh, (3.13)

i.e., Phu ∈ Vh is the Riesz representative of 〈u, ·〉 ∈ V ?
h in the Hilbert space (Vh, 〈·, ·〉h).

For the time discretization, we consider a partition of the positive real axis R>0 with
constant time-step size k > 0, i.e., ti := ik for all i ∈ N0. Given a sequence {φih}i∈N0 ⊂ Vh,
we define

φ
i+1/2
h :=

φi+1
h + φih

2
and dtφ

i+1
h :=

φi+1
h − φih
k

for all i ∈ N0, (3.14)

as well as the piecewise linear time reconstruction

φhk(t) :=
t− ti
k
φi+1
h +

ti+1 − t
k

φih for all i ∈ N0 and t ∈ [ti, ti+1], (3.15)

which satisfies φhk ∈H1(Ω× (0, T )) for any T > 0.

3.3.2 Ideal midpoint scheme

In the following algorithm, we adapt the scheme initially proposed in [BP06] to the present
setting. The fundamental ingredients are the midpoint rule for the time discretization, the
finite element space Vh endowed with the mass-lumped scalar product 〈·, ·〉h for the spatial
integration, and the mapping (3.13) for the discrete realization of the effective field. We
refer to the method as ideal midpoint scheme in the sense that, as we will see in the next
section, practical implementations require suitable modifications.

Algorithm 3.3.1 (ideal midpoint scheme). Input: m0
h ∈Mh.

Loop: For all i ∈ N0, compute mi+1
h ∈ Vh such that

〈dtmi+1
h ,φh〉h = −〈mi+1/2

h × Phheff(m
i+1/2
h ),φh〉h + α〈mi+1/2

h × dtmi+1
h ,φh〉h (3.16)

for all φh ∈ Vh.
Output: Sequence of approximations

{
mi

h

}
i∈N0

.

With the sequence of approximations {mi
h}i∈N0 delivered by Algorithm 3.3.1, we define

the piecewise linear time reconstruction mhk via (3.15). In the following theorem, we
establish the stability and convergence of the approximations obtained with Algorithm 3.3.1.
The proof is postponed to Section 3.5.
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Theorem 3.3.2. (i) Suppose thatm0
h ∈Mh. Then, for all i ∈ N0, (3.16) admits a solution

mi+1
h ∈Mh. In particular, the scheme preserves the unit-length constraint at any time-step

at the nodes of the triangulation.
(ii) The scheme is unconditionally stable in the sense that, for all J ∈ N, it holds that

E(mJ
h) + αk

J−1∑
i=0

‖dtmi
h‖2h = E(m0

h). (3.17)

(iii) Suppose that m0
h →m0 in H1(Ω) as h → 0. Then, there exist a global weak solution

m : Ω×R>0 → S2 of (3.7) in the sense of Definition 3.2.1 and a subsequence of {mhk} (not
relabeled) which unconditionally converges towards m. Specifically, as h, k → 0, mhk

?
⇀m

in L∞(R>0;H1(Ω; S2)) and mhk|ΩT
⇀m|ΩT

in H1(ΩT ) for all T > 0.

Remark 3.3.3. Note that, differently from the corresponding estimates for tangent plane
schemes [Alo08, AKST14, HPP+19, DPP+20], the stability result for Algorithm 3.3.1 (The-
orem 3.3.2(ii)) does not require any geometric assumption on the mesh. Moreover, (3.17)
holds with equality and without any artificial dissipative term on the left-hand side.

Theorem 3.3.2(i) establishes unconditional existence of a solution of (3.16), but does
not provide information about its uniqueness. If k = o(h2), one can show that a suitable
fixed-point iteration is a contraction provided that the discretization parameters are suf-
ficiently small. With the Banach fixed-point theorem, this implies that each time-step of
Algorithm 3.3.1 is well-posed.

Proposition 3.3.4. Suppose that k = o(h2) as h, k → 0. Then, there exist thresholds
h0 > 0 and k0 > 0 such that, for all h < h0 and k < k0, the variational problem (3.16)
admits a unique solution mi+1

h ∈Mh for all i ∈ N0.

The proof of Proposition 3.3.4 can be obtained simplifying the argument of the proofs of
Proposition 3.3.5 and Theorem 3.3.7 below, therefore we omit it.

3.3.3 Practical midpoint schemes

Each time-step of Algorithm 3.3.1 requires the solution of a nonlinear system and the
computation of nonlocal field contributions.
Nonlinearity is a consequence of the first term on the right-hand side of (3.16). The

second term on the right-hand side, at first glance also nonlinear in mi+1
h , turns out to be

actually linear. Indeed, it holds that

m
i+1/2
h × dtmi+1

h

(3.14)
=

mi+1
h +mi

h

2
×
mi+1

h −mi
h

k
= −1

k
mi+1

h ×mi
h.

However, using an arbitrary off-the-shelf nonlinear solver for (3.16), the conservation and
stability properties of Algorithm 3.3.1 established in Theorem 3.3.2(i)–(ii) are in general
lost. Moreover, π can be nonlocal and non-exactly computable (e.g., for the stray field), so
that the field contribution π(m

i+1/2
h ) must be numerically approximated. Hence, a direct
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implementation of Algorithm 3.3.1 should be based on an inner iteration performing the
solution of the nonlinear system (3.16) and the approximate computation of π(m

i+1/2
h ).

In the remainder of this section, we discuss and analyze an effective treatment of the
nonlocal contribution, which we combine with two approaches for the linearization of (3.16),
from which we will obtain two practical midpoint schemes.
To start with, we define the bilinear form aloc : H1(Ω)×H1(Ω)→ R by

aloc(ψ,φ) =

3∑
d=1

〈Ad(∂dψ − Jdψ), ∂dφ− Jdφ〉Ω for all ψ,φ ∈H1(Ω). (3.18)

We consider the local parts of the energy and the effective field given by

E loc(m) :=
1

2
aloc(m,m)− 〈f ,m〉Ω

(3.4)
= E(m) +

1

2
〈π(m),m〉Ω

and

−〈hloc
eff (m),φ〉 :=

〈δE loc(m)

δm
,φ
〉 (3.18)

= aloc(m,φ)− 〈f ,φ〉Ω
(3.5)
= a(m,φ) + 〈π(m),φ〉Ω − 〈f ,φ〉Ω

(3.6)
= −〈heff(m),φ〉 + 〈π(m),φ〉Ω,

respectively. Then, for i ∈ N0, we rewrite (3.16) in terms of the new unknown ηih :=

m
i+1/2
h ∈ Vh. Since dtmi+1

h = 2(ηih −mi
h)/k, it is easy to see that (3.16) is equivalent to

the following problem: First, compute ηih ∈ Vh such that, for all φh ∈ Vh, it holds that

〈ηih,φh〉h +
k

2
〈ηih × Phhloc

eff (ηih),φh〉h +
k

2
〈ηih × Phπ(ηih),φh〉h + α〈ηih ×mi

h,φh〉h

= 〈mi
h,φh〉h.

(3.19)

Then, define
mi+1

h := 2ηih −mi
h. (3.20)

To treat the nonlocal contribution π(ηih), we adopt the implicit-explicit (IMEX) approach
introduced in [PRS18b]. Let πh : Vh → Vh be an operator approximating π, assumed to
be linear and uniformly bounded in L2(Ω) in the sense that ‖πh‖L(L2(Ω);L2(Ω)) ≤ Cπ for
some Cπ > 0 independent of h. Moreover, we say that πh is consistent with π, if for all
φ ∈ L2(Ω) and all (φh)h>0 ⊂ Vh with φh → φ in L2(Ω) as h→ 0, it holds that

πh(φh)→ π(φ) in L2(Ω) as h→ 0. (3.21)

We define m−1
h := m0

h and

Πh(mi
h,m

i−1
h ) :=

3

2
πh(mi

h)− 1

2
πh(mi−1

h ). (3.22)

Then, in (3.19), we replace π(ηih) with its approximation Πh(mi
h,m

i−1
h ) to obtain

〈ηih,φh〉h +
k

2
〈ηih × Phhloc

eff (ηih),φh〉h +
k

2
〈ηih × PhΠh(mi

h,m
i−1
h ),φh〉h

+ α〈ηih ×mi
h,φh〉h = 〈mi

h,φh〉h.
(3.23)
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In particular, the nonlocal contribution, treated explicitly, becomes independent of the
unknown ηih. We now discuss two strategies to linearize (3.23) in order to arrive at two
practical midpoint schemes. To emphasize the inexact solution of (3.23) up to some accuracy
ε > 0, we write mi

hε rather than m
i
h for the iterates of the practical (linearized) midpoint

schemes.

3.3.3.1 Constraint-preserving fixed-point iteration

We solve (3.23) with the following fixed-point iteration: Let ε > 0 denote some prescribed
tolerance. Set ηi,0h := mi

hε. For ` ∈ N0, given η
i,`
h ∈ Vh, compute ηi,`+1

h ∈ Vh such that, for
all φh ∈ Vh, it holds that

〈ηi,`+1
h ,φh〉h +

k

2
〈ηi,`+1
h × Phhloc

eff (ηi,`h ),φh〉h +
k

2
〈ηi,`+1
h × PhΠh(mi

hε,m
i−1
hε ),φh〉h

+ α〈ηi,`+1
h ×mi

hε,φh〉h = 〈mi
hε,φh〉h,

(3.24)

until
‖Ih[ηi,`+1

h × Ph(hloc
eff (ηi,`+1

h )− hloc
eff (ηi,`h ))]‖h ≤ ε, (3.25)

where Ih[·] denotes the vector-valued nodal interpolant. If `∗ ∈ N0 is the smallest inte-
ger for which the stopping criterion (3.25) is satisfied, in view of (3.20), the approximate
magnetization at the new time-step is defined as mi+1

hε := 2ηi,`
∗+1

h −mi
hε.

In the following proposition, we collect the properties of the proposed fixed-point iteration.
The proof is postponed to Section 3.6.

Proposition 3.3.5. Let i ∈ N0.
(i) For all ` ∈ N0, the variational problem (3.24) admits a unique solution ηi,`+1

h ∈ Vh.
Moreover, it holds that ‖ηi,`+1

h ‖L∞(Ω) ≤ 1.
(ii) If k = o(h2) as h, k → 0, there exist a contraction constant 0 < q < 1 and thresholds
h0, k0 > 0 such that, for all h < h0 and k < k0, it holds that

‖ηi,`+2
h − ηi,`+1

h ‖h ≤ q ‖ηi,`+1
h − ηi,`h ‖h for all ` ∈ N0. (3.26)

The constants q, h0, k0 depend only on the mesh parameter κ and the problem data.
(iii) Under the assumptions of part (ii), the stopping criterion (3.25) is met in a finite
number of iterations. If `∗ ∈ N0 denotes the smallest integer for which (3.25) is satisfied,
the new approximation mi+1

hε := 2ηi,`
∗+1

h −mi
hε ∈ Vh belongs to Mh.

For all i ∈ N0, let rihε := Ph(hloc
eff (ηi,`

∗+1
h ) − hloc

eff (ηi,`
∗

h )) ∈ Vh. Because of the stopping
criterion (3.25), it holds that ‖Ih[m

i+1/2
hε × rihε]‖h ≤ ε. With this definition, the proposed

linearization of Algorithm 3.3.1 is covered by the following algorithm.

Algorithm 3.3.6 (practical midpoint scheme, constraint preserving fixed-point iteration).
Input: m0

hε := m0
h ∈Mh.

Loop: For all i ∈ N0, use the constraint preserving fixed-point iteration (3.24)–(3.25) to
compute mi+1

hε ∈Mh and rihε ∈ Vh with ‖Ih[m
i+1/2
hε × rihε]‖h ≤ ε such that

〈dtmi+1
hε ,φh〉h = −〈mi+1/2

hε × Phheff(m
i+1/2
hε ),φh〉h + α〈mi+1/2

hε × dtmi+1
hε ,φh〉h

+ 〈mi+1/2
hε × [rihε + Ph(π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε ))],φh〉h

(3.27)
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for all φh ∈ Vh.
Output: Sequence of approximations

{
mi

hε

}
i∈N0

.

In the following theorem, we establish the stability and convergence of the approximations
obtained with Algorithm 3.3.6. The proof is postponed to Section 3.6.

Theorem 3.3.7. (i) Suppose that m0
h ∈ Mh. If k = o(h2) as h, k → 0, there exist

thresholds h0 > 0 and k0 > 0 such that, for all h < h0 and k < k0, (3.27) admits solutions
mi+1

hε ∈Mh and rihε ∈ Vh with ‖Ih[m
i+1/2
hε × rihε]‖h ≤ ε for all i ∈ N0. In particular, the

scheme preserves the unit-length constraint at the nodes of the triangulation for all time-
steps. The thresholds h0, k0 depend only on the mesh parameter κ and the problem data.
(ii) Under the assumptions of part (i), for all h < h0, k < k0, and J ∈ N, the scheme
satisfies the discrete energy identity

E(mJ
hε) + αk

J−1∑
i=0

‖dtmi+1
hε ‖

2
h = E(m0

h) (3.28)

− k
J−1∑
i=0

〈mi+1/2
hε × [rihε + Ph(π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε ))],Phheff(m

i+1/2
hε )− αdtmi+1

hε 〉h.

(iii) Let T > 0. Let J ∈ N be the smallest integer such that T ≤ kJ . Under the assumptions
of part (i), if ε = O(h) and {m0

h}h>0 is bounded inH1(Ω) as h, ε→ 0, there exist thresholds
0 < h∗0 ≤ h0, 0 < k∗0 ≤ k0, and ε∗0 > 0 such that, for all h < h∗0, k < k∗0, ε < ε∗0, and
1 ≤ j ≤ J , we have the stability estimate

‖mj
hε‖

2
H1(Ω) + k

j−1∑
i=0

‖dtmi+1
hε ‖

2
L2(Ω) ≤ C. (3.29)

The constant C > 0 and the thresholds h∗0, k
∗
0, ε
∗
0 depend only on the mesh parameter κ, the

final time T , and the problem data.
(iv) Additionally to the assumptions of part (iii), assume m0

h → m0 in H1(Ω) as h →
0, and suppose that πh is consistent (3.21) with π. Then, there exist m ∈ H1(ΩT ) ∩
L∞(0, T ;H1(Ω;S2)) and a subsequence of {mhεk} (not relabeled) which converges towards
m as h, k, ε → 0. Specifically, mhεk|ΩT

?
⇀ m in L∞(0, T ;H1(Ω; S2)) and mhεk|ΩT

⇀
m in H1(ΩT ) as h, k, ε → 0. The limit function m satisfies the conditions (i)–(iv) of
Definition 3.2.1.

3.3.3.2 Newton iteration

Based on the Newton scheme, in [BBNP14, Section 1.4.1] the authors employ a linearization
of the nonlinear system (3.16) in the ideal midpoint scheme with simplified effective field, i.e.,
without nonlocal contributions and without DMI. Their 2D numerical experiments give hope
for a less restrictive CFL condition than for the fixed-point iteration from Section 3.3.3.1.
For three dimensional micromagnetics and considering the full effective field (3.6), in Sec-

tion 3.7.3 we apply Newton’s method to the nonlinear system of equations (3.23) resulting
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in the following iteration: Let ε > 0 denote some tolerance. Set ηi,0h := mi
hε. For ` ∈ N0,

given ηi,`h ∈ Vh, compute ui,`h ∈ Vh such that, for all φh ∈ Vh, it holds that

〈ui,`h ,φh〉h +
k

2
〈ui,`h × Ph(hloc

eff (ηi,`h ) + Πh(mi
hε,m

i−1
hε )),φh〉h + α〈ui,`h ×m

i
hε,φh〉h

+
k

2
〈ηi,`h × Ph(hloc

eff (ui,`h )− f),φh〉h = 〈mi
hε − η

i,`
h ,φh〉h (3.30)

− k

2
〈ηi,`h × Ph(hloc

eff (ηi,`h ) + Πh(mi
hε,m

i−1
hε )),φh〉h − α〈ηi,`h ×m

i
hε,φh〉h,

and define ηi,`+1
h := ηi,`h + ui,`h until

‖Ih
[
ui,`h × Ph(hloc

eff (ui,`h )− f)
]
‖h ≤ ε. (3.31)

If `∗ ∈ N0 is the smallest integer for which the stopping criterion (3.31) is satisfied, the
approximate magnetization at the new time-step is defined as mi+1

hε := 2ηi,`
∗+1

h −mi
hε.

For all i ∈ N0, let rihε = Ih
[
ui,`

∗

h × Ph(hloc
eff (ui,`

∗

h ) − f)
]
∈ Vh. In view of the stopping

criterion (3.31), it holds that ‖rihε‖h ≤ ε. With this definition, the proposed linearization
of Algorithm 3.3.1 based on the Newton method is covered by the following algorithm.

Algorithm 3.3.8 (practical midpoint scheme, Newton iteration). Input: m0
hε := m0

h ∈ Vh.
Loop: For all i ∈ N0, use Newton’s method (3.30)–(3.31) with initial guess ηi,0h := mi

hε to
compute mi+1

hε ∈ Vh and rihε ∈ Vh with ‖rihε‖h ≤ ε such that

〈dtmi+1
hε ,φh〉h = −〈mi+1/2

hε × Phheff(m
i+1/2
hε ),φh〉h + α〈mi+1/2

hε × dtmi+1
hε ,φh〉h

+ 〈rihε,φh〉h + 〈mi+1/2
hε × Ph(π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )),φh〉h

(3.32)

for all φh ∈ Vh.
Output: Sequence of approximations

{
mi

hε

}
i∈N0

.

The results on Algorithm 3.3.8 are stated in Lemma 3.3.9 (L∞-bound), Theorem 3.3.10
(stability), and Theorem 3.3.11 (well-posedness) below. Compared to Algorithm 3.3.6, our
analysis is more involved: Precisely, for i < J the proof of Theorem 3.3.11 requires i-
independent bounds on ‖mi

hε‖L∞(Ω) and E(mi
hε) in order to guarantee well-posedness of

Algorithm 3.3.8, while Lemma 3.3.9 and Theorem 3.3.10 require termination of (3.30)–
(3.31) so that mi+1

hε is well-defined.

In contrast to the fixed-point iteration (3.24)–(3.25), the Newton iteration (3.30)–(3.31)
does not inherently preserve discrete unit-length, i.e., in general |mi+1

hε (z)| 6= |mi
hε(z)| for

z ∈ Nh. However, assuming well-posedness of Algorithm 3.3.8, in the following lemma we es-
tablish uniform L∞(Ω)-boundedness of the approximations obtained with Algorithm 3.3.8.

Lemma 3.3.9. Suppose h, k, ε > 0, m0
h ∈ Mh and let J ∈ N be the smallest integer

such that T ≤ kJ . Let 0 ≤ i < J and suppose that the Newton iteration (3.30)–(3.31) in
Algorithm 3.3.8 terminates for all 0 ≤ n ≤ i, i.e., the sequences {mn

hε}
i+1
n=0, {rnhε}in=0 ⊂ Vh

are the output of Algorithm 3.3.8 and satisfy (3.32) with ‖rnhε‖h ≤ ε for all 0 ≤ n ≤ i.
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(i) If ε = O(h3/2) as h, k, ε → 0, then there exists a constant C∞ > 0 and thresholds
h0 > 0, k0 > 0, and ε0 > 0 such that, for all h < h0, k < k0, and ε < ε0, it holds that
‖mn+1

hε ‖L∞(Ω) ≤ C∞ uniformly for all 0 ≤ n ≤ i. The thresholds h0, k0, ε0 depend only on
the mesh parameter κ and the problem data, while the bound C∞ > 0 depends only on κ,
εh−3/2 . 1, and the final time T > 0, but not on the integer i < J .
(ii) If ε = o(h3/2), then there holds ‖Ih(|mhεk|2)− 1‖L∞([0,ti+1]×Ω) → 0 as h, k, ε→ 0.

Assuming well-posedness of Algorithm 3.3.8, in the following theorem we establish the
stability and convergence of the approximations obtained with Algorithm 3.3.8. The proof
is postponed to Section 3.7.1.

Theorem 3.3.10. Let T > 0 and suppose that {Th}h>0 is a κ-quasi-uniform family of
triangulations. Suppose h, k, ε > 0, m0

h ∈ Mh and let J ∈ N be the smallest integer
such that T ≤ kJ . Let 0 ≤ i < J and suppose that the Newton iteration (3.30)–(3.31) in
Algorithm 3.3.8 terminates for all 0 ≤ n ≤ i, i.e., the sequences {mn

hε}
i+1
n=0, {rnhε}in=0 ⊂ Vh

are the output of Algorithm 3.3.8 and satisfy (3.32) with ‖rnhε‖h ≤ ε for all 0 ≤ n ≤ i.
(i) Under these assumptions, the scheme satisfies the discrete energy identity

E(mi+1
hε ) + αk

i∑
n=0

‖dtmn+1
hε ‖

2
h = E(m0

h) (3.33)

− k
i∑

n=0

〈rnhε +m
n+1/2
hε × Ph(π(m

n+1/2
hε )−Πh(mn

hε,m
n−1
hε )),Phheff(m

n+1/2
hε )− αdtmn+1

hε 〉h.

(ii) If k = o(h2), ε = O(h3/2) and {m0
h}h>0 is bounded in H1(Ω) as k, h, ε→ 0, there exist

thresholds h0 > 0, k0 > 0, and 0 < ε0 ≤ α such that, for all h < h0, k < k0, ε < ε0 we have
the stability estimate

‖mi+1
hε ‖

2
H1(Ω) + k

i∑
n=0

‖dtmn+1
hε ‖

2
L2(Ω) ≤ C. (3.34)

The constant C > 0 and the thresholds h0, k0, ε0 depend only on the mesh parameter κ, the
final time T , and the problem data.
(iii) Additionally to the assumptions of part (ii), suppose that m0

h → m0 in H1(Ω) as
h → 0, and that πh is consistent (3.21) with π. Then, there exist m ∈ H1(ΩT ) ∩
L∞(0, T ;H1(Ω;S2)) and a subsequence of {mhεk} (not relabeled) which converges towards
m as h, k, ε → 0. Specifically, mhεk

?
⇀ m in L∞(0, T ;H1(Ω;S2)) and mhεk ⇀ m in

H1(ΩT ) as h, k, ε → 0. The limit function m satisfies the conditions (i)–(iv) of Defini-
tion 3.2.1.

The following theorem guarantees that under appropriate CFL conditions Algorithm 3.3.8
is well-posed, which is required by Lemma 3.3.9 and Theorem 3.3.10.

Theorem 3.3.11. Let T > 0. Suppose h, k, ε > 0, m0
h ∈Mh and let J ∈ N be the smallest

integer such that T ≤ kJ .
(i) If k = o(h7/3) and ε = O(h3/2) as h, k, ε → 0, then there exist thresholds h0 > 0,
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k0 > 0, and ε0 > 0 such that, for all h < h0, k < k0, and ε < ε0, Algorithm 3.3.8 is well
defined, i.e., for all i = 0, . . . , J − 1 it provides after finitely many iterations of Newton’s
method (3.30)–(3.31) solutions mi+1

hε , r
i
hε ∈ Vh to (3.32) with ‖rihε‖h ≤ ε.

(ii) In particular, there exists a constant C? > 0 such that the number of Newton iter-
ations (3.30)–(3.31) required to solve (3.32) is bounded by log2 log2(C?kh

−7/2ε−1). The
thresholds h0, k0, ε0 and the constant C? depend only on the mesh parameter κ and the
problem data.

3.3.3.3 Coupling conditions on practical midpoint schemes

While the ideal midpoint scheme (Algorithm 3.3.1) is unconditionally convergent towards a
weak solution of LLG, the analysis of the practical midpoint schemes (Algorithm 3.3.6 and
Algorithm 3.3.8) crucially relies on CFL conditions imposed on the discretization parameters
h, k, ε > 0. We conclude this section by Table 3.1, giving an overview on the imposed cou-
pling conditions sufficient to establish a rigorous analysis of the practical midpoint schemes.

Fixed-point linearization Newton linearization
Algorithm 3.3.6 Algorithm 3.3.8

well-posedness k = o(h2) k = o(h7/3), ε = O(h3/2)
L∞(Ω)-bound none ε = O(h3/2)

stability ε = O(h) ε = O(h3/2)
convergence ε = O(h) ε = O(h3/2)

total k = o(h2), ε = O(h) k = o(h7/3), ε = O(h3/2)

Table 3.1: Sufficient CFL conditions for the analysis of the practical midpoint schemes of
Section 3.3.3.

3.4 Numerical experiments

The goal of this section is threefold: First, in Section 3.4.1 we verify the extension of the
midpoint scheme to the DMI contribution and its correct implementation by simulating
an experiment on skyrmion dynamics from [SCR+13]. The simulation results with the
midpoint scheme are compared to theirs and to simulations with the tangent plane scheme
from [HPP+19]. In Section 3.4.2, we introduce a variation of the experiment from [SCR+13]
in order to compare reliability of the midpoint scheme to the generally cheaper tangent
plane schemes in simulating sensitive skyrmion dynamics susceptible to slight (artificial)
disturbances. By doing this, we emphasize the advantages of discrete energy conservation
realized by the midpoint scheme. Finally, in an academic setting the CFL conditions arising
from our analysis sufficient to prove well-posedness of the practical midpoint schemes are
experimentally verified in Section 3.4.3. In particular, the numerical CFL study hints that
the CFL condition k = o(h7/3) derived for the practical midpoint scheme based on the
Newton iteration is likely pessimistic and might be weakened to k = o(h2) with a sharper
analysis. Moreover, we compare the number of iterations in the nonlinear solvers of the
two practical midpoint schemes, as well as the impact of the solver accuracy ε > 0 on the
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deviation from discrete unit-length. All experiments in this section were performed with
Commics [Pfe, PRS+20].

3.4.1 Stability of isolated skyrmions in nanodisks

To validate the extension of the midpoint scheme incorporating the DMI contribution, we
reproduce a numerical experiment from [SCR+13] for both the practical midpoint scheme
based on the constraint preserving fixed-point iteration (Algorithm 3.3.6) and the practical
midpoint scheme based on Newton’s method (Algorithm 3.3.8). There, the relaxed states
of a thin nanodisk of diameter 80 nm (aligned with x1x2-plane) and thickness 0.4 nm (x3-
direction) centered at (0, 0, 0) for different values of the DMI constant are investigated. The
effective field consists of exchange interaction, perpendicular uniaxial anisotropy, interfacial
DMI, and stray field, i.e.,

Heff(m) =
2A

µ0Ms
∆m+

2K

µ0Ms
(a ·m)a− 2D

µ0Ms

 −∂1m3

−∂2m3

∂1m1 + ∂2m2

+Hs(m) .

The involved material parameters mimic those of cobalt: Ms = 5.8 · 105 A/m, α = 0.3,
A = 1.5 · 10−11 J/m, K = 8 · 105 J/m3, and a = (0, 0, 1). For the DMI constant, the range
D = 0, 1, . . . , 8 mJ/m2 is considered. The initial condition is a skyrmion-like state, i.e.,
given r =

√
x2

1 + x2
2, we define m0(x) = (0, 0,−1) if r ∈ [0, 15] nm and m0(x) = (0, 0, 1) if

r ∈ (15, 40] nm. For all simulations we choose T = 1 ns, which experimentally turns out to
be a sufficiently large time to relax the system. The computational domain is discretized
by a regular partition generated by Netgen [ngs] consisting of 34 596 tetrahedra and 11 797
vertices, which corresponds to a prescribed mesh size of 1 nm. For the time discretization,
we consider a uniform partition of the time interval (0, T ) with a time-step size of 2.5 fs. We
note that the time-step size has to be chosen considerably smaller than, e.g., for (different
variants of) the tangent plane scheme; see our previous work [HPP+19, Section 4.3]. This is
due to the more restrictive CFL conditions required for convergence of the nonlinear solvers
in the practical midpoint schemes; see Theorem 3.3.7 and Theorem 3.3.11. The accuracy
for the nonlinear solver is chosen as ε = 10−8.
The stable state is a quasi-uniform ferromagnetic state for the values D = 0, 1, 2 mJ/m2,

a skyrmion for the values D = 3, . . . , 6 mJ/m2, and a multidomain state (target skyrmion)
for the values D = 7, 8 mJ/m2; see Figure 3.1. The skyrmion size, i.e., the diameter of
the circle {m3 = 0} in the x1x2-plane, increases from the minimum value of circa 14 nm for
D = 3 mJ/m2 to the maximum value of circa 48 nm for D = 6 mJ/m2.
In Figure 3.1, the relaxed states computed with the practical midpoint scheme for different

values of the DMI constant are given. The energy values and the magnetization profiles are
in perfect quantitative and qualitative agreement with those reported in [SCR+13, Figure 1]
and [HPP+19, Section 4.2]. This validates both the extension of the midpoint scheme to
DMI energy contributions and its implementation in Commics [Pfe, PRS+20].
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Figure 3.1: Experiment of Section 3.4.1. Left: Final energy for different values of the
DMI constant. Right: Magnetization component m3 ranging from −1 (blue)
to +1 (red) of the relaxed state for different values of the DMI constant (in
mJ/m2). The results computed with either of the practical midpoint schemes,
Algorithm 3.3.6 or Algorithm 3.3.8, coincide.

3.4.2 Reliable schemes for energy sensitive dynamics

We recall the discrete energy equality (3.17) achieved by the ideal midpoint scheme

E(mJ
h) + αk

J−1∑
i=0

‖dtmi
h‖2h = E(m0

h) .

Differently, for the first-order tangent plane scheme [Alo08] we recite from [HPP+19, Propo-
sition 2] the discrete energy inequality

E(mJ
h) + (α− Ck/h)k

J−1∑
i=0

‖vih‖2h + `2ex(θ − 1/2)k2
J−1∑
i=0

‖∇vih‖2L2(Ω) ≤ E(m0
h) , (3.35)

where vih denotes the discrete time derivative computed in the i-th time-step of the tangent
plane scheme to define the update mi+1

h (z) = (mi
h(z) + kvih(z))/|mi

h(z) + kvih(z)| ∈ S2

for all z ∈ Nh. We note that the generic constant C > 0 in (3.35) stems from an inverse
estimate used in the analysis of [HPP+19] to control the discrete energy in presence of
a DMI energy contribution. The third term on the left-hand side in (3.35) corresponds
to artificial damping introduced by implicit treatment in time of the Laplacian for 1/2 <
θ ≤ 1, while the inequality (instead of equality) is a result of the nodal projection in
each time-step. As a third integrator we consider the (almost) second-order tangent plane
scheme from [AKST14], which provides a discrete energy inequality, which, although not
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identical to (3.35), introduces similar artificial energy dissipation due to implicit treatment
of the Laplacian and the nodal projection update. For the second-order schemes, i.e., for
the midpoint scheme and the second-order tangent plane scheme, an IMEX treatment of
the lower-order terms is employed, which results in a perturbation of order O(k2) of the
respective discrete energy identity [DPP+20]. While the discrete energy identity for the
midpoint scheme mimics the continuous law

E(m(τ)) + α

∫ τ

0
‖∂tm(t)‖2L2(Ω)dt = E(m0) ,

due to the severe CFL condition k = o(h2) the practical midpoint schemes are very restric-
tive on the time-step size. In contrast, the tangent plane integrators allow for considerably
larger time-step sizes, but introduce artificial damping to the system. Hence, we expect
decreased reliability of the tangent plane integrators for accurately simulating processes,
which are particularly sensitive to slight inaccuracies in the discrete energy evolution.
To quantify the effects of this artificial damping introduced by the tangent plane inte-

grators, we extend the experiment of Section 3.4.1: Considering the different relaxed states
in Figure 3.1(right), one infers that between D = 2 mJ/m2 and D = 3 mJ/m2 there is a
(qualitative) discontinuity, corresponding to a jump in Figure 3.1(left) if the resolution on
the D-axis was increased. Analogously, this applies to the interval from D = 6 mJ/m2 to
D = 7 mJ/m2. The goal of this experiment is the determination of the points of transi-
tion D2−3

crit and D6−7
crit from the quasi-uniform relaxed state to the skyrmion state between

D = 2 mJ/m2 and D = 3 mJ/m2, as well as from the skyrmion state to the target skyrmion
state between D = 6 mJ/m2 and D = 7 mJ/m2, respectively. We will evaluate and compare
the reliability of the midpoint scheme (MPS), the first-, and the second-order tangent plane
scheme (TPS1 and TPS2) in determining D2−3

crit and D6−7
crit . For all three schemes, dynamics

are simulated with identical parameters:
We consider the fixed mesh from Section 3.4.1. Although this mesh does not satisfy

the so-called angle condition ensuring validity of (3.35), stability of the tangent plane in-
tegrators is still recovered for the smaller time-step sizes meeting k = o(h2) in this exper-
iment; see [HPP+19, (15) and Remark 3(iv)]. To narrow down the critical values D2−3

crit

and D6−7
crit , we simulate the relaxation dynamics for different values of the DMI constant D

corresponding to a resolution of 0.0025 mJ/m2 as seen in Figure 3.2. For each of the inte-
grators and all considered DMI constants D, we relax the initial state using time-step sizes
k = 1/100 ps, 1/200 ps, 1/400 ps, 1/800 ps, 1/1600 ps, where the two largest time-step sizes
are omitted for the midpoint scheme because experimentally they do not fulfill the CFL con-
straint k = o(h2), i.e., neither of the nonlinear solvers converges for k = 1/100 ps, 1/200 ps.
We expect the simulations to be more and more accurate as the time-step size k > 0
decreases. The accuracy for the nonlinear solver is chosen as ε = 10−8.
The results of this experiment displayed in Figure 3.2 show a sharp transition D2−3

crit be-
tween the uniform state and the skyrmion state. There is no sharp transition from the
skyrmion state to the target skyrmion state, as the experiment reveals a small interval of
DMI parameters D for which relaxation leads to states we call broken (symmetry) states
— neither a skyrmion nor a target skyrmion; see Figure 3.3 for a compilation of simula-
tion details on this interval of broken states. While for the tangent plane integrators the
determined transition value D2−3

crit and the transition interval of broken states clearly show
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a dependence on the used time discretization k > 0, the results for the midpoint scheme
are robust and, in particular, are identical for all investigated time-step sizes. We draw
the conclusion that the varying transition thresholds obtained for decreasing time-step size
k > 0 by simulations with either of the tangent plane integrators are a consequence of the
artificial energy dissipation quantified in (3.35).
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MPS uniform MPS skyrmion MPS broken MPS target

Figure 3.2: Experiment of Section 3.4.2. Each marker corresponds to one simulation carried
out with one of the three integrators, for a DMI parameterD with one particular
time-step size k. The shape of a marker characterizes the qualitative result after
relaxing the skyrmion-like initial state until the equilibrium state is reached, i.e.,
whether a quasi-uniform, a skyrmion-like, a broken unsymmetrical, or a target
skyrmion state is obtained. The results computed with either of the practical
midpoint schemes, Algorithm 3.3.6 or Algorithm 3.3.8, coincide.

We conclude that the tangent plane schemes are preferable for uncritical simulations as
in Section 3.4.1 or [HPP+19, Section 4.2], where small deteriorations of the energy are
acceptable, as they lead to already accurate results for much coarser time discretizations.
However, when it comes to the simulation of dynamics, which are very sensitive to small
inaccuracies and crucially depend on an accurate energy evolution, the midpoint scheme
yields the most reliable results.

3.4.3 Numerical study on the CFL conditions

Our results from Section 3.3.3.1 and Section 3.3.3.2, respectively, provide sufficient CFL
conditions guaranteeing well-posedness and stability of the practical midpoint schemes in
Theorem 3.3.7(i) and Theorem 3.3.11. In this section we investigate whether the CFL
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Figure 3.3: Experiment of Section 3.4.2. Details on the simulations for critical transition
values between D = 6 mJ/m2 and D = 7 mJ/m2 with the second-order tan-
gent plane scheme and time-step size k = 1/100 ps. Left: Critical area of
Figure 3.1(left) recomputed with higher resolution reveals the predicted jump.
Right: Evolution of the total energy for different DMI constants D emphasiz-
ing the transition dynamics. Bottom: Relaxed states colored by m3 ranging
from −1 (blue) to +1 (red). We observed that any relaxed state with broken
symmetry obtained in the experiment of this section (marked with a cross ×
in Figure 3.2), qualitatively coincides with one of the three broken-symmetry
states obtained by TPS2 and k = 1/100 ps displayed here.

conditions arising from theory are also necessary in practice, or if they are technical artifacts
possibly caused by unsharp estimates.
We consider the unit cube Ω ⊂ R3 centered at the origin. Steered by the exchange-

only effective field heff(m) = `2ex∆m, the so-called initial hedgehog state m0 ∈ H1(Ω; S2)
with m0(x) := x/|x| ∈ S2 is relaxed towards equilibrium. The exchange length `ex >
0 and the Gilbert damping parameter α > 0 are fixed at 1. The other discretization
parameters — namely the mesh-size h > 0, the time-step size k > 0, and the nonlinear
solver accuracy ε > 0 — are subject to the numerical studies and are specified separately
for each experiment. Linear systems are solved with GMRES and accuracy 10−14. For given
N ∈ N, the geometry is discretized by a structured mesh consisting of (N + 1)3 vertices
and 6N3 elements as described in [PRS+20, Section 5.2], leading to a uniform mesh Th
of congruent tetrahedra, each of diameter hmax =

√
3/N and with shortest edge length

hmin = 1/N . To break symmetry, the discontinuity of the hedgehog state at the origin is
discretized via m0

h(0) := e3 ∈ S2, while m0
h(z) := z/|z| ∈ S2 for all other 0 6= z ∈ Nh.
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3.4.3.1 Feasible discretization parameters for nonlinear solvers

In the next section we carry out a numerical study on the CFL coupling of the time-
step size to the mesh size arising from our analysis. Since the constants hidden in CFL
conditions are usually not readily available, we need to propose an appropriate criterion for
the classification of given discretization parameters as feasible or non-feasible. Hence, the
goal is to derive such a criterion from the numerical experiment in this section.
For fixed mesh size hmin = 1/8, nonlinear solver tolerance ε = 10−8, and starting from

a rather fine time discretization k = 0.00016, we iteratively increase the time-step size
by 25% multiple times and track the number of nonlinear iterations required to meet the
stopping criterion (3.25) or (3.31), respectively, in the first time-step of Algorithm 3.3.6 or
Algorithm 3.3.8. The results depicted in Figure 3.4 show that for both practical midpoint

cq0 cq2 cq4 cq6 cq8 cq10 cq12 cq14

0

50

100

150

200

time-step size k

it
er
at
io
ns

fixed-point solver
Newton solver

cq13 cq13.5 cq14

0

500

1,000

1,500

time-step size k

fixed-point solver
Newton solver

Figure 3.4: Experiment of Section 3.4.3.1. Left: The number of nonlinear iterations rapidly
grows as the time-step size k = cqj > 0 with c = 0.00016 and q = 5/4 approaches
the threshold value k → kthresh(h). Right: Zoom into the critical area between
cq13 and cq14 where the blow-up occurs.

schemes the number of nonlinear iterations stays well-bounded until a certain threshold
value kthresh(h) > 0 is approached. Close to the threshold value, however, an increase of the
time-step size by 25% impacts the number of nonlinear iterations by numbers of magnitude,
if the solver converges at all. Hence, it is reasonable to classify time-step sizes k > 0 with
k < kthresh(h) as feasible, and those with k > kthresh(h) as non-feasible. Surprisingly,
despite the different theoretical CFL conditions k = o(h2) and k = o(h7/3) imposed in
Proposition 3.3.5 and Theorem 3.3.11, respectively, the threshold value kthresh(h) seems to
coincide for Algorithm 3.3.6 and Algorithm 3.3.8. This observation is investigated further
in Section 3.4.3.2. Finally, we note that in view of the quadratic convergence of Newton’s
method, it is not surprising that the Newton solver clearly outperforms the fixed point
iteration in terms of nonlinear iteration numbers.
Motivated by the results of this experiment, in Section 3.4.3.2 we will use the following

criterion to classify feasibility of discretization parameters: If for any given (h, k, ε) the
respective stopping criterion (3.25) or (3.31), is not met after at most 100 iterations of the
nonlinear solver in Algorithm 3.3.6 or Algorithm 3.3.8, we consider the practical midpoint
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scheme as non-feasible for this combination of discretization parameters h, k, ε > 0. Given
h > 0 this classification of feasibility is an estimate for the threshold value kthresh(h) > 0 such
that the nonlinear solver converges for 0 < k < kthresh(h) and diverges for k > kthresh(h).
Although only an approximation, Figure 3.4 shows that in view of practical applicability
this estimation of kthresh(h) seems quite appropriate as nonlinear iteration numbers increase
drastically as k approaches kthresh(h).

3.4.3.2 Coupling of time-step size to mesh size

We consider the CFL conditions k = o(h2) and k = o(h7/3) from Theorem 3.3.7(i) and
Theorem 3.3.11, respectively, sufficient to guarantee convergence of the fixed point iteration
and the Newton solver. For different mesh sizes hmin ∈ {2−j : j = 1, . . . , 5}, time-step sizes
k ∈ {0.00016 ·

(
5
4

)j
: j = 0, . . . , 27}, and nonlinear solver accuracy ε > 0 fixed at 10−8,

we investigate convergence of the nonlinear solver for one time-step of relaxing the initial
hedgehog state. As argued in Section 3.4.3.1, the threshold value of 100 nonlinear iterations
is used to classify feasibility of the discretization parameters.
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Figure 3.5: Experiment of Section 3.4.3.2. Convergence of the nonlinear solvers in the prac-
tical midpoint schemes is investigated. For feasible parameters, the number of
nonlinear iterations is given inside the circle. Left: Practical midpoint scheme
based on the fixed-point iteration (Algorithm 3.3.6). Right: Practical mid-
point scheme based on the Newton iteration (Algorithm 3.3.8). The data points
show feasibility if k = Θ(hβ) with possible slopes 1.93 ≤ βfixed-point ≤ 2.09 and
1.85 ≤ βnewton ≤ 2.01.
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The results of this experiment shown in Figure 3.5 give insight to the applicability of
the practical midpoint schemes: First, for Algorithm 3.3.6 the theoretically sufficient CFL
condition k = o(h2) is shown to be sharp in practice. Further, since the experiment reveals
the same CFL condition k = o(h2) to be sufficient for convergence of the Newton solver, we
expect that the well-posedness analysis of the Newton iteration can be improved weakening
the CFL condition in Theorem 3.3.11 from k = o(h7/3) to k = o(h2). We note that also
in the simulation of skyrmion dynamics in Section 3.4.2 both practical midpoint schemes
were equivalently restrictive on the time discretization. Lastly, this experiment shows that,
in terms of iteration numbers, the Newton solver outperforms the fixed-point solver as
expected from theory (quadratic vs. linear convergence).

3.4.3.3 Constraint violation induced by nonlinear solver accuracy

In contrast to the fixed-point iteration from Section 3.3.3.1, the Newton iteration from
Section 3.3.3.2 does not inherently preserve discrete unit-length, i.e., mi

hε 6∈ Mh for the
Newton linearization. To quantify the impact of the Newton solver on the discrete magne-
tization length, the initial hedgehog state is relaxed to equilibrium (T = 5) using different
nonlinear solver accuracies ε ∈ {10−j/2 : j = 0, . . . , 24}. We simulate the dynamics for
hmin = 1/4 and hmin = 1/8 with time-step sizes chosen roughly half the value of kthresh(h)
from Section 3.4.3.1. In Figure 3.6 we plot the deviations

max
z∈Nh

|mhεk(T, z)| − 1 and 1− min
z∈Nh

|mhεk(T, z)| (3.36)

over the nonlinear solver accuracy ε > 0. In this experiment for the practical midpoint
scheme based on the Newton iteration deviation from unit-length decreases with rate be-
tween Θ(ε9/10) and Θ(ε8/10) as ε → 0. In contrast to that, for the practical midpoint
scheme based on the fixed-point iteration the deviation from unit-length is unaffected by
the choice of ε > 0 as expected from theory.
As in this experiment both practical midpoint schemes were stable (i.e., non energy-

increasing) even for nonlinear solver accuracies as large as ε = 1, an experimental setup for
the investigation of the coupling to the mesh size ε = O(h) and ε = O(h3/2) from Theo-
rem 3.3.7(i) and Theorem 3.3.11, respectively, is yet to be proposed in a future numerical
study.

3.5 Proof of Theorem 3.3.2 for the ideal midpoint scheme

3.5.1 Existence of solutions, unit-length constraint, and stability

Proof of Theorem 3.3.2(i). Let i ∈ N0 be arbitrary. Define F : Vh → Vh by

F (φh) := φh −mi
h +

k

2
Ih
[
φh × Phheff(φh) + αφh ×mi

h

]
for all φh ∈ Vh.

If ηh ∈ Vh satisfies F (ηh) = 0, then mi+1
h := 2ηh −mi

h satisfies (3.16). Since

〈F (φh),φh〉h = 〈φh −mi
h,φh〉h ≥ 0 for all φh ∈ Vh with ‖φh‖h = ‖mi

h‖h > 0,
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Figure 3.6: Experiment of Section 3.4.3.3. Dependence of the constraint violation (3.36)
on the nonlinear solver accuracy ε > 0 is investigated. For the Newton solver
the deviation from unit-length decreases as ε → 0. No obvious correlation is
observed for the fixed-point iteration, which is expected, since it is designed to
be constraint preserving; see Proposition 3.3.5(iii).

an application of the Brouwer fixed-point theorem (see, e.g., [GR86, Chapter IV, Corol-
lary 1.1]) ensures the existence of ηh ∈ Vh such that ‖ηh‖h ≤ ‖mi

h‖h and F (ηh) = 0. This
proves that (3.16) admits a solution mi+1

h ∈ Vh.
Let z ∈ Nh be arbitrary. We test (3.16) with φh = m

i+1/2
h (z)ϕz ∈ Vh to obtain that

〈dtmi+1
h , ϕzm

i+1/2
h (z)〉h =

βz
2k

(
|mi+1

h (z)|2 − |mi
h(z)|2

)
= 0.

We conclude that |mi+1
h (z)| = |mi

h(z)|. Sincem0
h ∈Mh by assumption, we conclude that

mi+1
h ∈Mh.

Proof of Theorem 3.3.2(ii). Let J ∈ N. To show (3.17), we choose the test function φh =

αdtm
i+1
h − Phheff(m

i+1/2
h ) ∈ Vh in (3.16). We obtain the equality

〈Phheff(m
i+1/2
h ), dtm

i+1
h 〉h = α‖dtmi+1

h ‖
2
h.

For the left-hand side, it holds that

〈Phheff(m
i+1/2
h ), dtm

i+1
h 〉h

(3.13)
= 〈heff(m

i+1/2
h ), dtm

i+1
h 〉

(3.6)
= −a(m

i+1/2
h , dtm

i+1
h ) + 〈f , dtmi+1

h 〉Ω
(3.4)
= −1

k
(E(mi+1

h )− E(mi
h)).

(3.37)

We conclude that
E(mi+1

h )− E(mi
h) = −αk‖dtmi+1

h ‖
2
h.

Summation over i = 0, . . . , J − 1 yields (3.17).
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3.5.2 Weak convergence result

To start with, we note that the bilinear forms a(·, ·) and aloc(·, ·) are continuous, i.e., there
exists C1 > 0 such that

a(ψ,ϕ) ≤ (C1 + ‖π‖L(L2(Ω);L2(Ω)))‖ψ‖H1(Ω)‖ϕ‖H1(Ω) for all ψ,ϕ ∈H1(Ω), (3.38a)

aloc(ψ,ϕ) ≤ C1‖ψ‖H1(Ω)‖ϕ‖H1(Ω) for all ψ,ϕ ∈H1(Ω), (3.38b)

and satisfy the Gårding inequality, i.e., there exist C2 > 0 and C3 ∈ R such that

a(ψ,ψ) ≥ aloc(ψ,ψ) ≥ C2‖ψ‖2H1(Ω) − C3‖ψ‖2L2(Ω) for all ψ ∈H1(Ω). (3.38c)

The constants C1, C2, C3 in (3.38) depend on ‖An‖L∞(Ω) and ‖Jn‖L∞(Ω) (n = 1, 2, 3), and
A0. Finally, we consider, besides (3.15), the piecewise constant time reconstruction mhk

defined by mhk(t) := m
i+1/2
h for all i ∈ N0 and t ∈ [ti, ti+1).

With these ingredients, we prove the convergence result for Algorithm 3.3.1.

Proof of Theorem 3.3.2(iii). The proof follows the lines of [BP06, PRS18b], therefore we
only sketch it. Let J ∈ N. Since mJ

h ∈Mh, ‖mJ
h‖L2(Ω) ≤ |Ω|1/2. Hence, combining the

inequalities (3.38) and the norm equivalence (3.12) with (3.17), we obtain the estimate

‖mJ
h‖2H1(Ω) + k

J−1∑
i=0

‖dtmi
h‖2L2(Ω) ≤ C, (3.39)

where C > 0 depends only on the problem data. We infer the uniform boundedness of the
sequences of time reconstructions {mhk} and {mhk} in L∞(R>0;H1(Ω)). Let T > 0 be ar-
bitrary. From (3.39), it also follows the uniform boundedness of {mhk|ΩT

} (resp., {mhk|ΩT
})

in H1(ΩT ) and in L∞(0, T ;H1(Ω)) (resp., only in L∞(0, T ;H1(Ω))). With successive ex-
tractions of convergent subsequences (not relabeled), one can show that there exists a com-
mon limitm ∈ L∞(R>0;H1(Ω)) withm|ΩT

∈H1(ΩT ) for which we have the convergences
mhk,mhk

?
⇀ m in L∞(R>0;H1(Ω)), mhk|ΩT

,mhk|ΩT

?
⇀ m|ΩT

in L∞(0, T ;H1(Ω)), and
mhk|ΩT

⇀ m|ΩT
in H1(ΩT ), With the argument of [PRS18b, Sections 3.2–3.3], one also

gets that the limit functionm is S2-valued and satisfies the initial conditionm(0) = m0 in
the sense of traces.
To verify the variational formulation (3.9), let ϕ ∈ C∞(ΩT ). Let J ∈ N the smallest

integer such that T ≤ kJ . We define the semi-discrete function ϕh ∈ C∞([0, kJ ];Vh) by
ϕh(t) = Ih[ϕ(t)] for all t ∈ [0, kJ ]. For i = 0, . . . , J−1 and t ∈ (ti, ti+1), we test (3.16) with
φh = ϕh(t) ∈ Vh. Then, integrating in time over (ti, ti+1) and summing over i = 0, . . . , J−1,
we obtain that∫ kJ

0
〈∂tmhk(t),ϕh(t)〉hdt = −

∫ kJ

0
〈mhk(t)× Phheff(mhk(t)),ϕh(t)〉hdt

+ α

∫ kJ

0
〈mhk(t)× ∂tmhk(t),ϕh(t)〉hdt.

(3.40)
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The argument in [BP06, Section 3] shows that∫ kJ

0
〈∂tmhk(t),ϕh(t)〉hdt→

∫ T

0
〈∂tm(t),ϕ(t)〉Ωdt as h, k → 0 and∫ kJ

0
〈mhk(t)× ∂tmhk(t),ϕh(t)〉hdt→

∫ T

0
〈m(t)× ∂tm(t),ϕ(t)〉Ωdt as h, k → 0.

For the first term on the right-hand side of (3.40) simple algebraic manipulations together
with (3.13) show that∫ kJ

0
〈mhk(t)×Phheff(mhk(t)),ϕh(t)〉hdt =

∫ kJ

0
〈heff(mhk(t)), (Ih−1)[ϕh(t)×mhk(t)]〉dt

+

∫ kJ

0
〈heff(mhk(t)),ϕh(t)×mhk(t)〉dt. (3.41)

Since ∣∣∣∣∫ kJ

0
〈heff(mhk(t)), (Ih − 1)[ϕh(t)×mhk(t)]〉dt

∣∣∣∣
≤ C

∫ kJ

0
(‖mhk(t)‖H1(Ω) + ‖f‖L2(Ω))‖(Ih − 1)[ϕh(t)×mhk(t)]‖H1(Ω)dt

and ‖(Ih − 1)[ϕh ×mhk]‖L∞(0,T ;H1(Ω)) ≤ Ch (see [PRS18b, equations (39)–(40)]), the
first term on the right-hand side of (3.41) tends to 0 as h, k → 0. Moreover, owing to the
available convergence results and the convergence properties of a(·, ·) and π(·), it holds that∫ kJ

0
〈heff(mhk(t)),ϕh(t)×mhk(t)〉dt→

∫ T

0
〈heff(m(t)),ϕ(t)×m(t)〉dt as h, k → 0.

Hence, passing (3.40) to the limit as h, k → 0, we obtain (3.9) for any smooth test function
ϕ. By density, we obtain the desired result.
Finally, the energy inequality (3.10) is obtained by passing to the limit as h, k → 0

the discrete energy identity (3.17) and using standard lower semicontinuity arguments in
combination with the available convergence results.

3.6 Analysis of the practical midpoint scheme: constraint
preserving fixed-point iteration

To start with, we recall that for quasi-uniform families of triangulations we have the inverse
estimate

‖∇φh‖L2(Ω) ≤ Cinvh
−1‖φh‖L2(Ω) for all φh ∈ Vh, (3.42a)

from which it follows that

‖Phφ‖h ≤ (1 + C2
invh

−2)1/2‖φ‖H1(Ω)? for all φ ∈H1(Ω)?. (3.42b)
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Here, Cinv > 0 depends only on κ. Moreover, the following inequalities are direct conse-
quences of (3.38a)–(3.38b):

‖hloc
eff (ψ)− hloc

eff (ϕ)‖H1(Ω)? ≤ C1‖ψ −ϕ‖H1(Ω) for all ψ,ϕ ∈H1(Ω), (3.42c)

‖hloc
eff (ψ)‖H1(Ω)? ≤ C1‖ψ‖H1(Ω) + ‖f‖L2(Ω) for all ψ ∈H1(Ω), (3.42d)

‖hloc
eff (ψ)− f‖H1(Ω)? ≤ C1‖ψ‖H1(Ω) for all ψ ∈H1(Ω). (3.42e)

3.6.1 Well-posedness

We now prove Proposition 3.3.5, which establishes the properties of the constraint preserving
fixed-point iteration proposed in Section 3.3.3.1.

Proof of Proposition 3.3.5(i). Since the bilinear form on the left-hand side of (3.24) is el-
liptic with respect to the norm ‖·‖h, the variational problem admits a unique solution
ηi,`+1
h ∈ Vh for each ` ≥ 0.
Let ` ∈ N0 and let z ∈ Nh be an arbitrary node. Testing (3.24) with φh = ηi,`+1

h (z)ϕz ∈
Vh, we obtain that

βz|ηi,`+1
h (z)|2 = βzη

i,`+1
h (z) ·mi

hε(z).

Hence, |ηi,`+1
h (z)| ≤ |mi

hε(z)| = 1. We conclude that ‖ηi,`+1
h ‖L∞(Ω) ≤ 1.

Proof of Proposition 3.3.5(ii). Let ` ∈ N0. Subtracting the equations satisfied by two con-
secutive iterates ηi,`+1

h ,ηi,`+2
h ∈ Vh in (3.24), we obtain that

〈ηi,`+2
h − ηi,`+1

h ,φh〉h
(3.24)

= −k
2
〈ηi,`+2
h × Phhloc

eff (ηi,`+1
h ),φh〉h +

k

2
〈ηi,`+1
h × Phhloc

eff (ηi,`h ),φh〉h

− k

2
〈(ηi,`+2

h − ηi,`+1
h )× PhΠh(mi

hε,m
i−1
hε ),φh〉h − α〈(ηi,`+2

h − ηi,`+1
h )×mi

hε,φh〉h.

Choosing φh = ηi,`+2
h − ηi,`+1

h ∈ Vh, we obtain that

‖ηi,`+2
h − ηi,`+1

h ‖2h

= −k
2
〈ηi,`+2
h × Phhloc

eff (ηi,`+1
h ),ηi,`+2

h − ηi,`+1
h 〉h +

k

2
〈ηi,`+1
h × Phhloc

eff (ηi,`h ),ηi,`+2
h − ηi,`+1

h 〉h

= −k
2
〈ηi,`+1
h × Ph(hloc

eff (ηi,`+1
h )− hloc

eff (ηi,`h )),ηi,`+2
h − ηi,`+1

h 〉h,

where the second equality can be seen by adding and subtracting the quantity

k

2
〈ηi,`+1
h × Phhloc

eff (ηi,`+1
h ),ηi,`+2

h − ηi,`+1
h 〉h.
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It follows that

‖ηi,`+2
h − ηi,`+1

h ‖2h

= −k
2
〈ηi,`+1
h × Ph(hloc

eff (ηi,`+1
h )− hloc

eff (ηi,`h )),ηi,`+2
h − ηi,`+1

h 〉h

≤ k

2
‖ηi,`+1

h ‖L∞(Ω)‖Ph(hloc
eff (ηi,`+1

h )− hloc
eff (ηi,`h ))‖h‖ηi,`+2

h − ηi,`+1
h ‖h

≤ k(1 + C2
invh

−2)1/2

2
‖hloc

eff (ηi,`+1
h )− hloc

eff (ηi,`h )‖H1(Ω)?‖η
i,`+2
h − ηi,`+1

h ‖h

where the last inequality follows from ‖ηi,`+1
h ‖L∞(Ω) ≤ 1 and (3.42b). Moreover, it holds

that

‖ηi,`+2
h − ηi,`+1

h ‖h ≤ k(1 + C2
invh

−2)1/2

2
‖hloc

eff (ηi,`+1
h )− hloc

eff (ηi,`h )‖H1(Ω)?

(3.42c)
≤ C1k(1 + C2

invh
−2)1/2

2
‖ηi,`+1

h − ηi,`h ‖H1(Ω)

(3.42a)
≤ C1k(1 + C2

invh
−2)

2
‖ηi,`+1

h − ηi,`h ‖h.

Since k = o(h2) as h, k → 0, there exist h0, k0 > 0 and a constant 0 < q < 1 for which (3.26)
holds for all h < h0 and k < k0.

Proof of Proposition 3.3.5(iii). Let ` ∈ N0. Using (3.42b), (3.42c), and (3.12) as well as the
fact that ‖ηi,`+1

h ‖L∞(Ω) ≤ 1, we obtain that

‖Ih[ηi,`+1
h × Ph(hloc

eff (ηi,`+1
h )− hloc

eff (ηi,`h ))]‖h ≤ ‖Ph(hloc
eff (ηi,`+1

h )− hloc
eff (ηi,`h ))‖h

≤ C1(1 + C2
invh

−2)‖ηi,`+1
h − ηi,`h ‖h

(3.26)
≤ C1(1 + C2

invh
−2)q`‖ηi,1h − η

i,0
h ‖h

≤ 2C1|Ω|1/2(1 + C2
invh

−2)q`.

Hence, ‖Ph(hloc
eff (ηi,`+1

h )− hloc
eff (ηi,`h ))‖h ≤ ε for all ` ∈ N0 satisfying

` ≥ log(2C1|Ω|1/2(1 + C2
invh

−2)/ε)

log(1/q)
.

Since mi+1
hε := 2ηi,`

∗+1
h −mi

hε, there holds mi+1/2
hε = ηi,`

∗+1
h . From (3.24) it follows that

mi+1
hε solves

〈dtmi+1
hε ,φh〉h = −〈mi+1/2

hε × Ph(hloc
eff (ηi,`

∗

h ) + Πh(mi
hε,m

i−1
hε )),φh〉h

+ α〈mi+1/2
hε × dtmi+1

hε ,φh〉h

for all φh ∈ Vh. Testing with φh = m
i+1/2
hε (z)ϕz ∈ Vh then reveals that mi+1

hε ∈Mh (see
the proof of Theorem 3.3.2(i)).
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3.6.2 Stability and weak convergence

Next, we provide the proof of Theorem 3.3.7, which establishes the stability and convergence
of Algorithm 3.3.6.

Proof of Theorem 3.3.7. Part (i) is a direct consequence of Proposition 3.3.5. The proof of
part (ii) follows the lines of the one of Theorem 3.3.2(ii).
Let us now consider the proof of part (iii). Testing (3.27) with φh = αdtm

i+1
hε −

Phheff(m
i+1/2
hε ) + Ph[π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )] yields

α‖dtmi+1
hε ‖

2
h − 〈dtmi+1

hε ,Phheff(m
i+1/2
hε )〉h + 〈dtmi+1

hε ,Ph[π(m
i+1/2
hε )−Πh(mi

hε,m
i−1
hε )]〉h

= 〈mi+1/2
hε × rihε, αdtmi+1

hε − Phheff(m
i+1/2
hε ) + Ph[π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )]〉h.

Using (3.37) and rearranging the terms, we obtain that

E(mi+1
hε ) + αk‖dtmi+1

hε ‖
2
h = E(mi

hε)− k〈dtmi+1
hε ,Ph[π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )]〉h

+ k〈mi+1/2
hε × rihε, αdtmi+1

hε − Phheff(m
i+1/2
hε ) + Ph[π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )]〉h.

Let 1 ≤ j ≤ J . Summation over i = 0, . . . , j − 1 leads to

E(mj
hε) + αk

j−1∑
i=0

‖dtmi+1
hε ‖

2
h = E(m0

h)− k
j−1∑
i=0

〈dtmi+1
hε ,Ph[π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )]〉h

+ k

j−1∑
i=0

〈mi+1/2
hε × rihε, αdtmi+1

hε − Phheff(m
i+1/2
hε ) + Ph[π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )]〉h.

Applying the Gårding inequality (3.38c) and continuity (3.38a) and using the fact that
‖mj

hε‖L∞(Ω) = ‖m0
h‖L∞(Ω) = 1, we obtain that

C2‖mj
hε‖

2
H1(Ω) + 2αk

j−1∑
i=0

‖dtmi+1
hε ‖

2
h

≤ (C1 + ‖π‖L(L2(Ω),L2(Ω)))‖m0
h‖2H1(Ω) + 2‖f‖L2(Ω)

(
‖mj

hε‖L2(Ω) + ‖m0
h‖L2(Ω)

)
+ C3‖mj

hε‖
2
L2(Ω) − 2k

j−1∑
i=0

〈dtmi+1
hε ,Ph[π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )]〉h

+ 2k

j−1∑
i=0

〈mi+1/2
hε × rihε, αdtmi+1

hε − Phheff(m
i+1/2
hε ) + Ph[π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )]〉h.

Using Young’s inequality, the first sum on the right-hand side can be estimated as

− 2k

j−1∑
i=0

〈dtmi+1
hε ,Ph[π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )]〉h

= −2k

j−1∑
i=0

〈dtmi+1
hε ,π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )〉

≤ αk
j−1∑
i=0

‖dtmi+1
hε ‖

2
L2(Ω) +

k

α

j−1∑
i=0

‖π(m
i+1/2
hε )−Πh(mi

hε,m
i−1
hε )‖2L2(Ω).
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Since mi
hε ∈Mh for all i = 0, . . . , j − 1 it holds that

‖π(m
i+1/2
hε )−Πh(mi

hε,m
i−1
hε )‖L2(Ω) ≤

(
‖π‖L(L2(Ω);L2(Ω)) + 2Cπ

)
|Ω|1/2 ,

and hence
k

α

j−1∑
i=0

‖π(m
i+1/2
hε )−Πh(mi

hε,m
i−1
hε )‖2L2(Ω) ≤

C|Ω|(T + k0)

α
,

where C > 0 depends only on π and Cπ. Hence, using the norm equivalence (3.12), we
obtain the estimate

− 2k

j−1∑
i=0

〈dtmi+1
hε ,Ph[π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )]〉h

≤ αk
j−1∑
i=0

‖dtmi+1
hε ‖

2
h +

C|Ω|(T + k0)

α
.

Using the estimates

‖Phheff(m
i+1/2
hε )‖h

(3.42b)
≤ (1 + C2

invh
−2)1/2‖heff(m

i+1/2
hε )‖H1(Ω)?

(3.42d)
≤

(
1 + C2

invh
−2)1/2(C1‖mi+1/2

hε ‖H1(Ω) + ‖f‖L2(Ω)

)
,

j−1∑
i=0

‖mi+1/2
hε ‖H1(Ω) ≤

1

2

j−1∑
i=0

(‖mi+1
hε ‖H1(Ω) + ‖mi

hε‖H1(Ω))

=
1

2
‖m0

h‖H1(Ω) +

j−1∑
i=1

‖mi
hε‖H1(Ω) +

1

2
‖mj

hε‖H1(Ω)

≤ j

2
+

1

2
‖mj

hε‖
2
H1(Ω) +

1

2

j−1∑
i=0

‖mi
hε‖2H1(Ω),

and
‖dtmi+1

hε ‖L2(Ω) ≤
1

4
+ ‖dtmi+1

hε ‖
2
L2(Ω),

together with the stopping criterion ‖Ih[m
i+1/2
hε × rihε]‖h ≤ ε of Algorithm 3.3.6, if h is

sufficiently small, we obtain that

2k

j−1∑
i=0

〈mi+1/2
hε × rihε, αdtmi+1

hε − Phheff(m
i+1/2
hε ) + Ph[π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε )]〉h

≤ C ′ε(1 + h−1) + 2kεα

j−1∑
i=0

‖dtmi+1
hε ‖

2
h

+ C1kε
(
1 + C2

invh
−2)1/2‖mj

hε‖
2
H1(Ω) + C1kε

(
1 + C2

invh
−2)1/2

j−1∑
i=0

‖mi
hε‖2H1(Ω),
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where the constant C ′ > 0 depends only on T , |Ω|, f , κ, π, and Cπ. Altogether, exploiting
the assumption ε = O(h) as h, ε→ 0, there exist thresholds 0 < h∗0 ≤ h0, 0 < k∗0 ≤ k0, and
ε∗0 > 0 as well as constants A,B > 0 (depending only on κ, T , and the problem data) such
that

‖mj
hε‖

2
H1(Ω) + k

j−1∑
i=0

‖dtmi
hε‖2h ≤ A+Bk

j−1∑
i=0

‖mi
hε‖2H1(Ω)

for all h < h∗0, k < k∗0, and ε < ε∗0. Then, the discrete Gronwall lemma (see, e.g., [Tho06,
Lemma 10.5]) and the norm equivalence (3.12) yield (3.29). This concludes the proof of
part (iii).
The proof of part (iv) follows the lines of [BP06, Bar06, Cim09, PRS18b]; see also the

proof of Theorem 3.3.2(iii). In particular, (3.9) and (3.10) are obtained by passing to
the limit as h, k, ε → 0 the discrete identities (3.27) and (3.28), respectively, where the
additional contributions arising from the linearization of the nonlinear system (resp., from
the explicit treatment of π), which do not appear in the proof of Theorem 3.3.2(iii), vanish
in the limit, because they are bounded by ε (resp., because πh is assumed to be consistent
with π).

3.7 Analysis of the practical midpoint scheme: Newton
iteration

3.7.1 Stability of Algorithm 3.3.8

Lemma 3.3.9 and Theorem 3.3.10 assume well-posedness of Algorithm 3.3.8 up to time-step
i < J , i.e., that for all n = 0, . . . , i the Newton solver (3.30) returns after finitely many
iterations the solutions mn+1

hε , rnhε ∈ Vh such that (3.32) holds with ‖rnhε‖h ≤ ε. Later,
in Sections 3.7.4.1–3.7.4.4 Theorem 3.3.11 is proved, guaranteeing that, given appropriate
CFL-conditions, this well-posedness assumption is always satisfied.

3.7.1.1 Boundedness of magnetization length, Lemma 3.3.9(i)–(ii)

For 0 ≤ n ≤ i and z ∈ Nh, testing (3.32) with φh = m
n+1/2
hε (z)ϕz ∈ Vh yields

1

2k
βz
(
|mn+1

hε (z)|2 − |mn
hε(z)|2

)
= 〈rnhε,m

n+1/2
hε (z)ϕz〉h ≤ ‖rnhε‖h‖m

n+1/2
hε (z)ϕz‖h

≤ εβ1/2
z |mn+1/2

hε (z)|

≤ εβ1/2
z

(
1

2
|mn

hε(z)|2 +
1

2
|mn+1

hε (z)|2 +
1

4

)
.

Rearranging the terms and using εβ
−1/2
z ≤ C1εh

−3/2 =: Chε uniformly for all z ∈ Nh,
shows that for k < 1/(2Chε) it holds that

|mn+1
hε (z)|2 ≤ 1 + Chεk

1− Chεk
|mn

hε(z)|2 + Chεk

=

(
1 +

2Chεk

1− Chεk

)
|mn

hε(z)|2 + Chεk ≤ (1 + 4Chεk)|mn
hε(z)|2 +

Chεk

2
.
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Using n ≤ i < J = T/k implies

|mn+1
hε (z)|2 ≤ (1 + 4Chεk)n+1|m0

h(z)|2 + Chεk

n∑
p=0

(1 + 4Chεk)p

≤ exp(4ChεT )
(
|m0

h(z)|2 + ChεT
)
.

Using m0
h ∈Mh and uniform boundedness of Chε due to ε = O(h3/2) concludes the proof

of (i). Analogously to the estimate above on |mn+1
hε (z)|2, starting from

1

2k
βz
(
|mn+1

hε (z)|2 − |mn
hε(z)|2

)
= 〈rnhε,m

n+1/2
hε (z)ϕz〉h ≥ −‖rnhε‖h‖m

n+1/2
hε (z)ϕz‖h ,

by a similar computation one derives an estimate below via

|mn+1
hε (z)|2 ≥ (1− 4Chεk)n+1|m0

h(z)|2 − Chεk
n∑
p=0

(1− 4Chεk)p

≥ exp(−8ChεT )|m0
h(z)|2 − exp(−4ChεT )ChεT for all 0 < k < k0,

where k0 can be uniformly chosen since ε = O(h3/2). If ε = o(h3/2), then in both estimates
Chε tends to zero as h, ε→ 0. Hence, also statement (ii) holds true.

3.7.1.2 Stability and weak convergence, Theorem 3.3.10(i)–(iii)

For 0 ≤ i < J testing (3.32) with φh = αdtm
i+1
hε − Phheff(m

i+1/2
hε ) + Ph(π(m

i+1/2
hε ) −

Πh(mi
hε,m

i−1
hε )) yields

α‖dtmi+1
hε ‖

2
h − 〈dtmi+1

hε ,Phheff(m
i+1/2
hε )〉h + 〈dtmi+1

hε ,Ph(π(m
i+1/2
hε )−Πh(mi

hε,m
i−1
hε ))〉h

= 〈rihε, αdtmi+1
hε − Phheff(m

i+1/2
hε ) + Ph(π(m

i+1/2
hε )−Πh(mi

hε,m
i−1
hε ))〉h.

Up to replacing rihε bym
i+1/2
hε ×rihε, this identity resembles the first identity in Section 3.6.2,

where Theorem 3.3.7(ii)–(iv) is proved. Hence, using L∞(Ω)-boundedness of the iterates
from Lemma 3.3.9(i) and that the stopping criterion (3.31) guarantees ‖rihε‖h ≤ ε, the proof
of Theorem 3.3.10(i)–(iii) directly follows the lines of Section 3.6.2.

3.7.2 Main theorem on Newton’s method

Newton’s method is an iterative scheme to generate a converging sequence of approximate
solutions to the following problem: Given F : Rn → Rn,

find x∗ ∈ Rn, such that F (x∗) = 0. (3.43)

Here, F is considered to be C1-continuous on a convex open set D ⊆ Rn containing x∗ and
the Jacobian of F evaluated at x ∈ Rn is denoted by ∇F (x) ∈ Rn×n. Given a starting
value x0 ∈ Rn, Newton’s method applied to (3.43) iterates for all ` ∈ N0

solve ∇F (x`)δx` = −F (x`) ,

set x`+1 = x` + δx` .
(3.44)
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Given a vector norm ‖·‖ on Rn, by B(‖·‖;x, R) the open unit ball of radius R > 0 around
x ∈ Rn with respect to the norm ‖·‖ is denoted. In accordance with [QSS07, Definition 1.20]
a matrix norm ‖·‖Rn×n and a vector norm ‖·‖Rn are called consistent, if it holds that
‖Ax‖Rn ≤ ‖A‖Rn×n‖x‖Rn for all A ∈ Rn×n and all x ∈ Rn. Clearly, any vector norm is
consistent with the natural matrix norm induced by the vector norm defined as

‖A‖ = sup
x∈Rn\{0}

‖Ax‖
‖x‖

for all A ∈ Rn×n . (3.45)

Using the above notation, we recall the classical local convergence result for Newton’s
method.

Theorem 3.7.1 ([QSS07, Theorem 7.1]). For a convex open set D ⊆ Rn with x∗ ∈ D, let
F ∈ C1(D;Rn) with F (x∗) = 0. Suppose that (∇F (x∗))−1 ∈ Rn×n exists and that there
exist constants C,R,L > 0, such that

‖(∇F (x∗))−1‖ ≤ C , (3.46a)

and
‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖ for all x,y ∈ B(‖·‖;x∗, R), (3.46b)

where the symbol ‖·‖ denotes two consistent vector and matrix norms. Then, there holds
that for any x0 ∈ B(‖·‖;x∗,min{R, 1/(2CL)}), the sequence (x`)`∈N generated by Newton’s
method (3.44) is uniquely defined and converges to x∗ with

‖x`+1 − x∗‖ ≤ CL‖x` − x∗‖2 . (3.47)

Remark 3.7.2. In particular (3.47) and x0 ∈ B(‖·‖;x∗,min{R, 1/(2CL)}) imply

‖x` − x∗‖ ≤

`−1∏
j=0

(CL)2j

 ‖x0 − x∗‖2` = (CL)2`−1‖x0 − x∗‖2` ≤ 2‖x0 − x∗‖
22`

, (3.48)

for all ` ∈ N0. Hence, there holds ‖x` − x∗‖, ‖δx`‖ → 0 for `→∞.

3.7.3 Newton’s method applied to the nonlinear midpoint scheme

We aim to apply Newton’s method (3.44) to the nonlinear system of equations (3.23),
i.e., to the IMEX version of the ideal midpoint scheme where the lower order terms are
integrated explicitly in time π(m

i+1/2
h ) ≈ Πh(mi

h,m
i−1
h ). Consider a numbering of the

nodes {zj : j = 1, . . . , N} = Nh of the mesh Th, and associate with a given vector x ∈ (R3)N

the finite element function defined by x̂ :=
∑N

j=1 xjϕzj ∈ Vh. Further, for a finite element
function u =

∑N
j=1 u(zj)ϕzj ∈ Vh, we write [u] ∈ (R3)N ' R3N for the vector of nodal

values, i.e., [u]j := u(zj) ∈ R3.
The mass lumped scalar product 〈·, ·〉h gives rise to the matrix Mh ∈ (R3×3)N×N '

R3N×3N , defined via (Mh)jk := δj,kβzjI3×3 ∈ R3×3. Given mi
h ∈ Vh, the solution mi+1/2

h

of (3.23) satisfies F ([m
i+1/2
h ]) = 0, with

F (x) := Mh

(
x− [mi

h] +
[
Ih
(k

2
x̂× Ph

(
hloc

eff (x̂) + Πh(mi
h,m

i−1
h )

)
+ αx̂×mi

h

)])
. (3.49)
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The Jacobian ∇F : R3N → R3N×3N satisfies for all x,u,v ∈ R3N that

u>∇F (x)v = 〈û, v̂〉h +
k

2
〈û× Phhloc

eff (x̂), v̂〉h +
k

2
〈x̂× Ph

(
hloc

eff (û)− f
)
, v̂〉h

+
k

2
〈û× PhΠh(mi

h,m
i−1
h ), v̂〉h + α〈û×mi

h, v̂〉h .
(3.50)

Newton’s method (3.44) applied to the system (3.23) in the ith time-step now can be written
as: Givenmi

hε ∈ Vh and initial value ηi,0h ∈ Vh, for all ` ∈ N0 compute ui,`h ∈ Vh such that,
for all φh ∈ Vh, it holds that

〈ui,`h ,φh〉h +
k

2
〈ui,`h × Phhloc

eff (ηi,`h ),φh〉h +
k

2
〈ηi,`h × Ph

(
hloc

eff (ui,`h )− f
)
,φh〉h

+
k

2
〈ui,`h × PhΠh(mi

hε,m
i−1
hε ),φh〉h + α〈ui,`h ×m

i
hε,φh〉h

= 〈mi
hε − η

i,`
h ,φh〉h −

k

2
〈ηi,`h × Phhloc

eff (ηi,`h ),φh〉h (3.51a)

− k

2
〈ηi,`h × PhΠh(mi

hε,m
i−1
hε ),φh〉h − α〈ηi,`h ×m

i
hε,φh〉h ,

and define
ηi,`+1
h := ηi,`h + ui,`h . (3.51b)

In the remainder of this section, to improve readability we omit the h-subscript of the
iteration variables ηi,` and ui,`. Note that by (3.49)–(3.50) we see that (3.51a)–(3.51b)
resembles Newton’s method (3.44) with x` = [ηi,`] and δx` = [ui,`]. Given some tolerance
ε > 0, the iteration will be stopped once

‖Ih
(
ui,` × Ph

(
hloc

eff (ui,`)− f
))
‖h ≤ ε. (3.52)

If `∗ ∈ N0 is the first index for which the stopping criterion (3.52) is satisfied, the ap-
proximate magnetization at the new time-step is defined as mi+1

hε := 2ηi,`
∗+1 −mi

hε.
For all i ∈ N0, let rihε := Ih

(
ui,`

∗ × Ph
(
hloc

eff (ui,`
∗
) − f

))
∈ Vh, so that 〈rihε,φh〉h

equals the difference of (3.23) and (3.51a). In view of the stopping criterion (3.52), it
holds that ‖rihε‖h ≤ ε. With this definition, the proposed linearization of one iteration of
Algorithm 3.3.1 based on the Newton method is covered by Algorithm 3.3.8.

3.7.4 Well-posedness of Algorithm 3.3.8

We show Theorem 3.3.11(i) by induction: For 0 ≤ i < J assume that Algorithm 3.3.8 is
well-defined for all n = 0, . . . , i− 1. In particular, by Lemma 3.3.9 and Theorem 3.3.10 we
have the bounds

‖mi
hε‖L∞(Ω) ≤ C∞ and E(mi

hε) ≤ C . (3.53)

Now, the inductive step is to prove convergence of the Newton iteration (3.30)–(3.31)
for time-step n = i. We do this by verifying the assumptions (3.46a)–(3.46b) of Theo-
rem 3.7.1 for the Newton solver (3.51a) with the initial value chosen as ηi,0 := mi

hε. In
Section 3.7.4.1 we verify the Lipschitz continuity (3.46b). Invertibility (3.46a) is shown in
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Section 3.7.4.2. In Section 3.7.4.3 we prove that under the assumed CFL-conditions the
initial guess ηi,0 := mi

hε is an appropriate choice, which guarantees convergence of New-
ton’s method. Finally, in Section 3.7.4.4 we conclude by estimating the maximum number
of Newton iterations required to achieve the required tolerance (3.52), in particular showing
that the number is finite. Hence, Sections 3.7.4.1–3.7.4.4 prove Theorem 3.3.11.

Throughout the proof, we use the notation of Section 3.7.2–3.7.3 and consider the `2-norm
on (R3)N ' R3N defined by ‖x‖2 =

∑N
j=1 |xj |2, as well as the induced matrix norm on

(R3×3)N×N ' R3N×3N also denoted by ‖·‖2, cf. (3.45).

3.7.4.1 Lipschitz continuity of ∇F

By (3.45) it holds for arbitrary x,y ∈ R3N that

‖∇F (x)−∇F (y)‖2 = sup
u,v∈R3N\{0}

u>(∇F (x)−∇F (y))v

‖u‖2‖v‖2
.

With the representation (3.50) and the estimates (3.42) we see

u>(∇F (x)−∇F (y))v =
k

2
〈û× Ph

(
hloc

eff (x̂)− hloc
eff (ŷ)

)
, v̂〉h

+
k

2
〈(x̂− ŷ)× Ph

(
hloc

eff (û)− f
)
, v̂〉h

. k‖û‖L∞(Ω)‖Ph
(
hloc

eff (x̂)− hloc
eff (ŷ)

)
‖h‖v̂‖h

+ k‖x̂− ŷ‖L∞(Ω)‖Ph
(
hloc

eff (û)− f
)
‖h‖v̂‖h

. kh−2(‖u‖2‖x̂− ŷ‖L2(Ω) + ‖x− y‖2‖û‖L2(Ω))‖v̂‖h ,

With the norm equivalence h3/2‖·‖2 ' ‖ ·̂ ‖h ' ‖ ·̂ ‖L2(Ω) on R3N , we get uniformly for all
x,y ∈ R3N that

‖∇F (x)−∇F (y)‖2 . kh‖x− y‖2 .

In particular, (3.46b) holds for ‖·‖2 with R = +∞ and L ' kh.

3.7.4.2 Invertibility of ∇F (x∗)

The unknown x∗ ∈ R3N is defined by F (x∗) = 0. Hence,

0 = [x̂∗(zj)ϕzj ]
>F (x∗)

(3.49)
= βzj

(
|x∗j |2 − x∗j ·mi

hε(zj)
)

for all j = 1, . . . , N

together with (3.53) guarantees boundedness

‖x̂∗‖L∞(Ω) ≤ ‖mi
hε‖L∞(Ω) ≤ C∞ . (3.54)

Now the assumption k = o(h2) guarantees invertibility of ∇F (x∗) by ellipticity

y>∇F (x∗)y
(3.50)

= ‖ŷ‖2h +
k

2
〈x̂∗ × Ph

(
hloc

eff (ŷ)− f
)
, ŷ〉h & (1− kh−2)‖ŷ‖2h & ‖ŷ‖2h ,
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where we used (3.54) and the Cauchy–Schwarz inequality together with the estimates (3.42).
To show boundedness of (∇F (x∗))−1 we write

‖(∇F (x∗))−1‖2 = sup
x∈R3N\{0}

‖(∇F (x∗))−1x‖2
‖x‖2

= sup
x∈R3N\{0}

‖y(x)‖2
‖x‖2

,

with y := y(x) := (∇F (x∗))−1x. Using (3.50), it holds that

y>x = y>∇F (x∗)y = ‖ŷ‖2h +
k

2
〈x̂∗ × Ph

(
hloc

eff (ŷ)− f
)
, ŷ〉h .

Using norm equivalences h3/2‖·‖2 ' ‖ ·̂ ‖h ' ‖ ·̂ ‖L2(Ω) on R3N and an inverse estimate, it
follows that

h3‖y‖22 . ‖ŷ‖2h = y>x− k

2
〈x̂∗ × Ph

(
hloc

eff (ŷ)− f
)
, ŷ〉h

. ‖y‖2‖x‖2 + k‖x̂∗‖L∞(Ω)‖Ph
(
hloc

eff (ŷ)− f
)
‖h‖ŷ‖h

(3.42)
. ‖y‖2‖x‖2 + kh−2‖ŷ‖2h . ‖y‖2‖x‖2 + kh‖y‖22 .

With the CFL condition k = o(h2) we estimate h3(1 − kh−2)‖y‖2 . h3‖y‖2 . ‖x‖2 and
conclude that

‖(∇F (x∗))−1‖2 . h−3 .

In particular it holds (3.46a) for ‖·‖2 with C ' h−3.

3.7.4.3 Initial guess leads to convergence

We recall the results from Section 3.7.4.1 and Section 3.7.4.2: The Newton iteration (3.51a)
satisfies the assumptions of Theorem 3.7.1 for ‖·‖2 with C ' h−3, R = +∞ and L ' kh.
The theorem now guarantees convergence x` → x∗ in ‖·‖2 as ` → ∞ of the Newton
iteration (3.51a) for any initial guess x0 ∈ R3N with ‖x∗ − x0‖2 ≤ 1/(2CL) ' h2/k.
Given mi

hε ∈ Vh, Algorithm 3.3.8 defines the initial guess as x0 := [ηi,0] := [mi
hε]. Let

x∗ ∈ R3N be the solution of (3.43), i.e., by (3.49) it holds for all φh ∈ Vh that

〈x̂∗−mi
hε,φh〉h = −k

2
〈x̂∗×Ph

(
hloc

eff (x̂∗)+Πh(mi
hε,m

i−1
hε )

)
,φh〉h+α〈x̂∗×(x̂∗−mi

hε),φh〉h .

Using φh = α(x̂∗ −mi
hε)− (k/2)Ph

(
hloc

eff (x̂∗) + Πh(mi
hε,m

i−1
hε )

)
∈ Vh shows

α‖x̂∗ −mi
hε‖2h =

k

2
〈x̂∗ −mi

hε,Ph
(
hloc

eff (x̂∗) + Πh(mi
hε,m

i−1
hε )

)
〉h

=
k

2
〈x̂∗ −mi

hε,Phheff(x̂∗)〉h +
k

2
〈x̂∗ −mi

hε,Ph
(
Πh(mi

hε,m
i−1
hε )− π(x̂∗)

)
〉h
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We rewrite the first term on the right hand side as

4〈x̂∗ −mi
hε,Phheff(x̂∗)〉h

(3.13)
= 4〈x̂∗ −mi

hε,heff(x̂∗)〉
(3.6)
= −4a(x̂∗ −mi

hε, x̂
∗) + 4〈x̂∗ −mi

hε,f〉Ω
= −a

(
(2x̂∗ −mi

hε)−mi
hε, (2x̂

∗ −mi
hε) +mi

hε

)
+ 2〈2x̂∗ −mi

hε,f〉Ω − 2〈mi
hε,f〉Ω

(3.4)
= 2E(mi

hε)− a(2x̂∗ −mi
hε, 2x̂

∗ −mi
hε) + 2〈x̂∗ −mi

hε,f〉Ω .

With (3.54) and the Gårding inequality (3.38c) we estimate

−a(2x̂∗ −mi
hε, 2x̂

∗ −mi
hε) ≤ C3‖2x̂∗ −mi

hε‖2L2(Ω) − C2‖2x̂∗ −mi
hε‖2H1(Ω) ≤ 3C3C

2
∞|Ω| .

Now combination with the generous estimates

〈x̂∗ −mi
hε,Ph

(
Πh(mi

hε,m
i−1
hε )− π(x̂∗)

)
〉h ≤ 2C2

∞|Ω|(2Cπ + ‖π‖L(L2(Ω);L2(Ω))) ,

〈2x̂∗ −mi
hε,f〉Ω ≤ 3C∞‖f‖L2(Ω)

yields

‖x̂∗ −mi
hε‖2h . E(mi

hε)k + C
(
C3, C∞, |Ω|, Cπ, ‖π‖L(L2(Ω);L2(Ω)), ‖f‖L2(Ω)

)
k

(3.53)
. k .

Due to the norm equivalence h3/2‖·‖2 ' ‖ ·̂ ‖h on R3N , the claim x0 ∈ B(‖·‖2;x∗, 1/(2CL))
follows for h, k → 0 from k = o(h7/3) via

‖x∗ − x0‖2 ' h−3/2‖x̂∗ −mi
hε‖h . k1/2h−3/2 = k−1h2(k3/2h−7/2) < k−1h2 ' 1/(2CL) .

Hence, the choice ηi,0 := mi
hε implies convergence x` → x∗ in ‖·‖2 as `→∞.

3.7.4.4 Finite number of Newton iterations

In the previous section we showed x` → x∗ in ‖·‖2 and therefore also ‖δx`‖2 → 0 as `→∞.
Now let `∗ ∈ N be the smallest integer, such that (3.52) is satisfied. The index `∗ is well
defined due to δ̂x` = ui,` and

‖Ih
(
δ̂x` × Ph

(
hloc

eff (δ̂x`)− f
))
‖h . ‖δx`‖∞h−2‖δ̂x`‖h . h−1/2‖δx`‖22 → 0 as `→∞.

Recalling that by Remark 3.7.2 it holds that

‖x∗ − x`‖2 ≤
2‖x0 − x∗‖2

22`
,

we estimate the index `∗ ∈ N: With the estimates (3.42) and the norm equivalence
h3/2‖·‖2 ' ‖ ·̂ ‖h on R3N , it holds for the error rihε that

‖rihε‖h = ‖Ih
(
ui,`

∗ × Ph
(
hloc

eff (ui,`
∗
)− f

))
‖h = ‖Ih

(
δ̂x`∗ × Ph

(
hloc

eff (δ̂x`∗)− f
))
‖h

≤ ‖δ̂x`∗‖L∞(Ω)‖Ph
(
hloc

eff (δ̂x`∗)− f
)
‖h . ‖δx`

∗‖∞h−2‖δ̂x`∗‖h

. h−1/2‖δx`∗‖22 = h−1/2‖x`∗+1 − x`∗‖22 . h−1/2
(
‖x∗ − x`∗+1‖22 + ‖x∗ − x`∗‖22

)
. 2−2`

∗
h−1/2‖x0 − x∗‖22 . 2−2`

∗
kh−7/2 .
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Since `∗ ∈ N is defined as the smallest integer, such that (3.52) is satisfied, `∗ is estimated
from above by log2 log2(C?kh

−7/2ε−1) with a generic constant C? > 0.
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4 Iterative solution and preconditioning
for the tangent plane scheme in
computational micromagnetics

This chapter consists of the article [KPP+19] together with Johannes Kraus, Dirk Praeto-
rius, Michele Ruggeri, and Bernhard Stiftner.

Abstract. The tangent plane scheme is a time-marching scheme for the numerical so-
lution of the nonlinear parabolic Landau–Lifshitz–Gilbert equation, which describes the
time evolution of ferromagnetic configurations. Exploiting the geometric structure of the
equation, the tangent plane scheme requires only the solution of one linear variational form
per time-step, which is posed in the discrete tangent space determined by the nodal values
of the current magnetization. We develop an effective solution strategy for the arising con-
strained linear systems, which is based on appropriate Householder reflections. We derive
possible preconditioners, which are (essentially) independent of the time-step, and prove lin-
ear convergence of the preconditioned GMRES algorithm. Numerical experiments underpin
the theoretical findings.

4.1 Introduction

4.1.1 Landau–Lifshitz–Gilbert equation

The Landau–Lifshitz–Gilbert equation (LLG) describes time-dependent micromagnetic phe-
nomena in a bounded ferromagnetic domain Ω ⊂ R3 with Lipschitz boundary ∂Ω [Gil55,
LL08]. After a suitable scaling of the involved physical quantities, it reads

∂tm = −m× heff(m) + αm× ∂tm in (0, T )× Ω, (4.1a)
∂nm = 0 on (0, T )× ∂Ω, (4.1b)

m(0) = m0 in Ω, (4.1c)

where the unknownm : (0, T )×Ω→ R3 is the magnetization, heff(m) is the effective field,
α ∈ (0, 1] is the Gilbert damping constant, T > 0 is the final time, and m0 : Ω→ R3 with
|m0| = 1 in Ω is the initial configuration. The effective field comprises several contributions,
which correspond to different phenomena in micromagnetism. In usual applications (see,
e.g., [HS98]), it takes the form heff(m) := `2ex∆m+π(m)+f , where `2ex∆m is the exchange
field with the exchange length `ex > 0, π(m) is a short-hand notation for all m-dependent
lower-order terms (e.g., stray field or magnetocrystalline anisotropy), and f : Ω→ R3 is an
applied external field.
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Taking the scalar product with m in (4.1a), we note the PDE inherent constraints

1

2
∂t|m|2 = m · ∂tm = 0 and thus |m| = 1 in (0, T )× Ω. (4.2)

In particular, ∂tm(t) belongs to the tangent space of m(t) for all t ∈ (0, T ).

4.1.2 Tangent plane schemes

Using (4.2), one can reformulate (4.1a) as

α∂tm+m× ∂tm = heff(m)− (heff(m) ·m)m, (4.3)

which is a linear equation in v := ∂tm. The idea of the tangent plane scheme (TPS)
can be summarized as follows: At time tn, the magnetization m(tn) is approximated by
mn in the lowest-order conforming finite element space. Discretizing (4.3) by a Galerkin
approach in the discrete tangent space atmn, we obtain an approximation vn ≈ v(tn). Up
to nodal normalization, mn + kvn then yields an approximation of the magnetization at
time tn+1 := tn + k, where k > 0 is the time-step size. Although LLG is nonlinear, TPS
thus requires only the solution of one linear system per time-step for vn, however, in the
discrete tangent space.
TPS with explicit time-stepping was first analyzed in [AJ06] with a refined analysis

in [BKP08], which requires a CFL condition for convergence towards a weak solution in
the sense of [AS92]. The work [Alo08] proposed TPS with an implicit time-stepping. This
yields unconditional convergence of the algorithm towards a weak solution. While [Alo08]
considered only the exchange field, it was extended to general stationary lower-order contri-
butions in [AKT12, BFF+14] and chiral magnetic skyrmion dynamics in [HPP+19]. More-
over, TPS was extended to the coupling of LLG with other evolution equations such as
the full Maxwell system [BPP15], the eddy current equation [LT13, LPPT15, FT17a], the
conservation of elastic momentum [BPPR14] when modeling magnetostrictive effects, or
a spin diffusion equation [AHP+14, ARB+15]. In the mentioned works, TPS is formally
of first order in time. Recently, TPS was modified into a (formally) second-order in time
scheme in [AKST14] with extensions in [DPP+20, HPP+19].

4.1.3 Contributions

So far, the efficient solution of the constrained linear system in the discrete tangent space for
the computation of vn ≈ v(tn) has not been discussed in the literature. For related works,
which empirically investigate the solution of the algebraic systems arising from alternative
integrators for LLG, we refer to [Baň10, STS+02]. For tangent plane schemes, the main
difficulty is the time-dependent ansatz space. This aggravates the construction of suitable
and effective preconditioners, which, if possible, should not depend on the time-step, or, at
least, only need an update every once in a while (after several time-steps).
We construct a linear system in R2N , where N ∈ N is the number of nodes of the un-

derlying finite element discretization. The corresponding system matrix is positive definite,
but non-symmetric and depends on the time-step. We present and analyze various precon-
ditioners, including a stationary approach (i.e., independent of the time-step) as well as
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Jacobi-type approximations. In the worst case, the number of necessary updates of the pre-
conditioner to attain optimal convergence of the GMRES algorithm [SS86, Saa03] depends
on the mesh-size h. However, under certain assumptions on the discrete magnetization
mn ≈m(tn), the number of necessary updates is also independent of h.

4.1.4 Outline

This paper is organized as follows: Section 4.2 introduces the basic notation and gives
a precise formulation of TPS (Algorithm 4.2.1). In Section 4.3, we provide a basis for
the discrete tangent space and derive the prototype linear system, which has to be solved
in each time-step (Theorem 4.3.1). Section 4.4 proposes symmetric and positive definite
preconditioners for the latter linear system. The two main results (Theorem 4.4.1 and
Theorem 4.4.3) prove that the corresponding preconditioned GMRES algorithms converge
linearly. These theorems also provide estimates of the residual reduction factors (in cer-
tain energy norms) and show under which assumptions these estimates are independent
of the discretization parameters. Finally, we also discuss Jacobi-type approximations of
our preconditioners (Section 4.4.4). Our theoretical results are underpinned by numerical
experiments in Section 4.5. In Section 4.7 the theoretical and numerical results are summa-
rized and concluding remarks on choosing the appropriate preconditioner are given. The
proofs of Theorem 4.3.1, Theorem 4.4.1, and Theorem 4.4.3 are postponed to Section 4.6.

4.2 Preliminaries

4.2.1 General notation

For any dimension d ∈ N (clear from the context) and vectors x,y ∈ Rd, let x ·y denote the
Euclidean scalar product with the corresponding norm |x|2 := x · x. Moreover, we denote
by ei the i-th unit vector and by I the identity matrix in Rd. To abbreviate notation, we
follow the Matlab syntax: For vectors, x1, . . . ,xn ∈ Rd, we write [x1, . . . ,xn] ∈ Rd×n for
the matrix whose j-th column is xj .
We use bold letters for vector-valued spaces, e.g., L2(Ω) = (L2(Ω))3. By slight abuse of

notation, we write ‖·‖L2(Ω) simultaneously for the L2-norm on (L2(Ω))3 and (L2(Ω))3×3.

4.2.2 Discretization

For the temporal discretization of LLG, let M ∈ N and k := T/M . Let tn := kn with
n ∈ {0, . . . ,M} be the uniform time-steps. For the spatial discretization, let Th be a
Cmesh-quasi-uniform triangulation of Ω into tetrahedra K ∈ Th with mesh-size h > 0, i.e.,
there exists Cmesh > 0 such that

C−1
mesh h ≤ |K|

1/3 ≤ diam(K) ≤ h for all K ∈ Th,

where |K| denotes the volume of the element K and diam(K) its diameter. Let

Sh := (Sh)3 with Sh :=
{
v : Ω→ R continuous : for all T ∈ Th vh|T is affine

}

104



4 Preconditioning of the tanget plane scheme

be the lowest-order FEM space. We denote by Nh the set of nodes of Th and define
N := #Nh. Moreover, let

Mh :=
{
ϕ ∈ Sh : |ϕ(z)| = 1 for all z ∈ Nh

}
.

For some fixed µ ∈Mh, define the discrete tangent space

Kh[µ] :=
{
ϕ ∈ Sh : ϕ(z) · µ(z) = 0 for all z ∈ Nh

}
. (4.4)

Note that dimSh = 3N and dimKh[µ] = 2N .

4.2.3 Tangent plane scheme

For ease of presentation, we focus on the implicit first-order TPS [Alo08, AKT12, BFF+14].
We note that all results of our work can also be adapted to the second-order TPS [AKST14,
DPP+20]; see Remark 4.2.3.

Algorithm 4.2.1 (First-order TPS). Input: m0 ∈Mh.
Loop: For all time-steps n = 0, . . . ,M − 1, iterate the following steps (a)–(b):
(a) Find vn ∈ Kh[mn] such that

α

∫
Ω
vn ·ϕ dx+

∫
Ω

(mn × vn) ·ϕ dx+ `2exk

∫
Ω
∇vn · ∇ϕ dx

= −`2ex

∫
Ω
∇mn · ∇ϕ dx+

∫
Ω

(
π(mn) + f(tn)

)
·ϕ dx for all ϕ ∈ Kh[mn];

(4.5)

(b) Define mn+1 ∈Mh by nodal projection

mn+1(z) :=
mn(z) + kvn(z)

|mn(z) + kvn(z)|
for all nodes z ∈ Nh. (4.6)

Output: Approximations mn ≈m(tn) for all n = 1, . . . ,M .

Remark 4.2.2. (i) The variational formulation (4.5) of TPS relies on the equivalent for-
mulation (4.3) of LLG (4.1), where the nonlinear term vanishes due to the choice of the
test space (i.e., the tangent space).
(ii) The bilinear form on the left-hand side of (4.5) is continuous and elliptic. Therefore,

the Lax–Milgram theorem guarantees existence and uniqueness of the solution vn ∈ Kh[mn]
to (4.5).
(iii) To see that (4.6) is well-defined, note that m0 ∈Mh and induction on n prove that

|mn(z) + kvn(z)|2 (4.4)
= |mn(z)|2 + k2|vn(z)|2 ≥ 1 for all nodes z ∈ Nh.

(iv) A variant of Algorithm 4.2.1 is the projection-free TPS [AHP+14], where the nodal
projection is omitted, i.e.,mn+1 := mn+kvn ∈ Sh in step (b). This projection-free integra-
tor remains unconditionally convergent [AHP+14]. Moreover, if there exists a smooth (and
hence unique [DS14]) strong solution of LLG, the a priori analysis in [FT17a] guarantees
first-order convergence in space and time for this projection-free integrator.
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Remark 4.2.3. For the second-order TPS [AKST14, DPP+20], the left-hand side of (4.5)
takes the form∫

Ω
Wk(λ

n)vn ·ϕ dx+

∫
Ω

(mn × vn) ·ϕ dx+ `2ex

1 + ρ(k)

2
k

∫
Ω
∇vn · ∇ϕ dx.

Here, λn := −`2ex |∇mn|2 +
(
π(mn) + f(tn)

)
·mn, ρ(k) := |k log(k)|, and

Wk(s) :=

{
α+ (k/2) min{s, 1/ρ(k)} for s ≥ 0,

2α2/[2α+ k min{−s, 1/ρ(k)}] for s < 0.

We note that Wk(·) → α as k → 0. Moreover, the right-hand side of (4.5) requires minor
modifications to be second-order accurate; see [AKST14, DPP+20] for details. We refer
to the extended preprint [KPP+18] of this work, where the extension of our results to the
second-order TPS is discussed in detail.

4.2.4 Linear algebra

We suppose a numbering of the nodes, i.e., Nh = {z1, . . . , zN}. Let ϕj ∈ Sh be the nodal
hat function associated with zj , i.e., ϕj(zj) = 1 and ϕj(zi) = 0 for i 6= j. We then consider
the following basis of Sh: Define

φ3(j−1)+` := ϕj e` : Ω→ R3 for all j = 1, . . . , N and all ` = 1, 2, 3. (4.7)

Given m ∈Mh, we then define M,L,S[m] ∈ R3N×3N as follows:

• Mij :=
∫

Ωφj · φi dx is the (symmetric, positive definite) mass matrix;

• Lij :=
∫

Ω∇φj · ∇φi dx is the (symmetric, positive semidefinite) stiffness matrix;

• (S[m])ij :=
∫

Ω(m× φj) · φi dx is the (skew-symmetric) cross product matrix.

Moreover, we set

Mij :=

∫
Ω
ϕjϕi dx ∈ R and Lij :=

∫
Ω
∇ϕj · ∇ϕi dx ∈ R for i, j = 1, . . . , N, (4.8a)

and note the block forms

M =

M11 I3×3 · · · M1N I3×3
...

. . .
...

MN1 I3×3 · · · MNN I3×3

 and L =

L11 I3×3 · · · L1N I3×3
...

. . .
...

LN1 I3×3 · · · LNN I3×3

 . (4.8b)

If we replace Kh[mn] with Sh in (4.5), the left-hand side of (4.5) gives rise to the matrix

A[mn] := αM + S[mn] + `2exkL ∈ R3N×3N . (4.9)

The right-hand side of (4.5) gives rise to the vector b[mn] ∈ R3N with(
b[mn]

)
j

:= −`2ex

∫
Ω
∇mn · ∇φj dx+

∫
Ω

(
π(mn) + f(tn)

)
· φj dx.

Note that the matrix A[mn] is positive definite and hence regular, but not symmetric.
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4.3 The tangent space problem

In this section, we present a strategy, which translates the solution of the discrete variational
formulation (4.5) into a linear system in R2N ∼= Kh[mn]. To that end, we use Householder
matrices: Given w = mn(z) ∈ R3 with |w| = 1, define H̃[w] ∈ R3×3 by

H̃[w] :=

{
I− 2zzT , where z := w+e3

|w+e3| for w 6= −e3,[
− e1,−e2, e3

]
for w = −e3.

(4.10a)

Then, H̃[w] is orthonormal with H̃[w] = H̃[w]
T

= H̃[w]
−1

and maps e3 to −w. Define

H[w] :=
[
H̃[w]e1, H̃[w]e2

]
∈ R3×2, (4.10b)

i.e., range(H[w])⊥w and range(H[w]) mimics Kh[mn] nodewise. Moreover, for any or-
thogonal matrix T ∈ R3×3 with T = T−1 = TT , the matrix

T H[Tw] ∈ R3×2 instead of H[w] ∈ R3×2, (4.10c)

also satisfies range(TH[Tw])⊥w. Hence, range(TH[Tw]) still mimics Kh[mn] nodewise.
The following theorem provides a linear system in R2N ∼= Kh[mn] for the solution to (4.5).
The proof is postponed to Section 4.6.2 below.

Theorem 4.3.1. Given mn ∈ Mh, recall A[mn] ∈ R3N×3N and b[mn] ∈ R3N from
Section 4.2.4. Define the block-diagonal matrix

Q[mn] :=


TH[Tmn(z1)] 0 · · · 0

0 TH[Tmn(z2)]
. . .

...
...

. . . . . . 0
0 · · · 0 TH[Tmn(zN )]

 ∈ R3N×2N , (4.11)

where H(·) is defined in (4.10). Then, the matrix Q[mn]TA[mn]Q[mn] ∈ R2N×2N is
positive definite and, in particular, regular. Moreover, the unique solution x ∈ R2N of(

Q[mn]TA[mn]Q[mn]
)
x = Q[mn]T b[mn], (4.12)

and the unique solution vn ∈ Kh[mn] of the variational formulation (4.5) satisfy

vn =
3N∑
j=1

vjφj with v := Q[mn] x ∈ R3N . (4.13)

Remark 4.3.2. (i) For the validity of Theorem 4.3.1, it is only relevant that H[mn(zi)]
has orthonormal columns and that range(H[mn(zi)])⊥mn(zi) for all i = 1, . . . , N . Given
w ∈ R3 with |w| = 1, alternative strategies from [Rug16, Lemma 6.1.2] are, e.g.,

• either to set z := w+σe3
|w+σe3| , where σ = sign(w3);

• or to use the transformation matrix of the rotation around the axis e3×w by an angle
ϕ such that cosϕ = w · e3 and sinϕ = |w × e3|.

(ii) The orthogonal matrix T may change with the time-step tn.
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4.4 Preconditioning

To solve the tangent space system (4.12), we choose a preconditioner P ∈ R2N×2N and
employ the GMRES algorithm [SS86, Saa03] to the preconditioned system

PAQ[m]x := PQ[m]TA[m]Q[m]x = PQ[m]Tb[m] =: PbQ[m], (4.14)

where m = mn ∈Mh. In the following sections, we discuss possible constructions of P,
based on the approximation of the inverse of the symmetric part of AQ[m] with α replaced
by the parameter

αP ≥ α > 0. (4.15)

In particular, this includes the case αP = α. Note that GMRES requires only the action
of the preconditioner P on a vector. Moreover, recall that Q[m] from (4.11) implicitly
depends on the arbitrary but fixed matrix T ∈ R3×3 from (4.10c). We refer to Section 4.4.2
below for the possible construction of the matrix T, for given m ∈Mh.

4.4.1 Practical preconditioner

For general problems of type (4.12), the work [NS96] proposes (without a proof) to consider
the practical preconditioner

PQ[m] := Q[m]T
(
αPM + `2exkL

)−1
Q[m] ∈ R2N×2N . (4.16)

The following theorem discusses the performance of GMRES with the preconditioner PQ[m].
Its proof is postponed to Section 4.6.6.

Theorem 4.4.1. Let αP ≥ α. Consider the preconditioned GMRES algorithm with the
preconditioner PQ[m] from (4.16) for the solution of (4.14) with the initial guess x(0) ∈
R2N . For ` ∈ N0, let x(`) ∈ R2N denote the GMRES iterates with the corresponding residuals

r(`) := PQ[m]bQ[m]−PQ[m]AQ[m] x(`) ∈ R2N .

Then, there exists 0 < κ < 1 such that

|||r(`)|||m ≤ (1− κ)`/2 |||r(0)|||m for all ` ∈ N, (4.17)

where ||| · |||m is the norm induced by the energy scalar product

〈〈〈x , y〉〉〉m := x ·
(
PQ[m]

)−1
y for all x,y ∈ R2N . (4.18)

Moreover, there hold the following assertions (i)–(ii), where C > 1 depends only on Cmesh:
(i) In general, κ can be chosen such that

κ ≥
[
C

(
2αP + 1− α

α

)2(
1 +

`2exk

αPh2

)]−1

> 0 . (4.19)

(ii) If T is chosen such that 1 + (Tm(z))3 ≥ γ > 0 for all nodes z ∈ Nh, then κ can be
chosen such that

κ ≥
[
C

(
2αP + 1− α

α

)2(
1 +

`2exk

αPγ4
‖∇m‖2L∞(Ω)

)]−1

> 0 . (4.20)
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Remark 4.4.2. (i) The bound on 0 < κ < 1 from Theorem 4.4.1(i) requires a CFL-type
coupling k = O(h2) to prevent deterioration κ→ 0 as h→ 0.
(ii) The additional assumption of Theorem 4.4.1(ii) can always be achieved by an appro-

priate choice of T. Then, 0 < κ < 1 is bounded away from 0 as long as no finite-time
blow-up occurs. Moreover, as can be expected for parabolic problems, the bound improves as
k → 0.
(iii) The preconditioner PQ[m] involves the inversion of the symmetric part

(
αPM +

`2exkL
)
. In practice, this can be done by a multigrid method. We note that the symmetric

part is, in particular, independent of m (i.e., of the time-step).

4.4.2 Practical computation of T

Theorem 4.4.1(ii) requires that

1 +m(z) ·Te3 ≥ γ > 0 for all nodes z ∈ Nh. (4.21)

For given m ∈ Mh and in view of (4.20), we thus aim to choose the matrix T ∈ R3×3

from (4.10c) such that γ in (4.21) can be chosen as large as possible. To this end, define
d?` ∈ [0, 2] by

d+
` := 1− max

z∈Nh

(m(z))`, d−` := 1 + min
z∈Nh

(m(z))`, for all ` ∈ {1, 2, 3}. (4.22)

In addition, define T?
` ∈ R3×3 with T = T−1 = TT by

T+
1 := [−e3, e2,−e1], T−1 := [e3, e2, e1], (4.23a)

T+
2 := [e1,−e3,−e2], T−2 := [e1, e3, e2], (4.23b)

T+
3 := [e1, e2,−e3], T−3 := [e1, e2, e3]. (4.23c)

For all ` ∈ {1, 2, 3} and ? ∈ {+,−}, it holds that

1 +m(z) ·T?
`e3 ≥ d?` ∈ [0, 2] for all nodes z ∈ Nh. (4.24)

Hence, (4.21) holds with γ ∈ [0, 2] being the maximum d?` , and T = T?
` in (4.23). We

note that other (more sophisticated) strategies are possible. Finally, we note that our (very
simple) construction leads to γ = 0, if and only if

{±e1,±e2,±e3} ⊆ {m(z) : z ∈ Nh}.

4.4.3 Stationary preconditioner

We consider a preconditioner which is independent of the time-step. Define the 2D-
equivalent to the basis from (4.7) by

ψ2(j−1)+` := ϕj e` : Ω→ R2 for all j = 1, . . . , N and all ` = 1, 2. (4.25)

Similarly to M,L ∈ R3N×3N from Section 4.2.4, define the matrices M2D,L2D ∈ R2N×2N ,
which correspond to the nodal basis (ψi)

2N
i=1 of (Sh)2 from (4.25):
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• (M2D)ij :=
∫

Ωψj ·ψi dx is the (symmetric and positive definite) mass matrix,

• (L2D)ij :=
∫

Ω∇ψj · ∇ψi dx is the (symmetric and positive semidefinite) stiffness ma-
trix.

Then, consider the stationary preconditioner

P2D :=
(
αPM2D + `2exkL2D

)−1 ∈ R2N×2N . (4.26)

The following theorem discusses the performance of GMRES with the preconditioner P2D;
see Remark 4.4.2(ii) for some comments on the result. The proof is postponed to Sec-
tion 4.6.5.

Theorem 4.4.3. Let αP ≥ α. Consider the preconditioned GMRES algorithm with P2D

from (4.26) for the solution of (4.14) with the initial guess x(0) ∈ R2N . For ` ∈ N0, let
x(`) ∈ R2N denote the GMRES iterates with the corresponding residuals

r(`) := P2DbQ[m]−P2DAQ[m] x(`) ∈ R2N .

If T is chosen such that 1 + (Tm(z))3 ≥ γ > 0 for all nodes z ∈ Nh, then there exists
0 < κ < 1 such that

|||r(`)||| ≤ (1− κ)`/2 |||r(0)||| for all ` ∈ N, (4.27)

where ||| · ||| denotes the norm induced by the corresponding energy scalar product

〈〈〈x , y〉〉〉 := x ·P−1
2Dy for all x,y ∈ R2N .

Moreover, with C > 1 depending only on Cmesh, κ can be chosen such that

κ ≥
[
C

(
2αP + 1− α

α

)2(
1 + γ−2 +

`2exk

αPγ6
‖∇m‖2L∞(Ω)

)4]−1

> 0 . (4.28)

4.4.4 Jacobi-type preconditioner

Consider the following approximation to the stationary preconditioner P2D from (4.26):
Recalling Mij , Lij ∈ R from (4.8a), we set

Pjac
i :=

(
αPMii + `2exkLii

)−1
I2×2 ∈ R2×2 for all i = 1, . . . , N

and define the stationary Jacobi-type preconditioner

Pjac
2D :=


Pjac

1 0 · · · 0

0 Pjac
2

. . .
...

...
. . . . . . 0

0 · · · 0 Pjac
N

 ∈ R2N×2N .

Given m ∈Mh, the matrix

Q[m]TPjac
3DQ[m] ∈ R2N×2N , where

[
Pjac

3D

]
ij

:=

{[
(αPM + `2exkL)−1

]
ii

for i = j,

0 else,

is the Jacobi-type approximation of PQ[m] from (4.16). The following proposition states
that the definitions of the Jacobi-type preconditioners coincide.
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Proposition 4.4.4. It holds that Pjac := Pjac
2D = Q[m]T Pjac

3D Q[m].

Proof. The statement follows from the representations of M and L given in (4.8) as well
as the block-diagonal definition of Q[m], where the blocks TH[Tm(zi)] have orthonormal
columns for all nodes zi ∈ Nh.

4.5 Numerics

In this section, we underpin our theoretical findings with numerical experiments. To
this end, we employ our Python code for computational micromagnetics Commics [Pfe,
PRS+20], which is based on the open-source multiphysics finite element library Netgen/NG-
Solve [ngs]. The computation of the stray field is based on the hybrid FEM-BEM method
of [FK90], which requires the evaluation of the double-layer integral operator associated with
the Laplace equation. This part of the code exploits the open-source Galerkin boundary
element library BEM++ [ŚBA+15]. Moreover, we couple Netgen/NGSolve and BEM++
with ngbem [Rie].
To solve the (preconditioned) linear system (4.12), we employ the (preconditioned) GM-

RES algorithm [SS86, Saa03]. Our implementation uses the GMRES implementation from
SciPy [JOP+ ], where we employ the iteration tolerance ε = 10−8. To save memory, GM-
RES is restarted every 20 iterations. Note that this is commonly referred to as restarted
GMRES; cf., e.g., [Saa03, Algorithm 6.11]. As initial value for the GMRES iteration, we
always choose x0 = 0.
The experiments of this section are focused on the number of iterations of the precondi-

tioned GMRES algorithm. As suggested in Remark 4.4.2(iii), to apply the inverse matrices
appearing in the preconditioners from Section 4.4 (i.e., in (4.16) and (4.26)) to a vector, we
use the classical (Ruge–Stüben) algebraic multigrid method implemented in PyAMG [OS18].

Remark 4.5.1. The ‘inverse’ matrices appearing in the practical preconditioner PQ[·]
from (4.16) and in the stationary preconditioner P2D from (4.26) are block-diagonal matri-
ces and consist of the same N ×N -stationary matrix block. Moreover, Q[·] from (4.11) in
PQ[·] has a block-diagonal form and is explicitly available at each time-step. Hence, P2D

and PQ[·] have similar computational complexity. The Jacobi-type preconditioner Pjac from
Proposition 4.4.4 is computationally favorable as its construction only involves the inversion
of diagonal matrices.

4.5.1 An academic example

We investigate the dependence of the total number of GMRES iterations on the mesh-size
h for the proposed preconditioners. To this end, we adapt the setting of [PRS18b, Section
6.1]: On Ω := (0, 1)3, we employ the initial value and applied field

m0 := (1, 0, 0) and f(x1, x2, x3) := 10 (sin(x1), cos(x1), 0),

respectively. We set T = 1, α = 0.5, `2ex = 10. The only lower-order contribution in π(m)
is the stray field. With this setting, the magnetization is expected to align itself in the
direction of the applied field f . For the time discretization, we fix k = 1/100. For the
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space discretization, we consider the following structured meshes generated by Commics:
For j ∈ N the domain Ω is decomposed into j3 cubic cells of edge length 1/j. Each of
these cells is divided into six equally sized tetrahedra with diameter

√
3/j. This yields

meshes consisting of (j + 1)3 vertices and 6j3 elements. The experiment is performed for
j ∈ {10, 11, . . . , 19} ∪ {20, 25, . . . , 50}. We compare the performance of the preconditioners
proposed in Section 4.4 with αP = 1 for the iterative solution of the underlying linear
system (4.12). Moreover, we always use T := I3×3, i.e., we always employ the standard
choice (4.10b).

0.03 0.07 0.11 0.15

0

1,000

2,000

3,000

4,000

Mesh-size h

It
er
at
io
ns

P2D

PQ[·]
Pjac

None

0.03 0.07 0.11 0.15

15

20

25

Mesh-size h

It
er
at
io
ns

P2D

PQ[·]

Figure 4.1: Experiment of Section 4.5.1: Average number of GMRES iterations for different
mesh-sizes. The right plot is a zoom of the left plot with the results for P2D

and PQ[·].

In Figure 4.1, we plot the average number of GMRES iterations for the different meshes.
As expected, no preconditioning requires the most iterations. The Jacobi-type precondi-
tioner Pjac brings a slight improvement. However, both the results obtained with no precon-
ditioning and Pjac are not robust with respect to the mesh-size h. In contrast to that, the
stationary preconditioner P2D and the practical preconditioner PQ[·] require significantly
less iterations. Moreover, these two options are robust with respect to the mesh-size h. In
conclusion, this experiment suggests the use of either the stationary preconditioner P2D or
the practical preconditioner PQ[·].

4.5.2 µMAG standard problem #4

We investigate the practical applicability of the preconditioners proposed in Section 4.4 by
computing a physically relevant example. To this end, we consider µMAG standard problem
#4 [MUM], which simulates the switching of the magnetization in a thin permalloy layer.
The domain Ω is a rectangular cuboid of length 500 nm, width 125 nm, and thickness

3 nm. The involved physical constants and material parameters are the gyromagnetic ratio
γ0 = 2.211 · 105 m/C, the permeability of vacuum µ0 = 4π ·10−7 N/A2, the saturation
magnetization Ms = 8.0 · 105 A/m, the exchange stiffness constant A = 1.3 · 10−11 J/m,
and the Gilbert damping constant α = 0.02. Starting from a so-called S-state [MUM], the
experiment consists in applying the constant applied field µ0Hext = (−35.5,−6.3, 0) mT
for 3 ns.
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For the rescaled form (4.1) of LLG, the above physical quantities lead to the parameters
`ex =

√
2A/(µ0M2

s ), T = 3 · 10−9γ0Ms, and f = Hext/Ms, and π(m) includes only the
stray field.
For the space discretization, we employ a fixed structured mesh with constant mesh-size

h = 4.2 nm consisting of 97 200 elements and 24 978 vertices. For the time discretization,
we will consider the physical time-step size ∆t, which is connected to the rescaled time-step
size k via the relation k = γ0Ms∆t.
In the following subsections, we numerically investigate the performance of the precon-

ditioners proposed in Section 4.4 for the simulation of µMAG standard problem #4. In
particular, we study the impact of the choices of αP (Section 4.5.2.1) and the matrix T
(Section 4.5.2.2) on the performance as well as the time-step size robustness of the precon-
ditioners (Section 4.5.2.3). If not stated otherwise, we use the time-step size 1/8 ps, αP = 1
and the adaptive strategy from Section 4.4.2 for T.

4.5.2.1 The impact of αP

In this experiment, we numerically investigate the optimal choice of αP in (4.15). In Fig-
ure 4.2, we plot the required number of GMRES iterations for different preconditioners over
time.
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(a) αP = 0.02 = α.
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(b) αP = 1 > 0.02 = α.

Figure 4.2: Experiment of Section 4.5.2: GMRES iterations over time.

To start with, we consider the choice αP = α = 0.02 (see Figure 4.2a for the correspond-
ing results). The Jacobi-type preconditioner Pjac requires less iterations than no precon-
ditioning. The stationary preconditioner P2D and the practical preconditioner PQ[·]) fail
completely and require significantly more GMRES iterations than no preconditioning. This
might be the effect of the skew-symmetric part S[·] of the (unconstrained system) matrix
A[·] from (4.9). Here, the scaling of S[·] is similar to the scaling of the mass matrix, but
unlike M, it lacks the factor α.
We repeat the experiment, but we choose αP = 1 > 0.02 = α (see Figure 4.2b). No

preconditioning requires the most iterations. With this choice of αP, using one of the pro-
posed preconditioners significantly reduces the number of iterations. Here, P2D and PQ[·]
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require the fewest iterations. This experiment indicates that the stationary preconditioner
P2D and the practical preconditioner PQ[·] with αP = 1 lead to a satisfactory performance.
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Figure 4.3: Experiment of Section 4.5.2.1: Average number of GMRES iterations. The
values c0 and c1 for the black dashed line are obtained by fitting to the iteration
numbers of αP = 0.02 and αP = 1.

To empirically determine the optimal choice for αP, we consider the preconditioners P2D

and PQ[·] and vary αP. In Figure 4.3, we plot the resulting averaged number of the required
GMRES iterations as a function of αP. Values of αP larger than the damping parameter α
result in significantly less iterations: Empirically, the number of GMRES iterations seems
to qualitatively behave like c0 + c1/αP for some c0, c1 ∈ R. However, choosing αP larger
than 1 seems to have little or no effect. In conclusion, we suggest choosing αP = 1.

4.5.2.2 Adaptive vs. fixed T

In this experiment, we discuss the impact of the adaptive strategy for T ∈ R3×3 described
in Section 4.4.2. In Figure 4.4, we plot the evolution of d?` ∈ [0, 2] from (4.22), where
` ∈ {1, 2, 3} and ? ∈ {+,−} and dadapt := max`∈{1,2,3}{d+

` , d
−
` }. Recall from (4.24) that

we can choose γ = dadapt for adaptive T and γ = d?` for fixed T := T?
` . For adaptive T,

in our example we always have that 1 + (Tnm
n
h(z))3 ≥ γ > 0, i.e., Theorem 4.4.1(ii) and

Theorem 4.4.3 apply.
In Figure 4.5a, we consider the stationary preconditioner P2D. We plot the evolution of

the GMRES iteration numbers for the adaptive strategy and for the fixed choices T := T?
`

from (4.23), where ` ∈ {1, 2, 3} and ? ∈ {+,−}. In Figure 4.5b, we repeat this experiment
for the practical preconditioner PQ[·].
As can be seen in Figure 4.5a, an adaptive choice of T is not always the perfect choice,

however, it avoids the increased iteration number that can be observed in many cases for
fixed T. Yet, for the relation for the iteration number of fixed T = T?

` and the corresponding
d?` , the picture is not complete: In Figure 4.5b, all options appear to be equally good, even
though, e.g., for fixed T := T−1 , it holds that d

−
1 ≈ 0 most of the time (see Figure 4.4).

In conclusion, our experiment suggests to use the adaptive choice for T. However, a full
understanding of the effect of the choice of T will require further investigations.
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Figure 4.4: Experiment of Section 4.5.2.2: Evolution of d?` with ` ∈ {1, 2, 3} and ? ∈ {+,−},
and dadapt := max`∈{1,2,3}{d+

` , d
−
` } over time. The above line indicates the

current state of dadapt.

∆t = 1/4 ps 1/8 ps 1/16 ps 1/32 ps

P2D 39.03 36.55 34.71 33.38

PQ[·] 38.92 36.16 33.96 32.69

Table 4.1: Experiment of Section 4.5.2.3: Average number of GMRES iterations for different
time-step sizes ∆t.

4.5.2.3 Time-step robustness

In this experiment, we test the robustness of the preconditioners with respect to dif-
ferent time-step sizes. For the simulation we vary the time-step size and choose ∆t =
1/4 ps, 1/8 ps, 1/16 ps and 1/32 ps.
In Table 4.1, the average number of GMRES iterations for the stationary preconditioner

P2D and the practical preconditioner PQ[·] are compared. As expected, the iteration num-
bers improve slightly for smaller time-step sizes; see Remark 4.4.2(ii). While the time-step
sizes vary up to the multiplicative factor 8, the number of iterations changes only by a
few percent. Hence, this experiment indicates that the preconditioners might not only be
robust with respect to the mesh-size (see Section 4.5.1), but also robust with respect to the
time-step size.

4.5.3 µMAG standard problem #5

We consider µMAG standard problem #5 [MUM] and repeat the experiments presented in
Section 4.5.2 (µMAG standard problem #4), as well as the experiment from Section 4.5.1
(academic setting).
The domain Ω is a rectangular cuboid of length 100 nm, width 100 nm, and thickness

10 nm, aligned with the x, y, and z axes of a Cartesian coordinate system, with origin at
the center of the cuboid. The material parameters coincide with those used in Section 4.5.2,
except for the Gilbert damping parameter (α = 0.1 here). The experiment consists in
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(a) Stationary preconditioner P2D.
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(b) Practical preconditioner PQ[·].

Figure 4.5: Experiment of Section 4.5.2.2: GMRES iterations for the preconditioners over
time.

simulating for 6 ns the movement of a magnetic vortex in response to a constant electric
current flowing in the plane of the sample. The initial state is obtained by solving (4.1)
for f = 0, π(m) consisting of only the stray field, and the initial condition m0(x, y, z) =
(−y, x,R)/

√
x2 + y2 +R2 with R = 10 nm for a sufficiently long time, until the system

relaxes to equilibrium. To simulate the current-driven movement of the vortex, we solve (4.1)
with this relaxed magnetization configuration as initial condition, T = 6 · 10−9γ0Ms, and
π(m) consisting of the stray field and the Zhang–Li spin-torque term [ZL04, TNMS05],
which takes the expression m× (u · ∇)m+ β(u · ∇)m, with u = (72.17, 0, 0)/(γ0Ms) and
β = 0.05.
To repeat the experiments from Section 4.5.2 for this problem setting, we employ a

fixed structured mesh with constant mesh-size h = 3.46 nm consisting of 75 000 elements
and 15 606 vertices for the space discretization. For the time discretization, we consider
the physical time-step size ∆t = 1/8 ps. The results qualitatively agree with those of
Section 4.5.2. For a snapshot of the results, we refer to Figure 4.6 and Figure 4.7.
To investigate the robustness of the preconditioners with respect to varying mesh-sizes,

we choose αP = 1, T ≡ T−3 (coincides with adaptive choice; cf. Figure 4.7) and repeat
the experiment with constant mesh-sizes h = 2.17 nm, 1.73 nm, 1.44 nm, 1.15 nm and h =
0.87 nm. The results shown in Figure 4.8 confirm the observations from Section 4.5.1 also
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for µMAG standard problem #5.
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Figure 4.6: Experiment of Section 4.5.3: GMRES iterations over time.
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Figure 4.7: Experiment of Section 4.5.3: GMRES iterations for the stationary precondi-
tioner P2D over time (αP = 1). The adaptive strategy coincides with T−3 .

4.6 Proof of main results

For a matrix H ∈ Rd×d, let ||H|| := supx∈Rd\{0} |Ax|/|x| be the matrix norm induced by
the Euclidean norm |x| on Rd.
To abbreviate notation, we write 〈Ω, ·〉· for all L2-scalar products (including vector-valued

spaces) and ‖·‖Ω = ‖·‖L2(Ω) for the corresponding L2-norm. The L∞-norm is abbreviated
by ‖·‖∞ = ‖·‖L∞(Ω).
For a, b ∈ R+ with a ≤ Cb, we write a . b, if the constant C > 0 is independent of the

discretization parameters and clear from the context. Finally, a ' b abbreviates a . b . a.
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Figure 4.8: Experiment of Section 4.5.3: Average number of GMRES iterations for different
mesh-sizes. The right plot is a zoom of the left plot with the results for P2D

and PQ[·].

4.6.1 Auxiliary mappings

Recall the hat functions (ϕi)
N
i=1, the nodal basis (ψi)

2N
i=1 of (Sh)2 from (4.25), and (φi)

3N
i=1

of Sh = (Sh)3 from (4.7). Recall the definitions of H[·] ∈ R3×2 and T ∈ R3×3 from (4.10)
and Q[·] ∈ R3N×2N from (4.11). Given µ ∈Mh, define the mappings

Ph[µ] : (Sh)2 → Kh[µ] $ Sh : w 7→
N∑
i=1

(
TH[Tµ(zi)]w(zi)

)
ϕi, (4.29a)

P̃h[µ] : R2N → Kh[µ] $ Sh : x 7→
3N∑
i=1

(
Q[µ]x

)
i
φi, (4.29b)

their “transposed” versions

PTh [µ] : Sh →
(
Sh
)2

: v →
N∑
i=1

(
H[µ(zi)]

TTv(zi)
)
ϕi (4.30a)

P̃Th [µ] : R3N →
(
Sh
)2

: x 7→
3N∑
i=1

(
Q[µ]Tx

)
i
φi, (4.30b)

and the compositions

Πh[µ] : Sh → Kh[µ] $ Sh : v 7→
N∑
i=1

(
TH[Tµ(zi)]H[Tµ(zi)]

TTv(zi)
)
ϕi, (4.31a)

Π̃h[µ] : R3N → Kh[µ] $ Sh : x 7→
3N∑
i=1

(
Q[µ]Q[µ]Tx

)
i
φi. (4.31b)

Note that Πh[µ] is the nodewise orthogonal projection onto Kh[µ]. The following lemma
discusses the relations of the mappings (4.29)–(4.31).
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Lemma 4.6.1. For any µ ∈Mh, there hold the following assertions (i)–(v):
(i) For x ∈ R2N and w :=

∑2N
i=1 xiψi ∈ (Sh)2, it holds that Ph[µ]w = P̃h[µ]x.

(ii) For y ∈ R3N and v :=
∑3N

i=1 yiφi, it holds that Πh[µ]v = Π̃h[µ]y.
(iii) For v ∈ Sh, it holds that Ph[µ] ◦ PTh [µ]v = Πh[µ]v.
(iv) For w ∈ (Sh)2, it holds that PTh [µ] ◦ Ph[µ]w = w.
(v) Ph[µ] : (Sh)2 → Kh[µ] and P̃h[µ] : R2N → Kh[µ] are isomorphisms.

Proof. (i)–(ii) follow by definition. (iii)–(iv) follow from the block-structure of Q[µ], since
Q[µ] has orthonormal columns. Since (Sh)2 ∼= R2N ∼= Kh[µ], (iv) proves that Ph[µ] is an
isomorphism. Together with (i), this also proves the statement about P̃h[µ]. Altogether,
this concludes the proof.

4.6.2 Proof of Theorem 4.3.1

Since A[mn] is positive definite and Q[mn] has orthonormal columns, the system matrix
in (4.12) is also positive definite. Let x ∈ R2N be the unique solution of (4.12). Then, it
holds that

Q[mn]TA[mn]Q[mn]x · y (4.12)
= Q[mn]Tb[mn] · y for all y ∈ R2N . (4.32)

We denote the bilinear form on the left-hand side of (4.5) by Ah(·, ·) and the linear functional
on the right-hand side of (4.5) by R(·). The definition of A[mn] in Section 4.2.4 then yields
that

Ah(P̃h[mn]x, P̃h[mn]y) = A[mn]Q[mn]x ·Q[mn]y = Q[mn]TA[mn]Q[mn]x · y
(4.32)

= Q[mn]Tb[mn] · y = b[mn] ·Q[mn]y = R(P̃h[mn]y) for all y ∈ R2N .

With Lemma 4.6.1 (v), P̃h[mn] is an isomorphism from R2N to Kh[mn]. Consequently,
the function P̃h[mn]x ∈ Kh[mn] is a solution to (4.5). The representation formula (4.13)
follows from (4.29b). This concludes the proof.

4.6.3 Stability analysis of auxiliary mappings

The first lemma proves discrete L2-stabilities of the mappings (4.29)–(4.31).

Lemma 4.6.2. There exists C > 0, which depends only on Cmesh, such that the following
assertions (i)–(vi) hold true:
(i) For any µ ∈Mh, it holds that

C−1‖w‖Ω ≤ ‖Ph[µ]w‖Ω ≤ C‖w‖Ω for all w ∈ (Sh)2.

(ii) For any µ ∈Mh, it holds that

‖PTh [µ]v‖Ω ≤ C ‖v‖Ω for all v ∈ Sh.

(iii) For any µ ∈Mh, it holds that

‖Πh[µ]v‖Ω ≤ C‖v‖Ω for all v ∈ Sh.

119



4 Preconditioning of the tanget plane scheme

(iv) For any µ ∈Mh, it holds that

C−1h3/2|x| ≤ ‖P̃h[µ]x‖Ω ≤ Ch3/2|x| for all x ∈ R2N .

(v) For any µ,ν ∈Mh, it holds that

C−1 ‖P̃h[ν]x‖Ω ≤ ‖P̃h[µ]x‖Ω ≤ C ‖P̃h[ν]x‖Ω for all x ∈ R2N .

(vi) For any µ,ν ∈Mh, it holds that

‖P̃h[µ]x− P̃h[ν]x‖Ω ≤ Ch3/2 max
z∈Nh

||H[Tµ(z)]−H[Tν(z)]|| |x| for all x ∈ R2N .

Proof. Throughout the proof, recall that T = T−1 = TT . For the proof of (i), and (iv)–(vi),
let x ∈ R2N and define w :=

∑2N
i=1 xiψi. For d = 2, 3 a scaling argument (see, e.g., [Bar15,

Lemma 3.9]) yields that

‖ϕ‖2Ω ≤ h3
N∑
i=1

|ϕ(zi)|2 ≤ (d+ 2) ‖ϕ‖2Ω for all ϕ ∈ (Sh)d. (4.33)

Since the matrices H[µ(zi)] ∈ R3×2 have orthonormal columns, Lemma 4.6.1 (i) yields that

‖P̃h[µ]x‖2Ω = ‖Ph[µ]w‖2Ω
(4.33)
' h3

N∑
i=1

|TH[Tµ(zi)]w(zi)|2 = h3
N∑
i=1

|w(zi)|2
(4.33)
' ‖w‖2Ω.

This proves (i), and (iv) follows from
∑N

i=1 |w(zi)|2 =
∑2N

i=1 |xi|2. (v) is a direct consequence
of (iv). For the proof of (vi), note that

‖P̃h[µ]x− P̃h[ν]x‖2Ω
(4.33)
' h3

N∑
i=1

∣∣∣T(H[Tµ(zi)]−H[Tν(zi)]
)
w(zi)

∣∣∣2
≤ h3 max

z∈Nh

||H[Tµ(z)]−H[Tν(z)]||2 |x|2.

This proves (vi). For the proof of (ii)–(iii), let v ∈ Sh. Since the matrices H[µ(zi)] ∈ R3×2

have orthonormal columns, we obtain that

‖PTh [µ]v‖2Ω
(4.33)
' h3

N∑
i=1

|H[Tµ(zi)]
TTv(zi)|2 ≤ h3

N∑
i=1

|v(zi)|2
(4.33)
' ‖v‖2Ω.

This proves (ii). Together with (i)–(ii) and Lemma 4.6.1(iii), this also proves (iii). Alto-
gether, this concludes the proof.

The second lemma proves discrete H1-stability properties of the mappings (4.29)–(4.31).
In contrast to Lemma 4.6.1 and Lemma 4.6.2, the proof exploits the explicit definition of
the Householder matrices (4.10).
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Lemma 4.6.3. Let µ ∈Mh with 1 + (µ(z))3 ≥ γ > 0 for all z ∈ Nh. Then, there exists
C > 1, which depends only on Cmesh, such that the following assertions (i)–(iii) hold true:
(i) For all w ∈

(
Sh
)2, it holds that

‖∇
(
Ph[µ]w

)
‖Ω ≤ Cγ−2 ‖∇µ‖∞ ‖w‖Ω + C ‖∇w‖Ω.

(ii) For all v ∈ Sh, it holds that

‖∇
(
PTh [µ]v

)
‖Ω ≤ Cγ−2 ‖∇µ‖∞ ‖v‖Ω + C ‖∇v‖Ω.

(iii) For all v ∈ Sh, it holds that

‖∇
(
Πh[µ]v

)
‖Ω ≤ Cγ−2 ‖∇µ‖∞ ‖v‖Ω + C ‖∇v‖Ω.

Proof. First, we prove (i). We split the proof into the following six steps.
Step 1. We derive a handier representation of Ph[µ]. Let µ1, µ2, µ3 ∈ Sh such that

Tµ := (µ1, µ2, µ3)T . Since functions in Sh attain their minimum in one of the nodes, we
obtain, in particular, that

1 + µ3 = 1 + (Tµ)3 ≥ γ > 0 in Ω. (4.34)

Hence, we can interpret

R1[Tµ] :=

 1 0
0 1
−µ1 −µ2

 , R2[Tµ] :=
1

1 + µ3

 µ2
1 µ1µ2

µ1µ2 µ2
2

0 0

 (4.35)

and

q[µ] := TR1[Tµ]−TR2[Tµ] (4.36)

as functions q[µ],R1[Tµ],R2[Tµ] : Ω → R3×2. With the definition of the Householder
matrices (4.10), an elementary calculation shows that TH[Tµ(zi)] = q[µ(zi)] for all i =
1, . . . , N . With Ih being the vector-valued nodal interpolant onto Sh, we get

Ph[µ]w
(4.29)

= Ih(q[µ]w) for all w ∈ (Sh)2. (4.37)

Step 2. We derive preliminary estimates for R1[Tµ] and R2[Tµ] from (4.35). To this
end, recall that T = T−1 = TT . Lemma 4.6.9(i) yields that

‖R1[Tµ]‖∞ . 1 and ‖R2[Tµ]‖∞ . 1. (4.38a)

Let k ∈ {1, 2, 3}. Lemma 4.6.9(ii) yields that

‖∂k
[
R1[Tµ]

]
‖∞

(4.34)
. ‖∇Tµ‖∞ = ‖T∇µ‖∞ = ‖∇µ‖∞, (4.38b)

as well as

‖∂k
[
R2[Tµ]

]
‖∞

(4.34)
. γ−1‖∇Tµ‖∞ = γ−1‖∇µ‖∞. (4.38c)
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Let `, k ∈ {1, 2, 3}. The definition (4.35) and Lemma 4.6.9(iii) yield that, elementwise,

∂`∂k
[
R1[Tµ]

]
= 0 (4.38d)

as well as

max
K∈Th

‖∂`∂k
[
R2[Tµ]

]
‖L∞(K)

(4.34)
. γ−2‖∇Tµ‖2∞ = γ−2‖∇µ‖2∞. (4.38e)

Step 3. For w ∈ (Sh)2, we estimate ‖∇[Ph[µ]w]‖Ω. To that end, note that q[µ]w|K ∈
(H2(K))3 for all elements K. We exploit the elementwise approximation properties of the
nodal interpolant Ih and obtain that

‖∇
[
Ph[µ]v

]
‖Ω

(4.29)
= ‖∇

[
Ih(q[µ]w)

]
‖Ω . ‖∇

[
q[µ]w

]
‖Ω + ‖∇

[
(1− Ih)(q[µ]w)

]
‖Ω

. ‖∇
[
q[µ]w

]
‖Ω + h

( ∑
K∈Th

‖D2
[

(q[µ]w)
]
‖2K
)1/2

=: T1 + hT2. (4.39)

Step 4. We estimate T1. Let k ∈ {1, 2, 3}. The product rule yields that

∂k
[
q[µ]w

]
= ∂k

[
q[µ]

]
w + q[µ]∂kw

(4.36)
= ∂k

[
TR1[Tµ]

]
w − ∂k

[
TR2[Tµ]

]
w + TR1[Tµ]∂kw −TR2[Tµ]∂kw

= T∂k
[
R1[Tµ]

]
w −T∂k

[
R2[Tµ]

]
w + TR1[Tµ]∂kw −TR2[Tµ]∂kw. (4.40)

Note that γ ≤ 1 + µ3 ≤ 1 + |µ3| ≤ 2 and recall that T = T−1 = TT . With the estimates
from (4.38) and with 1 ≤ 2/γ, the latter equation yields that

T1

(4.39)
. γ−1 ‖∇Tµ‖∞‖w‖Ω + ‖∇w‖Ω = γ−1 ‖∇µ‖∞‖w‖Ω + ‖∇w‖Ω.

Step 5. We estimate T2. Let `, k ∈ {1, 2, 3}. Elementwise, it holds that

∂`T∂kR1[Tµ] = T∂`∂kR1[Tµ]
(4.38d)

= 0

as well as ∂`∂kw = 0. Together with the product rule, this yields that

∂`∂k
[
q[µ]w

] (4.40)
= ∂k

[
TR1[Tµ]

]
∂`w − ∂`T∂k

[
R2[Tµ]

]
w − ∂k

[
TR2[Tµ]

]
∂`w

+ ∂`T
[
R1[Tµ]

]
∂kw − ∂`

[
TR2[Tµ]

]
∂kw

= T∂k
[
R1[Tµ]

]
∂`w −T∂`∂k

[
R2[Tµ]

]
w −T∂k

[
R2[Tµ]

]
∂`w

+ T∂`
[
R1[Tµ]

]
∂kw −T∂`

[
R2[Tµ]

]
∂kw.

Recall that T = T−1 = TT . With (4.38) and 1 ≤ 2/γ, the latter equation yields that

T2

(4.39)
. γ−1 ‖∇Tµ‖∞ ‖∇w‖Ω + γ−2 ‖∇Tµ‖2∞ ‖w‖Ω

= γ−1 ‖∇µ‖∞ ‖∇w‖Ω + γ−2 ‖∇µ‖2∞ ‖w‖Ω.
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4 Preconditioning of the tanget plane scheme

Step 6. We combine Step 3–Step 5. For all w ∈ (Sh)2, this yields that

‖∇
[
Ph[µ]w

]
‖Ω . γ−1 ‖∇µ‖∞ ‖w‖Ω + ‖∇w‖Ω

+ h γ−1 ‖∇µ‖∞ ‖∇w‖Ω + h γ−2 ‖∇µ‖2∞ ‖w‖Ω.

With an inverse estimate and 1 ≤ 2/γ, the latter equation yields for all w ∈ (Sh)2 that

‖∇
[
Ph[µ]w

]
‖Ω . γ−2 ‖∇µ‖∞ ‖w‖Ω + ‖∇w‖Ω. (4.41)

This concludes the proof of (i).
For the proof of (ii), let Ĩh be the nodal interpolant in 2D. With Ĩh instead of Ih and

q[µ]T : Ω→ R2×3 instead of q[µ], the proof of (ii) follows the lines of Step 1–Step 5.
For the proof of (iii), let v ∈ Sh and w := PTh [µ]v ∈ Sh. With Lemma 4.6.1(iii) and

Lemma 4.6.2(ii), we get that

‖∇[Πh[µ]v]‖Ω = ‖∇
[ (

Ph[µ] ◦ PTh [µ]
)
v
]
‖Ω . ‖∇

[
Ph[µ]w

]
‖Ω

(i)
. γ−2 ‖∇µ‖∞ ‖PTh [µ]v‖Ω + ‖∇

[
PTh [µ]v

]
‖Ω

. γ−2‖∇µ‖∞ ‖v‖Ω + ‖∇
[
PTh [µ]v

]
‖Ω

(ii)
. γ−2 ‖∇µ‖∞ ‖v‖Ω + ‖∇v‖Ω.

This proves (iii) and concludes the proof.

In the final auxiliary lemma, we prove a discrete H1-continuity of the mapping Ph(·)
from (4.29). Unlike Lemma 4.6.1 and Lemma 4.6.2, the following lemma builds on the
explicit definition of the Householder matrices (4.10).

Lemma 4.6.4. Let µ,ν ∈Mh with 1 + (Tµ(z))3 ≥ γ > 0 and 1 + (Tν(z))3 ≥ γ > 0 for
all z ∈ Nh. Then, there exists C > 1, which depends only on Cmesh, such that

‖∇
(

(Ph[µ]−Ph[ν])w
)
‖Ω ≤ C γ−1 ‖∇µ−∇ν‖∞ ‖w‖Ω + C γ−1 ‖µ−ν‖∞ ‖∇w‖Ω

+ C γ−3
(
‖∇µ‖∞+‖∇ν‖∞

)
‖µ−ν‖∞ ‖w‖Ω, (4.42)

for all w ∈
(
Sh
)2.

Proof. We split the proof into the following six steps.
Step 1. With the assumption 1 + (Tµ(z))3 ≥ γ > 0 and 1 + (Tν(z))3 ≥ γ > 0 for all

nodes z ∈ Nh, we use the definitions (4.35) of R1(·) and R2(·) and interpret

q[µ] := TR1[Tµ]−TR2[Tµ], (4.43a)
q[ν] := TR1[Tν]−TR2[Tν] (4.43b)

as functions q[µ], q[ν] : Ω→ R3×2. With Ih being the vector-valued nodal interpolant onto
Sh, recall from (4.37) that

(Ph[µ]− Ph[ν])w = Ih
(

(q[µ]− q[ν])w
)

for all w ∈ (Sh)2. (4.44)
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Step 2. Recall that T = T−1 = TT . With the definition (4.35) of R1(·), we get that

‖R1[Tµ]−R1[Tν]‖∞ . ‖Tµ−Tν‖∞ = ‖µ− ν‖∞. (4.45a)

With the product rule, we further get for all `, k ∈ {1, 2, 3} that

‖−‖∂kR1[Tµ∂kR1∞][Tν] . ‖∇Tµ−∇Tν‖∞
= ‖T∇µ−T∇ν‖∞ = ‖∇µ−∇ν‖∞ (4.45b)

as well as

∂`∂kR1[Tµ] = 0 = ∂`∂kR1[Tν]. (4.45c)

Moreover, define

σ(Tµ,Tν) := ‖∇Tµ‖∞ + ‖∇Tν‖∞ = ‖T∇µ‖∞ + ‖T∇ν‖∞ (4.46a)
= ‖∇µ‖∞ + ‖∇ν‖∞ = σ(µ,ν).

Note that an inverse inequality yields that

hσ(µ,ν) . ‖µ‖∞ + ‖ν‖∞ = 2. (4.46b)

Lemma 4.6.10 and the definition (4.35) of R2(·) then yield that

‖R2[Tµ]−R2[Tν]‖∞ . γ−1 ‖Tµ−Tν‖∞ = γ−1 ‖µ− ν‖∞. (4.47a)

For all `, k ∈ {1, 2, 3}, we further get that

‖∂kR2[Tµ]− ∂kR2[Tν]‖∞
. γ−2 σ(Tµ,Tν) ‖Tµ−Tν‖∞ + γ−1 ‖∇Tµ−∇Tν‖∞
(4.46)

= γ−2 σ(µ,ν) ‖Tµ−Tν‖∞ + γ−1 ‖T∇µ−T∇ν‖∞

= γ−2 σ(µ,ν) ‖µ− ν‖∞ + γ−1 ‖∇µ−∇ν‖∞ (4.47b)

as well as

‖∂`∂kR2[Tµ]− ∂`∂kR2[Tν]‖∞
. γ−3 σ(Tµ,Tν)2 ‖Tµ−Tν‖∞ + γ−2 σ(Tµ,Tν) ‖∇Tµ−∇Tν‖∞
(4.46)

= γ−3 σ(µ,ν)2 ‖µ− ν‖∞ + γ−2 σ(µ,ν) ‖∇µ−∇ν‖∞. (4.47c)

Step 3. Let w ∈ (Sh)2. Standard estimates for the nodal interpolant Ih yield that

‖∇
[

(Ph[µ]− Ph[ν])w
]
‖Ω

(4.44)
= ‖∇Ih

]
( (q[µ]− q[ν])w

)
‖Ω

≤ ‖∇
]
( (q[µ]− q[ν])w

)
‖Ω + ‖∇(1− Ih)

(
(q[µ]− q[ν])w

)
‖Ω

. ‖∇
]
( (q[µ]− q[ν])w

)
‖Ω + h

( ∑
K∈Th

‖D2
(

(q[µ]− q[ν])w
)
‖2K
)1/2

=: T1 + hT2.
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Step 4. We estimate T1. Let k ∈ {1, 2, 3}. With the product rule, we get that

∂k
(

(q[µ]− q[ν])w
)

= ∂k
(

(q[µ]− q[ν])
)
w + (q[µ]− q[ν]) ∂kw

(4.43)
= ∂k

(
(TR1[Tµ]−TR1[Tν])

)
w − ∂k

(
(TR2[Tµ]−TR2[Tν])

)
w

+ (TR1[Tµ]−TR1[Tν]) ∂kw − (TR2[Tµ]−TR2[Tν]) ∂kw

= T∂k
(

(R1[Tµ]−R1[Tν])
)
w −T∂k

(
(R2[Tµ]−R2[Tν])

)
w

+ T(R1[Tµ]−R1[Tν]) ∂kw −T(R2[Tµ]−R2[Tν]) ∂kw.

Recall that T = T−1 = TT . With the estimates from Step 2, we further get that

‖∂k
(

(q[µ]− q[ν])w
)
‖Ω ≤ ‖∇µ−∇ν‖∞ ‖w‖Ω + γ−2 σ(µ,ν) ‖µ− ν‖∞ ‖w‖Ω

+ γ−1 ‖∇µ−∇ν‖∞ ‖w‖Ω + ‖µ− ν‖∞ ‖∂kw‖Ω
+ γ−1 ‖µ− ν‖∞ ‖∂kw‖Ω.

With 1 ≤ 2/γ, we arrive at

T1 . γ
−1 ‖∇µ−∇ν‖∞ ‖w‖Ω + γ−1 ‖µ− ν‖∞ ‖∇w‖Ω
+ γ−2 σ(µ,ν) ‖µ− ν‖∞ ‖w‖Ω.

Step 5. We estimate T2. To this end, let `, k ∈ {1, 2, 3}. Note that the second derivative
of the piecewise affine function w vanishes on each element K ∈ Th. Moreover, recall
from (4.45c) that elementwise ∂`∂kR1[Tµ] = 0 = ∂`∂kR1[Tν]. The product rule yields
elementwise that

∂`∂k
(

(q[µ]− q[ν])w
)

= ∂`∂k
(
q[µ]− q[ν]

)
w + ∂k

(
q[µ]− q[ν]

)
∂`w + ∂`

(
q[µ]− q[ν]

)
∂kw

(4.43)
= ∂`∂k

(
TR2[Tµ]−TR2[Tν]

)
w + ∂k

(
TR1[Tµ]−TR1[Tν]

)
∂`w

− ∂k
(
TR2[Tµ]−TR2[Tν]

)
∂`w + ∂`

(
TR1[Tµ]−TR1[Tν]

)
∂kw

− ∂`
(
TR2[Tµ]−TR2[Tν]

)
∂kw

= T∂`∂k
(
R2[Tµ]−R2[Tν]

)
w + T∂k

(
R1[Tµ]−R1[Tν]

)
∂`w

−T∂k
(
R2[Tµ]−R2[Tν]

)
∂`w + T∂`

(
R1[Tµ]−R1[Tν]

)
∂kw

−T∂`
(
R2[Tµ]−R2[Tν]

)
∂kw.

With the estimates from Step 2 and since T = T−1 = TT , we get for all K ∈ Th that

‖∂`∂k
[

(q[µ]− q[ν])w
]
‖K

. γ−3 σ(µ,ν)2 ‖µ− ν‖∞‖w‖K + γ−2 σ(µ,ν) ‖∇µ−∇ν‖∞‖w‖K
+ ‖∇µ−∇ν‖∞ ‖∂`w‖K + γ−1‖∇µ−∇ν‖∞ ‖∂`w‖K
+ γ−2 σ(µ,ν) ‖µ− ν‖∞ ‖∂`w‖K + ‖∇µ−∇ν‖∞ ‖∂kw‖K
+ γ−1‖∇µ−∇ν‖∞ ‖∂kw‖K + γ−2 σ(µ,ν) ‖µ− ν‖∞ ‖∂kw‖K .
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4 Preconditioning of the tanget plane scheme

With 1 ≤ 2/γ, the latter estimate simplifies to

T2 . γ
−3 σ(µ,ν)2 ‖µ− ν‖∞‖w‖Ω + γ−2 σ(µ,ν) ‖µ− ν‖∞ ‖∇w‖Ω

+ γ−2 σ(µ,ν) ‖∇µ−∇ν‖∞‖w‖Ω + γ−1‖∇µ−∇ν‖∞ ‖∇w‖Ω.

Step 6. We combine Step 3–Step 5. An inverse estimate and 1 ≤ 2/γ imply that

‖∇
[

(Ph[µ]− Ph[ν])w
]
‖Ω ≤ T1 + hT2

. γ−1 ‖∇µ−∇ν‖∞ ‖w‖Ω + γ−1 ‖µ− ν‖∞ ‖∇w‖Ω
+ γ−2 σ(µ,ν) ‖µ− ν‖∞ ‖w‖Ω + hγ−3 σ(µ,ν)2 ‖µ− ν‖∞‖w‖Ω
+ hγ−2 σ(µ,ν) ‖µ− ν‖∞ ‖∇w‖Ω + hγ−2 σ(µ,ν) ‖∇µ−∇ν‖∞ ‖w‖Ω
+ hγ−1‖∇µ−∇ν‖∞ ‖∇w‖Ω

(4.46)
. γ−1 ‖∇µ−∇ν‖∞ ‖w‖Ω + γ−1 ‖µ− ν‖∞ ‖∇w‖Ω
+ γ−3 σ(µ,ν) ‖µ− ν‖∞‖w‖Ω.

This concludes the proof.

4.6.4 Energy norms

For µ ∈Mh, we define the auxiliary theoretical preconditioner

P?
Q[µ] :=

(
Q[µ]T (αPM + `2exkL)Q[µ]

)−1 ∈ R2N×2N . (4.48)

We define the energy scalar product

〈〈〈x , y〉〉〉?µ := x ·
(
P?

Q[µ]
)−1

y for all x,y ∈ R2N (4.49)

and denote the induced norm by |||·|||?µ. With the definitions of the matrices from Section 4.2.4
as well as the definition (4.29b) of P̃h(·), it follows that

〈〈〈x , y〉〉〉?µ = αP 〈Ω, P̃[µ]x〉P̃[µ]y + `2exk 〈Ω,∇P̃[µ]x〉∇P̃[µ]y. (4.50)

This section collects equivalence results for varying arguments µ in 〈〈〈· , ·〉〉〉?µ and ||| · |||?µ.

Lemma 4.6.5. Let µ,ν ∈Mh and

κ̃(µ,ν, h−2) :=

(
1 +

`2exk

αPh2
max
z∈Nh

||H[Tµ(z)]−H[Tν(z)]||2
)1/2

≥ 1. (4.51a)

Then, κ̃(µ,ν, h−2) = κ̃(ν,µ, h−2) and there exists a constant C ≥ 1, which depends only
on Cmesh, such that

C−1 κ̃(µ,ν, h−2)−1 |||x|||?ν ≤ |||x|||?µ ≤ C κ̃(µ,ν, h−2) |||x|||?ν for all x ∈ R2N . (4.51b)
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Proof. Let x ∈ R2N . Since the symmetry κ̃(µ,ν, h−2) = κ̃(ν,µ, h−2) is obvious, we only
have to show that |||x|||?µ . κ̃(µ,ν, h−2)|||x|||?ν . To this end, Lemma 4.6.2(v) and an inverse
estimate yield that

(|||x|||?µ)2 (4.50)
= αP‖P̃h[µ]x‖2Ω + `2exk ‖∇P̃h[µ]x‖2Ω

. αP‖P̃h[ν]x‖2Ω + `2exk ‖∇P̃h[ν]x‖2Ω + `2exk ‖∇P̃h[µ]x−∇P̃h[ν]x‖2Ω

. (|||x|||?ν)2 + `2exkh
−2‖P̃h[µ]x− P̃h[ν]x‖2Ω.

With Lemma 4.6.2(iv) and (vi), we estimate the last term by

`2exkh
−2 ‖P̃h[µ]x− P̃h[ν]x‖2Ω . `2exkh |x|2 max

z∈Nh

||H[Tµ(z)]−H[Tν(z)]||2

' `2exkh
−2 ‖P̃h[ν]x‖2Ω max

z∈Nh

||H[Tµ(z)]−H[Tν(z)]||2

(4.50)
. `2exα

−1
P kh−2 (|||x|||?ν)2 max

z∈Nh

||H[Tµ(z)]−H[Tν(z)]||2.

This proves |||x|||?µ . κ̃(µ,ν, h−2)|||x|||?ν and hence concludes the proof.

For certain µ,ν ∈Mh, the norm equivalence ||| · |||?µ ' ||| · |||?ν holds independently of the
mesh-size h.

Lemma 4.6.6. Let µ,ν ∈Mh with 1 + (Tµ(z))3 ≥ γ > 0 and 1 + (Tν(z))3 ≥ γ > 0 for
all nodes z ∈ Nh. Let

κ(µ,ν) :=
[

1 + γ−2 ‖µ− ν‖2∞ +
`2exk

αPγ2
‖∇µ−∇ν‖2∞

+
`2exk

αPγ6

(
‖∇µ‖2∞ + ‖∇ν‖2∞

)
‖µ− ν‖2∞

]1/2
≥ 1.

(4.52)

Then, κ(µ,ν) = κ(ν,µ) and there exists C ≥ 1 depending only on Cmesh such that

C−1 κ(µ,ν)−1 |||x|||?ν ≤ |||x|||?µ ≤ C κ(µ,ν) |||x|||?ν for all x ∈ R2N .

Proof. Let x ∈ R2N . Since the symmetry κ(µ,ν) = κ(ν,µ) is obvious, we only have to
show that |||x|||?µ . κ(µ,ν)|||x|||?ν . With Lemma 4.6.1, we get that

P̃h[µ] = P̃h[ν] +
(
Ph[µ]− Ph[ν]

)
◦ PTh [ν] ◦ P̃h[ν]. (4.53a)

With Lemma 4.6.4, Lemma 4.6.2(ii), and Lemma 4.6.3(ii), we get that

‖∇
(
Ph[µ]− Ph[ν]

)
◦ PTh [ν] ◦ P̃h[ν] x‖Ω

(4.42)
. γ−1 ‖∇µ−∇ν‖∞ ‖PTh [ν] ◦ P̃h[ν] x‖Ω
+ γ−1 ‖µ− ν‖∞ ‖∇

[
PTh [ν] ◦ P̃h[ν] x

]
‖Ω

+ γ−3
(
‖∇µ‖∞ + ‖∇ν‖∞

)
‖µ− ν‖∞ ‖PTh [ν] ◦ P̃h[ν] x‖Ω

. γ−1 ‖∇µ−∇ν‖∞ ‖P̃h[ν] x‖Ω + γ−1 ‖µ− ν‖∞ ‖∇P̃h[ν] x‖Ω
+ γ−3

(
‖∇µ‖∞ + ‖∇ν‖∞

)
‖µ− ν‖∞ ‖P̃h[ν] x‖Ω. (4.53b)
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Recalling ‖Ph[µ]x‖Ω ' ‖Ph[ν]x‖Ω from Lemma 4.6.2(v), we obtain that

(|||x|||?µ)2
(4.53)
. αP ‖P̃h[ν]x‖2Ω + `2exk

[
γ−2 ‖∇µ−∇ν‖2∞

+ γ−6
(
‖∇µ‖2∞ + ‖∇ν‖2∞

)
‖µ− ν‖2∞

]
‖P̃h[ν]x‖2Ω

+ `2exk
[

1 + γ−2 ‖µ− ν‖2∞
]
‖∇P̃h[ν]x‖2Ω

(4.53)
≤

[
1 + γ−2 ‖µ− ν‖2∞ +

`2exk

αPγ2
‖∇µ−∇ν‖2∞

+
`2exk

αPγ6

(
‖∇µ‖2∞ + ‖∇ν‖2∞

)
‖µ− ν‖2∞

]
(|||x|||?ν)2.

This proves |||x|||?µ . κ(ν,µ)|||x|||?ν and concludes the proof.

Lemma 4.6.7. Let µ,ν ∈ Mh. There exists a constant C > 1, which depends only on
Cmesh > 0, such that the following two assertions (i)–(ii) hold true:
(i) With κ̃(µ,ν, h−2) from (4.51a), it holds that, for all x,y ∈ R2N ,

x ·AQ[µ]x ≥ C−1 α

αP
κ̃(µ,ν, h−2)−2 (|||x|||?ν)2, and (4.54a)

x ·AQ[µ]y ≤ C
2αP + 1− α

αP
κ̃(µ,ν, h−2)2 |||x|||?ν |||y|||?ν . (4.54b)

(ii) If, additionally, 1+(Tµ(z))3 ≥ γ > 0 and 1+(Tν(z))3 ≥ γ > 0 for all nodes z ∈ Nh,
the statement of (i) holds with κ(µ,ν) from (4.52) instead of κ̃(µ,ν, h−2) from (4.51a). In
particular, the estimate then is independent of the mesh-size h.

Proof. First, we prove (i). Let x,y ∈ R2N . Recall AQ[µ] from (4.14) as well as A[µ], M,
L, S[µ] from Section 4.2.4. Since S[µ] is skew-symmetric, it holds that

x ·AQ[µ]x
(4.14)

= αQ[µ]x ·MQ[µ]x + `2exkQ[µ]x · LQ[µ]x

(4.29a)
= 〈Ω, α P̃h[µ]x〉P̃h[µ]x + `2exk 〈Ω,∇P̃h[µ]x〉∇P̃h[µ]x

(4.50)
≥ α

αP
(|||x|||?µ)2.

With the norm equivalence result from Lemma 4.6.5, we replace |||x|||?µ with |||x|||?ν and
prove (4.54a). Similarly, we obtain that

x ·AQ[µ]y
(4.50)

= 〈〈〈x , y〉〉〉?µ + 〈Ω, (α− αP) P̃h[µ]x〉P̃h[µ]y + 〈Ω,µ× P̃h[µ]x〉P̃h[µ]y

≤ |||x|||?µ |||y|||?µ +
(

1 + αP − α
)
‖P̃h[µ]x‖Ω ‖P̃h[µ]y‖Ω

(4.50)
≤

(
1 +

1

αP
+
αP − α
αP

)
|||x|||?µ |||y|||?µ.

Again, with the norm equivalence result from Lemma 4.6.5, we prove (4.54b). This con-
cludes the proof of (i). The proof of (ii) follows the same lines but employs Lemma 4.6.6
instead Lemma 4.6.5. Altogether, this concludes the proof.
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4.6.5 Proof of Theorem 4.4.3

The following lemma considers preconditioned GMRES with the theoretical preconditioner
from (4.48).

Lemma 4.6.8. Let αP ≥ α and µ ∈Mh. Consider the preconditioned GMRES algorithm
with the preconditioner P?

Q[µ] from (4.48) for the solution of (4.14) with the initial guess
x(0) ∈ R2N . For ` ∈ N0, let x(`) ∈ R2N denote the GMRES iterates with the corresponding
residuals

r(`) := P?
Q[µ]bQ[m]−P?

Q[µ]AQ[m] x(`) ∈ R2N .

Then, there exists 0 < κ < 1 such that

|||r(`)|||?µ ≤ (1− κ)`/2 |||r(0)|||?µ for all ` ∈ N . (4.55)

Moreover, there hold the following assertions (i)–(ii), where C > 1 depends only on Cmesh,
and κ̃(m,µ, h−2) as well as κ(m,µ) are defined in (4.51)–(4.52):
(i) In general, κ can be chosen such that

κ ≥
[
C

(
2αP + 1− α

α

)2

κ̃(m,µ, h−2)8

]−1

> 0 . (4.56)

(ii) If T is chosen such that 1 + (Tm(z))3 ≥ γ > 0 for all nodes z ∈ Nh, then κ can be
chosen such that

κ ≥
[
C

(
2αP + 1− α

α

)2

κ(m,µ)8

]−1

> 0 . (4.57)

Proof. First, we prove (i). For a non-symmetric but positive definite system matrix, the
fields-of-value analysis for the preconditioned GMRES algorithm (see, e.g., [Sta97, Theo-
rem 3.2]) yields that

|||r(`)|||?µ ≤
(

1− γ(1) γ(2)
)`/2
|||r(0)|||?µ, (4.58a)

where

γ(1) := inf
x∈R2N\{0}

x ·AQ[m]x

x ·
(
P?

Q[µ]
)−1

x
> 0, (4.58b)

γ(2) := inf
x∈R2N\{0}

x ·
(
AQ[m]

)−1
x

x ·P?
Q[µ]x

> 0. (4.58c)

To estimate γ(1), γ(2) from below, recall κ̃(m,µ, h−2) from (4.51a) and exploit Lemma 4.6.7(i).
This yields that

γ(1)
(4.51)
&

α

αP
κ̃(m,µ, h−2)−2.
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With Lemma 4.6.7(i), the matrices B := AQ[m] and B0 :=
(
P?

Q[µ]
)−1 satisfy the setting

of Lemma 4.6.11 with

c1 '
α

αP
κ̃(m,µ, h−2)−2 and c2 '

2αP + 1− α
αP

κ̃(m,µ, h−2)2.

Hence, Lemma 4.6.11 yields that

γ(2)
(4.58c)
&

c1

c2
2

' α

αP

(
2αP + 1− α

αP

)−2

κ̃(m,µ, h−2)−6. (4.59)

With (4.58), we conclude the proof of (i). The proof of (ii) then follows the same lines but
exploits Lemma 4.6.7(ii) instead of Lemma 4.6.7(i). In the latter arguments, this replaces
κ̃(m,µ, h−2) by κ(m,µ). Altogether, this concludes the proof.

Proof of Theorem 4.4.3. Recall that T = T−1 = TT . For constant µ := Te3 ∈Mh,
we get that

TH[Tµ(zi)] = TH[e3] = T[e1, e2] ∈ R3×2 (4.60a)

and thus

(TH[Tµ(zi)])
T (TH[Tµ(zj)]) = [e1, e2]TTT[e1, e2] = I2×2. (4.60b)

for all i, j = 1, . . . , N . Together with the block forms from (4.8), this yields that

P?
Q[µ]

(4.48)
=

(
Q[µ]T

(
αPM + `2exkL

)
Q[µ]

)−1 (4.60)
=

(
αPM2D + `2exkL2D

)−1 (4.26)
= P2D.

Since ∇µ = 0 a.e. in Ω and ‖m− µ‖∞ ≤ 2, Lemma 4.6.8(ii) proves the result.

4.6.6 Proof of Theorem 4.4.1

In analogy to (4.58), the fields-of-value analysis for the preconditioned GMRES algorithm
(see, e.g., [Sta97, Theorem 3.2]) yields that

|||r(`)|||m ≤
(

1− γ̃(1) γ̃(2)
)`/2
|||r(0)|||m, (4.61a)

where

γ̃(1) := inf
x∈R2N\{0}

x ·AQ[m]x

x ·
(
PQ[m]

)−1
x
> 0, (4.61b)

γ̃(2) := inf
x∈R2N\{0}

x ·
(
AQ[m]

)−1
x

x ·PQ[m]x
> 0. (4.61c)

Recall from (4.48), the definition of the theoretical preconditioner P?
Q[m] and from (4.58)

the corresponding definition of γ(1) and γ(2). We obtain that

γ̃(1)
(4.61b)
≥ inf

x∈R2N\{0}

x ·AQ[m]x

x ·
(
P?

Q[m]
)−1

x
inf

x∈R2N\{0}

x ·
(
P?

Q[m]
)−1

x

x ·
(
PQ[m]

)−1
x

(4.58b)
= γ(1) inf

x∈R2N\{0}

x ·
(
P?

Q[m]
)−1

x

x ·
(
PQ[m]

)−1
x

=: γ(1) δ(1), (4.62a)
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as well as

γ̃(2)
(4.61b)
≥ inf

x∈R2N\{0}

x ·
(
AQ[m]

)−1
x

x · P?
Q[m] x

inf
x∈R2N\{0}

x ·P?
Q[m]x

x ·PQ[m]x

(4.58b)
= γ(2) inf

x∈R2N\{0}

x ·P?
Q[m] x

x ·PQ[m]x
=: γ(2) δ(2). (4.62b)

Here, we implicitly have m = µ in the definition (4.58) of γ(1) and γ(2). In particular,
Lemma 4.6.7 holds with κ̃(m,m, h−2) = κ(m,m) = 1. Following the lines of the proof of
Lemma 4.6.8, this yields that

γ(1) &
α

αP
, and γ(2)

(4.59)
&

α

αP

(
2αP + 1− α

αP

)−2

. (4.63)

Hence, in the following four steps, it remains to estimate δ(1) and δ(2) from below.
Step 1. We will use the fictitious space lemma (see [Nep91, GO95]) to derive

c1 x ·P?
Q[m]x ≤ x ·PQ[m]x ≤ c2 x ·P?

Q[m]x for all x ∈ R2N . (4.64)

Here, the constants c1, c2 > 0 stem from the following two assumptions (FS1)–(FS2) of
the fictitious space lemma:

(FS1) For all x ∈ R2N , there exists y ∈ R3N with Q[m]Ty = x and

c1 y · (αPM + `2exkL)y ≤ x ·
(
P?

Q[m]
)−1

x. (4.65a)

(FS2) For all y ∈ R3N , it holds that

Q[m]Ty ·
(
P?

Q[m]
)−1

Q[m]Ty ≤ c2 y · (αPM + `2exkL)y. (4.65b)

With the assumptions (FS1)–(FS2), the fictitious space lemma then implies that

c1 x̃ ·
(
P?

Q[m]
)−1

x̃ ≤
(
P?

Q[m]
)−1

x̃ ·Q[m]T (αPM + `2exkL)−1Q[m]
(
P?

Q[m]
)−1

x̃

(4.16)
=

(
P?

Q[m]
)−1

x̃ ·PQ[m]
(
P?

Q[m]
)−1

x̃

≤ c2 x̃ ·
(
P?

Q[m]
)−1

x̃ for all x̃ ∈ R2N .

Then, with x̃ := P?
Q[m]x ∈ R2N in the latter estimate, this verifies (4.64).

Step 2. We verify assumption (FS1) of the fictitious space lemma. To that end, let
x ∈ R2N and set y := Q[m]x ∈ R3N . Then, Q[m]Ty = Q[m]TQ[m]x = x and

y · (αPM + `2exkL)y = Q[m]x · (αPM + `2exkL)Q[m]x

= x ·Q[m]T (αPM + `2exkL)Q[m]x
(4.48)

= x ·
(
P?

Q[m]
)−1

x,

i.e., assumption (FS1) holds with c1 = 1.
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Step 3. We verify assumption (FS2) of the fictitious space lemma. To that end, let
y ∈ R3N . Define v :=

∑3N
i=1 yiφi ∈ Sh. With Lemma 4.6.1(ii), we obtain that

Q[m]Ty ·
(
P?

Q[m]
)−1

Q[m]Ty
(4.48)

= y ·Q[m]Q[m]T (αPM + `2exkL)Q[m]Q[m]Ty

(4.31b)
= αP‖Π̃h[m]y‖2Ω + `2exk ‖∇Π̃h[m]y‖2Ω
= αP‖Πh[m]v‖2Ω + `2exk ‖∇Πh[m]v‖2Ω. (4.66)

For the verification of (FS2) in (i), Lemma 4.6.2(iii) and an inverse estimate yield that

αP‖Πh[m]v‖2Ω + `2exk ‖∇Πh[m]v‖2Ω .
(
αP +

`2exk

h2

)
‖v‖2Ω

.
(

1 +
`2exk

αPh2

)[
αP‖v‖2Ω + `2exk ‖∇v‖2Ω

]
=
(

1 +
`2exk

αPh2

)
y ·
(
αPM + `2exkL

)
y.

(4.67a)

For the verification of (FS2) in (ii), we use the stronger assumption 1 + (Tm)3 ≥ γ > 0.
Then, the definition of v, Lemma 4.6.2(iii) and Lemma 4.6.3(iii) yield that

αP‖Πh[m]v‖2Ω + `2exk ‖∇Πh[m]v‖2Ω .
(
αP +

`2exk

γ4
‖∇m‖2∞

)
‖v‖2Ω + `2exk‖∇v‖2Ω

≤
(

1 +
`2exk

αPγ4
‖∇m‖2∞

)[
αP‖v‖2Ω + `2exk ‖∇v‖2Ω

]
=
(

1 +
`2exk

αPγ4
‖∇m‖2∞

)
y ·
(
αPM + `2exkL

)
y. (4.67b)

We combine (4.66)–(4.67) and obtain that (FS2) holds with

c2 .


1 +

`2exk

αPγ4
‖∇m‖2∞ if 1 + (Tm)3 ≥ γ > 0,

1 +
`2exk

αPh2
else.

(4.68)

Step 4. With Step 1–Step 3, the matrices B := PQ[m] and B0 := P?
Q[m] satisfy the

assumptions of Lemma 4.6.11 with c1 = 1 and c2 from (4.68). Hence, we get that

1

c2
2

x ·
(
P?

Q[m]
)−1

x ≤ x ·
(
PQ[m]

)−1
x ≤ x ·

(
P?

Q[m]
)−1

x for all x ∈ R2N . (4.69)

From this and (4.64), we obtain that

δ(1) (4.62a)
= inf

x∈R2N\{0}

x ·
(
P?

Q[m]
)−1

x

x ·
(
PQ[m]

)−1
x

(4.69)
≥ 1 and δ(2) (4.62b)

= inf
x∈R2N\{0}

x ·P?
Q[m] x

x ·PQ[m]x

(4.64)
≥ 1

c2
.

Together with the estimates for γ(1) and γ(2) from (4.63), this concludes the proof.
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4.6.7 Auxiliary results

This section collects some technical lemmas used in the proofs of the main results.

Lemma 4.6.9. For (µ1, µ2, µ3)T ≡ µ ∈Mh, there hold the following assertions (i)–(iii):
(i) For all i, j ∈ {1, 2}, it holds that∥∥∥∥ µiµj

1 + µ3

∥∥∥∥
∞
≤ 2.

(ii) Let 1 + µ3(z) ≥ γ > 0 for all nodes z ∈ Nh. For all i, j ∈ {1, 2}, it holds that

µiµj
1 + µ3

∈W 1,∞(Ω) with
∥∥∥∥ ∂k[ µiµj

1 + µ3

]∥∥∥∥
∞
≤ 3 γ−1 ‖∂kµ‖∞

for all k ∈ {1, 2, 3}.
(iii) Let 1 + µ3(z) ≥ γ > 0 for all nodes z ∈ Nh. For all i, j ∈ {1, 2}, it holds that

µiµj
1 + µ3

∈W 2,∞(K) with
∥∥∥∥ ∂`∂k[ µiµj

1 + µ3

]∥∥∥∥
∞
≤ 12 γ−2 ‖∂kµ‖∞ ‖∂`µ‖∞,

for all elements K ∈ Th and for all `, k ∈ {1, 2, 3}.

Proof. To prove (i), note that piecewise affine functions attain their maximal length at the
nodes. Since µ ∈Mh, together with Young’s inequality this yield that∣∣∣∣ µiµj1 + µ3

∣∣∣∣ ≤ µ2
1 + µ2

2

1 + µ3
≤ 1− µ2

3

1 + µ3
=

(1− µ3)(1 + µ3)

1 + µ3
= (1− µ3) ≤ 2.

This proves (i). For the proof of (ii) and (iii), the product rule yields that

∂k

[
µiµj

1 + µ3

]
=

(∂kµi)µj
1 + µ3

+
µi(∂kµj)

1 + µ3
− µiµj(∂kµ3)

(1 + µ3)2
. (4.70)

Moreover, we exploit that the second derivative of affine functions is zero. Elementwise, the
product rule then yields that

∂`∂k

[
µiµj

1 + µ3

]
(4.70)

=
(∂kµi)(∂`µj)

1 + µ3
− (∂kµi)µj(∂`µ3)

(1 + µ3)2
+

(∂`µi)(∂kµj)

1 + µ3
− µi(∂kµj)(∂`µ3)

(1 + µ3)2

− (∂`µi)µj(∂kµ3)

(1 + µ3)2
− µi(∂`µj)(∂kµ3)

(1 + µ3)2
+

2µiµj(∂kµ3)(∂`µ3)

(1 + µ3)3
.

(4.71)

Since |µ| ≤ 1 and since µ is piecewise affine, the assumption 1+µ3(z) ≥ γ > 0 for all nodes
implies that 1 + µ3 ≥ γ > 0 in Ω. Together with |µ| ≤ 1 and (4.70), this proves (ii). For
the proof of (iii), additionally note that γ ≤ 1 + µ3 ≤ 1 + |µ3| ≤ 2 yields that 1 ≤ 2/γ.
Together with |µ| ≤ 1 and (4.71), this proves (iii).
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Lemma 4.6.10. For (µ1, µ2, µ3)T ≡ µ, (ν1, ν2, ν3)T ≡ ν ∈Mh, let 1 + µ3(z) ≥ γ > 0 and
1 + ν3(z) ≥ γ > 0 for all nodes z ∈ Nh. Then, there exists a constant C > 0 such that the
following assertions (i)–(iii) hold true:
(i) For all i, j ∈ {1, 2}, it holds that∥∥∥∥ µiµj

1 + µ3
− νiνj

1 + ν3

∥∥∥∥
∞
≤ C γ−1‖µ− ν‖∞.

(ii) For all i, j ∈ {1, 2} and all k ∈ {1, 2, 3}, it holds that∥∥∥∥∂k( µiµj
1 + µ3

− νiνj
1 + ν3

)∥∥∥∥
∞
≤ Cγ−2

(
‖∇µ‖∞ + ‖∇ν‖∞

)
‖µ− ν‖∞

+ Cγ−1 ‖∇µ−∇ν‖∞.

(iii) For all i, j ∈ {1, 2}, all elements K ∈ Th and all `, k ∈ {1, 2, 3}, it holds that∥∥∥∥∂`∂k( µiµj
1 + µ3

− νiνj
1 + ν3

)∥∥∥∥
∞
≤ Cγ−3

(
‖∇µ‖∞ + ‖∇ν‖∞

)2 ‖µ− ν‖∞
+ Cγ−2

(
‖∇µ‖∞ + ‖∇ν‖∞

)
‖∇µ−∇ν‖∞.

Proof. Throughout the proof, we write

Pij :=
µiµj

1 + µ3
and dk := µk − νk for all i, j ∈ {1, 2} and all k ∈ {1, 2, 3}. (4.72)

Recall that the properties of Pij are discussed in Lemma 4.6.9. Since µ,ν are piecewise
affine, we get that |µ|, |ν| ≤ 1 on Ω. Moreover, since 1+µ3(z) ≥ γ > 0 and 1+ν3(z) ≥ γ > 0
for all nodes z ∈ Nh, it follows that 1 +µ3 ≥ γ > 0 and 1 + ν3 ≥ γ > 0 on Ω. For the proof
of (i), elementary computations show that

µiµj
1 + µ3

− νiνj
1 + ν3

= −Pij
d3

1 + ν3
+

µjdi
1 + ν3

+
νidj

1 + ν3
. (4.73)

Together with Lemma 4.6.9 (i), this proves (i). For the proof of (ii), let k ∈ {1, 2, 3}. We
differentiate the terms in (4.73) separately and obtain that

∂k

(
Pij

d3

1 + ν3

)
= (∂kPij)

d3

1 + ν3
+ Pij

(∂kd3)

1 + ν3
− Pij

d3(∂kν3)

(1 + ν3)2
=: T1 + T2 + T3, (4.74a)

∂k

( µjdi
1 + ν3

)
=

(∂kµj)di
1 + ν3

+
µj(∂kdi)

1 + ν3
− µjdi(∂kν3)

(1 + ν3)2
=: T4 + T5 + T6, (4.74b)

∂k

( νidj
1 + ν3

)
=

(∂kνi)dj
1 + ν3

+
νi(∂kdj)

1 + ν3
− νidj(∂kν3)

(1 + ν3)2
=: T7 + T8 + T9. (4.74c)

With 1 + µ3 ≥ γ > 0 and 1 + ν3 ≥ γ > 0, Lemma 4.6.9 (i)–(ii) yields that∑
i∈{1,3,4,6,7,9}

|Ti| . γ−2
(
‖∇µ‖∞ + ‖∇ν‖∞

)
‖µ− ν‖∞, and

∑
i∈{2,5,8}

|Ti| . γ−1 ‖∇µ−∇ν‖∞.
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Together with (4.73), this proves (ii). For the proof of (iii), let `, k ∈ {1, 2, 3}. We differ-
entiate the terms in (4.74) separately and exploit that the second derivative of piecewise
affine functions is zero. We start from (4.74a). Elementwise, the product rule yields that

∂`

(
(∂k Pij)

d3

1 + ν3

)
= (∂`∂kPij)

d3

1 + ν3
+ (∂kPij)

∂`d3

1 + ν3
− (∂kPij)

d3(∂`ν3)

(1 + ν3)2
,

=: T̃1 + T̃2 + T̃3. (4.75a)

∂`

(
Pij

(∂kd3)

1 + ν3

)
= (∂`Pij)

(∂kd3)

1 + ν3
− Pij

(∂kd3)(∂`ν3)

(1 + ν3)2
=: T̃4 + T̃5, (4.75b)

∂`

(
Pij

d3(∂kν3)

(1 + ν3)2

)
= (∂`Pij)

d3(∂kν3)

(1 + ν3)2
+ Pij

(∂`d3)(∂kν3)

(1 + ν3)2
− 2Pij

d3(∂kν3)(∂`ν3)

(1 + ν3)3

=: T̃6 + T̃7 + T̃8. (4.75c)

Next, we get for the terms from (4.74b) elementwise that

∂`

(
(∂kµj)di
1 + ν3

)
=

(∂kµj)(∂`di)

1 + ν3
− (∂kµj)di(∂`ν3)

(1 + ν3)2
=: T̃9 + T̃10, (4.76a)

∂`

(
µj(∂kdi)

1 + ν3

)
=

(∂`µj)(∂kdi)

1 + ν3
− µj(∂kdi)(∂`ν3)

(1 + ν3)2
=: T̃11 + T̃12, (4.76b)

∂`

(
µjdi(∂kν3)

(1 + ν3)2

)
=

(∂`µj)di(∂kν3)

(1 + ν3)2
+
µj(∂`di)(∂kν3)

(1 + ν3)2
− 2

µjdi(∂kν3)(∂`ν3)

(1 + ν3)3

=: T̃13 + T̃14 + T̃15. (4.76c)

Lemma 4.6.9, 1 ≤ 2/γ and 1 + µ3 ≥ γ > 0 as well as 1 + ν3 ≥ γ > 0 yield that∑
i∈{1,3,6,8,10,12,13,15}

|T̃i| . γ−3
(
‖∇µ‖∞ + ‖∇ν‖∞

)2 ‖µ− ν‖∞, and

∑
i∈{2,4,5,7,9,11,14}

|T̃i| . γ−2
(
‖∇µ‖∞ + ‖∇ν‖∞

)
‖∇µ−∇ν‖∞.

Note that the terms in (4.74c) are obtained if we replace µi with νi and di with dj in (4.74b).
Hence, we can apply the same arguments as in (4.76). This proves (iii).

Lemma 4.6.11 ([ABV14, Lemma 3.1]). Let B ∈ R2N×2N be a positive definite matrix and
B0 ∈ R2N×2N be a symmetric positive definite matrix, which satisfy for c1, c2 > 0 that

x ·Bx ≥ c1 x ·B0x for all x ∈ R2N and

x ·By ≤ c2

(
x ·B0x

)1/2 (
y ·B0y

)1/2 for all x,y ∈ R2N .

Then, it holds that

x ·B−1x ≥ c1

c2
2

x ·B−1
0 x for all x ∈ R2N and

x ·B−1y ≤ c−1
1

(
x ·B−1

0 x
)1/2 (

y ·B−1
0 y

)1/2 for all x,y ∈ R2N .
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4.7 Conclusion

We consider the solution of the constrained linear system which arises from the discretiza-
tion of LLG with tangent plane schemes. For each time-step, the method requires solving
for the vector-valued discrete time derivative, defined by its N nodal values in R3, where
N ∈ N denotes the number of nodes of the mesh used for the spatial discretization. The
time derivative is defined by the variational formulation posed in the time-dependent dis-
crete tangent space of dimension 2N . Naive saddle point approaches consider the variational
formulation in the vector-valued standard finite element space (Sh)3. The resulting linear
system is supplemented with N linear constraints which impose orthogonality between the
magnetization and its time derivative, and hence leading to an indefinite system in R4N .
In this work, we design a solution strategy, based on local Householder reflections, which
results in a linear positive-definite system in R2N , thus recovering the effective dimension
of the problem. For the proposed approach, we discuss the iterative solution of the system
with the GMRES algorithm. Since applying the GMRES algorithm without preconditioner
potentially leads to high iteration numbers, we derive three types of preconditioning strate-
gies, which we refer to as practical preconditioner PQ[·], stationary preconditioner P2D,
and Jacobi-type preconditioner Pjac. For the first two strategies, we establish results which
provide explicit bounds for the number of iterations required to reach a prescribed tolerance
(Theorem 4.4.1 and Theorem 4.4.3, respectively). Then, we numerically compare the three
proposed approaches.
In all performed experiments, using the Jacobi-type preconditioner Pjac reduces the iter-

ation numbers; see Figure 4.1–4.2, Figure 4.6 and Figure 4.8. Since applying Pjac requires
only the (trivial) inversion of a diagonal matrix, the preconditioned GMRES algorithm with
Pjac should always be preferred over no preconditioning.
However, as shown in Figure 4.1 and Figure 4.8, Pjac is not robust with respect to the

mesh-size. The experiments show that on fine meshes one should use either the stationary
preconditioner P2D or the practical preconditioner PQ[·]. Based on the experiments of
Section 4.5.2.1 and Section 4.5.3, we recommend choosing αP = 1 for the preconditioners
rather than the canonical choice αP = α. In Figure 4.1 and Figure 4.8, unlike Pjac, these
two preconditioners are shown to be robust with respect to the mesh-size. If T is chosen
accordingly, the robustness with respect to the mesh-size can also be proved rigorously; see
Theorem 4.4.1(ii) and Theorem 4.4.3 as well as Remark 4.4.2(ii).
For almost all experiments the iteration numbers for PQ[·] are slightly, but insignificantly

lower than those for P2D. We conclude by pointing out two aspects when choosing between
P2D and PQ[·]: While we obtain satisfying results (Figure 4.5a and Figure 4.6) for P2D

when choosing T adaptively as described in Section 4.4.2, the choice of T seems to be
irrelevant for the performance of PQ[·]; see Figure 4.5b. However, one drawback of PQ[·]
compared to P2D is that its application is roughly 50% more costly: This is due to the fact
that in each GMRES iteration, employing PQ[·] essentially requires applying the inverse
of (αPM + `2exkL) ∈ R3N×3N to a vector in R3N , while employing P2D requires applying
the inverse of (αPM2D + `2exkL2D) ∈ R2N×2N to a vector in R2N . Hence, exploiting the
block diagonal structure of the preconditioners discussed in Remark 4.5.1, employing PQ[·]
corresponds to solving a sparse N ×N system with three different right-hand sides, while
employing P2D requires the solution of the same N × N system for only two right-hand
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sides.
Even though the theoretical result for the practical preconditioner (Theorem 4.4.1) is

stronger than that for the stationary preconditioner (Theorem 4.4.3), the overall recom-
mendation from the numerical experiments is to use the stationary preconditioner together
with an adaptive choice of T.
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5 Unconditional well-posedness and IMEX
improvement of a family of
predictor-corrector methods in
micromagnetics

This chapter consists of a recently submitted preprint [MPPR21] together with Norbert J.
Mauser, Dirk Praetorius, and Michele Ruggeri.

Abstract. Recently, Kim & Wilkening (Convergence of a mass-lumped finite element
method for the Landau–Lifshitz equation, Quart. Appl. Math., 76, 383–405, 2018) proposed
two novel predictor-corrector methods for the Landau–Lifshitz–Gilbert equation (LLG) in
micromagnetics, which models the dynamics of the magnetization in ferromagnetic ma-
terials. Both integrators are based on the so-called Landau–Lifshitz form of LLG, use
mass-lumped variational formulations discretized by first-order finite elements, and only
require the solution of linear systems, despite the nonlinearity of LLG. The first(-order in
time) method combines a linear update with an explicit projection of an intermediate ap-
proximation onto the unit sphere in order to fulfill the LLG-inherent unit-length constraint
at the discrete level. In the second(-order in time) integrator, the projection step is replaced
by a linear constraint preserving variational formulation. In this paper, we extend the anal-
ysis of the integrators by proving unconditional well-posedness and by establishing a close
connection of the methods with other approaches available in the literature. Moreover, the
new analysis also provides a well-posed integrator for the Schrödinger map equation (which
is the limit case of LLG for vanishing damping). Finally, we design an implicit-explicit
strategy for the treatment of the lower-order field contributions, which significantly reduces
the computational cost of the schemes, while preserving their theoretical properties.

5.1 Introduction

5.1.1 Dynamic micromagnetism

Reliable numerical simulations of magnetic processes occurring at submicrometer length
scales are fundamental tools to optimize the design of many technological devices, e.g.,
magnetic sensors, magnetic logic gates, and hard disk drives. The theoretical background
of most simulation packages is the theory of micromagnetism [Bro63], a continuum theory
which models the magnetic state of a ferromagnetic material at constant temperature in
terms of a continuous vector field with constant magnitude, the magnetization. A well-
accepted model to describe the dynamics of the magnetization is a nonlinear parabolic
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5 Well-posedness and IMEX improvement of recent predictor-corrector methods

partial differential equation (PDE) usually referred to as Landau–Lifshitz–Gilbert equation
(LLG) [LL35, Gil04], which in the so-called Landau–Lifshitz (LL) form reads as

∂tm = − 1

1 + α2
m× heff(m)− α

1 + α2
m× (m× heff(m)). (5.1)

Here, m denotes the normalized magnetization, which satisfies the nonconvex unit-length
constraint |m| = 1, heff(m) is the effective field, whose specific expression depends on
the Gibbs free energy of the system (see (5.6) below), and α ≥ 0 is the Gilbert damping
parameter, which incorporates energy dissipation into the model.
Alternative forms of LLG used in the literature, mathematically equivalent to the LL

form (5.1), are the so-called Gilbert form of LLG

∂tm = −m× heff(m) + αm× ∂tm , (5.2)

and
α∂tm+m× ∂tm = −m× (m× heff(m)), (5.3)

which we call the alternative form of LLG.
The aforementioned need of fast and reliable tools to perform micromagnetic simulations

encouraged many works concerned with the numerical analysis of LLG, which will also be
the subject of the present paper.

5.1.2 State of the art

In the last three decades, mathematical questions arising from the micromagnetic theory
have been the subject of several studies, from both the analytical and the numerical point
of view. For analytical results for LLG, we refer, e.g., to the papers [Vis85, AS92, GH93,
CF01a, Mel05, DS14, FT17b, DIP20] and the references therein. For an overview of nu-
merical methods proposed for LLG (up to 2008), we refer to the monograph [Pro01] and
the review articles [KP06, GC07, Cim08]. More recently, several numerical schemes with a
rigorous convergence analysis have been proposed. They differ from each other in the LLG
formulation they are based on (usually one among (5.1)–(5.3)), in the approach used to
impose the unit-length constraint at the discrete level, and in the type of convergence result
(plain convergence towards a weak solution of LLG with minimal regularity or convergence
with rates towards a sufficiently regular strong solution).
Semi-implicit finite element methods based on (variants of) the LL form (5.1) of LLG are

proposed in [Gao14, An16], where a priori error estimates, which show their convergence
towards a smooth solution of LLG, are also established.
A class of methods referred to as tangent plane schemes or projection methods [AJ06,

BKP08, Alo08, BFF+14, AHP+14, AKST14, FT17a, DPP+20, AFKL21] is based on a
predictor-corrector approach: At each time-step, first, an update is computed by solving
a linear variational problem posed in the discrete tangent space of the current magne-
tization; second, the update is used to obtain the magnetization at the next time-step.
The methods proposed in [AJ06, BKP08, Alo08, BFF+14, AHP+14, FT17a] are based
on a variational formulation of (5.3) discretized by first-order finite elements to compute
an approximation of the linear velocity ∂tm. The magnetization at the next time-step
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is then obtained via a first-order time-stepping. To impose the unit-length constraint
at the vertices of the underlying mesh, the nodal values are projected onto the sphere
in [AJ06, BKP08, Alo08, BFF+14]. The projection is omitted from the time-stepping
in [AHP+14, FT17a]: In this case, the approximations do not fulfill the constraint (not
even at the vertices of the mesh), but this error can be controlled by the time-step size (in
particular, the constraint holds for the solution of LLG towards which the finite element
approximation converges). High-order extensions of the tangent plane approach have been
proposed in [AKST14, DPP+20, AFKL21]. The main advantages of this class of meth-
ods are that they do not require any time-step restriction for convergence (unconditional
convergence) [Alo08, BFF+14, AHP+14, AKST14, FT17a, DPP+20] and that, despite the
nonlinear nature of LLG, only one linear system per time-step has to be solved.
A numerical scheme based on the Gilbert form (5.2) of LLG is considered in [BP06,

PRS18b]. The method employs mass-lumped first-order finite elements for the spatial dis-
cretization and the second-order implicit midpoint rule for the time discretization. The
scheme is unconditionally convergent towards a weak solution of LLG, but requires the
solution of a nonlinear system of equations per time-step. A similar method, but based on
the LL form (5.1) of LLG, is proposed and analyzed in [Cim09]. The latter approach is
motivated by the interest in having an integrator which is robust with respect to the limit
cases of (5.1) in which one of the two terms on the right-hand side tends to zero. Indeed,
in the case heff(m) = ∆m, neglecting the second (dissipative) term on the left-hand side
of (5.1) (α → 0), one obtains the so-called Schrödinger map equation [SSB86], whereas
omitting the first (conservative) term, one is led to the harmonic map heat flow [LW08].
The recent work [KW18] proposes two predictor-corrector schemes for LLG which aim

to combine the features of some of the above integrators. In the first scheme, [KW18,
Algorithm 1], which we denote by PC1 for the sake of brevity, the predictor is based on
the LL form (5.1) of LLG (like the variational formulation used in [Cim09]) and employs
mass-lumping for its discretization (like [BP06, Cim09]). However, it only requires the
solution of one linear system per time-step and uses the nodal projection to impose the
unit-length constraint (like the method of [Alo08, BFF+14]). The second scheme, [KW18,
Algorithm 2], which we refer to as PC2, uses the same predictor as PC1, but replaces the
nodal projection step with a constraint preserving mass-lumped (as in [BP06, Cim09]), but
linear (as in [Alo08, BFF+14]), variational formulation. In the paper, adapting the proof
of [Alo08], the authors show convergence of the approximations generated by PC1 towards a
weak solution of LLG. Moreover, the expected convergence order in time of both methods
(first-order for PC1, second-order for PC2) is empirically verified by means of numerical
experiments in 2D.
Note that in the above discussion we have restricted ourselves to methods employing

the finite element method for the spatial discretization. For other approaches based on
finite differences, we refer, e.g., to [WGCE01, DSM05, KL17, XGCW+20, CWX21] and the
references therein.

5.1.3 Novelty of the present work

In this work, we improve the theoretical understanding of the predictor-corrector methods
proposed in [KW18].
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First, we show that PC1 is unconditionally well-posed, i.e., for each time-step, the vari-
ational problem to be solved admits a unique solution, which is left open in the original
paper. By closing this fundamental gap, we show that PC1 is not only closely related to
the first-order tangent plane scheme of [Alo08, BFF+14], but actually can even be inter-
preted as a slight modification of it, which explains why the convergence analysis of the
two schemes is almost identical. Furthermore, following [BFF+14], we propose an implicit-
explicit (IMEX) version of PC1. When considering magnetization dynamics involving the
full effective field—more precisely, dynamics including the nonlocal stray field—the pro-
posed adaptation is computationally much more attractive: The IMEX version PC1+IMEX
avoids the costly inner iteration in the solver of the original scheme, while preserving the
experimental first-order accuracy of PC1, which we confirm by numerical studies in 3D.
Second, we consider the analysis of PC2. While the conservation of the unit-length con-

straint at the vertices of the mesh in PC1 is guaranteed (at machine precision) also in prac-
tical computations (since it is directly enforced in the method using the nodal projection),
the one guaranteed by PC2, which follows from the variational formulation of the corrector,
is lost in practice due to the inevitable use of inexact (iterative) solvers for the solution of
the arising linear systems. Hence, although the predictors of PC1 and PC2 coincide in theory,
the well-posedness analysis of (the predictor of) PC1 does not transfer to a practical version
of PC2. To cope with this problem, we establish a decomposition of the finite element space,
which does not only allow us to prove unconditional well-posedness of the practical version
of PC2, but also to extend the result, for both PC1 and PC2 (theoretical and practical), to
the limit case α = 0 (Schrödinger map equation). Moreover, following [PRS18b, DPP+20],
we adopt the IMEX treatment also for PC2. In particular, in the presence of the nonlocal
stray field, the proposed method PC2+IMEX is computationally much more attractive than
its fully implicit counterpart PC2, while conserving the experimental second-order accuracy
in time. Again, these claims are confirmed in our numerical studies. Stability and conver-
gence of PC2, not addressed in [KW18], remain open also in our analysis and will be the
subject of future research. In this paper, we shed some light on this question by means of
some surprising numerical experiments.

5.1.4 Outline

We conclude this section by collecting some general notation and basic vector identities
used throughout the work (Section 5.1.5). In Section 5.2, we formulate the initial boundary
value problem for LLG in which we are interested, we recall the notion of a weak solu-
tion and introduce the basic ingredients of the discretization. Section 5.3 is devoted to
the first-order method: After proving unconditional well-posedness of PC1 in Section 5.3.2,
we propose an IMEX adaptation (Section 5.3.3) overcoming the inefficiency drawbacks of
the original version, while preserving unconditional well-posedness, stability, convergence
(Section 5.3.4), and accuracy. Section 5.4 is devoted to the second-order method: In Sec-
tion 5.4.2, we first prove unconditional well-posedness of PC2. Subsequently, in Section 5.4.3,
we extend the unconditional well-posedness result to the more general formulation of the
second-order algorithm, where discrete unit-length of the iterates is not assumed. This
covers, in particular, the practical version of the scheme incorporating the inevitable use of
inexact (iterative) linear solvers. Section 5.4.4 closes with a second-order accuracy preserv-
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ing IMEX modification overcoming the inefficiency drawbacks of PC2. Section 5.5 provides
numerical studies validating the applicability (Section 5.5.1) and the expected accuracy
(Section 5.5.2) of the IMEX integrators proposed in this work. Finally, in Section 5.5.3, we
numerically investigate the stability of PC2.

5.1.5 General notation and vector identities

Throughout this work, we use the standard notation for Lebesgue, Sobolev, and Bochner
spaces and norms. Vector-valued functions are indicated by bold letters. Bold letters are
also used for vector-valued and matrix-valued function spaces, e.g., both L2(Ω;R3) and
L2(Ω;R3×3) are denoted by L2(Ω). We denote by 〈·, ·〉 and ‖·‖ the scalar product and the
norm of L2(Ω), respectively, while |·| denotes the Euclidean norm of a vector in R3 or the
Frobenius norm of a matrix in R3×3. To abbreviate notation in proofs, we write A . B
when A ≤ cB for some generic constant c > 0, which is clear from the context and always
independent of the discretization parameters. For vector-valued functions f , g : Ω→ R3 we
use the notation

−g ×∇f := ∇f × g := (∂1f × g, ∂2f × g, ∂3f × g) : Ω→ R3×3 .

We conclude this section by recalling five vector identities used regularly in this work

a× b = −b× a, (5.4a)
(a× b) · a = 0, (5.4b)
a× (b× c) = (a · c) b− (a · b) c, (5.4c)
(a× b) · c = a · (b× c), (5.4d)

(a× b) · (c× d) = (a · c) (b · d)− (b · c) (a · d), (5.4e)

which hold true for arbitrary a, b, c,d ∈ R3.

5.2 Problem formulation

5.2.1 Landau–Lifshitz–Gilbert equation

Given a bounded Lipschitz domain Ω ⊂ R3 and T > 0, we define the space-time cylinder
ΩT := Ω× (0, T ). We consider the following initial boundary value problem

(1 + α2) ∂tm = −m× heff(m)− αm× (m× heff(m)) in ΩT , (5.5a)
∂nm = 0 on ∂Ω× (0, T ), (5.5b)

m(0) = m0 in Ω. (5.5c)

The unknown is the normalized magnetizationm : ΩT → S2 = {x ∈ R3 : |x| = 1}. In (5.5a),
the effective field

heff(m) = `2ex ∆m+ π(m) + f (5.5d)

is the negative functional derivative of the Gibbs free energy

E(m) =
`2ex

2

∫
Ω
|∇m|2 dx− 1

2

∫
Ω
π(m) ·m dx−

∫
Ω
f ·m dx, (5.6)
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where `ex > 0 is the exchange length, π : L2(Ω) → L2(Ω) is a linear, continuous, and self-
adjoint operator which collects all lower-order contributions such as uniaxial magnetocrys-
talline anisotropy and the nonlocal stray field, and f : ΩT → R3 is the applied external field.
The equation is supplemented with homogeneous Neumann boundary conditions (5.5b) and
the initial condition (5.5c), where m0 : Ω→ S2 denotes a given initial state.
Taking the scalar product of (5.5a) with m, (5.4b) yields that 0 = ∂tm ·m in ΩT . Since
|m0| = 1 in Ω by assumption and ∂t(|m|2/2) = ∂tm ·m = 0, it follows that |m| = 1 in
ΩT . Moreover, any solution of (5.5a) satisfies the energy law

d

dt
E(m,f) = −α

∫
Ω
|∂tm|2 dx−

∫
Ω
∂tf ·m dx. (5.7)

From this, we see that the Gilbert damping constant α modulates the dissipation of the
system. In particular, if α = 0 and f is constant in time, then the energy is conserved. The
PDE inherent constraint |m| = 1 in ΩT and the energy law (5.7) should be satisfied (at the
discrete level) by any feasible numerical method.

5.2.2 Weak solution

We recall the notion of a weak solution of (5.5), which extends the one introduced in [AS92].

Definition 5.2.1. Letm0 ∈H1(Ω;S2) and f ∈ C1([0, T ];L2(Ω)). A vector fieldm : ΩT →
R is called a weak solution of (5.5), if the following properties are satisfied:

(i) m ∈H1(ΩT ) ∩ L∞(0, T ;H1(Ω)) with |m| = 1 a.e. in ΩT ;

(ii) m(0) = m0 in the sense of traces;

(iii) for all w ∈H1(ΩT ), it holds that∫ T

0
〈∂tm(t),w(t)〉 dt− α

∫ T

0
〈m(t)× ∂tm(t),w(t)〉 dt

= `2ex

∫ T

0
〈m(t)×∇m(t),∇w(t)〉 dt−

∫ T

0
〈m(t)× π(m(t)),w(t)〉 dt

−
∫ T

0
〈m(t)× f(t),w(t)〉 dt;

(5.8)

(iv) it holds that

E(m(T )) + α

∫ T

0
‖∂tm(t)‖2dt+

∫ T

0
〈∂tf(t),m(t)〉 dt ≤ E(m0). (5.9)

We note that (5.8) is a variational formulation in space-time of the Gilbert form (5.2) of
LLG, and that (5.9) is a weaker version of the energy law (5.7).
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5.2.3 Discretization

For the temporal discretization, given L ∈ N, we consider a partition {t`}`=0,...,L of the time
interval [0, T ] with uniform time-step size k := T/L > 0, i.e., t` = `k for all ` = 0, . . . , L.
Given a finite sequence of functions {u`}`=0,...,L, we define

u`+1/2 :=
u`+1 + u`

2
and dtu

`+1 :=
u`+1 − u`

k
for all ` = 0, . . . L− 1.

For the spatial discretization, we consider a regular tetrahedral triangulation Th of Ω with
mesh size h > 0. We denote by Nh the set of vertices of Th and by {φz}z∈Nh

the classical
nodal basis of the space S1(Th) of Th-piecewise linear and globally continuous discrete
functions, i.e., φz(z′) = δz,z′ for all z, z′ ∈ Nh. With {ej}j=1,2,3 the standard basis of R3,
{φzej}z∈Nh,j=1,2,3 gives a basis of S1(Th)3. Note that S1(Th)3 is a 3N -dimensional space,
with N denoting the number of vertices in Nh. We introduce the set of admissible discrete
magnetizations

Mh :=
{
mh ∈ S1(Th)3 : |mh(z)| = 1 for all z ∈ Nh

}
and, for mh ∈Mh, the discrete tangent space of mh

Kh[mh] :=
{
ϕh ∈ S1(Th)3 : mh(z) ·ϕh(z) = 0 for all z ∈ Nh

}
.

We consider the nodal interpolant Ih : C0(Ω) → S1(Th), which is defined by Ih(v) =∑
z∈Nh

v(z)φz for all v ∈ C0(Ω). We denote the vector-valued realization of the nodal
interpolant by Ih : C0(Ω) → S1(Th)3. In C0(Ω), besides the standard L2(Ω)-scalar prod-
uct 〈·, ·〉, we consider the mass-lumped scalar product 〈·, ·〉h defined by

〈u,w〉h =

∫
Ω
Ih(u ·w) dx for all u,w ∈ C0(Ω).

Using the definition of the nodal interpolant, we see that

〈u,w〉h =
∑
z∈Nh

βz u(z) ·w(z) for all u,w ∈ C0(Ω), (5.10)

where βz :=
∫

Ω φz dx > 0 for all z ∈ Nh. For discrete functions, the induced norm ‖·‖h is
equivalent to the standard L2(Ω)-norm; see [Bar15, Lemma 3.9], i.e., it holds that

‖wh‖ ≤ ‖wh‖h ≤
√

5‖wh‖ for all wh ∈ S1(Th)3. (5.11)

We define the (negative) discrete Laplacian −∆h : H1(Ω)→ S1(Th)3 by

− 〈∆hw,wh〉h = 〈∇w,∇wh〉 for all w ∈H1(Ω) and wh ∈ S1(Th)3. (5.12)

Let wh ∈ S1(Th)3. With a double application of the classical inverse estimate and the norm
equivalence (5.11), we see that

‖∆hwh‖2h = 〈∆hwh,∆hwh〉h
(5.12)

= −〈∇wh,∇∆hwh〉 ≤ ‖∇wh‖‖∇∆hwh‖
≤ Ch−2‖wh‖h‖∆hwh‖h.
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This shows that
‖∆hwh‖h ≤ Ch−2‖wh‖h for all wh ∈ S1(Th)3, (5.13)

where C > 0 depends only on the quasi-uniformity of the triangulation Th. Finally, we
define the mapping Ph : L2(Ω)→ S1(Th)3 by

〈Phw,wh〉h = 〈w,wh〉 for all w ∈ L2(Ω) and wh ∈ S1(Th)3. (5.14)

Using (5.10), it is easy to see that, for all w ∈ L2(Ω) and all z ∈ Nh, it holds that
(Phw)(z) = β−1

z

∫
Ωwφz dx. In particular, the computation of Phw does not require to

solve any linear system.

5.3 First-order predictor-corrector scheme

In this section, we discuss the first-order scheme proposed in [KW18] and its connections
with the integrators proposed in [BP06] and [Alo08]. Our contribution is twofold: First,
we prove unconditional well-posedness of the scheme, which fills a fundamental gap in the
analysis of [KW18]. Second, we employ an explicit treatment of the (nonlocal) lower-order
contributions to obtain a computationally superior IMEX version of the scheme, preserving
(unconditional) convergence and experimental rates in time. We first consider the method
for the case heff(m) = `2ex∆m. For the general case heff(m) = `2ex∆m + π(m) + f , we
refer to Section 5.3.3.

5.3.1 Variational formulation

The following algorithm restates [KW18, Algorithm 1] written in terms of the discrete func-
tions m`

h,v
`
h,m

`+1
h ∈ S1(Th)3, where m`

h ≈ m(t`), v`h ≈ ∂tm(t`), and m`+1
h ≈ m(t`+1).

In particular, the predictor (5.15) of Algorithm 5.3.1 reformulates the N equations in R3

of the predictor of [KW18, Algorithm 1] as an equivalent variational formulation for v`h in
S1(Th)3. As for the tangent plane scheme [Alo08], θ ∈ [0, 1] is a parameter modulating the
‘degree of implicitness’ of the scheme.

Algorithm 5.3.1 (PC1, variational form). Input: m0
h ∈Mh.

Loop: For all time-steps ` = 0, . . . , L− 1, iterate:

(i) Compute v`h ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3, it holds that

(1 + α2)〈v`h,wh〉h = −`2ex〈m`
h ×∆h(m`

h + θkv`h),wh〉h
− α`2ex〈m`

h × (m`
h ×∆h(m`

h + θkv`h)),wh〉h .
(5.15)

(ii) Define m`+1
h ∈Mh by

m`+1
h (z) :=

m`
h(z) + kv`h(z)

|m`
h(z) + kv`h(z)|

∈ S2 for all z ∈ Nh. (5.16)

Output: Sequence of discrete functions
{

(v`h,m
`+1
h )

}L−1

`=0
.
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5.3.2 Unconditional well-posedness

The predictor (5.15) can be written as: Find v`h ∈ S1(Th)3 such that

apre[m
`
h](v`h,wh) = Fpre[m

`
h](wh) for all wh ∈ S1(Th)3 ,

with some linear form Fpre[m
`
h] and the bilinear form apre[m

`
h] on S1(Th)3 reading

apre[m
`
h](v`h,wh) := (1 + α2)〈v`h,wh〉h + `2exθk〈m`

h ×∆hv
`
h,wh〉h

+ α`2exθk〈m`
h × (m`

h ×∆hv
`
h),wh〉h .

From the boundedness of m`
h in L∞(Ω) guaranteed by the nodal projection (5.16) and an

inverse estimate on the discrete Laplacian (5.13) we have

apre[m
`
h](wh,wh) ≥ (1− Ckh−2)‖wh‖2h .

Hence, assuming the CFL condition k = o(h2) implies the coercivity of apre[m
`
h] for suf-

ficiently small h and k. However, this undesirable restriction is a consequence of naively
using the inverse estimate, and can be avoided.
For arbitrary α > 0 the upcoming refined analysis allows to drop any CFL-type assump-

tions on the discretization parameters: In Lemma 5.3.2, we first collect two basic properties
of Algorithm 5.3.1, which turn out to be sufficient to prove unconditional well-posedness of
the algorithm in Theorem 5.3.3; also see Remark 5.3.4.

Lemma 5.3.2. Let m`
h ∈ Mh. Suppose that the solution v`h ∈ S1(Th)3 to (5.15) exists.

Then, v`h ∈ Kh[m`
h], and (5.16) provides a well-defined m`+1

h ∈Mh.

Proof. For arbitrary z ∈ Nh, with φz ∈ S1(Th) denoting the hat function with φz(z′) = δz,z′

for all z′ ∈ Nh, we choose wh := m`
h(z)φz ∈ S1(Th)3 in (5.15) to see

m`
h(z) · v`h(z)

(5.10)
= β−1

z 〈v`h,m`
h(z)φz〉h

(5.15),(5.4b)
= 0 .

Hence, v`h ∈ S1(Th)3 belongs to Kh[m`
h].

Well-posedness of (5.16) follows immediately from v`h ∈ Kh[m`
h] via

|m`
h(z) + kv`h(z)|2 = |m`

h(z)|2 + k2|v`h(z)|2 ≥ |m`
h(z)|2 = 1 for all ` = 0, . . . , L− 1 .

Consequently, for all z ∈ Nh the denominator in (5.16) is bounded below by |m`
h(z)| = 1

and the corrector step of Algorithm 5.3.1 is always well-posed.
The third claim m`+1

h ∈Mh follows directly from the explicit projection in (5.16).

These two observations are already sufficient to prove the first main contribution of this
work.

Theorem 5.3.3. Let α > 0. Then, Algorithm 5.3.1 is unconditionally well-posed for any
input m0

h ∈Mh, i.e., for all ` = 0, . . . , L− 1 the predictor (5.15) admits a unique solution
v`h ∈ S1(Th)3 and the corrector (5.16) is well-posed providing m`+1

h ∈Mh.
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Proof. Well-posedness of the corrector (5.16) and m`+1
h ∈Mh follow from Lemma 5.3.2.

Transforming (5.15) into a coercive system in the discrete tangent space, we prove well-
posedness of the predictor in three steps:

• Step 1: The predictor of Algorithm 5.3.1 can be reformulated as a well-posed system.

We claim that v`h ∈ S1(Th)3 satisfies (5.15) for all wh ∈ S1(Th)3, if and only if it satisfies
v`h ∈ Kh[m`

h] as well as

α〈v`h,ϕh〉h + 〈m`
h × v`h,ϕh〉h = `2ex〈∆h(m`

h + θkv`h),ϕh〉h for all ϕh ∈ Kh[m`
h] . (5.17)

This formulation can be written as follows: Find v`h ∈ Kh[m`
h] such that

aalt[m
`
h](v`h,ϕh) = `2ex〈∆hm

`
h,ϕh〉h for all ϕh ∈ Kh[m`

h],

where the bilinear form aalt[m
`
h] : Kh[m`

h]×Kh[m`
h]→ R is defined by

aalt[m
`
h](v`h,ϕh) := α〈v`h,ϕh〉h + 〈m`

h × v`h,ϕh〉h − `2exθk〈∆hv
`
h,ϕh〉h.

For α > 0, the bilinear form satisfies the ellipticity property

aalt[m
`
h](ϕh,ϕh) = α‖ϕh‖2h + `2exθk‖∇ϕh‖2 for all ϕh ∈ Kh[m`

h] ,

and the problem (5.17) is well-posed by the Lax–Milgram theorem. To conclude the proof,
it remains to show the claimed equivalence of (5.15) and (5.17).

• Step 2: Any solution v`h ∈ S1(Th)3 of (5.15) also solves (5.17).

Given arbitrary ϕh ∈ Kh[m`
h], we choose wh = Ih(αϕh + ϕh ×m`

h) ∈ S1(Th)3 in (5.15)
to obtain

(1 + α2)α〈v`h,ϕh〉h + (1 + α2)〈v`h,ϕh ×m`
h〉h = −α`2ex〈m`

h ×∆h(m`
h + θkv`h),ϕh〉h

− `2ex〈m`
h ×∆h(m`

h + θkv`h),ϕh ×m`
h〉h − α2`2ex〈m`

h × (m`
h ×∆h(m`

h + θkv`h)),ϕh〉h
− α`2ex〈m`

h × (m`
h ×∆h(m`

h + θkv`h)),ϕh ×m`
h〉h . (5.18)

By (5.4d) the left-hand side of (5.18) resembles the left-hand side of (5.17) scaled by (1+α2).
From m`

h ∈ Mh and ϕh ∈ Kh[m`
h], we infer Ih(|m`

h|2) = 1 and Ih(m`
h · ϕh) = 0 in Ω.

Hence, using the vector identities (5.4b)–(5.4e), the first and the last term on the right-hand
side of (5.18) cancel out, and (5.18) equivalently reads

(1 + α2)
(
α〈v`h,ϕh〉h + 〈m`

h × v`h,ϕh〉h
)

= (1 + α2)`2ex〈∆h(m`
h + θkv`h),ϕh〉h .

Now multiplying (5.18) by 1/(1 + α2), we conclude that any v`h ∈ S1(Th)3 satisfying (5.15)
necessarily satisfies (5.17) and, according to Lemma 5.3.2, belongs to Kh[m`

h] itself.

• Step 3: Any solution v`h ∈ Kh[m`
h] of (5.17) also solves (5.15).
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Given arbitrarywh ∈ S1(Th)3, we choose ϕh = Ih
(
m`

h×wh+αm`
h×(wh×m`

h)
)
∈ Kh[m`

h]
in (5.17) to obtain

α〈v`h,m`
h ×wh〉h + α2〈v`h,m`

h × (wh ×m`
h)〉h

+ 〈m`
h × v`h,m`

h ×wh〉h + α〈m`
h × v`h,m`

h × (wh ×m`
h)〉h (5.19)

= `2ex〈∆h(m`
h + θkv`h),m`

h ×wh〉h + α`2ex〈∆h(m`
h + θkv`h),m`

h × (wh ×m`
h)〉h .

From m`
h ∈ Mh and v`h ∈ Kh[m`

h], we infer Ih(|m`
h|2) = 1 and Ih(m`

h · v`h) = 0 in Ω.
Hence, by the vector identities (5.4b)–(5.4e), the first and the last term on the left-hand side
of (5.19) cancel out, while the second and third term on the left-hand side of (5.19) add up
to the left-hand side of (5.15). Further, by (5.4d) the right-hand side of (5.19) resembles the
right-hand side of (5.15). We conclude that any v`h ∈ Kh[m`

h] ⊂ S1(Th)3 satisfying (5.17)
necessarily satisfies (5.15). Ultimately, we have shown that (5.15) is equivalent to (5.17),
which always allows for a unique solution as shown in Step 1.

Remark 5.3.4. (i) Let w : Ω → R3 be an arbitrary smooth test function. Writing m` :=
m(t`) and v` := ∂tm(t`), the variational formulation of the LL form (5.5a) of LLG at time
t` ∈ (0, T ) reads

(1 + α2)〈v`,w〉 = −`2ex 〈m` ×∆m`,w〉 − α`2ex 〈m` × (m` ×∆m`),w〉 .

The discrete variational formulation (5.15) can be seen as a discrete mass-lumped version
of the latter, where the effective field is treated implicitly in time.
(ii) The core of the proof of Theorem 5.3.3 is the equivalent reformulation of the predictor
step (5.15) as well-posed system (5.17) in the discrete tangent space Kh[m`

h]. For α > 0, the
reformulated system is unconditionally well-posed and corresponds to a discretization of the
alternative form of LLG (5.3). Using (5.4c) and |m|2 ≡ 1, the formulation (5.3) is directly
obtained from the LL form (5.5a) via (α · (5.5a)+m× (5.5a))/(1 +α2). Step 3 of the proof
of Theorem 5.3.3 resembles the analogous computations on a discrete level. We emphasize
that the mass-lumped scalar product 〈·, ·〉h as well as m`

h ∈Mh and v`h ∈ Kh[m`
h] are the

crucial ingredients in the proof of Theorem 5.3.3.
(iii) With the reformulation (5.17), we fully understand the real nature of the first-order in-
tegrator from [KW18]: It is a predictor-corrector scheme which combines the approaches of
Bartels & Prohl [BP06] (mass-lumping (5.10), discrete Laplacian (5.12)) and Alouges [Alo08]
(degree of implicitness θ, projection update (5.16), unknown approximates time deriva-
tive). The predictor step (5.15) is a mass-lumped discrete variational formulation of the
LL form (5.5a) of LLG. The equivalent variational formulation (5.17) is a mass-lumped
variational formulation of the alternative form (5.3) of LLG and, in particular, is the mass-
lumped version of the predictor step of the tangent plane scheme from [Alo08]. Analogously
to the tangent plane scheme, the corrector step of Algorithm 5.3.1 employs the nodal pro-
jection to enforce the modulus constraint at the vertices of the triangulations.
(iv) While the proof of Theorem 5.3.3 emphasizes the close relation of Algorithm 5.3.1 to
the first-order tangent plane scheme, it is restricted to α > 0. In fact, Theorem 5.3.3 can
also be proved for the limit case α = 0; see Remark 5.4.6(iii)–(iv) below.
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5.3.3 Including lower-order contributions

In this section, we discuss the extension of the scheme to the general case heff(m) =
`2ex ∆m+π(m)+f . We start by recalling the definition (5.14) of the mapping Ph : L2(Ω)→
L2(Ω) and assume that we are given an operator πh : L2(Ω)→ L2(Ω) which approximates
π, e.g., in the case of the nonlocal stray field π(m) = hs, πh is a method for the approx-
imation of the magnetostatic Maxwell equations, e.g., via the hybrid FEM-BEM method
from [FK90].
In the original first-order integrator from [KW18], the lower-order contributions are

treated implicitly in time. Rewritten as a mass-lumped discrete LL formulation like (5.15),
the predictor step of [KW18, Algorithm 1] reads as follows: Find v`h ∈ S1(Th)3 such that

(1 + α2)〈v`h,wh〉h = −〈m`
h × [`2ex∆h(m`

h + θkv`h) + Ph(πh(m`
h + θkv`h) + f `+θ)],wh〉h

− α〈m`
h × (m`

h × [`2ex∆h(m`
h + θkv`h) + Ph(πh(m`

h + θkv`h) + f `+θ)]),wh〉h (5.20)

for allwh ∈ S1(Th)3. Here, f `+θ = f(t`+θk) for all ` = 0, . . . , L−1. However, this approach
for the inclusion of the lower-order terms is not very attractive from the computational point
of view: Indeed, the variational formulation comprises the term πh(v`h) which requires to
solve a (possibly nonlocal) problem for the unknown. An implementation of this scheme
would then be based on a costly inner iteration.
From our previous work on the tangent plane scheme [BFF+14, DPP+20] and on the

midpoint scheme [PRS18b], we know that an explicit treatment is favorable: Therefore, we
change the above variational formulation: Find v`h ∈ S1(Th)3 such that

(1 + α2)〈v`h,wh〉h = −〈m`
h × [`2ex∆h(m`

h + θkv`h) + Ph(πh(m`
h) + f `)],wh〉h

− α〈m`
h × (m`

h × [`2ex∆h(m`
h + θkv`h) + Ph(πh(m`

h) + f `)]),wh〉h
for all wh ∈ S1(Th)3. Only the leading-order exchange contribution is treated implicitly
in time, while the lower-order contributions are treated explicitly. This does not spoil the
convergence result of the scheme (since the nodal projection already restricts the scheme to
first-order in time) and it is computationally much more attractive. To sum up, we consider
the following implicit-explicit (IMEX) algorithm.

Algorithm 5.3.5 (PC1+IMEX). Input: m0
h ∈Mh.

Loop: For all time-steps ` = 0, . . . , L− 1, iterate:

(i) Compute Ph(πh(m`
h)) ∈ S1(Th)3.

(ii) Compute v`h ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3, it holds that

(1 + α2)〈v`h,wh〉h = −〈m`
h × [`2ex∆h(m`

h + θkv`h) + Ph(πh(m`
h) + f `)],wh〉h (5.21)

− α〈m`
h × (m`

h × [`2ex∆h(m`
h + θkv`h) + Ph(πh(m`

h) + f `)]),wh〉h .

(iii) Define m`+1
h ∈Mh by

m`+1
h (z) :=

m`
h(z) + kv`h(z)

|m`
h(z) + kv`h(z)|

∈ S2 for all z ∈ Nh. (5.22)

Output: Sequence of discrete functions
{

(v`h,m
`+1
h )

}L−1

`=0
.
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5.3.4 Stability of Algorithm 5.3.5

Well-posedness of Algorithm 5.3.5 follows from well-posedness of Algorithm 5.3.1 (Theo-
rem 5.3.3), as the system matrices for the linear systems corresponding to the left-hand
sides of (5.21) and (5.15), respectively, coincide.
For stability of Algorithm 5.3.5, we assume that all off-diagonal entries of the stiffness

matrix A = (az,z′)z,z′∈Nh
are nonpositive, i.e., it holds that

az,z′ = 〈∇φz′ ,∇φz〉 ≤ 0 for all z, z′ ∈ Nh with z 6= z′. (5.23)

This requirement, usually referred to as angle condition1, ensures that the nodal projection
wh 7→ Ih

[
wh/|wh|

]
does not increase the exchange energy of a discrete function, i.e., it

holds that
‖∇Ih

[
wh/|wh|

]
‖ ≤ ‖∇wh‖ , (5.24)

for all wh ∈ S1(Th)3 with |wh(z)| ≥ 1 for all z ∈ Nh; see [Bar05, Lemma 3.2]. Moreover,
we assume that the discrete operator πh : S1(Th)3 → L2(Ω) is stable in the sense that

‖πh(wh)‖ ≤ C‖wh‖ for all wh ∈ S1(Th)3 , (5.25)

which is met in many practical situations; see [BFF+14]. Under these assumptions, there
holds stability of Algorithm 5.3.5.

Theorem 5.3.6. Let Th such that (5.24) holds true. For input m0
h ∈Mh, let the approxi-

mations
{

(v`h,m
`+1
h )

}L−1

`=0
be the output of Algorithm 5.3.5. Then, for all J = 0, . . . , L− 1,

there holds the stability estimate

`2ex

2
‖∇mJ

h‖2 + αk

J−1∑
`=0

‖v`h‖2 + `2ex(θ − 1/2)k2
J−1∑
`=0

‖∇v`h‖2

≤ `2ex

2
‖∇m0

h‖2 + k
J−1∑
`=0

〈v`h,πh(m`
h) + f `〉.

(5.26)

Proof. To abbreviate notation we define

himex
eff,h (m`

h,v
`
h) := `2ex∆h(m`

h + θkv`h) + Ph(πh(m`
h) + f `) ∈ S1(Th)3 .

Testing (5.21) with wh = v`h, wh = himex
eff,h (m`

h,v
`
h), and wh = Ih(m`

h × himex
eff,h (m`

h,v
`
h)),

respectively, leads to

(1 + α2)‖v`h‖2h = 〈m`
h × v`h,himex

eff,h (m`
h,v

`
h)〉h + α〈v`h,himex

eff,h (m`
h,v

`
h)〉h, (5.27a)

α‖m`
h × himex

eff,h (m`
h,v

`
h)‖2h = (1 + α2)〈v`h,himex

eff,h (m`
h,v

`
h)〉h , (5.27b)

‖m`
h × himex

eff,h (m`
h,v

`
h)‖2h = (1 + α2)〈m`

h × v`h,himex
eff,h (m`

h,v
`
h)〉h , (5.27c)

1The assumption (5.23) is usually referred to as angle condition, because in 3D it is satisfied, e.g., if all
dihedral angles of all tetrahedra of Th are ≤ π/2.
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where we used Ih(|m`
h|2) = 1 and Ih(m`

h ·v`h) = 0 in Ω together with the identities (5.4b)–
(5.4e). Combining (5.27a)–(5.27c) gives

α‖v`h‖2h = 〈v`h,himex
eff,h (m`

h,v
`
h)〉h .

Plugging in the definition of himex
eff,h (m`

h,v
`
h), we see

`2ex〈∇v`h,∇m`
h〉 = −α‖v`h‖2h − `2exθk‖∇v`h‖2 + 〈v`h,πh(m`

h) + f `〉. (5.28)

Using the angle condition, we deduce that

`2ex

2
‖∇m`+1

h ‖
2 − `2ex

2
‖∇m`

h‖2
(5.24)
≤ `2ex

2
‖∇(m`

h + kv`h)‖2 − `2ex

2
‖∇m`

h‖2

= `2exk〈∇m`
h,∇v`h〉 +

`2ex

2
k2‖∇v`h‖2

(5.28)
= −αk‖v`h‖2h − `2ex(θ − 1/2)k2‖∇v`h‖2 + k〈v`h,πh(m`

h) + f `〉.

Summing over ` = 0, . . . , J − 1, we obtain that

`2ex

2
‖∇mJ

h‖2 + αk

J−1∑
`=0

‖v`h‖2h + `2ex(θ − 1/2)k2
J−1∑
`=0

‖∇v`h‖2

≤ `2ex

2
‖∇m0

h‖2 + k
J−1∑
`=0

〈v`h,πh(m`
h) + f `〉.

Finally, the norm equivalence (5.11) yields (5.26).

Remark 5.3.7. (i) The stability (5.26) is the very same estimate that one obtains for the
first-order tangent plane scheme from [Alo08]; see, e.g., [BFF+14, Lemma 3.5]. Combining
this estimate with the stability of πh from (5.25), one obtains boundedness of the discrete
solutions, which allows to apply the standard compactness argument for parabolic PDEs to
prove convergence; see, e.g., [Alo08, Section 3] or [BFF+14, Section 3.5].
(ii) Consequently, for both Algorithm 5.3.1 and Algorithm 5.3.5, one obtains a convergence
result identical to [Alo08, Theorem 2, Remark 1]. In particular, as h, k → 0, for 1/2 < θ ≤ 1
no coupling of the discretization parameters is necessary, while the CFL conditions k = o(h)
and k = o(h2) are proved to be sufficient for θ = 1/2 and 0 ≤ θ < 1/2, respectively.
(iii) We note that [KW18, Theorem 2.2] and its proof are slightly inaccurate and, in partic-
ular, the CFL condition k = o(h) is missing for θ = 1/2.

We briefly comment on a projection-free modification of PC1+IMEX.

Remark 5.3.8. As pointed out in Remark 5.3.4, Algorithm 5.3.5 and the first-order tangent-
plane scheme from [Alo08] coincide up to mass-lumped integration in the predictor (5.21).
Hence, an obvious modification of Algorithm 5.3.5 in the spirit of the projection-free tangent-
plane scheme from [AHP+14, Algorithm 6] is omitting the projection in the corrector (5.22),
i.e., defining m`+1

h := m`
h + kv`h ∈ S1(Th)3. For this projection-free variant of Algo-

rithm 5.3.5, at first glance, one could hope for the same desirable theoretical features as for
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the projection-free tangent plane scheme — namely stability and weak convergence [AHP+14]
without the angle condition (5.23) and even strong convergence [FT17a], both at the price of
a slight deterioration from nodewise unit-length m`

h 6∈Mh. In contrast to the projection-
free tangent plane scheme, the projection-free variant of Algorithm 5.3.5 is unconditionally
well-posed even for the limit case α = 0; see Remark 5.4.6(iii)–(iv) below. Further, it
satisfies a discrete energy law, which, e.g., in the exchange-only case for θ = 1/2 reads

`2ex

2
‖∇mJ

h‖2 +
α

1 + α2
`4exk

J−1∑
`=0

‖m`
h ×∆h(m`

h + (k/2)v`h)‖2h =
`2ex

2
‖∇m0

h‖2 .

However, due to the loss of nodewise unit-length m`
h 6∈Mh, equivalence of the predictor of

the projection-free version of Algorithm 5.3.5 and the discrete tangent space system (5.17)
in Kh[m`

h] does not hold anymore. Consequently, the analysis for the projection-free tangent
plane scheme from [AHP+14, FT17a] does not (directly) transfer, and a rigorous analysis
of the projection-free version of Algorithm 5.3.5 remains open.

5.4 Second-order predictor-corrector scheme

In this section, we discuss the second-order scheme proposed in [KW18]. Our contribution
is threefold: In theory, well-posedness (for the predictor) of the scheme (which was left open
in [KW18]) follows already from our analysis in Section 5.3.2. When accounting for the use
of inexact (iterative) linear solvers, which is inevitable in practice, however, discrete unit-
lengthm`

h ∈Mh is lost and therefore a conceptually new analysis is required to guarantee
well-posedness in practice. We fill this fundamental gap in the analysis of [KW18] for their
second-order scheme, by proving unconditional well-posedness not only for the proposed
predictor-corrector scheme, but also for its practical version incorporating inexact (itera-
tive) linear solvers. Again, we first consider the method for the case heff(m) = `2ex∆m. The
general case heff(m) = `2ex∆m+π(m) +f is treated in Section 5.4.4, where we employ an
explicit treatment of the (nonlocal) lower-order contributions to obtain a computationally
superior IMEX version of the scheme, preserving experimental rates in time. We numeri-
cally confirm the applicability and the formal second-order of the proposed IMEX scheme
in Section 5.5. Theoretical stability (and hence convergence) of the second-order scheme
remains open (like in [KW18]), but is experimentally investigated in a numerical study in
Section 5.5.3.

5.4.1 Variational formulation

The following algorithm restates [KW18, Algorithm 2] written in terms of the discrete
functions m`

h,v
`
h,m

`+1
h ∈ S1(Th)3. In particular, the corrector (5.30) of Algorithm 5.4.1

reformulates the N equations in R3 of the corrector of [KW18, Algorithm 2] as an equivalent
variational formulation for m`+1

h in S1(Th)3. The predictor step coincides with step (i) of
Algorithm 5.3.1, i.e., (5.29) coincides with (5.15). As in Section 5.3, the parameter θ ∈ [0, 1]
modulates the ‘degree of implicitness’ (in the predictor) of the scheme.

Algorithm 5.4.1 (PC2, variational form). Input: m0
h ∈Mh.

Loop: For all time-steps ` = 0, . . . , L− 1, iterate:
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(i) Compute v`h ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3, it holds that

(1 + α2)〈v`h,wh〉h = −`2ex〈m`
h ×∆h(m`

h + θkv`h),wh〉h
− α`2ex〈m`

h × (m`
h ×∆h(m`

h + θkv`h)),wh〉h .
(5.29)

(ii) Compute m`+1
h ∈Mh such that, for all wh ∈ S1(Th)3, it holds that

(1 + α2)〈dtm`+1
h ,wh〉h = −`2ex〈m

`+1/2
h ×∆h(m`

h + (k/2)v`h),wh〉h (5.30)

− α`2ex〈m
`+1/2
h × [(m`

h + (k/2)v`h)×∆h(m`
h + (k/2)v`h)],wh〉h .

Output: Sequence of discrete functions
{

(v`h,m
`+1
h )

}L−1

`=0
.

The corrector step of Algorithm 5.3.1, which combines a linear first-order time-stepping
with the nodal projection, is replaced by the linear system (5.30). The 2D numerical results
of [KW18, Figure 3] indicate that the method is of second-order in time. In Section 5.5.2,
we confirm this observation for a numerical example in 3D.

5.4.2 Unconditional well-posedness, exact solver

In Lemma 5.4.2, we first collect two basic properties of Algorithm 5.4.1, which, for α > 0,
turn out to be sufficient to prove unconditional well-posedness of the algorithm in Theo-
rem 5.4.3.

Lemma 5.4.2. Let m`
h ∈ Mh. Suppose that the solutions v`h ∈ S1(Th)3 and m`+1

h ∈
S1(Th)3 to (5.29) and (5.30) exist, respectively. Then, v`h ∈ Kh[m`

h], and m`+1
h ∈Mh.

Proof. The claim v`h ∈ Kh[m`
h] follows as in the proof of Lemma 5.3.2. We show that

m`
h ∈Mh implies m`+1

h ∈Mh due to the corrector system (5.30): For arbitrary z ∈ Nh,
we choose wh := m

`+1/2
h (z)φz ∈ S1(Th)3 in (5.30) to see

(1 + α2)βz
2k

(
|m`+1

h (z)|2 − |m`
h(z)|2

) (5.10)
= (1 + α2)〈dtm`+1

h ,m
`+1/2
h (z)φz〉h

(5.30),(5.4b)
= 0 .

This shows that |m`+1
h (z)| = |m`

h(z)| for all z ∈ Nh. Hence, m`
h ∈ Mh implies that

m`+1
h ∈Mh. The assumption m0

h ∈Mh concludes the proof.

We show unconditional well-posedness of the corrector (5.30), while with Lemma 5.4.2
unconditional well-posedness of the predictor is inferred from our analysis in Section 5.3.2.

Theorem 5.4.3. Let α > 0. Then, Algorithm 5.4.1 is unconditionally well-posed for any
input m0

h ∈Mh, i.e., for all ` = 0, . . . , L−1, the predictor (5.29) admits a unique solution
v`h ∈ S1(Th)3, and the corrector (5.30) admits a unique solution m`+1

h ∈Mh.

Proof. By Lemma 5.4.2 it holds that m`
h ∈Mh and v`h ∈ Kh[m`

h] for all ` = 0, . . . , L− 1.
Hence, as for the predictor of Algorithm 5.3.1, the predictor system (5.29) is equivalent to
a coercive system in the discrete tangent space Kh[m`

h] with unique solution v`h ∈ Kh[m`
h];
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see (the proof of) Theorem 5.3.3. It remains to show well-posedness of the corrector (5.30):
We rewrite the problem in terms of the unknown η`h := m

`+1/2
h , which, by construction,

satisfies that m`+1
h = 2η`h−m`

h and dtm`+1
h = 2(η`h−m`

h)/k. The corrector system (5.30)
then reads: Find η`h ∈ S1(Th)3 such that

acor[m
`
h,v

`
h](η`h,wh) = (1 + α2)〈m`

h,wh〉h,

where the bilinear form acor[m
`
h,v

`
h] : S1(Th)3 × S1(Th)3 → R is defined by

acor[m
`
h,v

`
h](η`h,wh) := (1 + α2)〈η`h,wh〉h +

`2exk

2
〈η`h ×∆h(m`

h + (k/2)v`h),wh〉h

+
α`2exk

2
〈η`h × [(m`

h + (k/2)v`h)×∆h(m`
h + (k/2)v`h)],wh〉h.

As the bilinear form satisfies the ellipticity property

acor[m
`
h,v

`
h](wh,wh) = (1 + α2)‖wh‖2h for all wh ∈ S1(Th)3,

the problem is well-posed by the Lax–Milgram theorem. Hence, (5.30) provides a unique
solution m`+1

h ∈ S1(Th)3. Lemma 5.4.2 guarantees m`+1
h ∈Mh concluding the proof.

Remark 5.4.4. (i) Algorithm 5.4.1 is a predictor-corrector scheme: Both systems, for
the predictor (5.29) and for the corrector (5.30), respectively, are linear systems repre-
senting discrete mass-lumped variational versions of the LL form (5.5a) of LLG; see also
Remark 5.3.4(i). First, treating the effective field implicitly in time, an approximate time
derivative v`h ∈ Kh[m`

h], the predictor, is computed. In the second step (the effective field
of) the predicted midpoint m`

h + (k/2)v`h ∈ S1(Th)3 is used to compute a corrected up-
date dtm`+1

h ∈ S1(Th)3, guaranteeing conservation of discrete unit-length m`+1
h := m`

h +

kdtm
`+1
h ∈Mh.

(ii) In the proof of Theorem 5.4.3, note that the assumption α > 0 is only exploited to
apply Theorem 5.3.3. Hence, analogously to Theorem 5.3.3 (Remark 5.3.4(iv)), also Theo-
rem 5.4.3 can be extended to the limit case α = 0; see Theorem 5.4.5 below.

5.4.3 Unconditional well-posedness, inexact solver

Considering the effect of numerical approximations, we extend the theoretical well-posedness
result from the previous section to the practical case.
Well-posedness of the predictor step (i) of Algorithm 5.4.1 is guaranteed by Theorem 5.3.3:

There, under the crucial conditionm`
h ∈Mh, computing v`h in the predictor step is shown

to be equivalent to solving the system (5.17) in the discrete tangent space Kh[m`
h], which

is always well-posed for α > 0. While m`
h ∈Mh is explicitly enforced in step (ii) of Al-

gorithm 5.3.1, in Algorithm 5.4.1 it follows only implicitly from the inherent length preser-
vation guaranteed by the variational formulation (5.30) solved in step (ii) together with
m`−1

h ∈Mh in the previous time-step; see the proof of Lemma 5.4.2. In practice however,
linear systems are solved by inexact (iterative) numerical solvers, i.e., the coefficient vector
of the unknownm`+1

h solves the linear system of equations corresponding to (5.30) only up
to some accuracy ε > 0, commonly in the `2(R3N )-norm. Consequently, for any z ∈ Nh
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there only holds |m`+1
h (z)| ≈ |m`

h(z)| with a small error depending on the discretization
parameters ε and h. Moreover, the deviation from nodewise unit-length accumulates over
the time-steps ` = 0, . . . , L − 1. Consequently — if recoverable at all — one expects to
require CFL-type couplings of the discretization parameters k, h, ε to rigorously argue (ap-
proximate) equivalence of the linear system in step (i) of Algorithm 5.4.1 and the well-posed
system (5.17) in the proof of Theorem 5.3.3.
To avoid these analytical difficulties, we take a different analytical approach: The new

analysis uses a space decomposition technique reformulating (5.29) as an equivalent saddle-
point problem, which subsequently is proved to be unconditionally well-posed and hence
always provides a unique solution. In particular, this does not require m`

h ∈ Mh, but
allows for arbitrary m`

h ∈ S1(Th)3 % Mh. Additionally, the analysis applies to all α ≥ 0,
extending well-posedness of Algorithm 5.4.1 to the Schrödinger map equation (α = 0).

Theorem 5.4.5. Let α ≥ 0. Then, Algorithm 5.4.1 is unconditionally well-posed for any
inputm0

h ∈ S1(Th)3, i.e., for all ` = 0, . . . , L−1 and anym`
h ∈ S1(Th)3, the predictor (5.29)

admits a unique solution v`h ∈ S1(Th)3, and the corrector (5.30) admits a unique solution
m`+1

h ∈ S1(Th)3.

Proof. For arbitrary m`
h ∈ S1(Th)3 well-posedness of the corrector (5.30) is guaranteed by

the proof of Theorem 5.4.3, as it does not requirem`
h ∈Mh. Using a space decomposition

technique, we show unconditional well-posedness of the predictor system (5.29) for any
m`

h ∈ S1(Th)3 — in particular for m`
h ∈ S1(Th)3 not necessarily belonging to Mh — in

five steps:

• Step 0: Some notation.

Throughout, for an operator A : X → Y between two Hilbert spaces, we write R(A) ⊆ Y
for its range, and N (A) ⊆ X for its kernel. We consider the (negative) discrete Laplace
operator (5.12) restricted to S1(Th)3 ⊂H1(Ω), which will be denoted by the same symbol
−∆h : S1(Th)3 → S1(Th)3. Further, we identify a 3-vector with the corresponding constant
vector-valued grid function, i.e., R3 ⊂

(
S1(Th)3, 〈·, ·〉h

)
. For S ⊂ S1(Th)3 a subspace we

denote by IS the identity on S.

• Step 1: Orthogonal decomposition S1(Th)3 = R(P∗)⊕N (P∗).

Define the operator P∗ : S1(Th)3 → S1(Th)3 for all wh ∈ S1(Th)3 via

(P∗wh)j = (wh)j −meas(Ω)−1〈wh, ej〉h ∈ S1(Th) for all j = 1, 2, 3 .

Clearly, P∗ is the 〈·, ·〉h-orthogonal projector onto

R(P∗) = S1
∗ (Th)3 := {wh ∈ S1(Th)3 : 〈wh, ej〉h = 0 for all j = 1, 2, 3} ,

the subset of S1(Th)3 consisting of the vector-valued grid functions which have zero mean
in each component. Due to self-adjointness, P∗ provides the orthogonal decomposition

S1(Th)3 = R(P∗)⊕N (P∗) = S1
∗ (Th)3 ⊕ R3 .
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With respect to this decomposition, we rewrite the unknown v`h ∈ S1(Th)3 as the orthogonal
sum

v`h = P∗v
`
h ⊕ (IS1(Th)3 − P∗)v`h =: v∗ ⊕ v , (5.31)

with unique v∗ ∈ R(P∗) = S1
∗ (Th)3 and v ∈ N (P∗) = R3. Note that v ∈ R3 is the vector-

valued mean of v`h, i.e., 〈v, ej〉h = 〈v`h, ej〉h for all components j = 1, 2, 3.

• Step 2: Reduced operator −∆̃h : S1
∗ (Th)3 → S1

∗ (Th)3.

The discrete Laplacian −∆h : S1(Th)3 → S1(Th)3 is linear, self-adjoint and by defini-
tion (5.12) has the kernel N (−∆h) = R3 ⊂ S1(Th)3. Hence, there holds the orthogonal
decomposition

S1(Th)3 = R(−∆h)⊕N (−∆h) = N (−∆h)⊥ ⊕N (−∆h) = S1
∗ (Th)3 ⊕ R3 . (5.32)

Consequently, the reduced operator −∆h|S1
∗(Th)3 =: −∆̃h : S1

∗ (Th)3 → S1
∗ (Th)3 is lin-

ear, self-adjoint, and bijective. Moreover, it provides a well-defined inverse denoted by
(−∆̃h)−1 : S1

∗ (Th)3 → S1
∗ (Th)3 with the same attributes. We point out the identities

(−∆̃h)−1 ◦ (−∆h) = P∗ and −∆h ◦ (−∆̃h)−1 = P∗|S1
∗(Th)3 = IS1

∗(Th)3 , (5.33)

which follow from the orthogonal decomposition (5.32).

• Step 3: Equivalent saddle point formulation.

With the unknowns q := −∆hv∗ ∈ S1
∗ (Th)3 and λ := v ∈ R3 from (5.31), we induce

the representation v`h = (−∆̃h)−1q ⊕ λ. Plugging this identity into (5.29), we rewrite the
predictor as equivalent saddle point problem: Find (q,λ) ∈ S1(Th)3 ×R3, such that for all
(w,µ) ∈ S1(Th)3 × R3 it holds that

asp[m`
h](q,w) + bsp(w,λ) = Fsp[m`

h](w) , (5.34a)
bsp(q,µ) = 0 , (5.34b)

with the (bi-)linear forms asp[m`
h] : S1(Th)3 × S1(Th)3 → R, b : S1(Th)3 × R3 → R, and

Fsp[m`
h] : S1(Th)3 → R given by

asp[m`
h](q,w) := (1 + α2)〈(−∆̃h)−1P∗q,w〉h

− `2exθk〈m`
h × q,w〉h − α`2exθk〈m`

h × (m`
h × q),w〉h ,

bsp(w,λ) := (1 + α2)〈λ,w〉h ,
Fsp[m`

h](w) := −`2ex〈m`
h ×∆hm

`
h,w〉h − α`2ex〈m`

h × (m`
h ×∆hm

`
h),w〉h .

The equivalence of (5.34a)–(5.34b) to (5.29) follows from λ ∈ N (−∆h) and (5.33). We
use the operator (−∆̃h)−1 ◦ P∗ rather than (−∆̃h)−1, so that the bilinear form asp[m`

h]
is well-defined on S1(Th)3 % S1

∗ (Th)3. The second equation (5.34b) ensures q ∈ S1
∗ (Th)3,

which is not enforced explicitly.

• Step 4: The bilinear form asp[m`
h] is coercive on the kernel of bsp.
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We aim to apply the Brezzi theory for saddle point problems; see, e.g., [BBF13, Section 4.2].
Hence, we require coercivity of the bilinear form asp[m`

h] : S1(Th)3 × S1(Th)3 → R on⋂
λ∈R3

N
(
bsp(·,λ)

)
=
⋂
λ∈R3

{w ∈ S1(Th)3 : 〈λ,w〉h = 0}

=
⋂

j=1,2,3

{w ∈ S1(Th)3 : 〈ej ,w〉h = 0} = S1
∗ (Th)3 .

For any q ∈ S1
∗ (Th)3, we compute

asp[m`
h](q, q)

(5.4b)
= (1 + α2)〈(−∆̃h)−1P∗q, q〉h − α`2exθk〈m`

h × (m`
h × q), q〉h ,

(5.33),(5.4d)
= (1 + α2)〈(−∆̃h)−1q,−∆h(−∆̃h)−1q〉h + α`2exθk‖m`

h × q‖2h
(5.12)

= (1 + α2)
∥∥∇(−∆̃h)−1q

∥∥2

L2(Ω)
+ α`2exθk‖m`

h × q‖2h
& h2‖q‖2h + α`2exθk‖m`

h × q‖2h ≥ h2‖q‖2h ,

where the second to last estimate is an inverse estimate on S1
∗ (Th)3 derived from the classical

inverse estimate on S1(Th)3 via

‖q‖2h = 〈q, q〉h
(5.33)

= 〈q,−∆h(−∆̃h)−1q〉h
(5.12)

= 〈∇q,∇(−∆̃h)−1q〉L2(Ω)

≤ ‖∇q‖L2(Ω)

∥∥∇(−∆̃h)−1q
∥∥
L2(Ω)

. h−1‖q‖h
∥∥∇(−∆̃h)−1q

∥∥
L2(Ω)

.

Hence, asp[m`
h] is coercive on

⋂
λ∈R3 N (bsp(·,λ)) = S1

∗ (Th)3 with ellipticity constant pro-
portional to h2 > 0.

• Step 5: Unique solvability and reconstruction of v`h.

Clearly, bsp : S1(Th)3 × R3 → R satisfies the inf-sup condition with constant (1 + α2) > 0.
Now unique solvability of the saddle point formulation (5.34a)–(5.34b) follows from the
Brezzi theorem [BBF13, Theorem 4.2.1]. Ultimately, with (q,λ) ∈ S1

∗ (Th)3 × R3 denoting
the unique solution of (5.34a)–(5.34b), the original unknown solution to (5.29) is recon-
structed via v`h = (−∆̃h)−1q⊕λ ∈ S1

∗ (Th)3⊕R3 = S1(Th)3 and is therefore also unique.

Remark 5.4.6. (i) In the third step of the proof of Theorem 5.4.5, we introduced the un-
known q := −∆hv∗ ∈ S1

∗ (Th)3. This idea is inspired by [XGCW+20, Section 2.3], where
the authors subsequently use the Browder–Minty lemma for monotone operators to prove
well-posedness of their proposed finite difference LLG integrator based on the second-order
backward differentiation formula.
(ii) In Step 4 of the proof of Theorem 5.4.5, as the new unknown q = −∆hv

`
h comprises

second-order derivatives of the original unknown, it is not surprising that the ellipticity con-
stant for the bilinear form asp[m`

h] scales proportionally to h2 > 0.
(iii) Since Mh ⊂ S1(Th)3 and the predictors of Algorithm 5.3.1 and Algorithm 5.4.1 coin-
cide, the proof of Theorem 5.4.5 is not only an alternative proof to Theorem 5.4.3, but also
to Theorem 5.3.3, which additionally extends both theorems to the critical value α = 0.
(iv) Consequently, Algorithm 5.3.1 is not only a mass-lumped version of the tangent plane
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scheme [Alo08], but additionally it is well-posed for the Schrödinger map equation (α = 0).
(v) Even though the predictor of Algorithm 5.3.1 written in the form (5.17) coincides with
the predictor of the tangent plane scheme up to the used integration rule, well-posedness
of the tangent plane scheme for the limit case α = 0 remains open. Indeed, the proof of
Theorem 5.4.5 relies heavily on mass-lumped integration, and we did not succeed to transfer
the proof to exact integration used in the original tangent plane scheme.

5.4.4 Including the lower-order contributions

We consider the case when the effective field comprises linear lower-order energy contribu-
tions π(m) such as, in particular, the nonlocal stray field hs, i.e., heff(m) = `2ex ∆m +
π(m)+f . Then the predictor step of the original second-order integrator proposed in [KW18,
Algorithm 2] is identical to (5.20), i.e., lower-order terms are treated implicitly in time.
Due to the nonlocality of the stray field this is unattractive in practice as described in Sec-
tion 5.3.3. Hence, analogously to Section 5.3.3, we aim to treat the lower-order terms π(m)
explicitly in time. However, to avoid spoiling the scheme’s potential second-order accuracy
in time, which was observed experimentally in [KW18], the modification is slightly more
involved:
In Section 5.3.3 an error of orderO(k) is introduced to the system (5.20) by approximating

πh(m`
h + θkv`h) ≈ πh(m`

h). Since Algorithm 5.3.1 is a first-order scheme, this modification
did not deteriorate the order of convergence of the algorithm.
To preserve the potential second-order of Algorithm 5.4.1, we use a higher-order approxi-

mation to π(m`
h+θkv`h): Recall that π is a linear operator and that v`h is an approximation

of ∂tm(t`). Motivated by the Taylor expansion m(t`) = m(t`−1) + k∂tm(t`) +O(k2), and
hence m(t`) + θk∂tm(t`) = (1 + θ)m(t`)− θm(t`−1) +O(k2), we introduce a second-order
error O(k2) to the system (5.20) via the approximation

πh(m`
h + θkv`h) ≈ (1 + θ)πh(m`

h)− θπh(m`−1
h ) .

Only the leading-order exchange contribution is treated implicitly in time, while the lower-
order contributions are treated explicitly. Due to the higher-order approximation of πh(v`h),
this does not spoil the observed second-order of the scheme and it is computationally much
more attractive. To sum up, we consider the following algorithm.

Algorithm 5.4.7 (PC2+IMEX). Input: m0
h ∈Mh.

Preprocessing: Compute m1
h ∈Mh, e.g., by Algorithm 5.4.1.

Loop: For all time-steps ` = 1, . . . , L− 1, iterate:

(i) Compute Ph((1 + θ)πh(m`
h)− θπh(m`−1

h ) + f `+θ) ∈ S1(Th)3.

(ii) Compute v`h ∈ S1(Th)3 such that, for all wh ∈ S1(Th)3, it holds that

(1 + α2)〈v`h,wh〉h (5.35)

= −〈m`
h × [`2ex∆h(m`

h + θkv`h) + Ph((1 + θ)πh(m`
h)− θπh(m`−1

h ) + f `+θ)],wh〉h
−α〈m`

h×(m`
h×[`2ex∆h(m`

h+θkv`h)+Ph((1+θ)πh(m`
h)−θπh(m`−1

h )+f `+θ)]),wh〉h.
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(iii) Compute m`+1
h ∈Mh such that, for all wh ∈ S1(Th)3, it holds that

(1 + α2)〈dtm`+1
h ,wh〉h

= −〈m`+1/2
h × [`2ex∆h(m`

h + (k/2)v`h) + Ph(πh(m`
h + (k/2)v`h) + f `+1/2)],wh〉h

− α〈m`+1/2
h ×

(
(m`

h + (k/2)v`h)

× [`2ex∆h(m`
h + (k/2)v`h) + Ph(πh(m`

h + (k/2)v`h) + f `+1/2)]
)
,wh〉h.

Output: Sequence of discrete functions
{

(v`h,m
`+1
h )

}L−1

`=0
.

Remark 5.4.8. (i) In the preprocessing step of Algorithm 5.4.7 also other integrators may
be used to compute m1

h ∈Mh. As long as the approximation m1
h is second-order accurate,

the potential second-order accuracy of Algorithm 5.4.1 is preserved by Algorithm 5.4.7. (Note
that first-order accurate integrators usually only introduce a quadratic error per time-step.)
(ii) Algorithm 5.4.7 is also well-posed in practice, when effects of inexact (iterative) solvers
are accounted for, i.e., (5.35) is unconditionally well-posed for arbitrary m`

h ∈ S1(Th)3 %
Mh. As lower-order terms are treated explicitly in time, proving well-posedness follows the
lines of the proof of Theorem 5.4.5 with adjusted linear form Fsp[m`

h] Fimex[m`
h,m

`−1
h ].

5.5 Numerical experiments

This section provides some numerical experiments for Algorithm 5.3.1 and Algorithm 5.4.1
from [KW18], as well as their respective IMEX versions proposed in this work, namely Al-
gorithm 5.3.5 and Algorithm 5.4.7, respectively. In Section 5.5.1 we verify the correctness of
the proposed integrators (PC1+IMEX and PC2+IMEX) on the benchmark problem µMAG #4
from [MUM]. In Section 5.5.2 the experimental rates of Algorithm 5.3.1 (PC1) and Al-
gorithm 5.4.1 (PC2) reported in [KW18] are confirmed. Moreover, the experiment shows
that lower-order terms can appropriately be treated explicitly in time by Algorithm 5.3.5
(PC1+IMEX) and Algorithm 5.4.7 (PC2+IMEX), respectively, without spoiling the rate of con-
vergence.
All computations have been performed with our micromagnetic software module Com-

mics [PRS+20], based on the open-source finite element library Netgen/NGSolve [ngs]. In
Commics, the stray field hs is computed via the hybrid FEM-BEM approach from [FK90].
We note that meshes generated by Netgen in general do not satisfy the angle condi-
tion (5.23). All experiments were repeated on structured meshes satisfying the angle con-
dition leading to the same results (not displayed).

5.5.1 µMAG standard problem #4

We verify the practical applicability of the proposed integrators PC1+IMEX and PC2+IMEX
(we choose θ = 1/2) by computing a physically relevant example. To this end, we consider
µMAG standard problem #4 [MUM], which simulates the switching of the magnetization
in a thin permalloy layer.
The objective is the simulation of the magnetization dynamics in a thin permalloy film

of dimensions 500 nm × 125 nm × 3 nm under the influence of a constant applied external

159



5 Well-posedness and IMEX improvement of recent predictor-corrector methods

field. The involved physical constants and material parameters are the gyromagnetic ratio
γ0 = 2.211 · 105 m/C, the permeability of vacuum µ0 = 4π ·10−7 N/A2, the saturation
magnetization Ms = 8.0 · 105 A/m, the exchange stiffness constant A = 1.3 · 10−11 J/m,
and the Gilbert damping constant α = 0.02. Starting from a so-called equilibrium S-
state [MUM], the experiment consists in applying the constant applied field µ0Hext =
(−24.6, 4.3, 0) mT for 3 ns.
For the rescaled form (5.5) of LLG, the above physical quantities lead to the parameters

`ex =
√

2A/(µ0M2
s ), T = 3 · 10−9γ0Ms, and f = Hext/Ms, while π(m) includes only the

stray field hs. For the space discretization, we consider a tetrahedral partition of the thin
film generated by Netgen [ngs] into cells of prescribed mesh size 3 nm. This corresponds
to 48 796 elements and 16 683 vertices. For the time discretization, we consider a constant
physical time-step size of ∆t = 0.1 ps, which is connected to the rescaled time-step size k
via the relation k = γ0Ms∆t.
For comparison, the desired output of this benchmark problem is the evolution of the

x-, y- and z-component of the spatially averaged magnetization. Figure 5.1 shows that our
results match those computed by the finite difference code OOMMF [OOM] available on
the µMAG homepage [MUM].
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OOMMF 〈mz〉 PC1+IMEX 〈mz〉 PC2+IMEX 〈mz〉

Figure 5.1: µMAG standard problem #4 from Section 5.5.1: Time evolution of the spatially
averaged magnetization components computed with Algorithm 5.3.5 (PC1+IMEX)
and Algorithm 5.4.7 (PC2+IMEX) compared to the results of OOMMF.

5.5.2 Empirical convergence rates for LLG

We aim to illustrate the accuracy and the computational effort of the following four algo-
rithms:

• PC1: fully implicit first-order scheme proposed in [KW18] and recalled in Algo-
rithm 5.3.1;

• PC1+IMEX: PC1 with explicit treatment of the lower-order terms as proposed in this
work and formulated in Algorithm 5.3.5;
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• PC2: fully implicit second-order scheme proposed in [KW18] and recalled in Algo-
rithm 5.4.1;

• PC2+IMEX: PC2 with explicit treatment of the lower-order terms as proposed in this
work and formulated in Algorithm 5.4.7;

For all integrators we choose θ = 1/2. To obtain experimental convergence rates in time,
we use the model problem proposed in [PRS18b]: We consider the initial boundary value
problem (5.5) with Ω = (0, 1)3, m0 ≡ (1, 0, 0), α = 1, and T = 5. For the effective
field (5.5d), we choose `ex = 1, a constant applied field f ≡ (−2,−0.5, 0), as well as an
operator π which consists only of the stray field, i.e., π(m) = hs(m).
For the predictor step in PC1 and PC2, respectively, we solve (5.20). Since πh effectively

depends on v`h in (5.20), the linear system in the predictor step of Algorithm 5.3.1 and
Algorithm 5.4.1 is solved with an inner fixed-point iteration which is stopped as soon as an
accuracy of 10−10 (of ‖vih‖L2(Ω)) is reached. Other arising linear systems are solved with
GMRES (or with CG for the hybrid FEM-BEM approach) with tolerance 10−12. For the
spatial discretization we consider a fixed triangulation Th of Ω generated by Netgen, which
consists of 3939 elements and 917 nodes (prescribed mesh size h = 1/8).
Since the exact solution of the problem is unknown, to compute the empirical convergence

rates, we consider a reference solution mh,kref computed with the IMEX version of the
second-order midpoint scheme from [PRS18b] using the above mesh and the time-step size
kref = 2 · 10−4.
Figure 5.2(a) visualizes the experimental order of convergence of the four integrators. As

expected, PC2 and PC2+IMEX lead to second-order convergence in time. Essentially, both
integrators even lead quantitatively to the same accuracy of the numerical solution. PC1 as
well as PC1+IMEX yield first-order convergence. Differently from the classical θ-method for
linear second-order parabolic PDEs, due to the tangent plane constraint and the presence of
the nodal projection, the PC1 integrator with θ = 1/2 (Crank–Nicolson-type) does not lead
to any improvement of the convergence order in time (from first-order to second-order); see
[AKST14] for a formal analysis in the case of the tangent plane scheme.
In Figure 5.2(b), we plot the cumulative computational costs for the integration up to

the final time T . The computational effort improves considerably if the lower-order terms
(i.e., the stray field) are integrated explicitly in time, since then the costly inner fixed-
point iteration to solve (5.20) is omitted. Due to the more sophisticated corrector step
in Algorithm 5.4.1 and Algorithm 5.4.7, the second-order schemes PC2 and PC2+IMEX are
(slightly) more costly than their first-order counterparts PC1 and PC1+IMEX, respectively.
Further, we repeat the experiment for different values of θ ∈ [0, 1] for both, PC1+IMEX

and PC2+IMEX. The results for PC1+IMEX in Figure 5.3(a) confirm that the strong CFL
condition k = o(h2), which is imposed to obtain stability and convergence of PC1+IMEX (see
Remark 5.3.7(ii)) with θ < 1/2, are also crucial in practice. As expected, the observed order
of convergence of PC1+IMEX is unaffected by the choice of θ ∈ [0, 1].
The results for PC2+IMEX shown in Figure 5.3(b) are quite surprising: While for θ 6= 1/2,

the simulation is not stable for larger time-step sizes k > 0, still second-order convergence
is observed for all 0 ≤ θ ≤ 1 as the time-step size k decreases below a certain threshold.
The preserved second-order accuracy for θ 6= 1/2 might be a consequence of the degree of
implicitness θ only appearing in the predictor, but not in the corrector of the scheme. In
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Figure 5.2: Experiments of Section 5.5.2: Order of convergence (left) and cumulative com-
putational time (right) of the integrators for θ = 1/2.

contrast to stability for PC1+IMEX, the results of this experiment indicate that for stability
of PC2+IMEX more restrictive CFL conditions are necessary for θ 6= 1/2 than for θ = 1/2.
This observation is further investigated in Section 5.5.3.
Overall, the proposed PC2+IMEX integrator with θ = 1/2 appears to be the method of

choice with respect to experimental stability, computational time, and empirical accuracy.

5.5.3 Experimental stability of PC2

We demonstrated the potential of (the IMEX version of) the second-order predictor-corrector
scheme PC2 (PC2+IMEX) in Section 5.5.1 and Section 5.5.2. Our analysis guarantees uncon-
ditional well-posedness of the proposed second-order integrators in theory (Theorem 5.4.3)
and in practice (Theorem 5.4.5). However, neither the present work nor [KW18] include a
rigorous analysis on the stability of the second-order predictor-corrector scheme PC2 (Algo-
rithm 5.4.1), or its variant PC2+IMEX (Algorithm 5.4.7). More precisely, it remains unclear
whether the prescription of a CFL condition k = o(hβ) for some β > 0 is sufficient to prove
a discrete energy estimate of the form

‖∇mJ
h‖2 ≤ ‖∇m0

h‖2 for all J = 0, . . . , L , (5.36)

where we omitted any lower-order contributions; see, e.g., (5.26) for the full discrete energy
estimate for PC1+IMEX.
Hence, we close this section by a numerical study investigating the stability of PC2. Note

that PC2+IMEX coincides with PC2 for the exchange only case heff(m) = `2ex∆m of LLG,
which is considered in the following experiments. Motivated by the observations on stability
of PC2+IMEX in Figure 5.3(b), particular focus is put on the dependence on 0 ≤ θ ≤ 1, which
controls the degree of implicitness in the predictor step (5.29).
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Figure 5.3: Experiments of Section 5.5.2: Order of convergence and stability for PC1+IMEX
and PC2+IMEX for different values of θ ∈ [0, 1]. Stability is lost for PC1+IMEX
(left) with θ = 0 for k ≥ 8 · kref , and with θ = 1/4 for k ≥ 16 · kref ; for PC2+IMEX
(right) with θ ∈ {0, 3/4, 1} for k ≥ 16 · kref , and with θ = 1/4 for k ≥ 32 · kref .

Setup

We consider the partition Th of the unit cube from Section 5.5.2. For a non-uniform initial
condition m0

h ∈Mh, we consider the exchange only case heff(m) = `2ex∆m of LLG and
relax the dynamics until the (uniform) equilibrium state is reached. Due to the absence of
any lower-order contributions (π ≡ 0,f ≡ 0), the equilibrium state is a uniform magne-
tization in space, and the simulation is successfully stopped as soon as ‖∇mL

h‖2 ≤ 10−8

for some L > 0. If ‖∇m`+1
h ‖

2 ≤ ‖∇m`
h‖2 for all ` = 0, . . . , L − 1, the simulation is

considered to be stable for the triangulation Th with fixed time-step size k > 0 and ini-
tial condition m0

h ∈ Mh. If for some ` ≥ 0 the energy increases, i.e., if there holds
‖∇m`+1

h ‖
2 > ‖∇m`

h‖2, then we abort the simulation and we consider the simulation to be
unstable for this combination of Th, k > 0, and m0

h ∈Mh.

Random initial state

We choose the initial state m0
h ∈Mh such that {mz(z)}z∈Nh

is distributed randomly on
S2.
Figure 5.4 shows that for any fixed 0 ≤ θ ≤ 1 the simulation is stable if the time-step

size k > 0 is chosen small enough. Clearly, stability of the simulation does not only depend
on the chosen time-step size k > 0, but also on the parameter θ: Values of θ close to 1/2
(best at 0.4375 in this experiment) appear to be far less restrictive for the time-step size
k > 0 than values farther from 1/2. We note that we repeated this experiment for various
random initial states, all producing essentially the same result (not displayed).
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Figure 5.4: Experiment of Section 5.5.3: Right: Random state m0
h colored by the z-

component; red pointing upwards, blue downwards. Left: For all θ =
0/80, 1/80, . . . , 80/80 and all k = 1 · 10−3, 2 · 10−3, . . . , 12 · 10−3, the stability of
PC2 is investigated.

Hedgehog state

We repeat the experiment from Section 5.5.3 for m0
h being the so-called hedgehog state,

i.e., considering the cube to be centered around the origin, for each vertex z ∈ Nh we set
the initial value m0

h(z) := z/|z| ∈ S2.
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Figure 5.5: Experiment of Section 5.5.3: Right: Hedgehog state m0
h colored by the

z-component; red pointing upwards, blue downwards. Left: For all θ =
0/80, 1/80, . . . , 80/80 and all k = 1 · 10−3, 2 · 10−3, . . . , 25 · 10−3, the stability of
PC2 is investigated.

Figure 5.5 shows that again for any 0 ≤ θ ≤ 1 the simulation is stable if the time-step
size k > 0 is chosen small enough. As in Section 5.5.3, values of θ close to 1/2 appear
to be far less restrictive for the time-step size k > 0 than values farther from 1/2, with
the optimal choice this time closer to 1/2, precisely at θ = 0.475. Interestingly, for the
parameter θ ∈ [0, 1] chosen far from 1/2, the results quantitatively match with those for
the random initial state from Section 5.5.3. Closer to 1/2, however, much larger time-step
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sizes k > 0 allow for stable simulations as for the random initial state.

Variation of the Gilbert damping parameter

We repeat the experiment from Section 5.5.3 for different values of α = 1/2, 1/4, 1/8, 1/16.
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Figure 5.6: Experiment of Section 5.5.3: Withm0
h the random state from Figure 5.4(right)

and different damping parameters α = 1/2, 1/4, 1/8, 1/16, for all θ =
0/80, 1/80, . . . , 80/80 and all k = 1 · 10−3, 2 · 10−3, . . . , 12 · 10−3, the stability of
PC2(+IMEX) is investigated.

Figure 5.6 shows that, if the damping parameter α decreases, smaller time-step sizes
k > 0 are necessary to obtain stable simulations with PC2(+IMEX). This observation is in
agreement with the role played by α in the model, i.e., incorporating dissipation. Again, as
previously observed for α = 1, values of θ close to 1/2 allow for larger time-step sizes k > 0
than values farther from 1/2; with the least restrictive choices at θ = 0.4375 for α = 1,
θ = 0.4625 to 0.475 for α = 1/2, θ = 0.4875 for α = 1/4, θ = 0.4875 for θ = 1/8, and
θ = 0.5 for α = 1/16. We obtain analogous results when varying α for the initial hedgehog
state (not displayed).
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Concluding remarks on the stability of the second-order scheme

All experiments in this section show that, in contrast to PC1 (Theorem 5.3.6), larger values
of θ do not improve stability of the second-order scheme PC2. On the contrary, it is even
the case that large values of θ perform as bad as small values of θ. For a generic simulation
with PC2(+IMEX), we suggest to pick the degree of implicitness θ = 1/2 in the predictor.
Although, when considering one particular simulation setup, there might be better choices
allowing for even larger time-step sizes, the choice θ = 1/2 performed reliably throughout
all experiments. In particular, the results from Section 5.5.3 indicate that the deterioration
of the optimal θ (with respect to stability) from 1/2 might occur specifically for large values
of α, and quickly vanish as the damping parameter α decreases. Moreover in future works,
proving stability of PC2 under some CFL condition for the special case θ = 1/2 might be
a possible first step in theoretically understanding stability of PC2. This seems reasonable,
as in this special case only the same highest-order term ∆h(m`

h + (k/2)v`h) appears in the
predictor and the corrector of PC2. Hence these terms partially cancel out, when subtracting
the two equations (5.29)–(5.30) from each other.
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6 Computational micromagnetics with
Commics

This chapter consists of the article [PRS+20] together with Michele Ruggeri, Bernhard Stift-
ner, Lukas Exl, Matthias Hochsteger, Gino Hrkac, Joachim Schöberl, Norbert J. Mauser,
and Dirk Praetorius. Additionally, Section 6.5 contains various simulation scripts from
[PRS+18a], which were excluded in the article [PRS+20] due to space considerations.

Abstract. We present our open-source Python module Commics for the study of the mag-
netization dynamics in ferromagnetic materials via micromagnetic simulations. It imple-
ments state-of-the-art unconditionally convergent finite element methods for the numerical
integration of the Landau–Lifshitz–Gilbert equation. The implementation is based on the
multiphysics finite element software Netgen/NGSolve. The simulation scripts are written
in Python, which leads to very readable code and direct access to extensive post-processing.
Together with documentation and example scripts, the code is freely available on GitLab.

6.1 Introduction

Micromagnetism is a continuum theory for ferromagnetic materials located between quan-
tum theory and Maxwell’s electromagnetism [Bro63, Aha01, Kro07]. The magnetization
distribution is modeled as a continuous vector field, where nonlocal magnetostatic interac-
tions and local contributions are taken into account. Typical micromagnetic models exhibit
length scales ranging from nanometers to few micrometers, which is often infeasible for
atomistic spin dynamics simulations. In recent decades, micromagnetics evolved as a com-
putational field, that nowadays represents a successful tool for numerical studies in materials
science with important contemporary applications, e.g., data storage structures like hard
disk drives [SVA+15, KOSS16], random access memories [MSOS12], or nanowires [SZZS00,
Her01], magnetologic devices [BSH+08], soft magnetic sensor systems [BSP+17], and high
performance permanent magnets [SAON+13, BOS+14, FKO+17].

6.1.1 Existing software

In recent years, advances in computer architecture, programming environments, and nu-
merical methods led to the development of several micromagnetic codes, which aim at the
numerical integration of the fundamental equation in micromagnetics, the Landau–Lifshitz–
Gilbert equation (LLG), a well-accepted model for the magnetization dynamics [LL08,
Gil55]. Well-known simulation packages based on finite difference discretizations [MD07]
on Cartesian grids are OOMMF [DP99], recently extended for GPU usage [FCH+16] and
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endowed with a user-friendly Python interface [BPF17], MuMax3 (GPU) [VLD+14], Mi-
croMagnum [mic] (CPU and GPU), magnum.fd [mag], and Fidimag [BCOnP+18]. These
implementations are both memory and computationally efficient owing to the uniform mesh
and the particularly advantageous utilization of the fast Fourier transform for the long
range field part [BRH93, AES+13]. However, approaches based on the Finite Element
Method (FEM) are geometrically more flexible [SHB+07] and provided in the scientific
codes MagPar [SFS+03], TetraMag [KWH10] and its successor tetmag2, Nmag [FFBF07]
and its successor Finmag [BBW+], as well as in commercial software like FastMag [CLL+11],
FEMME [fem], and magnum.fe [AEB+13].

6.1.2 Numerical analysis

For an introduction to the mathematical analysis of numerical integrators for dynamic
micromagnetic simulations, we refer to the monographs [Pro01, BBNP14], the review arti-
cles [KP06, GC07, Cim08], and the references therein. The ultimate goal is the development
of unconditionally convergent integrators, i.e., numerical schemes for which (a subsequence
of) the output converges towards a weak solution of LLG in the sense of [AS92] without re-
quiring any restrictive CFL-type coupling condition on the temporal and spatial discretiza-
tion parameters. In our work, we consider two types of methods characterized by such
good theoretical properties: the tangent plane scheme [Alo08, AKST14] and the midpoint
scheme [BP06]; see Section 6.3 for more details.

6.1.3 Contributions

This work presents our novel open-source Python module Commics (COmputational Micro-
MagnetICS) to perform computational studies of the magnetization dynamics in ferromag-
netic materials via micromagnetic simulations. The software is based on the multiphysics
finite element software Netgen/NGSolve [ngs] and is made user-friendly by a high-level
Python interface. While many existing codes popular in the physics community are fairly
performance optimized, they often lack a thorough mathematical convergence analysis. In
contrast to that, our implementation arises from recent results in the numerical analysis of
unconditionally convergent LLG integrators. The code is freely available on GitLab [Pfe]
together with documentation and example scripts.

6.1.4 Outline

This work is organized as follows: We fix the notation and the precise micromagnetic setting
in Section 6.2. In Section 6.3, the implemented algorithms are briefly presented. Section 6.4
demonstrates the exemplary use of Netgen/NGSolve (NGS) and discusses the integration
of the boundary element library BEM++ [ŚBA+15]. Finally, Section 6.5 provides Python
scripts for several benchmark problems, in order to verify our module and to demonstrate
its usage.
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6.2 Micromagnetic setting

Let Ω ⊂ R3 denote the volume occupied by a ferromagnet. In micromagnetics, the quantity
of interest is the magnetization M : Ω→ R3 (in A/m). If the temperature is constant and
far below the so-called Curie temperature of the material, the modulus of the magnetization
is constant, i.e., it holds that |M | = Ms with Ms > 0 being the saturation magnetization
(in A/m). Let m := M/Ms denote the normalized magnetization. The magnetic state of
Ω is described in terms of the magnetic Gibbs free energy (in J)

E(m) = A

∫
Ω
|∇m|2 dx + K

∫
Ω

1− (a ·m)2 dx + D

∫
Ω

(∇×m) ·m dx

− µ0Ms

2

∫
Ω
Hs ·m dx − µ0Ms

∫
Ω
Hext ·m dx.

(6.1)

The energy in (6.1) is the sum of exchange energy, uniaxial anisotropy, bulk Dzyaloshinskii–
Moriya interaction (DMI), magnetostatic energy, and Zeeman contribution, respectively.
The involved material parameters and physical constants are the exchange stiffness constant
A > 0 (in J/m), the anisotropy constant K ≥ 0 (in J/m3), the easy axis a ∈ R3 with |a| = 1
(dimensionless), the DMI constant D ∈ R (in J/m2), and the vacuum permeability µ0 =
4π · 10−7 N/A2. Moreover, Hext and Hs denote the applied external field (assumed to be
unaffected by variations of m) and the stray field, respectively (both in A/m). The stray
field (sometimes also referred to as demagnetizing or dipolar field) solves the magnetostatic
Maxwell equations

∇ · (Hs +MsmχΩ) = 0 in R3, (6.2a)

∇×Hs = 0 in R3, (6.2b)

where (mχΩ)(x) = m(x) in Ω and (mχΩ)(x) = 0 elsewhere. Stable magnetization con-
figurations are those which minimize the magnetic Gibbs free energy (6.1). The dynamics
towards equilibrium of the magnetization is governed by LLG

∂tm = −γ0m×
[
Heff(m) + T (m)

]
+ αm× ∂tm in (0,∞)× Ω, (6.3a)

∂nm = − D

2A
m× n on (0,∞)× ∂Ω, (6.3b)

m(0) = m0 with |m0| = 1 in Ω. (6.3c)

In (6.3), γ0 = 2.212 · 105 m/(A s) is the gyromagnetic ratio of the electron, α ∈ (0, 1] is
the dimensionless Gilbert damping parameter, and n : ∂Ω → R3 with |n| = 1 denotes the
outward-pointing unit normal vector to ∂Ω. The effective field Heff(m) is related to the
functional derivative of the energy with respect to the magnetization and takes the form

Heff(m) := − 1

µ0Ms

δE(m)

δm

=
2A

µ0Ms
∆m+

2K

µ0Ms
(a ·m)a− 2D

µ0Ms
∇×m+Hs +Hext.

(6.4)
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Finally, the term T (m) collects all nonenergetic torque terms, which arise, e.g., when an
electric current flows in a conducting ferromagnet. For instance, the Oersted field T (m) =
Hc (in A/m) is described by the magnetostatic Maxwell equations

∇ ·Hc = 0 in R3, (6.5a)

∇×Hc = JeχΩ in R3, (6.5b)

where Je denotes the electric current density (in A/m2). Two other prominent examples
are related to the so-called spin transfer torque [Slo96, Ber96], which arises in the presence
of spin-polarized currents. The Slonczewski contribution [Slo96], which takes the form

T (m) =
~|Je|G(m · p, P )

eµ0Msd
m× p,

with G(m · p, P ) =

[
(1 + P )3(3 +m · p)

4P 3/2
− 4

]−1

,

(6.6)

is used for the simulation of switching processes in structures with current-perpendicular-
to-plane injection geometries, e.g., magnetic multilayers. The involved physical quantities
are the reduced Planck constant ~ > 0 (in J s), the elementary charge e > 0 (in A s),
a dimensionless polarization parameter P ∈ (0, 1), a dimensionless unit vector p ∈ R3

representing the magnetization of a uniformly-magnetized polarizing layer (the so-called
fixed layer), and the thickness d > 0 of the so-called free layer (in m). The Zhang–Li
contribution [ZL04, TNMS05] is used for the simulation of the current-driven motion of
domain walls in single-phase samples characterized by current-in-plane injection geometries
and, according to [ZL04] (resp., [TNMS05]), takes the form

T (m) = − 1

γ0
[m× (u · ∇)m+ ξ(u · ∇)m], (6.7a)

with u = − PµB
eMs(1 + ξ2)

Je

(
resp., u = −PgeµB

2eMs
Je

)
. (6.7b)

The involved physical quantities are the spin velocity vector u ∈ R3 (in m/s), the dimen-
sionless ratio of nonadiabaticity ξ > 0, the Bohr magneton µB > 0 (in A m2), and the
dimensionless g-factor of the electron ge ≈ 2.
In (6.1) and (6.3), to fix the ideas, we considered the case of the bulk DMI as a prototype

for chiral interactions [Dzy58, Mor60]. However, our implementation also covers the case
of the interfacial DMI for which, considering a thin magnetic film aligned with the x1x2-
plane, the bulk DMI contributions to the energy (6.1), to the effective field (6.4), and
to the boundary conditions (6.3b) are replaced by the corresponding contributions of the
interfacial DMI, which read

D

∫
Ω

[m3(∂1m1 + ∂2m2)− (m1 ∂1m3 +m2 ∂2m3)] dx,

− 2D

µ0Ms

 −∂1m3

−∂2m3

∂1m1 + ∂2m2

 , and − D

2A
(e3 × n)×m,
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respectively; see, e.g., [CL98, SCR+13, HPP+19]. If the DMI constantD in (6.1) equals zero
(no chiral interaction), then the boundary conditions (6.3b) become homogeneous Neumann
boundary conditions.

6.3 Algorithms

The algorithms implemented in our Python module Commics employ a uniform partition
of the time interval with constant time-step size ∆t > 0. For the spatial discretization, we
consider a tetrahedral mesh Th of the ferromagnet Ω with mesh size h > 0. The associated
FEM space of piecewise affine and globally continuous functions reads

Vh := {ϕh : Ω→ R continuous : ϕh|K is affine for all elements K ∈ Th}. (6.8)

For each time-step n = 0, 1, 2, . . . , we seek for approximations

(Vh)3 3mn
h ≈m(n∆t) such that |mn

h(z)| = 1 for all nodes z of Th,

i.e., for any time-step, the approximate magnetization satisfies the unit-length constraint
|m| = 1 at the nodes of the mesh.

6.3.1 Tangent plane scheme

Tangent plane schemes (sometimes also referred to as projection methods) are based on
variational formulations of the equivalent form of LLG

α∂tm+m× ∂tm = γ0(Heff(m) + T (m))− γ0[(Heff(m) + T (m)) ·m]m.

The orthogonality m · ∂tm = 0, which characterizes any solution of (6.3a), is enforced at
the discrete level by considering the discrete tangent space

Kh(mn
h) := {ϕh ∈ (Vh)3 : ϕh(z) ·mn

h(z) = 0 for all nodes z of Th} ⊂ (Vh)3.

For each time-step, one has to solve a constrained linear system to compute vnh ≈ ∂tm(n∆t)
in Kh(mn

h). With mn
h and vnh at hand, one then computes

mn+1
h ∈ (Vh)3 by mn+1

h (z) :=
mn

h(z) + ∆tvnh(z)

|mn
h(z) + ∆tvnh(z)|

for all nodes z of Th.

The original tangent plane scheme from [Alo08] is formally first-order in time and was an-
alyzed for the energy being only the exchange contribution. The scheme was extended to
general lower-order effective field contributions [AKT12, BFF+14], DMI [HPP+19], and the
coupling with other partial differential equations, e.g., various forms of Maxwell’s equa-
tions [LT13, BPP15, LPPT15, FT17a], spin diffusion [AHP+14], and magnetostriction
[BPPR14]. A projection-free version of the method was analyzed in [AHP+14, Rug16].
In a variant from [AKST14, DPP+20], the formal convergence order in time has been in-
creased from one to two. Effective solution strategies and preconditioning for the resulting
constrained linear system have recently been proposed in [KPP+19].
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6.3.2 Midpoint scheme

The midpoint scheme is based on a variational formulation of the Gilbert form (6.3a) of
LLG. It consists of two fundamental ingredients: the implicit midpoint rule in time and the
mass-lumped L2-product in space, defined as

〈ϕ,ψ〉h :=

∫
Ω
Ih(ϕ ·ψ) dx ≈ 〈ϕ,ψ〉L2(Ω) for all ϕ,ψ : Ω→ R3 continuous. (6.9)

Here, Ih is the standard nodal interpolant associated with Th. The resulting scheme is
second-order in time, inherently preserves the unit-length constraint and the energy of the
solutions, but requires the solution of one nonlinear system formn+1/2

h := (mn+1
h +mn

h)/2 ∈
(Vh)3 per time-step. The midpoint scheme was proposed and analyzed in [BP06]. The
scheme was extended to lower-order terms [PRS18b], the coupling with the Maxwell equa-
tion [BBP08], and a variant of LLG in heat-assisted magnetic recording [BPS09, BPS12].
The resulting nonlinear system is usually solved with constraint preserving fixed-point it-
erations, which, however, spoil the unconditional convergence; see [BP06, Section 4] or
[PRS18b, Section 5]. For the linear system arising in each iteration of the fixed-point
solver, we employ diagonally preconditioned GMRES [SS86]. For another approach, we
refer to, e.g., [Baň10].

6.3.3 Magnetostatic Maxwell equations

For the computation of stray field and Oersted field, i.e., for the numerical solution of the
magnetostatic Maxwell equations (6.2) and (6.5), we follow a hybrid FEM-BEM approach,
which combines FEM with the boundary element method (BEM); see [FK90, HK14]. The
method uses the superposition principle and computes the magnetic scalar potential u such
that Hs = −∇u and the Oersted field Hc by splitting the problem into two parts, where
BEM techniques for the evaluation of the double-layer potential are employed. For the
explicit algorithms implemented in Commics, see [PRS18b, Chapter 4.1] for the stray field
and [Rug16, Section 5.2.4.3] for the Oersted field, respectively.

6.4 Implementation

Our Python module Commics is based on the Netgen/NGSolve [ngs] (NGS) FEM software
and provides a tool to perform micromagnetic simulations with the algorithms described
in Section 6.3 for a variety of energy contributions and dissipative effects. It is purely
Python-based, provides extensive simulation data for reproducibility and post-processing,
and automatically takes care of, e.g., the definition and the assembly of underlying (bi)linear
forms as well as the numerical solution of the arising linear and nonlinear systems. Although
not needed for the use of Commics, this section advertises some of the core features of NGS,
as well as the coupling of NGS with BEM++.

6.4.1 Basic features

Geometry handling, mesh-generation, FEM spaces, and assembly routines are intentionally
hidden from the user of Commics and are internally covered in the NGS framework. For

172



6 Computational micromagnetics with Commics

instance, given an NGS object mesh, representing a tetrahedral mesh of the domain Ω, the
discrete vector-valued product space (Vh)3 is simply generated by

Vh3 = VectorH1(mesh , order=1)

where the syntax VectorH1 indicates that Vh3 is a proper subspace of the vector-valued
Sobolev space (H1(Ω))3.

6.4.2 Symbolic (bi)linear forms

Although the use of Commics requires minimal knowledge of NGS, we shortly describe one
feature of the library, namely the definition of (bi)linear forms: NGS allows the symbolic
definition of (time-dependent) (bi)linear forms. For instance, given the space Vh3 defined
in Section 6.4.1, the LLG-specific cross-product bilinear form

〈mn
h ×ψh,ϕh〉L2(Ω) for all ϕh,ψh ∈ (Vh)3 (6.10)

is symbolically defined on the Python level by the following code snippet:
# grid -, trial - and testfunction
psi = Vh3.TrialFunction ()
phi = Vh3.TestFunction ()
m = GridFunction(Vh3)
# bilinear form
LHS = BilinearForm(Vh3)
ir = IntegrationRule(TET , order=3)
LHS += SymbolicBFI(Cross(m, psi) * phi , intrule=ir)

In the last line, SymbolicBFI with the test function phi and the trial function psi realizes
the bilinear form (6.10) and adds it to the left-hand side LHS for further handling. Note that
via the intrule option, the order of the quadrature is explicitly set to 3, since the realization
of the bilinear form corresponds to the exact integration of piecewise cubic polynomials on
tetrahedra, hence also the parameter TET. For the midpoint scheme, the corresponding
bilinear form employs the mass-lumped L2-product from (6.9), i.e.,

〈mn
h ×ψh,ϕh〉h for all ϕh,ψh ∈ (Vh)3. (6.11)

This bilinear form can be defined in the same way as above specifying the corresponding
quadrature rule on the reference tetrahedron conv{0, e1, e2, e3}:

ir = IntegrationRule(points =[(0,0,0), (1,0,0), (0,1,0), (0,0,1)], \
weights =[1/24, 1/24, 1/24, 1/24])

6.4.3 Coupling with BEM++

For the approximate computation of the magnetostatic fields with the hybrid FEM-BEM
approach from Section 6.3.3, the evaluation of the double-layer potential is required. To
that end, we incorporate into Commics the corresponding functionality of the BEM software
BEM++ [ŚBA+15], including matrix compression techniques [Hac99]. The coupling of NGS
and BEM++ is done on the Python level with the ngbem module [Rie]; see Section 6.5.8.
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6.5 Using Commics: Standard problems and numerical
experiments

In this section, we present some numerical experiments performed with Commics. For each
proposed example, we also include the executable Python script to run the simulation.

6.5.1 Using Commics

To run a micromagnetic simulation with Commics, the user has to define an object of class
commics.Integrator and call its Integrate method.
The essential inputs to initialize such an object are the geometry as a commics.Geometry

object defining the ferromagnetic domain and the meshing strategy (see Section 6.5.2), as
well as an object of type commics.Parameters specifying, among other things, material
parameters, an applied field or current, the initial magnetization state, and the time dis-
cretization strategy. Moreover, the desired time integration scheme has to be chosen. The
algorithms for the numerical integration of LLG implemented in Commics described in
Section 6.3 can be selected in the following way:

• The first-order tangent plane scheme from [Alo08] with explicit integration of the
lower-order terms in time [AKT12, BFF+14] is provided as TPS1.

• The projection-free tangent plane scheme (with explicit integration of the lower-order
terms in time) from [AHP+14, Rug16] is provided as TPS1PF.

• The second-order tangent plane scheme from [AKST14] and its improved version
from [DPP+20] are available as TPS2 and TPS2AB, respectively.

• The midpoint scheme from [BP06] and its improved version from [PRS18b] are pro-
vided as MPS and MPSAB, respectively.

Further details can be accessed with the Python built-in help() function available for
Commics classes.

6.5.2 Geometry specification and meshing

Commics provides several ways to specify a geometry and to generate a corresponding mesh:

• For complex geometries, the submodule netgen.csg of NGS provides a rich number
of possibilities to define geometries; see [ngs].

• For geometries often encountered in micromagnetics, e.g., cuboids and disks, one
can simply provide the dimensions of the sample, a scale factor, and the desired
maximum mesh size; see, e.g., the code snippets in Section 6.5.3 and Section 6.5.6.
Then, netgen.csg will automatically be used with appropriate settings.

• Existing NGS meshes/geometries (stored as .vol-files) can simply be loaded; see, e.g.,
the code snippet in Section 6.5.3.
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Figure 6.1: Uniform decomposition of a cube into six tetrahedra.

Meshes automatically generated by NGS are unstructured and obtained by the advancing
front method; see [Sch97] for details. However, due to mesh quality and shape optimiza-
tions, these meshes do not necessarily satisfy the prescribed maximum mesh size. Commics
provides two possibilities to bypass this drawback: For cuboidal geometries, setting the
Commics option structuredMesh=True allows for structured meshes. First, the sample
is uniformly split into cuboidal cells of prescribed size. Then, each cell is split into six
tetrahedra in such a way that any tetrahedron has three mutually perpendicular edges;
see Figure 6.1. This strategy is for example used in Section 6.5.4. For general geome-
tries, Commics provides the means to repeatedly generate a new mesh (by prescribing a
smaller and smaller mesh size each time) in NGS, until the initial mesh size specification is
satisfied. This strategy can be enabled by setting forceNetgenMeshSize=True as done in
Section 6.5.6.

6.5.3 µMAG standard problem #4

To describe the key aspects of a Commics script, we consider the µMAG standard prob-
lem #4 [MUM].
The objective is the simulation of the magnetization dynamics in a thin permalloy film

of dimensions 500 nm × 125 nm × 3 nm under the influence of a constant applied external
field. We split the experiment into two parts: In the first stage, we obtain the so-called
equilibrium S-state, which is saved to serve as the initial configuration for the second stage,
where the switching dynamics is simulated.

Obtaining the S-state

We consider a structured tetrahedral mesh of the given cuboid into cells of size hx×hy×hz,
which are decomposed into tetrahedra as depicted in Figure 6.1. The dimension of the cells
is chosen as hx = hy = 125/69 nm and hz = 1.5 nm. This corresponds to 228 528 elements
with diameter h = 2.97 nm, 58 170 vertices, as well as 78 936 surface elements. The material
parameters of permalloy read Ms = 8 · 105 A/m, A = 1.3 · 10−11 J/m, D = 0 J/m2, and
K = 0 J/m3. To speed up the process, we deliberately choose the large value α = 1
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for the Gilbert damping parameter. For the simulation, we use a constant time-step size
∆t = 0.1 ps.
The problem description suggests to obtain the S-state by applying a slowly reducing

external field pointing in the (1, 1, 1)-direction. We start with a uniform initial state m0
h ≡

(1, 0, 0) and let the magnitude |Hext| of the external field decrease linearly from 30/µ0 to
0 mT over a period of 1 ns. In Commics scripts, non-constant fields can be described using
time- and space-dependent Python lambda-functions. Further, we relax the system for 1 ns
without applying any external field and store the obtained S-state as sp4sState.vtk for
later use.

from commics import *
# specify geometry and parameters
h_xy , h_z = 125/69, 1.5
geo = Geometry(geometry=Cuboid(500, 125, 3), meshSize =(h_xy , h_xy , h_z), \

structuredMesh=True , scaling=1 e-9)
par = Parameters(A=1 .3 e- 11, Ms=8 e+5, K=0, D=0, gamma0=2 .211 e+5, \

alpha=1.0 , m0=(1 .0 , 0.0 , 0.0 ), \
T_start=0, T_end=1e-9, timeStepSize=0 .1 e- 12)

# define time dependent applied field via lambda function
from math import sqrt
field = lambda t,x,y,z : (par.T_end - t) / (par.T_end - par.T_start) \

* 30.0 e-3 / par.mu0 / sqrt(3.0 )
par.H_ext = (field , field , field)
# define integrator and run simulation from T_start to T_end
sp4 = Integrator(scheme=TPS2AB , geometry=geo , parameters=par)
sp4.Integrate ()
# Relax for another nanosecond and save the mesh and the result
sp4.Integrate(duration=1e- 9, relax=True)
sp4.SaveMesh("sp4mesh")
sp4.SaveMagnetization("sp4sState")

Switching

We assume that the folder data contains the two files sp4sState.vtk and sp4mesh.vol
saved from the simulation described in Section 6.5.3. As stated in the problem description,
we choose α = 0.02 and set the external field to Hext = (−24.6, 4.3, 0)/µ0 mT. Then, we
run the simulation for 3 ns.

from commics import *
# specify geometry and parameters
geo = Geometry(geometry="data/sp4mesh.vol", scaling=1e-9)
par = Parameters(A=1 .3 e- 11, Ms=8 e+5, K=0, D=0, gamma0=2 .211 e+05, \

alpha=0.0 2, timeStepSize=0.1 e-12, m0="data/sp4sState.vtk")
par.H_ext = (-24 .6 e- 3/par.mu0, 4 .3 e-3/par.mu0, 0.0 )
# define integrator and run simulation
sp4 = Integrator(scheme=TPS2AB , geometry=geo , parameters=par)
sp4.Integrate(duration=3e- 9)

For comparison, the desired output of this benchmark problem is the evolution of the x-,
y- and z-component of the spatially averaged magnetization. Figure 6.2 shows that our
results match those computed by the finite difference code OOMMF [DP99] available on
the µMAG homepage [MUM]. Further, Figure 6.3 visualizes the magnetization at the time
when the x-component of the spatially averaged magnetization first crosses zero.
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Figure 6.2: µMAG standard problem #4 from Section 6.5.3: Time evolution of the spatially
averaged magnetization components computed with Commics (TPS2AB and MPS)
compared to the results of OOMMF.
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Figure 6.3: µMAG standard problem #4 from Section 6.5.3: Snapshot of the magnetization
when the x-component of the spatially averaged magnetization first crosses zero
(t = 138.2 ps).

Meshing strategy and integrator

In Section 6.5.3, we considered a structured mesh and the TPS2AB integrator from [DPP+20].
To compare the results, we additionally repeat the simulation on an unstructured mesh
using the midpoint scheme: To simulate the dynamics on an unstructured mesh generated
by NGS, we replace the definition of the geometry in Section 6.5.3 by

geo = Geometry(geometry=Cuboid(500, 125, 3), meshSize=3, scaling=1 e-9)

This results in an unstructured mesh containing 48 792 elements, 16 682 vertices and 33 360
surface elements, which corresponds to an actual mesh size of 5.19 nm. To repeat the sim-
ulation using the midpoint scheme from [BP06], we replace the definition of the integrator
in Section 6.5.3 and Section 6.5.3 by

sp4 = Integrator(scheme=MPS , geometry=geo , parameters=par)

Although the mesh size is close to the exchange length of the material (5.69 nm), qualita-
tively the results match those computed by OOMMF well; see Figure 6.2.
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6.5.4 µMAG standard problem #5

The spintronic extensions of LLG from [ZL04, TNMS05] are the subject of the µMAG
standard problem #5 [MUM]. The sample under consideration is a permalloy film with
dimensions 100 nm × 100 nm × 10 nm aligned with the x, y, and z axes of a Cartesian
coordinate system, with origin at the center of the film. We consider the same material
parameters as in Section 6.5.3 and α = 0.1. The initial state is obtained by solving (6.3)
with T ≡ 0 and m0(x, y, z) = (−y, x,R)/

√
x2 + y2 +R2 with R = 10 nm and maximal

damping α = 1 for 1 ns, which is a sufficiently long time for the system to reach equilibrium.
Given PJe = (1 · 1012, 0, 0) A/m2 and ξ = 0.05, we set T according to the expression
in (6.7a). Then, we solve (6.3) with the relaxed magnetization configuration as initial
condition for 8 ns, which turns out to be a sufficiently long time to reach the new equilibrium;
see Figure 6.5 and Figure 6.4. For discretization, we use a constant time-step size ∆t = 0.1 ps
and consider a structured tetrahedral mesh of the given cuboid into cells of size hx×hy×hz,
which are decomposed into tetrahedra as depicted in Figure 6.1. The dimension of the cells
is chosen as hx = hy = hz = 5/3 nm. This corresponds to 129 600 elements with diameter
h = 2.89 nm, 26 047 vertices, as well as 17 280 surface elements.

from commics import *
# specify geometry and parameters
h = 5 / 3
geo = Geometry(geometry=Cuboid (( -50,-50,-5), (50,50,5)), meshSize =(h,h,h), \

structuredMesh=True , scaling=1 .0 e- 09)
par = Parameters(A=1 .3 e- 11, Ms=8 .0 e+ 05, K=0 .0 , gamma0=2.2 11e+ 05, alpha=1 .0 , \

spintronicsCoupling="zhangLi", g=2 .0 , P=1 .0 , \
Je=(1 .0 e+ 12, 0.0 , 0.0 ), xi=0 .05, \
timeStepSize=0 .1 e- 12, T_start= -1 .0 e-09)

# space dependent initial condition (scaled domain); normalized automatically
from ngsolve import x, y
par.m0 = (-y, x, 10.0 )
# define integrator and relax configuration
sp5 = Integrator(scheme=TPS2AB , geometry=geo , parameters=par)
sp5.Integrate(duration=1.0 e-09, relax=True)
# set damping alpha and run simulation with specified current
sp5.SetParameter_alpha(0.1 )
sp5.Integrate(duration=8.0 e-09)
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Figure 6.4: µMAG standard problem #5: Evolution of the spatially averaged x- and y-
component of m.
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Figure 6.5: µMAG standard problem #5: Magnetization in the xy-plane viewed from the
top at different times. Starting from the relaxed configuration at t = 0.0 ns, the
vortex (red) follows a spiral-like motion. After t = 8.0 ns no further movements
are observed.

6.5.5 Standard problem for ferromagnetic resonance simulations

Ferromagnetic resonance (FMR) is a well-established experimental technique for the study
of ferromagnetic materials. A typical application of FMR consists in perturbing the magne-
tization of a system from its equilibrium by a sufficiently weak excitation and studying the
induced magnetization dynamics, which is basically made of damped oscillations around the
initial equilibrium. The resulting resonance frequencies and the eigenmodes of the system
give some insights on the magnetic properties of the material and are used, e.g., for the
experimental measurement of model parameters like the Gilbert damping constant or the
saturation magnetization [Far98, MS05].
In this section, we compute with Commics a problem for FMR simulations recently

proposed in [BBA+17]. The computational domain is a cuboid of permalloy with dimensions
120 nm×120 nm×10 nm. The material parameters are the same as in Section 6.5.3. During
the first stage, we set α = 1 and consider a constant applied external field of magnitude
|Hext| = 8 · 104 A/m pointing in the direction (1, 0.715, 0). We initialize the system with a
uniform ferromagnetic statem0

h ≡ (1, 0, 0) and let the system evolve for 5 ns. The resulting
state is then used as initial condition for the second stage, in which we set α = 0.008, change
the direction of the applied external field to (1, 0.7, 0) but keep |Hext| = 8 · 104 A/m , and
let the system evolve to the new equilibrium for 20 ns. We consider a structured tetrahedral
mesh of the given cuboid into cells of size hx×hy×hz, which are decomposed into tetrahedra
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as depicted in Figure 6.1. The dimension of the cells is chosen as hx = hy = hz = 2 nm.
This corresponds to 108 000 elements, 22 326 vertices, as well as 16 800 surface elements,
and yields a mesh size of h = 3.46 nm. For time discretization, we use a constant time-step
size ∆t = 0.1 ps. We compare our results obtained with Commics to those presented in
[BBA+17]. There, the authors use the finite difference code OOMMF [DP99] and investigate
the evolution of the y-component of the spatially averaged magnetization, as well as its
power spectrum Sy. The power spectrum is obtained by a discrete Fourier transform as
described in [BBA+17, Section 2.3.1]. Our results match well with those of [BBA+17]; see
Figure 6.6 and Figure 6.7.

from commics import *
# specify geometry and parameters
geo = Geometry(geometry=Cuboid(120, 120, 10), meshSize =(2,2,2), \

structuredMesh=True , scaling=1 .0 e- 09)
par = Parameters(A=1 .3 e- 11, Ms=8 .0 e+ 05, K=0 .0 , gamma0=2.2 10173e+ 05, \

alpha=1.0 , timeStepSize=0.1 e-12, T_start=-5 .0 e-9, \
m0=(0, 0, 1))

# define integrator , choose number of threads , specify folder for results
fmr = Integrator(scheme=TPS2AB , geometry=geo , parameters=par , numthreads=8)
fmr.SetResultsFolder("FMR_Result")
# obtain initial condition
amplitude = 80.0 e+03
e = (1 .0 , 0.7 15, 0.0)
e_length = (sum(e[j]**2 for j in range(3)))**0.5
H_ext = (amplitude*e[0]/e_length , amplitude*e[1]/e_length , 0.0)
fmr.SetParameter_H_ext(H_ext)
fmr.Integrate(duration=5.0 e-09)
# change direction of applied field and run simulation
fmr.SetParameter_alpha(0.0 08)
e = (1 .0 , 0.7 , 0.0)
e_length = (sum(e[j]**2 for j in range(3)))**0.5
H_ext = (amplitude*e[0]/e_length , amplitude*e[1]/e_length , 0.0)
fmr.SetParameter_H_ext(H_ext)
fmr.Integrate(duration=20 .0 e- 09)
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Figure 6.6: Ferromagnetic resonance simulation from Section 6.5.5: Time evolution of 〈my〉
obtained with Commics compared to the results computed with OOMMF.
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Figure 6.7: Ferromagnetic resonance simulation from Section 6.5.5: Power spectrum Sy
obtained by discrete Fourier transform of the spatially averaged y-component of
the magnetization 〈my〉.

6.5.6 Current-induced dynamics of skyrmions in nanodisks

With this experiment, we aim to show how Commics can be used to numerically investigate
the stability and the induced dynamics of magnetic skyrmions in helimagnetic materials in
response to spin-polarized currents.
We consider a magnetic nanodisk of diameter 120 nm (x1x2-plane) and thickness d =

10 nm (x3-direction). We use the material parameters of iron-germanium (FeGe), i.e.,Ms =
3.84 · 105 A/m, A = 8.78 · 10−12 J/m, D = 1.58 · 10−3 J/m2, and K = 0 J/m3; see, e.g.,
[BAB+17]. The initial condition for our experiment is obtained by relaxing a uniform out-
of-plane ferromagnetic state m0 ≡ (0, 0, 1) for 2 ns. For the relaxation process, we choose
the large value α = 1 for the Gilbert damping constant. The resulting relaxed state is the
skyrmion depicted in Figure 6.9.
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Figure 6.8: Simulation of the skyrmion dynamics from Section 6.5.6. Structure of the ap-
plied current pulse (left). Time evolution of the x-component of the spatially
averaged magnetization (right).

Starting from this configuration, we apply a perpendicular spin-polarized current pulse
Je(t) = (0, 0, J(t)) of maximum intensity Jmax > 0 for 150 ps; see Figure 6.8. To model
the resulting spin transfer torque, we include T from (6.6). Then, we turn off the current
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density and let the system evolve for 20 ns. In order to capture all possible excitation
modes during the application of the pulse and the subsequent relaxation process, we set the
value of the Gilbert damping constant to α = 0.002, which is considerably smaller than the
experimental value of α = 0.28 measured for FeGe; see [BAB+17].
In Figure 6.8, we plot the time evolution of the first component of the spatially averaged

magnetization of the sample after a current pulse with Jmax = 1 · 1012 A/m2, p = (0, 1, 0),
and P = 0.4. The induced dynamics is a damped precession of the skyrmion around the
center of the sample; see Figure 6.9. We consider an unstructured tetrahedral mesh of the
nanodisk generated by NGS. For a desired mesh size of 7.5 nm, the automatically generated
mesh consists of 35 390 elements with maximum diameter h = 6.1 nm, 8436 vertices, as well
as 9586 surface elements. We use a constant time-step size ∆t = 0.1 ps.

0 ps 80 ps 160 ps 240 ps 320 ps 400 ps 480 ps 560 ps -1

0

1

mz

Figure 6.9: Snapshots of the skyrmion dynamics from Section 6.5.6: Magnetization in the
xy-plane viewed from the top at different times. Starting from the relaxed
configuration at t = 0 ps, the skyrmion is deflected from the center of the disk
by a current pulse. Then, the skyrmion oscillates around the center of the disk
with an observed period of approximately 400 ps. Due to damping, over the
relaxation period of 20 ns the amplitude of the oscillations decreases to almost
zero, and the initial equilibrium configuration is restored.

from commics import *
# specify geometry and parameters
geo = Geometry(geometry=Disk(120 .0 , 10.0 ), meshSize=7.5 , \

forceNetgenMeshSize=True , scaling=1.0 e-09)
par = Parameters(A=8 .78e- 12, Ms=3.84 e+05, D=1.5 8e-03, dmCoupling="bulk", \

spintronicsCoupling="slonczewski", d=10.0 e-09, P=0.4 , \
p=(0.0 , 1.0 , 0 .0), \
alpha=1.0 , timeStepSize=1e-13, theta=1.0 , m0=(0, 0, 1))

# define integrator , choose number of threads
helimag = Integrator(scheme=TPS1, geometry=geo , parameters=par , numthreads=8)
# choose to save magnetization as .vtk -file every X seconds , run simulation
helimag.RecordMagnetization(every=10.0 e-12)
helimag.Integrate(duration=2.0 e-9, relax=True)
# prepare JeMax , alpha , and points in time
helimag.SetParameter_alpha(0.0 02)
JeMax = 1.0 e+12
T0, T1, T2, T3 = 0, 40.0 e-12, 110.0 e-12, 150.0 e- 12
# set increasing current , run simulation
helimag.SetParameter_Je(lambda t,x,y,z : (t-T0)/(T1-T0)*JeMax)
helimag.Integrate(duration=T1-T0)
# set constant current , run simulation
helimag.SetParameter_Je(JeMax)
helimag.Integrate(duration=T2-T1)
# set decreasing current , run simulation
helimag.SetParameter_Je(lambda t,x,y,z : (T3-t)/(T3-T2)*JeMax)
helimag.Integrate(duration=T3-T2)
# final relaxation
helimag.Integrate(duration=20.0 e-9, relax=True)
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6.5.7 Solver performance

In this section we provide details on the solver performance for the benchmark experiments
from Sections 6.5.3–6.5.6. To solve the linear system for vnh arising in each time-step for
tangent plane integrators, the efficient solution strategy from [KPP+19], based on GMRES
with a Jacobi-type preconditioner, is used. For the linear systems arising within the fixed-
point iteration in each time-step of the midpoint scheme, diagonally preconditioned GMRES
is employed. For both time integration schemes, the initial guess for GMRES is the solution
vector of the system most recently solved by GMRES, i.e., the solution from the previous
time-step for the tangent plane scheme, and the solution of the previous fixed-point iteration
for the midpoint scheme. The performance for the different solvers and experiments is
summarized in Table 6.1. All computations were performed on a desktop computer with
32 GB of RAM and an Intel Core i7-6700 CPU [Int] using 4 cores with a base frequency of
3.4 GHz.

Experiment Integrator Mesh Iter. per time-step Comp. time
nodes elements surf. els. fixed-point GMRES per time-step

µMAG #4 TPS2AB 58 170 228 528 78 936 − 74.1 4.5 s
MPS 16 682 48 792 33 360 6.9 10.7 5.4 s

µMAG #5 TPS2AB 26 047 129 600 17 280 − 42.4 2.0 s

FMR TPS2AB 22 326 108 000 16 800 − 63.4 1.5 s

Helimag TPS1 8436 35 390 9586 − 57.2 0.41 s

Table 6.1: Experiments of Section 6.5.3 (µMAG #4), Section 6.5.4 (µMAG #5), Sec-
tion 6.5.5 (FMR), and Section 6.5.6 (Helimag): Performance summary. The
last three columns refer to the average cost of a time-step. Only time-steps after
the initial relaxation phase are considered.

6.5.8 Coupling of NGS with BEM++

In this section we show how NGS, BEM++, and the ngbem module can be used to perform
stray field computations following the approach proposed in [FK90]:

• NGS is used for mesh generation and the FEM problems.

• BEM++ provides boundary integral operators and an interface for solving the BEM
problem.

• ngbem provides the means to extract a boundary element mesh from the volume mesh
together with a mapping between the corresponding degrees of freedom.

To test the procedure we consider the uniformly magnetized unit ball. Then, the stray field
is given by Hs(M) ≡ −M/3 in Ω. The complete code is provided in the following Python
script.
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# Demonstration of the Fredkin -Koehler approach for stray field computations
# using ngsolve , ngbem , bempp to define mesh , femSpaces , GridFunctions
import ngsolve , ngbem , bempp.api , commics , numpy
geo = commics.Geometry(commics.UnitBall (), meshSize=0.3)
geo.GetReady ()
mesh = geo.GetMesh ()
Vh3 = ngsolve.VectorH1(mesh , order=1)
Vh = ngsolve.H1(mesh , order=1)
VhD = ngsolve.H1(mesh , order=1, dirichlet="bc_dirichlet")
m = ngsolve.GridFunction(Vh3)
m.components[0].vec.FV().NumPy()[:] = 1.0
u1 = ngsolve.GridFunction(Vh)
u2 = ngsolve.GridFunction(VhD)
hs = -u1.Deriv() - u2.Deriv ()
# Neumann FEM problem
a1 = ngsolve.BilinearForm(Vh)
a1 += ngsolve.Laplace(1 .0)
c1 = ngsolve.Preconditioner(a1, "local")
a1.Assemble ()
solverU1 = ngsolve.CGSolver(mat=a1.mat , pre=c1.mat)
phi1 = Vh.TestFunction ()
f1 = ngsolve.LinearForm(Vh)
f1 += ngsolve.SymbolicLFI(phi1.Deriv() * m)
measOmega = ngsolve.Integrate(ngsolve.CoefficientFunction(1.0 ), mesh)
# BEM problem
bemSpace , op_NgToBem = ngbem.H1_trace(Vh)
op_NgToBem.eliminate_zeros ()
bemToNgIdx = numpy.full(op_NgToBem.shape[0], fill_value = Vh.ndof , dtype=int)
bemToNgIdx[op_NgToBem.row] = op_NgToBem.col
bem_K = bempp.api.operators.boundary.laplace.double_layer(bemSpace , bemSpace , \

bemSpace)
bem_I = bempp.api.operators.boundary.sparse.identity(bemSpace , bemSpace , \

bemSpace)
bemRhsOp = bem_K - 0.5 *bem_I
bemLhs = bem_I
# Dirichlet FEM problem
a2 = ngsolve.BilinearForm(VhD)
a2 += ngsolve.Laplace(1 .0)
c2 = ngsolve.Preconditioner(a2, "bddc")
a2.Assemble ()
f2 = ngsolve.LinearForm(VhD)
f2.Assemble ()
bvp2 = ngsolve.BVP(bf=a2, lf=f2, gf=u2, pre=c2)
# solve Neumann FEM problem
f1.Assemble ()
u1.vec.data = solverU1 * f1.vec
u1.vec.FV().NumPy ()[:] -= ngsolve.Integrate(u1, mesh) / measOmega
# solve BEM problem
bem_u1 = bempp.api.GridFunction(bemSpace , \

coefficients=u1.vec.FV().NumPy()[bemToNgIdx ])
bem_rhs = bemRhsOp * bem_u1
bem_g = bempp.api.linalg.iterative_solvers.gmres(bemLhs , bem_rhs)[0]
# solve Dirichlet FEM problem
u2.vec.FV().NumPy ()[bemToNgIdx] = bem_g.coefficients
bvp2.Do()
# check results
HS = ngsolve.GridFunction(Vh3)
for d in range(3): HS.components[d].Set(hs[d])
passed = all(abs( -1/3 - HS.components[0].vec.FV().NumPy()) < 0.0 1) \

and all(abs(HS.components[1].vec.FV().NumPy()) < 0.0 1) \
and all(abs(HS.components[2].vec.FV().NumPy()) < 0.0 1)

print("PASSED STRAYFIELD TEST:", passed)
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