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Kurzfassung

In physikalischen Problemstellungen wird das Verhalten komplexer Systeme oft beschrieben, indem
jedem sinnvollen Zustand des Systems eine Energie zugeordnet wird. Die (meta-) stabilen Zustinde
sind dann gerade dadurch charakterisiert, dass sie die Energie (lokal) minimieren. Mathematisch lautet
die Aufgabe also, ein gegebenes Energiefunktional e : A — R zu minimieren. Dabei ist A die durch
Nebenbedingungen festgelegte Teilmenge der zuldssigen physikalisch sinnvollen Konstellationen aus
einem geeigneten Funktionenraum A C H.

Die vorliegende Arbeit befasst sich mit einem Reduktionsmodell aus [DKM*01], welches das Verhalten
uniaxialer diinner Filme im Mikromagnetismus beschreibt. Sei w C R? das ferromagnetische Material
dessen Dicke ¢ < diam(w) in der Modellierung vernachlissigt wird. Mogliche Magnetisierungen werden
durch Vektorfelder m : w — R? beschrieben, die der physikalischen Nebenbedingung |m(z)| < 1
geniigen. Fiir einen mdoglichen Zustand m des Ferromagneten unter Einfluss eines dufseren Feldes f
lautet die Energie

e(m):/R3|Vu|2dx+q/m%dx—2/f-mdx,

wobei v : R> — R das von m induzierte magnetostatische Potential ist und als Losung einer reduzierten
Maxwell-Gleichung bestimmt ist. Der Parameter ¢ > 0 ist vom Material abhéngig und bestimmt die
Relevanz der kristallinen Anisotropie.

Dieses Modellproblem dient als Prototyp fiir ein vektorwertiges quadratisches Minimierungsprob-
lem. Als schwierig erweist sich das Vorhandensein nichtlokaler Beitrage durch die Streufeldenergie
Jgs [Vu|? dz sowie die nichtlineare skalare, jedoch konvexe Nebenbedingung |m(z)| < 1. In der Dis-
sertation [Drw08] behélt der Autor, wie dies auch in der Originalarbeit [DKMOO02]| geschieht, eine
distributionelle Sichtweise bei. Der Autor diskutiert die Simulation des Spezialfalls weichmagnetischen
Materials mit ¢ = 0 mittels eines Innere-Punkte-Verfahrens. Dabei nimmt die effiziente Berechnung
der Streufeldenergie [ps |Vu|? dz einen wesentlichen Raum ein.

Der erste Teil der vorliegenden Arbeit befasst sich mit der Konstruktion eines Hilbertraums H fiir
die Magnetisierung m. Losbarkeit und Eindeutigkeit werden in geeignetem Sinn nachgewiesen. Dabei
ist das Eindeutigkeitsresultat weder in den Originalpublikationen [DKM*01, DKMO02] noch in der
Dissertation [Drw08] enthalten.

Der zweite Teil befasst sich mit der Umsetzung eines Strafverfahrens fiir die numerische Approxima-
tion des analytischen Minimierers. Dabei muss der Hilbertraum H geeignet durch einen endlichdi-
mensionalen Ansatzraum X approximiert werden. Dadurch entsteht ein vom Parameter h > 0
abhéngiger Diskretisierungsfehler. Andererseits wird das Strafverfahren durch einen Parameter € > 0
gesteuert, der einen Modellierungsfehler bedingt. Als Kernresultat wird bewiesen, dass beliebige Fol-
gen (hp,e,) — (0,0) zu Konvergenz der Minimierer in geeignetem Sinn fithren. Unter Regularitits-
annahmen und aufbauend auf punktweise hergeleiteten Euler-Lagrange Gleichungen werden a priori
Abschétzungen bewiesen, die dariiber hinaus Auskunft iiber die zumindest zu erwartende Konvergen-
zordnung geben. Schlieflich wird ein heuristischer Fehlerschiitzer vorgeschlagen, der geeignet ist, um
ein h- und e-adaptives Verfahren zu steuern.

Der dritte und vierte Teil des Dissertation befassen sich mit einer detailierten Beschreibung einer
objektorientierten Implementierung des Strafverfahrens in C++ sowie mit ausfiihrlichen numerischen
Experimenten, um die analytischen Aussagen zu iiberpriifen. In Beispielen mit starken Singularititen
und im Falle weicher Filme mit ¢ = 0 fiihrt der Einsatz von Adaptivitdt zu einer Verbesserung der
Asymptotik.






Abstract

In physics, the behavior of complex systems is often described in terms of an energy associated with
each possible state. The (meta-) stable states of the system, then, are characterized by minimizing the
energy (locally). Mathematically, the task of finding stable states, therefore, is the minimization of
an energy functional e : 4 — R. Here, A denotes the subset of admissible states in some appropriate
function space A C H.

The present work treats the numerical analysis of a reduced model from [DKM™01] that describes the
behavior of thin-film devices in micromagnetics. Let w C R? denote the ferromagnetic sample whose
thickness ¢ < diam(w) is neglected by the model. Possible states of the magnetic device are described
by a vector field m : w — R? under the physical side constraint |m(z)| < 1. Given a magnetization
m and an applied field f, the energy reads

e(m):/R3\VuIdeJrq/m%dx—z/f-mdx,

where the induced magnetostatic potential u : R — R is determined as solution of a reduced Maxwell
equation. The material dependent parameter ¢ > 0 describes the strength of the crystalline anisotropy.

This model problem serves as a prototype for a vector valued quadratic minimization problem. The
non-local contributions of the stray field energy fR3 |Vu|? dr and the non-linear, but convex scalar side
constraint | m(z)| < 1 effect difficulties in the treatment of the equations. The dissertation [Drw(8| has
a distributional point of view, as is also the case in the original work [DKMOO02|. The work [Drw08|
is concerned with the numerical simulation of the model in the case of soft ferromagnetic samples, i.e.
q = 0, by use of an interior point method. A large part of that thesis is concerned with the efficient
computation of the stray-field energy [ps [Vu|? dz.

The first part of the present work is concerned with the construction of a suitable Hilbert space H for
the magnetization. Existence and uniqueness of solutions are proven in an appropriate sense. We stress
that the statement on the uniqueness is neither included in the original works [DKM*01, DKMOO02|
nor in the more recent dissertation [Drw08].

The second part studies a penalty method for the numerical solution of the model problem. First,
the energy space H needs to be approximated by some finite-dimensional subspace X; C H. This
introduces a discretization error dependent on h > 0. Second, the penalty scheme depends on a
parameter ¢ > 0 which introduces a modeling error. As a key result we prove that any choice of
zero sequences (h,,e,) — (0,0) leads to convergence of the discrete and penalized solutions to the
analytical solution in an appropriate sense. Under regularity assumptions and based on pointwise
Euler-Lagrange equations, we also provide an a priori error analysis that gives indication on what
order of convergence may be expected at least in numerical simulations. Finally, a heuristic error
estimator is proposed that is suitable to steer an h- and e-adaptive algorithm.

Parts three and four describes in detail the object-oriented implementation of the proposed scheme
in C++ and extensive numerical experiments are provided to verify our analysis. In the case of soft
films with ¢ = 0 or in presence of strong singularities, the proposed adaptive scheme improves the
asymptotic behavior when compared to a uniform approach.
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CHAPTER 1. INTRODUCTION AND OVERVIEW 1

Chapter 1

Introduction and overview

1.1 Model problem

In physics, the behavior of complex systems is often described in terms of energy functionals. The
(meta-) stable states of the system, then, are characterized by minimizing the energy (locally). Math-
ematically, the task of finding stable states, therefore, is the minimization of an energy functional
e : A — R, where A denotes the subset of admissible states in some appropriate function space

ACH.

The field of computational micromagnetics is of special mathematical and scientific interest for several
reasons. The model due to Landau and Lifshits [LL35] is nowadays accepted as the relevant model
to describe micromagnetic phenomena in many applications. The energy functional, however, is not
convex and hysteresis governs many of the non-linear effects that are observed in experiments. The
presence of various length scales make large magnetic devices hardly accessible for direct numerical
simulation. On the other hand, micromagnetic phenomena are not yet fully understood [SH98|, and
numerical simulation has proven over the last decades to be a valuable tool to understanding physical
phenomena in many applications.

To allow for efficient simulation of mesoscopic effects, various reduced models have been proposed
and analyzed in the literature, cf. e.g. [DKMOO06]. Each of which covers a certain limiting regime
of samples. In [DKM™'01], a reduced model in thin-film micromagnetics has been proposed and it is
observed that it is compatible with the other prior models suggested in [SB89] and [vdB86].

Let w C R? denote a ferromagnetic sample, whose thickness ¢t < diam(w) is neglected. Admissible
magnetizations are described by vector fields m : w — R? such that the constraint [m(z)| < 1 is
satisfied pointwise almost everywhere in w. Given an applied field f, the reduced energy reads

1
e(m):§/RS\Vu]2dm+g/mgdx—/f'md% (1.1)

where the magnetostatic potential u solves the reduced Maxwell equation
/ VuVvdX = / m-Voudr Yve D(R?).
R3 w

The material parameter ¢ > 0 determines the strength of the uniaxial crystalline anisotropy. In
contrast to the full micromagnetic model problem due to Landau and Lifshits, the reduced thin-film
minimization problem is convex. However, it is a vector valued problem with a scalar, non-linear but



convex side constraint |m(x)| < 1. In [CP01] and [Pra03], a penalty method for the simulation of the
large-body limit in micromagnetics is studied. The similar nature of the model problem may indicate
that the techniques used in those publications might be generalized and applied to the thin-film
problem as well. However, there are some differences that need new techniques and lead to somewhat
altered results: First, the presence of a negative order Sobolev norm which is a result of the limiting
process of the stray field energy as t — 0. In particular, in the thin-film model under consideration, the
dual space contains not only Lebesgue functions but also distributions. Therefore, arguments based
on properties of the function space L? often cannot be transferred easily. Second, the existence of
the magnetostatic potential demands V -m € H1/2 (w). This means that a discretization mj, of the
magnetization must allow for evaluation of the divergence V - my,. The use of Raviart-Thomas finite
elements [RT77| effects that certain L2-orthogonalities used in the a priori and a posteriori analysis
of the large-body limit — where piecewise constant functions are used to discretize m € L? — are not
available.

In the work [DKMOO02], I'-convergence [Bra02] of the full model by Landau and Lifshits to the reduced
thin-film model has been proven under certain assumptions. This means that one cannot expect to
obtain full information on the microstructure when simulating the thin-film model. Mesoscopic and
macroscopic quantities, such as the magnetostatic potential and the energy, are however preserved.
Moreover, a comparison of first numerical simulations with data obtained from experiments shows
that the model is of relevance, at least for soft ferromagnetic samples. The recent dissertation [Drw0§|
is dedicated to the case of soft material, and the anisotropy is dropped, i.e. ¢ = 0. Numerical
calculation of minimizers is done by use of an interior point method. Special emphasis is placed on
the efficient computation of the stray field energy % Jgs IVul? dz by use of H? matrices [HB02, DO04]
and the computation of minimizers of unit length. Let m be a minimizer of the reduced energy
(1.1). Note that the anisotropy energy contribution vanishes due to ¢ = 0. Choosing some divergence
free magnetization m with [ m-fdr = 0 and |m(z) + m(z)| < 1 yields another minimizer. The
computation of minimizers of unit length allows, under certain conditions, for reconstruction of the
magnetic domains and hence restoring part of the microstructural data that is originally lost in the
process of the I'-limit.

1.2 Overview and main results

Chapter 2 is dedicated to the construction of a Hilbert space H for the magnetization and the analysis
of the model problem. First, in Section 2.1, we give an interpretation of the energy contributions of
the full micromagnetic model by Landau and Lifshits. Then, Section 2.2 introduces the minimization
problem (M), where the energy functional is defined as in (1.1).

As a first step in the analysis of the model problem, we turn our attention to the reduced magnetostatic
Maxwell equation

/ VqudX:/m-Vvdx Vv € D(R?). (1.2)
R3 w

In Lemma 2.3, direct calculations and integration by parts yield
—Au=0 inR3\@
0
[B—ZJ =V -m onw
[u] =0 onw

m-n=0 ony=0w.
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Here, [-] denotes the jump lim,, ,o+ u(x) — lim,, ,o- u(x) across the surface w and n is the outer
normal vector of w in R?. The simple-layer potential S : H~1/2(w) — H} (R?) defined by

sv(x):i/w oY) g

dm Jo o=yl 7

is used to obtain a solution of the Maxwell equation. Theorem 2.8 uses ideas from [Ste87] for the
analysis of screen problems to generalize the well-known jump conditions of the simple-layer potential
in the case of closed surfaces. We obtain

[S¢] =0 [85—@] =—p

8903

from which we conclude that S(—V-m) is a solution of (1.2). In particular the magnetostatic Maxwell
equation does have a solution if the divergence of the magnetization satisfies V-m € H~Y?(w).

This leads to the choice of our energy space
H:={me L*w)?|V-me H ?w),m-n=0on~},
which is a Hilbert space with the natural norm
lm|* = m|Z. + |V - ml[F_ -

Let V : H/2(w) — H'Y2(w) denote the trace of the simple-layer potential S. Then, V is an elliptic
and continuous linear operator, and the V-norm defined by

2
lelly = (e, V@>ﬁ71/2xH1/2

is an equivalent norm in H~/ 2(w). Theorem 2.18, finally, states that given any m € H, there is a
uniquely determined potential u € B(R3) := {u € H},.(R3)| Vu € L*(R3)}/R, and moreover it holds
that

IVullF2g@s) = IV - mlf5,

This last identity allows for reformulation of our energy functional
N 1 2 q 2
e(m) = 5 IV - mf + L a2 — (7). (13)

as was also observed in [DKMOO02]. Note that e(-) is a convex and continuous mapping with respect
to the energy space H.

In Section 2.6.2, we use the direct method of calculus of variations [Dac89| to prove existence and
uniqueness of a minimizer m* within the set of admissible magnetizations A := {m € H | |m(z)| < 1}.
In Lemma 2.20, we prove that the set A is closed with respect to the H-norm. Since it is also
convex, Mazur’s lemma [Yos65] implies that it is also closed with respect to the weak topology. In
Theorem 2.21, we prove coercivity of e(-). An infimizing sequence hence has a weakly convergent
subsequence, and the weak limit is an element of the admissible set A. Since e(-) is continuous and
convex it is also weakly lower semi-continuous and we conclude that the weak limit is a minimizer. In
Theorem 2.22 we use mollifier techniques inspired by [Pra03| to prove that

2 2
[m]f* = ||V - ml[y, + ¢ |[mz]7- (1.4)



defines a norm, from which we obtain uniqueness of the minimizer, provided ¢ > 0. This last result is
not stated in any of the publications [DKMO02, Drw08|. This may be because the authors there have
a distributional point of view and do not define a Hilbert space setting. Also the focus in the original
publications lies on soft material, where the anisotropy ¢ < 1 is dropped. Then, the solution is in
fact not uniquely determined. After stating the corresponding variational inequality in Lemma 3.3,
we immediately obtain the continuous dependence of m from the data f by standard arguments.
Altogether this finally provides well-posedness of the minimization problem (M) within our Hilbert
space setting.

In Chapter 3, we propose a scheme for the computation of approximations to the analytical solution
m*. First, we use lowest order Raviart-Thomas finite elements to discretize the energy space H. This
is also proposed in the work [Drw08|. The approximation of the infinite dimensional Hilbert space H
by a finite dimensional subspace X}, introduces a discretization error that depends on the mesh-size
h > 0. The fact that we choose a conforming discretization allows us to apply the same arguments
as for the continuous problem to prove existence and uniqueness of solutions of the discrete problem
(Mp,). With the help of the equivalent variational inequality, we obtain the a priori error estimate

™ — my || = O(h'/?)
under certain regularity assumptions.

The side constraint |m(z)| < 1 is treated by use of a penalty method in the spirit of [CP01]: For
€ > 0, we introduce the energy contribution

1

2
oz I(Im[ = 1)+[72,

where ()4 denotes the positive part. Lemma 3.7 provides the coercivity of the modified energy
functional

1 2
ce(m) := e(m) + o— [|(jm| — 1) [|7
We drop the side constraint and seek the uniquely determined solution mj of the unconstrained but
non-smooth minimization problem (M}) associated with the penalized energy functional e.(-). The
penalty scheme thus introduces an additional error dependent of € > 0.

In the literature, penalty methods have been studied in depth for finite dimensional problems. Let mj,
be the solution to the problem (M} ) and my, the solution to the problem (Af},). Then it is well-known,
see e.g. [INW99]|, that one can expect weak convergence

mj —~m; as e — 0.

This, however, only guarantees convergence for fixed discretization parameter h > 0. We failed to
find any convergence result in the literature that could be applied to our model problem to provide
convergence as h — 0 and € — 0. In [CP01], the authors succeed to prove convergence in the energy
norm. The proof, however, relies on the fact that the energy space is L? and that the dual space thus
consist of Lebesgue functions. In contrast, this is not the case in our context. In Theorem 3.11, we
use abstract arguments to prove that also mj — mg as h — 0. Finally, Corollary 3.12 states weak
convergence mj — m* for any choice of h — 0 and € — 0. We stress that the arguments are largely
independent of the concrete model problem and apply to a large class of energy functionals.

The scheme for the numerical computation, now, is justified in the sense that, as (hy,,e,) — (0,0), we
obtain weak convergence of the discrete solutions to the analytical solution of the constrained problem
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(M). Section 3.3, is dedicated to establish a priori error estimates. Based on a regularity result of
[DKMO02], we derive KKT-equations and prove the existence of a Lagrange multiplier A € L? (w)
such that

0
q<m2> +Vu—f+Am =0,
A(jm| —1) =0,
A >0,
lm| <1
hold pointwise almost everywhere in w. The proof of Theorem 3.18 follows the same ideas as in case
of the large body limit [De 93]. However, the fact that we are dealing with functions in L7 . effects

that the proof of [De 93| cannot be applied to our setting directly, and further technical details are
necessary.

Based on these pointwise equations and under the additional regularity assumption V -m € L2,
Theorem 3.22 provides the a priori estimate

lm* — mg|| S OE"?).

In the proof, we use a pointwise estimate for the non-linear contributions that stems from [CP01].
Finally, Theorem 3.24 provides an a priori estimate that yields

[ — mj || S O(R'/? +'/2)
as stated in Corollary 3.25 under suitable assumptions.

In Section 3.4, we propose a heuristic error estimation strategy: As stated in [Drw08], in the case of
g = 0 and for constant applied field with |f| < 1, the constraint is not active and the minimization
problem is equivalent to Symm’s integral equation

Vé="f-z

where ¢ = V - m. The solutions to such screen problems reveal generic singularities along the edges
of w [ESAES90|. For this linear case, an h — h/2 based error estimation strategy has been analyzed
recently, cf. [FLP08, FLOP10]. We apply the ideas of [FLPO8] to our minimization problem (AZf):
Let 7; denote some trlangulatlon of w with associated discrete space Xy;. The uniform refinement of
T¢ is denoted by 7}, and Xg is the corresponding discrete space. Let € > 0 be fixed and let m, and
my be the solutions of (A}) with respect to the discrete spaces X, and Xg, respectively. Then, the
quantity
H ~
e’ = [lme — my||,
is used to estimate the discretization error. In Theorem 3.26, we prove that the saturation assumption
[[mg — my|| < Csef|mg — my|| with ¢-independent Cyqr € (0,1)
implies efficiency and reliability of the error estimator
¢ S lm§ — | S nf'

Based on a local inverse estimate from |[GHS05|, we finally provide local error indicators ull(T) to
steer an h-adaptive algorithm. Based on the empirical observation that 5 [|(jms | — 1) 4| I2(w) — 0as
€ — 0, we propose the use of

1 2
Hi(T)* = 2z I(my] = 1) [[727)
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Figure 1.1: Typical solution of a problem with smooth data; left: Magnetization, right: Divergence

for steering adaptive refinements of the penalty parameter e.

Chapter 4, reports on the implementation of the numerical scheme in C++. In Section 4.1, we de-
scribe an object oriented implementation of regular adaptive meshes. Some of the ideas are inspired
by [Sha09] but our implementation differs significantly from the solution proposed in the mentioned
publication. We stress that mesh administration usually is neither a bottleneck with respect to com-
putation times nor with respect to memory consumption in numerical simulations. Therefore, we did
not aim at providing a fully optimized and efficient implementation. Instead we focused on aspects
such as maintainability, extendibility, and readability of the codes. All mesh routines, however, have
at most a complexity of O(N log N), which is asymptotically optimal.

Section 4.2, describes how the Mesh-class can be extended to represent a finite element space. In
contrast to the mesh, where all quantities are stored in list containers, we store the basis functions in
a vector to provide access in constant time by the index of the functions. Usually, basis functions are
associated with some geometric quantity. Fast access O(log V) via the geometric information seems
not to be possible using the std::map class. Instead, we implemented our own sorted vector<pair>
container that ensures O(N log N) time for building and O(log N) for access.

Finally, Section4.3 describes how the developed finite element library can be used to implement the
numerical scheme. In [Drw08|, special emphasis is layed on the efficient computation of the stray-field
energy by use of H2 matrices, cf [HB02]. In our simulations, we experienced that a matrix compression
by use of H-matrices [Hac99], although not optimal, is sufficient. For the computation of the low-rank
approximation of admissible blocks, we used the black-box adaptive cross algorithm [Beb00].

The final Chapter 5 is devoted to the empirical study of the performance of our proposed numerical
scheme. In the first section, we study the behavior of the discretization error and the error estimator
nf . We observe that nf is efficient and reliable. Given smooth data, computations with uniform
mesh-refinements reveal an asymptotic behavior of

flm§ — my]| = O(n'?) = Oz )
with Np the number of triangles of the underlying mesh. The adaptive algorithm is not able to
improve the asymptotic behavior significantly, it leads though to higher accuracy. This is because the
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Figure 1.2: Estimated error for non-smooth data. The adaptive algorithm leads to convergence at a
higher order than the uniform approach.

L? component of the magnetization is resolved optimally by uniform meshes. The divergence V - m,
however, demands strongly adapted meshes towards the edges of w for optimal resolution. See Figure
1.1 for the typical behavior of a solution with smooth data. It seems that these goals are incompatible,
at least with isotropic sequences of meshes. In a further experiment with discontinuous f, the uniform
computation reveals a smaller rate of convergence and the adaptive algorithm recovers a rate of at

least O(N;1/4).

In the second section, we study the error introduced by the penalty scheme. For smooth data and
uniform mesh-refinements, we observe a rate of convergence of

lm}} — mj|| = O('?)

as predicted by theory. It seems that the proposed error estimator nj; is reliable. We observe that
discretization and penalization error are not entirely independent. As h — 0, the penalty error is
reduced slightly, and as ¢ — 0, it also seems that the discretization error is reduced slightly. In an
experiment where we verified that the choice of ¢ = h! is empirically optimal, we observe an increased
rate of convergence

lm™ — mj[| = O(N;)
with o > 1/4.

The last two sections are concerned with simulations applying the full e- and h-adaptive algorithm.
In an experiment with non-smooth f, we observe that — in contrast to the uniform approach — the
adaptive scheme recovers the same rate of convergence as for smooth data, see Figure 1.2. In the
case of soft films with ¢ = 0, the adaptive scheme leads to linear convergence, whereas uniform mesh-
refinements only reveal h'/2. Our results suggest that the heuristic adaptive algorithm always leads to
higher accuracy than a uniform approach. In case of soft films and in presence of strong singularities,
it is able to improve the rate of convergence significantly when compared to the uniform approach.
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Chapter 2

A model problem in thin-film
micromagnetics

For the convenience of the reader, in Section 2.1, we briefly present the full stationary micromagnetic
problem due to Landau and Lifshits [LL35]. In Section 2.2, we move on to the reduced model intro-
duced by [DKMT01] that describes micromagnetic phenomena in relatively large thin-film samples.
This will serve as a prototype for an infinite dimensional quadratic minimization problem with convex
but non-linear inequality constraints and energy contributions stemming from a non-local operator.

At first glance the energy functional under consideration depends on two quantities, the magnetization
m and the stray field —Vu. These are coupled by the magnetostatic Maxwell equation, i.e. a PDE
constraint.

After collecting some analytical prequisites on Sobolev spaces in Section 2.3, we closely analyze the
Maxwell equation arising in the reduced model problem in thin-film micromagnetics. In Section
2.4, we establish an explicit representation of u as a simple-layer potential of the divergence of the
magnetization. Therefore, we may rewrite our energy functional e(m,u) = e(m,u(m)), hence the
energy only depends on m. This has already been proposed in [DKMOO02]|. However, in contrast to
the original work where the focus layed on a distributional point of view, we aim at constructing an
appropriate Hilbert space setting. This is performed in Section 2.5 where we state the precise functional
analytic framework. The choice of the energy space H for the magnetization is not trivial but natural
from the considerations so far. The construction is a new contribution to the understanding of the
model problem.

Finally in Section 2.6, we establish well-posedness of the thin-film minimization problem in our function
space setting. Existence of minimizers m* and uniqueness of the stray field —Vu* are proven. For
non-vanishing anisotropy even uniqueness of m* € H can be concluded, a result which is not included
in any of the prior publications on this minimization problem.

2.1 The magnetic free energy

In the mesoscopic modeling approach, the atomic magnetic moments of a ferromagnetic sample (2 are
replaced by a continuous vector field, the magnetization density M, given in the units of Tesla. However
its length, the saturation magnetization, only depends on the temperature and is therefore assumed to
be constant within the sample. In a partially non-dimensional formulation, we may prescribe [M| = 1
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inside ) and extend M = 0 in the exterior. The interaction of magnetic particles is governed by two
distinct effects: First, a long range interaction occurs due to the induced magnetic field. The stray
field energy contribution is given by

1
—/ \VU|? da
2 Jps

where the magnetic potential U is determined by the static Maxwell equation
(V- (VU +M)) =0 e D(R®)*,

stated here in a distributional sense. Second, quantum-mechanical exchange interactions prefer con-
stant alignment of the magnetization. This exchange energy acts on a short range, and in the meso-
scopic model its contribution is given by

d2
—/ VM |? dz,
2 Jo

where the material dependent exchange length d is also called Bloch line-width. It measures the
relative strength of the exchange energy with respect to the stray field energy.

Additionally to these two contributions, the crystalline structure of ferromagnetic material may lead
to certain preferred magnetization alignments. Here, we restrict ourselves to uniaxial material, i.e.
the deviation of M from a so-called easy axis is penalized. Without loss of generality, we assume
our sample to be aligned in such a way that the easy axis is simply the first in-plane axis e;. The
anisotropic energy contribution thus reads

Q/M§+M§dx.
2 Ja

The material parameter () measures the relative strength between the anisotropic energy and the stray
field contribution. In the literature material with Q < 1 are referred to as soft and material with
@ > 1 as hard magnetic material.

Finally one is interested in identifying the stable states of a ferromagnetic sample under an applied
exterior field F. The Zeemann energy or applied field energy favors alignment of the magnetization
density with the applied field

—/F-Mdm.
Q

Summing all energy contributions, we obtain a partially dimensionless formulation of the magnetic
free energy

d? 1
s =% [ oMo ) [ wopa s S [ MgeMia - [RoMan ()
2 Ja 2 Jps 2 Ja Q

Local minimizers M of the energy functional E describe meta-stable states of the magnetization. For
a detailed description of the modeling approach, we refer to [Brw63].

We observe that the full micromagnetic problem is quite complex from a numerical point of view. Not
only is it a non-convex minimization problem, due to the constraint [M| = 1, it is also non-local due
to the stray field energy contribution. The simulation of large ferromagnetic samples with diam(Q) in
the um regime reveals to be computationally intense. The exchange energy — acting at a small scale
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Figure 2.1: Landau state of a soft ferromagnetic film with diameter of several um. The magnetization
(blue) is nearly constant on the domains. The domain walls depicted here as lines are continuous
transitions of the magnetization at nm scale.

— prefers constantly aligned magnetizations. However the long-scale stray field energy penalizes large
divergence of magnetization and in particular seeks to eliminate surface charges M - N with N the
outer normal vector on 92. The result of these competing goals is the formation of magnetic domains
where the magnetization is nearly constant [LL35, SH98]. Figure 2.1 shows a typical pattern of a soft
thin-film sample in the absence of an applied exterior field, the so-called Landau state. The domains
are separated by domain walls which in fact are continuous transitions of the magnetization on a short
nm scale. Since the location of these magnetic domain walls is in general an unknown a priori, a naive
numerical approach would force one to discretize the sample of um in size at a nm scale.

For these reasons, various reduced models for certain regimes, have been introduced and studied
lately. The aim is always to simplify the full problem in order to improve computability — with as
little loss of information as possible. In the following sections, we present a reduced model for thin-
film micromagnetics that was first introduced in [DKM*01]. We will discuss the precise mathematical
setting, which is fundamental to develop a sophisticated numerical analysis. This model problem serves
as a prototype of an infinite dimensional quadratic minimization problem with non-linear constraints
and involving non-local operators.

2.2 A reduced model in thin-film micromagnetics

We will focus on the simulation of thin ferromagnetic films. We thus restrict our attention to a simple
yet relevant geometric set-up. We consider the sample €2 to be cylindrical with basis w and thickness
t. Therefore, €2 can be written in the form

Q=wx(0,1),

where we demand w C R? to be a bounded simply connected Lipschitz domain. Since our interest is
focused on thin ferromagnetic films we assume

t< Y,

where ¢ denotes the diameter of w. Our model problem is therefore governed by four different scales,
namely ¢,¢,d, and ), where the latter two are scales stemming from material properties. We stress
that these scales may vary by orders of magnitude.
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In [DKM™01], a reduced model has been proposed to describe micromagnetic phenomena in thin films
in the limit case t — 0: Neglecting the thickness of {2, we represent our ferromagnetic sample by the
two-dimensional surface w. With an in-plane applied exterior field f : w — R?, we seek a magnetization
m* : w — R? that satisfies the convex pointwise constraint |m| < 1 and minimizes the reduced energy

1
e(m):5/]RS\Vu!2dx+g/mgdx—/f-mdx. (2.2)

The magnetic potential u : R? — R now satisfies

Vu-Voudr = / m - Vu(z,0)dz for all v € D(R?) :=CZ(R?). (2.3)
R3 w

Let n denote the outer normal on v = dw. For smooth functions u, m with m-n = 0 on ~, integration
by parts on the right-hand side of (2.3) yields

Vu - Vodr = —/ V-muvdz forall v D(R?). (2.4)
R3 w

A rigorous analysis has been performed in [DKMO02|, where I'-convergence of the full problem (2.1)
to the reduced problem (2.2) is proven for vanishing thickness ¢ — 0 in the asymptotic regime

e logtl Jt R

Therefore, the model is mathematically justified for samples that are sufficiently thin ¢ < 1 and
large % > log(%). First numerical experiments in [DKM™*01] and [DKMOO02] for soft samples, where
q < 1 1is neglected for simplicity, show very good results. The simulated behavior of the magnetization
coincides well with measured data from experiments with thin permalloy films, i.e. the model seems
to be of practical relevance. In particular the samples under consideration with ¢ € [10pum, 100um)
and t € [10nm, 500nm] are hardly accessible through direct simulation of the full problem.

In these first implementations, an interior point method is used to compute the minimizers of the
energy (2.2). Details on the methods used and implementational aspects can be found in the recent
thesis [Drw08]. All experiments and most of the numerical analysis, however, were performed for
the special case of soft ferromagnetic materials with small anisotropic parameter ¢ < 1 and constant
applied exterior field f € R?. For simplicity the anisotropy energy contribution is dropped, i.e. ¢ =0
is assumed. With these simplifications the energy (2.2) solely depends on the divergence V - m of
the magnetization. The consequence of this is that the solution to the minimization problem is not
uniquely determined. For any minimizer m* one may add an arbitrary divergence free magnetization
m with fw m - f dr = 0 to obtain another minimizer m* = m* + m. In particular, domain structure
may be reconstructed by first computing some minimizer m* and then adding an appropriate m such
that |m*| = 1 and that the wall energy, i.e. the contribution of discontinuities, is minimized by some
heuristics, see [Drw08].

In contrast to the prior works, we consider arbitrary uniaxial materials with ¢ > 0 and the applied
field f € L? may be non-constant. Interpretation of results obtained from simulation of hard material
may be more difficult since there is no obvious way to reconstruct domain patterns. However, we
stress that there holds VU — Vu in a weak sense as ¢t — 0. The stray field and the reduced energy
therefore preserve physical meaning. Moreover for a strong applied field |f| > 1, the magnetization m
may be saturated |m| = 1 within a penetration region. There the magnetization is already uniquely
determined by the reduced model and is therefore also of direct physical relevance.
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In the original publications [DKMO02, Drw08] the focus was on a distributional point of view. In
order to analyze the reduced problem from a numerical point of view, it is useful to determine an
appropriate and precise functional analytic setting, i.e. define the function spaces for all involved
quantities. Obviously the magnetic field m should at least satisfy m € L?(w)?. This space, however,
is still too large, as the existence of the magnetostatic potential u from (2.4) demands some further
regularity.

2.3 Sobolev spaces

We assume throughout the entire work that w C R? is a bounded Lipschitz domain. For the con-
venience of the reader, we give a brief definition of Sobolev spaces of relevance in this work. For a
detailed representation the reader may refer to e.g. [Ada75]. We define the Sobolev space

HY(w) :={u € L*(w)| Vu € L*(w)}

with associated norm

1/2
sy = (NullEegey + 190l 720) -

Here, Vu denotes the weak gradient, and it is well known that H'(w) is a Hilbert space. For functions
u € HY(G) for a bounded Lipschitz domain G C R? with vanishing integral mean qudx = 0 there
holds a Poincaré inequality [Eva98, Chapter 5.8: Theorem 1]

lull 2y < CPIVull 26y (2.5)
where the constant Cp depends only on the domain G.
For k € N>o we inductively define Sobolev spaces of higher integer order by
H*w) == {u € L*(w) | Vu € H* Y(w)}

with the natural norm

1/2
il zny = (lalFay + VUl ) -

Moreover we identify H 9(w) = L?(w). The dual space with respect to the extended L? scalar product
is denoted by H*(w) := (H*(w))*.

For any real number s € (0,1) we define the Sobolev-Slobodeckij semi-norm by

= </w /w % dy dm) v

Then, the fractional order Sobolev space H*t* with k € Z>o and s € (0,1) is given by
H* = {u e H*(w)|]0%ls < oo for |a| = k}.

This space may be equipped with the norm

1/2

llull s ) = HUH?-I’“(UJ) + Z 0%l
laf=k
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and is again a Hilbert space. The dual space with respect to the extended L? scalar product is again
denoted by H=*=%(w) = (H¥*5(w))*. All definitions may be read componentwise to obtain Sobolev
spaces for vector-valued functions.

For any positive real number s € R>q, we moreover define the space H®(w) := {ul, |u € H*(R?) and
u|g2\i = 0}. The corresponding negative order dual space is denoted by H™~%(w) := (H*(w))".

Next, we define some Sobolev spaces that will arise in the context of functions defined on the full
space R3. We follow the lines of [SS04, Section 2.6]. For any real number s € R the space Hj .(R3)

Loc

is defined as the set of all functions which are locally in H?, i.e. for any test function ¢ € D(R?) all
functions u € H;, (R3) satisfy ¢u € H*(R3). Here, we identified H{(R3) =: H~*(R3) for t = |s|.

Loc

The support of a negative order Sobolev function u € H*(R?) with —oco < s < 0 is defined by
localization with all possible test functions. The function u € H*(R3) is said to vanish on an open set
O C R3 if for all test functions ¢ € D(R3) with supp (¢) € O there holds Jgs dudx = 0. Then, the
support of u € H*(R?) is defined as the maximal closed set A with u = 0 on R3\ A.

We now may define the set

H oy (R?) = J{u € Hj, o (R?) [ supp (u) C A}
A

for all compact subsets A C R3. The L? scalar product may be extended to the duality brackets

¢ ‘>HC_OSWLP(R3)XHEOC(R3)’
see [SS04, Satz 2.6.7].
Next we collect some fundamental theorems on existence and continuity of trace operators.

Proposition 2.1 ([McL00, Theorem 3.37]). Let G be a smooth (C*), bounded domain with w C OG
and let s > 1/2. Then there exists a uniquely determined trace operator

to € L(H*(Q); H2(8@))

such that tou = ulgg for functions u € C(G). Moreover, there is a uniquely determined trace operator
t € L(Hf,(R®); H*7'/2(w))
with tu = ul, for functions u € C(R3).

Proposition 2.2 ([McL00, Lemma 4.3]). Let u € HA(G) = {u € HY(G)|Au € L*(G)} for some
bounded Lipschitz domain G. Then, there exists a uniquely determined tyu € H*1/2(3G) such that

/ Auvdx—}—/ VuVo = (tiu,tov) Yo € HY(G),
G G

and the operator t; : HA\(G) — H~Y2(dG) is continuous. For u € C1(G), the function tyu = Opu is
the normal derivative on the boundary.

Having collected this preliminary notation and some properties of trace operators, we may proceed to
analyze the magnetostatic Maxwell equation.
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2.4 The static Maxwell equation in thin-film micromagnetics

2.4.1 Strong form of the Maxwell equation

The magnetic potential is given as the solution of the variational formulation (2.3). Understanding
the potential u is crucial to define the appropriate function space for the magnetization m.

Lemma 2.3. For smooth m € CY(@), every weak solution u of the magnetostatic Mazwell equation
(2.3) which is sufficiently smooth, i.e. u € C*(R3\ w) NC(R?) NCH(R2 x R>q) NCHR2 x R<p), solves
the strong form

Au=0 in R3\@

[B_u] =V-m on w

8.%'3 (26)

[ul=0 on w

m-n=0 on 5=0dwCR?

where n denotes the outer normal in R? of w.

Proof. We split the left hand side of (2.3) into two integrals

Vu-Vodr = Vu-Vovdr + Vu-Vovdzr
R3 R3 R3

over domains R? := {z € R3|z3 > 0} and R? := {z € R3z3 < 0}. We use integration by parts to see

R3 Ri R3 R2 8.%'3 R2 8.%'3

On the other hand, integration by parts on the right-hand side of (2.3) shows

/m-Vv(x,O)dx:—/V-mvdﬂv—i—/(m-n)vds

o

which results in

dr = — -vd . d
. . oz o oz vdx /me v x—i—/{(m n)vds

with the equation valid for all v € D(R?). By definition of the jump [f] := f(x1,22,07) — f(z1,22,07)
of a function f:R? — R across the plane 23 = 0, it holds that

+ —
_/ Mvdﬂ/ Mvdx:_/ oul o
R2 (91E3 R2 (91E3 R2 (91E3

Considering that u is smooth in R3 \ @ the jump [5—;‘3} can only be non-zero on w. The equation

- Auvdx+/v-mvdx:/ [&}vdx—}—/(m-n)vds
RS w w al‘g ~
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holds for all v € D(R? \ @) which yields the pointwise relation Au = 0 in R?* \ @. The remaining

equation
ou
V- -mvdr = — | vdzr+ [ (m-n)vds
w w 81‘3 ~
holds for all v € D(w) from which follows V- m = [%] and consequently fy(m ‘n)vds = 0 for all
v € D(7), hence m-n =0 on ~. [
Remark. The proof of Lemma 2.3 reveals that the relation m - n = 0 on ~ is necessary for the

existence of a smooth solution u. Suppose m - n # 0 on ~. Integration by parts

m-Voudr = — V-mvdx+/m-nvds
R2 R2 v

then implies that V - m is a distribution on R? with relevant contribution on 5. This, however,
means that a solution u of the variational form (2.3) cannot satisfy u € H}, .. In Section 2.5 this fact
influences the choice of the energy space for m which must include the restriction m-n =0 on v in
an appropriate sense. O

2.4.2 Newtonian and simple-layer potential

We recall some well-known properties of the simple-layer potential of the Laplace operator. We mostly
summarize statements from [Ste87],[SS04] and [Ste03].

Proposition 2.4 ([SS04, Satz 3.1.2, Satz 3.1.4]). The Newtonian potential

Nf(x):= ! / ) dy vz € R? (2.7)

Am Jgs e =y

may be extended to a continuous and linear operator N : Hy ) (R3) — Hj. (R*). For any bounded

Loc
domain Q C R3, there holds
N e L(H(Q); H'(Q)).

There holds —AN f = f for all f € H-Y(Q). The Newtonian potential is self-adjoint, i.e. N' = N

Definition. We define the simple-layer potential
S =Nt (2.8)
in the distributional sense, with ¢ the adjoint trace operator on w, i.e.
(Sv,w) = (Ntv,w) = (v, tNw). (2.9)
O

The following theorem follows immediately from the linearity and continuity of AV and ¢’ as well as
the definition of S.
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Proposition 2.5 ([Ste03, Kapitel 6.2, Kapitel 6.3], [SS04, Satz 3.1.6, Satz 3.1.16]). The simple-layer
potential S : H™Y/2(w) — H}, (R3) is linear and continuous, i.e. for every bounded domain G C R,
there is a constant C(G) > 0 such that

190l 16y < CG) ol gora, Vo € HT2(w).
Furthermore, there holds
ASv=0 in R3\@. (2.10)

Lemma 2.6 ([SS04, Satz 3.1.6, Satz 3.1.1]). For v € L'(w), the simple-layer potential Sv may be
represented by

sv(g;):i/ ) g, (2.11)

Ar Jo |z =yl
In this case, it holds that Sv € C°(R3 \ @).
Proof. The proof of the second statement can be read word by word as in [SS04]. The proof of the

first statement has to be slightly modified to fit our setting, i.e. the case of a screen. Let v € L(w)
and w € D(R3). Then it holds that

1 w(x
(Nt/v,w)LQ(]R?’) = (U,th)L2(w) = E / ’U(y) /R3 Hx(_:)deJTdSy

1 v(y)
ey 8 w(x)/w T sydr = (Sv,w)r2(r3),

where we have used Fubini’s theorem and N/ = N. [ ]

2.4.3 Solution of the magnetostatic Maxwell equation

We need one more result from the theory of elliptic partial differential equations, before we can finally
prove the jump conditions of the simple-layer potential. This will enable us to write the solution of
the magnetostatic Maxwell equation explicitly.

In [Ste87] one central idea for the analysis of the weakly-singular integral operator S is to define a
bounded Lipschitz-domain G'_ C R? with w C I'_ := dG_, where the outer normal on the boundary
additionally satisfies n|, = (0,0,1)". We follow the same ideas to prove the jump conditions of the
simple-layer potential. We stress that we did not find the proof of Theorem 2.8 stated for screen
problems in the literature.

Proposition 2.7 ([McL00, Theorem 4.4]). Let L?(G) = {v € L?|supp(v) C G compact}. Define
H}! :={u € H} |Au e L2(Gy)} for a bounded Lipschitz domain G_ C R? and the complementary
domain G = R3\ G_. Then, there holds the second Green’s formula

—(Au,v)2gy) + (U, Av) 2(ayy = F((tou, t1v) — (tiu, tov)) (2.12)
for all u,v € H}(GL), where the sign in (2.12) is contrary to the index of the domain.

Theorem 2.8 (Jump conditions). The simple-layer potential satisfies the jump conditions

0S¢

Sel =0 VW), [nsel = |52

}:_¢eﬁ4ﬂ@y (2.13)
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Proof. The continuity [S¢] = 0 follows from S = Nt and the mapping properties of ¢’ and A as well as
the properties of &: Recall that S : H~1/2(w) — H} (R?). The trace operator ¢ : H} (R?) — H/?(w)
is uniquely determined by continuity. In particular the trace from above and below w coincide, cf.
[SS04, Satz 2.6.8].

To prove the jump condition of the normal derivative we proceed as follows: Let o € H=1/2 and define
u = S¢. Then, Au = 0 in R3\ @ and therefore u € H}(R3\ ©@). The second Green’s formula with
v € D(R3) yields

(u, AU)LQ(Gi) = :F(<7f0u s t1U> — <7f1u s t0v>).
We add the equations for G_ and G and obtain
(u7 AU)LQ(IRS) = _<[u] ,t11)> + <[t1u] 7t07}>7

where we have used [v] = [tjv] = 0 and u € L2 (R3). We have already proven [u] = [S¢] = 0.
Therefore, we obtain

<[t1u] s t()’U> = (u, A'U)LQ (R3)-

Plugging in the definition of S we obtain

(u, AU)L?(RS) = (AU,U)H(RS) = (ANt/SDaU)H(RS) = —(t'p,v) = —{p, tv).

Altogether, we have proven
([t1S¢], tov) = —(p, tv).

Since to (D(R?)) is dense in H'/%(w) and therefore ¢ (D(R?)) is dense in H'Y?(w) and Sy € C®(R3*\ @)
for ¢ € L?, the jump condition

[B&p

_ F-1/2
s } p € (w)

follows with density arguments. |

Corollary 2.9. With the simple-layer potential S from (2.11) and given V -m € H Y2(w), the
function S(=V -m) is a solution of the Mazwell equation (2.3). [ |

2.5 The energy spaces H and B3(R3)

Since S : H1/2(w) — H} (R?), we have to ensure V-m € H~'/2(w) in the definition of the function
space for m. To that end, we must explain the meaning of (V) : L?(w)? — H™'/?(w).

We summarize some observations:

e The magnetostatic potential u may be represented as the simple-layer potential of V - m.

e The simple-layer potential is a linear, and continuous mapping S : ﬁ_l/Q(w) — H (R3).

e If we prescribe V-m € Ijl_i/2 (w), then existence of u is ensured. On the other hand the precise
meaning of V- : L?(w)? — H~'/?(w) is not trivially clear.
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e Suppose m - n # 0 on v, then a solution of the reduced Maxwell equation (2.3) does not in
general satisfy u € H} (R3). Assume e.g. m = (1,0)7 constant. Then m-n # 0 € L?*(y) and
V-m =0 € L?*(w). Choose some smooth and bounded domain G' C R3 with @ C G. Integration
by parts in the Maxwell equation (2.3) yields for all v € D(G)

/VqudX:/m-Vvdw:—/V-mvdw+/(m-n)v\7ds (2.14)
G w w ~

In the right-hand side of (2.14), the integral on w vanishes due to the choice of m. The term
f“/(m- n)v ds cannot be extended to define a linear functional for v € H!(G), since the restriction

to «y is not well-defined in H*(G). We conclude that v — (Vu, Vv),, does not define a continuous
functional in H'(G), which means Vu ¢ L?(G) and, therefore, u ¢ H'(G).

2.5.1 The energy space H for the magnetization

Our goal is to first explain the weak divergence V - m of an L2-vector field and then construct an
appropriate energy space H for the magnetization, which also takes the constraint m - n = 0 into

account. We define D(X) := {¢|x |¢ € D(R")}.

In a first step, we consider the weak divergence and the spaces H'(V-;w) and H&(V-;w). Then, we
introduce the energy space H with an appropriate norm. We stress that D(w)? C L?(w)? is a dense
subspace. For m € C!(w)?, there holds the well-known Gauss divergence theorem

/m-Vgpdw—l—/(V-m)gpdw = /(m-n)cpds for all ¢ € D(w). (2.15)
w w 5

Since all functions in D(w) are zero on the boundary «y the right hand-side in (2.15) vanishes.

Definition. A function v € L?(w) is called weak divergence of m € L?(w)? if it satisfies

/vgpdx:—/m-Vgpdx for all ¢ € D(w). (2.16)

In this case and according to the fundamental theorem of calculus of variations, also known as du
Bois-Reymond Lemma [dBR79], the weak divergence of m is unique, and we simply write V-m := v.
O

Definition. We define the space

HY(Vw):={m e L*(w)*|V -m e L*w)} (2.17)
with the canonical norm [|m|| 1 g ., = (M2 +[V - ml|72(,)"/2. We further define H (V+;w) :=
W”'”Hl(v.w)- 0

Lemma 2.10. H(V-;w) is a Hilbert space.

Proof. Let (m,) C H'(V-;w) be a Cauchy sequence. Then from
2
Hmn - mmHHl(V-;w) <e
we deduce that (m,,) C L?(w)? and (V-m,,) C L?(w) both are Cauchy sequences as well. In particular,
it follows that m,, — m € L?(w)? and V- m, — g € L?(w). Finally

(g,0)12 = li_)rn (V-my,,v) =— li_)rn (my,, Vv)r2 = —(my,, Vv)r2 Vo € D(w)

follows by continuity of the L? scalar product. |
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Proposition 2.11 ([GR86, Theorem 2.4]). Let w be a Lipschitz domain in R2. The space D(w)? is
dense in H(V-;w). [ |

Proposition 2.12 ([GR86, Theorem 2.5|). The mapping fn : v + v - 1|, defined on D(w)* can be
extended by continuity to a linear and continuous mapping from HY(V-;w) into H*1/2('y). |
We are particularly interested in functions that satisfy m-n = 0.

Proposition 2.13 (|[GR86, Theorem 2.6]).

There holds H}(V+;w) = ker(f,,) = {m € H(V;w)|m - n = 0}. [ |
One last step has to be done to define the appropriate space for the magnetization. Namely we have
to allow V-m € H~1/2(w).

Definition. The energy space for the magnetization is defined by
[I-1

H =H}(Vsw) (2.18)
with
2 2 2
= e + 19 % (2.19)
By construction H is a Hilbert space. a

Lemma 2.14. D(w)? C H is a dense subspace.

Proof. Let m € H and & > 0 be given. Then by definition of H, we may choose m; € H}(V-;w) with
|lm — my|| < 5. Since D(w)? is dense in Hj(V+;w), we may furthermore choose mp € D(w) such that
|lm; — mDHH& < 5. Then, the triangle inequality shows

[m —mp|| < [jm —my| + [jm; — mpl|.

Recall that for v € L?, it holds that

v.,.w
loliore = sup
weH/2\{0} l[wll 1/2
v.,w
< sup 29 ..

weL2\{0} [[wll 2

Hence,

1/2
2 2
Jm = mp|| < m = ]| + (JJmy = mp2se + 1V (01 =m0,

< ffm =y || + [fmy —mopl| g, <

which proves that any function in H may be approximated up to some arbitrary tolerance € > 0 by
smooth functions. [ ]

Finally, we make a last remark on H before analyzing the existence of minimizers m* in our function
setting.

Lemma 2.15. For all functions m € H, it holds that (V - m, 1>ﬁ—1/2(w)xH1/2(w) = 0.
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Proof. According to the Gauss divergence theorem there holds

/V-mdx:/m-nds
w ¥

for m € D(w)?, where the right-hand side vanishes in our case. This, however, implies
(V - 1m, 1)L2(w) - (V -1, 1>ﬁ_1/2(w)xH1/2(w) =0

for m € D(w)?. Due to the density of D(w)? in H, the statement immediately follows by continuity.
|

2.5.2 The Beppo-Levi class B(R?) for the magnetostatic potential u

Given m € H, we may represent u as the simple-layer potential of V- m € H-1/? (w). From Propo-
sition 2.5, we immediately conclude u € H} .(R3) D range(S). However, H} (R3) is not a normed
space. Also, the fact Vu € L2(R3)3 implies further regularity and is necessary for the energy e(m)
defined in (2.2) to be finite. We now establish an appropriate Hilbert space for the magnetostatic
potential u.

Definition.  We define the set

B(R?) := {u € H,,.(R®) | Vu € L*(R%)} (2.20)

associated with the seminorm ||u||B%(R3) i= [|[Vul[ 2 (gsys. Further, we define the Beppo-Levi space
B2(R%) := B}(R%)/R (2.21)
by factoring out the constant functions. Note that ||| gz(gs) now in fact is norm. O

Proposition 2.16 ([DL54, Corollaire 1.1, Theoreme 2.1]). B? is a Hilbert space. D(R3) is a dense
subspace of BZ(R3).

Lemma 2.17. There is a continuous linear lifting operator L : H'Y/?(w) — B?R3), i.e. for v €
H'Y2(w) with v # 0 it holds that

v=(Lo)ly and V(L0 < Cllollge,
with C' > 0 the operator norm of L.

Proof. First, choose some bounded Lipschitz domain G' C (R3) with w C dG. Let v € H'/?(w) be
given. Then, from [McL00, Theorem 3.37|, we conclude existence of some extension v € H'(G) with
19l g1y < vl g2 )- From [DL54, Theoreme 8.1, we finally obtain the full continuous extension to

B2(R3). |

2.6  Well posedness of the thin-film minimization problem

2.6.1 Existence and uniqueness of the magnetostatic potential

Definition. We define the simple-layer operator

_ _ 1 v(y)
V =15, Vo(x) = E/w o= ol dsy V€ w. (2.22)
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Due to the mapping properties of S and ¢, it holds that V € L(H Y/2(w); H/2(w)). O

We recall the variational formulation (2.4) of the magnetostatic Maxwell equation. As discussed above,
m € H satisfies all constraints and the necessary regularity. Therefore, (2.4) may be stated as

(Va, Vo) 2gsys = —(V -1, 0) 512 prijag  forall v € D(R?) (2.23)
in our functional setting. First, we prove the unique existence of a magnetostatic potential w.

Theorem 2.18.

(i) Given m € H, there is a uniquely determined u € B2(R3) with (2.23).
(i) Equation (2.23) holds with D(R3) replaced by the full space B?(R3).

(iii) The mapping P : H — L?(R?)3, which maps m onto the corresponding stray field P(m) := —Vu,
18 a linear and continuous operator.

(iv) For m,m € H there holds (Pm,Pm)2gs)s = (V- -m,V(V- ﬁl)>ﬁ—1/2(w)xH1/2(w)'

(v) In particular, there holds HPmH%z(Rg)g = |V -m|? =(V-m,V(V-m)) ~|V- mH%_l/g(w).

Proof. Let m € H be fixed. We first consider Fiy(v) = (V- m,v) 5.1
v € D(R?). According to Lemma 2.15, it holds that

(@)X H/2(w) for arbitrary

(V- m,v>ﬁ,1/2(w)xH1/2(w) =(V-m,v—\) forall constants X € R.

We consider the enriched domain @ := w x [0,1]. With v € D(R?) and X := (1/|@]) [5vdz, the
continuity of the trace operator stated in Proposition 2.1 and a Poincaré inequality (2.5) show

v =AMl 72wy S v = Mg @) S NVl 2@y < IVl gsys -

This proves that Fj, defines a linear and continuous functional Fy, : D(R3) — R with respect to
”'”Bf(RS) and operator norm ||Fi,| < ||V - mHﬁ_l/g(w). Since D(R?) is dense in Bf(R3) the functional
Fy, may be continuously extended, conserving the upper bound for the operator norm, to the entire
Beppo-Levi space. Since the left-hand side of (2.23) is the scalar product of B?(R3) the variational
formulation may be extended to the full space BZ(R?). This proves (ii).

We stress that the Riesz theorem provides the unique existence of a solution u € B?(R?) since (2.23)
may be written as

(w,v)p2rsy = Fm(v) forall ve B3(R3),

which yields statement (i).
The Riesz theorem furthermore implies

[Pm|p2gsys = llullp2gsy = [Fmll S IV - ml g1z, -

In particular the mapping P : H — L?(R?)? is well defined and continuous. Linearity follows from
the composition P : m — V -m +— u — —Vu, which finally proves (iii).
Now, we prove the converse estimate ||V - mHﬁ,l/Q(w) < [[Fm||- Lemma 2.17 and (2.23) imply

|<V . m,U>g71/2(w)><H1/2(w)| < CKPmaV(LU»L?(R?’)?"
1Vl 1172 w) IV ey

< C||Pm| 2 gs)s
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for arbitrary v € H'/?(w)\ {0}. Taking the supremum over all v € H'/?(w) \ {0} we obtain
19 mil72/20) S P e (221)

For Pm = —Vu, the representation u = S(—V-m) and the variational equality (2.23) for Pm = —Vu
imply

(Pm, Pﬁl)L2(R3)3 = —<V . m,ﬂ>ﬁ_1/2(w)xH1/2(w) = —(V -1, V(—V . ffl)>ﬁ_1/2(w)><H1/2(w)'

The choice of m = m yields (Pm,Pm)2gsys = ||V - m||%/ which finally concludes the proof. [ |

2.6.2 Existence and uniqueness of minimizer m* € H

We now use our functional setting to state the considered problem in static thin-film micromagnetics.
Definition. We define the set of admissible magnetizations

A:={m e H|m| <1}. (2.25)
O

Reduced Thin-Film Problem (M). We seek to find a minimizer m* € A of the energy

1 q
e(m) =2 [V m|} + 3 [ |72 ) — (F,m) 202 (2.26)

The following observation follows immediately from the representation (2.26).

Corollary 2.19. The energy functional e : H — R is convexr and continuous. |

Our aim is to prove the existence of a minimizer m* € A and therefore the solvability of our problem.
To that end, we use well-known techniques from the theory of calculus of variations. The direct method
is, e.g., described in depth in [Dac89|. Furthermore, we would like to provide uniqueness of m*. This,
however, is non-trivial since the energy e(m) does not depend on the first in-plane component my of
the magnetization. The density of D(w)? C H, i.e. our convenient function space setting, and mollifier
techniques even allow us to finally conclude uniqueness, provided ¢ > 0.

Note that the magnetostatic potential u is uniquely determined by V-m. We state the well-posedness of
our problem first in the following sense: All minimizers m* € A induce the same uniquely determined
magnetostatic potential u*. Provided ¢ > 0, they share the same in-plane component ms3.

Lemma 2.20. The set A is non-empty, convezr and closed with respect to H.

Proof. We only need to prove the closedness of A since convexity and non-emptiness is clear by
definition. Let (my)gen C A be a convergent sequence with limit m € H. In particular, convergence
in H implies convergence in the L?-sense, i.e. my — m € L?(w)?. Therefore, at least a subsequence
converges pointwise almost everywhere towards m. This proves |m| < 1 almost everywhere, i.e.
m e A. |

Theorem 2.21. There is a minimizer m* € A of (2.26). Moreover, Pm and qms are uniquely
determined, i.e. for any minimizers m*, m* € A of (2.26) there holds Pm* = Pm* as well as
qmj = gmj.



24

Proof. Let (my)reny C A be a sequence with

li = inf =: M.
g, elme) = Tl elom)

Plugging in m = 0 € A, we obtain M < 0. This implies for arbitrary ¢ > 0

Do ™

1 q
e(my) = 5 [Pmg|fagsy + 5 Ime2lfag,) — (Fme) ) <

for k sufficiently large. Using the Cauchy-Schwarz inequality and dropping the anisotropy energy one
obtains

1P| 72meys < 211l 2oy Mkl 202 + €

From the definition of A, we derive [[my || 2,2 < |w|'/2. The equivalence [Pml|2gays ~ IV - ml| 712
therefore implies that (my)ren is bounded with respect to the H-norm, namely,

2 2 2
oo |* 5 el e pe + 1PN Zagsys < Jol + 201l 2o ]2 + 2.

Since the sequence (myg)gen is bounded we may assume that is has a weak limit m € H. The set A
is convex and closed, hence it is closed with respect to the weak topology in H. This implies m € A.
Moreover, a convex and continuous functional is also weakly lower semicontinuous [Dac89, Chapter 3
Theorem 1.2] so that

e(m) < liminf e(my,). (2.27)

k—o0
Altogether m € A is a minimizer of e(-) in A. Finally, we observe from the representation (2.26) that
the energy functional is strictly convex in Pm and gms. Therefore, the stray field and the second
component of a minimizing sequence are uniquely determined. |

Remark. Note that the proof of Theorem 2.21 only used some properties of the functional e(-) as
well as the closedness and convexity of A. Any finite dimensional subspace X} < H of the full energy
space is obviously closed and convex. In particular the set Aj := (AN X}) is closed and convex as well.
This, however, implies the existence of a minimizer mj within the discrete space X, that satisfies the
convex constraint [m| < 1. Furthermore, the stray field Pmy, and the second component mj, o of two

1

. Coe . * *,2 . .
discrete minimizers m,’", m,”* € A;, must coincide. a

We now state that [jm|? := HmQH%g(w) + ||V - m||%_1/2(w) is definite and therefore a norm on #.

This is the main theorem of the present section as it provides uniqueness of m* € A as immediate
consequence.

Theorem 2.22. Let m € H with V-m =0 € H /2 and my=0¢cL? thenm=0¢cH.

Proof. First we show V-m = 0 € L2 This follows immediately from (V - m,v) = 0 for all v €
H'?(w) D D(w) and the fundamental theorem of calculus of variations. Therefore m is an element
of the space H'(V-;w). Furthermore the extension

ﬁl:{m(az) TEwW

0 otherwise
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is element of H!(V+;R?) with V - m = 0 since

ffl-Vgoda::/ffl-Vgodx%—/ m - Vodz
w R

2\w

:—/V-mgpdx+/(m-n)godx—
w g

RQ

V-fflgoda:—/(ffl-n)gpdx:O.

R \w ¥

Next, we will show that m = 0 € L%(R?) which in turn implies m = 0 € H. For this, we define the
mollifier

el 2 <1
U1 Sy el Pt da
0, otherwise
T;Z)z-: = 5727;&1(_)

which satisfies 1) € D(R?) with supp(t) C [—¢,¢]?. Moreover, it holds that [McL00, Theorem 3.4]
Yexm —mecL?ase— 0 (2.28)
componentwise, where x denotes the convolution of functions. From [Pra03, Lemma 2.13], we know
Ve xm € H' (V5 R?) ND(R?)?,
V- (¢ xm) = 1pe % (V- m) = 0.

From my = 0 € L?(R?), we additionally know

¢€ *m = <¢6 "(()ﬁ\l1>

which trivially implies 8(%&7;?2) = 0. Together with V - (¢). x m) = 0 this means

8.%'1 '
Since (. xmy) € D(R?) is a smooth function with compact support, 6(%&7;@1) = 0 already implies
e *my = 0. We conclude 0 = 1. x my, whence m; = 0 according to (2.28). |

Corollary 2.23 (Well posedness of the reduced thin-film problem (M)). The model Problem (M) has
a uniquely determined minimizer m* € H, provided q > 0.

Proof. According to Theorem 2.21 there exists a minimizer m*, and the quantities V - m* and mj3
are uniquely determined. Let w* be a minimizer. Then m* — w* € H satisfies V- (m* — w*) = 0 as
well as m5 — w3 = 0. From Theorem 2.22, we therefore conclude (m* — w*) = 0 € H which proves
w* =m*. |

Definition. We define the energy (semi-)norm

2 2
Il := \/q lma |72 + |V - mlfy,

on H. We stress that this is indeed a norm according to Theorem 2.22, provided ¢ > 0. Moreover
there obviously holds |m| < ||jm]||. In the following chapter where we provide numerical algorithms
to compute m* approximately, all error estimates are given in this energy norm. O
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Chapter 3

Discretization, numerical solution, and
error analysis

In order to solve the thin-film minimization problem (M) numerically, two steps have to be performed:
First, the energy space of the magnetization needs to be discretized. Second, the resulting discrete
minimization problem (M},) needs to be solved.

Most of the literature addresses the problem of solving finite dimensional minimization problems,
e.g. [INW99|, whereas the monograph [IK08|, for instance, collects the state of the art of Lagrangian
multiplier methods in a continuous context. For quadratic programming, some publications such as
[DS05] are available, where super-linear convergence of an active set algorithm is proven. However,
the latter work considers box constraints. In contrast, we are dealing with a 2-dimensional vector
field under a 1-dimensional non-linear constraint, which seems to be a significant enhancement of the
problem’s complexity. Therefore, only penalty or interior point methods, see [NW99]|, seem to be
suitable in our case. These approaches include some parameter £ > 0 which introduces an additional
error of the minimization algorithm. Since we are also faced with a discretization error, two non-
trivial questions arise: First, it is not trivially clear that one may expect convergence of the penalized
and discretized scheme as (h,e) — (0,0). Second, the question how to balance the penalty and the
discretization error arises. The choice of ¢ < 1 usually yields high computational cost due to ill-
conditioning and slow convergence of the underlying Newton-method. In this chapter, we address this
problem and provide a mathematically justified choice of € and h by establishing a priori convergence
results.

In Section 3.1, we propose our discretization scheme which leads to a discrete minimization problem
(Mp,). Existence and uniqueness of solutions of (M},) is established in the same way as for the con-
tinuous problem (M). Since the energy space # of the magnetization demands V-m € H~/?(w),
a lowest-order discretization has to provide V - my, € P°(T,). Here, P(T;) denotes the space of
piecewise constant functions over some mesh 7T,. The natural choice is that of Raviart-Thomas finite
elements RTY(7;,) [RT77], which are often used, e.g., in the context of mixed formulation of the Pois-
son equation [Bra97]. This discretization scheme has also been proposed in the dissertation [Drw08],
where the thin-film minimization problem (M) is solved by first choosing the discrete ansatz space
and then applying an interior point method. However, neither the choice of the barrier parameter with
respect to the discretization nor the well-posedness of the discrete system are discussed in [Drw08].
Moreover, the work [Drw08| is essentially dedicated to the case of soft ferromagnetic films only, i.e.
q=0.
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Even though we use the same discrete ansatz space for the magnetization, our approach for solving
the problem (M) numerically is quite different from that in [Drw08|: In Section 3.1.3, we propose
a penalization scheme. Instead of satisfying the constraint lm| < 1, we introduce a new energy
contribution 5 ||(jm| — 1)+H%Q(w) where (-); denotes the positive part, i.e. (lm(z)] — 1)1 = 0 at
points z € w where |m(z)| < 1. This leads to a discrete penalized, but unconstrained minimization
problem (Mj). Convergence of this kind of penalty methods is well established in the literature, see
e.g. [NW99]. Let m§ denote the minimizer of (M) and m) denote the minimizer of (M}). Then
there holds convergence mj — mg in a weak sense for any fixed h > 0. However, from this it is
not clear that convergence mj — m* with m* the minimizer of (M) follows as (h,e) — (0,0). This
result, which we failed to find in the literature, is established in Section 3.2 in an abstract framework
and contributes to the understanding of the numerical solution of infinite dimensional minimization

problems.

Finally, after studying convergence of our proposed solution scheme, some statement on the rate of
convergence still remains open. In Section 3.3 we close this gap. First, we state the Euler-Lagrange
equations for the continuous model problem (M). We stress that standard Lagrange multiplier tech-
niques, e.g. as described in [IK08], are not sufficient for our purposes, since we need further geometrical
and smoothness properties of the Lagrangian multiplier. In [De 93|, the Euler-Lagrange equations for
the large-body limit, a related problem in an L? setting, are established. With Theorem 3.18, we
prove a similar result. On the one hand, we follow the main idea of [De 93|, on the other hand, the
proof in our case involves some different techniques. This is due to the fact that our dual space H*
contains distributions, whereas the dual space in the case of the large-body limit is simply L?(w).
Having established the Euler-Lagrange equations, we proceed to prove an a priori convergence order
lm* — ms§ || = O(Vh + /€) under suitable regularity conditions. This finally suggests the choice of
€ = h for uniform meshes.

From the well-known generic singular behavior of solutions of the weakly singular boundary integral
equation associated with the Laplacian in 3D [ESAES90], we expect to observe strong edge and corner
singularities of V -m*. Also, geometric effects and non-smooth applied field f may cause singularities
of m*. In Section 3.4.2, we propose a heuristic adaptive algorithm to steer local mesh-refinements
as well as a local penalty scheme. For the estimation of the discretization error, we use the easy-to-
implement, however computationally intense, h — h/2 based error estimation strategy. For steering
the local penalty parameter, we use the penalty energy, which is proven to vanish as € — 0 in Lemma
3.9. Hence, we refine, i.e. reduce by a fraction, ¢ locally on elements T' € T, where ||(jm| — 1)+Hi2(w)
is large.

3.1 Discretization and penalization

The lowest-order Raviart-Thomas finite elements were first introduced in [RT77|. Having defined
regular triangulations of our domain, we follow the lines of [RT77] and [BCO05| to define the Raviart-
Thomas finite elements and collect their crucial properties. Finally, we give an explicit basis suitable
for an implementation.

In the second subsection, we pose the discrete minimization problem (Mj}). First, we note that
existence and uniqueness of minimizers for the discrete problem follows by the same arguments as
for the continuous problem. Then, using standard finite element techniques, we give an a priori error
analysis. We stress, however, that this analysis is somewhat artificial, as the minimizer mj of the
problem (Mp,), in general, cannot be computed analytically.
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Py

Figure 3.1: Each interior edge E belongs to precisely two triangles 7'y and 7. The points opposite
of E are denoted by P, and P_, respectively.

Finally, in the third subsection, we propose a penalty method which leads to a numerically solvable un-
constrained (discrete) penalized problem (M}). Well-posedness follows from direct method of calculus
of variations due to the coercivity of the modified energy functional e. ().

3.1.1 The space of lowest-order Raviart-Thomas finite elements

Definition. We call a partition 7 = {T1,...,Tn} of the domain w a regular triangulation if it
satisfies the following conditions:

e Each element 7' is a non-degenerate and closed triangle,

e T covers w, ie. W= Upcs T,

e The intersection T; NTj, for ¢ # j, is either empty, a common vertex, or a common edge.
The global mesh-size h is defined by h = maxper diam(T). Moreover, the set of all edges of a
triangulation is denoted by £ and &, is the set of all interior edges. O

Definition. For a given regular triangulation 7 of w, we define the space of lowest order Raviart-
Thomas finite elements by

RTY(T) = {my, € P/(T)|[my, -ng|p = 0OVE € &, and mj, -n = 0 on 7},

where P (T") denotes the space of piecewise linear and discontinuous functions, ng denotes a normal
vector on the edge E, and [-]g denotes the jump across an edge of the triangulation. O

We stress that the crucial property [my, - ng|g ensures the H} (V+;w) conformity of the discrete space
RTO(T). Since H}(V+w) C H, the set

Ay, = {my, € RT%(T)||jmy| < 1 ae.}

yields a conforming discretization of our admissible set A.
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The given definition of RTY(T) describes the properties of the functions involved. However, in order
to implement numerical algorithms using Raviart-Thomas finite elements, it is necessary to operate
on a set of basis functions. Each interior edge E € &, belongs to precisely two elements T and 7.
Let P and P_ denote the vertices of T and T_, respectively, opposite E, i.e. Ty = conv{EU{Py}},
see Figure 3.1. For each F € &, we define

y {i%(w—]ﬁ), forz € Ty
E =

(3.1)
0, elsewhere

and notice that the jump [¢g - n] across any edge vanishes. This implies ¢y € RT°(T). Moreover, it
can be shown that the set

B={yp|E € &}
is a basis of RT?(T), cf. [GRS6].
Obviously RT?(T) satisfies (V-) : RT%(T) — PO(T), where P°(T) denotes the space of piecewise
constant functions over the mesh 7. Moreover it even holds that the mapping (V-) : RT°(T) — PY(T)

is onto [Bra97, Hilfssatz 5.4], where P%(T) denotes the space of piecewise constants with vanishing
integral mean.

In order to obtain a priori convergence rates, we will need some interpolation operator ITj, : H'(w) —
RTO(T;,) with some approximation property with respect to the mesh-size h.

Theorem 3.1. The operator 11, : H'(w)? — RT°(T) characterized by
IIym|reT, satz’sﬁes/ (m —TIIpm) -nds =0 for all E € (ENJT)
E

is a projection from H'(w)? onto RT°(Ty). Let HﬁQ denote the L? orthogonal projection onto P°(Tp,).
Then, it holds that

V- (Im) = IX°(V - m). (3.2)

Furthermore, given m € H'(w) with V- m € H'(w), there hold the approzimation properties
[m —IIpml[ 2, < Crh|lml| g, , (3.3)
IV (m = Tm) | 1) < Coh®2 |V 11 (3.4)

Proof. The first estimate (3.3) follows from [Bra97, Hilfssatz 5.5|, where the approximation property
of the interpolation operator IIj, is stated for the space H'(V-;w). The constant C; stems from an
application of the Bramble-Hilbert lemma. For the second estimate (3.4) we recall the approximation

property
L? ~ 11/2
Hu — 1 uHﬁflm < Coh / Hu”L2

proven e.g. in [CP06, Theorem 4.1]. An Application with v :=u — Hfu yields

Hu—HﬁQUH = U—H£2U

H-1/2

1 S O ol o = Coh 2 [lu — 1

1/

L2’

Note that the L2-orthogonal projection onto piecewise constant function is the elementwise integral
mean Hﬁ2u|T = ﬁ fTudx. Therefore a scaling argument and an elementwise application of the
Poincaré inequality yield

2
2 272,12
Hu—Hh uHL2 < C2R%|ul%,

This estimate combined with the identity (3.2) completes the proof. |
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3.1.2 The Discrete Minimization Problem (1)

Definition. Given a regular triangulation T, of w, we define the set of discrete admissible
magnetizations

Ay = {my, € RT°(T;,) | Imy| < 1} = AN RT(T3,). (3.5)

O

Discrete minimization problem (/). Find a minimizer mj € Ay, of the discrete energy
— _ 1 2 4 2 £
enmi) = e(my) = 2 IV w3+ 4 a2 — (62 (3.6)

First, we stress that the conformity of the chosen discretization ensures that our discrete problem
inherits the well-posedness of the continuous problem.

Corollary 3.2. The discrete minimization problem (My) has a minimizer mj with uniquely deter-
mined divergence V -mj . If ¢ > 0, the minimizer mj € Ay, is uniquely determined.

Proof. The space RT°(T) is a finite dimensional and therefore closed subspace of the energy space H.
Since the intersection of two closed and convex sets is itself a closed and convex set, we may apply
the arguments of the proof of Theorem 2.21 and use Theorem 2.22 to conclude the existence and
uniqueness of a minimizer mj as in Corollary 2.23. |

In order to establish an a priori analysis for the discrete minimization problem (M}, ), we first state
the well known equivalence of certain minimization problems and variational inequalities. This will
provide some sort of generalization of Céa’s Lemma which enables us to derive a priori convergence
results by straight forward analysis.

Lemma 3.3. Let H be a Hilbert space with (semi) scalar product (-,-) . Furthermore, let ® € L(H;R)

and let K C H denote a closed and convex subset. Given the energy functional

B(a) = 5, a)n — B(a),

an element x* € K is a minimizer, i.e.
E(z*) < E(y) foralyeK, (3.7)
if and only iof x* satisfies the variational inequality
(¥, 2" —y)g < ®(z" —y) forallyeK. (3.8)

Proof. We first show that (3.8) implies (3.7). Let therefore 2* be a solution of the variational inequality
(3.8). Then, it holds that

Bly) ~ B*) = 5{.0)1 — 5("a%) 1 — By) + ("),
= —%@c* +ty 2t~y + (x" —y),
1

= 5(%* —y, 2" —y)g — (@, 2" —y)g + (2" —y).
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Since (z* —y,z* —y)g = ||z* — y||3; > 0 and z* is a solution of (3.8), the last term in the computation
has to be non-negative. Since y € K is arbitrary, this shows that x* also solves the minimization
problem (3.7).

Next, we show that each solution of the minimization problem (3.7) solves the variational inequality
(3.8). To that end, assume z* € K to be a solution of (3.7) and let y € K. Due to the convexity of
K, there holds 7 :=tz* 4+ (1 — t)y € K for all 0 <t < 1. We compute

0< E(@) - E(@")=E(1-t)y+tz") — E(y),

1

=3 | —ty + t*||3 — (x*, ta* — ty) g + B(tx* — ty),
1 2 * 2 * % *

= SRl ylh — 6,0 — )+ 10" )

In particular, this means
1
0<Stf—a"+ yll3; — (@, 2" —y)m + ®(a* —y)

for all ¢t € (0,1). Considering the limit ¢ — 0 and recalling that y € K was arbitrary, we have therefore
proven z* to solve (3.8). [ |

Remark. 1In the case of K = H in Lemma 3.3, the corresponding variational inequality would in
fact be an equality

which is the Euler-Lagrange equation of the unconstrained minimization problem. From that point of
view, Equation (3.8) may be seen as the Euler-Lagrange inequality of (M). O

We recall that our model problem (M) induces a natural energy (semi-)norm [|m[]? = ¢ |jmgl[3, +
|V - m||%/ which obviously stems from the (semi) scalar product

(m,w) = q(ma,wa)r2 +(V-m,V(V- W)>H1/2Xﬁf1/2-

Since the mapping m — (f,m);2 is a continuous and linear functional on H, our model problem
perfectly fits into the general setting of Lemma 3.3.

In Chapter 2, we applied the direct method of calculus of variations to establish existence and unique-
ness of solutions of (M). After reformulating (M) in terms of its variational inequality, by standard
arguments [JLJ98, KS80], we finally obtain also continuous dependence of m* of the applied field f.

Corollary 3.4. Let m; and my be solutions of (M) for applied fields | and fo, then it holds that

[lmy — msf] < V22 [1f1 - £ 147, - (3.9)

Proof. The variational inequality
(my, my — m) < (fi, m) 2
with k € {1,2} holds true for all m € A. From that we conclude

lm; — m2|||2 = (m;,m; —my) + (my, my —m;) < (fj,m; —my);2 + (fo,my —my);2
=(fi —fH,m; —my);

< 11 = foll 20 [m1 — ma| 2, -

Since |my (z) — mo(z)| < 2, we have that |[m; — mgHig(w) < 2|w|, which concludes the proof. [ |
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The variational inequality, furthermore, allows us to establish an a priori error estimate.

Theorem 3.5. Let m* € A and mj € Ay, be solutions of (M) and (My,), respectively. Then it holds
that

o~ mp? < inf (fm — wil? — 2fmm® — wd b 20w wi)) . (310
wpEA

Proof. First, we observe the inequality
(m*,m") = (m", m" —mj) + (m",mj) < (m", mj) + (f, m* —my)

that follows from Lemma 3.3 applied to the minimization problem (M). Using this simple observation
and the variational inequality for the discrete problem (M}, ), we compute for arbitrary wy € Ay,

lm* — mj |2 —mj, m" —my)

,m") —2(m", mj) + (mj,, my)

< (m",mp) + (f,m" —mjp)r2 — 2(m* , my) + (my, wy) + (f, mj — wp) 2
= —(m*,m;) + (f,m" — wp)p2 + (my,, w})

—m*) + (f,m" —wy) 2

= (m* —mj , m" —wp,) — (m*, m* —wp) + (f,m* — wy) 2.

= (m”
= (m*

|
)
E

A
|
B
|
8
=*
+
|
B
|
s
=
|
g
8
=%
|
s
i"v
_I._
=~
E*
|
s
>
=

Jm* — i <
m* = mj > < [l = w | = 24, — w4+ 2(f,m = i)

Since wy, € Ay, was arbitrary the last inequality still holds when taking the infimum over all wy, € Ay,
on the right-hand side. This concludes the proof. |

Corollary 3.6. Let m* € A and mj € Ay, be the solutions of the continuous model problem (M) and
the discrete minimization problem (My), respectively. Under the reqularity assumption m € H'(w)?
and V -m € H1/2(w), they satisfy the a priori convergence result

m* — mj[| = O(Vh). (3.11)
Let ¢ = 0. Then under the assumption V -m € H(w), we obtain

lm* —mj || = |V (m* —mj)|,, = OK**).

Proof. We recall the interpolation operator ITj, : H'(w)? — RT(T}) with its approximation properties
from Theorem 3.1. Choosing wj, = IIm* in Theorem 3.5, the inequality (3.10) implies

lmn* — mj[[* < flm* — Ty | + 2flm* ||lm* — ym™|| + 21| ]| > [m]| 2

which immediately yields the statement according to Theorem 3.1. |
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3.1.3 The (discrete) penalized minimization problem (1)

We still need to provide some strategy to deal with the non-linear side constraint. For any € > 0, we
introduce an additional energy term

oz [I(jm[ = D72 - (3.12)
The function ()4 is given by

u(z) for u(x) >0
(u(@))+ =

0 else.
Discrete penalized minimization problem (A/;). We seek to find a minimizer mj € X}, of the
penalized energy

1 q 1
ec(mp) = 5 [V my | + 9 g 2172 ) + oz II(Imy] = D72 — (Fmp) 22, (3.13)

For h > 0, we set X;, = RTY(T;,) with some mesh 7;, with mesh-size h. Formally we also allow h = 0,
where we seek a continuous minimizer mg € Xo = H.

In a first step on our way to prove convergence m5 — m as (h,e) — (0,0) and m$ = m*, we state

and prove coercivity of the energy functional e.(-). To that end, we modify the proof of [Pra03, Satz
2.18] to fit our setting.

Lemma 3.7 (Coercivity of e.(-)). Let € > 0 be given. Then, for any sequence of magnetizations
(my)neny C H with |my,|| — oo, it holds that e(my,) — co. In particular, any sequence (my)xen with
bounded energy supycy e(my) < oo has bounded norm, i.e. supycy ||mg| < oco.

Proof. Recall the definition of the energy

1 q 1
ee(m) = < IV mlf} + L o) + oo Nml = 14 ) — (Em) a0,

From equivalence of norms ||V -ml|, ~ ||V - mHﬁ_l/Q(w), more precisely the upper bound (2.24), we
conclude the existence of a constant C'y > 0 such that
2 q 2 1 2
ec(m) > C1{IV-mllg_.p,) + 5 Im2llzag) + o l(ml = Dillzae) = (F, m)re).

Let w> denote the set, where |m| > 1, and w< the complement, i.e. |m(z)] < 1 for z € w.. To
estimate the Zeeman energy contribution, we use Hélder’s inequality to see

/f-mdx:/ f-mdx+/ f-mdx
w w> w<

< I8l 20 Il + | IF]do (3.14)

<
<N 22 ol 2oy + 11 21 ) -
Next, for the penalty energy contribution it holds that

/(\m\ 12 de— / lma|? — 2|m| + 1de

w>

(3.15)

2
> [ml2ag,. ) — 2 mll 2. ks> + ws]

2
> HmHLQ(wZ) -2 ||mHL2(wZ) |W|1/2,

w>)
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where we again used the Holder inequality to obtain the upper bound. Dropping the anisotropy energy
and applying the inequalities (3.14)—(3.15), we obtain

1

ec(m) > o= [|(jm| = 1)+ o) — (F,m) g2y + CL [V -7,

Vv

o (B = 202 0 2 ) = Il 2y I ) = [0y + C IV - 0
1

= o= (IlmlF2uy) = (2l 4+ 22 1Ell 20 ) 0l 2y = 22 1 Fln ) + LIV -l

Defining the constants Cy = 2|w|"/? + 2¢ £l r2(y and C5 = 2¢ |[£]| 11y, we conclude

eo(m) = o (ImlfFz,) = C2 lmll oy = Co) + Co [V mF s, - (3.16)

1
2e
From

1/2
il 2y < Il ey )y + Ml z2e ) < Imlpa, ) + w2, (3.17)
we conclude the proof with the following observations: Let (m,) C H be a sequence of magnetizations
with limsup,, ||m,| = co. Then either limsup,, |V - m””f{r—l/Q(w) = oo or limsup,, [[my[;2(,) = oo,
or both. Suppose limsup,, |V - m,|[|5_1/» = oo, then we immediately conclude lim sup,, e-(m,,) = oo
from (3.16). On the other hand if lim sup,, [[my|| ;2(,) = oo, the combination of (3.17) and (3.16) again
yields lim sup,, e (m,,) = co. [ |

Well-posedness of the model problem (M} ) now follows by the direct method of calculus of variations,
cf. [Dac89].

Corollary 3.8. For h > 0, let X}, denote some closed subspace of H. For h = 0, we identify Xg = H.
Then, there is a minimizer mj € X, of the penalized energy e.(-). Moreover, for ¢ > 0 the minimizer
mj, is uniquely determined.

Proof. Let (my),en be a sequence with infex, e-(m) = lim, o e-(my). From e.(0) = 0, we
conclude that the sequence has bounded energy. The coercivity of e.(-) implies that m,, is bounded
in norm, and therefore there exists (w.l.o.g.) some weak limit mj. Since X, is closed and convex, it is
also closed with respect to the weak topology, and thus mj € X;. With the weak lower semi-continuity
of e-(-), which follows from continuity and convexity, we finally conclude that mj is a minimizer. If
q > 0, then by Theorem 2.22, we obtain uniqueness. |

3.2 Convergence

We establish weak convergence of minimizers as ¢ — 0. We stress that convergence for ¢ — 0 with
fixed h is well-known in the literature, see e.g. [NW99]. However our proof differs from the one
included in the cited monograph. Since we use similar arguments in the proof of convergence with
fixed € for h — 0, we state the result as a theorem and prove it.

Lemma 3.9. Let ¢, — 0 be a non-negative zero sequence and let (my,)nen C H be a sequence of
magnetizations such that

sup eg,, (m,) < oo (3.18)
neN
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and
m,;, — Mgy,
for some my, € H. Then, it holds that my, € A, i.e. the weak limit m satisfies the constraint

mo.| < 1.

Proof. Note that the term

1(jm] = 1)+ 172

is convex and continuous. Hence, it is also weakly lower semi-continuous. From the weak convergence
m,, — my,, we therefore obtain

2 o 2
J(Imc] = 1)+ ey < Timint [l — 1), 3 (3.19)
By definition it holds that e, (m,) = e(m,) + % II(|my,| — 1)+H%2, which means

2¢,(ec, (my) — e(my,)) = || (jm| = 1)1 [|7: -
From (3.18), we obtain an upper bound

limsup e(m,,) < limsupe,, (m,) < oo.
neN neN

The weak lower semicontinuity of e(-) together with m,, — m, yields the lower bound

< lim < lim .
e(my) < hréleanfe(mn) < hrr?ell\?f es, (my,)

In particular, both sequences e(m,,) and e., (m,,) are bounded. This, together with (3.19) and ¢,, — 0,

proves

(| = D43 < liminf | (jm,| — 1)+ |32 = liminf 2, (e., (m,) — e(my)) = 0,
neN neN

ie. my € A [ |

Theorem 3.10 (Convergence as € — 0). For any sequence (£p)nen € Rso with £, — 0, there holds
weak convergence with respect to the norm topology of H of the minimizers mj" of (M;") in the

. € . Eng .
following sense: Any subsequence m,"* contains a weakly convergent subsequence m, ™" whose limit

1S 6 minimizer mg of the constrained problem (My,). For q > 0, there holds weak convergence of the
full sequence

m;" — m),.

Proof. Since mj is the minimizer of the unconstrained problem (M), it holds that
e.(mf) < e.(mf) = e(m}). (3.20)

Therefore, the sequence of minimizers mj" has bounded energy. From Lemma 3.7, we obtain bound-

k

edness of m;" in the norm. This yields that any subsequence mzn is bounded and must have a weakly

Eny, . S
convergent subsequence m, *“ — mj. It remains to prove that first mj € A;, and second it is indeed
a minimizer of e(-).
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The first statement, i.e. mj € A;, follows immediately from Lemma 3.9. From

ankl < ankl < 0
e(my, ) < Ceny, (m,, ™) < e(my,)

and weakly lower semicontinuity of e(-) (2.27), we conclude

En
e(mj) < liminfe(m, ") < e(mj),
leN
and since m) € Ay, is a minimizer of e(-) there must hold e(m}) = e(m?), i.e. m} € Ay, is a minimizer
of (Mjy) as well.

In a final step, we assume ¢ > 0. By Corollary 2.23 the minimizer m) € A, of (M) is uniquely
determined and there must thus hold mj = m?l. This means that every subsequence of m;" has a
subsequence with the same weak limit mg. Therefore, there already holds convergence

€ 0
m;" — my

of the sequence itself. |

Next, we prove convergence of solutions with respect to the discretization parameter h without any
regularity assumptions. To that end, in the case of € > 0 we refer to the penalized problem (Mj}),
whereas in the case £ = 0 we refer to the constrained problem (M) = (M}).

Theorem 3.11 (Convergence as h — 0). Let X, C H be a monotone family of finite dimensional

subspaces of H with limy,_,0 X;, = H. By this we mean that hy < ho implies Xy, C Xy, and | J,< o Xn =

H. Then, for any sequence (hy)nen C Rsg with hy, — 0, there holds weak convergence of minimizers

mj, of (Mfln) with respect to the norm topology of H in the following sense: Any subsequence m‘znk

contains a weakly convergent subsequence myj whose limit is a minimizer mg of the continuous
N

penalized problem (M§G). For g > 0, there holds weak convergence of the full sequence

mj  — mg.

n

Proof. Let h, be a zero sequence and assume w.l.o.g. h, < 1. Then, from monotonicity of spaces we
conclude X; C X}, and hence

ce(m3, ) < e.(ms). (3.21)

Put differently, the sequence (m}in)neN has bounded energy. From Lemma 3.7, we deduce boundedness
of the sequence in H. In particular, each subsequence m‘flnk is itself bounded and has therefore a weakly
convergent subsequence

€ £
my  —m,.
k¢

It remains to prove that m; is a minimizer.

Let m§ denote a minimizer of the continuous problem (M§). Since e.(-) is continuous, for any 7 > 0
there is a 0 > 0 such that

Iw = W < 6 = Jee(w) — ec(¥)] < .
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From limy,_.o X;, = H we know that for each 6 > 0 there is an integer L € N such that for all £ > L
there exists some myj, € Xh,, such that

‘<5.

15 ~ &
Hmo — W

Altogether, we know that for arbitrary n > 0 there exists some index L € N such that for all £ > L

we may choose rﬁink e X [ with
(4

ee(ﬁliw) < ec(mg) + 7.

Recall that mj  is a minimizer and therefore e.(mj ) <e.(mj ). Since this holds for any n > 0
n "k, ny

{4
and from (weakly lower semi-)continuity of e.(-), we conclude
e.(mf) <liminfe.(mj ) <e.(my),
=00 kg

which means that m$ is in fact a minimizer.

For ¢ > 0 the minimizer myg is uniquely determined from which weak convergence
1> 1>
my, — Mg

follows. |

Now that we have proven

lim lim mj, = m* = lim lim mj
h—0e—0 e—0h—0

in a weak sense, we finally establish that any choice of discretization and penalization parameters
yields convergence, as long as (h,e) — (0,0). This finally ensures unconditional convergence of our
proposed scheme for the numerical solution of (M). In particular no assumptions on the regularity of
the analytical solution are necessary.

Corollary 3.12 (Convergence as (h,e) — (0,0)). With the assumptions of Theorem 3.10 and Theorem
3.11, there holds weak convergence with respect to the norm topology of H of minimizers m;’; of (M,i:)

for any zero sequence (hy,e,) — (0,0) with hy, e, > 0 in the following sense: Any subsequence mzzz
En

contains a weakly convergent subsequence my, " whose limit is a minimizer m* of the constrained and

continuous problem (M). For q > 0, there holds weak convergence of the full sequence

n

Proof. Let mg" denote a minimizer of the continuous and penalized problem (Mj") and let mgn denote

a minimizer of the discrete constrained problem (M), respectively. We observe
e(mf") < e(m;") < e(m) ) < e(0) =0. (3.22)

. 15
Therefore, the sequence m;’; is bounded and every subsequence mhzk has a weakly convergent sub-
k

Eny ~ . . .
sequence m, “ — m*. From Theorem 3.11, we conclude existence of a subsequence which we write
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for simplicity as mifs such that the associated sequence mgs converges weakly to a minimizer m* and

hence

e(m;’) < e(m) ) — e(m®).
From this it follows, again by weak lower semicontinuity of e(-), that e(m*) < e(m*). Recall that
ee,(mj?) < e(m) ). From that we see that m;° satisfies the assumption of Lemma 3.9, hence m* € A.
Finally we obtain that m* is a minimizer, i.e. the desired convergence result. |

3.3 A priori error estimates

We have already established an a priori estimate for |m — my]|. However, in practice, we compute
in fact the solution mj of (M;). We are therefore interested in some estimate for [m — mj|. We
proceed in two steps. First, we estimate the error ||m — m|| introduced by the penalization. To that
end we need to establish the Euler-Lagrange equations for the constrained problem (M). Second, we
prove that, under suitable regularity assumptions, the discretization of the penalized system leads to
the same convergence behavior as the discretization of the constrained problem.

3.3.1 The Euler-Lagrange equations (KKT conditions)

In the first subsection, we aim at understanding the Euler-Lagrange equations of our minimization
problem. Our further numerical analysis is built upon this result. Based on a regularity result from
[DKMOO02]|, we prove the existence of a Lagrange multiplier A > 0 such that the minimization problem
(M) may be stated equivalently in terms of its Euler-Lagrange equations

q <r22> +Vu— f+Am =0, (3.23)
A(jm| = 1) =0, (3.24)

A0, (3.25)

im| <1, (3.26)

often also referred to as KKT-conditions.

One may be tempted to use standard techniques from infinite or semi-infinite optimization. However,
black-box techniques do not make use of the very concrete structure of our model problem and therefore
may not provide a good framework for numerical analysis. Instead, we follow the lines of the proof
of equivalence of the Euler-Lagrange equation and the model problem in case of the large body limit
that was performed in [De 93]. The proof cannot be transferred easily to our thin-film problem. The
underlying idea to understand the geometry of the first derivative of the energy, however, is preserved.

Before proving the equivalence of the Euler-Lagrange equation and the reduced thin-film model prob-
lem, we first need some definitions and statements, well known and established in the literature, to
form the basis for our analysis.

Definition. Let X be a Banach space and F : X — R. If the limit

(3.27)
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exists we shall call it the derivative at the point z € X in the direction y € X. Furthermore, the
function F is said to be Gateaux differentiable at the point z with Gateaux derivative DF(z) € X*,
if (3.27) exists for all y € X and

dF(z,y) = (y, DF(x)) (3.28)
is satisfied. In the following we also use the notation
(DF(2))(y) = (y, DF(x)).
a

We now compute the Gateaux derivative of our energy functional e as defined in (2.26). We first prove
a lemma which in fact covers two of the three terms of which the energy is composed.

Lemma 3.13. Let X,Y be Hilbert spaces and let F': H — R be defined through F(x) = (Tz,Tx)y
with some linear and continuous mapping T € L(X;Y). Then the Gateauz derivative of F' at the point
x € X in the direction x € X reads

(DF(2))(%) = 2(Tx, T%).

Proof. We plug in the definition (3.27) to obtain

Fletey) - Flr)  (T(x+ey) T(x+ey) - (Te,Tx)

€ €
_ (Tz,Tx) +2e(Tx,Ty) + e*(Ty, Ty) — (Tx,Tx)
€
=2(Tz,Ty) +e(Ty, Ty).
Hence the limit for € — 0 is precisely as stated. |

Theorem 3.14. The Gateauzr derivative of the energy e : H — R reads

(De(m))(m) = (Pm, Pm) 2 gs)ys + q(mg, M) 72,y — (F,m)72,)2. (3.29)
Proof. The energy e may be written in the form

1
e(m) = 5(73111, Pm)LQ(RS)S + g(mQ,mQ)LQ(w) — (f,m)LQ(w)Q. (3.30)

We simply apply Lemma 3.13 to the first two terms of the energy and compute the derivative of the
last term trivially to prove the statement. |

Our aim is to find an explicit L?-representation of the derivative De(m)(-). To that end we consider
the algebraic-topological dual H* of H with respect to the extended L? scalar product. The following
Lemma from [Pra| provides the mathematical context necessary to define H* in the intended way

properly.

Lemma 3.15. Let X CY be continuously embedded Hilbert spaces. Then the Riesz mapping
Jy Y =Y Jyy = (y)y

is well-defined as linear operator Jy € L(Y, X™) and the range Jy (Y') is a dense subspace of X*.
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Proof. Due to the continuous embedding, there is a constant C' > 0 such that ||z, < C'||z|| y for any
x € X. By Cauchy-Schwarz’ inequality, we infer

(s 2)y | < llylly lzlly < Cllylly llzlx -

Therefore, Jy € L(Y, X*) is well-defined. Let Jx denote the Riesz mapping with respect to X. Then
Jy (Y) is dense in X* if and only if V := J'(Jy(Y)) is dense in X = V@ V+. We conclude the proof
by verifying V- = {0}. Let 2 € V- and y € Y then it holds at

0= (z;Jx" (Jy(W)x = (Jy () (@) = (y; )y

The admissible choice of y = 2 € V- impliess 2 =0€ Y D X. |

We may apply Lemma 3.15 to the spaces X = H and Y = L?(w) which yields a representation of H*
with respect to the extended L? scalar product.

We need to state some regularity result concerning the gradient of the magnetostatic potential Vu =
Pm. Finally, based on this regularity result, the explicit representation of De(m)(-) may be derived.

Proposition 3.16 ([DKMO02, Proposition 3.3|). Assume that w is simply connected and that f has
all derivatives up to second order in L'(w). Then the magnetostatic potential u* corresponding to the
minimizer m* € A of (2.26) satisfies

vu e L?OC(W) g L%OC(w)'
|

Lemma 3.17. Assume that w is simply connected and that £ has all derivatives up to second order in
L'(w). Let m* € A denote a minimizer of (2.26) with associated magnetostatic potential u*. Then it
holds that

De(m*) = g <I§> Ve - f (3.31)

2

almost everywhere on w.

Proof. Let r denote the right-hand side in (3.31). Since both, r and De(m*) are distributions, i.e.
r, De(m*) € D*(w)?, we prove

De(m™)(p) = / r-¢ forall p € D(w)?
w

This, together with Proposition 3.16 and the fundamental theorem of the calculus of variations, yields

the representation stated in (3.31). Let ¢ € D(w)? be given and let u denote the corresponding

magnetostatic potential. According to the Maxwell equation (2.3), it holds that

Vu-Vyder = / @ - Vi(z,0)dr forall o € D(R3). (3.32)
R3 w

As argued in the proof of [DKMOO02, Corollary 3.4, the regularity of u allows to replace ¢ € D(R?)
in (3.32) by the magnetostatic potential, i.e.

Vu-Vudx:/cp-Vu(w,O)dw.

R3 w
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Using (3.29), we obtain
) 12(w) + (Vu, Vi) r2msys — (f, 0) 12w

)2y + (Vu,0)r2w) = (f,0)r2(w) = / rep

which concludes the proof. |
Now, we have collected all preliminary results necessary to state the Euler-Lagrange equations and
prove the equivalence to our model problem (M) properly.

Theorem 3.18. Assume that w is simply connected and £ has all derivatives up to second order in
LY(w). Then, any solution (m*, \*) € A x L2 (w) of the Euler-Lagrange equation

Loc

0
q<m2>+Vu—f+)\m—0 a.e.,

AMm|—-1)=0 a.e., (3.33)
A>0 ae.,

Im| <1 a.e.,

provides a minimizer m* € A of the energy

1
e(m) = g(m27m2)L2(w) + §(V m, Vom)y — (f,m)p2,. (3.34)

Conversely, if m* € A is a solution of (M), there exists \* € L2 (w) such that (m*, \*) solves (3.33).

Proof. We recall that solving our minimization problem is, according to Lemma 3.3, equivalent to
solving the variational inequality

De(m)(m —w) <0 foral weA (3.35)

This fact will be used throughout the entire proof.
First we prove that any solution of (3.33) provides a minimizer of (2.26): From

A(jm| — 1) =0

we infer A(z) = 0 for all z € w with jm(z)| < 1. Let (m*, \*) be a solution of (3.33) and choose some
arbitrary m € A. Then with wy := {z € w||m*| = 1} it holds that
* * 0 * *
De() ' =) = g () + 9" = fom’ —m)
my
= —()\*m*, m*)Lz(wl) + ()\*m*, m)L2(wl).

Since |m| < |m*| almost everywhere on wq, it holds that m* - m* = 1 is a pointwise upper bound for
m* - m and we conclude from A\* > 0 the variational inequality

De(m")(m* —m) <0 forall me A,

which is equivalent to m* € A being a minimizer of (2.26).
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Second we prove that for a minimizer m* € A of (2.26) there exists a Lagrange multiplier
A* > 0 such that (m*, \*) solves (3.33): Let r denote the L? representation of De(m*) € H*, i.e.

0

We define we := {z € w||m*(z)| < 1}. We analyze r on the sub-domains w. and w; separately and
prove r|,. = 0 and r|,, || m* in two steps.

First we prove r = 0 on w<: Let z¢p € w< be arbitrary. Then there exist a neighborhood of w,, C w
and some &, > 0 such that w,, + B-(0) C w for all ¢ < ¢,,. We stress that w,, + B:(0) is bounded
and therefore compact. We further define the set wy, := {z € w||m*(z)| <1— 1}. Let v € L®(w)?,

then we define 6, := k||vl|| . We observe that the variation

my; 1= m" + KXw, Xw,, ¥ € L®(w)?

satisfies the constraint |m,| < 1 for all kK € [—dy, d;]. We seek a sequence of admissible functions which
converges to m, in L?(w)2. To this end we choose a sequence (¢,)nen € D(wz,)? N A of admissible

2
test functions with ¢, £> mn|wzo. Furthermore we choose a sequence of positive numbers &, — 0
with &, < &4, for all n € N. For each ¢, let ¢, € C*®°(w) with 0 < ¢, < 1,9 =1 on w\ (wy, + B:,(0)),
and ¢ = 0 on w,, be a smooth cut-off function. Then it holds that

s L?
my, ‘= (%m + @n) — My (3.36)
and each my,, is admissible, i.e. m,, € A. The variational inequality (3.35) yields
0> De(m*)(m* —m,) = / r-(m* —m,)dz.
w
From the continuity of the L? scalar product we finally infer

/r-(m*—mn)—>—/~i / r-v<0 forall keé&[-d, ik

Wz Nwg

which in turn proves [ 7-vdx =0 by choosing £ = +J5. This statement holds for all k¥ € N from

wxoﬁwk
which we conclude [ r-vdx = 0. Finally since v € (L*)? and z¢ € w- were arbitrary it follows
szF‘w<
that » =0 on w.
Second we prove 7 = —A\*m* on w; for some \* € L? (w) with \* > 0: Let z9 € w; be arbitrary and

choose a neighborhood w,, and a positive number ., as above. Let v € L>(w)? with m*(z)-v(z) <0
almost everywhere on wy and let w’ C w be an arbitrary measurable subset. We define wy := {z €

wy |m*(z) - ﬂggl < —1}and &, == ’f||v2||oo' Then,

my; 1= m" + KX, Xw, Xo'V € L™®(w)?

satisfies the constraint |m,| < 1 for all Kk € [0,;). As above we construct a sequence of admissible
functions

L2
my, = wnm* + on — my
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and use the variational inequality (3.35) to prove

/r-(m*—mn)dazgo.

w

The continuity of the L? scalar product yields

— / r-vdr <0.

Wz NwpNw’

Since this holds for all measurable subsets w’ of w we obtain r - v > 0 almost everywhere on wy, N wy.
Again this holds for all £ € N and we therefore obtain r - v > 0 almost everywhere on w,, Nw; and in
particular 7(zg)-v(xg) > 0. Since xg € w; was arbitrary we finally conclude 7-v > 0 almost everywhere
on wy. Let R“ denote the pointwise rotation by angle «. The choice of v = R*m™* and r - R*m* > 0
for all o € (w/2,37/2) proves r = —A\*m* on w; for some non-negative function A\*. Recall that due
to |m*| = 1 on wy, the function m* can have no regularizing effect and A* must therefore be element
of the same function space as r, i.e. \* € L%OC due to Vu € L?OC.

We conclude the proof by summarizing the results. The L? representation r of De(m*) satisfies 7 = 0
on w.. Therefore, the choice of A* = 0 on w. and the choice of A* > 0 according to the second step
of the proof yields

r=-\m"*
A(lm*| — 1) = 0,

which concludes the proof. We stress that the second equation in (3.33) enforces uniqueness of A* on
the entire domain w. [ ]

Since the penalized problem is unconstrained, the Euler-Lagrange equation simply reads De.(mj ) = 0.
We have already computed the derivatives of the energy contributions that are also part of e(-). The
computation of the derivative of ||(jm| — 1), [|7 can be found, e.g., in [Pra03].

Proposition 3.19 ([Pra03, Satz 2.18(iv)]). Given the energy contribution e (m) = ||(jm| — 1) ||7.,
its Gateaur derivative reads

De® (m)(w) = <wm,w> . (3.37)

||

From this, we deduce the Euler-Lagrange equations for (M}): Any minimizer mj € X}, of the penalized
energy e.(-) satisfies

(V-mj, V-wp)y + q(mp o, Who)p2 — (£, wp) 2 + (Aymj, wp) 2 =0,

for all wj, € X},. Moreover, we stress the relation
(m* —mj ,wp) = —(A"'m* — \ymj , wy) (3.39)

for all wy, € Xj,.
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3.3.2 A priori analysis

We aim at establishing an a priori error analysis for [[m* — mj|. To that end, we proceed in two
steps. First, we estimate the error ||m* — mg||, i.e. the error introduced by the penalization in the
continuous case. Second, we provide an estimate for [[m§—mj ||. In order to obtain convergence rates
for any of those estimates, we need some additional regularity assumptions.

Regularity assumption for the magnetostatic potential u:

u e H*?(By) for all bounded C'-domains B C (R? x Rx) with w C 8B,

3/2 1 . 2 . (U)
u € H°/#(B_) for all bounded C*-domains B_ C (R* x R<g) with w C 0B_

Lemma 3.20. Let m* be a minimizer of (M) and assume that the magnetostatic potential u satisfies
the reqularity assumption (U). Then, the Lagrange multiplier \* of (3.33) satisfies \* € L?*(w)?, and
in particular [[\*m*|| ;2 < oo.

Proof. The mapping properties of the trace operator from Proposition 2.1 yield tu € H'(w), and hence
Vu € L*(w). Then in the Euler-Lagrange equation (3.33) all quantities are L?-functions and hence
from |m*(z)| = 1 at all points where \* # 0, we conclude \* € L?(w). [ |

In [CPO1], the penalty method for the large-body limit is studied. The resulting Euler-Lagrange
equations for the constrained and the penalized model are quite similar to our results. In particular
some estimates for the non-linear contributions of A*m™* and A\; mj are given that can be used in our
context as well.

Lemma 3.21. Let m,m € H be two given magnetizations. Then, there holds the pointwise estimate

<(\m‘ - 1)+m . (‘ﬁﬂ - 1)+ﬁ1> - (m — ﬁl) > (. (3.40)

|| m|

Let furthermore m be such that |m| < 1 and p € L* with u(jm| — 1) = 0 and let m5 be a solution of
(My) for e > 0. Then, with the quantity X; defined in (3.38), the inequality

€ €
~{m — X, m - m) < 5 a2 — S 3mi 2 (3.41)
holds true, where w. denotes the subset on which A\j > 0.
Proof. In [CP01, Proof of Theorem 3.1] the pointwise estimate
0 < (([o] = 1)4)b/[b] = (la| = 1)+a/lal) - (b— a) (3.42)
is established, which is a more general formulation of (3.40). The inequality (3.41) is stated pointwise
in [CPO1, Proof of Theorem 4.3] and our formulation follows by integration over the domain w. W

We are now ready to establish the first a priori error estimate.

Theorem 3.22. The continuous solutions m* of (M) and m§ of (M§) satisfy the a priori error
estimate

* € 2 € *_ % (12
lm* — m§* + 5 IMmG 72 < 5 [[A"m™ |7 (3.43)
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with the Lagrange multiplier \* of (3.33). Assume that the magnetostatic potential u of the solution
m* of (M) satisfies the reqularity assumption (U), then

lm” — m§|| = O(Ve). (3.44)

Proof. Recall the relation (3.39)

(m" —m§, m* —mg) = —(A"m* — \jmg, m" — mg).
If u satisfies the additional regularity assumption, then by Lemma 3.20 it holds that \* € L?. With
(3.41), we conclude

I —m||* < o I m*| 72 — 5 [ A§mg] 7.

=y -
2 2

Note that [[Agm§||,> > 0. Hence, dropping this term and taking the square root concludes the proof.
|

Lemma 3.23. Assume strong L? convergence |m§ —m5||,» — 0 as h — 0. Then it holds that

IASmE — AmS 2 — 0 as h — 0.

Proof. As mentioned in the proof of [Pra03, Satz 2.18|, the mapping g — g+ = (g+]g|)/2 is continuous
in L?. From that we obtain that the sequence of mappings

(m[—1)+
((lm] —=1)4 +1)

1
m— |m|— m|—1— —(m|—-1); —
€ €

is continuous in L? since the denominator is bounded away from 0. Note that (jm(z)] — 1), +1=1
for im(x)| <1 and (jm(x)| — 1)+ + 1 = |m(x)| for |m(z)| > 1. Multiplication with m, thus shows
(jm|—1);

m — m=)\m
e((jm| = 1)+ +1)

to be continuous. From mj — mg € L? we obtain the desired result. |

As a second — and more involved — step, we provide an a priori error estimate for the discretization
of the penalized minimization problem.

Theorem 3.24. Let e,h > 0. Then, the solutions mg of (Mg) and mj of (M}) satisfy the a priori
error estimate

+ (Agmg — Ajmj, mj —my) 2 <
1 (3.45)
. 2
e (56 — -+ 5 — 2 s — wi]).
whreXy \ 2
If m§ satisfies the additional regularity assumptions m§ € H'(w)? and V- m§ € HY?(w), we have
[l — o[ < C(h% + h[[]A§mG — Ao || 2) (IV - 0§ a2 + [lm] ). (3.46)

Assume supy, [[\gm§ — A\jmj ||, » < oo, then we obtain

Jlm§ — mj || = O(Vh).
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Proof. Proof of (3.45):
First, we use Cauchy-Schwarz’ as well as Young’s inequality to obtain

[l — m|* = (mf — mj,, m§ — mj)

= (m§ — mj,, m§ — wp,) + (m§ — mj,, w;, — mj)
< [m§ — mj || - [|mG — wi|| + (m§ — mj,, wy —mj)

1 1
< Sl — i [ + 5 g — wi[|* + (m§ — mj, wy — mj)

for arbitrary wj, € Xj,. Next, we stress that both, the continuous solution mg§ as well as the discrete
solution myj, satisfy the discrete Euler-Lagrange equation De.(m)(wj) = 0 for all w;, € X;. In
particular, it holds that

(mg —mj, wy, —mj) = —(Agmg — Ajmy, wy —mj) 2

= —(Aomg — Ajmj, mj —my) 2 + (AGmg — Ajmy, mg — wp) 2

since wj, — mj € Xj. Using again Cauchy-Schwarz’ inequality, altogether, we have
1
+ (AGm§ — Ajmj, mG — mj) 2 < Sflmg — wil* + [|AGmG — Apmi || 2 mG — w2

for arbitrary wy, € Xp. Taking the infimum over all wy, € X}, yields the statement.

Rate of convergence:

To obtain the desired rate of convergence, we assume mj € H'(w) as well as V-m§, € H'/?(w). Recall
the interpolation operator IT : H'(w)? — RT°(T},) of Theorem 3.1. The choice of w;, = IIm§ as well
as the observation that (Ajmg — Ajmj, m§ —mj ) 2 > 0 according to (3.40) conclude the proof. W

Remark. If m§ is smooth, then Lemma 3.23 provides a sufficient condition to obtain the a priori

estimate [|m§ — m$|| = O(Vh). We stress that we observe in all of our numerical experiments not
only convergence in the energy norm || - ||, but also — at a possibly lower rate — convergence in the full
space norm ||-||. O

Corollary 3.25. Assume m§ € H' with sup, |m§|| ;1 < 0o and V-m§ € HY/2 withsup, ||V - m§|| ;12 <
oo. Let the magnetostatic potential u of the solution m* of (M) satisfy the reqularity assumption (U).
Moreover, assume supy, . | \gmg — A\jmj ||, < co. Then, we obtain the a priori error estimate

lm* —mj|| = O(Vh + V). (3.47)

Proof. The triangle inequality yields
flm* — mi || < fjm® — mg|| + [fmg — mj||.

Theorems 3.22 and 3.24 yields the stated rate of convergence, since we assumed uniform bounds for
all quantities that depend on h or €. |

Remark. The regularity assumptions of Corollary 3.25 with respect to mg and V- mg are satisfied
if

° m%—)m*eHlase—>0,

e V-mj—V-m'ecHY?ase—0,
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hold true. 0

Remark. The a priori estimate (3.47) indicates that € = h is a reasonable choice when dealing with
uniform meshes. This is because, asymptotically, the error contributions are of the same order. O

Remark. The result of Corollary 3.25 is somewhat unsatisfactory. First, the rate is only obtained
under strong regularity and uniformity assumptions. In particular, we have no proof for convergence
in the energy norm, even without rates. a

3.4 Adaptive algorithm

In this section, we propose an adaptive algorithm for the efficient simulation of the model problem.
A uniform mesh may be suboptimal for several reasons. For example, we expect to encounter generic
edge singularities of V - m. To explain this, consider the case of soft material with ¢ = 0 and weak
constant applied field |f| < 1. With these restrictions the side-constraint is not active. As observed
by [Drw08], the fact that f is constant means

V(f-z)=f.

Hence, integration by parts implies

/wf-mdx:/wV(f-x)-mdx:/w(f-x)v-mda:—/(f-x)(m-n)da:.

w

Recall the side constraint m - n = 0, then for soft thin films with ¢ = 0 it holds that

cm) = 3|Vl ~ [ (¢20)(V ) do

w

and the Euler-Lagrange equation reads
V(V-m)=fz, (3.48)

which, with the right-hand side f - z, is the weakly singular integral equation associated with the
Laplacian for a screen in 3D. The generic singularities of the solution V - m have been studied, e.g.,
in [ESAES90]. The author of [Drw08] concludes that the generic singular behavior of V - m suggests
an a priori refinement of the mesh towards the edges of the simulation domain w.

This a priori refinement seems to be very efficient in many soft thin-film simulations, even when
the applied field is large and the constraint |m| < 1 is active. However, we treat the minimization
problem (M) as a prototype for a large class of energy functionals. In a more general case, such as
for non-constant f or complicated geometries, an automatic h-refinement strategy that is not based
on a priori knowledge seems to be preferable. Moreover, a refinement towards all edges might lead to
higher computational effort than necessary. Possible additional regularity of V - m is ignored. Finally,
we also treat ¢ > 0. The energy norm includes an L?-component which also must be considered.

In [CPO1] a residual error estimator for the large-body limit is derived. The construction is based on
pointwise KKT-conditions for the discrete penalized problem. The pointwise nature of the equations
is a consequence of the L? setting, i.e. the absence of weak negative order Sobolev norms. It doesn’t
seem possible to use similar ideas to obtain a simple residual based error estimator for our model
problem (M). For the estimation of the error contribution caused by the discretization, we suggest
heuristic error estimation by space enrichment, i.e. the simple h — h/2 strategy.
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Figure 3.2: Red (uniform) refinement of a triangle (top). Uniform refinement of a sample mesh
(bottom).

3.4.1 Error estimation by space enrichment

Let 7y denote some mesh of the simulation domain. We refer to the uniform refinement of 7, by 73,
i.e. 7A2 is obtained by splitting each triangle of 7y into four similar ones, see Figure 3.2. Let m, and
my be the corresponding discrete minimizers for some fixed penalty parameter ¢ > 0. We estimate
the error by

lm§ — my[| ~ @y —m|| =:n;". (3.49)

This strategy is natural and quite popular, e.g., in the context of ordinary differential equations.
Recently, it has been successfully applied to linear elliptic partial differential equations in the context
of finite element [FLOP10] and boundary element methods [FLPO0S].

The analysis of the h — h/2 error estimator is based upon either some best approximation property or
the so-called saturation assumption

lm§ — my|| < Csat|lmf — my|| with ¢-independent Csqe € (0,1). (S)
Theorem 3.26. Under the saturation assumption (S), it holds that
Coppni < lm§ — | < Crgnf’ (3.50)

with the (-independent constants Cepp = (1 + Csqr) and Cre = (1 — Csat)'. The lower bound is
referred to as efficiency and the upper bound as reliability of the error estimator.
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Proof. An application of the triangle inequality and the saturation assumption yield

H ~ A~
e = [lmg —myf] < fjmg — myf| + [jmg — my]|
< (14 Csar) [Jmg — my.

The reliability estimate is obtained by

= myf| < flmg — myf] + @, — m|

< Cuarllm§ — my]| + nf’,

which after reordering the terms yields the statement. |

Remark. Note that the efficiency with Ccry = 1 holds if the approximation property
flmg —my| < Jlmg — myf],
is true. O

Remark. The saturation assumption was proven for some P! finite element method for the
Dirichlet problem with the Laplace operator in [DN02], up to data oscillations. In the context of
boundary element methods it is completely open, which is a drawback for our model problem. The
major difficulty is the treatment of the non-local operator V. We stress, however, that it is observed
empirically for Symm’s integral equation (3.48), cf. [EFLFP09]. O

The estimator nf cannot be used to steer an adaptive mesh-refinement since it includes the non-local

V-norm. Recall that
2 1 o(z)p(y)

which is not straight forwardly written a sum of local contributions. This is different, e.g., for the L?
norm where

D72y = > 16122 -

TeT,

The localization of the H~/2-norm is discussed for certain discrete functions in [Fae02]. We follow
here a different and more easy to implement approach based on a local inverse estimate.

Definition.  We define the local mesh-width functions hy, 0y € L°°(w): The function hy is defined
by

he|lr = diam(T).
The function gy|p is the maximal diameter of an inscribed ball in T', see Figure 3.3. a

Definition. We call a sequence of meshes isotropic if the shape-regularity o(7;) := maxper,{he|7/00|7}
satisfies a uniform bound

supo(Ty) < Cyp < 0.
leN
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h

Figure 3.3: Local mesh-width functions hy and oy.

Proposition 3.27 (|[GHS05, Theorem 3.6]). For any v, € P°(T;) it holds that

oy < G el (3.51)

The constant Ciy, depends on the shape regularity constant o(Ty). In particular one can find an ¢
independent constant Ciy, for an isotropic sequence of meshes.

Corollary 3.28. Let (Ty)een be an isotropic sequence of meshes. Then the local error indicator

(T = |19 - e =),

+ s — mes|7a (3.52)

satisfies the efficiency estimate

()2 = i (T)* < (i)™
TeT,

Remark. We use the local error indicator ,uf to decide which triangles should be refined, i.e. refine

the elements 7' € T; where pull(T) is large. The local contribution va = th/2V - (my — mg)HL2
only gives a lower bound plf, < nff, := ||V - (i, — my)||;, up to some in general unknown constant.
In contrast, the L? component qug = [y —mys|l . =: nng does not rescale the norm. In our

experiments we observe that the contribution ,ufv also gives an upper bound so that it is equivalent
to nfv. However, in all our simulations nfv < va so that the V-norm contribution of the total
error in the energy norm is overestimated. We observed an improvement in the behavior of the mesh-
refinement when we balance the contributions in the following sense: Define the rescaled local error
indicator

~H 2 (nfv)g H 2
IU’K,V( ) :( H 2//’&‘/( )a
,ug,v)

then afl := ((ulh,)? + (,quQ)Q)l/2 satisfies 7 = nff. This provides a proper scaling of the V-norm
and the L2-norm contributions of the total error. O
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Figure 3.4: Green (top) and blue (bottom) refinement rules. In any case the longest edge is split first.

3.4.2 A heuristic adaptive algorithm
The inverse estimate (3.51) requires the use of an isotropic sequence of meshes, i.e. supyeyo(77) <
C, < 0o. The space RT°(T;) requires a regular mesh, i.e. no hanging nodes are allowed.

To ensure these restrictions throughout our adaptive loop, we use the red-green-blue refinement strat-
egy. It is discussed in [Ver96] in detail, and we present the strategy here only briefly.

Adaptive Loop: Input: initial mesh 7y, f, adaptivity parameter § € (0,1), and some tolerance
7. Set £ =0 and do

1. compute uniform refinement ?\Z
2. compute solutions my and my
3. compute error estimator n/’ as well as local indicators ! (T').

4. if nff <7 stop, otherwise find a (minimal) set of marked elements M, C 7T; such that

0 (T2 < Y (1) (3.53)

TeT, TeM,

5. refine (at least) marked elements and construct a new (regular) mesh 7yyq

6. £+— £+ 1 and goto (1)

The red-green-blue refinement strategy specifies how the new mesh 7y;1 is constructed. A marked
element T € My is refined red. All edges are split at their midpoints and four similar triangles
Ti,...,Ty are created, cf. Figure 3.2. In general M; G T; so that hanging nodes would be created.
To avoid this, we mark further edges for refinement in a second step: In each triangle where some
hanging node would be created, we first mark its longest edge and all the edges with hanging nodes
for refinement. Then, the triangles are split either red, green, or blue (cf. Figure 3.4), depending on
how many edges are marked. This recursive marking and the refinement is visualized in Figure 3.5.

The fact that we always split the longest edge ensures that the minimal interior angle a(T) :=
min{<CAB,<ABC,<<BCA} is bounded from below. There exists some /-independent constant C,,
such that

Cy < inf min o(7T).
LeNTET,
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Figure 3.5: Tlustration of red-green-blue refinement: Assume the right central triangle was marked
for refinement. Then all of its edges are marked, hence the triangle is refined red. The hanging node
on the top triangle effects that additionally its longest edge is marked as well. This leads to blue
refinement. The hanging node on the bottom triangle is already on the longest edge. Therefore, it is
refined green.

This in turn ensures that the sequence of generated meshes is isotropic, cf. [Ver96].

Remark.  The marking criterion (3.53) was introduced in [D6r96| to prove convergence for some
P! finite element method for the Poisson equation. Basically, we mark enough elements to dominate
the total error up to some given fraction . In [CKNSO08] it was observed that this marking criterion is
necessary for convergence of the underlying method. If some marking criterion leads to convergence,
then essentially it already implies the Dorfler criterion (3.53) for some 6 € (0,1). O

Remark. The adaptive loop as presented here was proven recently to be convergent for the simplified
case (3.48), cf. [AFLP10]. Convergence is understood there in the sense that the adaptive algorithm
ensures estimator convergence 1, — 0. Hence, under the saturation assumption (S), convergence of
the error ||/m§ — my| — 0 follows. In the work [AFLP10]|, the authors use a different mesh-refinement
strategy, i.e. newest vertex bisection, which is necessary in their convergence proof. However, the
red-green-blue refinement seems more natural and is more popular among the engineering community.
O

We have discussed in depth a strategy for the estimation of the discretization error and the steering
of an adaptive mesh-refinement. All arguments apply to our discretized and penalized model problem
(M) for some fixed penalty parameter € > 0. However, the penalty-scheme introduces itself an error
that has not been taken into account, yet. We stress that according to Lemma 3.9 the sequence of
energies e, (m;") satisfies

1mliﬂumqw—1pﬂéw):o (3.54)

n—o00 6%

for any choice of o € [0,1). This is a consequence of the weak convergence of the sequence. In our
numerical experiment, we observe that (3.54) even holds for the choice of o = 1.

In the works [CP01, Pra03], an h-adaptive algorithm for the penalty-method applied to the large-body
limit in micromagnetics is proposed. There, the authors succeeded to derive reliable a posteriori error
estimates for the error |[m — mj|. However, the error estimator does not reveal the contributions of
the total error stemming from the discretization and from the penalization. From an a priori result of
the kind

lm —m[| < O + &)
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they conclude that in the adaptive algorithm the penalty parameter should be chosen locally as
elr = hg|§i/ A, However, we experienced that this strategy is not optimal in all cases. In all numerical
experiments studied in [CP01, Pra03], singularities of the magnetization m and the potential u appear
only where the constraint is active. In this case it is clear that local refinement of the mesh with
simultaneous local refinement of ¢ leads to good convergence behavior. However, we experienced that,
at least for our thin-film model, it is easy to construct examples where the penalization is active
in a very large region of w, but the solution has singularities only where |m| is small. Numerical
experiments covering this setting are provided in Chapter 5.

Therefore, it is necessary to find some h-independent strategy to steer the local refinement of . In
light of (3.54), and observing that the statement also holds for e = 1 empirically, we propose to refine
e locally, where 1 ||(jmg§ | — 1)+”ig () 18 large. We introduce the error indicator

1
€T2:
e (T) )

% (Jme] = 1) 4 1727 (3.55)

and define

= () pp)'? (3.56)

TeT,

We extend our adaptive algorithm to steer also local e-refinement: Start with some initial penalty
parameter gg|lr = €. In step (3), we additionally compute the estimator nj. In step (4), the stopping
criterion now reads

me=m +nj <T. (3.57)
As error indicator we use the combined quantity
pe(T)? = g (T)? + (1),
Let T' € My be a marked element. Choose some constant Chrefine > 1. If
fif (T)? > Crefinet (T)?, (3.58)
refine the triangle (red). If
15(T)? > Cresinefiy' (T)?, (3.59)

don’t refine the triangle, but set ey41|7 = % Otherwise refine both, the triangle (red) and the local
penalty parameter. In our experiments we use the choice Clefne = 2 throughout.

The proposed algorithm may steer the mesh and penalty parameter in an intelligent manner. It is
not at all clear the error contributions stemming from the discretization and the penalization are
independent. We are estimating these error contributions separately in our algorithm. Therefore, the
algorithm can only perform well if local refinement of € does not increase the local discretization error
and vice versa. The weak convergence result of Corollary 3.12 indicates that we may expect some
uniformity in h and e. Recall that any choice of (hy,e,) — (0,0) provides weak convergence.
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Chapter 4

Implementation

Scientific computing involves several tasks, all of which are necessary to provide contributions to
the understanding of phenomena in scientific problems. This work is concerned with the numerical
solution of quadratic minimization problems involving non-linear constraints and non-local operators.
The model problem (M) describes the behavior of thin-film micromagnetic devices and it serves as a
prototype.

After analyzing the given equations and stating the well-posedness of the model problem, we provided
a general strategy for the numerical solution of quadratic non-linear constrained problems with non-
local norms. Finally, in the present chapter we dedicate ourselves to the not less challenging and
important task of providing an efficient and easy accessible strategy for the implementation of the
proposed method.

Nowadays, high-level programming and scripting languages such as Matlab and python are becom-
ing more and more important even for the implementation of highly complex numerical algorithms.
This increase of usage in the scientific community is driven by several causes: Firstly, the increase in
computer power over the last decades has made high-level languages competitive for many applica-
tions. Secondly, languages such as Matlab decrease the development time when compared to low-level
languages such as C. This is because Matlab provides a very large mathematical library and because
high-level languages usually make the manipulation of simple data structures easy.

However, when it comes to mere power in terms of both, execution time and control over the algorithms,
low-level languages such as C or C++ are still superior and probably will not be deprecated for quite
some time in their field of excellence. There were mainly five reasons that led to the decision to
stick to C++ as the tool of choice for the implementation of our algorithms. First, the author feels
comfortable with the style of C++. From a scientific point of view this might not be a good reason,
however from a practical point of view it is of high relevance since development times for codes are
kept low. Second, good C++ compilers are available on almost all platforms. Third, we are convinced
that object-oriented programming should be the paradigm of choice when it comes to tasks such as
mesh administration. Fourth, C++ is naturally compatible with C, which makes the use of existing
numerical libraries such as HLib comfortable. Finally, C+-+ provides a mighty standard library that
is used extensively in our codes.
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4.1 An object oriented implementation of meshes

We stress that our strategies and codes are not optimized with respect to system resources. Instead,
we aim at providing a general approach that is easily extendable to 3D triangulations and meshes
designed for other purposes. This, however, implies that the codes should be easy to understand and
that the possibilities for the introduction of abstract classes or template arguments are clear from
the data structure. Moreover, in most numerical simulations the mesh administration is neither the
bottleneck with respect to memory consumption nor with respect to computation time.

4.1.1 Geometric base classes

Before introducing the actual base classes, we discuss in short the Property class that will be used
for low-level data structures. The aim is to provide a natural interface to primitive members without
violating the object oriented style of cascading data representation from data access.

Listing 4.1: The Property class

template <class prop_t, class obj_ t,
const prop_ t& (obj t::xget)() const, void (obj_ t::xset)(prop_t ref)>
class Property {
private:
obj_t& instance;
public:

Property (obj t& refInstance) : instance(reflInstance) {}
prop t operator = (const prop_ t& ref) {
(instance.*xset)(ref);
return (instance.xget )();
}
operator prop t const & () const {
return (instance.xget )();
}

bool operator ——(Property<prop t,obj t,get,set>& prop2) const{
prop t myprop — instance.get ();
prop_t hisprop = prop2();
return myprop — hisprop;

s

A class using a Property needs to have a private variable of type prop_t as well as a get-function
of type const prop_t& and a set-function of type void. Besides access to get- and set-functions the
Property also provides an overloaded equality operator.

Now, we introduce Point, Edge, and Triangle classes that represent the basic geometric data for our
simulations.

Listing 4.2: The Point class

class Point{
private:
double m_x;
double m_y;
public:
Point () : m x(0.), m y(0.), x(xthis), y(xthis) {}
Point (const double refX, const double refY)
m x(refX), m y(refY), x(«this), y(xthis) {}
Point (const Point& point) : m x(point.x), m y(point.y),
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x(xthis), y(xthis){}
“Point (){}

const double& getX () const {return m x;}
void setX (double refX) {m x = refX;}
const double& getY () const {return m_y;}
void setY (double refY) {m_y = refY;}

Property<double, Point , & Point :: getX ,& Point :: set X > x;
Property <double , Point ,&Point :: getY ,&Point :: setY > y;

const Point& operator=(const Point& point);
const Point& operator+=(const Point& point);
const Point& operator——=(const Point& point)
const Point& operatorx—=(double scalar);
const Point& operator /=(double scalar );

)

b
typedef Point Vector2D;

bool operator==(const Point& pointl, const Point& point2);
bool operator!=(const Point& pointl, const Point& point2);

bool operator <(const Point& pointl, const Point& point2);
bool operator>(const Point& pointl, const Point& point2);
bool operator<=(const Point& pointl, const Point& point2);
bool operator>=(const Point& pointl, const Point& point2)

)

const Point& point);

const Point& pointl, const Point& point2);
const Point& pointl, const Point& point2);
const Point& point, double scalar);

const Point& point, double scalar);

double scalar , const Point& point);

const Point operator—
const Point operator-+
const Point operator—
const Point operator x
const Point operator/
const Point operator x

NN AN~~~

double operator x(const Vector2D& vl, const Vector2D& v2);
const Vector2D operator!(const Vector2D& vector);
double norm(const Vector2D& vector);//euclidian norm

The Point class basically consists of two coordinates that may be accessed as Properties. Be-
sides the usual member functions such as constructors, the Point class also provides a large set of
operators. Equality == and inequality != are interpreted up to rounding error tolerance. The order-
ing operators <,<=,>,>= represent lexicographical ordering, i.e. A<B holds true if either A.x<B.x or
(A.x==B.x && A.y<B.y), where the identity here, again, is meant up to rounding errors.

Finally, since two-dimensional vectors and points in the Cartesian plane may be identified, we introduce
a typedef Vector2D and provide the scalar product as well as computation of Fuclidian norm and
counter clockwise rotation via the operator !.

Listing 4.3: The Edge class

class Edge{
private:
Point m_A;
Point m_B;
public:
Edge(const Point& refA, const Point& refB)
m A(refA), m B(refB), A(xthis), B(xthis) {}
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Edge(const double AX, const double AY,const double BX,const double BY):
m_A(Point (AX, AY)), m B(Point(BX, BY)), A(xthis), B(xthis){}

Edge(const double AX, const double AY, const Point& refB) :

m_A(Point (AX, AY)), m B(refB), A(xthis), B(xthis){}

Point& A, const double BX, const double BY):

m A(A), m B(Point(BX, BY)), A(xthis), B(xthis){}

Edge(const Edge& edge) : m A(edge.A), m B(edge.B), A(xthis), B(xthis){}

Edge(const
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“Edge(){}

const Point& getA () const {return m A;}
void setA (Point refA) {m A = refA;}
const Point& getB() const {return m B;}
void setB(Point refB) {m B = refB;}

Property<Point ,Edge,&Edge :: getA ,&Edge : : setA> A;
Property <Point ,Edge,&Edge :: getB,&Edge : : setB> B;

const Edge& operator=(const Edge& edge);

double Length() const;

}s

bool operator——(const Edge& edgel, const Edge& edge2);
bool operator!=(const Edge& edgel, const Edge& edge2);
bool operator <(const Edge& edgel, const Edge& edge2);
bool operator >(const Edge& edgel, const Edge& edge2);
bool operator<=(const Edge& edgel, const Edge& edge2);
bool operator>=(const Edge& edgel, const Edge& edge2);
Edge operator —(const Edge& edge);

Vector2D NormalVector (const Edge& edge);

bool AreParallel(const Edge& edgel, const Edge& edge2);
bool Dolntersect(const Edge& edgel, const Edge& edge2);

© 0 N Ut R W N

Edges consist of two Point objects that may be accessed as Properties. The Length () method returns
the Euclidean length of the Edge. All operators, as in the case of the Point class, are interpreted up
to rounding errors. The ordering operators again represent lexicographical ordering. All operators
ignore the orientation of the Edge, i.e. Edge(A,B) == Edge(B,A) holds true. The auxiliary functions
are quite self explanatory.

Finally, the Triangle class provides the data structure for the representation of a triangle in the plane.
It consists of three Points and provides a get-method that returns its Edges that, however, are not
stored explicitly. The equality operator, as in the case of Edges, is independent of the orientation and
interpreted up to rounding errors.

Listing 4.4: The Triangle class

class Triangle{

private:
Point m A;
Point m B;
Point m C;

public:
Triangle (const Point& refA, const Point& refB, const Point& refC)

m A(refA), m B(refB), m C(refC), A(xthis), B(xthis), C(xthis){}

Triangle (const Triangle& triangle) :
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Figure 4.1: In a Mesh object, all triangles, edges and vertices are stored in a 1ist container. Consider
two triangles stored as MeshTriangle objects. If they share an edge, the geometric relation between
them is provided with the help of containers of MeshEdge*, of which one is set to store the address of
the global MeshEdge object (red). Also pointers to the global MeshPoint objects (green) are stored in
the MeshTriangle objects.

m A(triangle.A), m B(triangle.B), m C(triangle.C),
A(xthis), B(xthis), C(xthis) {}

“Triangle (){}

const Point& getA () const {return m A;}
void setA (Point refA) {m A = refA;}
const Point& getB() const {return m B;}
void setB(Point refB) {m B = refB;}
const Point& getC () const {return m C;}
void setC(Point refC) {m C = refC;}

Property<Point , Triangle ,& Triangle :: getA & Triangle :: setA> A;
Property<Point , Triangle ,& Triangle :: getB , & Triangle :: setB> B;
Property<Point , Triangle ,& Triangle :: getC , & Triangle :: setC> C;

const Triangle& operator=(const Triangle& triangle);
void operator—=(const Point& point);

const vector<Edge> Edges() const;
double Area() const;

}s

bool operator==(const Triangle& trianglel , const Triangle& triangle2);

4.1.2 The Mesh class

In a mesh, the geometric objects need to be related to each other somehow. To serve this purpose
efficiently, we introduce derived classes MeshPoint, MeshEdge, and MeshTriangle. They simply extend
the base classes, by adding containers of pointers to other related geometric objects. Additionally,
each of these classes adopts the Mesh class as a friend, allowing private data access. The mutable
data m_copy is used in the adaptive refinement of the mesh. It allows for efficient recalculation of the
geometric relations.

Listing 4.5: The MeshPoint MeshEdge and MeshTriangle classes
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1 class MeshPoint : public Point

2 {

3 private:

4 list <MeshTrianglex> triangles;

5 list <MeshEdgex> edges;

6

7 friend class Mesh;

8 mutable MeshPoint* m_copy;

9 public:

10 MeshPoint ();

11 MeshPoint (const Point& p);

12 MeshPoint (const MeshPoint& p);

13

14 const MeshPoint& operator=(const MeshPoint& point);

15

16 list <MeshTrianglex> MeshTriangles() const{return triangles;}
17 list <MeshEdge*> MeshEdges() const{return edges;}

18 void setEdges(list <MeshEdgex> e){edges = e;}

19 void setTriangles (list <MeshTrianglex> t){triangles = t;}

20 };
21

22 class MeshEdge : public Edge
23 {

24 private:

25 bool marked;

26 list <MeshTrianglex> triangles;

27 list <MeshPoint*> points;

28

29 friend class Mesh;

30 friend class POSpace;

31 friend class RTO0Space;

32 mutable MeshEdges m_copy;

33

34 list <MeshEdge+x> m _sons;

35 public:

36 MeshEdge (const Edge& e);

37 MeshEdge(const MeshEdge& e);

38

39 const MeshEdge& operator=(const MeshEdge& edge);

40

41 void Mark(){marked = true;}

42 void Unmark(){marked = false;}

43 bool IsMarked () const{return marked;}

44 list <MeshTriangle*> MeshTriangles() const{return triangles;}
45 list <MeshPoint*> MeshPoints () const{return points;}
46 void setPoints(list <MeshPoint*> p){points = p;}

a7 void setTriangles (list <MeshTrianglex> t){triangles = t;}
a8 };

49

50 class MeshTriangle : public Triangle

51 {

52 private:

53 list <MeshPointx> points;

54 list <MeshEdgex> edges;

55

56 friend class Mesh;

57 mutable MeshTrianglex m_copy;

58 public:

59 MeshTriangle (const Triangle& t);

60 MeshTriangle (const MeshTriangle& t);
61
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const MeshTriangle& operator=(const MeshTriangle& triangle);

list <MeshEdge«> MeshEdges() const{return edges;}
list <MeshPoint*> MeshPoints () const{return points;}
void setPoints(list <MeshPoint*> p){points = p;}
void setEdges(list <MeshEdgex> e){edges = e;}

double MeshWidth () const;
b

A Mesh is in general nothing but a set of MeshTriangle objects. However in finite element applications
it proves useful to have explicit access to vertices and edges as well. This is because degrees of freedom
are often associated, e.g., with vertices instead of elements. The private data of the mesh, therefore,
has three containers. One for global MeshPoint objects, one for global MeshEdge objects, and one for
the MeshTriangle objects. With global we mean here that actually each MeshTriangle object has its
own set of private Points. In particular MeshTriangle objects that represent neighboring triangles
might share a point in the plane, cf. Figure 4.1. In this case the point is stored twice in the local data
of the MeshTriangle objects, and additionally once as global vertex of the mesh, i.e. a MeshPoint
object. As the container class for storing the global data we chose the std::1ist<T>, which is a
double linked list. Unfortunately, the C++ standard does not guarantee that the elements of a list
container may not change their location in memory. However, the standard does guarantee constant
time for inserting elements and there is no actual reason for elements to really change their location in
memory. In all of our tests, we observed that pointers to elements of a 1ist stay valid even for large
and dynamically growing container, at least when compiled with the popular g++ on various Linux
platforms.

In order to provide the geometric information as to which global edges correspond to which global
vertices and triangles, we implement interface functions such as the Triangles0fVertex method. Note
that the access to the global geometric objects is granted by providing iterators to the first and the
last element of the container.

Listing 4.6: The Mesh class

class Mesh
{
protected:
list <MeshPoint> vertices;
list <MeshTriangle> triangles;
list <MeshEdge> edges;
void deep_ copy(const Mesh&);
public:
Mesh () {};

Mesh(string coordinatesFilename , string elementsFilename );
Mesh (const Mesh& mesh);

const Mesh& operator=(const Mesh&);

list <MeshPoint >::iterator VerticesBegin ()
{return vertices.begin();};

list <MeshPoint >::iterator VerticesEnd ()
{return vertices.end();};

list <MeshEdge >::iterator EdgesBegin ()
{return edges.begin();};

list <MeshEdge >::iterator EdgesEnd()
{return edges.end();};

list <MeshTriangle >::iterator TrianglesBegin ()
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{return triangles.begin();};
list <MeshTriangle >::iterator TrianglesEnd ()

{return triangles.end();};
list <MeshPoint >::const iterator VerticesBegin() const
{return vertices.begin();};
list <MeshPoint >::const iterator VerticesEnd () const
{return vertices.end();};
list <MeshEdge >::const iterator EdgesBegin() const
{return edges.begin();};
list <MeshEdge >::const _iterator EdgesEnd() const
{return edges.end();};
list <MeshTriangle >::const iterator TrianglesBegin () const
{return triangles.begin();};
list <MeshTriangle >::const iterator TrianglesEnd() const
{return triangles.end();};
long NrOfTriangles () const {return triangles.size ();};
long NrOfEdges() const {return edges.size ();};
long NrOfVertices() const {return vertices.size ();};
list <const MeshTrianglex> TrianglesOfVertex (const MeshPoint&) const;
list <const MeshTrianglex> TrianglesOfEdge (const MeshEdge&) const;
list <const MeshEdge«> EdgesOfVertex(const MeshPoint&) const;
list <const MeshEdgex> EdgesOfTriangle (const MeshTriangle&) const;
list <const MeshPoint*> VerticesOfTriangle (const MeshTriangle&) const;
list <const MeshPoint*> VerticesOfTEdge (const MeshEdge&) const;
void Mark(MeshEdge&);
void Mark(MeshPoint &);
void Mark(MeshTriangle &);
void Refine (bool uniform = false);
void ExportToMatlabFormat(string coordinatesFilename ,
string edgesFilename,
string elementsFilename) const;
void PlotPS(string filename);
b
Since the plots for visualization of our numerical results are done in Matlab, we provide an interface

to the usual matrix and index based mesh-format in Matlab. Here, the vertices of the mesh are stored
2-matrix of their coordinates, where V' denotes the number of vertices. The triangles are
a T x 3 matrix, where T" denotes the number of triangles. Each row of the matrix consist
of three integer values denoting the vertices (indexed starting with 1) specified in the vertices-matrix.
This data is sufficient to describe the geometry of a mesh. Therefore the constructor expects two
ASCII-files with data in this format. For a simple mesh as depicted in Figure 4.2, the corresponding

inaV x
stored in

* dat files read

vertices
-0.5 -0.
0.5 -0.5
0.5 0.5
-0.5 0.5
0.0 0.0

.dat
5
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0.5 7

0.4 7

0.3 7

021 q
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-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 4.2: A simple mesh with 5 vertices, 4 triangles, and 8 edges.

and

triangles.dat
125

235
345
415

The basis functions of the Raviart-Thomas space RT%(T) are linked geometrically to the interior edges
of the underlying mesh. We therefore provide moreover an F x 4-matrix with F the number of edges.
Each row contains the following information: The first two entries are the indices of the vertices that
are the endpoints of the edge. The third integer is the index of the triangle T'y. The fourth integer
is either zero if the edge is a boundary edge or the index of the triangle T adjacent to the edge. For
the simple mesh of Figure 4.2 the corresponding *.dat file could read

edges.dat
2

B W W N O N
= o oW O,

B W w NN e
O O WO+ N O

We stress that the edge-matrix is not uniquely determined and fixes the orientation for the basis
functions of RT(T) by setting T, and T_ for each interior edge. Since this orientation is arbitrary,
the ExportToMatlabFormat routine also stores an edge.dat file.

The adaptive (or uniform) refinement is performed on an edge based logic. First, the user may
Mark edge, triangles, or vertices. In principle we always mark MeshEdge objects for refinement. The
Mark (MeshEdge&) method, recursively ensures that for each triangle where an edge is marked, also the
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longest edge of the triangle is marked. The Mark(MeshPoint&) and Mark(MeshTriangle&) methods
simply call the Mark(MeshEdge&) version for all edges corresponding to the point or the triangle.
Finally the Refine() method performs the adaptive mesh-refinement following the red-green-blue
strategy as described in Section 3.4.2.

4.2 Finite element spaces

A finite element space is a set of discrete functions. Usually the basis functions are associated with
some geometric entity of a mesh. In this spirit, our implementation first provides classes to define basis
functions. Then the finite element space is derived from the mesh class and extended by operations
with basis functions. Since we only focus on lowest-order methods, we only need an implementation for
the discrete spaces P°(T) and RT°(T). In principle the concept of basis functions is extendable and
can be generalized with the help of templates easily. However, since we aim at a specific application,
we only present concrete implementations for our experiments.

4.2.1 Basis functions

A basis function expects upon creation a reference to a Mesh object as well as an index and some
information on its geometric link to the mesh. Other than providing the support of itself and its
index, the basis function and its derivative may be evaluated. Both evaluation methods expect a
Point object that represents a point on the reference triangle Tyer = conv{(0,0),(1,0),(0,1)} as well
as the reference to an existing MeshTriangle object. Note that in contrast to the geometric elements
of a Mesh, the basis functions are indexed (starting with index 0 as usual in C-++).

Listing 4.7: PO basis function

class POElement {
private:
long m_index;
const MeshTrianglex m _triangle;

public:
POElement(long index, const MeshTriangle& geometry,const Mesh& mesh);
“POElement (){};
const POElement& operator= (const P0OElement& element );

long Index() const {return m _index;}
void Index(long index) {m_index = index;}

list <const MeshTrianglex> Support() const;
const MeshTriangle& GeometricHook() const {return *xm triangle;};

double Evaluate(const Point& refP , const MeshTriangle& triangle) const;
Vector2D EvaluateDiff (const Point& refP , const MeshTriangle& triangle)
const {return Vector2D (0.,0.);}

Listing 4.8: RTO0 basis function

class RTOElement {
private:
long m_index;
const MeshEdgex m_edge;
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const MeshTrianglex m_TPlus;
const MeshTrianglex m_ TMinus;
public:

RTOElement (long index, const MeshEdge& geometry,const Mesh& mesh);

“RTOElement () {};

const RTOElement& operator= (const RTOElement& element );

long Index() const {return m _index;}

void Index(long index) {m index — index;}

list <const MeshTrianglex> Support() const;

const MeshEdge& GeometricHook() const {return sm_edge;};

Vector2D Evaluate (const Point& refP , const MeshTriangle& triangle)
const;

double EvaluateDiff (const Point& refP , const MeshTriangle& triangle)
const;

b

4.2.2 Finite element spaces

In contrast to the private data of the Mesh class, the basis-functions of a finite element space are
stored in a std::vector<T> container. This has the advantage that basis functions can be accessed
by their index in constant time. Moreover, sometimes it is useful to access basis functions by their
geometric link. To that end the parentheses-operator provides read access. Finally, given some C-
vector of coefficients, i.e. a doublex*, the corresponding finite element function and its derivative
may be evaluated. In principle one could export the underlying mesh and the coefficient vector for
plotting in Matlab. However, evaluation of the finite element function is a lot faster in C++ than in a
Matlab environment. Therefore the ExportFunctionToMatlab method also exports the function and
its derivative evaluated at the center of mass of each triangle. Note that this export routine is slow,
due to the massive number of evaluations and the file manipulations necessary for large spaces.

Listing 4.9: Finite element space P°

class P0OSpace : public Mesh {
private:
vector <POElement> m _basis;
static bool m_compare(const pair<const MeshTrianglex, long>& left ,
const pair<const MeshTrianglex, long>& right)
{return left.first < right.first;}
vector<pair<const MeshTriangle*, long> > geometry2basis;

public:
P0Space (){};
POSpace(string coordinatesFilename , string elementsFilename );
P0OSpace (Mesh& mesh);

long NumberOfElements () const {return m_basis.size ();};

const POElement& operator [|(long index) const{return m_basis[index];};
const POElement& operator ()(const MeshTriangle& geometricHook) const;

double Evaluate(const Point& refP , const MeshTriangle& T, doublex x)
Vector2D EvaluateDiff (const Point& refP ,const MeshTriangle& T,doublexx)

const;
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83 };

RefinementData* Refine (bool uniform = false);

void ExportFunctionToMatlab (string coordinatesFilename ,
string edgesFilename,
string elementsFilename,
string PO0CoeffFilename ,
string POEvalFilename,
string POEvalDiffFilename, doublex x);

void buildBasisFunctions ();

Listing 4.10: Finite element space RT"

class RTOSpace : public Mesh {

private:

vector <RTOElement> m _basis;
vector <POElement> m diffbasis;

static bool m_compare(const pair<const MeshEdgex, long>& lhs
const pair<const MeshEdgex, long>& rhs)
{return lhs.first < rhs.first;}

static bool m _diffcompare(const pair<const MeshTriangle*, long>& lhs
const pair<const MeshTriangle*, long>& rhs)
{return lhs.first < rhs.first;}
vector<pair<const MeshEdge*, long> > geometry2basis;
vector<pair<const MeshTrianglex, long> > geometry2diffbasis;

public:

RTO0Space
RTO0Space
RTO0Space
RTOSpace

)}

string coordinatesFilename , string elementsFilename );
const Mesh& mesh);
const RT0Space& space);

o~~~

long NumberOfElements () const {return m _basis.size ();};

const RTOElement& operator
const RTOElement& operator
const POElement& operator (

[](long index) const{return m _basis[index];};

() (const MeshEdge& geometricHook) const;

) (const MeshTriangle& geometricDiffHook)
const;

Vector2D Evaluate(const Point& refP , const MeshTriangle& T, doublex mH)
const;
double EvaluateDiff (const Point& refP ,const MeshTriangle& T,doublexmH)
const;

RefinementData* Refine (bool uniform — false);

void ExportFunctionToMatlab (string coordinatesFilename ,
string edgesFilename,
string elementsFilename,
string mHCoeffFilename ,
string mHEvalFilename ,
string mHEvalDiffFilename ,
doublex mH);

void buildBasisFunctions ();
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The basis functions of the space need to be evaluated often. In many cases, however, we iterate in our
algorithms naturally over the triangles of the mesh. This is, e.g., the case in the computation of error
estimators. With the method EdgesOfTriangle, we first seek the corresponding global MeshEdges.
Then the operator () provides access to the basis functions associated with these edges. We therefore
need fast access (O(log V)) via the geometric hook. The naive approach to implementing this access
would be the use of a std: :map<MeshEdge*,long> container associating each MeshEdge with the index
of a basis function. However, we found that this solution is not very efficient. This is because the in-
sertion of pairs into the map container is very expensive. This effects that the buildBasisFunctions()
routine shows quadratic runtime behavior.

We avoided this problem by simply using a std::vector<pair<MeshEdge*, long> > instead. In
buildBasisFunctions, we first fill the container before finally sorting it. The operator (), then, uses
the lower_bound function from the <alghorithm> library to find the correct pair. The lower_bound
function implements a bisection search algorithm, such that in the end the access to basis function
has an overall cost of O(log N) as desired.

Listing 4.11: Efficient implementation of link between basis functions and geometry

void RTOSpace:: buildBasisFunctions(){

long index = 0;

m_basis. clear ();

m_basis. reserve (NrOfEdges());

geometry2basis. clear ();

geometry2basis.reserve (NrOfEdges());

for (list <MeshEdge >::const _iterator it — EdgesBegin();it != EdgesEnd();

+it){
if (TrianglesOfEdge (xit).size() — 2) {//this is an interior edge
m_basis.push back (RTOElement(index, *it, sthis));
geometry2basis.push back(pair<const
MeshEdgex*,long>(&(xit ) ,index ++));

}

}

sort (geometry2basis.begin(), geometry2basis.end(), m_compare);

index = 0;

m _diffbasis. clear ();

m _diffbasis.reserve (NrOfTriangles ());

geometry2diffbasis.clear ();

geometry2diffbasis.reserve (NrOfTriangles ());

for(list <MeshTriangle >::const iterator it — TrianglesBegin ();it !=

TrianglesEnd (); ++it){
m _diffbasis.push back(POElement(index, *it, xthis));
geometry2diffbasis.push back(pair<const MeshTriangle x,
long > (&(xit ) ,index++));
}
sort (geometry2diffbasis.begin(), geometry2diffbasis.end(), m _diffcompare);
}

const RTOElement& RTO0Space:: operator ()(const MeshEdge& geometricHook) const{
vector<pair<const MeshEdge*, long> >::const_ iterator findIt =
lower bound(geometry2basis.begin(), geometry2basis.end(),
pair<const MeshEdgex, long>(&geometricHook,0) ,m compare);

const RTOElement*x element = 0;
if (findIt != geometry2basis.end())
element = &m_basis[findIt —>second|;
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return xelement;

For the implementation of our h — h/2 based error estimators, we need to provide some information
on how to map functions over a coarser mesh onto some refinement of the mesh, and vice versa. To
that end, the refinement procedure of a finite element space provides a (sparse) matrix that represents
the prolongation operator. Let m;, € RT°(7;) and assume 75 is some refinement of 7;. Then it holds
that my, € RT°(T3) as well. Let x be the coefficient vector of my, with respect to the coarse mesh 7.
Then, the prolongation operator P is defined by

my, = Y (Px)pyp

Eegw,Q

with &, o the set of interior edges of the finer mesh 75 and ¢ g the associated basis function as defined
in (3.1). This means that the prolongation matrix maps the coefficient vector of a function over the
coarse mesh to the vector of coefficients that represent the same function over the finer mesh.

Listing 4.12: Data sturcture for the prolongation operators

typedef struct _RefinementData {
sparsematrix* Prolongation ;
sparsematrix* ProlongationDiff ;
} RefinementData ;

Recall the definition of the basis function ¥ g associated with some interior edge F € &,,

(4.1)

y i%(w—ﬂ:), forx € T4
E pu—
0, elsewhere.

The basis function is normalized in the sense that g - n = 1 with n the unit normal vector pointing
to T'y. Hence, the coefficient determines the normal flux through the edge. The prolongation matrix
may be thus computed in the following way:

e Each MeshEdge F; that is refined into two new MeshEdge objects E;, and £, effects two entries
with value 1 that map the coefficient x; to the new coefficients x;, = x;, = x;.

e Let F; be an interior edge that is newly generated by the mesh refinement. Then, there is a
uniquely determined triangle 7" of the original mesh, such that E; C T'. For each interior edge
FE of T, we generate a matrix entry by computing g - n with n the normal vector at the new
edge E;. The only challenging practical aspect is to ensure the correct orientation of n.

4.3 A damped Newton algorithm

After discretizing the penalized model problem, we need to solve the minimization problem (M), i.e.
equivalently the Euler-Lagrange equation (3.38). We apply Newton’s algorithm to find the root of the
derivative De.(mj). Note that this derivative of the penalized energy functional is not continuously
differentiable due to the penalty energy. Hence no classical result on convergence of Newton’s algorithm
may be applied.

Let T denote some regular triangulation with #&, =: Np interior edges and recall the space of
Raviart-Thomas functions RT%(7) defined in Chapter 3.1. Given some coefficient vector x € RV? the
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discrete Euler-Lagrange equation reads

Np Np

Np
1
(V> %, Vewn)v + a0 xithio, Wha) 2 — (f, W) 2 + ~(Ah > xiti, wy) =0
i=1 i=1 1=1

for all w, € RT?(T). Obviously this equations holds for all w;, € RT?(T) if and only if it holds
for all basis functions (wl)i\; D of RT?(T). Hence we seek to find the root of the discrete function
F :RNp — RND defined through

Fx); = (V-mj(x), V- 4j)v + q(mj (), ¥j2) 12 + %( nmy, (%), 95) 2 = (f 45) 2 (4.2)
The notation mj (x) indicates that the discrete magnetization depends on the given coefficient vector.
Newton’s algorithm:
Let x(©) € R¥P denote some initial value and set £ = 0.
(i) Evaluate F(x¥) and compute the derivative DF®).
(ii) Compute the Newton update § € RV? by solving the linear system DF)§ = —F(x().
(iii) Define x(*+1) .= x(0 4§
)

(iv) Either stop or £ — ¢+ 1 and goto (i)

Output: An approximation x to some root of the function F'.

One crucial step is the computation of the derivative of the function F. In equation (4.2), the deriva-
tive of the first two scalar products can be computed easily. The fourth contribution vanishes, since
it is just a constant. The third term, however, is a bit more involved.

We aim at computing the derivative of (A\j mj (x), ;) 2. Recall that this is not a differentiable function.
The derivative of Aj is not defined classically at the points where |mj(x)| = 1. However, since the
scalar product is computed by use of numerical quadrature, this precise condition is not expected to
be encountered numerically at any quadrature point. We therefore proceed to compute the derivative
for [mj (x)| < 1 (which vanishes trivially) and for |mj (x)| > 1.

Lemma 4.1. The derivative DFny, € RNPXND of the function Fyp, : RND — RND defined through

(Imj, ()| =Dy .

X = (9(x),905)2  with g(x) := [ (9] mj (x)
reads
9g9(x)
(DFNL)(%)i; = ( O, )2
At some point x € w the derivative of g either reads 889—)(:)(1') =0 for |mj (x)(z)| <1 or
1 my, _my my,
9g(x) (@) = i — | P TmiP miE ) Ly
ox; v omy My, 1 My, v
|my, [3 lmg[  [mg[3

if I () ()] > 1.
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Proof. The first statement (DFyp)(x)i; = (ag)(::),@bj)Lz is obvious. Also since g(x)(z) = 0 for all
xr € w with |mj (x)(z)| < 1 and mj € C*°(T), i.e. piecewise smooth, the derivative of g vanishes at
all such points. (Note that the set w. := {z € w||mj (x)(x)| < 1} is open).

We therefore aim at computing the derivative of g at points € w with |mj(x)(z)| > 1. For each
such point there is a neighborhood where ¢ simply adopts the form

_ mi(x)[ -1

9(x) = mj, (x).

|mj, (x)]

Hence the derivative reads

99x), v 0 [ . mj, (x)
o o) = g (9~ oy )
Since argi(,x) = 1; and from the chain rule Bixi =3 21 = 88%? we obtain
Og(x) 0 mi(x)
o T G o]

The derivative Lgm—zl can be computed straight forwardly. First we define
omj, \mh\

_ my  [(mj 1 ((mf, 1)? + (m272)2)*1/2
me,Q((m}i 1)2 + (mj, 2)2)_1/2

) )

ofy 1 mj,
omg;, ;  |mj|  |mj3
oh _ 0fr _ _m}ivlmi,z
Omj, ,  Omj, [mj, 2
of 1 my,
Omij ,  [mi|  mi P
Collecting all terms finally concludes the proof. |

Remark. The derivative of g(x) is not defined at points where |[m(z)| = 1. Numerically, we do not
expect to encounter this situation. In our implementation, points where |m(z)| = 1 are treated in the
same way as points where |m(z)| < 1. O

In our simulation runs, we found that the Newton algorithm did not converge in all cases. It is well
known, see e.g. [SB02], that the Newton algorithm is only guaranteed to converge for sufficiently
smooth functions if the initial value chosen is sufficiently close to some root. For smooth function
the following modified algorithm, often referred to as relaxed Newton algorithm or damped New-
ton method, can be proven to converge globally. However this is at the cost of decreased order of
convergence.

Damped Newton algorithm:
Let x(9 € RVD denote some initial value and set £ = 0.

(i) Evaluate F(x¥) and compute the derivative DF®).
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| Point | z | y | Weight |
0 ] 0.166666666666667 | 0.166666666666667 | 0.333333333333333
1 | 0.166666666666667 | 0.666666666666667 | 0.333333333333333
2 | 0.666666666666667 | 0.166666666666667 | 0.333333333333333

Table 4.1: A 3 point Gauss quadrature rule on the reference triangle Tyer = conv{(0, 0), (1,0), (0,1)}.

(ii) Compute the search direction § € RN? by solving the linear system DF(®)§ = —F(x(¥),
(iii) Find minimal k such that |F(x) + 0.5%6)| < |F(x()|

(iv) Define x(“*1) .= x() 4+ 0.5%§

(v) Either stop or £ — ¢+ 1 and goto (i)

Output: An approximation x to some root of the function F'.

Note the modification in step (iii) to ensure a reduction of the residual in each step. As a stop-
ping criterion we simply check |F(x)| < le — 8 which seems to be sufficient in our simulations. More
sophisticated stopping criteria that, e.g., also deal with the possibility of not being able to find a root
up to rounding errors could be chosen. This, however, was, as mentioned before, not necessary in any
of our simulation runs. That is why we stick to the simpler criterion.

Let 7 be some given mesh with triangles 77,...,Tn, and Np = #&,, interior edges. Let XT; denote
the characteristic function of a triangle 7. Note that {xr,..., X7y, } is a basis of the space PUT)
of piecewise constant functions over the mesh. Then, we define the system matrices

V e RVt v, L= (x1;, VXT,) 125

Q c RNDXND QZ,] = (¢j72,7pi,2)L25 (43)

We define the vectors b; := (f,4;) 2 and a;(x) := <%]mi(x)],%). Finally the evaluation
h
of the function F'(x) reads
F(x) =D'VDx + ¢Qx + a(x) — b.
The derivative matrix DF reads

DF(x) = D'VD + ¢Q + DFnL(x).

4.3.1 Quadrature rules

We use two different sets of quadrature rules on triangles. First, we use Gauss quadrature rules with
3 and 7 quadrature points which can be found e.g. in [Str71], see also Figure 4.3. The 3 point formula
(see Table 4.1) is of order 2 and serves for the computation of the system matrix Q. Note that since
each basis function ); is piecewise linear, i.e. the product ; 21; 2 is an elementwise quadratic function
and is integrated exactly by this rule. The 7 point Gauss rule (see Table 4.2) is used in the computation
of the entries for the simple-layer matrix V. To compute V; ; we must integrate

1 1
—/ / —— dy dx.
4 7 JT; |z — |
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Figure 4.3: 3 point (left) and 7 point (right) Gauss quadrature rules on the reference triangle.

| Point | z | y | Weight |

0

O U = W N =

0.101286507323456
0.797426985353087
0.101286507323456
0.470142064105115
0.470142064105115
0.059715871789770
0.333333333333333

0.101286507323456
0.101286507323456
0.797426985353087
0.059715871789770
0.470142064105115
0.470142064105115
0.333333333333333

0.125939180544827
0.125939180544827
0.125939180544827
0.132394152788506
0.132394152788506
0.132394152788506
0.225000000000000

Table 4.2: A 7 point Gauss quadrature rule on the reference triangle Tyer = conv{(0, 0), (1,0), (0,1)}.

We do so by replacing the outer integration with the 7 point Gauss rule and computing for each
quadrature point the inner integral analytically. The formulae for the analytical computation of the
inner integral can be found in [Hac95].

We stress that in the so-called near field, i.e.
min{diam7}, diamT;} > ndist(7},T;)

with some suitable constant n > 0, we are not aware of any error analysis for the introduced quadrature
error. In contrast, in the far field, i.e. for

min{diam7j, diamT;} < ndist(7},7;), (4.4)
the quadrature error is known to decay exponentially with the order of integration, cf. [Hac09]. Finally,
we want to remark that in our experiments we observe that, at least for the error level we are interested

in, this quadrature strategy is sufficient in the sense that the quadrature error does not contribute
significantly.

The second quadrature rule we use in our implementation is a Newton-Cotes formula from [Sil70].
To be precise, we use the 10 point rule specified in Table 4.3, see also Figure 4.4. Whereas Gauss
rules are known to be a very good choice when dealing with smooth functions, the terms associated
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(4 © ©

Figure 4.4: 10 point Newton-Cotes quadrature rule on the reference triangle.

| Point | z| y| Weight |
0 1 0 | 0.0333333333333333
1 0 0 | 0.0333333333333333
2 0 1 | 0.0333333333333333
3 12/3]1/3 0.075
4 |1/3 0 0.075
5 012/3 0.075
6 1/3]2/3 0.075
7 01(1/3 0.075
8 |2/3 0 0.075
9 1/311/3 0.45

Table 4.3: A 10 point Newton-Cotes quadrature rule on the reference triangle Ty =
COnV{(0,0),(l,O),(O,l)}.

with the penalty energy involve the quadrature of the non-smooth function (Jmy|— 1)4. Since the
Raviart-Thomas functions my, are piecewise linear, their maximal length is always attained at a corner
point of the triangle. In our experiments we found that the Gauss quadrature rules are therefore not
the best choice for the computation of the non-linear term Fy or of its derivative. Some elements
that should be penalized are ignored by the Gauss rule because of |my| < 1 at all Gauss points. In
contrast, the Newton-Cotes formula seems to be accurate enough in the sense that quadrature errors
don’t seem to contribute significantly to the overall error.

4.3.2 Sparse matrix representation and HLib

All of the system matrices defined in (4.3) allow for a sparse data representation. In the case of
D,DFny, and Q this is done straight forwardly by storing the matrices in a sparse compressed
column format. In our software we use the implementation provided by the HLib library. The library
does not only provide a data structure for the storage of sparse matrices but also functions for the
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efficient computation of matrix vector products.

The most challenging one of the system matrices is the matrix V associated with the simple-layer

potential. Recall
1 1
Vij = —/ / dydx
47 T JT; |z — |

and observe that the matrix is fully populated. This is a problem that arises in most calculations
involving non-local boundary integral operators and it has been treated by the scientific community
working on boundary element methods in several ways. Most of the methods are based on the obser-
vation that whereas the kernel function

1
|z — y|

has a singularity at the diagonal x = y, it is C* for = # y. This allows for efficient approximation of
submatrices Vz,7 with Z and J subsets of indices such that dist(U;cz T3 U, c 7 Tj) sufficiently large.

K(xay) =

Definition. A subset Z x J of {1,...,n} x {1,...,n} is called admissible, if for given n > 0

min{diam U T;,diam U T;} < ndist(U T;, U Tj).
€1 JjeT €T JET
O

For the sparse data representation of V, we use the supermatrix data structure provided by the HLib
library. The HLib package was developed at the Max-Planck-Institute for Mathematics in the Sciences
and is available at www.hlib.org free for academic purposes. It is based on the implementation of H-
matrix arithemtics of the dissertation [Gra0l|. The supermatrix structure implements the storage of
hierarchical matrices [Hac99]. The idea is to store inadmissible blocks of V as full matrix, but use
a low rank approximation for the storage of admissible blocks of V. Figure 4.5 shows the typical
structure of a hierarchical matrix. The inadmissible blocks are colored in red, admissible blocks are
colored green. Instead of storing an admissible block V47 elementwise, an approximation of the
form

VIX‘:]%UVT

with U € R#¥2*k and V € R¥*#7 where k < min{#Z,#J}. It can be shown that the storage
requirements and the number of arithmetic operations for the matrix vector multiplication have almost
linear complexity O(nlogn) [Hac09].

Many possibilities to compute suitable low-rank approximations for admissible blocks have been pro-
posed in the literature. For a good overview on hierarchical matrices in general and various approx-
imation strategies, we refer to [Hac09]. In [Beb00], a black-bock algorithm for the computation of
low-rank approximations, called adaptive-cross-approximation (ACA), is presented. The proof of the
error analysis only works for collocation matrices, however in [Beb08] also an error analysis for Galerkin
matrices, such as is our matrix V, is provided. For the computation of our low-rank approximations,
we use the implementation of the ACA algorithm provided by the HLib library. We only need to
implement a function for the evaluation of a matrix entry V;; from which the admissible low-rank
approximations with local error control are built. As local error tolerance for the admissible blocks we
use le — 8 in our implementation.

We stress that this strategy is not the most efficient one with respect to storage requirements or fast
evaluation. A large part of the dissertation [Drw08] is concerned with the efficient computation of the
system matrix V and the solution of linear soft thin-film problems with ¢ = 0 and |f| < 1.
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Figure 4.5: Typical structure of a hierarchical matrix. Inadmissible blocks (red) are stored uncom-
pressed, admissible blocks (green) are approximated by low-rank matrices.
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4.3.3 Code listing

Listing 4.13: The Newton algorithm with uniform mesh refinements

1 Vector2D f(Point x);

2

3 //Compute DT « V x D % =z
4 doublex evalDTVD(SimpleLayerPotential& V, sparsematrix* D, const doublex x){

© 0w N O ot

10
11
12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

int

doublex Dx = new double[D—>rows |;
eval sparsematrix(D,x,Dx);

doublex VDx = V x Dx;

delete Dx;

doublex DTVDx = new double[D—>cols |;
evaltrans sparsematrix (D,VDx,DTVDx);
delete VDx;

return DTVDx;

main ()

cout<<"STARTING_COMPUTATION\n"
<<l| n\nll ;
RTO0Space femSpace = RTOSpace("coordinates.dat" ,"elements.dat");
double q = 1;
MAX_ELEMENTS — 50000

doublex mH;
doublex epsilon ;
int mesh_ refinements = 0;

while (femSpace. NumberOfElements () < MAX ELEMENTS) {
if (mesh refinements — 0) {
mH = new double[femSpace.NumberOfElements ()];
for(int i = 0; i < femSpace.NumberOfElements (); ++i)
mH[i] = 0.;
epsilon = new double[femSpace. NrOfTriangles ()];
double eps — femSpace. TrianglesBegin ()—>MeshWidth ();
for(int i = 0; i < femSpace.NrOfTriangles (); ++i)
epsilon[i] = eps;

else {
doublex oldmH = new double[femSpace.NumberOfElements ()];
for(int ell = 0; ell < femSpace.NumberOfElements (); ++ell)
oldmH[ ell] = mH[ell ];

RefinementDatax refineData — 0;
refineData — femSpace. Refine (true);
cout<<"done.\n"<<flush;

delete mH;

mH = new double[femSpace.NumberOfElements ()];

eval sparsematrix(refineData—>Prolongation ,oldmH ,mH);
delete oldmH;

doublex epsilon _new — new double|femSpace.NrOfTriangles ()];
eval sparsematrix(refineData—>ProlongationDiff ,epsilon ,epsilon _new);
delete epsilon ;
epsilon = epsilon_new;
for(int i = 0; i < femSpace.NrOfTriangles (); ++i)
epsilon [i] %= 0.5;
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7

del sparsematrix(refineData—>Prolongation );
del sparsematrix(refineData—>ProlongationDiff);
delete refineData;

}
cout<<"Build_Q_ ... _"<<flush;
sparsematrix* Q = stimaQ (femSpace);

cout<<"done.\n";

cout<<"Build_V_..._"<<flush;

SimpleLayerPotential V = SimpleLayerPotential (POSpace(femSpace), le—8);

cout<<"done.\n";

cout<<"Build _Div_ ... _"<<flush;
sparsematrix* D = DivergenceOperator (femSpace);
cout<<"done.\n";

doublex Fx — new double|femSpace.NumberOfElements ()];
for(int i = 0; i < femSpace.NumberOfElements();++1i)
Fx[i] = 1.;

//Build RHS
doublex a = buildRHS(f, femSpace);

double normFx = 0.;

for(int i = 0; i < femSpace.NumberOfElements (); ++i)
normFx +—= Fx[i]*xFx[i];

normFx = sqrt (normFx);

sparsematrix* DF NL = 0;

while (normFx > le—8) {
//compute nonlinear term
doublex f NL = computeNonlinearTermAdaptive (femSpace

//Compute F(z)
doublex DIVDmH = evalDTVD (V,D,mH);

, mH, epsilon );

doublex QmH = new double[femSpace.NumberOfElements ()];

eval sparsematrix (Q,mH,QmH);
for(int i = 0; i < femSpace.NumberOfElements (); ++i)
Fx[i] = DIVDmH[i] + q * QuH[i] — a[i] + f NL[i];

//Compute derivative DF NL
if (iter >1)

del sparsematrix(DF_NL);
cout<<"Compute DF_NL_ ... _"<<flush;

DF NL = computeNonlinearTermDerivativeAdaptive(femSpace, mH,

cout<<"done.\n";

//compute damping—parameter and perform Newton—step

double damp = 0.5;

normFx = 0.;

for(int i = 0; i < femSpace.NumberOfElements (); ++i)
normFx += Fx[i]«Fx[1i];

normFx = sqrt (normFx);

doublex delta — solveGMRES (Fx, V, D, q, Q, DF_NL);
doublex x1 — new double[femSpace.NumberOfElements ()
i

for(int i = 0; i < femSpace.NumberOfElements (); ++i)
x1[i] =mH[i] — delta[i];

epsilon );

)
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doublex Fxl1 = new double[femSpace.NumberOfElements ()];
doublex DTVDxl = evalDTVD (V,D,x1);

doublex Qx1 — new double[femSpace.NumberOfElements ()];
eval sparsematrix(Q,x1,Qx1);
doublex nl = computeNonlinearTermAdaptive (femSpace, x1, epsilon);

for(int i = 0; i < femSpace.NumberOfElements (); ++i)
Fx1[i] = DTVDx1[i] + q * Qx1[i] — a[i] + nl[i];

double normFx1 = 0.;

for(int i = 0; i < femSpace.NumberOfElements (); ++i)
normFx1 += Fx1[i]|xFx1[1i];

normFx1 = sqrt (normFx1);

delete Fx1;
delete DTVDx1;
delete Qxl1;

while (normFx1>normFx) {
damp = damp=*0.5;
for(int i = 0; i < femSpace.NumberOfElements (); ++i)
x1[1] = mH[i] — dampxdelta[i];

Fx1 — new double[femSpace.NumberOfElements ()];
doublex DTVDxl = evalDTVD(V,D,x1);

Qx1 = new double[femSpace . NumberOfElements () ];
eval sparsematrix(Q,x1,Qx1);
nl = computeNonlinearTermAdaptive (femSpace, x1, epsilon);

for(int 1 = 0; 1 < femSpace.NumberOfElements (); ++i)
Fx1[i] = DTVDxl[i] + q * Qx1[i] — a[i] + nl[i];

normFx1l = 0.;

for(int i = 0; i < femSpace.NumberOfElements (); ++i)
normFx1 += Fx1[i]|«Fx1[1i];

normFx1 = sqrt (normFx1);

delete Fx1;
delete DTVDx1;
delete Qx1;
}
for(int i = 0; i < femSpace.NumberOfElements (); ++i)
mH[i] = x1[i];

delete f NL;
delete DTVDmH;
delete QmH;
delete x1;
delete nl;

}

del sparsematrix(DF_NL);

cout<<"Computing_energy._ ... _"<<flush;

doublex DTVDmH = evalDTVD (V,D,mH);

doublex QmH — new double[femSpace.NumberOfElements ()];
eval sparsematrix(Q, mH, QmH);
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180 double energy = 0.;

181 for(int i = 0; i < femSpace.NumberOfElements (); ++i)
182 energy += 0.5 % (mH[i]+«DIVDmH[i]) + 0.5 % (mH[i]* q % QmH[i]) —
183 (a[i]*mH[i]);

184 cout<<"_E_=_"<<energy<<"\n";

185

186 //Cleanup memory

187 del _sparsematrix(Q);

188 del sparsematrix(QFull);

189 del sparsematrix(D);

190 delete Fx;

191 delete a;

192 ++mesh refinements;

193 }

194 return 0;

195 }
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Chapter 5

Numerical experiments

5.1 Overview and general remarks

In this chapter, we study several aspects of our analysis by providing extensive numerical experiments.

Discretization error: As a first topic in Section 5.2, we study the behavior of the discretization
error

flmg — mj .

First, we perform an experiment for the linear case with weak applied field |f| < 1. The constraint
|m| < 1 is not active and the penalty scheme does not contribute to the error. For smooth data, we
observe a rate of

lm§ — m¢|| = O(1'/?)

1/2

for a sequence of discrete solutions my, computed on uniform meshes. Note that h ~ N, '~ for Np

the number of triangles. This means the rate h'/2 corresponds to N;1/4.

In the second experiment in Section 5.2.2, we apply a stronger field f such that the penalty scheme is
active in some regions of the simulation domain w = (—0.5,0.5)2. To ensure that the error stemming
from the penalization is of higher order, we choose a relatively small parameter of ¢ = 5e — 3. Again,

a sequence of uniform meshes reveals a rate of O(N, Y 4).

In the first two experiments with uniform mesh-refinements, we observe that the L?-contribution
[mf o —mya|,,
to the total error is of higher order
—~1/2
5, —mia] . = Oh) = O(NF2).

The divergence V-mg, however, has edge and corner singularities. Uniform meshes allow for resolution
of this quantity only at the inferior rate of (’)(hl/ 2), which, therefore, dominates the overall error. In
the simplified linear case of soft films with ¢ = 0 and |f| < 1, it is well known, see e.g. [FLP0S§],
that the divergence V - m can be resolved at almost linear rate O(N, Y 2) using adaptively generated
isotropic sequences of meshes.
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We apply our h-adaptive algorithm of Section 3.4 to the first two experiments, i.e. we use ﬁf (T)
as an indicator for the mesh-refinement. Apparently, the optimal resolution of the L?-component
myg , of the magnetization demands uniform meshes. The divergence, however, demands strong edge
refinements, which in turn yields Hm’a2 - mgHL2 = O(N;“) with a < 1/4. The two goals seem to be
incompatible, and we observe that the adaptive algorithm does improve the asymptotics of the error
only slightly. The use of anisotropic sequences of meshes might provide a solution to this problem.
It is well known that the divergence can be resolved more efficiently with anisotropic elements along
the boundary, cf. [FLP08]. Even though the adaptive computations do not improve the asymptotic
behavior significantly, the error level, and specially the error in the energy

|e(mg) — e(my)],

is reduced when compared to the uniform approach. This is because the dominant error contribution
|V - (m§ — my)l|, is first resolved at a higher rate, until both error components are at the same level.

Micromagnetic devices are usually studied at small scales and it is a common modeling assumption
that the applied field is (almost) constant. Our interest goes beyond the concrete application of
the model problem (M) as we wish to study the properties of the penalty method in general. In
Section 5.2.3, we construct an example where f is discontinuous and has a weak singularity at the
origin. Note that our a priori analysis is based on Proposition 3.16 and the statement demands f
to be smooth. Hence, we are testing the performance of our numerical scheme even when necessary
regularity assumptions of the analysis are violated. The discontinuity lines are chosen such that they
cannot be resolved precisely by any refinement of the initial mesh. The uniform algorithm performs
at a decreased rate O(N~%) with a < 1/4. The adaptive algorithm seems to resolve the singularities

of m§ more efficiently and recovers a rate of at least O(N,. Y 4).

Finally, Section 5.2.4 is concerned with the influence of the penalty parameter £ on the discretization
error. We compute numerical solutions for the same data and different values of e. Empirically, we
observe the discretization error to be almost independent of the penalty scheme. Only for examples
where the penalty energy is very large, we observe a slight positive influence in the sense that the
discretization error is reduced for smaller penalty parameter.

Conclusions: Theorem 3.24 proves a rate of
[lmg — mj || = O('/?)

for smooth m§ € H'(w) with V- m§ € H'?(w). In practice, this seems to be the rate that may
be expected for uniform meshes if the given data is smooth. However, apparently the statement of
Theorem 3.24 holds even under weaker regularity assumptions on mg. The error estimator nf is
empirically efficient and reliable. Moreover, the local indicator ,ufv not only gives a lower bound as
stated in Corollary 3.28, but empirically also gives an upper bouna,

H H
Nev N He vy

as is known for soft films (¢ = 0) in the linear case |f| < 1. The isotropic adaptive algorithm increases
the accuracy, specially of the energy, in all of our computations and recovers an asymptotic order of
at least O(N, Y 4) even in presence of singularities caused by non-smooth data.

Penalization error: Section 5.3 is concerned with the experimental analysis of the error introduced
by the penalty scheme
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Recall the statement
Imj, — mj || = O(c'/?)

of Theorem 3.22. In [CP01], the authors succeeded to improve this a priori result for the large-body
limit. The proof is based on L?-orthogonalities of the discrete solution. In our case, we do not have such
orthogonalities which is why we did not succeed to provide a similar improvement of the a priori result.
One might suspect, though, that some other techniques allow for a proof of linear convergence. We
therefore perform some numerical experiments to empirically verify our analysis. In the experiments
in Section 5.3.1, we compute solutions with fixed meshes and varying penalty parameter for smooth
data. We do observe in this uniform case of e-refinements a rate of O(c'/?), which indicates that
the statement of Theorem 3.22 cannot be improved in general. Note that in contrast to the results
concerning the convergence rates with respect to h, the rate with respect to the penalty error does
not depend heavily on the regularity of mg.

In our first series of experiments, we observe that the heuristic error estimator 77 is empirically reliable
and gives a true upper bound of the error. The penalty error is not independent of the discretization.
A reduction of the mesh size leads to an improvement of the penalty error. This, however, does not
cause problems, as it means that simultaneous h- and e-refinements may lead to an improved rate of
the penalty error.

In Section 5.3.2, we give empirical evidence that the choice of e = h® with « = 1 is optimal for uniform
mesh refinements. Choice of a > 1 does not improve the asymptotic behavior of the error whereas
choice of a < 1 reveals a reduced order of convergence when compared to @ = 1. One interesting fact
is that the order of convergence for simultaneous h- and e-refinements is increased, at least for exam-
ples, where the penalization is active on large regions of w. This may be due to the slight decrease of
discretization error for smaller € and the large decrease of the penalty error for smaller discretization
parameter h.

Conclusions: The penalty error behaves as predicted by our analysis. It seems that the a priori
estimate cannot be improved in general. The penalty error is not independent of the discretization.
A finer mesh leads to a smaller penalty error. Finally, the choice of ¢ = h in uniform computations
appears to be optimal. We observe an increased order of convergence with respect to Np, when the
mesh and the penalty parameter are refined simultaneously. It is not fully clear whether this is only
a pre-asymptotic effect or the rate is increased permanently.

Further simulations: In Section 5.4, we apply a field f with strong singularities along the diag-
onal = y. In contrast to the example from Section 5.2.3, here the discontinuity line of f is resolved
by the mesh exactly. As a consequence we observe that the L? component of the error still behaves well.
The error introduced by the penalty scheme and the error stemming from the divergence, however,
converge at a slow rate. The choice of f effects a singularity of V - m along x = y. The h-e-adaptive
algorithm resolves the singularity of V - m and the e-refinements improve the penalty error when
compared to the uniform case. The penalty error and the discretization error are balanced by the
algorithm, the order of convergence of the error estimator is improved when compared to the use of
uniform refinements.

In the last section, we perform experiments for three examples where the anisotropy parameter is
large, i.e. ¢ > 1, or vanishes, i.e. ¢ = 0. The sample w = (—0.5,0.5) x (—=0.1,0.1) is rectangular and
in the first experiment we choose ¢ = led, so that the anisotropy energy contribution is dominant.
We apply the constant field f = 10(0.5,2.0)7. Even though the applied field is very large, and almost
orthogonal to the easy axis, we observe that the magnetization is still almost aligned with the first
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in-plane axis. The penalization term is active on almost the entire domain w. We observe for 7, a rate

/

of convergence N, /4 when using uniform refinements. The h-e-adaptive algorithm improves this and

leads to a rate of N;l/?’ for the estimator 7.

The two last examples are dedicated to the case of soft films with ¢ = 0. We stress that the energy
norm, then, only measures the divergence of m in the V-norm, i.e. |m| = ||V -ml,. In the case
of soft applied field f = 0.15(0.5,2.0)7 the constraint is not active. We observe that uniform mesh

—~1/4
refinements lead to a convergence order of N, /

up to N;1/2. When the stronger field f = 2(0.5,2.0)7 is applied the constraint is active. Uniform

mesh refinements with ¢ = h reveal convergence with order N, /4 The h-e-adaptive algorithm, again,

. The h-adaptive algorithm improves the convergence

leads to a higher order of convergence of almost N, 2 In particular, the e-refinements are aggressive
and the algorithm seeks to balance the error contributions.

Representation of results: All results of our experiments are provided in tables. Additionally,
we plot the error and error estimators in a double logarithmic scale. The quantities are plotted usu-
ally on the number of triangles of the mesh. Recall the link h ~ Nr;l/Q for uniform meshes. From

that we read that h'/2 corresponds to a rate of N;1/4 with respect to the number of triangles. Only
in the experiments where we study the e-convergence, we plot all quantities naturally on the choice of
the parameter e.

In order to get a feeling for the behavior of the numerical solutions, we often provide quiver-plots of
some discrete magnetization. Usually, we use some relatively coarse solution on a uniform mesh for
good visibility.

The divergence of the magnetization is of great importance as it effects the leading error contribution
in many examples. Plotting piecewise constant functions on meshes with very small mesh-size and
large number of elements can lead to figures that are hard to interpret. Therefore, instead we plot
a piecewise linear and globally continuous function obtained by averaging the values of the piecewise
constant function at the nodes. Let z be a node and let {T3,...,T,} be the set of triangles that
share z as a vertex. Given the piecewise constant function X € P°(T), we define the nodal value of a
piecewise linear and globally continuous approximation X € S*(7) through

~ 1 &
NOE - > Xr,.
=1

This kind of interpolation plot is used throughout to visualize the divergence of discrete functions
my, € RT°(T) as well as other piecewise constant functions.

The effects of the constraint |m| < 1 are visualized in the following way: First, we provide plots
of the regions where the penalty-scheme contributes to the energy. Triangles of some mesh where
[[(jme| = 1)+[[ L2y > 0 are colored red, those where [my|p[ <1 are colored blue. Second, we plot the

piecewise constant function of the maximal length L(my) € P°(T;) on each triangle, i.e.
L(m = max |my(z)|.
() = mays oy 1)
In those experiments where we use the fully adaptive algorithm to steer h and e refinements, we also

provide plots of the adaptive generated piecewise constant function ¢, € P°(7y).

Recall that the model problem under consideration is non-linear. The only known analytical solution
that we are aware of is, unfortunately, the trivial solution m = 0 in absence of an applied field. In
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order to measure the error in various norms in our uniform simulation runs, we use some solution
computed on a very fine mesh as reference solution. The discrete solutions obtained on coarser meshes
are prolonged to the fine mesh. The system matrices V,D,Q, and Qg are given with respect to
the finest mesh. Let X, denote the coefficient vector of some prolonged discrete solution and X,, the
coefficient vector of some reference solution. Then, the error in the energy norm may be computed by

(X, — X)D'VD(X,, — Xo) + (X, — X0)Q(X,, — X).
Similarly, the error in the full space norm may be computed by

(X, — Xo)DTVD(X,, — X¢) + (X, — X0)Qr (X, — Xy),
where Qg denotes the full stiffness matrix

(QF)ij = (), i) 2.

In case of adaptive calculations, it is hard to obtain a reference solution. First, convergence of the
adaptive sequence does not imply convergence of the discrete solutions to the analytical solution.
Second and more important, the reg-green-blue refinement strategy employed does in general not allow
to embed a mesh 7T, into some uniform refinement of the initial mesh 7j easily. We therefore restrict
to plotting the error estimators in the adaptive simulations. We stress that for uniform refinements,
the estimator 7y is observed to give reliable information on the overall simulation error.

5.2 Experimental analysis of discretization error

As pointed out in Section 3.4, the uniformity of h- and e-convergence seems crucial for the heuristic
adaptive algorithm. We therefore run some simulations with the aim of empirically studying the h-
convergence of our proposed method. In contrast to the extended algorithm including the estimation
of the penalty error, we restrict here to the pure h-adaptive strategy where ¢ is fixed and only the
rescaled estimator ﬁf is used as refinement indicator.

In this set of experiments, we choose the smoothest set-up that we could think of. The simulation
domain is the unit square centered in the plane, i.e. w = (—0.5,0.5)2. The applied field f = (z,z)”
with x > 0 is constant and the anisotropy parameter is ¢ = 1 to exclude effects possibly arising from
very large or very small values of q. The penalty parameter is fixed at ¢ = be — 3. The applied
field varies from soft to strong. Soft applied field means that |f| is sufficiently small such that the
penalization is not active. The initial discretization of w is depicted in Figure 5.1.

5.2.1 Soft applied field f = (0.1,0.1)7

In our first experiment, we chose f = (0.1,0.1)7. In this case, the constraint is not active and we
are computing the solution of a linear problem. Hence, the penalty parameter has no effect on the
discretization error. Figure 5.2 shows a representative solution on a uniform mesh with Np = 1024
triangles and Np = 1504 degrees of freedom. One can see the effects of the anisotropy at the top and
bottom edge of w. We observe alignment of m, along the axis of the applied field (1,1). However, the
anisotropy seems to be relevant in the sense that the magnetization tends to spin a little bit more in
direction of the first in-plane axis, i.e. the easy axis of the ferromagnetic sample. The divergence of
the adaptively generated discrete solution my, is plotted in Figure 5.3. We observe that the solution
has strong corner and edge singularities.
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Figure 5.1: Initial mesh with 16 triangles and 20 interior edges for simulations where the domain is
the unit square w = (—0.5,0.5)? centered in the plane.

Iteration ‘ Nrp ‘ Np ‘ Energy nfv an nf ‘ ,ufv ‘ NNewton
0 16 20 | -0.006413 | 0.03276 | 0.017083 | 0.03695 | 0.1486 2
1 64 88 | -0.007103 | 0.02208 | 0.009776 | 0.02415 | 0.1004 2
2 256 368 | -0.007399 | 0.01523 | 0.005400 | 0.01616 | 0.0696 2
3 1024 | 1504 | -0.007532 | 0.01064 | 0.002921 | 0.01104 | 0.0489 2
4 4096 | 6080 | -0.007594 | 0.00748 | 0.001559 | 0.00764 | 0.0345 2
5 16384 | 24448 | -0.007624 | 0.00527 | 0.000825 | 0.00534 | 0.0244 2
6 65536 | 98048 | -0.007638 - - - - 2

Table 5.1: Results of the calculations with f = (0.1,0.1)7, ¢ = 1, w = (—0.5,0.5)”, and uniform mesh-
refinements: mesh size Np, space size Np, energy, error estimators, and number of Newton iterations
NNewton-
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Figure 5.2: Discrete magnetization for f = (0.1,0.1)" and ¢ = 1 on a uniform mesh of the domain

w = (—0.5,0.5)? with N7 = 1024 triangles and Np = 1504 degrees of freedom.
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Figure 5.3: Divergence of the solution my4 for f = (0.1,0.1)7 and ¢ = 1 on an h-adaptively generated
mesh of the simulation domain w = (—0.5,0.5)% with Ny = 2058 triangles and Np = 2976 degrees of
freedom.
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Figure 5.4: Error and error estimators for a sequence of discrete solutions m, on uniform meshes with
w=(-0.5,0.5)2, f = (0.1,0.1)7, and ¢ = 1.
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Table 5.1 shows the experimental results for uniform mesh-refinements. Figure 5.4 shows the er-
ror and error estimators plotted on the number of triangles. We observe that the error in the en-

ergy norm decays approximately with order N, Y 4, which corresponds to h'/2. The L2-contribution
|m3 — mg,2||L2(w) is of higher order, i.e. almost N;1/2 which corresponds to h'. We observe that the

estimator nf gives a good approximation to the true error. Moreover, we empirically observe effi-
ciency and reliability of nf and all of its components. The local error indicator ,ufv, which is proven
to give a lower bound for nfv up to some constant, also gives empirically an upper bound, we observe
nfv ~ va- Recall that the energy functional does not measure the easy-axis component of my. As a
consequence, we observe a dramatically reduced order of convergence for the first component m; when
compared to the order of the error in the second component. The L*-error |[m} — my || [2(w) Seems
to dominate the full space norm error ||m* — my||. Both decay at a rate of approximately N, 18,
Figure 5.5 shows the sequence of adaptively generated meshes. At first, we observe strong refinements
towards the lower left and top right corners as well as some refinements towards the edges. In the last
few refinement steps, however, also some triangles in the interior of w are refined. Figure 5.6 shows the
error estimators in the adaptive computation. For reference, we also plotted the quantities obtained
with uniform refinements. At first, the L2-contribution of the energy error is significantly smaller than
the contribution of the error in the divergence. However, in the last few refinement steps it seems that
some elements were also marked due to the L?-norm contributed error estimator an. It seems that
it is not possible to resolve both, L? and V-norm contributions of the error efficiently with the same
mesh.

We observe that the overall error decays asymptotically at least at the same rate N, /4 as in the
uniform case. Apparently, the use of uniform meshes is optimal to resolve the magnetization m.
However, the divergence V - m demands adaptive meshes with strong refinements towards the edges
and corners. These goals are competing and impossible to satisfy simultaneously. Hence, after some
preasymptotic phase, where the error in the divergence is reduced to the level of the L?-error, the
asymptotic behavior again reveals almost the same rate of N, /4 25 in the uniform case. The results
of the adaptive computation are listed in Table 5.2.

The convergence of the error [e(m§® %) — e(mie_3)| in the energy is estimated by extrapolating the

sequence of discrete energies obtained with uniform meshes. For our error plots we use the estimate
e(m*) ~ —0.007652721009050. Figure 5.7 shows the estimated error in the energy for both, uniform
and adaptive computations. In the first steps, the adaptive algorithm clearly computes more accurate
values than the uniform approach. This is probably because the error level of the divergence is reduced
drastically. However, in the last few steps, where the L?-component of the error is at the same level
as the error of the divergence in the V-norm, we observe a slow-down of the convergence.

We stress that computations on finer meshes beyond iteration 14 showed numerical instabilities. Con-
sidering the very low level of the error in Figure 5.7, this is not surprising. Recall that we use an
adaptive cross approximation for the sparse storage of the V-matrix with local error tolerance of
le — 8. Moreover, the use of numerical quadrature for the computation of the matrix entries might be
relevant in this specific experiment. The search direction in the Newton algorithm is computed up to
an absolute error if 1le — 10.
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Figure 5.5: Sequence of h-adaptively generated meshes with w = (—0.5,0.5)2, f = (0.1,0.1)T

q=1.
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Figure 5.6: Error estimators for h-adaptive and uniform mesh-refinements. The field f = (0.1,0.1)7

is applied to the sample w = (0.5,0.5)% with anisotropy parameter ¢ = 1.

Iteration ‘ Nr ‘ Np ‘ Energy ‘ ni an i 1y | NNewton
0 16 20 | -0.006413 | 0.032765 | 0.017083 | 0.036951 | 0.14869 2
1 32 42 | -0.006756 | 0.025432 | 0.016162 | 0.030133 | 0.11812 2
2 44 58 | -0.006932 | 0.023311 | 0.012177 | 0.026300 | 0.10671 2
3 68 92 | -0.007187 | 0.019804 | 0.011749 | 0.023027 | 0.09102 2
4 94 129 | -0.007316 | 0.018082 | 0.010734 | 0.021028 | 0.08288 2
5 127 | 175 | -0.007369 | 0.016093 | 0.009573 | 0.018725 | 0.07428 2
6 157 217 | -0.007443 | 0.014422 | 0.009131 | 0.017070 | 0.06658 2
7 219 | 305 | -0.007502 | 0.012789 | 0.009349 | 0.015842 | 0.05913 2
8 294 413 | -0.007546 | 0.011714 | 0.008616 | 0.014542 | 0.05380 2
9 364 | 511 | -0.007564 | 0.010733 | 0.008033 | 0.013407 | 0.04923 2
10 774 | 1101 | -0.007565 | 0.007844 | 0.007294 | 0.010712 | 0.03611 2
11 964 | 1374 | -0.007583 | 0.007063 | 0.007119 | 0.010028 | 0.03254 2
12 1425 | 2053 | -0.007621 | 0.006550 | 0.006931 | 0.009536 | 0.03012 2
13 1720 | 2480 | -0.007626 | 0.006050 | 0.006959 | 0.009222 | 0.02780 2
14 2058 | 2976 | -0.007629 | 0.006246 | 0.006485 | 0.009004 | 0.02808 2

Table 5.2: Results of calculations with w = (—0.5,0.5)2, f = (0.1,0.1)7, ¢ = 1, and h-adaptive mesh-
refinements: mesh size Np, space size Np, energy, error estimators, and number of Newton iterations

N Newton -
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Figure 5.7: Error in the energy |e(m*) — e(my)| for a sequence of discrete solutions on uniform and
h-adaptive meshes with w = (—0.5,0.5)%, f = (0.1,0.1)7, and ¢ = 1.

Iteration ‘ Nrp ‘ Np ‘ Energy ‘ nfv ‘ an ‘ 7751 un ‘ MEV ‘ NNewton
0 16 20 | -0.2306 | 0.19320 | 0.10679 | 0.22075 | 0.006584 | 0.8766 3
1 64 88 | -0.2553 | 0.12913 | 0.06009 | 0.14243 | 0.007179 | 0.5871 2
2 256 368 | -0.2658 | 0.08951 | 0.03315 | 0.09545 | 0.006242 | 0.4090 12
3 1024 | 1504 | -0.2706 | 0.06269 | 0.01783 | 0.06518 | 0.005316 | 0.2879 12
4 4096 | 6080 | -0.2728 | 0.04412 | 0.00948 | 0.04513 | 0.004326 | 0.2034 15
5 16384 | 24448 | -0.2739 - - - - - 16

Table 5.3: Results of calculations with w = (—0.5,0.5)2, f = (0.6,0.6)”, ¢ = 1, and uniform mesh-
refinements: mesh size Np, space size Np, energy, error estimators, and number of Newton iterations

N Newton -

5.2.2 Active penalization with f = (0.6,0.6)7

In this second simulation, we strengthen the applied field and choose f = (0.6, O.6)T. Now, the solution
is penalized in some regions of w, see Figure 5.10. A representative solution on a uniform mesh is shown
in Figure 5.8 and the divergence of the h-adaptively computed discrete solution mg with Np = 16856
degrees of freedom can be seen in Figure 5.9. We observe again some effects caused by the anisotropy.
Note that the penalized regions are those, where the magnetization is well aligned with the easy-axis
e1. Moreover, we again observe the characteristic edge and corner singularities in the divergence.

The detailed results of the computation with uniform meshes are given in Table 5.3. Figure 5.11,
shows error and error estimators for a sequence of uniform meshes. Note that in contrast to the
first experiment with soft applied field, we now also plot the square root of the penalty energy n; =

1/2
<% I|(|my| — 1)+||%2(w)) . One major difference to the first experiment is that in the present case
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Figure 5.9: Divergence of the solution mg for w = (—0.5,0.5)%, f = (0.6,0.6)7, and ¢ = 1 on an
h-adaptively generated mesh with N7 = 11555 triangles and Np = 16856 degrees of freedom.
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Figure 5.10: Left: Penalized (red) and not penalized (blue) elements of the solution my for w =
(-0.5,0.5)%, f = (0.6,0.6)7, and ¢ = 1. The uniform mesh has Ny = 16384 triangles. Right:
Elementwise maximal length of my.
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Figure 5.11: Error and error estimators for a sequence of discrete solutions m, on uniform meshes for
w=(-0.5,0.5)2, f = (0.6,0.6), and q = 1.

we observe convergence in the full space norm ||-|| at the same rate as in the energy norm | - ||. One
possible explanation is that in the regions where the magnetization is almost aligned with the easy
axis eq, the penalty scheme is active and hence the length of the magnetization is restricted there. The
second component my s is controlled by the energy functional. Therefore, also my; ~ (1 — m%2)1/ 2 is
determined by quantities that are controlled through the equations directly. 7

Figure 5.12 shows the sequence of h-adaptively generated meshes. We observe a similar behavior as in
the first experiment. Figure 5.13 shows the error estimators in the adaptive computation. For reference,
we also plotted the quantities obtained with uniform refinements. At first, the L?-contribution of the
energy error is significantly smaller than the contribution of the error in the divergence. However,
in the last few refinement steps, it becomes relevant and effort is put into refining elements in the
interior of w to reduce the L? contribution of the error. We observe that the overall error, again,

1/4

decays asymptotically at the rate of at least N, */ . The results of the adaptive computation are listed

in Table 5.4.

The true energy is estimated by extrapolating the sequence of discrete energies obtained with uniform
meshes. For our error plots we use the estimate e(m*) ~ —0.274951722507912. Figure 5.14 shows the
estimated error in the energy. Apparently, the adaptive algorithm improves the asymptotic behavior
slightly.

5.2.3 Non-smooth solution and h-adaptive algorithm

In a last experiment we demonstrate that the adaptive algorithm is able to improve the order of
convergence, even for some non-smooth magnetization m. To that end, we apply a discontinuous field
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Figure 5.13: Error estimators for h-adaptive and uniform mesh-refinements
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is applied to the sample w = (0.5,0.5)% with anisotropy parameter ¢ = 1.

10

. The field f = (0.6,0.6)T

Iteration ‘ Nt ‘ Np ‘ Energy nfv an nf i ‘ ,ufv ‘ NNewton
0 16 20 | -0.2306 | 0.19320 | 0.10679 | 0.22075 | 6.58e-3 | 0.8743 3
1 40 54 | -0.2470 | 0.14747 | 0.09524 | 0.17555 | 7.09e-3 | 0.6752 4
2 80 110 | -0.2599 | 0.11066 | 0.06135 | 0.12653 | 9.71e-3 | 0.5015 11
3 180 252 | -0.2671 | 0.08127 | 0.05064 | 0.09576 | 5.81e-3 | 0.3690 10
4 422 998 | -0.2711 | 0.05776 | 0.04449 | 0.07291 | 6.44e-3 | 0.2606 12
5 990 | 1417 | -0.2726 | 0.04132 | 0.03849 | 0.05647 | 6.41e-3 | 0.1849 12
6 2292 | 3303 | -0.2735 | 0.02942 | 0.03717 | 0.04741 | 5.40e-3 | 0.1314 17
7 5198 | 7540 | -0.2743 | 0.02230 | 0.03085 | 0.03807 | 4.96e-3 | 0.0950 22
8 11555 | 16856 | -0.2744 | 0.01825 | 0.02220 | 0.02874 | 4.50e-3 | 0.0741 31

Table 5.4: Results of calculations with w = (—0.5,0.5)2, f = (0.6,0.6)", and ¢ = 1: mesh size N,

space size Np, energy, error estimators, and number of Newton iterations Nnewton-
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Figure 5.14: Error in the energy |e(m*) — e(my)| for a sequence of discrete solutions on uniform and
h-adaptive meshes for w = (—0.5,0.5)%, f = (0.6,0.6)”, and ¢ = 1.

f defined by

T 0.1N\T or T
(o 4) = {(o, Yle"H)T - for Jy] > /fal,
(0,—-1) else,

to our sample w = (—0.5,0.5)7. The anisotropy with ¢ = 1 seems to have little effect as the applied
field is always orthogonal to the easy axis. The singularity of f at the origin (0,0) is very weak.
However, the discontinuous behavior seems to be relevant. A solution computed on a uniform mesh
with N7 = 4096 triangles and a solution computed on an adaptively generated mesh with Ny = 1760
triangles can be seen in Figure 5.15 and Figure 5.16, respectively. The divergence of the adaptively
computed solution myg is shown in Figure 5.17. The detailed results of our computation are listed in
Table 5.5 and Table 5.6, respectively.

Note that even though we use a relatively small penalty parameter of ¢ = 5e — 3, we observe some
elements at the top and bottom edge, where the magnetization seems to be significantly longer than
1, see Figure 5.18 and Figure 5.19. It seems that the penalization is not equally good everywhere on
w.

The convergence in the energy for uniform meshes seems to be affected by the singular behavior of
m. As an estimate for the true energy, we used the extrapolated value e(m§) ~ —0.400251416014251.

In the uniform case, we observe a rate of approximately N, 37 n contrast, the adaptive algorithm
recovers a rate of at least N, 1 2, see Figure 5.20. Estimates in the energy norm reveal a similar

behavior as can be seen in Figure 5.21. The error seems to decay at a rate of approximately N, 3/14,
This seems to be mainly an effect due to the bad resolution of the L?-component of the error.

The h-adaptive algorithm with fixed penalty parameter ¢ = 5e — 3 effects strong refinements towards



100

)
y
i
1
Y
/l
]

. ' ' s T S e = =— — TS N - - ~P~ N N ‘ ' ’
H\‘/,////////////4—;__“:’—“‘*‘:“:‘:‘:';‘;’:"::"’.—»—’::—’_,*\\\\\\\\\\\\\‘o”
s,//////////////‘—:::‘?:\ N AN 1 VA /::—’::::—*\\\\\\\\\\\\\\\\
uHu‘{'fl»}/§/»;/§// ppuiba Q:IQQQU i ;//‘;:’;:"f' ind \\Q:\Q\Q:\}:\t;\{«\ \ ‘HHH
b PSRN A A N S Y
—. N A~
A T TSN A T T
e U U TSN 17077223 S
R N N N Ly I LS I LT DA
N N N N N N NN 3 A I
0.3 0 I T S 1L 0007 0 0 1
: x\\\\\\\\\\\§ AT ?w:ﬁ»j;ﬂ;ﬂéé////////uxu
HE I I I OO S RN RN Y NN N I Ty
N>R N Sl Y
VWA YA Y IR INININTY
LN NN Y A
VW W AW AW W AW NONINNNNNM W L2 7 2 07 70 07 0 0 0
R T R O O T T T N T N N S
AR N N N N I/
R T R O S A AN ! ! NN NI T
0.2F 1 I e e ey A TN TN
I W W W AW W NN NN L 7 70 )
TATHTI TN C TR R TR RN \\§\§“\;\‘\§\: N\l ';/// ATV ATRT AT
B W W W W W NN AT Y] 7
VU W W N NN NN NN NN 8000 i
[ SRR L A S R A R N O A O N N N L A A A O B Y Y A Y B B A T LA T T
ol (DR A TARERA RN \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\§\\\« : \///f///”/ N//N// ///”//”//, I TNENIY
PO W W W W W WS NS AT
P R R O O O N N A B B X A L U KA T KA Y
”z N u”uHx‘ xHuHHHHHHHH‘H VWL WVYUNAE T ”1”Hl’u”zz”u”u”u”u”u“s;”u”
OfFv v v 1 VEobE HlHHHHHHH”L‘"1“””11”11”11‘H I e Y e N N AR N
L T O O e S A A O i B A R R R S A A AN U R AT
”u‘l::”JJ"1J"u"u"tJ”u"H”N“H‘IHHHHUH// : \\N M H\H\HH”H”H"u”n”u”n”u”
VN VEOVL AL VAL
O L O L L o L E o L Y A A N T I L R L T AR N T R R A NN A RN AR A RN AR
O R R R N Y N Y Y YA Y A Y A /G PR VL VL VL VL AV VA
O N R A L Vo VA Y A o B N N I AT A AR SRR S A AR T R LA AR LR A RN AR B
N et VY Y ar e A A A S N T T T R R R R L R AL
STATATAT //“//H//N///////////N/f/4/4 NI Q“\‘§“\\\‘\\‘\‘\\\\‘\\\‘\\\\‘\\\‘\\.\\\'\\\\.\\\\\\\\H\\‘ W
VO ;5";5/,4//‘),\ ’\k\\@k«‘\%‘ RO T T S A SR T T
N N N N N N Ry R R R R R R R R R R RN
Y R N N N N N N 0 P e AR R M R WV
WL 0 N PRI R R R R R R TR TR T
NI, LN NN A A W W
/AL AN NN RN R R SRR
Ve IR R R RN
R N S N N N VA A N NN N SR R R R R AT AR AR
Wil L L E NN NN N v AL b
Y ////// G/ P/ 4N PN \\\\\\ DRIRIR
I N RN R R N R S R S SRS T
0351 1”//”//////////'4/4/';/'4/'4/‘4/“{} } ’ P ‘ { q‘(“\§\«§\«§‘*\‘§“\«§“\i‘\\\\\‘\\\\\\,\\\\\ v
e T R A
A 2 AT N N NN\ NN R EN TR
A A 27 AT NN\ NN N SN N Y
P A =AM RN NN USSR IRING
AR W WNAEZZZ WASSSZ= s 00 0
I N T R NN e I Y
“' ! \ N \§\§\§\§\§\::—:’—:’—>/;/;’;';':‘:\:\‘: «“«“h‘;/,’;/f/f/;,f/ ] , J W .
N NN U W WL WS, = e, S S A BN N L S i S v 2SN N U S N
. N | \ ~ N~~~ = = >~ S | NN < < e - |- 7 7 i \
-04 -03 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 5.15: Discrete magnetization for w = (—0.5,0.5)2, discontinuous f, and ¢ = 1 on a mesh with
N = 4096 triangles and Np = 6080 degrees of freedom.
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Figure 5.17: Divergence of the discrete solution mag for w = (—0.5,0.5)2, discontinuous f, and ¢ = 1
on an h-adaptively generated mesh with Ny = 10485 triangles and Np = 15588 degrees of freedom.

0.5
0.4

0.3

0.9
0.2
=08

0.1
-07

~0.6

~05

= 0.4

-0.5 ’ 05 -04 03 -02 -01 0 0.1 0.2 0.3 0.4 0.5

-05 -04 -03 -02 -0.1 0 0.1 0.2 0.3 0.4 0.5
Figure 5.18: Left: Penalized (red) and not penalized (blue) elements of the solution mjy for w =
(—0.5,0.5)2, discontinuous f, and ¢ = 1. Right: Maximal length of the magnetization ms on each
element. The uniform mesh has Ny = 16384 triangles and Np = 24448 degrees of freedom.
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Figure 5.19: Maximal length of the magnetization mjs on each element for w = (—0.5,0.5)2, discon-
tinuous f, and ¢ = 1. The uniform mesh has Ny = 16384 triangles and Np = 24448 degrees of

freedom.
Iteration ‘ Np ‘ Np ‘ Energy nfv ‘ an ‘ nf ‘ un ‘ va ‘ NNewton
0 16 20 | -0.1915 | 0.19132 | 0.3599 | 0.4076 0 0.7922 2
1 64 88 | -0.2913 | 0.11621 | 0.2348 | 0.2620 | 0.02198 | 0.5094 11
2 256 368 | -0.3271 | 0.07541 | 0.1907 | 0.2051 | 0.02121 | 0.3361 17
3 1024 | 1504 | -0.3624 | 0.05286 | 0.1427 | 0.1521 | 0.02243 | 0.2312 24
4 4096 | 6080 | -0.3797 | 0.03675 | 0.1080 | 0.1141 | 0.02271 | 0.1579 37
) 16384 | 24448 | -0.3891 | 0.02425 | 0.0797 | 0.0833 | 0.02256 | 0.1082 43
6 65536 | 98048 | -0.3937 - - - - - 42

Table 5.5: Results of calculations with w = (—0.5,0.5)2, discontinuous f, ¢ = 1, and uniform mesh-
refinements: mesh size Np, space size Np, energy, error estimators, and number of Newton iterations

N Newton -
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Iteration ‘ Nr ‘ Np ‘ Energy nfv an i un ‘ ,ufv ‘ NNewton
0 16 20 | -0.1915 | 0.19139 | 0.35996 | 0.40768 0 0.7922 2
1 32 42 | -0.2801 | 0.15583 | 0.26168 | 0.30457 | 0.01620 | 0.7134 16
2 56 74 1 -0.3035 | 0.11218 | 0.23590 | 0.26122 | 0.01808 | 0.5094 13
3 80 110 | -0.3350 | 0.1147 | 0.20386 | 0.23395 | 0.02115 | 0.4978 20
4 116 164 | -0.3369 | 0.10650 | 0.17557 | 0.20535 | 0.01772 | 0.4786 14
5 184 258 | -0.3416 | 0.08312 | 0.16490 | 0.18466 | 0.01872 | 0.3612 20
6 297 426 | -0.3434 | 0.07866 | 0.16235 | 0.18040 | 0.01930 | 0.3463 20
7 403 585 | -0.3529 | 0.07344 | 0.14630 | 0.16370 | 0.01994 | 0.3312 15
8 587 860 | -0.3659 | 0.07157 | 0.12440 | 0.14352 | 0.02021 | 0.3249 16
9 774 1132 | -0.3725 | 0.05923 | 0.11984 | 0.13368 | 0.02254 | 0.2628 14
10 1006 1477 | -0.3784 | 0.05392 | 0.10384 | 0.11701 | 0.02318 | 0.2420 17
11 1327 1950 | -0.3814 | 0.04674 | 0.09484 | 0.10574 | 0.02368 | 0.2060 28
12 1760 2589 | -0.3839 | 0.04278 | 0.09367 | 0.10298 | 0.02416 | 0.1853 18
13 2219 3274 | -0.3849 | 0.03954 | 0.08850 | 0.09693 | 0.02374 | 0.1750 27
14 2910 4303 | -0.3866 | 0.03714 | 0.08227 | 0.09026 | 0.02391 | 0.1614 17
15 3687 5460 | -0.3888 | 0.03405 | 0.07550 | 0.08282 | 0.02383 | 0.1478 20
16 4668 6923 | -0.3916 | 0.03203 | 0.07352 | 0.08019 | 0.02357 | 0.1402 39
17 5499 8147 | -0.3919 | 0.02863 | 0.06961 | 0.07527 | 0.02358 | 0.1235 21
18 7073 | 10498 | -0.3937 | 0.02675 | 0.06773 | 0.07282 | 0.02269 | 0.1162 25
19 8441 | 12538 | -0.3944 | 0.02530 | 0.06576 | 0.07046 | 0.02263 | 0.1100 30
20 10485 | 15588 | -0.3949 | 0.02379 | 0.06143 | 0.06587 | 0.02241 | 0.1028 18

Table 5.6: Results of calculations with w = (—0.5,0.5)2, discontinuous f, ¢ = 1, and h-adaptive mesh-
refinements: mesh size Ny, space size Np, energy, error estimators, and number of Newton iterations
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Figure 5.20: Error in the energy |e(m*) — e(my)| for a sequence of discrete solutions on uniform and
h-adaptive meshes for w = (—0.5,0.5)2, discontinuous f, and ¢ = 1.
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Figure 5.21: Error and error estimators for a sequence of discrete solutions m, on uniform meshes for
w = (—0.5,0.5)2, discontinuous f, and ¢ = 1.

the discontinuity lines of f. The singularity of f at the origin (0,0) seems to be less significant. A
possible explanation is that it is a weak singularity that only effects a very small region of w. A
selection of adaptively generated meshes can be seen in Figure 5.22. The error estimators plotted in
Figure 5.23 reveal that the rate of N, L/4 {5 recovered with the help of the adaptive mesh-refinements.

5.2.4 Influence of ¢

It remains to study experimentally the dependence of the discretization error from the penalty pa-
rameter €. We choose the applied field f = (0.8,0.8)7. The penalty region of a solution computed
with € = 0.005 on a uniform mesh with N7 = 65536 triangles is shown together with the elementwise
maximal length of the magnetization in Figure 5.24. We can clearly see that the penalization term is
active. Moreover, in the last refinement step, the error estimators nf and n; have values close to each
other for coarse .

We run four h-uniform simulations with penalty parameter values of ¢ € {0.1,0.05,0.01,0.005}. For
each simulation run, we compute a reference solution m, fona mesh with Ny = 65536 triangles.
Figure 5.25 shows the error [[mf,, —mj|| for various choices of e. The plot is difficult to read because
the lines almost coincide. The Tables 5.7-5.9 show the detailed results of the simulations. It seems
that the discretization error is basically independent of the penalty error in this case.

In as second simulation run, we chose a very strong applied field f = (3,3)7 such that the error from
the penalization is dominant. Figure 5.26 shows the error for the parameter values of € € {0.1,0.01}.
The reduction of the penalty parameter by an order of magnitude leads to a slight improvement of the
discretization error in this example. The results of the simulation are documented in Tables 5.11-5.12.
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CHAPTER 5. NUMERICAL EXPERIMENTS 107

10 T T T

10

nf (unif)
- nl (adap)

—X-= n;{v (unif)
—+ ”va (adap)
A gl (unif) -
-~ 77({:1(9 (adap)

K= ,ugv (unif)

l"fv (adap)

107 L L L PR | L L L PR | L L L PR | L L L L
10 10 10° 10 10
Number of triangles

Figure 5.23: Error estimators for h-adaptive and uniform mesh-refinements. A discontinuous field f is
applied to the sample w = (0.5,0.5)? with anisotropy parameter ¢ = 1.
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Figure 5.24: Left: penalized (red) and not penalized (blue) elements of a uniform mesh of w =
(—0.5,0.5)2 with Ny = 65536 triangles. The penalty parameter is ¢ = 0.005, the applied field is
f = (0.8,0.8)7. Right: elementwise maximal length of the discrete magnetization.
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Figure 5.26: FError in the energy norm for a series of experiments with uniform meshes of w =
(—0.5,0.5)%, applied field f = (3,3)7, ¢ = 1 and fixed values of .



CHAPTER 5. NUMERICAL EXPERIMENTS 109

Iteration ‘ Nrp ‘ Np ‘ Energy ‘ nf ‘ un ‘ \Hmfef - mﬂ” ‘ NNewton
0 16 20 | -0.4081 | 0.2824 | 0.0546 0.3732 6
1 64 88 | -0.4512 | 0.1825 | 0.0388 0.2420 6
2 256 368 | -0.4691 | 0.1215 | 0.0341 0.1584 6
3 1024 | 1504 | -0.4770 | 0.0828 | 0.0308 0.1009 6
4 4096 | 6080 | -0.4806 | 0.0572 | 0.0288 0.0572 7
5 16384 | 24448 | -0.4823 | 0.0399 | 0.0279 - 6

Table 5.7 Results of calculations with w = (—0.5,0.5)?, f = (0.8,0.8)", ¢ = 1, uniform mesh-
refinements, and € = 0.1: mesh size Np, space size Np, energy, error estimators, and number of
Newton iterations NNewton-

Iteration ‘ Ny ‘ Np ‘ Energy ‘ i ‘ n ‘ |||m§ef —mj|| ‘ NNewton
0 16 20 | -0.4071 | 0.2806 | 0.0624 0.3728 11
64 88 | -0.4505 | 0.1819 | 0.0400 0.2416 6

256 368 | -0.4686 | 0.1212 | 0.0319 0.1581
1024 | 1504 | -0.4766 | 0.0825 | 0.0272 0.1007
4096 | 6080 | -0.4802 | 0.0571 | 0.0238 0.0571

16384 | 24448 | -0.4819 | 0.0398 | 0.0219 -

U W N =
~ 00 ~1 =

Table 5.8: Results of calculations with w = (—0.5,0.5)?, f = (0.8,0.8)7, ¢ = 1, uniform mesh-
refinements, and € = 0.05: mesh size Np, space size Np, energy, error estimators, and number of
Newton iterations NNewton-

Iteration ‘ Nr ‘ Np ‘ Energy ‘ nf ‘ in ‘ |||mief —mj|| ‘ NNewton
0 16 20 | -0.4034 | 0.2785 | 0.0577 0.3752 11
1 64 88 | -0.4490 | 0.1814 | 0.0380 0.2416 9
2 256 368 | -0.4675 | 0.1209 | 0.0278 0.1581 9
3 1024 | 1504 | -0.4758 | 0.0824 | 0.0213 0.1006 13
4 4096 6080 | -0.4797 | 0.0570 | 0.0172 0.0570 10
5 16384 | 24448 | -0.4815 | 0.0397 | 0.0142 - 10

Table 5.9: Results of calculations with w = (—0.5,0.5)?, f = (0.8,0.8)7, ¢ = 1, uniform mesh-
refinements, and € = 0.01: mesh size Np, space size Np, energy, error estimators, and number of
Newton iterations NNewton-

Iteration ‘ Nrp ‘ Np ‘ Energy ‘ ntt ‘ i ‘ lm;, , — mj|| ‘ NNewton
0 16 20 | -0.4019 | 0.2791 | 0.0461 0.3769 12
1 64 88 | -0.4483 | 0.1814 | 0.0310 0.2419 11
2 256 368 | -0.4672 | 0.1211 | 0.0260 0.1583 10
3 1024 | 1504 | -0.4756 | 0.0825 | 0.0196 0.1008 11
4 4096 | 6080 | -0.4796 | 0.0570 | 0.0153 0.0570 13
) 16384 | 24448 | -0.4814 | 0.0398 | 0.0124 - 12

Table 5.10: Results of calculations with w = (—0.5,0.5)2, f = (0.8,0.8)”, ¢ = 1, uniform mesh-
refinements, and € = 0.005: mesh size Np, space size Np, energy, error estimators, and number of
Newton iterations NyNewton-
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Iteration | Nr | Np |[Energy | n/ | nf | IlmS; —mi]l | Nxewton
0 16 20 | -3.5290 | 0.4756 | 0.7434 0.686183 7
1 64 88 | -3.8293 | 0.3439 | 0.7459 0.478808 6
2 256 368 | -3.9509 | 0.2405 | 0.7445 0.318782 5)
3 1024 1504 | -3.9993 | 0.1639 | 0.7441 0.200693 5
4 4096 6080 | -4.0191 | 0.1124 | 0.7445 0.112477 5
5 16384 | 24448 | -4.0277 | 0.0781 | 0.7450 - 4

Table 5.11: Results of calculations with w = (—0.5,0.5)2, f = (3,3)7, ¢ = 1, uniform mesh-refinements,
and € = 0.1: mesh size N, space size Np, energy, error estimators, and number of Newton iterations

NNewton-
Iteration ‘ Nt ‘ Np ‘ Energy ‘ nf ‘ un ‘ \Hmief — mj|| ‘ NNewton
0 16 20 | -2.9089 | 0.4025 | 0.4519 0.613074 9
1 64 88 | -3.2395 | 0.2986 | 0.3951 0.435184 8
2 256 368 | -3.3772 | 0.2122 | 0.3398 0.292067 7
3 1024 1504 | -3.4338 | 0.1463 | 0.3007 0.182514 7
4 4096 | 6080 | -3.4565 | 0.1008 | 0.2790 0.100889 7
5 16384 | 24448 | -3.4654 | 0.0701 | 0.2681 - 7

Table 5.12: Results of calculations with w = (—0.5,0.5)2, f = (3,3)7, ¢ = 1, uniform mesh-refinements,
and € = 0.01: mesh size Ny, space size Np, energy, error estimators, and number of Newton iterations
NNewton-

5.3 Experimental analysis of penalty error

The error introduced by the penalty scheme is of a different quality than the error due to the discretiza-
tion. We expect that the discretization error depends on the smoothness of the analytical solution. In
Theorem 3.22, we assumed V - m* € L? to prove the convergence rate of

lm” — m§|| = O(Ve).

Note that the proof only needs the regularity of V-m™* because we used pointwise estimates that yield
|V -mj|; 2 in the upper bound of the error estimation. There is, however, no necessity to apply any
interpolation operator to obtain the result. One may therefore suspect that a different strategy in the
proof might yield the same result with weaker regularity assumptions.

5.3.1 Convergence and influence of h

Nonetheless, we restrict ourselves to a simple and smooth setting. The simulation domain is, again,
the unit square centered in the plane, i.e. w = (—0.5,0.5)2. We apply the constant field f = (1,1)7.
In the preceding experiments concerning the h-convergence we also chose the rather weak applied
fields because we wanted the penalty error to be relatively small when compared to the discretization
error. Now, we are particularly interested in the penalty error and the behavior of our estimator ;.
We therefore stick to the choice of strong f. Figure 5.27 shows the penalized region for a uniform
mesh with Np = 4096 triangles and the penalty parameter of ¢ = 1le — 4. The maximal length of the
magnetization on each triangle is plotted in Figure 5.28. The anisotropy parameter is set to ¢ = 1.

We choose fixed meshes 77 with Np = 256, T3 with Np = 1024, and 73 with Np = 4096 triangles.
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Figure 5.27: Penalized (red) and not penalized (blue) elements of the solution m3 for w = (—0.5,0.5)2,
f=(1,1)T, e = le — 4, and ¢ = 1. The uniform mesh has Nz = 4096 triangles.
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Figure 5.28: Length of the discrete solution m3 on a uniform mesh of w = (—0.5,0.5)? with Ny = 4096
triangles, f = (1,1)7, ¢ = 1, and ¢ = le — 4.

Then, we compute the discrete solutions with e = 0.5%-0.0625 for k = 0,1, .... Since we are interested
in the error caused by the penalty scheme, we compute the reference solution m,. s, on each mesh 7,
with € = le — 4. This reference solution is used to estimate the error

[}, — mi || ~ fmye e — mi]).

Figure 5.29 shows the estimated error along with the error estimator

1

n; = (5 lI(Imel = 1) 7).

We observe that the error decays at a rate of approximately £1/2. The estimator n; appears to be
reliable, but not efficient. It gives an upper bound and converges with an order of approximately e!/4.
This, however, means that the original quadratic penalty energy

1
— I(me| = 1) |72 = (n5)?,
2e

plotted for reference in the figure, appears to be also efficient.

Moreover, the penalty error seems to influence the energy in a different manner than the discretization
error. Figure 5.30 shows the error in the energy, where we used the extrapolated values

e(mf,) ~ —0.6941157823,
e(m%,) ~ —0.7075830949,
e(m%,) ~ —0.7142900317,

for estimation of the error. We observe convergence of the order /2.
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‘ Iteration ‘ € ‘ Energy ‘ 7, ‘ nf ‘ lmy.cr 7 — my|| ‘ NNewton
0 6.25e-2 | -0.70940 | 0.09072 | 0.1399 0.064066 12
1 3.12e-2 | -0.70539 | 0.07643 | 0.1388 0.050271 4
2 1.56e-2 | -0.70254 | 0.06601 | 0.1382 0.040217 4
3 7.81e-3 | -0.70039 | 0.05860 | 0.1380 0.031730 4
4 3.90e-3 | -0.69868 | 0.05249 | 0.1382 0.023629 4
5) 1.95e-3 | -0.69745 | 0.04876 | 0.1389 0.017111 4
6 9.77e-4 | -0.69636 | 0.04159 | 0.1394 0.011788 4
7 4.88e-4 | -0.69555 | 0.03310 | 0.1401 0.007200 4

Table 5.13: Results of calculations with w = (—0.5,0.5)%, f = (1,1)7, ¢ = 1, and Ny = 256: penalty
parameter ¢, energy, error estimators, and number of Newton iterations NNewton-

Iteration | ¢ [ Energy | 78 | 9 [ llmyernn — mef] [ Nxewton
0 6.25e-2 | -0.72012 | 0.08864 | 0.09496 0.050189 16
1 3.12e-2 | -0.71618 | 0.07076 | 0.09425 0.037144 4
2 1.56e-2 | -0.71370 | 0.05793 | 0.09387 0.029373 4
3 7.81e-3 | -0.71205 | 0.04901 | 0.09371 0.023281 4
4 3.90e-3 | -0.71087 | 0.04233 | 0.09385 0.017904 )
) 1.95e-3 | -0.71001 | 0.03735 | 0.09424 0.013073 )
6 9.77e-4 | -0.70938 | 0.03333 | 0.09465 0.009647 4
7 4.88e-4 | -0.70887 | 0.02794 | 0.09514 0.006076 4

Table 5.14: Results of calculations with w = (—0.5,0.5)2, f = (1,1)7, ¢ = 1, and Ny = 1024: penalty
parameter g, energy, error estimators, and number of Newton iterations NyNewton-

‘ Iteration ‘ € ‘ Energy ‘ N ‘ lmyer 7 — myl| ‘ NNeowton ‘
0 6.25e-2 | -0.72498 | 0.08795 0.043307 26
1 3.12e-2 | -0.72101 | 0.06796 0.029822 5
2 1.56e-2 | -0.71866 | 0.05270 0.022990 4
3 7.81e-3 | -0.71727 | 0.04247 0.018834 4
4 3.90e-3 | -0.71639 | 0.03552 0.015173 4
5 1.95e-3 | -0.71577 | 0.03034 0.011776 5
6 9.77e-4 | -0.71533 | 0.02639 0.009107 5
7 4.88e-4 | -0.71502 | 0.02305 0.006896 5

Table 5.15: Results of calculations with w = (—0.5,0.5)2, f = (1,1)”, ¢ = 1, and Ny = 4096: penalty
parameter ¢, energy, error estimators, and number of Newton iterations NNewton-
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Figure 5.29: Error and error estimators for three different uniform meshes and varying values of e.
We apply the field f = (1,1)7 to the sample w = (—0.5,0.5)? with ¢ = 1.
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The detailed results of the experiments are listed in Tables 5.13-5.15.

The discretization parameter seems to have some positive effect on the penalty error. As the elements
shrink in their size, the penalty error is reduced slightly. One reason may be that on coarser meshes
the magnetization cannot vary its length efficiently. As the mesh gets finer, some elements that would
be linked to a penalized element on a coarse mesh, might not be penalized at all on the finer one, i.e.
the penalty region is resolved better.

On the other hand, we observe that the discretization error seems to be almost independent of the
penalty parameter. Corollary 3.25 establishes rates of convergence. We stress that the penalty error
is only considered for the continuous problem in the proof. Hence, the empirical evidence at hand
supports our analytical results. However, the regularity assumptions seem to be too strict and it may
be possible to prove the same statement under weaker assumptions.

5.3.2 Empirical choice of ¢ = h*

Our analysis predicts the convergence behavior
lm* — my|| = O(ve + V).

From this, the choice of ¢ = h is natural. In particular, the preceding experiments suggest that the
individual rates of the discretization error and the penalty error established in Theorem 3.22 and
Theorem 3.24 cannot be improved in general with uniform sequences of meshes.

Note, however, that the discretization error and the penalty error are apparently not completely
independent. A harsher penalization improves the discretization error and vice versa. Therefore, we
need to study the correct choice of ¢ = h* also empirically.

We stick to the simple and smooth setting of w = (—0.5,0.5)% and constant applied field. The field is
chosen f = (2,2)7 to ensure that not only the discretization error but also the error introduced by the
penalty scheme are significant at the beginning of the simulation. The barrier is active on almost the
whole domain. To estimate the error, we computed a reference solution on a mesh with Ny = 65536
triangles and Np = 98048 degrees of freedom and a penalty parameter of ¢ = h'® = 6.52444e — 4. We
compare the solutions computed on a sequence of uniform meshes and penalty parameter of ¢ = h®
with a € {0.5,0.8,1.0,1.2,1.5} with the reference solution. Figure 5.31 shows the error in the energy
norm. The choice of & = 0.5 and o = 0.8 lead to a reduced order of convergence. On the other hand,
choice of o > 1 does not improve the convergence beyond a rate of N, /3 This suggests the choice
of € = h is optimal.

Figure 5.32 shows the total error estimator 7y = nf + n;. Here, the rate seems to improve up to the
choice of ¢ = h'. Recall that the estimator n; was only observed to be reliable but not efficient. The
figure also shows the estimator 7j for values of o = 0.5, = 1.0, and a = 1.5. Only in the case of

a = 1.5, the true order of convergence N 173 is reflected by the estimator, since the penalty error is
of higher order. This effects that the empirically reliable estimator n; adopts the order of the overall
error. Sticking to the empirical optimal choice of € = h, the estimator shows a reliable behavior and
reveals an order of N /4 The detailed result of the simulations are given in Table 5.16-5.20.

We stress the increased order of convergence N, 1/3 that seems to be caused by the dependence
of discretization and penalty error. However, it is not entirely clear whether this is an asymptotic
behavior or a preasymptotic effect only. To give further evidence, we perform a second simulation run,
where we choose an applied field of f = (0.8, 0.8)T. In this case, the penalization is not active on large
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Figure 5.31: Error for different choices of penalty parameter ¢ = h®. We apply the field f = (2,2)7 to
the sample w = (—0.5,0.5) with ¢ = 1.
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Figure 5.32: Error estimators for different choices of penalty parameter ¢ = h®. We apply the field
f = (2,2)T to the sample w = (—0.5,0.5) with ¢ = 1.



CHAPTER 5. NUMERICAL EXPERIMENTS 117

h e [y [ g | | Ilmey —my] |
2501 | 5.0c-1 ] 04734 | 0.2420 | 05957 | 0.8305
1.25e-1 | 3.5e-1 | 0.3144 | 0.1352 | 0.6119 |  0.6353
6.25e-2 | 2.5e-1 | 0.2079 | 0.0710 | 0.5866 |  0.4676
3.125-2 | 1.8¢-1 | 0.1383 | 0.0369 | 0.5421 |  0.3421
1.56250-2 | 1.2e-1 | 0.0935 | 0.0190 | 0.4884 |  0.2472
7.5225¢-3 | 8.5e-2 | 0.0639 | 0.0098 | 0.4320 !

Table 5.16: Results of calculations with w = (—0.5,0.5)7, f = (2,2)7, ¢ = 1, and £ = h%°: mesh-width
h, penalty parameter e, error estimators, and error in the energy norm for a sequence of solutions on
uniform meshes.

he [ e T [ olg [ mp | llmeey —myfl |
2.5e-1 3.2e-1 | 0.4592 | 0.2326 | 0.5881 0.7847
1.25e-1 | 1.8e-1 | 0.2994 | 0.1282 | 0.5689 0.5477
6.25e-2 | 1.1e-1 | 0.1960 | 0.0665 | 0.4967 0.3557
3.125e-2 | 6.3e-2 | 0.1296 | 0.0347 | 0.4104 0.2255
1.5625e-2 | 3.6e-2 | 0.0878 | 0.0180 | 0.3272 0.1387
7.5225e-3 | 1.9e-2 | 0.0606 | 0.0095 | 0.2554 -

Table 5.17: Results of calculations with w = (—0.5,0.5)7, f = (2,2)7, ¢ = 1, and ¢ = h®®: mesh-width
h, penalty parameter €, error estimators, and error in the energy norm for a sequence of solutions on
uniform meshes.

h | e T omhy [ nllg | mg | llmey —my |
2561 | 2.5e-1] 0.4500 | 0.2266 | 0.5804 |  0.7563
1.25e-1 | 1.3e-1 | 0.2908 | 0.1241 | 05331 | 0.5020

6.25e-2 | 6.3e-2 | 0.1901 | 0.0645 | 0.4334 0.3107
3.125e-2 | 3.1e-2 | 0.1260 | 0.0340 | 0.3309 0.1907
1.5625e-2 | 1.6e-2 | 0.0859 | 0.0179 | 0.2436 0.1153
7.5225e-3 | 7.2e-3 | 0.0596 | 0.0096 | 0.1759 -

Table 5.18: Results of calculations with w = (—0.5,0.5)", f = (2,2)7, ¢ = 1, and € = h': mesh-width
h, penalty parameter €, error estimators, and error in the energy norm for a sequence of solutions on
uniform meshes.

h ‘ € ‘ nfv ‘ WEQ ‘ 0 ‘ lmyey — my|| ‘
2.5e-1 1.9e-1 | 0.4410 | 0.2209 | 0.5708 0.7301
1.25e-1 | 8.2e-2 | 0.2835 | 0.1205 | 0.4944 0.4666
6.25e-2 | 3.6e-2 | 0.1857 | 0.0632 | 0.3744 0.2838
3.125e-2 | 1.6e-2 | 0.1237 | 0.0338 | 0.2662 0.1754

1.5625e-2 | 6.8e-3 | 0.0849 | 0.0182 | 0.1831 0.1081
7.5225e-3 | 2.7e-3 | 0.0592 | 0.0100 | 0.1242 -

Table 5.19: Results of calculations with w = (—0.5,0.5)7, f = (2,2)7, ¢ = 1, and & = h'?: mesh-width
h, penalty parameter e, error estimators, and error in the energy norm for a sequence of solutions on
uniform meshes.
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h ‘ € ‘ nfv ‘ WEQ ‘ 0 ‘ lmyey — my|| ‘
2.5e-1 1.3e-1 | 0.4283 | 0.2130 | 0.5535 0.6948
1.25e-1 | 4.4e-2 | 0.2745 | 0.1158 | 0.4366 0.4304
6.25e-2 | 1.6e-2 | 0.1809 | 0.0621 | 0.3019 0.2646
3.125e-2 | 5.5e-3 | 0.1218 | 0.0342 | 0.1987 0.1687

1.5625e-2 | 1.9e-3 | 0.0847 | 0.0194 | 0.1273 0.1072
7.5225e-3 | 6.1e-4 | 0.0601 | 0.0109 | 0.0816 -

Table 5.20: Results of calculations with w = (—0.5,0.5)7
h, penalty parameter e, error estimators, and error in the energy norm for a sequence of solutions on

uniform meshes.

f=1(2,2)7,¢g=1,and ¢ = h'®: mesh-width

10

Error in the energy norm

10

10

10

Number of elements

10

Figure 5.33: Error for different choices of penalty parameter ¢ = h®. The field f = (0.8,0.8)7 is
applied to the sample w = (—0.5,0.5)? with ¢ = 1.
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Figure 5.34: FError estimators for different choices of penalty parameter ¢ = h%. The field f =
(0.8,0.8)T is applied to the sample w = (—0.5,0.5)% with ¢ = 1.

regions of w but still contributes to the total error. Figure 5.33 shows the error in the energy norm
for various choices of € = h®. Since the error introduced by the penalty scheme is significantly smaller
than the discretization error, the decreased rate of convergence for e < 1 when compared to the choice
of @ > 1is not as clearly visible as in the first experiment. We still see, however, a significant decrease
for the choice of @ = 0.5. In contrast to the first experiment with stronger applied field, the choice of
f = (0.8,0.8)7, now yields a rate of convergence N, with 1/4 < a < 1/3. Figure 5.34 shows the error
estimators in this experiment. Here, the observed reliability of n; causes that the decreased order of
convergence for choices of @ < 1 is more clearly visible. The results of this simulation are given in
Tables 5.21-5.25.

o e ol T ol ;| [myey — m] |
2561 | 5.0c1] 0.2513 | 0.1386 | 0.03594 |  0.3773
1.25e-1 | 3.5e-1 | 0.1676 | 0.07772 | 0.03012 |  0.2483
6.25e-2 | 2.5e-1 | 0.1153 | 0.04185 | 0.03934 |  0.1663
3.125¢-2 | 1.8e-1 | 0.0802 | 0.02235 | 0.03726 |  0.1110
1.56256-2 | 1.2e-1 | 0.0561 | 0.01184 | 0.03392 |  0.0720
7.5225¢-3 | 8.5e-2 | 0.0395 | 0.00623 | 0.03019 .

Table 5.21: Results of calculations with w = (—0.5,0.5)", f = (0.8,0.8)”7, ¢ = 1, and ¢ = h%?:
mesh-width h, penalty parameter e, error estimators, and error in the energy norm for a sequence of
solutions on uniform meshes.



h € ‘ va ‘ Uf@ 772 ‘ |||mref — my ||| ‘
2.5e-1 3.2e-1 | 0.2509 | 0.13849 | 0.03710 0.3769
1.25e-1 | 1.8e-1 | 0.1670 | 0.07760 | 0.03914 0.2471
6.25e-2 1.1e-1 | 0.1146 | 0.04173 | 0.03664 0.1646

3.125e-2 | 6.3e-2 | 0.0797 | 0.02235 | 0.03136 0.1092
1.5625e-2 | 3.6e-2 | 0.0558 | 0.01186 | 0.02527 0.0701
7.5225e-3 | 1.9e-2 | 0.0393 | 0.00625 | 0.01969 -

Table 5.22: Results of calculations with w = (—0.5,0.5)T, f = (0.8,0.8)”7, ¢ = 1, and ¢ = r%%:
mesh-width h, penalty parameter e, error estimators, and error in the energy norm for a sequence of
solutions on uniform meshes.

h e [ whv | g ;[ Imvey —myf] |
2.5e-1 2.5e-1 | 0.2506 | 0.13835 | 0.03792 0.3767
1.25e-1 | 1.3e-1 | 0.1665 | 0.07748 | 0.03901 0.2464
6.25e-2 | 6.3e-2 | 0.1143 | 0.04171 | 0.03500 0.1639
3.125e-2 | 3.1e-2 | 0.0795 | 0.02241 | 0.02834 0.1086

1.5625e-2 | 1.6e-2 | 0.0557 | 0.01192 | 0.02148 0.0698
7.5225e-3 | 7.2e-3 | 0.0392 | 0.00629 | 0.01569 -

Table 5.23: Results of calculations with w = (—0.5,0.5)7, f = (0.8,0.8)7, ¢ = 1, and ¢ = h': mesh-
width h, penalty parameter ¢, error estimators, and error in the energy norm for a sequence of solutions
on uniform meshes.

h e [ mv | wi ;[ ey —myf] |
2.5e-1 1.9e-1 | 0.2503 | 0.13822 | 0.03880 0.3765
1.25e-1 | 8.2e-2 | 0.1661 | 0.07743 | 0.03879 0.2459
6.25e-2 | 3.6e-2 | 0.1140 | 0.04171 | 0.03345 0.1635
3.125e-2 | 1.6e-2 | 0.0794 | 0.02248 | 0.02585 0.1084

1.5625e-2 | 6.8e-3 | 0.0557 | 0.01199 | 0.01870 0.0697
7.5225e-3 | 2.7e-3 | 0.0392 | 0.00634 | 0.01321 -

Table 5.24: Results of calculations with w = (—0.5,0.5)", f = (0.8,0.8)7, ¢ = 1, and ¢ = h'?:
mesh-width h, penalty parameter e, error estimators, and error in the energy norm for a sequence of
solutions on uniform meshes.

h € ‘ 77?\/ ‘ 77?@ n; ‘ lmyer — my| ‘
2.5e-1 1.3e-1 | 0.2499 | 0.13803 | 0.04027 0.3762
1.25e-1 | 4.4e-2 | 0.1655 | 0.07740 | 0.03868 0.2453
6.25e-2 | 1.6e-2 | 0.1137 | 0.04166 | 0.03154 0.1631

3.125e-2 | 5.5e-3 | 0.0793 | 0.02252 | 0.02268 0.1084
1.5625e-2 | 1.9e-3 | 0.0557 | 0.01201 | 0.01559 0.0698
7.5225e-3 | 6.1e-4 | 0.0393 | 0.00635 | 0.01049 -

Table 5.25: Results of calculations with w = (—0.5,0.5)T, f = (0.8,0.8)7, ¢ = 1, and ¢ = h?:
mesh-width h, penalty parameter e, error estimators, and error in the energy norm for a sequence of
solutions on uniform meshes.
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Iteration ‘ Np ‘ Np ‘ Energy ‘ nfv ‘ an ‘ nf ‘ un ‘ ,ufv ‘ NNewton
0 16 20 | -2.6723 | 0.8237 | 0.5115 | 0.9696 | 0.7045 | 3.7237 7
1 64 88 | -3.3119 | 0.6025 | 0.2926 | 0.6698 | 0.7290 | 2.7832 5
2 256 368 | -3.5269 | 0.4383 | 0.1606 | 0.4668 | 0.6606 | 2.0516 5
3 1024 | 1504 | -3.5658 | 0.3188 | 0.0867 | 0.3304 | 0.5516 | 1.5011 6
4 4096 | 6080 | -3.5525 | 0.2314 | 0.0473 | 0.2362 | 0.4382 | 1.0920 6
5 16384 | 24448 | -3.5331 | 0.1676 | 0.0263 | 0.1697 | 0.3381 | 0.7914 8

Table 5.26: Results of calculations with w = (—0.5,0.5)2, singular f, ¢ = 1, and h-e-uniform re-
finements: mesh size Np, space size Np, energy, error estimators, and number of Newton iterations

N Newton -

5.4 A simulation with non-smooth data

In this experiment we perform a simulation with strong singularities of the applied field f. The aim
is to study the performance of the h-e-adaptive algorithm when compared to the uniform approach
with the choice of € = h. As simulation domain we choose the unit square w = (—0.5,0.5)% and the
anisotropy parameter is ¢ = 1. The applied field reads

| ) (_1a2)T, else

lz—y|1/?

for (z,y) € w. The function f has a singularity along the diagonal. Moreover, it switches orientation
at the discontinuity line. From that we expect to observe the magnetization to show singular behavior
along x = y. We stress that the diagonal is resolved by the mesh exactly. We expect that due to the
varying strength of f the algorithm should lead to an adapted penalization scheme.

Figure 5.35 shows the discrete solution my computed on a uniform mesh with Ny = 4096 triangles
and Np = 6080 degrees of freedom and ¢ = h. The singularities along the diagonal are visible.
For reference, Figure 5.36 shows the h-e-adaptively computed solution msg on a mesh with Ny =
1811 triangles and Np = 2671 degrees of freedom. Figure 5.38 shows the maximal length of the
uniform magnetization ms and the penalized and not penalized elements of the underlying mesh with
N = 16384 triangles and Np = 24448 degrees of freedom. Since the applied field is strong close to
the diagonal, the penalty scheme allows for a large magnetization there if it is well aligned with f.
Figure 5.37 shows the divergence of the solution ms, computed on an adaptively generated mesh with
N7 = 9132 triangles and Np = 13559 degrees of freedom. One can clearly see that not only the edges
and corners of w but also the singularity of f along the diagonal = = y causes non-smooth behavior.

The detailed results of the uniform and the h-e-adaptive simulations are given in the Tables 5.26 and
5.27. One can see that the energy cannot be extrapolated from the sequence of uniform meshes since
the competing discretization and penalty error do not reach an asymptotic behavior throughout the
simulation. We therefore only provide plots of the error estimators. The quantities in the uniform
case are shown in Figure 5.39. As reliable error estimator, we use the combined quantity nf + 5.

We observe a rate of approximately N;B’/ Y In particular both, the discretization error and the
penalty error adopt this rate asymptotically. The error estimators in the adaptive computation are
depicted in Figure 5.41. Here, we observe that both, the penalty error and the discretization error,
are improved in the sense that the estimators exhibit a rate of at least N, 14, Figure 5.42 shows the
length of the h-e-adaptively computed solution mg4 as well as the quantity 1/e34 on the adaptively
generated mesh T34 with Np = 9132 triangles and Np = 13559 degrees of freedom. A closer look at
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Figure 5.35: Discrete magnetization for singular f and ¢ = 1 on a mesh of w = (—0.5,0.5)? with
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Figure 5.36: Discrete magnetization myg for singular f and ¢ = 1 on an h-e-adaptively generated mesh

(—0.5,0.5)% with Ny = 1811 triangles and Np = 2671 degrees of freedom.

of w
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Figure 5.37: Divergence of the h-e-adaptively generated discrete solution msy for singular f and ¢ =1
on a mesh of w = (—0.5,0.5)? with Ny = 9132 triangles and Np = 13559 degrees of freedom.
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Figure 5.38: Left: Penalized (red) and not penalized (blue) elements of the solution mjs for singular

applied field f and ¢ = 1. Right: Maximal length of the magnetization ms on each element. The

uniform mesh of w = (—0.5,0.5)% has Ny = 16384 triangles and Np = 24448 degrees of freedom.
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Iteration ‘ Np ‘ Np ‘ Energy nfv an nf n; /‘fv NNewton
16 20 | -2.6723 | 0.82372 | 0.51158 | 0.96966 | 0.70455 | 3.7237
32 42 | -3.3341 | 0.69361 | 0.39611 | 0.79875 | 0.78708 | 3.1820
52 72 | -3.4038 | 0.64831 | 0.34492 | 0.73436 | 0.74582 | 2.9451
82 115 | -3.6417 | 0.57528 | 0.28641 | 0.64264 | 0.80866 | 2.5969
138 197 | -3.7978 | 0.48939 | 0.23664 | 0.54360 | 0.78390 | 2.1957
178 256 | -3.8379 | 0.44948 | 0.20697 | 0.49484 | 0.77150 | 2.0476

284 414 | -3.9027 | 0.40628 | 0.17703 | 0.44317 | 0.75368 | 1.8390

354 515 | -3.8918 | 0.35982 | 0.15549 | 0.39198 | 0.73026 | 1.6232

400 584 | -3.8492 | 0.34790 | 0.15295 | 0.38004 | 0.70001 | 1.5630

484 710 | -3.8347 | 0.33100 | 0.14505 | 0.36139 | 0.67998 | 1.4857

580 849 | -3.8344 | 0.30368 | 0.13834 | 0.33371 | 0.66287 | 1.3598

685 | 1004 | -3.8138 | 0.28995 | 0.13047 | 0.31796 | 0.64026 | 1.2956

725 | 1062 | -3.7647 | 0.28835 | 0.12801 | 0.31549 | 0.60869 | 1.2820

790 | 1157 | -3.7361 | 0.28384 | 0.12557 | 0.31038 | 0.57926 | 1.2557

848 | 1244 | -3.6958 | 0.28207 | 0.12561 | 0.30878 | 0.54618 | 1.2486

952 | 1400 | -3.6759 | 0.27210 | 0.12267 | 0.29847 | 0.52082 | 1.2072

1063 | 1563 | -3.6537 | 0.26302 | 0.12335 | 0.29053 | 0.49565 | 1.1659

1287 | 1896 | -3.6551 | 0.24900 | 0.12054 | 0.27664 | 0.48189 | 1.1064

1464 | 2160 | -3.6358 | 0.24263 | 0.11584 | 0.26887 | 0.45831 | 1.0787

1674 | 2469 | -3.6336 | 0.23271 | 0.10894 | 0.25695 | 0.44349 | 1.0308

e e el e e e
@m\]@m%ww,_.ocooo\]c:mukww»—\o

~N © © 00 00~ ~J © NI~ O Ot~ Ot Ot Ut Ut Ut = = QU CQt Ut Ut Ot ot Ot~

20 1811 | 2671 | -3.6214 | 0.22760 | 0.10239 | 0.24957 | 0.42533 | 1.0082 1
21 2104 | 3106 | -3.6184 | 0.21739 | 0.09568 | 0.23752 | 0.41189 | 0.9615

22 2308 | 3408 | -3.6074 | 0.21093 | 0.09276 | 0.23043 | 0.39449 | 0.9335

23 2528 | 3737 | -3.5944 | 0.20782 | 0.09147 | 0.22706 | 0.37515 | 0.9191

24 3057 | 4527 | -3.5957 | 0.19584 | 0.08988 | 0.21548 | 0.36296 | 0.8713

25 3359 | 4976 | -3.5869 | 0.19051 | 0.08777 | 0.20976 | 0.34821 | 0.8471

26 3720 | 5507 | -3.5799 | 0.18495 | 0.08212 | 0.20236 | 0.33569 | 0.8199

27 4260 | 6310 | -3.5760 | 0.17750 | 0.07887 | 0.19424 | 0.32686 | 0.7867

28 4773 | 7067 | -3.5645 | 0.17135 | 0.07649 | 0.18765 | 0.31439 | 0.7592

29 0275 | 7812 | -3.5581 | 0.16612 | 0.07433 | 0.18199 | 0.30185 | 0.73417 7
30 5865 | 8692 | -3.5502 | 0.16184 | 0.07095 | 0.17671 | 0.29039 | 0.7165 10
31 6817 | 10119 | -3.5496 | 0.15550 | 0.06842 | 0.16989 | 0.28024 | 0.6897 12
32 7715 | 11460 | -3.5506 | 0.14915 | 0.06565 | 0.16296 | 0.27181 | 0.6636 10
33 8425 | 12512 | -3.5472 | 0.14536 | 0.06445 | 0.15901 | 0.26238 | 0.6455 12
34 9132 | 13559 | -3.5428 | 0.14156 | 0.06292 | 0.15491 | 0.25274 | 0.6274 9

Table 5.27: Results of calculations for w = (—0.5,0.5)2, singular f, ¢ = 1, and h-e-adaptive refinements:
mesh size N7, space size Np, energy, error estimators, and number of Newton iterations Nyewton-
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Figure 5.39: Error estimators for w = (—0.5,0.5), singular f, ¢ = 1 and h-e-uniform refinements.

the penalty parameter reveals the effects of the anisotropy and shows that along the diagonal = = y the
penalization parameter is very small. A sequence of adaptively generated meshes is shown in Figure
5.40. As expected, we observe resolution of the discontinuity line.

5.5 Hard and soft material

In the present section, we perform simulations for the choice of w = (—0.5,0.5) x (—=0.1,0.1). As
before, in the uniform computations we choose € = h.

First, we study the effect of hard material with anisotropy parameter of ¢ = led. We apply the
constant field f = 10(0.5,2.0)”. Figure 5.43 shows the solution mjs computed on a uniform mesh
with Ny = 1280 triangles and Np = 1872 degrees of freedom. We observe that the magnetization is
almost aligned with the easy axis, although the applied field is very strong when compared to the prior
examples with constant applied field. The divergence of the h-e-adaptively computed solution mig on
a mesh with Np = 14662 triangles and Np = 21675 degrees of freedom is shown in Figure 5.44. We
observe edge singularities at the left and right end of w. The penalized elements of the uniform mesh
Ts with Ny = 20480 triangles are shown in Figure 5.45 along with the length of the corresponding
discrete magnetization ms with Np = 30528 degrees of freedom. We observe that the penalty scheme
is active only where the solution is smooth.

Estimating the value of the energy by extrapolation of the values obtained by the sequence of uniform
meshes yields e(m*) ~ —0.897945894609717. Figure 5.46 shows the error plot, where we used this
extrapolated value. The slow convergence of the energy in case of uniform meshes convinced us that
the extrapolated value is not very accurate. Possibly this is caused due to the values of the energy
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Figure 5.44: Divergence of the h-e-adaptively generated discrete solution mjg for w = (—0.5,0.5) x
(—0.1,0.1), f = 10(0.5,2.0)", and ¢ = le4 on a mesh with Ny = 14662 triangles and Np = 21675

degrees of freedom.
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Figure 5.45: Left: Penalized (red) and not penalized (blue) elements of the solution mjs for w
(—0.5,0.5) x (—0.1,0.1), f = 10(0.5,2.0)7, and ¢ = le4. Right: Maximal length of the magnetization

m; on each element. The uniform mesh has Ny = 20480 triangles and Np = 30528 degrees of freedom.
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still being in a pre-asymptotic regime.

The results of the uniform and h-e-adaptive computation are given in Table 5.28 and Table 5.29.
Figure 5.47 shows the error in the energy norm as well as all error estimators for uniform mesh
refinements. We observe an order of convergence of approximately N, 173, However, the empirically
reliable estimator 7, reflects an order of N, V4 This is caused by the contribution n7. The results
of the h-e-adaptive computation are depicted in Figure 5.48. We observe that the error estimator 7,
decreases at a rate of N, /3 The contribution of the penalty error 7 is of higher order than in the
uniform case. A selection of meshes generated by the h-c-adaptive algorithm is shown in Figure 5.49.
Figure 5.50 shows the adaptive penalty parameter £y on the mesh 714 with Np = 14662 triangles. We
observe that the penalty parameter is refined only where the length of the magnetization is large.

Iteration ‘ Nrp ‘ Np | Energy nfv an ‘ nf ‘ n; ‘ va ‘ NNewton
0 20 24 | -0.4653 | 0.17531 | 0.77221 | 0.79186 | 0.08910 | 0.4280 4
1 80 108 | -0.8873 | 0.12883 | 0.53677 | 0.55201 | 0.38312 | 0.3203 5
2 320 456 | -0.9813 | 0.10172 | 0.32762 | 0.34305 | 0.36231 | 0.2508 5
3 1280 1872 | -0.9735 | 0.06956 | 0.19877 | 0.21059 | 0.27769 | 0.1851 5
4 5120 7584 | -0.9546 | 0.04224 | 0.11734 | 0.12471 | 0.20180 | 0.1362 5
5 20480 | 30528 | -0.9405 | 0.02619 | 0.06682 | 0.07177 | 0.14415 | 0.1023 5
6 81920 | 122496 | -0.9318 - - - - - 4

Table 5.28: Results of calculations with w = (—0.5,0.5) x (—0.1,0.1), f = 10(0.5,2.0)7, ¢ = le4,
and h-e-uniform refinements: mesh size Np, space size Np, energy, error estimators, and number of
Newton iterations NNewton-
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Figure 5.48: Error estimators for a sequence of discrete solutions my on h-e-adaptive meshes of w =
(—0.5,0.5) x (—0.1,0.1) with f = 10(0.5,2.0)” and q = le4.



132

Iteration ‘ Nr ‘ Np ‘ Energy nfv an i un ‘ ,ufv ‘ NNewton
0 20 24 | -0.4653 | 0.17531 | 0.77221 | 0.79186 | 0.08910 | 0.4280 4
1 42 54 | -0.5833 | 0.18501 | 0.53768 | 0.56862 | 0.15410 | 0.3925 4
2 85 114 | -0.7349 | 0.17615 | 0.40820 | 0.44459 | 0.26031 | 0.3395 4
3 166 228 | -1.0520 | 0.14728 | 0.35671 | 0.38592 | 0.47874 | 0.2948 4
4 215 299 | -1.0234 | 0.13198 | 0.31481 | 0.34136 | 0.42063 | 0.2781 4
5 289 408 | -1.0652 | 0.10554 | 0.27393 | 0.29357 | 0.39815 | 0.2520 4
6 437 619 | -1.0050 | 0.09805 | 0.21895 | 0.23990 | 0.32020 | 0.2302 4
7 590 844 | -1.0118 | 0.08250 | 0.20249 | 0.21865 | 0.29101 | 0.2154 4
8 758 1092 | -0.9741 | 0.07221 | 0.18093 | 0.19480 | 0.23333 | 0.2026 4
9 1140 1644 | -0.9711 | 0.06179 | 0.14684 | 0.15931 | 0.20588 | 0.1849 4
10 1569 2277 | -0.9740 | 0.05408 | 0.13267 | 0.14327 | 0.18890 | 0.1800 4
11 2142 3127 | -0.9465 | 0.04905 | 0.11867 | 0.12841 | 0.15890 | 0.1721 5
12 3300 4815 | -0.9440 | 0.04387 | 0.10052 | 0.10968 | 0.13984 | 0.1578 5
13 4702 6897 | -0.9360 | 0.04065 | 0.08820 | 0.09712 | 0.11914 | 0.1517 5
14 6914 | 10173 | -0.9295 | 0.03734 | 0.07807 | 0.08654 | 0.10766 | 0.1427 7
15 10421 | 15340 | -0.9264 | 0.03251 | 0.06745 | 0.07488 | 0.09670 | 0.1293 7
16 14662 | 21675 | -0.9217 | 0.02964 | 0.05874 | 0.06579 | 0.08762 | 0.1211 7

Table 5.29: Results of calculations with w = (—0.5,0.5) x (—0.1,0.1), f = 10(0.5,2.0)7, ¢ = le4,
and h-e-adaptive refinements: mesh size Np, space size Np, energy, error estimators, and number of

Newton iterations NNewton-
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Figure 5.51: Discrete magnetization for w = (—0.5,0.5) x (—0.1,0.1), f = 0.15(0.5,2.0)7, and ¢ =
on a uniform mesh with Ny = 1280 triangles and Np = 1872 degrees of freedom.
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Figure 5.52: Divergence of the h-e-adaptively generated discrete solution my; for w = (—0.5,0.5) x
(—0.1,0.1), f = 0.15(0.5,2.0)7, and ¢ = 0 on a mesh with Ny = 9070 triangles and Np = 13031
degrees of freedom.
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Figure 5.53: Maximal length of the magnetization ms on each element. The uniform mesh of w =
(—0.5,0.5) x (—=0.1,0.1) has Np = 20480 triangles and Np = 30528 degrees of freedom. The field
f = 0.15(0.5,2.0)7 is applied to the soft sample with ¢ = 0.

‘ Iteration ‘ Np ‘ Np | Energy e /‘fv NNewton
0 20 24 | -0.002015 | 0.024069 | 0.11008 2
1 80 108 | -0.002310 | 0.015260 | 0.06969 2
2 320 456 | -0.002429 | 0.010265 | 0.04714 2
3 1280 1872 | -0.002482 | 0.007094 | 0.03271 2
4 5120 7584 | -0.002508 | 0.004964 | 0.02295 2
5) 20480 | 30528 | -0.002521 | 0.003494 | 0.01618 2
6 81920 | 122496 | -0.002527 - - 2

Table 5.30: Results of calculations with w = (—0.5,0.5) x (—0.1,0.1), f = 0.15(0.5,2.0)7, ¢ = 0, and
uniform mesh-refinements: mesh size Np, space size Np, energy, error estimators, and number of
Newton iterations NNewton-

After analyzing the effects of strong crystalline anisotropy, we study the behavior of soft material.
First, we apply the field f = 0.15(0.5,2.0)7 to the sample w = (—0.5,0.5) x (—0.1,0.1) with ¢ = 0.
Figure 5.51 shows a representative solution ms on a mesh with Ny = 1280 triangles. We observe
that the magnetization tends to align with the first in-plane axis even though there is no crystalline
anisotropy. This is caused by the shape anisotropy of the sample. The energy contribution of the
divergence favors alignment along the first in-plane axis. The maximal length of the discrete solution
m; on a uniform mesh with Ny = 20480 triangles is shown in Figure 5.53. The constraint is not
active and the effect of the applied field is strongest at the center of w. The divergence of the solution
my; on an adaptive mesh with Np = 9070 triangles is shown in Figure 5.52. As expected, we see the
characteristic edge and corner singularities.

We estimate the energy e(m*) ~ —0.002533235568891 by extrapolation of the values obtained on a
sequence of uniform meshes. Figure 5.54 shows the error of the energy for uniform and h-adaptive
computations. In the uniform case, the convergence is of order N, /2 In the adaptive case, we observe
an asymptotic behavior of N, L at least up to the point where numerical instabilities arise. Note that
this happens at an error level below 1le — 5. The results of the simulations are given in Table 5.30 and

Table 5.31.

Figure 5.55 shows the error in the energy norm, i.e. the error of the divergence in the V-norm, and the
error in the L?-norm for uniform mesh-refinements. The L? error is of higher order. The convergence in
the energy norm is of order N, 4, Figure 5.56 shows the error estimators nf and /‘fv of computation
with the h-adaptive algorithm. The mesh refinement apparently resolves the singularities of m*, cf.
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Figure 5.54: Error in the energy |e(m*) — e(my)| for a sequence of discrete solutions on uniform and
h-e-adaptive meshes for w = (—0.5,0.5) x (—0.1,0.1), f = 0.15(0.5,2.0)7, and ¢ = 0.
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Figure 5.55: Error and error estimators for a sequence of discrete solutions my on uniform meshes of
w = (—0.5,0.5) x (=0.1,0.1) with f = 0.15(0.5,2.0)” and ¢ = 0.
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Iteration ‘ Nt ‘ Np ‘ Energy Ne va NNewton
0 20 24 | -0.002015 | 0.024069 | 0.11008 2
1 36 46 | -0.002175 | 0.019785 | 0.09042 2
2 55 73 | -0.002255 | 0.017256 | 0.07847 2
3 76 102 | -0.002316 | 0.015240 | 0.06994 2
4 100 136 | -0.002357 | 0.013602 | 0.06307 2
5 131 180 | -0.002386 | 0.012368 | 0.05687 2
6 176 244 | -0.002415 | 0.011112 | 0.05113 2
7 225 314 | -0.002435 | 0.010069 | 0.04648 2
8 288 404 | -0.002451 | 0.009020 | 0.04258 2
9 357 501 | -0.002465 | 0.008130 | 0.03835 2
10 434 611 | -0.002476 | 0.007345 | 0.03527 2
11 537 758 | -0.002485 | 0.006653 | 0.03253 2
12 650 919 | -0.002492 | 0.006064 | 0.02990 2
13 783 | 1109 | -0.002496 | 0.005374 | 0.02848 2
14 807 | 1145 | -0.002499 | 0.005129 | 0.02741 2
15 968 | 1375 | -0.002504 | 0.004988 | 0.02537 2
16 1163 | 1652 | -0.002510 | 0.004612 | 0.02499 2
17 1331 | 1894 | -0.002511 | 0.004401 | 0.02335 2
18 1363 | 1942 | -0.002512 | 0.004070 | 0.02202 2
19 1611 | 2296 | -0.002515 | 0.003811 | 0.02070 2
20 1907 | 2720 | -0.002520 | 0.003656 | 0.02031 2
21 2036 | 2906 | -0.002521 | 0.003438 | 0.01960 2
22 2169 | 3098 | -0.002522 | 0.003200 | 0.01899 2
23 2579 | 3684 | -0.002522 | 0.003130 | 0.01843 2
24 2611 | 3732 | -0.002523 | 0.003087 | 0.01727 2
25 3011 | 4306 | -0.002525 | 0.002910 | 0.01743 2
26 3095 | 4432 | -0.002525 | 0.002797 | 0.01651 2
27 3643 | 5214 | -0.002526 | 0.002681 | 0.01557 2
28 3719 | 5328 | -0.002527 | 0.002591 | 0.01424 2
29 4347 | 6228 | -0.002527 | 0.002475 | 0.01409 2
30 4405 | 6315 | -0.002528 | 0.002311 | 0.01333 2
31 5082 | 7283 | -0.002529 | 0.002309 | 0.01308 2
32 5142 | 7373 | -0.002529 | 0.002293 | 0.01338 2
33 5595 | 8026 | -0.002529 | 0.005036 | 0.02123 2
34 5603 | 8038 | -0.002529 | 0.003001 | 0.01329 2
35 5913 | 8488 | -0.002532 | 0.004571 | 0.01914 2
36 5923 | 8503 | -0.002527 | 0.002561 | 0.01174 2
37 6846 | 9822 | -0.002530 | 0.003014 | 0.01317 2
38 6944 | 9969 | -0.002528 | 0.002330 | 0.01073 2
39 8102 | 11626 | -0.002532 | 0.003030 | 0.01295 3
40 8216 | 11797 | -0.002529 | 0.002365 | 0.01064 2
41 9070 | 13031 | -0.002531 | 0.002621 | 0.01146 3

Table 5.31: Results of calculations with w = (—0.5,0.5) x (—0.1,0.1), f = 0.15(0.5,2.0)7, ¢ = 0, and
h-adaptive mesh-refinements: mesh size Np, space size Np, energy, error estimators, and number of
Newton iterations NyNewton-
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Figure 5.56: Error estimators for a sequence of discrete solutions my on h-adaptive meshes for w =
(—0.5,0.5) x (—0.1,0.1), f = 0.15(0.5,2.0)", and ¢ = 0.

Figure 5.57, which leads to an improved order of convergence of N, 172

In the last experiment, we stick to the same setting as before, i.e. w = (—0.5,0.5) x (—0.1,0.1) and
q = 0, but apply a stronger field f = 2(0.5,2.0)7 which effects that the constraint is active, see Figure
5.60. Figure 5.58 shows the discrete solution mg on a uniform mesh with Ny = 1280 triangles and
Np = 1872 degrees of freedom, the divergence of the solution mgg on an h-e-adaptive mesh with
Np = 5668 triangles is shown in Figure 5.59.

The performance of the uniform algorithm with € = h can be seen in Figure 5.61. We observe
convergence with order N, /4 The error in the L2 norm is of higher order. The h-e-adaptive algorithm

performs better and resolves the error component of the divergence at almost linear rate of N 2 Also
the resolution of the penalty error is very good, the empirically reliable error estimator 7; shows also

almost convergence with order N, /2 The results of the uniform and the h-e-adaptive computations
are given in Table 5.32 and Table 5.33. As can be seen in Figure 5.63, the adaptive algorithm leads
to strong refinements of the mesh to the edges, see Figure 5.63. The penalty parameter is refined
stronger at the center of w, where the magnetization m is smooth but well aligned with the applied
field, see Figure 5.64.
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Figure 5.57: Sequence of h-adaptively generated meshes of w = (—0.5.0.5) x (—0.1,0.1) with f =
0.15(0.5,2.0)7 and ¢ = 0.
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Figure 5.58: Discrete magnetization for w = (—0.5,0.5) x (—0.1,0.1), f = 2(0.5,2.0)” and ¢ = 0 on a
mesh with Ny = 1280 triangles and Np = 1872 degrees of freedom.

Iteration ‘ Nt ‘ Np | Energy ‘ nfv ‘ un ‘ ,ufv ‘ NNewton
0 20 24 | -0.3134 | 0.2803 | 0.12543 | 1.2819 7
1 80 108 | -0.3537 | 0.1786 | 0.10373 | 0.8136 7
2 320 456 | -0.3680 | 0.1183 | 0.07999 | 0.5419 7
3 1280 1872 | -0.3737 | 0.0810 | 0.05997 | 0.3725 12
4 5120 7584 | -0.3762 | 0.0564 | 0.04391 | 0.2600 11
5 20480 | 30528 | -0.3774 | 0.0396 | 0.03167 | 0.1830 14
6 81920 | 122496 | -0.3784 - - - 14

Table 5.32: Results of calculations with w = (—0.5,0.5) x (—0.1,0.1), f = 2(0.5,2.0)7, ¢ = 0, and h-
e-uniform refinements: mesh size Ny, space size Np, energy, error estimators, and number of Newton
iterations NNewton -
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Figure 5.59: Divergence of the adaptively generated discrete solution mgyg for w = (—0.5,0.5) x

(-0.1,0.1), f = 2(0.5,2.0)7, and ¢ = 0 on an h-e-adaptive mesh with Ny = 5668 triangles and
Np = 8153 degrees of freedom.
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Figure 5.60: Left: Penalized (red) and not penalized (blue) elements of the solution mjs for w =
(—0.5,0.5) x (—0.1,0.1), f = 2(0.5,2.0)”, and ¢ = 0. Right: Maximal length of the magnetization mj
on each element. The uniform mesh has N7 = 20480 triangles and Np = 30528 degrees of freedom.
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Figure 5.62: Error estimators for a sequence of discrete solutions my on h-e-adaptive meshes of w =
(—0.5,0.5) x (—0.1,0.1) with f = 2(0.5,2.0)" and ¢ = 0.
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Iteration ‘ Nr ‘ Np ‘ Energy nfv n ‘ ,uf v ‘ NNewton

20 24 | -0.3134 | 0.28031 | 0.12543 | 1.2819
39 50 | -0.3364 | 0.23480 | 0.13142 | 1.0633
58 77 | -0.3483 | 0.20954 | 0.13013 | 0.9451
73 98 | -0.3574 | 0.18977 | 0.12537 | 0.8628
102 | 139 | -0.3654 | 0.16766 | 0.12503 | 0.7649
158 | 219 | -0.3749 | 0.14484 | 0.12347 | 0.6646
212 | 296 | -0.3798 | 0.12841 | 0.12078 | 0.5895
283 | 396 | -0.3815 | 0.11045 | 0.11842 | 0.5059
379 | 534 | -0.3821 | 0.10108 | 0.11335 | 0.4636
481 | 678 | -0.3838 | 0.08964 | 0.11036 | 0.4116
560 | 790 | -0.3833 | 0.08254 | 0.10381 | 0.3799
612 | 864 | -0.3820 | 0.07957 | 0.09642 | 0.3660
777 | 1101 | -0.3818 | 0.07234 | 0.09155 | 0.3373
935 | 1327 | -0.3834 | 0.06771 | 0.08945 | 0.3140
1083 | 1540 | -0.3820 | 0.06117 | 0.08643 | 0.2944
1174 | 1670 | -0.3812 | 0.05880 | 0.08107 | 0.2833
1284 | 1826 | -0.3805 | 0.05435 | 0.07645 | 0.2717
1407 | 2001 | -0.3813 | 0.05251 | 0.07337 | 0.2666
1527 | 2177 | -0.3796 | 0.05127 | 0.07056 | 0.2612
1751 | 2503 | -0.3796 | 0.04885 | 0.06687 | 0.2508
2173 | 3108 | -0.3798 | 0.04568 | 0.06460 | 0.2317
2484 | 3555 | -0.3806 | 0.04117 | 0.06191 | 0.2175
2686 | 3847 | -0.3799 | 0.04480 | 0.06000 | 0.2093
23 2961 | 4242 | -0.3804 | 0.03830 | 0.05779 | 0.1990
24 3144 | 4510 | -0.3795 | 0.03513 | 0.05584 | 0.1954
25 3471 | 4983 | -0.3792 | 0.03330 | 0.05195 | 0.1890
26 3992 | 5737 | -0.3793 | 0.03211 | 0.05009 | 0.1839
27 4579 | 6584 | -0.3792 | 0.03186 | 0.04837 | 0.1775
28 5199 | 7473 | -0.3792 | 0.03053 | 0.04592 | 0.1636
29 2668 | 8153 | -0.3793 | 0.02950 | 0.04227 | 0.1614
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Table 5.33: Results of calculations with w = (—0.5,0.5) x (—0.1,0.1), f = 2(0.5,2.0)7, ¢ = 0, and h-e-
adaptive refinements: mesh size Nr, space size Np, energy, error estimators, and number of Newton
iterations NNewton -
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Figure 5.63: Sequence of h-e-adaptively generated meshes of w = (—0.5.0.5) x (—0.1,0.1) with f =
2(0.5,2.0)7 and ¢ = 0.
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Figure 5.64: Adaptive penalty parameter on the mesh To9 of w = (—0.5,0.5) x (—0.1,0.1) with
Nr = 5668 triangles, f = 2(0.5,2.0)7, and ¢ = 0.
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