
D I S S E R T A T I O N

Reliable goal-oriented adaptive FEM

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften unter der Leitung von

Univ.-Prof. Dr. Dirk Praetorius
E101 – Institut für Analysis und Scientific Computing, TU Wien

eingereicht an der Technischen Universität Wien
Fakultät für Mathematik und Geoinformation

von

Dipl.-Ing. Michael Innerberger, BSc BSc
Matrikelnummer: 01225448

Diese Dissertation haben begutachtet:

Prof. Dr. Roland Becker
Laboratoire de mathématiques et de leurs applications, Université de Pau et des Pays de l’Adour

Prof. Dr. Dirk Praetorius
Institut für Analysis und Scientific Computing, TU Wien

Prof. Dr. Rob Stevenson
Korteweg–de Vries Instituut voor Wiskunde, Universiteit van Amsterdam

Wien, am 19. April 2022

Kurzfassung
Diese Arbeit betrachtet zielorientierte adaptive Finite Elemente Methoden (GOAFEM, engl. goal-
oriented adaptive finite element method). Diese versuchen, eine von der Lösung einer partiellen
Differentialgleichung (PDE, engl. partial differential equation) abgeleiteten Zielgröße zu appro-
ximieren. Trotz der praktischen Relevanz von GOAFEM ist mathematische Forschung dazu rar.
Insbesondere ist die existierende Forschung zu optimaler GOAFEM im Wesentlichen auf lineare
elliptische PDEs mit linearen Zielen beschränkt. In dieser Arbeit erweitern wir existierende Re-
sultate zu GOAFEM in Richtung praktisch relevanterer Szenarien und entwerfen Algorithmen, die
zuverlässig die Zielgröße mit hoher (oder sogar optimaler) Effizienz approximieren.
Zuerst wird ein kurzer Überblick über existierende Resultate zu optimaler GOAFEM gegeben,

bevor wir erstmals GOAFEM für lineare elliptische PDEs mit quadratischem Ziel betrachten. Wir
stellen einen adaptiven Algorithmus vor, der ein linearisiertes duales Problem für Fehlerschätzung
undMarkierung verwendet und mit dem auftretenden Linearisierungsfehler umgehen kann. Wir be-
weisen Konvergenz dieses Algorithmus für jedes quadratische Ziel und, darüber hinaus, Konvergenz
mit optimalen algebraischen Raten, sofern die Fréchet-Ableitung des Ziels kompakt ist.
Als nächstes untersuchen wir die Optimalität von GOAFEM für lineare elliptische PDEs mit

linearem Ziel, wobei die primale und duale Lösung durch einen (inexakten) iterativen Löser be-
rechnet werden. Wir beobachten, dass die diskrete Zielgröße in diesem Fall korrigiert werden muss
und beweisen (lineare) Konvergenz des korrigierten Zielfehlers unter der einzigen Annahme, dass
der Löser kontraktiv ist. Weiters präsentieren wir Kriterien basierend auf a posteriori Fehlerschät-
zern für den Diskretisierungsfehler und den algebraischen Fehler, um den iterativen Löser in jedem
Schritt des adaptiven Algorithmus zu terminieren. Falls die involvierten Parameter hinreichend klein
sind, ist der resultierende adaptive Algorithmus optimal in Bezug auf die Anzahl der Freiheitsgrade
und sogar die gesamte Rechenzeit, die auch den Aufwand für das iterative Lösen inkludiert.
Als Anwendung für GOAFEM betrachten wir danach Parameterschätzprobleme für lineare el-

liptische PDEs, die von einer endlichen Anzahl an Parametern abhängen. Die Parameter werden
durch Vergleich von Experimentaldaten und numerischen Simulationen berechnet, welche mittels
GOAFEM durchgeführt werden können, indem die Parameter als Zielgröße betrachtet werden. Wir
beweisen eine neuartige a priori Abschätzung für den Parameterfehler, basierend auf PDEs, die
vom primalen und dualen Problem abhängen. Indem diese Abschätzung als Basis einer Abschät-
zung durch gewöhnliche a posteriori Residualschätzer für Energiefehler fungiert, können wir einen
adaptiven Algorithmus entwerfen, bei dem die Konvergenzrate der a posteriori Abschätzung der
des Parameterfehlers entspricht.
In allen Teilen der Arbeit präsentieren wir numerische Belege für unsere theoretischen Ergeb-

nisse. Der letzte Teil der Arbeit gilt daher Implementierungsaspekten numerischer Experimente für
GOAFEM, wobei wir eine objektorientierte Matlab-Implementierung im Detail beschreiben. Diese
Bibliothek implementiert FEM höherer Ordnung für elliptische PDEs zweiter Ordnung, wobei die
Koeffizienten sehr allgemein gewählt werden können, um auch die meisten Fälle, die typischerweise
bei der iterativen Linearisierung nichtlinearer PDEs auftreten, abzudecken. Insbesondere umfasst
der Code alle angegebenen numerischen Experimente.

Abstract

This thesis considers goal-oriented adaptive finite element methods (GOAFEM), which aim to ap-
proximate some quantity of interest, the goal value, derived from the solution of a partial differential
equation (PDE). Despite the practical relevance of GOAFEM, mathematical research on it is scarce
and, in particular, existing research on optimal algorithms for GOAFEM is essentially limited to
linear elliptic PDEs with linear goals. In this thesis we extend existing results of GOAFEM towards
practically more relevant cases and design algorithms that reliably approximate the goal value at
high (or even optimal) efficiency.
First, we give a brief overview of the existing results on optimal GOAFEM before we consider,

for the first time, GOAFEM for linear elliptic PDEs with quadratic goal. We propose an adaptive
algorithm that uses a linearized dual problem for error estimation and marking, and deals with the
arising linearization error. We prove convergence of this algorithm for every quadratic goal and
even convergence with optimal algebraic rates in the case that the Fréchet derivative of the goal is
compact.
Next, we investigate optimality results of GOAFEM for linear elliptic PDEs with linear goal,

where the primal and dual problem are solved by an (inexact) iterative solver. We observe that the
discrete goal value needs to be corrected in this case, and prove (linear) convergence of the corrected
goal error under the sole assumption that the solver is contractive. Furthermore, we present criteria
to stop the iterative solver on each step of the adaptive algorithm based on a posteriori error estimates
of both discretization error and algebraic error. If the involved parameters are sufficiently small, the
resulting adaptive algorithm is optimal with respect to the number of degrees of freedom and even
with respect to the total computational cost, which also includes the cost of the iterative solver.
As an application of GOAFEM,we then consider parameter estimation problems for linear elliptic

PDEs that depend on a finite number of parameters. These parameters are inferred by comparing
experimental data to numerical simulations, which, by regarding the parameters as a goal value,
can be performed by GOAFEM. We prove a novel a priori estimate for the error in the parameters,
based on a set of PDEs corresponding to primal and dual problem. Using this estimate as the basis
of an estimate by usual a posteriori residual estimators for the energy error, we are able to design an
adaptive algorithm, where the a posteriori bound matches the rate of convergence of the parameter
error.
Throughout, we give numerical evidence to support our theoretical findings. The last part of this

thesis is dedicated to implementational aspects of numerical experiments for GOAFEM, where we
give the details of an object oriented implementation in Matlab. The library implements higher-
order FEM for second-order elliptic PDEs where the coefficients can be quite general, covering also
most cases typically arising from the iterative linearization of nonlinear PDEs. In particular, the
code covers all presented numerical experiments.

Danksagung

Zuallererst möchte ich Prof. Dirk Praetorius danken, von dem ich in den letzten dreieinhalb Jahren
unglaublich viel lernen durfte. Als Betreuer meiner Dissertation hat er mir immer die nötige An-
leitung, aber auch genügend Freiheiten gegeben, um mich fachlich und persönlich weiterentwickeln
zu können. Er hat sich immer um eine kritische, aber stets freundschaftliche Haltung bemüht, die
die Zusammenarbeit äußerst produktiv und angenehm gemacht hat.
Für die Begutachtung meiner Arbeit danke ich an dieser Stelle zum einen Prof. Rob Stevenson

von der Universität Amsterdam; zum anderen Prof. Roland Becker, der mich einige Zeit an der
Universität Pau willkommen geheißen hat, wo ich während etlicher anregender Gespräche und
Unternehmungen viel Neues kennenlernen durfte.
Mein Dank gilt auch allen ehemaligen und aktuellen Arbeitskollegen: Max Bernkopf, Simon

Brandstetter, Max Brunner, Markus Faustmann, Michael Feischl, Giovanni Di Fratta, Gregor Gant-
ner, Alexander Haberl, Ani Miraçi, Carl Pfeiler, Alexander Rieder, Michele Ruggeri, Andrea
Scaglioni, Stefan Schimanko, Ursula Schweigler, Bernhard Stiftner, und Julian Streitberger. Viele
von ihnen waren von Beginn meines Doktoratsstudiums an dabei und haben mir den Einstieg durch
ihren fachlichen Rat oft wesentlich erleichtert. Die Zusammenarbeit mit allen, aber auch die un-
zähligen interessanten Gespräche über Gott und die Welt während so mancher Kaffeepause haben
maßgeblich dazu beigetragen, dass ich immer gerne in die Arbeit gegangen bin.
Mit dem Abschluss des Doktorats geht für mich eine unvergessliche Studienzeit zu Ende. Ich

bedankemich ganz herzlich bei allen Studienkollegen und Freunden, diemich auf demWeg begleitet
haben und ohne die ich mein Studium nicht annähernd so erfolgreich hätte abschließen können. Sie
haben diese Zeit zu etwas ganz Besonderem gemacht.
Schließlich danke ich auch meinen Eltern, die mir in allen Lebenslagen Stütze und Vorbild waren

und mich in all meinen Entscheidungen bestärkt haben; nicht zuletzt auch dafür, dass sie mir mein
Studium überhaupt ermöglicht haben.
Mehr als alles andere hat mich in den vergangenen sieben Jahren jedoch die Unterstützung meiner

Freundin Magdalena getragen. Danke für die wunderbare gemeinsame Zeit, für dein Verständnis
und die Geduld, die du allen meinen kleinen und großen Problemen entgegenbringst, und für deine
bedingungslose Liebe.

Ich danke dem österreichischenWissenschaftsfonds (FWF), der meineArbeit über das Doktoratskol-
leg Dissipation and dispersion in nonlinear PDEs (grant W1245) und den SFB Taming complexity
in partial differential systems (grant SFB F65) finanziert hat, sowie dem Institut Français d’Autriche,
welches mir einen Auslandsaufenthalt an der Universität Pau ermöglicht hat.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Dissertation selbstständig und ohne fremde Hilfe
verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw. die wörtlich oder
sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 19. April 2022
Michael Innerberger

Contents

1 Introduction 1
1.1 The finite element method . 2

1.1.1 Model problem . 2
1.1.2 Discretization of the domain: meshes . 3
1.1.3 Discretization of the equation . 5
1.1.4 Goal-oriented FEM . 6

1.2 A goal-oriented adaptive FEM algorithm . 7
1.2.1 Mesh refinement: newest vertex bisection 7
1.2.2 A posteriori error estimation . 9
1.2.3 Marking . 10
1.2.4 Adaptive algorithm . 12

1.3 Optimal convergence of GOAFEM . 13
1.3.1 Necessary abstract properties . 14
1.3.2 Rate optimality . 16
1.3.3 Main steps of proof . 18

1.4 Outline of thesis . 24
1.5 Other scientific contributions . 27

1.5.1 Instance optimal GOAFEM . 27
1.5.2 GOAFEM for semilinear problems . 27
1.5.3 Weak-strong uniqueness for solutions of the LLG equation 28
1.5.4 Exact diagonalization of time-dependent Hamiltonians 28
1.5.5 Impact ionization in solar-cell models . 29

2 Optimal convergence rates for goal-oriented FEM with quadratic goal functional 31
2.1 Introduction . 31
2.2 Adaptive algorithm & main result . 33

2.2.1 Variational formulation . 33
2.2.2 Finite element method . 34
2.2.3 Linearization of the goal functional . 34
2.2.4 Mesh-refinement . 34
2.2.5 Error estimators . 35
2.2.6 Adaptive algorithm . 36
2.2.7 Alternative adaptive algorithm . 38
2.2.8 Extension of analysis to compactly perturbed elliptic problems 40

2.3 Numerical experiments . 41
2.3.1 Weighted L2-norm . 41
2.3.2 Nonlinear convection . 42
2.3.3 Force evaluation . 42

i

Contents

2.3.4 Discussion of numerical experiments . 43
2.4 Auxiliary results . 45

2.4.1 Axioms of adaptivity . 45
2.4.2 Quasi-orthogonality . 47

2.5 Proof of plain convergence of Algorithm 2A and 2B 49
2.5.1 Algorithm 2A . 49
2.5.2 Algorithm 2B . 51

2.6 Proof of Theorem 2.2 . 51
2.6.1 Linear convergence . 51
2.6.2 Optimal rates . 53

2.7 Proof of Theorem 2.5 . 55

3 Goal-oriented adaptive finite element methods with optimal computational complexity 57
3.1 Introduction . 57
3.2 Goal-oriented adaptive finite element method . 59

3.2.1 Variational formulation . 59
3.2.2 Finite element discretization and solution 60
3.2.3 Discrete goal quantity . 60
3.2.4 Mesh refinement . 61
3.2.5 Estimator properties . 61
3.2.6 Marking strategy . 62
3.2.7 Adaptive algorithm . 63

3.3 Main results . 65
3.3.1 Linear convergence with optimal rates . 65
3.3.2 Alternative termination criteria for iterative solver 67

3.4 Numerical examples . 69
3.4.1 Singularity in goal functional only . 70
3.4.2 Geometrical singularity . 73

3.5 Proof of Theorem 3.5 . 73
3.6 Proof of Theorem 3.7 (optimal rates) . 80

4 Adaptive FEM for parameter-errors in elliptic linear-quadratic parameter estimation
problems 83
4.1 Introduction . 83
4.2 Parameter estimation problem . 85

4.2.1 Problem formulation . 85
4.2.2 Solution components . 86
4.2.3 Least squares system and solution . 86
4.2.4 FEM discretization . 87
4.2.5 Co-state components . 88

4.3 Adaptive algorithm and main results . 88
4.3.1 A priori estimate . 88
4.3.2 Mesh refinement . 89
4.3.3 A posteriori error estimation . 89
4.3.4 Adaptive algorithm . 91

ii

Contents

4.3.5 Convergence of Algorithm 4A . 92
4.4 Proof of Theorem 4.5 . 93

4.4.1 Auxiliary a priori bounds . 93
4.4.2 Error bound for parameter error . 96

4.5 Proof of Theorems 4.13 and 4.14 . 99
4.5.1 Linear convergence . 99
4.5.2 Proof of optimal rates . 100

4.6 Numerical examples . 102
4.6.1 Single parameter and measurement . 102
4.6.2 Multiple parameters and measurements with perturbation 103

5 MooAFEM: An object oriented Matlab code for higher-order (nonlinear) adaptive FEM107
5.1 Introduction . 107
5.2 Adaptive algorithm and importance of OOP . 109

5.2.1 Necessity of OOP in Matlab FEM . 111
5.3 Code structure . 113

5.3.1 Module geometry . 113
5.3.2 Module integration . 116
5.3.3 Module FEM . 118

5.4 Data structures . 119
5.4.1 Mesh . 119
5.4.2 Mesh construction . 120
5.4.3 Array layout . 120
5.4.4 Efficient linear algebra . 121

5.5 Examples . 122
5.5.1 Higher order AFEM with known solution 122
5.5.2 Goal-oriented AFEM with discontinuous data 125
5.5.3 Iterative solution of nonlinear equations 127

Bibliography 131

Curriculum vitae 137

iii

1 Introduction
As Henri Poincaré once remarked, “solution of a mathematical problem” is a phrase of indefinite
meaning. Pure mathematicians sometimes are satisfied with showing that the non-existence of
a solution implies a logical contradiction, while engineers might consider a numerical result
as the only reasonable goal. Such one sided views seem to reflect human limitations rather than
objective values. In itself mathematics is an indivisible organism uniting theoretical contemplation
and active application.

—Richard Courant, Address to the meeting of the AMS, 1941 [Cou43]

Mathematics has an exceptional position among all scientific disciplines in that it is fundamentally
different from all other fields: instead of making use of the scientific method, which seeks to falsify
theories through comparison with reality, i.e., by experiment, mathematics can prove its theories
without ever making a connection to the “real” world.
Yet, mathematics has indispensable implications on our daily lives: The models and theories of

most scientific fields are formulated in the language of mathematics, be it engineering, medicine,
or social science. Once this translation is performed, the abstract construct of mathematics often
allows to make predictions or even draw conclusions within those theories. In return, applications
often provide intuition that directs and drives mathematical progress.
It is exactly this mutual support of mathematics and applications that Richard Courant identifies as

the inherent nature of mathematics in the speech quoted at the beginning of this chapter. He proceeds
in this address to describe and highlight the importance of Variational methods for the solution of
problems of equilibrium and vibrations, which are, in our modern nomenclature, Galerkin methods.
Since the time of this speech, Galerkin methods have become the arguably most widespread tool for
numerical simulation, thus further tightening the bond of mathematics and applications. This thesis
is concerned with one particular class of Galerkin methods: goal oriented adaptive finite element
methods (GOAFEM).
The starting point of any FEM computation is a partial differential equation (PDE) that is

often motivated by a model in physics or engineering, although other disciplines like economics,
medicine, and social sciences are also relying on PDE models to a greater extent in recent years.
These models have become so complex that solving the underlying PDE is not possible by hand
anymore and therefore numerical solution by FEM is required. This is done by discretizing the
underlying physical domain into finitely many subdomains, the elements, on which the solution is
approximated by simple functions, e.g., piecewise polynomials.
In applications, however, one is often not interested in the solution as a whole but only some

derived quantity of interest, the goal (value), e.g., the flux over the boundary or the mass in only a
part of the domain. Therefore, it is reasonable to choose the FEM discretization such that the goal is
as accurate as possible. Unfortunately, it is not clear in advance what parts of the solution are most
critical for choosing the discretization. As a consequence, adaptive algorithms have emerged, which
iteratively refine the discretization to make best use of computational resources for approximating
the goal value.

1

1 Introduction

Adaptive FEM algorithms are of the following general form:

Solve Estimate Mark Refine (1.1)

While the precise meaning of the building blocks is described in the further course of this chapter
and dependent on the specific problem one wants to solve, we stress here that GOAFEM is an
iterative process: A tentative solution is computed (Solve), from which estimates of the accuracy
of the goal are inferred (Estimate). Subsequently, the latter are used to change the underlying
discretization in order to improve the solution quality (Mark and Refine). These steps are repeated
until a prescribed accuracy is reached, or computational resources are exhausted.
The naturally arising question is whether these iterative computations on successively refined

discretizations are actually more expensive than doing the computation once on a sufficiently fine
uniform discretization. The aim of this thesis is to design GOAFEM algorithms that negate this
question in a reliable way: under some assumptions, they provide a guaranteed upper bound of the
goal error and drive down this bound in an optimal way, i.e., by making best use of available compu-
tational resources. So far, this has only been done for some problems of mainly academic interest.
In the following, we first give a precise mathematical introduction on the concepts mentioned so far
and, subsequently, extend the existing scientific literature on GOAFEM towards more practically
relevant cases.

1.1 The finite element method

Wefirst give a brief introduction to the overarchingmodel problem of this thesis and its discretization
by the finite element method, which constitutes the step Solve from the adaptive loop (1.1). For
more details, the reader is referred to a standard reference on finite elements, e.g., [BS08; EG04].

1.1.1 Model problem

Let Ω ⊂ Rd be an open domain with polygonal Lipschitz boundary ∂Ω for d ≥ 2. On this domain,
we consider the linear second-order elliptic PDE

−div A∇u + b · ∇u + cu = f + div f in Ω, (1.2a)
u = 0 on ∂Ω. (1.2b)

We suppose that the diffusion matrix A(x) ∈ Rd×dsym is symmetric and that A ∈ [L∞(Ω)]d×d is
uniformly positive definite. Furthermore, we assume that the convection vector b(x) ∈ Rd and the
reaction coefficient c(x) ∈ R are essentially bounded, i.e., b ∈ [L∞(Ω)]d and c ∈ L∞(Ω). Finally,
we require that the given data are square integrable, i.e., f ∈ L2(Ω) and f ∈ [L2(Ω)]d, where the
divergence in (1.2a) is understood in a weak sense.

Remark 1.1. The PDE (1.2) is the least general equation that covers all model problems of the
subsequent chapters. Where necessary or favorable for the presentation, the model is restricted
accordingly. However, some results apply to more general problems than (1.2). Both cases are
noted at the beginning of the respective chapters.

2

1.1 The finite element method

The natural space to look for solutions of (1.2) is the Sobolev space

H1(Ω) := {v ∈ L2(Ω) | ∇v ∈ [L2(Ω)]d in a weak sense},
which is a Hilbert spaces when equipped with the scalar product

〈v , w〉H1(Ω) :=
∫
Ω

〈v , w〉 + 〈∇v , ∇w〉 dx for all v,w ∈ H1(Ω),

where 〈· , ·〉 is the Euclidian scalar product on Rn for some n ∈ N which is clear from context. The
corresponding norm reads

‖v‖2
H1(Ω) := ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω) for all v ∈ H1(Ω).

Functions v ∈ H1(Ω) admit a trace in L2(∂Ω) [Gri11]. Thus, the boundary condition (1.2b) can be
incorporated in the ansatz space, i.e.,

H1
0 (Ω) := {v ∈ H1(Ω) | v = 0 on ∂Ω}.

We finally define the topological dual space H−1(Ω) := (
H1
0 (Ω)

) ′.
The weak formulation of (1.2), which is obtained by multiplication of (1.2) with a test function

v ∈ H1
0 (Ω) and integration by parts, then reads: Find u ∈ H1

0 (Ω) such that

a(u, v) :=
∫
Ω

A∇u · ∇v + b · ∇u v + cuv dx =
∫
Ω

f v − f · ∇v dx =: F(v) for all v ∈ H1
0 (Ω). (1.3)

As we are not concerned with solvability aspects in this work, we assume that the coefficients are
chosen in such a way that (1.3) fits into the setting of the Lax–Milgram lemma, i.e., there exist
constants Ccnt,Cell > 0 such that

Cell ‖v‖2H1(Ω) ≤ a(v, v) and a(v,w) ≤ Ccnt ‖v‖H1(Ω)‖w‖H1(Ω) for all v,w ∈ H1
0 (Ω); (1.4)

see, e.g., [Eva10, Section 6.2]. Under these assumptions, (1.3) admits a unique solution. We further
note that the so-called energy norm

|||v |||2 :=
∫
Ω

A∇v · ∇v dx

induced by the principal part of a(·, ·) is an equivalent norm on H1
0 (Ω).

1.1.2 Discretization of the domain: meshes

As noted at the beginning of this chapter, it is often not possible to analytically find a solution to (1.3).
It is therefore necessary to approximate solutions numerically, e.g., by a Galerkin method. Common
to all of them is the principle of solving (1.3) on a finite dimensional subspace XH ⊆ H1

0 (Ω). This
basic idea was apparently already known to Leonhard Euler in the eighteenth century, but emerged
as an independent method through the seminal works of Walter Ritz and Boris Galerkin at the
beginning of the twentieth century [GW12]. Among the most widely used implementations of this
general principle are Krylov and spectral methods, as well as boundary and finite element methods.
This thesis is concerned with the latter, the modern understanding of which was fundamentally
shaped by Richard Courant, who contributed the introductory quote of this thesis.
The finite element method consists of dividing the computational domain Ω into smaller pieces,

the elements, on which local approximations to the solution are constructed from polynomials. The
collection of all elements is called mesh [EG04].

3

1 Introduction

Figure 1.1: Example of conforming 2D, non-conforming 2D, conforming 3D, and non-conforming
3D triangulation (left to right). The mismatched parts are highlighted in red.

Definition 1.2: Mesh

Let Ω ⊆ Rd be an open domain. A mesh is a finite set TH of closed, connected sets in Rd,
called elements, such that

• the d-dimensional Lebesgue measure is positive, |T | > 0 for all T ∈ TH ;
• the elements are non-overlapping, |T ∩ T ′ | = 0 for all T,T ′ ∈ TH with T , T ′;

• Ω is covered by TH ,
⋃

T ∈TH T = Ω.

An example of an element is a d-dimensional simplex T = conv{z0, z1, . . . , zd}, which is the
convex hull of d+1 points z0, z1, . . . , zd ∈ Rd, i.e., a triangle in two and a tetrahedron in three dimen-
sions. For 0 ≤ n ≤ d, an n-dimensional subsimplex is the convex hull of a subset zi0, zi1, . . . , zin .
The boundary of a simplex consists of (d − 1)-dimensional subsimplices, which we call faces;
one dimensional subsimplices are called edges. In this thesis, we exclusively consider simplicial
meshes. We note, however, that also meshes of quadrilaterals [BN10], general polytopes (e.g.,
in the virtual element method [BBC+13]), and even non-polytopal elements (e.g., in isogeometric
analysis [CHB09]) are commonly used. Furthermore, we restrict ourselves to conforming meshes;
see Figure 1.1 for a visualization.

Definition 1.3: Conforming (simplicial) mesh
We say that a simplicial mesh is conforming if, for T,T ′ ∈ TH , the intersection T ∩T ′ is either
empty or a subsimplex of both T and T ′. In particular, no hanging nodes (0-dimensional
subsimplices) must occur.

We associate to each element T ∈ TH its local size

hT := |T |1/d

and say that a mesh is γ-shape regular for some γ > 0 if

max
T ∈TH

diam(T)d
|T | < γ < ∞. (1.5)

4

1.1 The finite element method

1.1.3 Discretization of the equation

Bymeans of the discretization of the underlying computational domainΩ, the finite element method
discretizes also the space of functions, in which solutions to (1.3) are sought. To this end, we define
the space of piecewise polynomials of degree p ∈ N by

Sp(TH) :=
{
v ∈ H1(Ω)

�� v |T is a polynomial of degree p for all T ∈ TH
}

and set Sp
0 (TH) := Sp(TH) ∩ H1

0 (Ω). We sometimes abbreviate XH := Sp
0 (TH) as well as X :=

H1
0 (Ω). The discretization of the weak formulation (1.3) then reads:

Find u ∈ XH such that a(uH, vH) = F(vH) for all vH ∈ XH . (1.6)

By using a basis (ϕk)Nk=1 ofS
p
0 (TH), where N := dim

(Sp
0 (TH)

)
is the number of degrees of freedom,

this equation reduces to the linear system

Ax = b, (1.7)

where
Ai j = a(ϕj, ϕi) and bi = F(ϕi) for all 1 ≤ i, j ≤ N .

The solution vector x ∈ RN then yields the coefficients of the discrete solution of (1.6), i.e.,

uH =

N∑
k=1

xiϕi . (1.8)

Because we supppose that the coefficients of (1.2) are such that the Lax–Milgram theory can be
applied, problem (1.6) (as well as the linear system (1.7)) admits a unique solution. There further
holds the following quasi-best approximation result [EG04, Lemma 2.28].

Theorem 1.4: Céa lemma
Let u ∈ H1

0 (Ω) be the solution of (1.2) and uH ∈ XH be its FEM-approximation, i.e., the
solution of (1.6). Then, there holds

‖u − uH ‖H1(Ω) ≤
Ccnt

Cell
inf

vH ∈XH
‖u − vH ‖H1(Ω). (1.9)

Usually, one further estimates the infimum in (1.9) by approximation properties of the space XH .
This gives rise to a priori error estimates of the form

|||u − uH ||| . Hα, (1.10)

where α > 0 is the rate of approximation, H is the global mesh width of TH , i.e.,
H := max

T ∈TH
hT ,

and a . b for a, b ∈ R means that there exists a constant C > 0 such that a ≤ C b; in particular, we
suppose that the hidden constant is independent of H. In the following, if there holds a . b . a,
we abbreviate this by a ' b. The estimate (1.10) implies convergence of the finite element
approximation uH → u if H → 0, i.e., if the elements of the used mesh become uniformly small.

5

1 Introduction

1.1.4 Goal-oriented FEM

While standard FEM tries to approximate the whole solution in the energy norm and aims to
minimize the error in the energy norm (1.10), one is often only interested in a small part of the
information provided by the solution u. This interesting part is modeled by a so-called (linear) goal
functional G ∈ H−1(Ω) such that the quantity of interest becomes G(u), also called goal value or
just goal. The goal can be approximated by means of the discrete FEM solution via G(uH). The
overall aim then is to minimize the goal error |G(u) − G(uH)|, the FEM becomes goal-oriented.

To estimate the goal error, one can use boundedness of the goal functional to obtain

|G(u) − G(uH)| . ‖G‖H−1(Ω) |||u − uH |||. (1.11)

Then, the error estimate (1.10) guarantees convergence of the goal error if the mesh width H tends
to zero. This, however, does not take into account that only the derived quantity G(u) rather than
the solution u as a whole needs to be approximated.
To make use of this information, one considers the so-called dual problem:

Find z ∈ H1
0 (Ω) such that a(v, z) = G(v) for all v ∈ H1

0 (Ω). (1.12)

For the remainder of this chapter, we suppose that the goal functional has essentially the same
structure as the right-hand side of the model problem (1.3), i.e., there exist functions g ∈ L2(Ω) and
g ∈ [L2(Ω)]d such that

G(v) =
∫
Ω

gv − g · ∇v dx for all v ∈ H1
0 (Ω). (1.13)

In explicit terms, the weak formulation of the dual problem then reads∫
Ω

∇z · A∇v − b · ∇z v + (c − div b)zv dx =
∫
Ω

gv − g · ∇v dx for all v ∈ H1
0 (Ω). (1.14)

Note that the difference to (1.3), besides the obvious change of right-hand side, is the order of
the arguments in the bilinear form a(·, ·). In this context, problem (1.3) is sometimes also called
primal problem. On some mesh TH , one can approximate the dual solution z by some finite element
function zH ∈ XH that satisfies

a(vH, zH) = G(vH) for all vH ∈ XH . (1.15)

A further ingredient of a suitable goal error estimate is the Galerkin orthogonality for the primal
problem,

a(u − uH, vH) = 0 for all vH ∈ XH, (1.16)

which can be seen by subtracting (1.6) from (1.3). Combining all previous equalities yields

G(u) − G(uH) (1.12)= a(u − uH, z) (1.16)= a(u − uH, z − zH).

Finally, continuity (1.4) of the bilinear form yields

|G(u) − G(uH)| . |||u − uH ||| |||z − zH |||. (1.17)

6

1.2 A goal-oriented adaptive FEM algorithm

If the primal and the dual problem can be approximated as in (1.10) with a rate α > 0 and β > 0,
respectively, the goal error can be approximated at a rate α + β, i.e.,

|G(u) − G(uH)| . Hα+β . (1.18)

Thus, if one is not interested in the overall solution u but only the goal G(u), one can expect faster
convergence of the approximation in this case.

1.2 A goal-oriented adaptive FEM algorithm

In this section, we go intomore detail about the remaining components of the adaptive loop (1.1), i.e.,
Estimate,Mark, andRefine, with the final aimof formulating a concreteGOAFEMalgorithm. The
idea of employing an adaptive loop to accelerate FEM computations already goes back to [BV84].
While our modern understanding of adaptivity for energy norm errors (1.10) was shaped by the
seminal contributions [Dör96; MNS00], goal-oriented adaptivity ismuch younger, albeit being often
more important in applications. The idea of abandoning the naive approach suggested by (1.11) and,
instead, exploiting the dual problem (1.12) was first used in [BR01; BR03; EEHJ95; GS02], mainly
in the course of the so-called dual-weighted residual (DWR) method. GOAFEMs that employ
residual error estimation for energy norms, which enables extensive convergence results, were only
introduced several years later in the seminal works [BET11; MS09]. We present here the most
recent viewpoint.

1.2.1 Mesh refinement: newest vertex bisection

We first tend to (local) mesh refinement, i.e., the process of obtaining a new mesh from subdividing
a number of elements in the old mesh. Since we do not permit hanging nodes, generally more
elements than those singled out for refinement have to be refined to recover conformity. To do this
in a way that does not refine too many elements and yet does not generate badly shaped elements is
a non-trivial task. From this viewpoint, the most suitable refinement algorithm for adaptive FEM
is newest vertex bisection (NVB) [KPP13; Mau95; Ste08; Tra97]. We only state here the most
simple case that is not trivial, d = 2, in order to not overload the presentation with technicalities.
Afterwards, we remark on extensions to general dimensions.

Algorithm in two dimensions

Our presentation for this case follows [KPP13]. We associate to every element T ∈ TH one of
its edges, called refinement edge and denoted by re(T). If the element T = conv{z0, z1, z2} with
re(T) = conv{z1, z2} is refined, it is split into two simplices by bisecting the refinement edge as
follows: A new node z = (z1 + z2)/2 is introduced and the new elements are

T1 = conv{z0, z1, z} and T2 = conv{z0, z, z2}

with refinement edges re(T1) = conv{z0, z1} and re(T2) = conv{z0, z2}, respectively. These are the
edges opposite to the newest vertex; hence, the name. Further refinement of the child elements is
carried out by the same procedure. The whole algorithm reads as follows.

7

1 Introduction

Figure 1.2: Example of the closure step, Algorithm 1A(ii). In the leftmost mesh, the refinement
edges and the marked element are highlighted. Algorithm 1A(ii) successively marks
edges such that no hanging nodes are present (middle); tentative new edges are dashed.
The resulting rightmost mesh has no hanging nodes and all marked elements are bisected
at least once.

Figure 1.3: All possible bisections of one element that can occur during a call of Algorithm 1A.
The refinement edge of the parent triangle is assumed to be the bottom edge. Marked
edges, i.e., edges inUH , and refinement edges of the children are highlighted in red.

Algorithm 1A: Newest vertex bisection
Input: Mesh TH and set of marked elementsMH ⊆ TH

(i) DefineUH := ∅ and CH := {re(T) | T ∈ MH }
(ii) While CH , ∅ do

(1) UH := UH ∪ CH
(2) CH :=

{
re(T)

��T ∈ TH : ∃E ∈ UH with E ⊂ T
} \ UH

(iii) Refine elements such that all edges inUH are bisected according to Figure 1.3

Output: Refined mesh Th

We write Th = refine(TH,MH). The inner loop, Algorithm 1A(ii), is called closure step and
ensures that no hanging nodes are left in the refined mesh. Therein, edge refinement is propagated
through themesh by successivelymarking refinement edges of elementswith hanging nodes to obtain
CH ; see Figure 1.2. After that, all elements are refined at once according to their edges marked for
bisection in UH . We note that Algorithm 1A is guaranteed to terminate for all configurations of
refinement edges in the initial mesh [KPP13].
We further write Th ∈ T(TH) if Th can be obtained from TH by finitely many steps of NVB,

i.e., there exist Ti and Mi ⊆ Ti for i = 1, . . . , N − 1 ∈ N with T1 = TH , TN = Th, and Ti+1 =
refine(Ti,Mi). Henceforth, we fix an initial mesh T0 of Ω and abbreviate T := T(T0).

8

1.2 A goal-oriented adaptive FEM algorithm

Generalization to higher dimensions

For higher dimensions, NVB is somewhat more involved than Algorithm 1A. In particular, in this
case it is not straightforward how to choose the refinement edge of the child elements, since there
is more than one edge opposite to the newest vertex. The strategy proposed in [Ste08] suggests that
each simplex is assigned an additional integer tag, which increases when passing to child elements.
The refinement edge is then chosen according to the value of this tag.
Furthermore, it is not yet known how to generalize the fundamental structure of Algorithm 1A

(first propagating bisected edges through the mesh and then refining elements based on marked
edges) to higher dimensions: For Algorithm 1A(iii), all possible refinement patterns of one element
have to be known. In two dimensions, these are depicted in Figure 1.3; In higher dimensions,
the number of possible refinements grows exponentially such that even for d = 3 no complete list
analogous to Figure 1.3 is known. Hence, the NVB algorithm for higher dimensions is formulated
as recursive algorithm that sequentially bisects suitable patches of elements [Ste08]. To guarantee
the existence of such bisectable patches, the choice of refinement edges on the intitial triangulation
cannot be arbitrary but has to satisfy some preconditions [BDD04].
We stress that, although NVB is more involved in dimensions d ≥ 3, it is well-analyzed if the

above modifications are taken into account; see [Ste08].

1.2.2 A posteriori error estimation

To estimate the local error of the approximations uH ≈ u and zH ≈ z (and, thus, by (1.17) also of
G(uH)), we employ so-called residual error estimators [Ver13]. These are based on an element-wise
decomposition of the weak form; e.g., for the primal problem (1.3), we have that

0 = a(uH, vH) − F(vH) =
∑

T ∈TH

∫
T

[
A∇uH · ∇vH + b · ∇uH vH + cuHvH − f vH + f · ∇vH

]
dx.

Since uH ∈ Sp
0 (TH) means that uH |T is a polynomial and therefore smooth for every element

T ∈ TH , we can use element-wise integration by parts to obtain that

0 =
∑

T ∈TH

∫
T

[− div(A∇uH + f)+ b · ∇uH + cuH − f
]
vH dx +

∑
T ∈TH

∫
∂T∩Ω

[
A∇uH + f

] · n vH ds,

where n is the outwards-facing unit normal vector on ∂T . Summarizing the contributions over
element boundaries for each face and introducing the normal jump [[(·) · n]] over faces, this motivates
to introduce, for vH ∈ Sp

0 (TH) and T ∈ TH , the primal indicator

ηH (T, vH)2 := h2T ‖ div(A∇vH + f) − b · ∇vH − cvH + f ‖2
L2(T)

+ hT ‖[[(A∇vH + f) · n]]‖2
L2(∂T∩Ω).

(1.19a)

Analogously, the weak dual problem (1.14) leads to the dual indicator

ζH (T, vH)2 := h2T ‖ div(A∇vH + g) + b · ∇vH + (div b − c)vH + g‖2L2(T)
+ hT ‖[[(A∇vH + g) · n]]‖2

L2(∂T∩Ω).
(1.19b)

9

1 Introduction

Note that, in order for the L2-norms in (1.19) to be well-defined, we need the additional assumptions
that b ∈ H(div;Ω), and f |T , g |T ∈ H(div;T) as well as f |∂T , g |∂T ∈ L2(∂T) for all T ∈ TH . This
can be ensured, e.g., by choosing b constant and f , g as T0-piece-wise polynomials.
On a subsetUH ⊆ TH , we define the estimator to be the quadratic sum of the element contribu-

tions, i.e.,

ηH (UH, vH)2 :=
∑

T ∈UH

ηH (T, vH)2, ζH (UH, vH)2 :=
∑

T ∈UH

ζH (T, vH)2.

We further abbreviate ηH (vH) := ηH (TH, vH), ηH (UH) := ηH (UH, uH), and ηH := ηH (TH), as
well as the corresponding quantities for ζH and zH .

The error estimators serve as an a posteriori error bound for the error in the energy norm, i.e.,

|||u − uH ||| . ηH and |||z − zH ||| . ζH for all TH ∈ T, (1.20)

where the hidden constant is, in particular, independent of the mesh TH . This estimate is also called
reliability and plays a vital role in the convergence analysis further below. By means of (1.17), it
also leads to an a posteriori estimate for the goal error:

|G(u) − G(uH)| . ηH ζH . (1.21)

We stress that the quantities (1.19) and, hence, also the upper bound for the goal error can be
computed easily once the Galerkin solutions uH and zH are known.
The advantage of residual error estimators lies in their exquisite analytical properties (see Sec-

tion 1.3). However, alternative approaches such as, most notably, the DWR method, which uses
the primal a posteriori estimator ηH with local weights based on the approximate dual solution
zH to drive adaptive algorithms, also yield good results in practice without extensive convergence
analysis; in particular, for nonlinear equations [BR01].

1.2.3 Marking

Elements in a mesh are marked according to their error indicators (1.19). The most common
marking strategy in the mathematical literature concerning AFEM is the bulk chasing criterion
introduced by Dörfler [Dör96]. In case of only primal error indicators and for a marking parameter
0 < θ ≤ 1, it asks for a setMH ⊆ TH of (quasi-)minimal cardinality such that

θ η2H ≤ ηH (MH)2, (1.22)

i.e., the setMH is responsible for at least the fraction θ of the error estimator on the whole mesh.
This criterion is also known asDörfler marking throughout the literature. The phrase quasi-minimal
cardinality means that, with a fixed constant Cmark ≥ 1, there holds

#MH ≤ Cmark min{#UH | UH ⊆ TH with θ η2H ≤ ηH (UH)2},

where we denote by #MH the cardinality of the (finite) setMH . Note that this set is non-empty,
i.e., MH , ∅, but not necessarily unique. The set MH from (1.22) with arbitrary Cmark ≥ 1
can generally determined by sorting in almost linear complexity; an algorithm based on a binning
technique can carry out marking in linear time, although with the restriction Cmark = 2 [Ste07];

10

1.2 A goal-oriented adaptive FEM algorithm

recently, an algorithm based on quick-selection has been proposed, which achieves linear complexity
even for Cmark = 1 [PP20].

Although there are other marking strategies present in the literature [DKS16; IP21; KS16;
MSV08; Sie11], the Dörfler marking criterion has received the most attention because of its striking
analytical features, whichwe exploit in the optimality analysis down below; in particular, for standard
AFEM, Dörfler marking is sufficient (and in some sense even necessary, see Proposition 1.18 below)
as a marking step to guarantee optimal convergence rates.
For GOAFEM, however, also the dual indicators have to be taken into account. The existing

GOAFEM marking algorithms all comprise a step to combine the information of primal and dual
indicators as well as a marking step, though they differ in the order of these steps. The first proposed
marking strategy for GOAFEM appeared in the seminal paper [MS09] and carries out separate
Dörfler marking before combining the information.

Algorithm 1B: MS marking
Input: Indicators ηH (T) and ζH (T) for all T ∈ TH , marking parameter 0 < θ ≤ 1

(i) Use Dörfler marking (1.22) for ηH and ζH to obtain setsMu
H andMz

H , respectively

(ii) ChooseMH := argmin
{
#Mu

H,#Mz
H

}
Output: Set of marked elementsMH

A variant, which proves more effective in numerical experiments was proposed in [FPZ16].

Algorithm 1C: FPZ marking
Input: Indicators ηH (T) and ζH (T) for all T ∈ TH , marking parameter 0 < θ ≤ 1

(i) Use Dörfler marking (1.22) for ηH and ζH to obtain setsMu
H andMz

H , respectively

(ii) Set n := min
{
#Mu

H,#Mz
H

}
(iii) ChooseMu

H ⊆ Mu
H andMz

H ⊆ Mz
H with#Mu

H = #Mz

H = n

(iv) SetMH :=Mu

H ∪M
z

H

Output: Set of marked elementsMH

The heuristic reason why Algorithm 1C seems to perform better in practice than Algorithm 1B
is that the latter must choose between marking for primal or dual problem. The former, however,
additionally marks elements with large indicator for the respective other problem. Thus, the number
of elements is expected to grow faster with Algorithm 1C without deteriorating convergence rates.
Such a consideration is also the starting point of the following marking strategy from [BET11],

which reverses the order of marking and combination step. The idea is to first weight the primal
and dual indicators by the respective other indicators to obtain a new weighted error estimator, for
which Dörfler marking is employed.

11

1 Introduction

Algorithm 1D: BET marking
Input: Indicators ηH (T) and ζH (T) for all T ∈ TH , marking parameter 0 < θ ≤ 1

(i) Define the weighted error estimator %H (T)2 := ηH (T)2ζ2H + η2H ζH (T)2.
(ii) Use Dörfler marking (1.22) for %H to obtain the set of marked elementsMH

Output: Set of marked elementsMH

For a very simple model problem, it is shown in [BET11] that Algorithm 1D performs better
than Algorithm 1B in the sense that it leads to a larger contraction per step. This advantage is also
observed in practice for more general problems. However, the “price” to pay for this is that the
marking parameter must be chosen smaller to ensure optimality; see Theorem 1.10 below. This is
not a mere theoretical artifact: e.g., for point evaluations in BEM computations, lower convergence
rates for large marking parameters θ have been observed in [FGH+16].

Remark 1.5. The work [BET11] offers an interesting point of view on Algorithms 1B–1D: First,
observe that, for ηH > 0, the Dörfler marking criterion (1.22) can also be written as

θ ≤ ηH (MH)2
η2H

.

The assumption ηH > 0 is not at all restrictive, since ηH = 0 and reliability (1.20) already imply
|||u − uH ||| = 0. Then, under the assumption ηH, ζH > 0, one can reformulate Algorithm 1B as
findingMH ⊆ TH with minimal cardinality such that

θ ≤ max
{ηH (MH)2

η2H
,
ζH (MH)2

ζ2H

}
. (1.23)

Analogously, Algorithm 1D can be reformulated (actually, this is the original formulation) as

θ ≤ 1

2

(ηH (MH)2
η2H

+
ζH (MH)2

ζ2H

)
.

Hence, both algorithms are just different realizations of some mean between the primal and the dual
estimator ratio. This creates a unified theoretical frame for both algorithms. From this viewpoint,
also Algorithm 1C takes the form (1.23) with Cmark = 2, although the additional elements are not
chosen arbitrarily, but in a clever way.

1.2.4 Adaptive algorithm

Finally, we are able to write down the full adaptive algorithm for model problem (1.2) with linear
goal functional (1.13), which concretizes the abstract adaptive loop (1.1).

Algorithm 1E: GOAFEM
Input: Initial mesh T0, marking parameter 0 < θ ≤ 1
Loop: For all ` = 0, 1, . . . do

Solve Solve (1.3) and (1.14) on T̀ to obtain u` and z` , respectively

12

1.3 Optimal convergence of GOAFEM

Estimate Compute refinement indicators η`(T) and ζ`(T) from (1.19) for all T ∈ T̀
Mark Obtain marked elementsM` ⊆ T̀ from Algorithm 1B, 1C, or 1D

Refine Compute T̀ +1 := refine(T̀ ,M`) by NVB (Algorithm 1A)

Output: Solutions u` , z` , approximate goal values G(u`), and goal error estimates η`ζ` for
all ` ∈ N0

We note that the adaptive algorithm for GOAFEM is very similar to the one of standard (i.e., not
goal-oriented) AFEM. Apart from the lack of a dual solution z` and the corresponding refinement
indicator ζ`(T), the main difference is the marking step, which usually is (1.22) for AFEM.
Of course, Algorithm 1E cannot be iterated indefinitely in practice. Usually, one stops as soon

as all computational resources are depleted or the upper bound for the goal error η`ζ` falls below
some small given threshold τ > 0. For the latter stopping criterion to work for every threshold, one
needs at least convergence lim`→∞ η`ζ` = 0. We go into detail about convergence of Algorithm 1E
in the following section, where a much stronger convergence result is shown.

Remark 1.6. Because of the upper bound of the goal error presented in (1.11), instead of Algo-
rithm 1E one can use a standard AFEM, e.g., as described in [CFPP14], that is driven only by the
primal estimator η` or the dual estimator ζ` . Also, by using the Young inequality on (1.21), one
can use a standard AFEM driven by the product space estimator (η2` + ζ2`)1/2 as presented in Algo-
rithm 2B. However, both approaches lead to sub-optimal rates compared to that of Algorithm 1E;
see Chapter 2 and [MS09] for details.

1.3 Optimal convergence of GOAFEM

The standard a priori error estimates (1.10) and (1.18) involve the global mesh width. From these,
convergence follows only if the mesh becomes successively smaller in a uniform way, since this
guarantees a decrease of the global mesh width, i.e., H → 0. However, most adaptive FEM
algorithms do not guarantee that H gets arbitrarily small. Instead, the convergence analysis has to
rely on the a posteriori estimates (1.20) and (1.17) as well as other tools that are introduced in this
section.

These tools presented here were originally developed for standard AFEM; see, e.g., [BDD04;
CKNS08; Dör96; MNS00; Ste07] for some seminal contributions, or [CFPP14] for a survey within
an abstract framework. For GOAFEM, results are much more scarce. In the works [BET11; MS09],
the foundation was laid by transferring the AFEM analysis to the goal-oriented setting for some
simple model problems. The works [FGH+16; FPZ16] (and [HP16], where only linear convergence
is shown) then treated more general problems, but still lagged behind the literature on standard
AFEM at that time. Nonlinear problems were, so far, only considered in [HPZ15; XHYM22], but
no optimality result is proven therein.
We begin by stating here the optimality result of GOAFEM for (1.2), which goes way beyond

mere convergence. Subsequently, we outline the main steps of its proof as given in [CFPP14;
FPZ16], which is important for the understanding of the following chapters.

13

1 Introduction

1.3.1 Necessary abstract properties

Although we are only concerned with standard residual error estimators as well as newest vertex
bisection in this thesis, we state the abstract properties necessary for the convergence analysis in
the spirit of [CFPP14; FPZ16]. Note that, differing from the presentation in the cited works, we
divide the properties into three categories: those which involve the estimator, those which involve
the mesh, and one which depends only on the PDE problem. This is due to simplifications that arise
from our model problem being less general than the one in [CFPP14]. In the following, we state
these properties in order.

Estimator properties

Let TH ∈ T and Th ∈ T(TH). The error estimators (1.19) satisfy the following set of properties
termed (estimator) axioms with constants Cstab,Crel,Cdrel > 0 and 0 < qred < 1 [CFPP14; FPZ16;
Ver13]. We stress that these constants are, in particular, independent of the meshes TH and Th.

(A1) Stability: For all vh ∈ Xh, vH ∈ XH , andUH ⊆ Th ∩ TH , it holds that��ηh(UH, vh) − ηH (UH, vH)
�� + ��ζh(UH, vh) − ζH (UH, vH)

�� ≤ Cstab |||vh − vH |||.

(A2) Reduction: For all vH ∈ XH , it holds that

ηh(Th\TH, vH) ≤ qred ηH (TH\Th, vH) and ζh(Th\TH, vH) ≤ qred ζH (TH\Th, vH).

(A3) Reliability: The Galerkin solutions uH, zH ∈ XH satisfy that

|||u − uH ||| ≤ Crel ηH (uH) and |||z − zH ||| ≤ Crel ζH (zH).

(A4) Discrete reliability: The Galerkin solutions uH, zH ∈ XH and uh, zh ∈ Xh satisfy that

|||uh − uH ||| ≤ Cdrel ηH (TH\Th, uH) and |||zh − zH ||| ≤ Cdrel ζH (TH\Th, zH).

Stability (A1) states that, on elements which are not refined during the transition fromTH toTh, the
refinement indicators are uniformly Lipschitz continuous in the function argument. Reduction (A2),
on the other hand, states that, on refined elements, the error estimator uniformly contracts. These
two properties were first introduced in [CKNS08]. Furthermore, (discrete) reliability (A3)–(A4)
states that the approximation error of the Galerkin solution can be uniformly bounded by the error
estimator (on refined elements). While reliability is a fundamental property in a posteriori error
estimation [AO93; Ver13], discrete reliability was first introduced in [Ste07].

Remark 1.7. Note that the estimator axioms (A1)–(A4) are slightly more general than what is
needed for the convergence analysis below. In particular, property (A3) is redundant, since it
follows from the a priori approximation property (1.10) and (A4); see [CFPP14, Lemma 3.4].
However, (linear) convergence can be proved without (A4) so that it is advantageous to state the
property (A3), which is usually easier to prove, on its own.

14

1.3 Optimal convergence of GOAFEM

Mesh refinement properties

Newest vertex bisection from Section 1.2.1 for d ≥ 2 guarantees the following properties [BDD04;
CKNS08; Ste07; Ste08]. Here, for two meshes T ,T ′ ∈ T, the coarsest common refinement T ⊕ T ′
is defined as T? ∈ T(T) ∩ T(T ′) with minimal cardinality#T?.

(R1) Child estimate: For all TH ∈ T and all Th ∈ T(TH), it holds that

#(TH\Th) +#TH ≤ #Th .

(R2) Overlay estimate: For all TH ∈ T and all Th ∈ T(TH), it holds that

#(TH ⊕ Th) ≤ #TH +#Th −#T0.

(R3) Closure estimate: There exists a constant Ccls > 0 such that, for the sequence (T̀)`∈N0

generated by Algorithm 1E, it holds that

#T̀ −#T0 ≤ Ccls

`−1∑
k=0

#Mk for all ` ∈ N0.

These properties, in essence, limit the number of elements that are generated by refinement,
the coarsest common refinement (also called overlay), and mesh closure (i.e., additionally refining
elements to ensure conformity), respectively. So far, newest vertex bisection is the only known
refinement strategy for simplices that satisfies (R1)–(R3) in any dimension d ≥ 2.

Remark 1.8. The overlay estimate (R2) essentially goes back to [Ste07]. The closure estimate (R3),
on the other hand, was first proved for NVB in [BDD04] for d = 2 and later generalized to d ≥ 3
by [Ste08]. Both proofs rely on an admissibility condition for T0, which was later removed for d = 2
in [KPP13].

Remark 1.9. Note that, even though uniform γ-shape regularity (1.5) of the family T for a fixed
constant γ > 0 is an important property of newest vertex bisection, it does not occur in the list
above. However, γ-shape regularity enters in the proofs of the estimator axioms (A1)–(A4) for the
residual error estimators (1.19). It is therefore also necessary in our analysis.

Quasi-orthogonality

The last property for the convergence proof below is the so-called quasi-orthogonality.

(QO) Quasi-orthogonality: Let (T̀)`∈N0 be the sequence of meshes generated by Algorithm 1E
and n ∈ N0. For all 0 < ε < 1, there exists `0 ∈ N0 such that, for all ` ≥ `0 and all n ∈ N0,

|||u − u`+n |||2 + |||u`+n − u` |||2 ≤ 1

1 − ε |||u − u` |||2,

|||z − z`+n |||2 + |||z`+n − z` |||2 ≤ 1

1 − ε |||z − z` |||2.

15

1 Introduction

We note that, in prospect of the situation in the following chapters, we formulate a more general
version of (QO) than is actually needed in the setting of this introductory chapter. In fact, if we
suppose that a(·, ·) is symmetric and |||v |||2 = a(v, v), from the Galerkin orthogonalities (1.16) and
u`+n − u`, z`+n − z` ∈ T̀ , there follow the Pythagoras identities

|||u − u`+n |||2 + |||u`+n − u` |||2 = |||u − u` |||2 and |||z − z`+n |||2 + |||z`+n − z` |||2 = |||z − z` |||2.

These are actual orthogonalities and, in particular, imply (QO) with `0 = 0.

1.3.2 Rate optimality

To state the convergence result of goal-oriented adaptive FEM, we need additional notation.

Approximation classes

For N ∈ N0, we denote the finite set of all meshes that have at most N elements more than T0 by

T(N) := {T ∈ T ��#T −#T0 ≤ N
}
.

For s, t > 0, we then introduce the so-called rate-approximability for the primal and dual problem:

‖u‖As := sup
N ∈N0

(N + 1)s min
Topt∈T(N)

ηopt(uopt) ∈ [0,∞], (1.24a)

‖z‖At := sup
N ∈N0

(N + 1)t min
Topt∈T(N)

ζopt(zopt) ∈ [0,∞]. (1.24b)

A short explanation on the definitions (1.24) is in order. In both expressions, the minimum
finds the mesh with lowest error estimator among all meshes below a certain number of elements.
The corresponding (minimal) error estimator is then multiplied by a prefactor that grows with an
algebraic rate s and t, respectively, over which the supremum is taken. This means that, if the error
estimators on sequences of optimal meshes fall (at least) with rate s and t with respect to the number
of elements, the rate-approximabilities ‖u‖As and ‖z‖At are finite. Thus, the rate-approximabilities
measure the ability of the model problem to be numerically approximated by FEM on the family
T of meshes. The set of all functions that have a finite (primal or dual) rate-approximability is
sometimes called approximation class.
It is also easy to see that the converse is true [GP22]: Consider, e.g., the primal problem

and let s > 0 with ‖u‖As < ∞. Then, for each ` ∈ N0, let T̀ ∈ T(`) be the mesh such that
η` = minTopt∈T(`) ηopt(uopt). From the equivalence#T̀ ' #T̀ −#T0 + 1 and the definition of the
rate-approximability, we see that the estimator indeed falls with rate s along the sequence T̀ , i.e.,
with a constant C(s) > 0 it holds that

η` ≤ C(s) (#T̀)−s for all ` ∈ N0. (1.25)

Statement of optimality

With these approximation classes, we can state the main result of GOAFEM: convergence of
Algorithm 1E with optimal algebraic rates. The first result of this kind for GOAFEM goes back
to [MS09], where a Poisson problem is considered. To cover our general model problem (1.2), we

16

1.3 Optimal convergence of GOAFEM

present the corresponding result from [FPZ16]. Recall that the mesh refinement in our GOAFEM
algorithm satisfies (R1)–(R3) and the error estimators satisfy (A1)–(A4) as well as (QO) for both
the primal and the dual problem.

Theorem 1.10: Optimal convergence rates of Algorithm 1E [FPZ16, Theorem 13]
Suppose (R1)–(R3) and (A1)–(A4) as well as (QO). Let (T̀)`∈N0 be the sequence of meshes
generated by Algorithm 1E with one of the following marking strategies:

• 0 < θ < θopt := (1 + C2
stab

C2
rel
)−1 and either Algorithm 1B or Algorithm 1C;

• 0 < θ < θopt/2 and Algorithm 1D.

Then, there exist constants Copt > 0 and 0 < qopt < 1 such that, for all s, t > 0 with
‖u‖As + ‖z‖At < ∞, there holds

|G(u) − G(uH)| . η`ζ` ≤
C1+s+t
opt(

1 − q1/(s+t)
opt

)s+t ‖u‖As ‖z‖At

(
#T̀ −#T0

)−(s+t)
, (1.26)

i.e., Algorithm1Easymptotically drives down the estimator product with any possible algebraic
rate. The constant qopt depends only on (A1)–(A4), (QO), and θ, whereas the constant Copt

additionally depends on Ccls from (R3), and Cmark.

Theorem 1.10 states that Algorithm 1E is optimal in the following sense: As remarked in (1.25),
the finiteness of the rate-approximabilities ‖u‖As + ‖z‖At < ∞ implies the existence of sequences
(T̀ ,u)`∈N0, (T̀ ,z)`∈N0 ⊂ T such that

η`,u . (#T̀ ,u)−s and ζ`,z . (#T̀ ,z)−t for all ` ∈ N0. (1.27)

Thus, the a posteriori goal error estimate (1.21) suggests that the best possible decay of the goal
error along some optimal sequence of meshes (T̀ ,opt)`∈N0 ⊂ T is

|G(u) − G(u`,opt)| . (#T̀ ,opt)−(s+t) for all ` ∈ N0. (1.28)

We stress that this is a purely heuristic argument, since (1.27) does not necessarily imply (1.28), for
the optimal sequences in (1.27) do not need to coincide. However, Theorem 1.10 states that already
the sequence generated by Algorithm 1E satisfies (1.28). Thus, if a rate is possibly attainable,
Algorithm 1E drives down the goal error with that rate. This is the meaning of rate optimality.

Almost optimal rates of single estimators

Finally, we repeat here an observation from [FPZ16], which states that, although Algorithm 1E
is rate optimal with repect to the goal error, i.e., it drives down the estimator product with every
possible rate, it is only almost rate optimal with respect to the single primal and dual error estimator.

Corollary 1.11 ([FPZ16, Corollary 14]). Assume that

s := sup{s > 0 | ‖u‖As < ∞} < ∞ and t := sup{t > 0 | ‖z‖At < ∞} < ∞.

17

1 Introduction

Then, for any 0 < s < s and 0 < t < t there exist subsequences (`u
k
)k∈N0, (`zk)k∈N0 ⊆ N such that

η`u
k
. (#T̀ u

k
)−s and ζ`z

k
. (#T̀ z

k
)−t for all k ∈ N0.

The hidden constants depend on Copt, qopt, and additionally on s − s > 0 and t − t > 0,
respectively.

The non-attainability of (1.28) by mere construction of overlays, as well as the statement of
Corollary 1.11 make it clear that Algorithm 1E is a non-trivial extension of the theory for standard
AFEM.

1.3.3 Main steps of proof

We proceed in this section to outline the proof of Theorem 1.10. Although this is not original
research, the benefits of retracing the main steps of the proof far outweigh those of a shorter
introduction. First, Theorem 1.10 as well as its proof act as a baseline for the results presented
in Chapters 2–4, where the framework of the present chapter is substantially extended. Second,
certain subsets of the assumptions needed for Theorem 1.10 already yield plain convergence or
linear convergence of the underlying GOAFEM, which are interesting results on their own. These
subsets will become clear in the course of this section. Third, our model problem admits a certain
amount of simplification and relaxation of assumptions for the results from [FPZ16], which are
stated but somewhat hidden in [CFPP14]; these are also collected here.

Plain convergence

We start by outlining the steps that lead to convergence of Algorithm 1E with respect to the
estimator product, which, by (1.21), is an upper bound for the goal error. The first ingredient is a
quasi-contraction property of error estimators that holds as soon as Dörfler marking is employed,
which goes essentially back to [CKNS08].

Proposition 1.12 (Generalized estimator reduction [FPZ16, Lemma 9]). Suppose (A1)–(A2).
Let TH ∈ T and Th ∈ T(TH). Then, for all δ > 0, there holds

η2h ≤ (1 + δ) η2H + Cstab(1 + δ−1) |||uh − uH |||2. (1.29)

Let additionally 0 < θ ≤ 1 and Th ∈ T
(
refine(TH,MH)

)
, where MH ⊆ TH satisfies the

Dörfler marking (1.22). Then, there exist constants C > 0 and 0 < q < 1 such that

η2h ≤ q η2H + C |||uh − uH |||2. (1.30)

The constants C, q depend only on (A1) and (A2) as well as on θ.

We further observe that the estimator cannot grow too much on refined meshes.

Proposition 1.13 (Quasi-monotonicity [FPZ16, Lemma 6]). Suppose (A1)–(A3). Then, there
exists a constant Cmon > 0 such that, for all TH ∈ T and Th ∈ T(TH), there holds

ηh ≤ Cmon ηH . (1.31)

18

1.3 Optimal convergence of GOAFEM

The constant Cmon depends only on (A1)–(A3) as well as CCéa.

Proof. Starting from (1.29) with δ = 1, the triangle inequality and the quasi-best approximation
result (1.9) yield that

η2h ≤ 2 η2H + 2Cstab |||uh − uH |||2 ≤ 2 η2H + 4Cstab(1 + CCéa) |||u − uH |||2.

Finally, reliability (A3) concludes the proof with Cmon = 2 + 4CstabCrel(1 + CCéa). �

For standard AFEM, Propositions 1.12 and 1.13 already imply convergence of the error estimator,
since there holds Dörfler marking in every step of the adaptive algorithm. For GOAFEM, on the
other hand, Dörfler marking for primal and dual estimator in every step is not guaranteed; in fact, it
cannot hold in general because of the minimality constraint on the cardinality of the set of marked
elements. However, the following result, which can be seen immediately from the representation
of the marking strategies in Remark 1.5, states that Dörfler marking holds at least for one of the
estimators (with possibly modified marking parameter).

Proposition 1.14 (Dörfler marking for primal or dual estimator). Let 0 < θ ≤ 1.

(i) IfMH is the output of Algorithm 1B or 1C, there holds

θ η2H ≤ ηH (MH)2 or θ ζ2H ≤ ζH (MH)2.

(ii) IfMH is the output of Algorithm 1D, there holds

θ

2
η2H ≤ ηH (MH)2 or

θ

2
ζ2H ≤ ζH (MH)2.

(iii) If ηH ζH , 0 andMH ⊆ TH satisfies

θ η2H ≤ ηH (MH)2 or θ ζ2H ≤ ζH (MH)2,

there holds

θ ≤ max
{ηH (MH)2

η2H
,
ζH (MH)2

ζ2H

}
and

θ

2
≤ 1

2

(ηH (MH)2
η2H

+
ζH (MH)2

ζ2H

)
.

These results already imply plain convergence, i.e., convergence without any guaranteed rates, of
the estimator product and, hence, also of the the goal error via (1.21).

Theorem 1.15: Plain convergence [GP22]
Suppose (A1)–(A3). Let 0 < θ ≤ 1 and let (T̀)`∈N0 ⊆ T be the sequence of meshes generated
by Algorithm 1E. Then, there holds plain convergence of the goal error, i.e.,

|G(u) − G(u`)| . η` ζ` −→ 0 as ` →∞. (1.32)

The hidden constant depends only on Ccnt and (A1)–(A3).

19

1 Introduction

Sketch of proof. Choose δ > 0 in Proposition 1.12 small enough such that q′ := (1 + δ)q < 1.
Because of Proposition 1.14, the estimator product satisfies

η`+1 ζ`+1 ≤ q′ η` ζ` + R`,

with some remainder term

R` . |||u`+1 − u` ||| ζ` + η` |||z`+1 − z` ||| + |||u`+1 − u` ||| |||z`+1 − z` |||.
This upper bound is a null sequence because there holds a priori convergence |||u`+1 − u` ||| → 0 as
` →∞ due to theCéaLemma (Theorem1.4) aswell as boundedness of the estimators, η` ≤ Cmon η0,
due to quasi-monotonicity (Proposition 1.13). We thus have R` → 0 as ` → ∞. As the estimator
product is a contraction up to a null-sequence, convergence follows from basic calculus. �

Linear convergence

The last section shows that plain convergence only needs (A1)–(A3). For the “next level” of
convergence, linear convergence, quasi-orthogonality (QO) enters the picture. Before we can make
use of this additional assumption,
The next result states that primal as well as dual estimator contract each time Dörfler marking is

employed for the respective problem.
Proposition 1.16 (Generalized linear convergence [FPZ16, Proposition 10]). Suppose (A1)–
(A3) and (QO). Let (T̀)`∈N0 ⊆ T be the sequence of meshes generated by Algorithm 1E and let
0 < θ ≤ 1. Then, there exist constants Clin > 0 and 0 < qlin < 1 such that there holds that

η`+n ≤ Clin qkη
lin
η` and ζ`+n ≤ Clin qkζ

lin
ζ` for all `, n ∈ N0, (1.33)

where kω for ω ∈ {η, ζ } is defined as the number of steps where Dörfler marking is satisfied for
ω within n consecutive steps, i.e.,

kω := #
{
0 ≤ k ≤ n

�� θ ω2
`+k ≤ ω`+k(M`+k)2

}
and kη + kζ ≥ n.

The constants Clin, qlin depend only on (A1)–(A3) as well as on `0 from (QO) and θ.

Sketch of proof. Let (`k)kηk=0 be the set of indices such that Dörfler marking occurs for η`k . Since
T̀

k+1
∈ T(T̀

k+1), we can relate two successive estimators η`k and η`k+1 by (1.30). We then sum this
over all k = 0, . . . , kη , absorb the estimators on the left-hand side, and use quasi-orthogonality (QO)
on the sum over the energy norms. With a constant C > 1, this yields

kη∑
k=kη−j

η2`k+1 ≤ C η2`k− j for all 0 ≤ j ≤ kη .

Basic calculus shows linear convergence (1.33) between the `0-th and the `kη -th mesh. We conclude
by relating the `0-th to the `-th and the `kη -th to the (`+n)-th mesh by quasi-monotonicity (1.31). �

Finally, we can combine generalized linear convergences for the primal and the dual estimator to
obtain full linear convergence.

20

1.3 Optimal convergence of GOAFEM

Theorem 1.17: Linear convergence [FPZ16, Theorem 12]
Suppose (A1)–(A3) and (QO). Let (T̀)`∈N0 ⊆ T be the sequence of meshes generated by
Algorithm 1E and let 0 < θ ≤ 1. Then, for all `, n ∈ N0 there holds that

η`+n ζ`+n ≤ C2
lin qn

lin η` ζ` (1.34)

with constants Clin > 0 and 0 < qlin < 1 from Proposition 1.16.

Sketch of proof. From Proposition 1.16, we infer that there holds (1.33). Proposition 1.14 then
implies that kη + kζ ≥ n. Multiplying both inequalities in (1.33) finally yields (1.34). �

Proof of optimal rates Theorem 1.10

For the first building block of the proof of Theorem 1.10, we finally need the last of the estimator
axioms, (A4). This first result states that any sufficient reduction of the error estimator already
implies that Dörfler marking (1.22) holds. In that sense, Dörfler marking is the optimal marking
criterion for AFEM. The first statement of this result can be found in [Ste07], where a sufficient
contraction of the energy errors is assumed. The presented version, where contraction of the error
estimators is assumed, was first presented in [CFPP14].

Proposition 1.18 (Optimality of Dörfler marking [FPZ16, Lemma 7]). Suppose (A1) and (A4).
Let 0 < θ < θopt := (1 + C2

stab
C2
drel
). There exists a constant 0 < κopt < 1 such that, for all

TH ∈ T and Th ∈ T(TH), there holds

η2h ≤ κopt η2H =⇒ θ η2H ≤ ηH (TH\Th)2, (1.35a)
ζ2h ≤ κopt ζ2H =⇒ θ ζ2H ≤ ζH (TH\Th)2. (1.35b)

The constant κopt depends only on stability (A1), discrete reliability (A4), and θ.

Sketch of proof. First, we split η2H into refined and non-refined elements. For the non-refined
elements, we use stability (A1), discrete reliability (A4), and the assumption η2

h
≤ κopt η

2
H . This

yields the estimate[
1 − (1 + δ−1) κopt

]
η2H ≤

(
1 + (1 + δ)C2

stabC2
drel

)
ηH (TH\Th)2 for all δ > 0.

Dividing by the prefactor of the right-hand side, we chose δ > 0 small enough such that the resulting
prefactor of the left-hand side is smaller than θ. This shows (1.35). �

Except from linear convergence of the error product, Theorem 1.17, every building block pre-
sented so far applies to the primal and dual problem separately. The next result, which states that
there always exists a refinement with sufficient estimator reduction but not too many elements,
makes an assertion about both problems together. It was first introduced in [Ste07] for standard
AFEM and later generalized to GOAFEM in [MS09]. For the sake of presentation, we state here a
version from [FGH+16]. Here, also mesh refinement enters the picture via the overlay estimate (R2).

21

1 Introduction

Proposition 1.19 (Comparison lemma [FGH+16, Lemma 14]). Suppose (A1)–(A3) and (R2).
Let 0 < κ < 1 and let (T̀)`∈N0 ⊆ T be the sequence of meshes generated by Algorithm 1E.
There exist constants C,C ′ > 0 such that the following holds: For every ` ∈ N0, there exists a
refinement Th ∈ T(T̀) such that, for all s, t > 0 with ‖u‖As + ‖z‖At < ∞, there holds

η2h ζ
2
h ≤ κ η2` ζ2` , (1.36)

#Th −#T̀ ≤ C ′
(
C ‖u‖As ‖z‖At

)1/(s+t) (
η` ζ`

)−1/(s+t)
. (1.37)

The constants C,C ′ only depend on Cmon, T0, and (R2).

Sketch of proof. Define ε := C−2mon κ
1/2 η`ζ` and choose N ∈ N0 minimal such that ‖u‖As ‖z‖At ≤

ε (N + 1)s+t . Then, choose

Tω = argmin
{
ωH

��TH ∈ T(N)} for ω ∈ {η, ζ }.

Furthermore, define the overlays Tε := Tη ⊕ Tζ and Th := Tε ⊕ T̀ . Then, the overlay estimate (R2)
and minimality of N show that

#Th −#T̀ . N . (η`ζ`)−1/(s+t),

which gives (1.37). Moreover, quasi-monotonicity (1.31), the definition of the approximation
classes (1.24), and the choice of N yield

ηh ζh ≤ C2
mon (N + 1)−(s+t) ‖u‖As ‖z‖At ≤ C2

monε = κ
1/2 η`ζ` .

This shows (1.36) and thus concludes the proof. �

We have now stated every piece of the puzzle that is the proof of Theorem 1.10. The pieces neatly
interlock each other; the dependency tree is shown in Figure 1.4.

Sketch of proof of Theorem 1.10. First, note that the assumptions imply 0 < θ < θopt for Algo-
rithms 1B–1C as well as 0 < 2θ < θopt for Algorithm (1D). The proof consists of four steps in
which the constant 0 < κopt < 1 from Proposition 1.18 corresponds to θ and 2θ for the different
marking strategies, respectively.
Step 1: The mesh Th from Proposition 1.19 is obtained by Dörfler marking.

Let κ = κ2opt in Proposition 1.19 with corresponding mesh Th. Then, it follows that

η2hζ
2
h ≤ κ2opt η2` ζ2` =⇒

[
η2h ≤ κopt η2` or ζ2h ≤ κopt ζ2`

]
.

We know from Proposition 1.18 that this implies Dörfler marking (1.22) with the set Th\T̀ either for
the primal or for the dual problem with corresponding marking parameter. From Proposition 1.14,
we then infer that the set T̀ \Th satisfies the used marking strategy from Algorithm 1B–1D, i.e.,

θ ≤ max
{η`(T̀ \Th)2

η2
`

,
ζ`(T̀ \Th)2

ζ2
`

}
and θ ≤ 1

2

(η`(T̀ \Th)2
η2
`

+
ζ`(T̀ \Th)2

ζ2
`

)
, (1.38)

respectively.

22

1.3 Optimal convergence of GOAFEM

Generalized estimator reduction
Proposition 1.12

Quasi-monotonicity
Proposition 1.13

Optimality of Dörfler marking
Proposition 1.18

Generalized linear convergence
Proposition 1.16

Dörfler for primal or dual
Proposition 1.14

Linear convergence of product
Theorem 1.17

Comparison lemma
Proposition 1.19

Optimal rates
Theorem 1.10

(A1)

(A2) (A3)

(A4)

(QO)

(R1)

(R2)

(R3)

All results for
ηH and ζH
separately

Figure 1.4: Basic structure of the proof of Theorem 1.10. Implications are indicated by arrows.
Intermediate results in the large gray box are proven for primal and dual problem
separately. The combining result is Proposition 1.14, which states that, in each step,
Dörfler marking holds either for the primal or dual error estimator.

Step 2: Relate the setsM` and T̀ \Th by quasi-minimal cardinality.
Recall that the marking strategies from Algorithms 1B–1D require quasi-minimal cardinality of the
set of marked edgesM` . Thus, (1.38) and the child estimate (R1) imply that

#M` ≤ Cmark#(T̀ \Th)
(R1)≤ Cmark

(
#Th −#T̀

)
.

Step 3: Use the mesh closure estimate to bound#T̀ −#T0 for all ` ∈ N0.
From the mesh closure estimate (R3) and the comparison lemma Proposition 1.19, we see that, for
all ` ∈ N0,

#T̀ −#T0
(R3)
.

`−1∑
k=0

#Mk

(1.37)
.

`−1∑
k=0

(
ηk ζk

)−1/(s+t)
.

Step 4: Use linear convergence to bound the sum by the `-th element.
Linear convergence Theorem 1.17 allows to bound the sum in the last expression to obtain

#T̀ −#T0 .
`−1∑
k=0

(
ηk ζk

)−1/(s+t) (1.34)
.

(
η` ζ`

)−1/(s+t) `−1∑
k=0

qk/(s+t)
lin

.
(
η` ζ`

)−1/(s+t)
.

This immediately gives (1.26). �

23

1 Introduction

1.4 Outline of thesis

The remainder of this thesis is concerned with extension, application, and numerical simulation of
the setting presented in this introductory chapter. It can be roughly divided into two parts:

I. Chapters 2–4 are concerned with analytical aspects of GOAFEM.

II. Chapter 5 is concernedwith implementational aspects in the high-level programming language
Matlab.

Each of the following chapters is dedicated to a specific research question that I, together with
collaborators, have tackled during my PhD studies.

Chapter 2: GOAFEM with quadratic goal

The introductory framework of the present chapter assumes that the equation (1.2) as well as the
goal functional (1.13) is linear. It is a natural extension to abandon the linearity assumption on
either one of them. While nonlinearities in the equation have been analyzed in the context of
GOAFEM [HPZ15; XHYM22] (but without convergence analysis in the sense of Section 1.3), non-
linearities in the goal functional have not been analyzed before in a clear mathematical framework.
In particular, existing literature on GOAFEM with optimal rates was only concerned with linear
problems as well as linear goal functionals [BET11; FGH+16; FPZ16; MS09].

In this chapter, we consider a goal functional that has a quadratic structure, i.e., there exists a
bounded linear operator K : H1

0 (Ω) → H−1(Ω) such that

G(v) := 〈Kv , v〉
H−1×H1

0
for all v ∈ H1

0 (Ω).

This allows to consider goal functionals such as a (weighted) L2-norm. In this context, many
building blocks of the theory presented in the introduction have to be modified or completely
replaced. In particular, the dual problem (1.12) would feature a nonlinear right-hand side and,
hence, has to be reformulated using a suitable linearization of the goal functional G. This has also
severe impacts on error estimation and marking.
We devise a GOAFEMalgorithm that takes into account all the problems arising in this setting and

prove that there holds plain convergence for every operator K. Furthermore, under the additional
assumption thatK is compact, we show linear convergence of our algorithm and, hence, convergence
with optimal algebraic rates, analogously to Theorem 1.10.

Chapter 3: GOAFEM with iterative solver

The present introduction does not go into detail about the numerical solution of the arising linear
system (1.7). While, in principle, solving linear systems numerically is a well-trodden path, it is
worthwhile to further investigate this topic in the context of (GO)AFEM because of two reasons.
First, since solving the linear system is usually executed with finite precision arithmetic, only
approximations to uH, zH are available for error estimation. It is a priori not clear that the analysis
shown so far is robust with respect to these approximations. Second, and more importantly, if the
linear system (1.7) is solved iteratively (as is the case in most applications with sufficiently many

24

1.4 Outline of thesis

degrees of freedom), the question arises when to stop this iterative solver without spoiling (optimal)
convergence.
This last question is of particular importance in adaptive FEM algorithms, since it does not

make sense to iterate the solution to machine precision if the mesh under consideration does not
allow for a sufficiently good approximation in the first place. We note that inexact solution and
the associated computational cost have already been considered in the seminal works [Ste07] for
AFEM and [MS09] for GOAFEM. Therein, the authors consider a generic iterative solver (in the
routine GALSOLVE) which improves the energy error of an initial guess by a factor 0 < τ < 1 at
O(| log(τ)|) times linear cost. For instance, this is satisfied for contractive solvers like an optimally
preconditioned CG method [CNX12] or an optimal geometric multigrid solver [WZ17]. However,
the algorithms from [MS09; Ste07] require sufficiently small parameters (θ for mesh-refinement
and ω for the solver accuracy) and linear convergence as well as optimal computational cost is then
guaranteed for the final solver iterates only. We note that convergence for arbitrary θ but sufficiently
small ω can be shown by a perturbation argument following, e.g., the works [CKNS08] for AFEM
and [FPZ16] for GOAFEM.
In this chapter, we use ideas for AFEM from [GHPS18; GHPS21] and combine them with ideas

from [FPZ16] for GOAFEM with exact solver. Essentially adapting the solver stopping criterion
from [MS09; Ste07], we design a GOAFEM algorithm that also takes into account the iterative
solution of the linear system (1.7) and steers the iterative solver such that the errors of the solver
and the discretization are equilibrated. Under the natural assumption that the iterative solver is
contractive, we show that the results presented in this introduction also hold true in the case of
inexact solutions. More precisely, we even show full linear convergence, i.e., linear convergence
of the estimator product—independently of the algorithmic decision for either mesh-refinement or
solver step. In particular, this holds for arbitrary adaptivity parameters (θ for mesh-refinement and
λ for the solver termination). Moreover, we note that this full linear convergence also implies that
rates with respect to the number of elements coincide with the rates with respect to the cumulative
computational costs.
As a consequence of the preceding arguments, if the adaptivity parameters are chosen sufficiently

small, this implies that the proposed GOAFEM strategy leads to optimal rates (in the sense of
Theorem 1.10) with respect to the overall computational costs for the full sequence of computed
discrete solutions. This extends and transfers the results from [MS09] from the Poisson model
problem to symmetric second-order linear elliptic PDEs and, in particular, avoids another loop for
the adaptive approximation of the given loads as in [MS09].
Finally, we note that the idealized GOAFEM algorithm from [MS09] (using exact discrete

solutions) relies on one mesh sequence only, while the practical GOAFEM algorithm from [MS09]
(using an optimal iterative solver) can lead to separate (yet nested) meshes for primal and dual
problem. One further advantage of the presented GOAFEM strategy might be that approximate
primal and dual solutions are always computed on the same mesh (and therefore with the same
solver), as is the case for the idealized algorithm from [MS09] and the succeeding algorithm
from [FPZ16].

Chapter 4: Parameter estimation

In this chapter, we look at a non-straightforward application of goal-oriented FEM, namely estima-
tion of a finite set of parameters from experimentally obtained data in an elliptic linear-quadratic

25

1 Introduction

setting. Many PDE models from applications such as physics, engineering, and social sciences,
among others, depend on parameters that adjust the abstract model to a real setting. Often, however,
it is not clear how to choose the parameters as they do not have a physical quantity attached to them
that can be measured directly. Thus, the parameters need to be inferred via indirect measurements,
i.e., measuring derived quantities that can be modeled by a number of measurement functionals Gi.
We use the tools from goal-oriented FEM to infer parameters by comparing the real measurements

with values obtained by a FEM simulation in a least-squares sense. This can be viewed as a special
case of a finite dimensional optimal control problem, for which adaptive FEM algorithms based on
residual a posteriori estimators, which depend on the model as well as the measurement functionals,
are available [BM11; GY17; GYZ16; LC17]. However, the error estimators in these works show
either a suboptimal rate in the error of the control (the parameters), or require strong regularity
assumptions to the domain Ω.
Our analysis is instead based on [BV04; BV05], which consider dual weighted residual estimators

but do not prove convergence of their methods. This allows us to assess the quality of the parameter
estimate by a priori error bounds that match the rate of convergence of the parameter error without
additional regularity assumptions. Based on this bound, we further use suitable residual estimators
to devise an adaptive algorithm that drives down an analogous a posteriori bound for the parameter
error with optimal rate in the sense of Theorem 1.10.

Chapter 5: Code

In addition to the mathematical analysis of the investigated algorithm or method, an integral part
of numerical research is carrying out experiments to test the method. Software for such purposes
should ideally possess three qualities: First, it should be accessible, i.e., all parts can be understood
with little effort, in order for the researcher to understand which algorithms are implemented
and, hence, used in the experiment. This is a key aspect in making research transparent and
reproducible. Second, the software needs to be flexible to allow for modifications, since the method
under investigation may not have been conceived before. Third, it should be efficient to enable large
problem sizes and repeated computations, e.g., for parameter scans.
Existing codes, from the viewpoint of numerical analysts, often lack at least one of the listed

qualities; see, e.g., [ABD+21; ABH+15; BBD+21; BHL+21; Che09; FGS15; FPW11; Sch14] for a
representative sample. In this chapter, we present our own research code MooAFEM for (adaptive)
FEM simulations in 2D, that is written exclusively in the high-level mathematical scripting language
Matlab. By use of object oriented programming, the library is partitioned into efficient modules
with well-defined interactions, that allow for easy extensions.
MooAFEM is designed to deal with all the numerical experiments presented in this thesis: it can

solve FEMdiscretizations of linear problems of the form (1.2) (and evenmore general ones). In doing
so, it allows for very general coefficients; in particular, FEM functions can be used, which enables
solution of nonlinear problems through iterative linearization techniques (as, e.g., used in [AW15;
HPW21]). We explain the basic syntax of our library as well as the main design principles that
underlie it. With some well-chosen numerical examples (where we give the implementation as well
as the results), we show that it exhibits a good balance between the desired qualities.

26

1.5 Other scientific contributions

1.5 Other scientific contributions

This last section of the introduction is dedicated to give a brief overview over the research questions
that I have worked on during my PhD studies, but are not included in this thesis. Only research
that is already published or submitted for publication is mentioned here. We note that the questions
outlined in Sections 1.5.1–1.5.2 are also concerned with GOAFEM, but are not included in this
thesis. This is due to both not fitting well into the specific framework of this thesis. As the first one
is not concerned with rate optimality as introduced in Section 1.3, and the second one deals mainly
with regularity issues of the linearized dual problem of a semilinear PDE.

1.5.1 Instance optimal GOAFEM

M. Innerberger and D. Praetorius. Instance-optimal goal-oriented adaptivity. Comput. Methods
Appl. Math., 21(1):109–126, 2021. doi: 10.1515/cmam-2019-0115

Apart from rate optimality, which is the topic of this thesis, another notion of optimality exists:
instance optimality. Instead of asymptotically achieving convergence with every possible rate,
instance optimality aims for local optimality in the sense that the sequence of meshes (T̀)`∈N0

generated by an instance optimal algorithm is, up to a constant, the best sequence possible, i.e.,
there exist constants C,C ′ > 0 such that

|||u − u` ||| ≤ C inf
{|||u − uh |||

��Th ∈ T(C ′#T̀)} for all ` ∈ N0.

Thus, instance optimality is a stronger statement than rate optimality.
Instance optimality was proved in [BDD04], one of the earliest works on AFEM, but was soon

abandoned for rate optimality because it required a computationally expensive coarsening routine
in every step in addition to refinement. It was only recently that a competitive instance optimal
AFEM algorithm could be designed. The two works that achieved this are concerned with lowest
order FEM (p = 1) for the Poisson model problem [DKS16] and lowest order non-conforming FEM
for the Stokes equation [KS16].

In our work, we extend the framework of [DKS16] to conforming FEM of general polynomial
order and, most importantly, design an instance optimal algorithm for GOAFEM. The most striking
feature of such an algorithm is that, unlike Corollary 1.11, it already implies instance optimality
of primal and dual problem separately. Thus, our algorithm allows for a trivial extension to drive
down multiple goal functionals simultaneously in an instance optimal fashion.

1.5.2 GOAFEM for semilinear problems

R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Goal-oriented adaptive
finite element method for semilinear elliptic PDEs, 2021. arXiv: 2112.06687

As mentioned in the outline of Chapter 2, a logical extension of the linear theory presented in the
introduction is to consider nonlinear problems. In contrast to Chapter 2, where a linear equation
with nonlinear goal is considered, in this work we examine a semilinear equation together with a
linear goal. The earlier works on GOAFEM for semilinear equations [HPZ15; XHYM22] prove
only plain convergence of their methods, while at the same time imposing severe assumptions in
the form of a priori L∞-bounds on the (discrete) primal solution.

27

https://doi.org/10.1515/cmam-2019-0115
http://arxiv.org/abs/2112.06687

1 Introduction

In this setting, the natural formulation of the dual problem involves the exact primal solution,
which is not known in general. To circumvent this, we propose a practical dual problem that can be
solved numerically. This leads to a goal-error estimate very similar to (2.12). Thus, we use some of
the ideas presented in Chapter 2 to design error estimators and marking strategies. Drawing from
this body of knowledge, in this work we can improve upon existing results in two ways. First, our
work is the first one which proves convergence with optimal rates for GOAFEM for a nonlinear
problem. Second, our analysis does not feature any assumed L∞-bounds, but only assumptions on
the growth of the nonlinear part of the operator.

1.5.3 Weak-strong uniqueness for solutions of the LLG equation

G. Di Fratta, M. Innerberger, and D. Praetorius. Weak-strong uniqueness for the Landau–Lifshitz–
Gilbert equation in micromagnetics. Nonlinear Anal. Real World Appl., 55:103122, 2020. doi:
10.1016/j.nonrwa.2020.103122

The theory of computational micromagnetism is governed by the so-called Landau–Lifshitz–Gilbert
(LLG) equation, which, for a magnetization m ∈ [H1(Ω)]3 on a bounded Lipschitz domainΩ ⊂ R3,
is of the form

∂tm = α m × ∂tm − m × [
∆m + π(m)] with |m |2 = 1 a.e. in Ω.

The main difficulties in analyis as well as numerics for this equation are the nonlinear structure of
the operator and the non-convex side constraint. To add to the problem, the lower order terms π
can comprise non-local terms for which, e.g., the quasistatic Maxwell equations on the unbounded
domain R3\Ω have to be solved, and non-symmetric terms of the form m · curl(m). It is, however,
exactly these terms that give rise to the most interesting phenomena; e.g., chiral magnetic Skyrmions
that have a myriad of promising applications in microelectronics.
For the LLG equation with general lower order terms, existence of strong solutions can only be

shown local in time, but in this case there holds uniqueness [FT17]. Weak solutions on the other
hand exist globally in time, but are shown to be non-unique in some situations [AS92]. In this
work, we show a weak-strong uniqueness principle: If a strong solution m1 and a weak solution
m2 co-exist in some time interval (0,T), there already holds m1 = m2 in (0,T). In particular, this
shows that weak solutions are locally unique in the interval of existence of a strong solution.

1.5.4 Exact diagonalization of time-dependent Hamiltonians

M. Innerberger, P. Worm, P. Prauhart, and A. Kauch. Electron-light interaction in nonequilibrium:
exact diagonalization for time-dependent Hubbard Hamiltonians. Eur. Phys. J. Plus, 135:922, 2020.
doi: 10.1140/epjp/s13360-020-00919-2

Atomistic models in solid state physics, e.g., the Hubbard model, often lead to systems of differential
equations

∂t x = Ax with x ∈ CN, A ∈ CN×N (1.39)

involving a huge number of unknowns N ∈ N. In the case of the Hubbard model, this number
depends on the specific configuration under consideration. Under some realistic assumptions, e.g.,
that only neighboring atoms can interact, it can be as large as N = 4n, where n ∈ N is the number
of atoms. However, the system matrix A is usually sparse as well as Hermitian, i.e., A = A

ᵀ.

28

https://doi.org/10.1016/j.nonrwa.2020.103122
https://doi.org/10.1140/epjp/s13360-020-00919-2

1.5 Other scientific contributions

Computing the time evolution of the nonequilibrium system (1.39) without further simplifications
is known as exact diagonalization.
In this work, we give an efficient implementation of the solution of (1.39) by means of Krylov

subspace exponential integrators based on the Lanczos algorithm. In particular, only matrix-vector
multiplications with the system matrix A are performed within the algorithm. This suggests to use
the compressed sparse row (CSR) format to store only the non-zero entries of A. Our implementation
permits computations of up to n = 12 atoms on standard consumer hardware within reasonable
time. Several tests are conducted to assess the accuracy of the numerical solution with respect to
physically relevant invariants.

1.5.5 Impact ionization in solar-cell models

A. Kauch, P. Worm, P. Prauhart, M. Innerberger, C. Watzenböck, and K. Held. Enhancement of
impact ionization in Hubbard clusters by disorder and next-nearest-neighbor hopping. Phys. Rev.
B, 102(24):245125, 2020. doi: 10.1103/PhysRevB.102.245125

Silicon based solar cells can only harvest a specific amount of energy equal to their internal energy
gap from every incoming photon. The energy of photons which do not reach this barrier, as well
as excess energy from ones which surpass it, is not converted to electrical energy but dissipated as
heat. Taking into account the spectral distribution of solar radiation, this consideration leads to the
Shockley–Queisser limit of 34% efficiency of traditional solar cells [SQ61].

This limit can theoretically be surpassed if impact ionization takes place, i.e., the excess energy of
photons is partially reused if it surpasses the energy gap; see, e.g., [Man10]. In this work, we model
solar cells by small clusterswithin thewell-knownHubbardmodel and perform exact diagonalization
using the methods presented in [IWPK20]. We find impact ionization in all geometries that are
at least two-dimensional. Furthermore, we find that this effect even grows larger with increasing
perturbations in the geometry or the interaction between atoms due to a larger amount of different
possible energy states in the lattice.

29

https://doi.org/10.1103/PhysRevB.102.245125

2 Optimal convergence rates for goal-oriented
FEM with quadratic goal functional

Sections 2.2–2.7 of this chapter are taken from:
R. Becker, M. Innerberger, andD. Praetorius. Optimal convergence rates for goal-oriented
FEMwith quadratic goal functional. Comput.Methods Appl.Math., 21(2):267–288, 2021.
doi: 10.1515/cmam-2020-0044

2.1 Introduction

In this, in terms of content, first chapter, we relax thewell-analyzed setting of the general introduction
on GOAFEM given in Chapter 1 and drop one small but essential assumption: the linearity of the
goal functional. To this end, we consider the linear elliptic PDE

− div A∇u + b · ∇u + cu = f + div f in Ω, (2.1a)
u = 0 on ∂Ω, (2.1b)

where the weak formulation and corresponding discretizations will be made precise below. We
further suppose, as in the introduction, that this problem fits into the setting of the Lax–Milgram
lemma, i.e., there holds (1.4), and thus admits a unique solution (we also briefly comment on the
case that only a Gårding inequality is satisfied in Section 2.2.8).
Differing from (1.13), we suppose that the goal functional G : H1

0 (Ω) → R is a quadratic form

G(v) := 〈Kv , v〉H−1×H1
0

for all v ∈ H1
0 (Ω), (2.2)

with a bounded linear operator K : H1
0 (Ω) → H−1(Ω) and the dual pairing 〈· , ·〉H−1×H1

0
of H1

0 (Ω)
and its dual space H−1(Ω). Possible applications for goal functionals of the form (2.2) are, e.g., the
weighted L2-norm G(u) =

∫
Ω
g u2 dx or some nonlinear convection term G(u) =

∫
Ω

u g · ∇u dx for
given weights g ∈ L∞(Ω) and g ∈ [L∞(Ω)]d.
In this chapter, we propose a GOAFEM algorithm in the spirit of Algorithm 1E and analyze if

and how the results from Section 1.3 carry over to this new setting. The relaxation of the linearity
assumption has far reaching consequences both for the design of a GOAFEM algorithm as well as
its convergence analysis.

Consequences for GOAFEM algorithm

The change to a quadratic goal affects the steps Solve, Estimate, and Mark of Algorithm 1E.
First, it is not clear how to formulate the dual problem (1.12) in this context, since the right-hand

side G(v) is nonlinear. Instead, a suitable well-posed linearization of this problem has to be solved

31

https://doi.org/10.1515/cmam-2020-0044

2 GOAFEM with quadratic goal

in every step to obtain a dual solution; see (2.9) below. The right-hand side of the presented
linearized dual problem is the Fréchet-derivative of G around the discrete primal solution u` and,
hence, changes in every step of the GOAFEM algorithm. In particular, this implies a dependence
of the (discrete) dual solution z` on the discrete primal solution, which is denoted by z`[u`].

Second, this linearization introduces an error that renders the crucial goal error estimate (1.21)
invalid. Instead, the substitute

|G(u) − G(u`)| . η`(u`)
[
η`(u`)2 + ζ`(z`[u`])2

]1/2
, (2.3)

which is shown below, must be used to estimate the goal error from the information provided by a
suitable adaption of the a posteriori estimators (1.19). The quantity

[
η`(u`)2 + ζ`(z`[u`])2]1/2 is

called combined (or product) estimator.
Finally, since the marking strategies introduced in Section 1.2.3 are tailored to the structure of

the goal error estimate (1.21), marking for GOAFEM in the presence of a quadratic goal must be
tailored to (2.3), accordingly. For this, we present two different approaches:

1. From comparing the goal error estimates (1.21) and (2.3), the most natural approach is to
substitute the dual estimator by the combined estimator in the GOAFEM marking strategies
presented so far.

2. Since the primal estimator is dominated by the combined estimator, another approach is to
only mark elements for the combined estimator based on the Dörfler criterion (1.22). This is
computationally less expensive but might also lead to a possibly reduced rate of convergence.

Consequences for analysis

For such profound changes in the structure of the GOAFEM algorithm, the necessary adjustments
in the analysis are relatively mild. The idea is to show that there hold the estimator axioms (A1)–
(A4) as well as quasi-orthogonality (QO) for the combined estimator and retrace the steps from
Section 1.3. For the estimator axioms, this does not involve much effort and immediately implies
plain convergence of the goal error, i.e.,

|G(u) − G(u`)| → 0 as ` →∞. (2.4)

As is evident from Figure 1.4, quasi-orthogonality (QO) is necessary to show linear convergence
and, hence, convergence with optimal rates. In the introduction, to show (quasi-)orthogonality we
use the Galerkin orthogonality (1.16), which, in the present setting, does not hold anymore since
the dual problem changes on every level of the adaptive algorithm. To recover quasi-orthogonality,
we further assume that K is compact. Under this additional assumption, convergence with optimal
rates, Theorem 1.10, can be shown for both proposed algorithms with slightly adjusted convergence
rates that result from the setting.

Chapter outline

In Section 2.2, we go into more detail about the finite element discretization and state the two goal-
oriented adaptive algorithms outlined above (Algorithm 2A and 2B). Furthermore, we state the main
results in this section. For every linear bounded operator K, Proposition 2.1 and Proposition 2.4

32

2.2 Adaptive algorithm & main result

state plain convergence of Algorithm 2A and Algorithm 2B, respectively. Under the additional
assumption that the operator K is compact, Theorem 2.2 yields linear convergence with optimal
rates for Algorithm 2A. For the computationally less expensive Algorithm 2B, Theorem 2.5 yields
convergence with almost optimal rates in the sense that the rates are, in general, lower that that of
Algorithm 2A. We further provide some numerical experiments in Section 2.3 for the examples
stated above as well as an example with bounded but not compact K. Finally, the main theorems
are proved in Sections 2.4–2.7, where the most important auxiliary result is Lemma 2.13, quasi-
orthogonality for the combined quantities.

2.2 Adaptive algorithm & main result

2.2.1 Variational formulation

Define the bilinear form

a(u, v) :=
∫
Ω

A∇u · ∇v dx +
∫
Ω

b · ∇u v dx +
∫
Ω

cuv dx. (2.5)

We suppose that a(·, ·) fits into the setting of the Lax–Milgram lemma, i.e., a(·, ·) is continuous and
elliptic on H1

0 (Ω). While continuity

a(u, v) ≤ Ccnt ‖u‖H1(Ω)‖v‖H1(Ω) for all u, v ∈ H1
0 (Ω) (2.6)

follows from the assumptions made with Ccnt = ‖A‖L∞(Ω) + ‖b‖L∞(Ω) + ‖c‖L∞(Ω), the ellipticity

a(u, u) ≥ Cell ‖u‖2H1(Ω) for all u ∈ H1
0 (Ω) (2.7)

requires additional assumptions on the coefficients, e.g.,

inf
x∈Ω

inf
y∈Rd\{0}

y · A(x)y
|y |2 > 0 and b ∈ H(div;Ω) with inf

x∈Ω

(1
2
div b(x) + c(x)

)
≥ 0.

The weak formulation of (2.1) reads

a(u, v) = F(v) :=
∫
Ω

f v dx −
∫
Ω

f · ∇v dx for all v ∈ H1
0 (Ω). (2.8)

According to the Lax–Milgram lemma, (2.8) admits a unique solution u ∈ H1
0 (Ω). Given w ∈

H1
0 (Ω), the same argument applies and proves that the (linearized) dual problem

a(v, z[w]) = b(v,w) + b(w, v) for all v ∈ H1
0 (Ω) (2.9)

admits a unique solution z[w] ∈ H1
0 (Ω), where we abbreviate the notation by use of b(v,w) :=

〈Kv , w〉H−1×H1
0
. We note that b(·, ·) is, in particular, a continuous bilinear form on H1

0 (Ω).
Throughout, we denote by |||v |||2 :=

∫
Ω
A∇v · ∇v dx the energy norm induced by the principal

part of a(·, ·), which is an equivalent norm on H1
0 (Ω). Finally, we stress that all main results also

apply to the case that a(·, ·) satisfies only a Gårding inequality (instead of the strong ellipticity (2.7))
as long as the weak formulations (2.8) and (2.9) are well-posed; see Section 2.2.8 below.

33

2 GOAFEM with quadratic goal

2.2.2 Finite element method

For a conforming triangulation TH of Ω into compact simplices and a polynomial degree p ≥ 1, we
consider the conforming finite element space

XH := {vH ∈ H1
0 (Ω) | ∀T ∈ TH vH |T is a polynomial of degree ≤ p}. (2.10)

We approximate u ≈ uH ∈ XH and z[w] ≈ zH [w] ∈ XH . More precisely, the Lax–Milgram lemma
yields the existence and uniqueness of discrete FEM solutions uH, zH [w] ∈ XH of

a(uH, vH) = F(vH) and a(vH, zH [w]) = b(vH,w) + b(w, vH) for all vH ∈ XH . (2.11)

2.2.3 Linearization of the goal functional

To control the goal error |G(u) − G(uH)|, we employ the dual problem. Note that

b(u − uH, u − uH) = b(u, u) − b(uH, u) − b(u, uH) + b(uH, uH)
=

[
G(u) − G(uH)

] − [
b(uH, u) + b(u, uH) − 2b(uH, uH)

]
=

[
G(u) − G(uH)

] − [
b(uH, u − uH) + b(u − uH, uH)

]
.

With the dual problem and the Galerkin orthogonality, we rewrite the second bracket as

b(u − uH, uH) + b(uH, u − uH) (2.9)= a(u − uH, z[uH]) = a(u − uH, z[uH] − zH [uH]).

With continuity of the bilinear forms a(·, ·) and b(·, ·), we thus obtain that��G(u) − G(uH)
�� = ��a(u − uH, z[uH] − zH [uH]) + b(u − uH, u − uH)

��
. |||u − uH |||

[|||z[uH] − zH [uH]||| + |||u − uH |||
]
.

(2.12)

2.2.4 Mesh-refinement

Let T0 be a given conforming triangulation of Ω. We suppose that the mesh-refinement is a
deterministic and fixed strategy, e.g., newest vertex bisection [Ste08]. For each triangulation TH
and marked elementsMH ⊆ TH , let Th := refine(TH,MH) be the coarsest triangulation, where
all T ∈ MH have been refined, i.e.,MH ⊆ TH\Th. We write Th ∈ T(TH), if Th results from TH by
finitely many steps of refinement. To abbreviate notation, let T := T(T0).
We further suppose that each refined element has at least two sons, i.e.,

#(TH\Th) +#TH ≤ #Th for all TH ∈ T and all Th ∈ T(TH), (2.13)

and that the refinement rule satisfies the mesh-closure estimate

#T̀ −#T0 ≤ Cmesh

`−1∑
j=0

#M j for all ` ∈ N, (2.14)

where Cmesh > 0 depends only on T0. This has first been proved for 2D newest vertex bisection
in [BDD04] and has later been generalized to arbitrary dimension d ≥ 2 in [Ste08]. While both
works require an additional admissibility assumption on T0, this has been proved unnecessary at

34

2.2 Adaptive algorithm & main result

least for 2D in [KPP13]. Finally, it has been proved in [CKNS08; Ste07] that newest vertex bisection
ensures the overlay estimate, i.e., for all triangulations TH,Th ∈ T, there exists a common refinement
TH ⊕ Th ∈ T(TH) ∩ T(Th) which satisfies that

#(TH ⊕ Th) ≤ #TH +#Th −#T0. (2.15)

For meshes with first-order hanging nodes, (2.13)–(2.15) are analyzed in [BN10], while T-splines
and hierarchical splines for isogeometric analysis are considered in [Mor16; MP15] and [BGMP16;
GHP17], respectively.

2.2.5 Error estimators

For TH ∈ T and vH ∈ XH , let

ηH (T, vH) ≥ 0 and ζH (T, vH) ≥ 0 for all T ∈ TH

be given refinement indicators. ForUH ⊆ TH , let

ηH (UH, vH) :=
(∑
T ∈UH

ηH (T, vH)2
)1/2

and ζH (UH, vH) :=
(∑
T ∈UH

ζH (T, vH)2
)1/2

.

To abbreviate notation, let ηH (vH) := ηH (TH, vH) and ζH (vH) := ζH (TH, vH).
We suppose that the estimators ηH and ζH satisfy the following axioms of adaptivity from [CFPP14]:

There exist constants Cstab,Crel,Cdrel > 0 and 0 < qred < 1 such that for all TH ∈ T and all
Th ∈ T(TH), the following assumptions are satisfied:

(A1) stability: For all vh ∈ Xh, vH ∈ XH , andUH ⊆ Th ∩ TH , it holds that��ηh(UH, vh) − ηH (UH, vH)
�� + ��ζh(UH, vh) − ζH (UH, vH)

�� ≤ Cstab |||vh − vH |||.

(A2) reduction: For all vH ∈ XH , it holds that

ηh(Th\TH, vH) ≤ qred ηH (TH\Th, vH),
ζh(Th\TH, vH) ≤ qred ζH (TH\Th, vH).

(A3) reliability: For all w ∈ H1
0 (Ω), the Galerkin solutions uH, zH [w] ∈ XH to (2.11) satisfy that

|||u − uH ||| ≤ Crel ηH (uH),
|||z[w] − zH [w]||| ≤ Crel ζH (zH [w]).

(A4) discrete reliability: For all w ∈ H1
0 (Ω), the Galerkin solutions uH, zH [w] ∈ XH and

uh, zh[w] ∈ Xh to (2.11) satisfy that

|||uh − uH ||| ≤ Cdrel ηH (TH\Th, uH),
|||zh[w] − zH [w]||| ≤ Cdrel ζH (TH\Th, zH [w]).

35

2 GOAFEM with quadratic goal

We note that the axioms (A1)–(A4) are satisfied for, e.g., standard residual error estimators.
Given w ∈ H1

0 (Ω), the mapping v 7→ b(v,w) + b(w, v) is linear and continuous by assumption.
Hence, the Riesz theorem from functional analysis guarantees the existence (and uniqueness) of
g[w] ∈ H1

0 (Ω) such that

(g[w], v)H1 :=

∫
Ω

g[w]v dx +
∫
Ω

∇g[w] · ∇v dx = b(v,w) + b(w, v) for all v ∈ H1
0 (Ω). (2.16)

With g[w] = −∇g[w], we thus get that

b(v,w) + b(w, v) =
∫
Ω

g[w]v dx −
∫
Ω

g[w] · ∇v dx for all v ∈ H1
0 (Ω), (2.17)

i.e., the right-hand sides of the primal problem (2.8) and the (linearized) dual problem (2.9) take
the same form. With this1, the residual error estimators read for vH ∈ XH as

ηH (T, vH)2 := h2T ‖ − div(A∇vH + f) + b · ∇vH + cvH − f ‖2
L2(T)

+ hT ‖[[(A∇vH + f) · n]]‖2
L2(∂T∩Ω),

ζH (T, vH)2 := h2T ‖ − div(A∇vH + g[uH]) − b · ∇vH + (c − div b)vH − g[uH]‖2L2(T)
+ hT ‖[[(A∇vH + g[uH]) · n]]‖2L2(∂T∩Ω),

where [[·]] denotes the jump across faces and n is the outwards-facing unit normal vector. We stress
that our experiments below directly provide g[w] ∈ L2(Ω) and g[w] ∈ [L2(Ω)]d satisfying the
representation (2.17), so that there is, in fact, no need to solve (2.16).

2.2.6 Adaptive algorithm

Weconsider the following adaptive algorithm,which adapts themarking strategy proposed in [FPZ16].

Algorithm 2A
Input: Adaptivity parameters 0 < θ ≤ 1 and Cmark ≥ 1, initial mesh T0.
Loop: For all ` = 0, 1, 2, . . . , perform the following steps (i)–(v):

(i) Compute the discrete solutions u`, z`[u`] ∈ X` to (2.11).
(ii) Compute the refinement indicators η`(T, u`) and ζ`(T, z`[u`]) for all T ∈ T̀ .
(iii) Determine sets Mu

` ,M
uz

` ⊆ T̀ of up to the multiplicative constant Cmark minimal

1Recall the strong form of the primal problem

−div A∇u + b · ∇u + cu = f + div f in Ω

and note that the corresponding (linearized) strong form of the dual problem reads

−div A∇z − b · ∇z + (c − div b)z = g[w] + div g[w] in Ω.

36

2.2 Adaptive algorithm & main result

cardinality such that

θ η`(u`)2 ≤ η`(M
u

` , u`)2, (2.18a)

θ
[
η`(u`)2 + ζ`(z`[u`])2

] ≤ [
η`(M

uz

` , u`)2 + ζ`(M
uz

` , z`[u`])2
]
. (2.18b)

(iv) LetMu
`
⊆ Mu

` andMuz
`
⊆ Muz

` with#Mu
`
= #Muz

`
= min{#Mu

` , #M
uz

` }.
(v) DefineM` :=Mu

`
∪Muz

`
and generate T̀ +1 := refine(T̀ ,M`).

Output: Sequence of triangulations T̀ with corresponding discrete solutions u` and z`[u`] as
well as error estimators η`(u`) and ζ`(z`[u`]).

WithAlgorithm2Bbelow, we give and examine an alternative adaptive algorithm that is seemingly
cheaper in computational costs.
Our first result states that Algorithm 2A indeed leads to convergence.

Proposition 2.1. For any bounded linear operatorK : H1
0 (Ω) → H−1(Ω), there hold the follow-

ing statements (i)–(ii):
(i) There exists a constant C ′

rel
> 0 such that��G(u) − G(uH)

�� ≤ C ′rel ηH (uH)
[
ηH (uH)2 + ζH (zH [uH])2

]1/2 for all TH ∈ T. (2.19)

(ii) For all 0 < θ ≤ 1 and 1 < Cmark ≤ ∞, Algorithm 2A leads to convergence

|G(u) − G(u`)| ≤ C ′relη`(u`)
[
η`(u`)2 + ζ`(z`[u`])2

]1/2 −→ 0 as ` →∞. (2.20)

The constant C ′
rel

depends only on the constants from (A1)–(A3), the bilinear form a(·, ·) and the
boundedness of K.

To formulate our main result on optimal convergence rates, we need some additional notation.
For N ∈ N0, let TN := {T ∈ T |#T −#T0 ≤ N} denote the (finite) set of all refinements of T0,
which have at most N elements more than T0. For s, t > 0, we define

‖u‖As := sup
N ∈N0

(
(N + 1)s min

TH ∈TN
ηH (uH)

)
∈ R≥0 ∪ {∞},

‖z[u]‖At := sup
N ∈N0

(
(N + 1)t min

TH ∈TN
ζH (zH [u])

)
∈ R≥0 ∪ {∞}.

In explicit terms, e.g., ‖u‖As < ∞ means that an algebraic convergence rate O(N−s) for the error
estimator η` is possible, if the optimal triangulations are chosen.

The following theorem concludes the main results of the present work:

Theorem 2.2
For any compact operator K : H1

0 (Ω) → H−1(Ω), there even hold the following statements
(i)–(ii), which improve Proposition 2.1(ii):

(i) For all 0 < θ ≤ 1 and Cmark ≥ 1, there exists `0 ∈ N0, Clin > 0, and 0 < qlin < 1 such

37

2 GOAFEM with quadratic goal

that Algorithm 2A guarantees that, for all `, n ∈ N0 with n ≥ ` ≥ `0,

ηn(un)
[
ηn(un)2 + ζn(zn[un])2

]1/2 ≤ Clinqn−`
lin η`(u`)

[
η`(u`)2 + ζ`(z`[u`])2

]1/2
. (2.21)

(ii) There exist Copt > 0 and `0 ∈ N0 such that Algorithm 2A guarantees that, for all
0 < θ < θopt := (1+C2

stab
C2
drel
)−1, for all s, t > 0 with ‖u‖As + ‖z[u]‖At < ∞, and all ` ∈ N0

with ` ≥ `0, it holds that

η`(u`)
[
η`(u`)2 + ζ`(z`[u`])2

]1/2 ≤ Copt ‖u‖As (‖u‖As + ‖z‖At) (#T̀ −#T0)−α, (2.22)

where α := min{2s, s + t}.
The constants Clin, qlin, and `0 depend only on θ, qred, Cstab, Crel, the bilinear form a(·, ·),

and the compact operator K. The constant Copt depends only on θ, Cmesh, Cmark, Clin, qlin,
`0, and (A1)–(A4).

Remark 2.3. (i) We note that, according to the considered dual problem (2.9), the goal func-
tional (2.2) is linearized around u` in each step of the adaptive algorithm. Hence, we must enforce
that the linearization error satisfies that |||z`[u] − z`[u`]||| → 0 as ` → ∞. This is guaranteed by
Proposition 2.1(ii) and Theorem 2.2(i), since both factors of the product involve the primal error
estimator η`(u`).
(ii) For a linear goal functional and hence z`[u] = z`[u`], the work [FPZ16] considers plain

ζ2` (instead of η2` + ζ
2
`) for the Dörfler marking (2.18b) and then proves a convergence behavior

|G(u)−G(u`)| . η`ζ` = O
((#T̀)−α) for the estimator product, where α = s+ t with s > 0 being the

optimal rate for the primal problem and t > 0 being the optimal rate for the dual problem. Instead,
Algorithm 2A will only lead to O ((#T̀)−α) , where α = min{2s, s + t}; see Theorem 2.2(ii).

(iii) The marking strategy proposed in [BET11], where Dörfler marking is carried out for the
weighted estimator

ρH (T, uH, zH [uH])2 := ηH (T, uH)2ζH (zH [uH])2 + ηH (uH)2ζH (T, zH [uH])2, (2.23)

might be unable to ensure convergence of the linearization error |||z`[u]− z`[u`]|||, since in every step
Dörfler marking is implied for either ηH (uH) or ζH (zH [uH]); cf. [FPZ16]. If one instead considers

%H (T, uH, zH [uH])2 := ηH (T, uH)2
[
ηH (uH)2 + ζH (zH [uH])2

]
+ ηH (uH)2

[
ηH (T, uH)2 + ζH (T, zH [uH])2

]
,

(2.24)

the present results and the analysis in [FPZ16] make it clear that this strategy implies convergence
with rate min{2s, s + t}. Details are omitted.

2.2.7 Alternative adaptive algorithm

From the upper bound (2.19) in Proposition 2.1(i), we can further estimate the goal error by��G(u) − G(uH)
�� ≤ C ′rel

[
ηH (uH)2 + ζH (zH [uH])2

]
for all TH ∈ T.

This suggests the following algorithm, which marks elements solely based on the combined estima-
tor.

38

2.2 Adaptive algorithm & main result

Algorithm 2B
Input: Adaptivity parameters 0 < θ ≤ 1 and Cmark ≥ 1, initial mesh T0.
Loop: For all ` = 0, 1, 2, . . . , perform the following steps (i)–(iv):

(i) Compute the discrete solutions u`, z`[u`] ∈ X` to (2.11).
(ii) Compute the refinement indicators η`(T, u`) and ζ`(T, z`[u`]) for all T ∈ T̀ .
(iii) Determine a setM` ⊆ T̀ of up to the multiplicative constant Cmark minimal cardinality

such that

θ
[
η`(u`)2 + ζ`(z`[u`])2

] ≤ [
η`(M`, u`)2 + ζ`(M`, z`[u`])2

]
. (2.25)

(iv) Generate T̀ +1 := refine(T̀ ,M`).
Output: Sequence of triangulations T̀ with corresponding discrete solutions u` and z`[u`] as
well as error estimators η`(u`) and ζ`(z`[u`]).

First, we note that Algorithm 2B also leads to convergence.

Proposition 2.4. For any bounded linear operatorK, there hold the following statements (i)–(ii):
(i) There exists a constant C ′

rel
> 0 such that��G(u) − G(uH)

�� ≤ C ′rel
[
ηH (uH)2 + ζH (zH [uH])2

]
for all TH ∈ T. (2.26)

(ii) For all 0 < θ ≤ 1 and 1 < Cmark ≤ ∞, Algorithm 2B leads to convergence

|G(u) − G(u`)| ≤ C ′rel
[
η`(u`)2 + ζ`(z`[u`])2

] −→ 0 as ` →∞. (2.27)

The constant C ′
rel

depends only on the constants from (A1)–(A3), the bilinear form a(·, ·), and
the boundedness of K.

The following theorem proves linear convergence of Algorithm 2B with almost optimal conver-
gence rate, where we note that β ≤ α for the rates in (2.22) and (2.29). By abuse of notation we use
the same constants as in Theorem 2.2.

Theorem 2.5
For any compact operator K, there even hold the following statements (i)–(ii), which improve
Proposition 2.4(ii):
(i) For all 0 < θ ≤ 1 and Cmark ≥ 1, there exists `0 ∈ N0, Clin > 0, and 0 < qlin < 1 such

that Algorithm 2B guarantees that, for all `, n ∈ N0 with n ≥ ` ≥ `0,[
ηn(un)2 + ζn(zn[un])2

] ≤ Clinqn−`
lin

[
η`(u`)2 + ζ`(z`[u`])2

]
. (2.28)

(ii) There exist Copt > 0 and `0 ∈ N0 such that Algorithm 2A guarantees that, for all
0 < θ < θopt := (1+C2

stab
C2
drel
)−1, for all s, t > 0 with ‖u‖As + ‖z[u]‖At < ∞, and all ` ∈ N0

39

2 GOAFEM with quadratic goal

with ` ≥ `0, it holds that[
η`(u`)2 + ζ`(z`[u`])2

] ≤ Copt (‖u‖2As
+ ‖z‖2At

) (#T̀ −#T0)−β, (2.29)

where β := min{2s, 2t}.
The constants Clin, qlin, and `0 depend only on θ, qred, Cstab, Crel, the bilinear form a(·, ·),

and the compact operator K. The constant Copt depends only on θ, Cmesh, Cmark, and
(A1)–(A4).

Note that Algorithm 2B has slightly lower computational costs than Algorithm 2A, but achieves
only a lower rate in general. However, if there holds s ≤ t both algorithms achieve rate 2s.

2.2.8 Extension of analysis to compactly perturbed elliptic problems

For the ease of presentation, we have restricted ourselves to the case that the bilinear form a(·, ·)
from (2.5) is continuous (2.6) and elliptic (2.7). Actually, it suffices to assume that a(·, ·) is
continuous and that the energy norm ||| · ||| induced by the principal part is an equivalent norm on
H1
0 (Ω), e.g., by assuming that A ∈ L∞(Ω) is uniformly positive definite. Then, a(·, ·) is elliptic up

to some compact perturbation (and hence satisfies a Gårding inequality). A prominent example for
this problem class is the Helmholtz problem.
We have to assume that the primal formulation (2.8) is well-posed, i.e., for all w ∈ H1

0 (Ω) it holds
that [

a(w, v) = 0 for all v ∈ H1
0 (Ω)

]
=⇒ w = 0.

Then, the Fredholm alternative and standard functional analysis imply that the primal formula-
tion (2.8) as well as the dual formulation (2.9) admit unique solutions. Moreover, as soon as TH is
sufficiently fine, also the FEM problems (2.11) admit unique solutions and, more importantly, the
discrete inf-sup constants are uniformly bounded from below; see, e.g., [BHP17, Section 2].
As noted in [BHP17], such an analytical setting requires only twominor modifications of adaptive

algorithms:

(a) Step (i) in Algorithm 2A or Algorithm 2B: If the discrete solutions u` and z`[u`] exist (and,
hence, are also unique), then we proceed as before. If either u` or z`[u`] does not exist, then
the mesh T̀ +1 is obtained by uniform refinement of T̀ , i.e.,M` := T̀ .

(b) Step (iv) of Algorithm 2A or step (iii) of Algorithm 2B: Having determined a set of marked
elements M` ⊆ T̀ , we select a superset M#

`
⊇ M` with #M#

`
≤ 2#M` as well as

M#
`
∩ {T ∈ T̀ | |T | ≥ |T ′ | for all T ′ ∈ T̀ } , ∅ and define the refined mesh T̀ +1 :=

refine(T̀ ,M#
`
) via the extended set of marked elements.

It is observed in [BHP17] that uniform refinement caused by the modification (a) can only occur
finitely many times. Moreover, the modification (b) ensures that H1

0 (Ω) =
⋃∞
`=0X` so that the

adaptive algorithm indeed converges to the right limit. For standard adaptive FEM, it is shown
in [BHP17] that this procedure still leads to optimal convergence rates. We note that the arguments
from [BHP17] obviously extend to the present goal-oriented adaptive FEM.

40

2.3 Numerical experiments

U1

U2U3

Figure 2.1: Initial mesh (left) and sets U1,U2,U3 (right) on the unit square Ω = (0, 1)2.

2.3 Numerical experiments

In this section, we underline our theoretical findings by some numerical examples. As starting point
of all examples, we use equation (2.1) with A = I, b = 0, and c = 0 on the unit square Ω = (0, 1)2.
The initial mesh T0 on Ω is obtained from certain uniform refinements from the mesh shown in
Figure 2.1. All examples are computed with conforming finite elements of order p = 1 and p = 2,
as outlined in Section 2.2.2.
In the following, we consider the marking strategies of Algorithm 2A and Algorithm 2B (denoted

by A and B, respectively), as well as the marking strategies outlined in Remark 2.3(iii), i.e., Dörfler
marking for (2.23) and (2.24), which will be denoted by BET1 and BET2, respectively. If not stated
otherwise, the marking parameter is θ = 0.5 for all experiments.

2.3.1 Weighted L2-norm

Suppose some weight function λ ∈ L∞(Ω) with λ ≥ 0 a.e., whose regions of discontinuity are
resolved by the initial mesh T0 (i.e., g is continuous in the interior of every element of T0). Then,
we consider the weighted L2-norm

G(u) =
∫
Ω

λ(x)u(x)2 dx = 〈λu , u〉H−1×H1
0
= ‖λ1/2u‖2

L2(Ω) (2.30)

as goal functional. We note that b(v,w) = 〈λv , w〉H−1×H1
0
and hence (2.17) holds with g[w] = 2λw

and g[w] = 0. Moreover, we observe that Ku = λu ∈ L2(Ω) ↪→ H−1(Ω), where the embedding is
compact, so that the goal functional from (2.30) fits in the setting of Theorem 2.2 and Theorem 2.5.
We choose

λ(x) =
{
1, x ∈ U1,

0, x < U1,

with U1 = (0.25, 0.75)2. This functional is evaluated at the solution of equation (2.1) with f =
2x(x − 1) + 2y(y − 1) and f = 0. The solution of this equation, as well as the value of the goal
functional, can be computed analytically to be u = xy(1−x)(1−y) andG(u) =

∫
U1

u2 dx = 41209
58982400 ,

respectively. The numerical results are visualized in Figure 2.2.

41

2 GOAFEM with quadratic goal

104 105 106

10−10

10−9

10−8

10−7

10−6

10−5

10−4 ∝ (#T̀)−1

#T̀

er
ro

r/
es

tim
at

or

104 105 106

10−15

10−13

10−11

10−9

10−7

∝ (#T̀) −2

#T̀

er
ro

r/
es

tim
at

or

A B BET1 BET2

η` (u`) · ζ` (z` [u`])
|G(u`) −G(u) |

Figure 2.2: Convergence rates of estimator product and goal error for the problem setting in Sec-
tion 2.3.1 with p = 1 (left) and p = 2 (right). Note that the lines marked with A, B, and
BET2 are almost identical.

2.3.2 Nonlinear convection

Suppose that λ ∈ [L∞(Ω)]2 is some vector field, whose regions of discontinuity are resolved by the
initial mesh T0. As goal functional we consider the nonlinear convection term

G(u) =
∫
Ω

u(x)λ(x) · ∇u(x)dx = 〈λ · ∇u , u〉H−1×H1
0
. (2.31)

We note that b(v,w) = 〈λ · ∇v , w〉H−1×H1
0
and hence (2.17) holds with g[w] = λ · ∇w and

g[w] = −wλ. Moreover, we observe that Ku = λ · ∇u ∈ L2(Ω) ↪→ H−1(Ω), where the embedding
is compact, so that the goal functional from (2.31) fits in the setting of Theorem 2.2 and Theorem 2.5.
We compute the solutions to the primal and the dual problem for f = 0,

f (x) =
{

1√
2
(−1, 1) if x ∈ U3,

0 else,
and λ =

σ√
2

(−1
1

)
with σ =

{
1 if x ∈ U2,

−1 else.

The sets U3 := {x ∈ Ω | x1 − x2 ≥ 0.25} and U2 := (0.5, 1)×(0, 0.5) are shown in Figure 2.1. The
numerical results are visualized in Figure 2.3. Note that the primal problem in this case exhibits a
singularity which is not induced by the geometry and thus is not present in the dual problem.

2.3.3 Force evaluation

Let ε > 0 and let ψ be a cut-off function that satisfies

ψ(x) = 1 if x ∈ U1 and ψ(x) = 0 if dist(x,U1) > ε.

For a given direction χ ∈ R2, consider a goal functional of the form

G(u) :=
∫
Ω

∇ψ · (∇u ⊗ ∇u − 1
2 |∇u|2I)χ dx. (2.32)

42

2.3 Numerical experiments

104 105 106

10−13

10−11

10−9

10−7

10−5

10−3

∝ (#T̀)−1

∝ (#T̀) −2

#T̀

es
tim

at
or

A B BET1 BET2
p = 1

p = 2

104 105 106

10−5

10−4

10−3

10−2

∝ (#T̀) −1

#T̀

es
tim

at
or

A B BET1 BET2
p = 1

Figure 2.3: Convergence rates of estimator product for the problem setting in Section 2.3.2 (left)
and Section 2.3.3 (right).

This approximates the electrostatic force which is exerted by an electric potential u on a charged
body occupying the domain U1 in direction χ (the part of the integrand in brackets is the so-called
Maxwell stress tensor). We note that

b(v,w) =
∫
Ω

∇ψ · (∇v ⊗ ∇w − 1
2 (∇v · ∇w)I

)
χ dx

and hence (2.17) holds with g[w] = 0 and g[w] = (∇ψ ·χ)∇w−(∇ψ ·∇w)χ−(χ ·∇w)∇ψ. We stress
that the goal functional from (2.32) does not fit in the setting of Theorem 2.2 and Theorem 2.5, since
the corresponding operator K is not compact. Hence, we cannot guarantee optimal rates for our
Algorithms 2A and 2B. However, Proposition 2.1 and Proposition 2.4 still guarantee convergence
of our algorithms.
For our experiments, we choose χ = 1√

2
(1, 1)>, f = 1, and f = 0. Furthermore, we choose ψ to

be in X0 for p = 1, i.e., ψ is piecewise linear, and ε is chosen such that ψ falls off to 0 exactly within
one layer of elements around U1 in T0.

The results can be seen in Figure 2.3.

2.3.4 Discussion of numerical experiments

We clearly see from Figures 2.2–2.3 that our Algorithm 2A and BET2 outperform BET1 and
sometimes even Algorithm 2B. From Figure 2.4, where we plot estimator product (and, if available,
goal error) for different parameters θ = 0.1, 0.2, . . . , 1.0, we see that this behavior does not depend
on the marking parameter θ, generally speaking. It is striking that the strategy BET1 with θ < 1
fails to drive down the estimator product at the same speed as uniform refinement. This is likely
due to the fact that the linearization error |||z`[u] − z`[u`]||| is disregarded; see Remark 2.3.

In Figure 2.5, we plot the cumulative costs∑
`∈S[τ]

#T̀ , with S[τ] := {` ∈ N | error` ≥ τ}, (2.33)

43

2 GOAFEM with quadratic goal

104 105 106

10−16

10−14

10−12

10−10

10−8

∝ (#T̀) −2

#T̀

er
ro

r/
es

tim
at

or

A BET1

104 105 106

10−10

10−9

10−8

10−7

10−6

10−5

10−4

∝ (#T̀) −2

#T̀

A B BET1

104 105 106

10−5

10−4

10−3

10−2

∝ (#T̀) −1

#T̀

A BET1

Figure 2.4: Variation of θ from 0.1 (light) to 1.0 (dark) in steps of 0.1. Left: Setting from Sec-
tion 2.3.1 with p = 2, where the upper lines represent the estimator product and the
lower ones the goal error. Middle: Estimator product for the setting from Section 2.3.2
with p = 2. Right: Estimator product for the setting from Section 2.3.3 with p = 1.

0.2 0.4 0.6 0.8 1

105

106

107 |G(u) − G(u`)| ≤ 10−12

p = 2

Section 2.3.1

cu
m

ul
at

iv
e

co
sts

0.2 0.4 0.6 0.8 1

105

106

107 η`(u`) · ζ`(z`[u`]) ≤ 10−8

p = 2

Section 2.3.1

0.2 0.4 0.6 0.8 1
104

105

106

107
η`(u`) · ζ`(z`[u`]) ≤ 10−7

p = 2

Section 2.3.2

θ

cu
m

ul
at

iv
e

co
sts

0.2 0.4 0.6 0.8 1

106

107 η`(u`) · ζ`(z`[u`]) ≤ 10−4

p = 1

Section 2.3.3

θ

A B BET1 BET2

Figure 2.5: Cumulative costs (2.33) for estimator product and goal error for the setting of Sec-
tion 2.3.1 (top), for the estimator product for the setting of Section 2.3.2 (bottom left),
and for the estimator product for the setting of Section 2.3.3 (bottom right). The param-
eters θ are chosen uniformly in [0.1, 1] with stepsize 0.1.

44

2.4 Auxiliary results

where error` is either the estimator product η`(u`)ζ`(z`[u`]), or the goal error |G(u)−G(u`)| in the `-
th step of the adaptive algorithm. We see that for the setting from Section 2.3.1, where no singularity
occurs, optimal costs are achieved by uniform refinement, as is expected. For the goal error, which is
not known in general, the strategy BET1 performs better than our Algorithms 2A and 2B. However,
for the estimator product, which is the relevant quantity in most applications (since the error is
unknown), it is inferior. In the other settings, where there is a singularity, our Algorithms 2A and 2B
achieve their minimal cost around the value 0.7 for the marking parameter θ.

2.4 Auxiliary results

2.4.1 Axioms of adaptivity

Clearly, z[w] and zH [w] depend linearly on w (since K is linear and hence b(·, ·) is bilinear).
Moreover, we have the following stability estimates.

Lemma 2.6. For all w ∈ H1
0 (Ω) and all TH ∈ T(T0), it holds that

C−11 |||zH [w]||| ≤ |||z[w]||| ≤ C2 |||w |||, (2.34)

where C1 > 0 depends only on a(·, ·), while C2 > 0 depends additionally on the boundedness of
K.

Proof. The definition of the dual problem shows that

|||z[w]|||2 . a(z[w], z[w]) (2.9)= b(z[w],w) + b(w, z[w]) . |||w ||| |||z[w]|||

and hence |||z[w]||| . |||w |||. Moreover, the stability of the Galerkin method yields that |||zH [w]||| .
|||z[w]|||. This concludes the proof. �

Next, we show that the combined estimator for the primal and dual problem satisfies the assump-
tions (A1)–(A4), where particular emphasis is put on (A3)–(A4). For the ease of presentation (and
by abuse of notation), we use the same constants as for the original properties (A1)–(A4), even
though they now depend additionally on the bilinear form a(·, ·) and the boundedness of K.

Proposition 2.7. Suppose (A1)–(A4) for ηH and ζH . Let TH ∈ T and Th ∈ T(TH). Then,
(A1)–(A4) hold also for the combined estimator

[
ηH (·)2 + ζH (·)2

]1/2:
(A1) For all vh,wh ∈ Xh, vH,wH ∈ XH , andUH ⊆ Th ∩ TH , it holds that��� [ηh(UH, vh)2 + ζh(UH,wh)2

]1/2 − [
ηH (UH, vH)2 + ζH (UH,wH)2

]1/2���
≤ Cstab

[|||vh − vH ||| + |||wh − wH |||
]
.

(A2) For all vH,wH ∈ XH , it holds that[
ηh(Th\TH, vH)2 + ζh(Th\TH,wH)2

]1/2 ≤ qred
[
ηH (TH\Th, vH)2 + ζH (TH\Th,wH)2

]1/2
.

45

2 GOAFEM with quadratic goal

(A3) The Galerkin solutions uH, zH [uH] ∈ XH to (2.11) satisfy that

|||u − uH ||| + |||z[u] − zH [uH]||| + |||z[uH] − zH [uH]||| ≤ Crel

[
ηH (uH)2 + ζH (zH [uH])2

]1/2
.

(A4) The Galerkin solutions uH, zH [uH] ∈ XH and uh, zh[uh] ∈ Xh to (2.11) satisfy that

|||uh − uH ||| + |||zh[uh] − zH [uH]||| ≤ Cdrel

[
ηH (TH\Th, uH)2 + ζH (TH\Th, zH [uH])2

]1/2
.

Proof. By the triangle inequality and [a2 + b2]1/2 ≤ a + b, (A1) follows from stability of ηH and
ζH . Reduction (A2) follows directly from the corresponding properties of ηH and ζH . For (A3),
we see with Lemma 2.6 that

|||z[u] − zH [uH]||| ≤ |||z[u] − z[uH]||| + |||z[uH] − zH [uH]|||
(2.34)
. |||u − uH ||| + |||z[uH] − zH [uH]|||.

Hence, (A3) follows from reliability of ηH and ζH . Discrete reliability (A4) follows from the same
arguments. �

In the following, we recall some basic results of [CFPP14].

Lemma 2.8 (quasi-monotonicity of estimators [CFPP14, Lemma 3.6]). Let w ∈ H1
0 (Ω). Let

TH ∈ T and Th ∈ T(TH). The properties (A1)–(A3) together with the Céa lemma guarantee that

ηh(uh)2 ≤ Cmon ηH (uH)2 as well as ζh(zh[w])2 ≤ Cmon ζH (zH [w])2. (2.35)

Moreover, the properties (A1)–(A3) for the combined error estimator together with the Céa
lemma show that

ηh(uh)2 + ζh(zh[uh])2 ≤ Cmon

[
ηH (uH)2 + ζH (zH [uH])2

]
. (2.36)

The constant Cmon > 0 depends only on the properties (A1)–(A3) and on the bilinear form a(·, ·)
and the boundedness of K. �

Lemma 2.9 (generalized estimator reduction [CFPP14, Lemma 4.7]). Let TH ∈ T and Th ∈
T(TH). Let vH ∈ XH , vh ∈ Xh, and δ > 0. Then,

• ηh(vh)2 ≤ (1 + δ)
[
ηH (vH)2 − (1 − q2

red
) ηH (TH\Th, vH)2

]
+ (1 + δ−1)C2

stab
|||vh − vH |||2,

• ζh(vh)2 ≤ (1 + δ)
[
ζH (vH)2 − (1 − q2

red
) ζH (TH\Th, vH)2

]
+ (1 + δ−1)C2

stab
|||vh − vH |||2.

If, for instance, θ ηH (uH)2 ≤ ηH (TH\Th, uH)2 with 0 < θ ≤ 1, then it follows that

ηh(uh)2 ≤ q ηH (uH)2 + C |||uh − uH |||2. (2.37)

In this case, it holds that 0 < q := (1 + δ) [1 − (1 − q2
red
) θ]

< 1 and C := (1 + δ−1)C2
stab

with
δ > 0 being sufficiently small. �

46

2.4 Auxiliary results

Lemma2.10 (optimality ofDörflermarking [CFPP14, Proposition 4.12]). Suppose stability (A1)
and discrete reliability (A4). For all 0 < θ < θopt := (1 + C2

stab
C2
drel
)−1, there exists some

0 < κopt < 1 such that for all T̀ ∈ T and all Th ∈ T(T̀), it holds that

ηh(uh)2 ≤ κopt η`(u`)2 =⇒ θ η`(u`)2 ≤ η`(T̀ \Th, u`)2, (2.38)[
ηh(uh)2 + ζh(zh[uh])2

] ≤ κopt [
η2` + ζ`(z`[u`])2

]
=⇒ θ

[
η2` + ζ`(z`[u`])2

] ≤ [
η`(T̀ \Th, u`)2 + ζ`(T̀ \Th, z`[u`])2

]
. �

(2.39)

2.4.2 Quasi-orthogonality

To prove linear convergence in the spirit of [CKNS08], we imitate the approach from [BHP17].
One crucial ingredient are appropriate quasi-orthogonalities. To this end, our proofs exploit the
observation of [FFP14] that, for any compact operator C : H1

0 (Ω) → H−1(Ω), convergence ‖u −
u` ‖H1(Ω) → 0 plus Galerkin orthogonality for the nested discrete spaces X` ⊆ X`+1 ⊂ H1

0 (Ω) for
all ` ∈ N0 even yields that ‖C(u − u`)‖H−1(Ω)/‖u − u` ‖H1(Ω) → 0 as ` → ∞. The latter is also the
key argument for the following two lemmas.

Lemma 2.11 (quasi-orthogonality for primal problem [BHP17, Lemma 18]). Suppose that
|||u − u` ||| → 0 as ` → ∞. Then, for all 0 < ε < 1, there exists `0 ∈ N such that, for all ` ≥
`0 and all n ∈ N0,

|||u − u`+n |||2 + |||u`+n − u` |||2 ≤ 1

1 − ε |||u − u` |||2. � (2.40)

The same result holds for the dual problem, if the algorithm ensures convergence |||z[u]−z`[u]||| →
0 as ` →∞.

Lemma 2.12 (quasi-orthogonality for exact dual problem [BHP17, Lemma 18]). Suppose that
|||z[u] − z`[u]||| → 0 as ` → ∞. Then, for all 0 < ε < 1, there exists `0 ∈ N such that,
for all ` ≥ `0 and all n ∈ N0,

|||z[u] − z`+n[u]|||2 + |||z`+n[u] − z`[u]|||2 ≤ 1

1 − ε |||z[u] − z`[u]|||2. � (2.41)

Lemma 2.13 (combined quasi-orthogonality for inexact dual problem). Suppose that |||u−u` |||+
|||z[u] − z`[u`]||| → 0 as ` → ∞. Then, for all 0 < δ < 1, there exists `0 ∈ N such that,
for all ` ≥ `0 and all n ∈ N0,[|||u − u`+n |||2 + |||z[u] − z`+n[u`+n]|||2

]
+

[|||u`+n − u` ||| + |||z`+n[u`+n] − z`[u`]|||2
]

≤ 1

1 − δ
[|||u − u` |||2 + |||z[u] − z`[u`]|||2

]
.

(2.42)

Proof. According to Lemma 2.6, it holds that

|||z[u] − z`[u]||| ≤ |||z[u] − z`[u`]||| + |||z`[u] − z`[u`]|||
(2.34)
. |||z[u] − z`[u`]||| + |||u − u` ||| `→∞−−−−→ 0.

47

2 GOAFEM with quadratic goal

Hence, we may exploit the conclusions of Lemma 2.11 and Lemma 2.12. For arbitrary α > 0, the
Young inequality guarantees that

|||z[u] − z`+n[u`+n]|||2 ≤ (1 + α) |||z[u] − z`+n[u]|||2 + (1 + α−1) |||z`+n[u] − z`+n[u`+n]|||2,
|||z`+n[u`+n] − z`[u`]|||2 ≤ (1 + α) |||z`+n[u] − z`[u]|||2 + (1 + α−1)2 |||z`[u] − z`[u`]|||2

+ (1 + α)(1 + α−1) |||z`+n[u] − z`+n[u`+n]|||2,
|||z[u] − z`[u]|||2 ≤ (1 + α) |||z[u] − z`[u`]|||2 + (1 + α−1) |||z`[u] − z`[u`]|||2.

Together with Lemma 2.12, this leads to

|||z[u] − z`+n[u`+n]|||2 + |||z`+n[u`+n] − z`[u`]|||2

≤ (1 + α) [|||z[u] − z`+n[u]|||2 + |||z`+n[u] − z`[u]|||2
]

+ (2 + α)(1 + α−1) |||z`+n[u] − z`+n[u`+n]|||2 + (1 + α−1)2 |||z`[u] − z`[u`]|||2
(2.41)≤ 1 + α

1 − ε |||z[u] − z`[u]|||2 + (1 + α−1)2 |||z`[u] − z`[u`]|||2

+ (2 + α)(1 + α−1) |||z`+n[u] − z`+n[u`+n]|||2

≤ (1 + α)2
1 − ε |||z[u] − z`[u`]|||2 +

[
(1 + α−1)2 + (1 + α

−1)(1 + α)
1 − ε

]
|||z`[u] − z`[u`]|||2

+ (2 + α)(1 + α−1) |||z`+n[u] − z`+n[u`+n]|||2

(2.43)

for all 0 < ε < 1 and all ` ≥ `0, where `0 ∈ N0 depends only on ε. With the (compact) adjoint
K ′ : H1

0 (Ω) → H−1(Ω) of K, we note that
|||z`[u] − z`[u`]|||2 = |||z`[u − u`]|||2 . a(z`[u − u`], z`[u − u`])
= b(z`[u − u`], u − u`) + b(u − u`, z`[u − u`])
= 〈K(z`[u − u`]) , u − u`〉H−1×H1

0
+ 〈K(u − u`) , z`[u − u`]〉H−1×H1

0

= 〈K ′(u − u`) , z`[u − u`]〉H−1×H1
0
+ 〈K(u − u`) , z`[u − u`]〉H−1×H1

0
.

(2.34)
.

[‖K ′(u − u`)‖H−1(Ω) + ‖K(u − u`)‖H−1(Ω)
] |||u − u` |||.

SinceK andK ′ are compact operators (according to the Schauder theorem), it follows from [FFP14,
Lemma 3.5] (see also [BHP17, Lemma 17]) that[‖K ′(u − u`)‖H−1(Ω) + ‖K(u − u`)‖H−1(Ω)

] ≤ κ̃` |||u − u` ||| with 0 ≤ κ̃` `→∞−−−−→ 0.

Combining the two last estimates, we see that

|||z`[u] − z`[u`]|||2 ≤ κ` |||u − u` |||2 for all ` ∈ N0, where 0 ≤ κ` `→∞−−−−→ 0. (2.44)

Plugging (2.44) into (2.43), we thus have shown that

|||z[u] − z`+n[u`+n]|||2 + |||z`+n[u`+n] − z`[u`]|||2

≤ (1 + α)
2

1 − ε |||z[u] − z`[u`]|||2 +
[
(1 + α−1)2 + (1 + α

−1)(1 + α)
1 − ε

]
κ` |||u − u` |||2

+ (2 + α)(1 + α−1) κ`+n |||u − u`+n |||2

48

2.5 Proof of plain convergence of Algorithm 2A and 2B

for all 0 < ε < 1, all α > 0, and all ` ≥ `0, where `0 ∈ N0 depends only on ε. We combine this
estimate with that of Lemma 2.11. This leads to[|||u − u`+n |||2 + |||z[u] − z`+n[u`+n]|||2

]
+

[|||u`+n − u` ||| + |||z`+n[u`+n] − z`[u`]|||2
]

≤ C(α, ε, `) [|||u − u` |||2 + |||z[u] − z`[u`]|||2
]
+ (2 + α)(1 + α−1) κ`+n |||u − u`+n |||2,

where
C(α, ε, `) := max

{ (1 + α)2
1 − ε ,

1

1 − ε +
[
(1 + α−1)2 + (1 + α

−1)(1 + α)
1 − ε

]
κ`

}
for all 0 < ε < 1, all α > 0, and all ` ≥ `0, where `0 ∈ N0 depends only on ε. For arbitrary
0 < α, β, ε < 1, there exists `′0 ∈ N0 such that for all ` ≥ `′0, it holds that

(2 + α)(1 + α−1)κ` ≤ β
as well as

1

1 − ε +
[
(1 + α−1)2 + (1 + α

−1)(1 + α)
1 − ε

]
κ` ≤ (1 + α)

2

1 − ε .

Hence, we are led to[|||u − u`+n |||2 + |||z[u] − z`+n[u`+n]|||2
]
+

[|||u`+n − u` ||| + |||z`+n[u`+n] − z`[u`]|||2
]

≤ (1 + α)2
(1 − ε)(1 − β)

[|||u − u` |||2 + |||z[u] − z`[u`]|||2
]
.

(2.45)

Given 0 < δ < 1, we first fix α > 0 such that (1 + α)2 < 1
1−δ . Then, we choose 0 < ε, β < 1

such that (1+α)2
(1−ε)(1−β) ≤ 1

1−δ . The choices of ε and β also provide some index `0 ∈ N0 such that
estimate (2.45) holds for all ` ≥ `0. This concludes the proof. �

2.5 Proof of plain convergence of Algorithm 2A and 2B

2.5.1 Algorithm 2A

First, we prove the upper bound for the goal error.

Proof of Proposition 2.1(i). It holds that��G(u) − G(uH)
�� (2.12). |||u − uH |||

[|||z[uH] − zH [uH]||| + |||u − uH |||
]

(A3)
. ηH (uH)

[
ζH (zH [uH]) + ηH (uH)

]
.

The hidden constants depend only on the boundedness of a(·, ·) and K, and on the constant Crel

from (A3). According to the Young inequality, this concludes the proof. �

Since Algorithm 2A linearizes the dual problem around the known discrete solution (i.e., it em-
ploys z`[u`] instead of the non-computable z`[u]), a first important observation is that Algorithm 2A
ensures convergence for the primal solution. In particular, the following proposition allows to apply
the quasi-orthogonalities from Section 2.4.2.

49

2 GOAFEM with quadratic goal

Proposition 2.14 (plain convergence of errors and error estimators). Suppose (A1)–(A3). Then,
for any choice of marking parameters 0 < θ ≤ 1 and Cmark ≥ 1, Algorithm 2A and Algorithm 2B
guarantee that

• |||u − u` ||| + η`(u`) → 0 if #{k ∈ N0 | Mk satisfies (2.18a)} = ∞,
• |||u − u` ||| + η`(u`) + |||z[u] − z`[u`]||| + |||z[u] − z`[u]||| + ζ`(z`[u`]) → 0
if #{k ∈ N0 | Mk satisfies (2.18b)} = ∞,

as ` →∞. Moreover, at least one of these two cases is met.

Proof. Since the discrete spaces are nested, it follows from the Céa lemma that there exists u∞ ∈
H1
0 (Ω) such that

|||u∞ − u` ||| `→∞−−−−→ 0; (2.46)

see, e.g., [AFP12; MSV08] or even the early work [BV84]. More precisely, u∞ is the Galerkin
approximation of u with respect to the “discrete limit space” X∞ :=

⋃∞
`=0X` , where the closure is

taken in H1
0 (Ω). Analogously, there exists z∞ ∈ H1

0 (Ω) such that

|||z∞ − z`[u∞]||| `→∞−−−−→ 0.

Together with (2.46) and Lemma 2.6, this also proves that

|||z∞ − z`[u`]||| ≤ |||z∞ − z`[u∞]||| + |||z`[u∞] − z`[u`]|||
. |||z∞ − z`[u∞]||| + |||u∞ − u` ||| `→∞−−−−→ 0.

In the following, we aim to show that, in particular, u = u∞. To this end, the proof considers two
cases:

〈1〉 There exists a subsequence (T̀
k
)k∈N0 such thatM`k satisfies (2.18a) for all k ∈ N0,

〈2〉 There exists a subsequence (T̀
k
)k∈N0 such thatM`k satisfies (2.18b) for all k ∈ N0.

Clearly, (at least) one of these subsequences is well-defined (i.e., there are infinitely many steps of
the respective marking).
Case 〈1〉. According to Lemma 2.9, there exists 0 < q < 1 and C > 0 such that

η`k+1(u`k+1)2
(2.37)≤ q η`k (u`k)2 + C |||u`k+1 − u`k |||2 for all k ∈ N0.

With (2.46), the last estimate proves that the estimator subsequence is contractive up to some zero
sequence. Therefore, it follows from basic calculus and reliability (A3) that

|||u − u`k |||
(A3)
. η`k (u`k)

k→∞−−−−→ 0;

see, e.g., [AFP12, Lemma 2.3]. In particular, this proves that u = u∞ and hence |||u − u` ||| → 0
as ` → ∞. Moreover, according to quasi-monotonicity (Lemma 2.8), the convergence of the
subsequence η`k (u`k) → 0 even yields that η`(u`) → 0 as ` →∞.

50

2.6 Proof of Theorem 2.2

Case 〈2〉. We repeat the arguments from case 〈1〉. Instead of ηH (uH)2, we consider the combined
estimator ηH (uH)2 + ζH (zH [uH])2. For all k ∈ N0, this leads to

η`k+1(u`k+1)2 + ζ`k+1(z`k+1[u`k+1])2 ≤ q
[
η`k (u`k)2 + ζ`k (z`k [u`k])2

]
+ C

[|||u`k+1 − u`k |||2 + |||z`k+1[u`k+1] − z`k [u`k]|||2
]
.

As before, basic calculus reveals that

|||u − u`k |||2 + |||z[u] − z`k [u`k]|||2
(A3)
. η`k (u`k)2 + ζ`k (z`k [u`k])2

k→∞−−−−→ 0.

In this case, we thus see that u = u∞ and z[u] = z∞ as well as estimator convergence η`(u`) +
ζ`(z`[u`]) → 0 as ` → ∞ (following now from Lemma 2.8). In any case, this concludes the
proof. �

Proof of Proposition 2.1(ii). Recall from Proposition 2.1(i) that��G(u) − G(u`)
�� (2.19). η`(u`)

[
η`(u`)2 + ζ`(z`[u`])2

]1/2
.

Suppose #{k ∈ N0 | M` satisfies (2.18a)} = ∞. According to Proposition 2.14, it holds that
η`(u`) → 0 as ` → ∞. According to Lemma 2.8, it holds that η`(u`)2 + ζ`(z`[u`])2 .
η0(u0)2 + ζ0(z0[u0])2 < ∞. Thus, the right-hand side of (2.20) vanishes. In the case #{k ∈
N0 | M` satisfies (2.18b)} = ∞ one can argue analogously. This concludes the proof. �

2.5.2 Algorithm 2B

First, we prove the upper bound.

Proof of Proposition 2.4(i). From Proposition 2.1(i) it follows that��G(u) − G(uH)
��(2.19)≤ C ′rel ηH (uH)

[
ηH (uH)2 + ζH (zH [uH])2

]1/2
≤ C ′rel

[
ηH (uH)2 + ζH (zH [uH])2

]
.

This proves the claim. �

Proof of Proposition 2.4(ii). Recall from Proposition 2.4(i) that��G(u) − G(u`)
�� (2.19). [

η`(u`)2 + ζ`(z`[u`])2
]
.

Note that themarking step (2.25) ofAlgorithm2B implies, in particular, that#{k ∈ N0 | M` satisfies
(2.18b)} = ∞. According to Proposition 2.14, it holds that η`(u`) + ζ`(z`[u`]) → 0 as ` → ∞.
Thus, the right-hand side of (2.27) vanishes. This concludes the proof. �

2.6 Proof of Theorem 2.2

2.6.1 Linear convergence

Based on estimator reduction (Lemma 2.9) and quasi-orthogonality (Lemma 2.11, Lemma 2.13),
we are in the position to address linear convergence.

51

2 GOAFEM with quadratic goal

Proposition 2.15 (generalized contraction). Suppose (A1)–(A3). Then, there exist constants
γ > 0 and 0 < qctr < 1 such that the quasi-errors

∆uH := |||u − uH |||2 + γ ηH (uH)2 and ∆zH := |||z[u] − zH [uH]|||2 + γ ζH (zH [uH])2, (2.47)

defined for all TH ∈ T, satisfy the following contraction properties: There exists an index `0 ≥ 0
such that, for all ` ∈ N0 with ` ≥ `0 and all n ∈ N, it holds that

• ∆u
`+n
≤ qctr ∆u` provided thatM` satisfies (2.18a);

•
[
∆u
`+n
+ ∆z

`+n

] ≤ qctr
[
∆u
`
+ ∆z

`

]
provided thatM` satisfies (2.18b);

The constants γ and qctr depend only on θ, qred, Cstab, and Crel, and the index `0, which depends
on γ and qctr, is essentially provided by Lemma 2.11 and Lemma 2.13.

Proof. Let 0 < ε, δ, γ < 1 be free parameters, which will be fixed later.
Step 1. Consider the case that #{k ∈ N0 | Mk satisfies (2.18a)} = ∞ and that M` satis-

fies (2.18a). From the generalized estimator reduction (Lemma 2.9), we get that

η`+n(u`+n)2
(2.9)≤ q η`(u`)2 + C |||u`+n − u` |||2,

where 0 < q < 1 depends only on θ and qred, while C > 0 depends additionally on Cstab. Together
with the quasi-orthogonality (Lemma 2.11), we see that

∆u`+n = |||u − u`+n |||2 + γ η`(u`+n)2

≤ 1

1 − ε |||u − u` |||2 + γq η`(u`)2 + (γC − 1) |||u`+n − u` |||2.

The choice of γ must enforce that γC ≤ 1. Together with reliability, we are then led to

∆u`+n
(A3)≤

[1

1 − ε − γδ
]
|||u − u` |||2 + γ

[
q + δC2

rel

]
η`(u`)2.

The choice of δ > 0 must guarantee that q + δC2
rel
< 1. Finally, the choice of ε > 0 must guarantee

that (1 − ε)−1 − γδ < 1. Then, we see that

∆u`+n ≤ qctr ∆`, where qctr := max{(1 − ε)−1 − γδ , q + δC2
rel} < 1.

Step 2. Consider the case that #{k ∈ N0 | Mk satisfies (2.18b)} = ∞ and that M` satis-
fies (2.18b). The same arguments apply (now based on the combined quasi-orthogonality from
Lemma 2.13).
Step 3. If `u0 := #{k ∈ N0 | Mk satisfies (2.18a)} < ∞, choose `0 > `u0 as well as the free

parameters according to Step 2.
Step 4. If `uz0 := #{k ∈ N0 | Mk satisfies (2.18b)} < ∞, choose `0 > `uz0 as well as the free

parameters according to Step 1.
Step 5. Finally, note that Step 3 and Step 4 are exclusive, since N0 = {k ∈ N0 | Mk satisfies

(2.18a)} ∪ {k ∈ N0 | Mk satisfies (2.18b)}. This concludes the proof. �

52

2.6 Proof of Theorem 2.2

Proof of Theorem 2.2(i). Recall the quasi-errors from (2.47). We first prove that ∆uH ' ηH (uH)2
as well as

[
∆uH + ∆

z
H

] ' [
ηH (uH)2 + ζH (zH [uH])2

]
. To see this, note that

γ ηH (uH)2 ≤ ∆uH
(A3)≤ (C2

rel + γ) ηH (uH)2

as well as

γ
[
ηH (uH)2 + ζH (zH [uH])2

] ≤ ∆uH + ∆zH (A3)≤ (2C2
rel + γ)

[
ηH (uH)2 + ζH (zH [uH])2

]
.

Let ` ≥ `0. In n steps, the adaptive algorithm satisfies k timesMu

` ⊆ M` and (at least) n − k times
Muz

` ⊆ M` . From Proposition 2.15, we hence infer that

η`+n(u`+n)2 ≤ (C2
rel + γ)γ−1 qk

ctr η`(u`)2

as well as[
η`+n(u`+n)2 + ζ`+n(z`+n[u`+n])2

] ≤ (2C2
rel + γ)γ−1 qn−k

ctr

[
η`(u`)2 + ζ`(z`[u`])2

]
.

Multiplying these two estimates, we conclude the proofwith qlin = q1/2
ctr andClin = (2C2

rel
+γ)/γ. �

2.6.2 Optimal rates

Linear convergence, together with the following lemma, finally proves optimal rates for Algo-
rithm 2A.

Lemma 2.16. Suppose (A1)–(A4). For all 0 < θ < θopt = (1 + C2
stab

C2
drel
)−1, there exists

Caux > 0 such that the following holds: For all TH ∈ T, there exists some RH ⊆ TH such that
for all s, t > 0 with ‖u‖As + ‖z[u]‖At < ∞ and α = min{2s, s + t}, it holds that

#RH ≤ 2
[

Caux ‖u‖As (‖u‖As + ‖z[u]‖At)
]1/α (

ηH (uH)
[
ηH (uH)2 + ζH (zH [uH])2

]1/2)−1/α
(2.48)

as well as the Dörfler marking (2.18), i.e.,

θηH (uH)2 ≤ ηH (#RH, uH)2 or
θ
[
ηH (uH)2 + ζH (zH [uH])2

] ≤ ηH (#RH, uH)2 + ζH (#RH, zH [uH])2.
(2.49)

The constant Caux depends only on θ and (A1)–(A4).

Proof. Adopt the notation of Lemma 2.10. According to Lemma 2.6, stability (A1) and reliabil-
ity (A3), it holds that

ζH (zH [uH]) ≤ C
[
ηH (uH) + ζH (zH [u])

]
and ζH (zH [u]) ≤ C

[
ηH (uH) + ζH (zH [uH])

]
with C := max{1,CstabCrelC1C2}. The quasi-monotonicity of the estimators (Lemma 2.8) and[
ηh(uh)2 + ζh(zh[uh])2

]1/2 ≤ (C + 1)[ηh(uh) + ζh(zh[u])] yield that
ε := (C + 1)−1C−1monκopt ηH (uH)

[
ηH (uH)2 + ζH (zH [uH])2

]1/2
≤ (C + 1)−1κopt η0(u0)

[
η0(u0)2 + ζ0(z0[u0])2

]1/2
< η0(u0)(η0(u0) + ζ0(z0[u])) ≤ ‖u‖As (‖u‖As + ‖z[u]‖At) < ∞.

53

2 GOAFEM with quadratic goal

Choose the minimal N ∈ N0 such that

‖u‖As (‖u‖As + ‖z[u]‖At) ≤ ε (N + 1)α.

From the choice of ε and the previous estimate, it follows that N > 0. Choose Tε1,Tε2 ∈ TN with
ηε1(uε1) = minTh ∈TN ηh(uh) and ζε2(zε2[u]) = minTh ∈TN ζh(zh[u]). Define Tε := Tε1 ⊕ Tε2 and
Th := Tε ⊕ TH . Then, Lemma 2.8, the definition of the approximation classes, and the choice of N
and α = min{2s, s + t} give that

ηh(uh)
[
ηh(uh)2 + ζh(zh[uh])2

]1/2 ≤ Cmonηε1(uε1)
[
ηε1(uε1)2 + ζε2(zε2[uε2])2

]1/2
≤ (C + 1)Cmonηε1(uε1)

[
ηε1(uε1) + ζε2(zε2[u])

]
≤ (C + 1)Cmon

((N + 1)−(2s)‖u‖2As
+ (N + 1)−(s+t)‖u‖As ‖z[u]‖At

)
≤ (C + 1)Cmon(N + 1)−α‖u‖As (‖u‖As + ‖z[u]‖At)
≤ (C + 1)Cmonε = κopt ηH (uH)

[
ηH (uH)2 + ζH (zH [uH])2

]1/2
.

This implies that
[
ηh(uh)2 + ζh(zh[uh])2

] ≤ κopt
[
ηH (uH)2 + ζH (zH [uH])2

]
or ηh(uh)2 ≤

κopt ηH (uH)2. Lemma 2.10 hence proves (2.49) with RH := TH\Th. It remains to derive (2.48). To
that end, define

C̃ :=
[‖u‖As (‖u‖As + ‖z[u]‖At)Cmonκ

−1
opt

]1/α
.

Then, minimality of N ∈ N0 and N > 0 yield that

N <
[‖u‖As (‖u‖As + ‖z[u]‖At)

]1/α
ε−1/α = C̃

(
ηH (uH)

[
ηH (uH)2 + ζH (zH [uH])2

]1/2)−1/α
.

According to the choice of Th and RH , the overlay estimate (2.15) yields that

#RH = #(TH\Th)
(2.13)≤ #Th −#TH

(2.15)≤ #Tε −#T0
(2.15)≤ #Tε1 +#Tε2 − 2#T0 ≤ 2N

< 2C̃
(
ηH (uH)

[
ηH (uH)2 + ζH (zH [uH])2

]1/2)−1/α
.

(2.50)

Overall, we conclude (2.48) with Caux = Cmon/κopt. �

Proof of Theorem 2.2(ii). According to (2.49) of Lemma 2.16 and the marking strategy in Algo-
rithm 2A, for all j ∈ N0, it holds that

#M j ≤ 2 min{#Mu

j , #M
uz

j } ≤ 2Cmark#R j .

With α = min{2s, s + t} > 0, estimate (2.48) of Lemma 2.16 implies that

#M j ≤ 4Cmark

[
Caux ‖u‖As (‖u‖As + ‖z‖At)

]1/α (
ηj(u j)

[
ηj(u j)2 + ζj(zj[u j])2

]1/2)−1/α
.

With the mesh-closure estimate (2.14), we obtain that

#T̀ −#T0
(2.14)≤ Cmesh

`−1∑
j=0

#M j = Cmesh

(`0−1∑
j=0

#M j +

`−1∑
j=`0

#M j

)
.

54

2.7 Proof of Theorem 2.5

Using that #M j ≤ #Tj+1 −#Tj , we get that

#T̀ −#T0 ≤ Cmesh

(
#T̀0 −#T0 +

`−1∑
j=`0

#M j

)
≤ Cmesh

(
#T̀0 −#T0 + 1

) `−1∑
j=`0

#M j

.
`−1∑
j=`0

(
ηj(u j)

[
ηH (u j)2 + ζj(zj[u j])2

]1/2)−1/α
.

(2.51)

Linear convergence (2.21) implies that

η`(u`)
[
η`(u`)2 + ζ`(z`[u`])2

]1/2 ≤ Clin q`−j
lin

ηj(u j)
[
ηj(u j)2 + ζj(zj[u j])2

]1/2
for all 0 ≤ j ≤ ` and hence(

ηj(u j)
[
ηH (u j)2 + ζj(zj[u j])2

]1/2)−1/α
≤ C1/α

lin
q(`−j)/α
lin

(
η`(u`)

[
η`(u`)2 + ζ`(z`[u`])2

]1/2)−1/α
.

With 0 < q := q1/α
lin

< 1, the geometric series applies and yields that

`−1∑
j=`0

(
ηj(u j)

[
ηH (u j)2 + ζj(zj[u j])2

]1/2)−1/α
≤ C1/α

lin

(
η`(u`)

[
η`(u`)2 + ζ`(z`[u`])2

]1/2)−1/α `−1∑
j=`0

q`−j

≤ C1/α
lin

1 − q1/α
lin

(
η`(u`)

[
η`(u`)2 + ζ`(z`[u`])2

]1/2)−1/α
.

Combining this with (2.51), we obtain that

#T̀ −#T0 ≤ 4
CmeshCmark

1 − q1/α
lin

(
#T̀0 −#T0 + 1

) [
ClinCaux ‖u‖As (‖u‖As + ‖z‖At)

]1/α
(
η`(u`)

[
η`(u`)2 + ζ`(z`[u`])2

]1/2)−1/α
.

Altogether, we conclude (2.22) with Copt = C̃1+α
opt

(
#T̀0 − #T0 + 1

)1+α/(1 − q1/α
lin
)α and C̃opt :=

max{ClinCaux , 4CmeshCmark}. �

2.7 Proof of Theorem 2.5

In contrast to the corresponding results for Algorithm 2A, the proof of Theorem 2.5 (for Algo-
rithm 2B) follows essentially from the abstract setting of [CFPP14].

55

2 GOAFEM with quadratic goal

Proof of Theorem 2.5. (i) Note that (2.25) coincides with (2.18b). Hence, Proposition 2.15 can be
applied and results in[

∆u`+n + ∆
z
`+n

] ≤ qctr
[
∆u` + ∆

z
`

]
for all `, n ∈ N0 with ` ≥ `0.

For n = 1, we conclude contraction and hence linear convergence[
ηk(uk)2 + ζk(zk[uk])2

] ' [
∆uk + ∆

z
k

]
≤ qk−`

ctr

[
∆u` + ∆

z
`

] ' qk−`
ctr

[
η`(u`)2 + ζ`(z`[u`])2

]
for all k ≥ ` ≥ `0.

(ii) Since Proposition 2.7 shows that there hold (A1)–(A4) even for the combined estimator,
[CFPP14, Theorem 4.1(ii)] guarantees convergence with optimal rates according to the approxima-
tion class

‖(u, z[u])‖Aβ := sup
N ∈N0

(
(N + 1)β min

TH ∈TN

[
ηH (u)2 + ζH (zH [u])2

]1/2) ∈ R≥0 ∪ {∞}
with β > 0. In particular, there exists a constant C̃opt > 0 such that

sup
`∈N0

[η`(u`)2 + ζ`(z`[u`])2]1/2
(#T̀ −#T0 + 1)−β

≤ C̃opt ‖(u, z[u])‖Aβ (2.52)

for all β > 0. For N ∈ N0 choose THu,TH z ∈ TN such that

ηHu (uHu) = min
T?∈TN

η?(u?), ζH z (zH z [u]) = min
T?∈TN

ζ?(z?[u]). (2.53)

Then, for the overlay TH := THu ⊕ TH z , it holds that

#TH −#T0 ≤ #THu +#TH z − 2#T0 ≤ 2N

and thus TH ∈ T2N . From the minimality assumption in (2.53), we infer that

(2N + 1)β [ηH (uH)2 + ζH (zH [u])2
]1/2 ≤ 2β

[(N + 1)βηH (uH) + (N + 1)βζH (zH [u])
]

(2.35)≤ 2β
[

Cmon(N + 1)βηHu (uHu) + Cmon(N + 1)βζH z (zH z [u])]
(2.53)≤ 2βCmon

[‖u‖Aβ + ‖z‖Aβ]
.

Hence, we have ‖(u, z[u])‖Aβ . ‖u‖As + ‖z‖At for β ≤ min{s, t}. From this and (2.52), we obtain
(2.29) by squaring, thus doubling the rate, i.e. β = 2α. �

56

3 Goal-oriented adaptive finite element methods
with optimal computational complexity

Sections 3.2–3.6 of this chapter are taken from:
R. Becker, G. Gantner, M. Innerberger, and D. Praetorius. Goal-oriented adaptive finite
element methods with optimal computational complexity, 2021. arXiv: 2101.11407

3.1 Introduction

In the general introduction in Chapter 1, we have assumed that the discrete FEM equations (1.6)
and (1.15) can be solved exactly. This viewpoint is convenient from an analysis point of view, since
it allows to concentrate on the essential features of the algorithm under investigation. In practice,
however, the discrete FEM equations correspond to linear systems of the form

Ax? = b, with x?, b ∈ RN, A ∈ RN×N, (3.1)

for some N ∈ N. Usually, N is large and the system matrix A is sparse (because of the local support
of FEM basis functions). Such systems can hardly be solved exactly on a computer, which operates
with finite precision arithmetic. Rather, we obtain an approximate solution x ≈ x? of (3.1), which
corresponds to a FEM solution uH on a mesh TH by (1.8). To make the notation more explicit in
this chapter, we denote the exact FEM solution corresponding to x? by u?H .

The solution of linear systems can be computed directly, e.g., by Gaussian elimination or fac-
torization, where the error ‖x? − x‖ is only caused by rounding errors of the involved arithmetical
operations; or iteratively, e.g., by the conjugate gradient method or a multigrid method, where
additionally an iteration error occurs: An iterative solver computes the solution of (3.1) by starting
with an initial guess x0 ∈ RN and then iteratively updating this guess by a (preferably inexpensive)
computation to obtain the next iterates x1, x2, . . . and so on. The iteration is stopped before the exact
solution x? is reached. We denote FEM functions corresponding to iterates of an iterative solver by
the same upper indices.
For large linear systems, direct methods become prohibitively expensive, leaving only iterative

methods to choose from. This claim is also supported by the numerical experiments in Chapter 5,
where runtimes for different tasks of actual AFEM computations are shown; solving (3.1) directly
is by far the most costly task and its runtime grows super-linearly. In this chapter, we therefore
consider iterative solvers like the preconditioned CG method with optimal multilevel additive
Schwarz preconditioner [CNX12] or the geometric multigrid method [WZ17] for the solution of the
primal and dual solution u?H, z

?
H in the Solve step of Algorithm 1E. These impose the additional

restriction that A is symmetric positive definite. Hence, we drop the non-symmetric convection

57

http://arxiv.org/abs/2101.11407

3 GOAFEM with iterative solution

term from (1.2) to arrive at

−div A∇u? + cu? = f + div f in Ω,
u? = 0 on Γ := ∂Ω

(3.2)

as this chapter’s model problem, where the star is added also for the continuous problem to be
consistent in the notation. With the goal functional (1.13), the sought goal value then reads

G(u?) =
∫
Ω

(
gu? − g · ∇u?

)
dx. (3.3)

We replace the Solve step of Algorithm 1E by an iterative solver. The two main questions of
this chapter are when to stop this solver and what consequences does this have for the optimality
analysis outlined in Section 1.3.

Stopping the iterative solver

For standard AFEM (for possibly nonlinear problems) driven by residual error estimators of the
energy norm error, the works [GHPS18; GHPS21] have shown that it suffices to solve the linear
system up to an accuracy that is comparable with the achievable accuracy on the current mesh.
Since neither of these accuracies is known, they use surrogates: For a stopping parameter λ > 0
they stop the iterative solver as soon as

|||uk
H − uk−1

H ||| ≤ λ ηH
(
uk
H

)
, (3.4)

where uk
H ≈ u?H are the discrete approximations arising from the iterative solver (i.e., uk

H corresponds
to the coefficient vector xk). Note that both sides of this inequality only involve available iterates
and, hence, are computable. We remark that the solver stopping criterion (3.4) is essentially similar
to the one used in [MS09; Ste07].

For GOAFEM, the linear system of the primal and dual problem have to be solved in every
step and a stopping criterion needs to take both into account. One possibility is to stop the solver
separately for primal and dual problem as soon as the respective stopping criterion is met. With
Algorithm 3A below, we formulate a GOAFEM algorithm that takes into account iterative solution
of primal and dual problem, where stopping the iterative solver is done for both problems separately
according to (3.4).
Since, for efficiency reasons, primal and dual solution are often iterated simultaneously, one

might not want to treat both problems separately. We suggest further stopping criteria reflecting
this desire in Section 3.3.2 and note that our analysis holds for all presented criteria.

Optimal computational cost

Not having the exact discrete solutions u?H, z
?
H available influences the goal error estimate. Similarly

to Chapter 2, the error of the available approximate goal value |G(u?) −G(uk
H)| cannot be estimated

by a product of energy norms as in (1.17) and an additional term appears in this upper bound. In
contrast to Chapter 2, however, the additional term can be computed. Using this term as a correction,
we arrive at a discrete quantity of interest GH (uk

H, z
k
H) that acts as an approximate goal value and

by means of which an analogue of (1.17) can be recovered.

58

3.2 Goal-oriented adaptive finite element method

With the discrete quantity of interest, we are able to prove optimality in the sense of Section 1.3
under two additional assumptions: the iterative solver is contractive (see (3.10) below) and the
stopping parameter λ > 0 is sufficiently small. This also gives a positive answer to the question if
the optimality analysis presented in the introduction is robust with respect to numerical errors.

Under the specified assumptions even a stronger notion of optimality can be shown. We not only
prove that the error |G(u?) − G`(uk

`
, zk
`
)| of the final iterates uk

`
, zk
`
decays with optimal rate with

respect to #T̀ , but also that the error |G(u?) − G`(uk
`
, zk
`
)| of all iterates decays even with optimal

rate with respect to the overall computational cost. The latter concept also takes into account how
computationally expensive it is to compute the solutions on every level, i.e., the number of solver
steps made; see (3.27) below.

Chapter outline

We first present the details of our GOAFEM algorithm (Algorithm 3A) in Section 3.2: the finite
element discretization, the precise assumptions for the iterative solver, the marking strategy, and
the error estimators. In Section 3.3 we state our main results: The first one is Theorem 3.5,
full linear convergence for arbitrary stopping parameter λ, i.e., there holds linear convergence for
a suitable quasi-error quantity for every range of steps of the adaptive algorithm, regardless of
the type of step (solver steps or mesh refinement). This provides the key argument for proving
Theorem 3.7, convergence with optimal rates with respect to the total computational cost if the
adaptivity parameters are sufficiently small. To complete this section, we comment on alternative
termination criteria for the iterative solver. After we give some numerical experiments to underline
our analysis in Section 3.4, we finally prove our main Theorems in Section 3.5 and Section 3.6,
respectively.

3.2 Goal-oriented adaptive finite element method

3.2.1 Variational formulation

Defining the symmetric bilinear form

a(u, v) :=
∫
Ω

A∇u · ∇v dx +
∫
Ω

cuv dx, (3.5)

we suppose that a(·, ·) is continuous and elliptic on H1
0 (Ω) and thus fits into the setting of the

Lax–Milgram lemma, i.e., there exist constants 0 < Cell ≤ Ccnt < ∞ such that

Cell‖u‖2H1
0 (Ω)
≤ a(u, u) and a(u, v) ≤ Ccnt‖u‖H1

0 (Ω)‖v‖H1
0 (Ω) for all u, v ∈ H1

0 (Ω).

In particular, a(·, ·) is a scalar product that yields an equivalent norm |||v |||2 := a(v, v) on H1
0 (Ω). The

weak formulation of (3.2) reads

a(u?, v) = F(v) :=
∫
Ω

(
f v dx − f · ∇v) dx for all v ∈ H1

0 (Ω). (3.6)

59

3 GOAFEM with iterative solution

The Lax–Milgram lemma proves existence and uniqueness of the solution u? ∈ H1
0 (Ω) of (3.6).

The same argument applies and proves that the dual problem

a(v, z?) = G(v) for all v ∈ H1
0 (Ω) (3.7)

admits a unique solution z? ∈ H1
0 (Ω), where the linear goal functional G ∈ H−1(Ω) := H1

0 (Ω)′ is
defined by (3.3).

Remark 3.1. For ease of presentation, we restrict our model problem (3.2) to homogeneous
Dirichlet boundary conditions. We note, however, that for mixed homogeneous Dirichlet and
inhomogeneous Neumann boundary conditions our main results hold true with the obvious mod-
ifications. In particular, with the partition ∂Ω = ΓD ∪ ΓN into Dirichlet boundary ΓD with
|ΓD | > 0 and Neumann boundary ΓN , the space H1

0 (Ω) (and its discretization) has to be replaced
by H1

D(Ω) := {v ∈ H1(Ω) | v |ΓD = 0 in the sense of traces} and the Neumann data has to be given
in L2(ΓN). Furthermore, the coefficient f must vanish in a neighborhood of ΓN to go from the
strong form (3.2) to the weak form (3.6) via integration by parts.

3.2.2 Finite element discretization and solution

For a conforming triangulation TH of Ω into compact simplices and a polynomial degree p ≥ 1, let

XH := {vH ∈ H1
0 (Ω) | ∀T ∈ TH vH |T is a polynomial of degree ≤ p}. (3.8)

To obtain conforming finite element approximations u? ≈ uH ∈ XH and z? ≈ zH ∈ XH , we
consider the Galerkin discretizations of (3.6)–(3.7). First, we note that the Lax–Milgram lemma
yields the existence and uniqueness of exact discrete solutions u?H, z

?
H ∈ XH , i.e., there holds that

a(u?H, vH) = F(vH) and a(vH, z?H) = G(vH) for all vH ∈ XH . (3.9)

In practice, the discrete systems (3.9) are rarely solved exactly (or up to machine precision). Instead,
a suitable iterative solver is employed, which yields approximate discrete solutions um

H, z
n
H ∈ XH .

We suppose that this iterative solver is contractive, i.e., for all m, n ∈ N, it holds that
|||u?H − um

H ||| ≤ qctr |||u?H − um−1
H ||| and |||z?H − znH ||| ≤ qctr |||z?H − zn−1H |||, (3.10)

where 0 < qctr < 1 is a generic constant and, in particular, independent of XH . Assumption (3.10)
is satisfied, e.g., for an optimally preconditioned conjugate gradient (PCG) method (see [CNX12])
or geometric multigrid solvers (see [WZ17]); see also the discussion in [GHPS21].

3.2.3 Discrete goal quantity

To approximate G(u?), we proceed as in [GS02]: For any uH, zH ∈ XH , it holds that

G(u?) − G(uH) = G(u? − uH)(3.7)= a(u? − uH, z?) = a(u? − uH, z? − zH) + a(u? − uH, zH)
(3.6)
= a(u? − uH, z? − zH) +

[
F(zH) − a(uH, zH)

]
.

Defining the discrete quantity of interest

GH (uH, zH) := G(uH) +
[
F(zH) − a(uH, zH)

]
, (3.11)

60

3.2 Goal-oriented adaptive finite element method

the goal error can be controlled by means of the Cauchy–Schwarz inequality��G(u?) − GH (uH, zH)
�� ≤ ��a(u? − uH, z? − zH)

�� ≤ |||u? − uH ||| |||z? − zH |||. (3.12)

We note that the additional term in (3.11) is the residual of the discrete primal problem (3.9)
evaluated at an arbitrary function zH ∈ XH and hence G(u?H) = GH (u?H, zH).
In the following, we design an adaptive algorithm that provides a computable upper bound

to (3.12) which tends to zero at optimal algebraic rate with respect to the number of elements#TH
as well as with respect to the total computational cost.

3.2.4 Mesh refinement

Let T0 be a given conforming triangulation of Ω. We suppose that the mesh-refinement is a deter-
ministic and fixed strategy, e.g., newest vertex bisection [Ste08]. For each conforming triangulation
TH and marked elementsMH ⊆ TH , let Th := refine(TH,MH) be the coarsest conforming tri-
angulation, where all T ∈ MH have been refined, i.e., MH ⊆ TH\Th. We write Th ∈ T(TH), if
Th results from TH by finitely many steps of refinement. To abbreviate notation, let T := T(T0).
We note that the order on T is respected by the finite element spaces, i.e., Th ∈ T(TH) implies that
XH ⊆ Xh.
We further suppose that each refined element has at least two sons, i.e.,

#(TH\Th) +#TH ≤ #Th for all TH ∈ T and all Th ∈ T(TH), (3.13)

and that the refinement rule satisfies the mesh-closure estimate

#T̀ −#T0 ≤ Ccls

`−1∑
j=0

#M j for all ` ∈ N, (3.14)

where Ccls > 0 depends only on T0. For newest vertex bisection, this has been proved under
an additional admissibility assumption on T0 in [BDD04; Ste08] and for 2D even without any
additional assumption in [KPP13]. Finally, we suppose that the overlay estimate holds, i.e., for
all triangulations TH,Th ∈ T, there exists a common refinement TH ⊕ Th ∈ T(TH) ∩ T(Th) which
satisfies that

#(TH ⊕ Th) ≤ #TH +#Th −#T0, (3.15)

which has been proved in [CKNS08; Ste07] for newest vertex bisection.

3.2.5 Estimator properties

For TH ∈ T and vH ∈ XH , let
ηH (T, vH) ≥ 0 and ζH (T, vH) ≥ 0 for all T ∈ TH

be given refinement indicators. For µH ∈ {ηH, ζH }, we use the usual convention that

µH (vH) := µH (TH, vH), where µH (UH, vH) =
(∑
T ∈UH

µH (T, vH)2
)1/2

(3.16)

61

3 GOAFEM with iterative solution

for all vH ∈ XH and allUH ⊆ TH .
We suppose that the estimators ηH and ζH satisfy the so-called axioms of adaptivity (which are

designed for, but not restricted to, weighted-residual error estimators) from [CFPP14]: There exist
constants Cstab,Crel,Cdrel > 0 and 0 < qred < 1 such that for all TH ∈ T(T0) and all Th ∈ T(TH),
the following assumptions are satisfied:

(A1) Stability: For all vh ∈ Xh, vH ∈ XH , andUH ⊆ Th ∩ TH , it holds that��ηh(UH, vh) − ηH (UH, vH)
�� + ��ζh(UH, vh) − ζH (UH, vH)

�� ≤ Cstab |||vh − vH |||.

(A2) Reduction: For all vH ∈ XH , it holds that

ηh(Th\TH, vH) ≤ qred ηH (TH\Th, vH) and ζh(Th\TH, vH) ≤ qred ζH (TH\Th, vH).

(A3) Reliability: The Galerkin solutions u?H, z
?
H ∈ XH to (3.9) satisfy that

|||u? − u?H ||| ≤ Crel ηH (u?H) and |||z? − z?H ||| ≤ Crel ζH (z?H).

(A4) Discrete reliability: The Galerkin solutions u?H, z
?
H ∈ XH and u?

h
, z?

h
∈ Xh to (3.9) satisfy

that

|||u?h − u?H ||| ≤ Cdrel ηH (TH\Th, u?H) and |||z?h − z?H ||| ≤ Cdrel ζH (TH\Th, z?H).

By assumptions (A1) and (A3), we can estimate for every discrete function wH ∈ XH the errors
in the energy norm of the primal and the dual problem by

|||u? − wH ||| ≤ C
[
ηH (wH) + |||u?H − wH |||

]
and |||z? − wH ||| ≤ C

[
ζH (wH) + |||z?H − wH |||

]
,

respectively, where C = max{Crel,CrelCstab + 1} > 0. Together with (3.12), we then obtain that
the goal error for approximations um

H ≈ u?H and znH ≈ z?H in XH is bounded by��G(u?) − GH (um
H, z

n
H)

�� ≤ C2
[
ηH (um

H) + |||u?H − um
H |||

] [
ζH (znH) + |||z?H − znH |||

]
. (3.17)

In the following sections, we provide building blocks for our adaptive algorithm that allow to control
the arising estimators (by a suitable marking strategy) as well as the arising norms in the upper
bound of (3.17) (by an appropriate stopping criterion for the iterative solver).

3.2.6 Marking strategy

We suppose that the refinement indicators ηH (T, um
H) and ζH (T, znH) for some m, n ∈ N are used to

mark a subsetMH ⊆ TH of elements for refinement, which, for fixed marking parameter 0 < θ ≤ 1,
satisfies that

2θηH (um
H)2ζH (znH)2 ≤ ηH (MH, um

H)2ζH (znH)2 + ζH (MH, znH)2ηH (um
H)2. (3.18)

Remark 3.2. Given 0 < ϑ ≤ 1, possible choices of marking strategies satisfying assumption (3.18)
are the following:

62

3.2 Goal-oriented adaptive finite element method

(a) The strategy proposed in [BET11] defines the weighted estimator

ρH (T, um
H, z

n
H)2 := ηH (T, um

H)2ζH (znH)2 + ηH (um
H)2ζH (T, znH)2

and then determines a setMH ⊆ TH such that

ϑ ρH (um
H, z

n
H) ≤ ρH (MH, um

H, z
n
H) (3.19)

which is the Dörfler marking criterion introduced in [Dör96] and well-known in the context
of AFEM analysis; see, e.g., [CFPP14]. This strategy satisfies (3.18) with θ = ϑ2.

(b) The strategy proposed in [MS09] determines setsMu

H,M
z

H ⊆ TH such that

ϑ ηH (um
H) ≤ η`(M

u

H, u
m
H) and ϑ ζH (znH) ≤ ζH (M

z

H, z
n
H) (3.20)

and then chooses MH := argmin{#Mu

H , #M
z

H }. This strategy satisfies (3.18) with
θ = ϑ2/2.

(c) A more aggressive variant of (b) was proposed in [FPZ16]: Let Mu

H and Mz

H as above.
Then, chooseMu

H ⊆ M
u

H andMz
H ⊆ M

z

H with #Mu
H = #Mz

H = min{#Mu

H , #M
z

H }.
Finally, defineMH :=Mu

H ∪Mz
H . Again, this strategy satisfies (3.18) with θ = ϑ

2/2.
Note that our main results of Theorem 3.5 and 3.7 below hold true for all presented marking criteria
(a)–(c). For our numerical experiments, we focus on criterion (a), which empirically tends to achieve
slightly better performance in practice.

3.2.7 Adaptive algorithm

Any adaptive algorithm strives to drive down the bound in (3.17). However, the errors of the
iterative solver, |||u?H − um

H ||| and |||z?H − znH |||, cannot be computed in general since the exact discrete
solutions u?H, z

?
H ∈ XH to (3.9) are unknown and will not be computed. Thus, we note that (3.10)

and the triangle inequality prove that

(1 − qctr) |||u?H − um−1
H ||| ≤ |||um

H − um−1
H ||| ≤ (1 + qctr) |||u?H − um−1

H ||| (3.21a)

as well as

(1 − qctr) |||z?H − zn−1H ||| ≤ |||znH − zn−1H ||| ≤ (1 + qctr) |||z?H − zn−1H |||. (3.21b)

With Cgoal = max{Crel,CrelCstab + 1}
(
1 + qctr/(1 − qctr)

)
, (3.17) leads to��G(u?) − GH (um

H, z
n
H)

�� ≤ C2
goal

[
ηH (um

H) + |||um
H − um−1

H |||] [ζH (znH) + |||znH − zn−1H |||], (3.22)

which is a computable upper bound to the goal error if m, n ≥ 1. Moreover, given some λctr > 0,
this motivates to stop the iterative solvers as soon as

|||um
H − um−1

H ||| ≤ λctr ηH (um
H) and |||znH − zn−1H ||| ≤ λctr ζH (znH)

to equibalance the contributions of the upper bound in (3.22). Overall, we thus consider the
following adaptive algorithm.

63

3 GOAFEM with iterative solution

Algorithm 3A
Let u00, z

0
0 ∈ X0 be initial guesses. Let 0 < θ ≤ 1 as well as λctr > 0 be arbitrary but fixed

marking parameters. For all ` = 0, 1, 2, . . . , perform the following steps (i)–(vi):

(i) Employ (at least one step of) the iterative solver to compute iterates u1`, . . . , u
m
`

and
z1`, . . . , z

n
`
together with the corresponding refinement indicators η`(T, uk

`
) and ζ`(T, zk`)

for all T ∈ T̀ , until

|||um
` − um−1

` ||| ≤ λctr η`(um
`) and |||zn` − zn−1` ||| ≤ λctr ζ`(zn`). (3.23)

(ii) Define m(`) := m and n(`) := n.

(iii) If η`(um
`
) = 0 or ζ`(zm`) = 0, then define ` := ` and terminate.

(iv) Otherwise, find a setM` ⊆ T̀ such that the marking criterion (3.18) is satisfied.

(v) Generate T̀ +1 := refine(T̀ ,M`).
(vi) Define the initial guesses u0`+1 := um

`
and z0`+1 := zn

`
for the iterative solver.

Remark 3.3. Theorem 3.5 below proves (linear) convergence for any choice of the marking param-
eters 0 < θ ≤ 1 and λctr > 0, and for any of the marking strategies from Remark 3.2. Theorem 3.7
below proves optimal convergence rates (with respect to the number of elements and the total com-
putational cost) if both parameters are sufficiently small (see (3.33) for the precise condition) and if
the setM` is constructed by one of the strategies from Remark 3.2, where the respective sets have
quasi-minimal cardinality.

Remark 3.4. Note that Algorithm 3A(i) requires to evaluate the error estimator after each solver
step. Clearly, it would be favorable to replace η`(um

`
) (resp. ζ`(zn`)) by η`(u0`) (resp. ζ`(z0`)) in (3.23).

Arguing as in [DFGP19, Lemma 8], this allows to prove convergence of the adaptive strategy, but
full linear convergence (Theorem 3.5 below) and optimal convergence rates (Theorem 3.7 below)
are exptected to fail.

For each adaptive level `, Algorithm 3A performs at least one solver step to compute um
`
as well

as one solver step to compute zn
`
. By definition, m(`) ≥ 1 is the solver step, for which the discrete

solution um(`)
`

is accepted (to contribute to the set of marked elementsM`). Analogously, n(`) ≥ 1

is the solver step, for which the discrete solution zn(`)
`

is accepted (to contribute to M`). If the
iterative solver for either the primal or the dual problem fails to terminate for some level ` ∈ N0,
i.e., (3.23) cannot be achieved for finite m, or n, we define m(`) := ∞, or n(`) := ∞, respectively,
and ` := `. With k(`) := max{m(`), n(`)}, we define

uk
` := um(`)

`
for all k ∈ N with m(`) < k ≤ k(`),

zk` := zn(`)
`

for all k ∈ N with n(`) < k ≤ k(`).
(3.24)

For ease of presentation, we omit the `-dependence of the indices for final iterates m(`), n(`), and
k(`) in the following if they appear as upper indices and write, e.g., um

`
:= um(`)

`
and um−1

`
:= um(`)−1

`
.

64

3.3 Main results

If Algorithm 3A does not terminate in step (iii) for some ` ∈ N, then we define ` := ∞. To formulate
the convergence of Algorithm 3A, we define the ordered set

Q := {(`, k) ∈ N2
0 | ` ≤ ` and 1 ≤ k ≤ k(`)}, where |(`, k)| := k +

`−1∑
j=0

k(j). (3.25)

Note that |(`, k)| is proportional to the overall number of solver steps to compute the estimator
product η`(uk

`
)ζ`(zk`). Additionally, we sometimes require the notation

Q0 := {(`, k) ∈ N2
0 | ` ≤ ` and 0 ≤ k ≤ k(`)} = Q ∪ {(`, 0) ∈ N2

0 | ` ≤ `}. (3.26)

To estimate the work necessary to compute a pair (uk
`
, zk
`
) ∈ X` × X` , we make the following

assumptions which are usually satisfied in practice:

• The iterates uk
`
and zk

`
are computed in parallel and each step of the solver in Algorithm 3A(i)

can be done in linear complexity O(#T̀);
• Computation of all indicators η`(T, uk

`
) and ζ`(T, zk`) for T ∈ T̀ requires O(#T̀) steps;

• The marking in Algorithm 3A(iv) can be performed at linear cost O(#T̀) (according
to [Ste07] this can be done for the strategies outlined in Remark 3.2 with M` having al-
most minimal cardinality; moreover, we refer to a recent own algorithm in [PP20] with linear
cost even forM` having minimal cardinality);

• We have linear cost O(#T̀) to generate the new mesh T̀ +1.
Since a step (`, k) ∈ Q of Algorithm 3A depends on the full history of preceding steps, the total
work spent to compute (uk

`
, zk
`
) ∈ X` × X` is then of order

work(`, k) :=
∑

(`′,k′)∈Q
|(`′,k′) |≤ |(`,k) |

#T̀ ′ for all (`, k) ∈ Q. (3.27)

Finally, we note that Algorithm 3A(vi) employs nested iteration to obtain the initial guesses
u0`+1, z

0
`+1 of the solver from the final iterates um

`
, zn
`
for the mesh T̀ . According to (3.22), this allows

for a posteriori error control for all indices (`, k) ∈ Q0 \ {(0, 0)} beyond the initial step.

3.3 Main results

3.3.1 Linear convergence with optimal rates

Our first main result states linear convergence of the quasi-error product

Λk
` :=

[|||u?` − uk
` ||| + η`(uk

`)
] [|||z?` − zk` ||| + ζ`(zk`)

]
for all (`, k) ∈ Q0 (3.28)

for every choice of the stopping parameter λctr > 0. Recall from (3.17) that the quasi-error product
is an upper bound for the error |G(u?) − G`(uk

`
, zk
`
)|. Moreover, if k = k(`), then (3.21) and (3.23)

give that Λk

`
' η`(uk

`
)ζ`(zk`).

65

3 GOAFEM with iterative solution

Theorem 3.5
Suppose (A1)–(A3). Suppose that 0 < θ ≤ 1 and λctr > 0. Then, Algorithm 3A satisfies
linear convergence in the sense of

Λk′
`′ ≤ Clinq |(`

′,k′) |− |(`,k) |
lin

Λk
` for all (`, k), (`′, k ′) ∈ Q ∪ {(0, 0)} with |(`′, k ′)| ≥ |(`, k)|.

(3.29)
The constants Clin > 0 and 0 < qlin < 1 depend only on Cstab, qred, Crel, qctr, and the
(arbitrary) adaptivity parameters 0 < θ ≤ 1 and λctr > 0.

Full linear convergence implies that convergence rates with respect to degrees of freedom andwith
respect to total computational cost are equivalent. From this point of view, full linear convergence
indeed turns out to be the core argument for optimal complexity.

Corollary 3.6. Recall the definition of the total computational cost work(`, k) from (3.27). Let
r > 0 and Cr := sup(`,k)∈Q(#T̀ − #T0 + 1)rΛk

`
∈ [0,∞]. Then, under the assumptions of

Theorem 3.5, it holds that

Cr ≤ sup
(`,k)∈Q

(#T̀)r Λk
` ≤ sup

(`,k)∈Q
work(`, k)r Λk

` ≤ Crate Cr, (3.30)

where the constant Crate > 0 depends only on r , #T0, and on the constants qlin,Clin from
Theorem 3.5.

Proof. The first two estimates in (3.30) are obvious. It remains to prove the last estimate in (3.30).
To this end, note that it follows from the definition of Cr that

#T̀ −#T0 + 1 ≤
(
Λk
`

)−1/r C1/r
r for all (`, k) ∈ Q.

Moreover, elementary algebra yields that

#T̀ ′ ≤ #T0(#T̀ ′ −#T0 + 1) for all (`′, 0) ∈ Q0.

For (`, k) ∈ Q, Theorem 3.5 and the geometric series thus show that

work(`, k) (3.27)=
∑

(`′,k′)∈Q
|(`′,k′) |≤ |(`,k) |

#T̀ ′ ≤ #T0
∑

(`′,k′)∈Q
|(`′,k′) |≤ |(`,k) |

(#T̀ ′ −#T0 + 1)

≤ #T0C1/r
r

∑
(`′,k′)∈Q

|(`′,k′) |≤ |(`,k) |

(
Λk′
`′
)−1/r ≤ #T0C1/r

r C1/r
lin

1

1 − q1/r
lin

(
Λk
`

)−1/r
.

With Crate := (#T0)rClin 1/(1 − q1/r
lin
)r , this gives that

work(`, k)rΛk
` ≤ CrateCr for all (`, k) ∈ Q.

This shows the final inequality in (3.30) and thus concludes the proof. �

66

3.3 Main results

If θ and λctr are small enough, we are able to show that linear convergence from Theorem 3.5
even guarantees optimal rates with respect to both the number of unknowns #T̀ and the total cost
work(`, k). Given N ∈ N0, let T(N) be the set of all TH ∈ T with #TH −#T0 ≤ N . With

‖u?‖Ar := sup
N ∈N0

(N + 1)r min
Topt∈T(N)

ηopt(u?opt) ∈ [0,∞] (3.31a)

and

‖z?‖Ar := sup
N ∈N0

(N + 1)r min
Topt∈T(N)

ζopt(z?opt) ∈ [0,∞] (3.31b)

for all r > 0, there holds the following result.

Theorem 3.7
Recall the definition of the total computational cost work(`, k) from (3.27). Suppose the mesh
properties (3.13)–(3.15) as well as the axioms (A1)–(A4). Define

θ? :=
1

1 + C2
stab

C2
drel

and λ? :=
1 − qctr
qctrCstab

. (3.32)

Let both adaptivity parameters 0 < θ ≤ 1 and 0 < λctr < λ? be sufficiently small such that

0 <
(√2θ + λctr/λ?

1 − λctr/λ?
)2
< θ?. (3.33)

Let 1 ≤ Cmark < ∞. Suppose that the set of marked elements M` in Algorithm 3A(iv) is
constructed by one of the strategies from Remark 3.2(a)–(c), where the sets in (3.19) and (3.20)
have up to the factor Cmark minimal cardinality. Let s, t > 0 with ‖u?‖As + ‖z?‖At < ∞.
Then, there exists a constant Copt > 0 such that

sup
(`,k)∈Q

work(`, k)s+tΛk
` ≤ Coptmax{‖u?‖As ‖z?‖At ,Λ

0
0}. (3.34)

The constant Copt depends only on Ccls, Cstab, qred, Crel, Cdrel, qctr, Cmark, θ, λctr, #T0, s,
and t.

Remark 3.8. The constraint (3.33) is enforced by our analysis of the marking strategy from Re-
mark 3.2(a), while the marking strategies from Remark 3.2(b)–(c) allow to relax the condition
to

0 <
(√θ + λctr/λ?
1 − λctr/λ?

)2
< θ?. (3.35)

3.3.2 Alternative termination criteria for iterative solver

The above formulations of Algorithm 3A stops the iterative solver for um
`
and the iterative solver for

zn
`
independently of each other as soon as the respective termination criteria in (3.23) are satisfied.

In this section, we briefly discuss two alternative termination criteria:
Stronger termination: The current proof of linear convergence (and of the subsequent proof of

optimal convergence) does only exploit that uk

`
and zk

`
satisfy the stopping criterion and the previous

67

3 GOAFEM with iterative solution

iterates do not (cf. Lemma 3.9(iii)). This can also be ensured by the following modification of
Algorithm 3A(i):

(i) Employ the iterative solver to compute iterates u1`, . . . , u
k
`
and z1`, . . . , z

k
`
together with the

corresponding refinement indicators η`(T, uk
`
) and ζ`(T, zk`) for all T ∈ T̀ , until

|||uk
` − uk−1

` ||| ≤ λctr η`(uk
`) and |||zk` − zk−1` ||| ≤ λctr ζ`(zk`). (3.36)

Note that this will lead to more solver steps, since now k = k(`) (if it exists) is the smallest index
for which the stopping criterion holds simultaneously for both uk

`
and zk

`
.

Inspecting the proof of Lemma 3.9 below, we see that all results hold verbatim also for this
stopping criterion. Thus, we conclude linear and optimal convergence (in the sense of Theorem 3.5
and Theorem 3.7) also in this case.
Natural termination: The following stopping criterion (which is somehow the most natural

candidate) also leads to linear convergence: Let m(`), n(`) ∈ N be minimal with (3.23). If either of
themdo not exist, we set againm(`) = ∞, or n(`) = ∞, respectively. Define k(`) := max{m(`), n(`)}.
Then, employ the iterative solver k(`) times for both the primal and the dual problem, i.e., the solver
provides iterates uk

`
and zk

`
until both stopping criteria in (3.23) have been satisfied once (which

avoids the artificial definition (3.24)). For instance, if m(`) < n(`) = k(`) < ∞, we continue to
iterate for the primal problem until uk

`
is obtained (or never stop the iteration if n(`) = k(`) = ∞).

If λctr > 0 is sufficiently small such that 1 − qctr
1−qctr Cstab (1 + qctr)λctr > 0, then we can define

λctr ≤ λ′ctr := max
{
1,

(1 + qctr)qctr
(1 − qctr)

(
1 − qctr

1−qctr Cstab (1 + qctr)λctr
) } λctr < ∞,

and we can guarantee the stopping condition (3.23) with the larger constant λ′ctr, i.e.,

|||uk

`
− uk−1

`
||| ≤ λ′ctr η`(uk

`
) and |||zk

`
− zk−1

`
||| ≤ λ′ctr ζ`(zk`); (3.37)

see the proof below. Again, we notice that then the assumptions of Lemma 3.9 below are met.
Hence, we conclude linear convergence (in the sense of Theorem 3.5) also for this stopping criterion.
Moreover, optimal rates in the sense of Theorem 3.7 hold if λctr in (3.33) is replaced by λ′ctr.

Proof of (3.37). Without loss of generality, let us assume that m(`) < k(`) = n(`) < ∞. First, we
have that

|||uk

`
− um

`
||| ≤ |||u?` − uk

`
||| + |||u?` − um

`
||| ≤ (1 + qk(`)−m(`)

ctr)|||u?` − um

`
|||.

Then, using the fact that um

`
satisfies the stopping criterion in (3.23) and stability (A1), we get that

|||u?` − um

`
|||(3.21)≤ qctr

1 − qctr
|||um

`
− um−1

`
|||(3.23)≤ qctrλctr

1 − qctr
η`(um

`
)(A1)≤ qctrλctr

1 − qctr

(
η`(uk

`
) + Cstab |||uk

`
− um

`
|||
)

≤ qctrλctr
1 − qctr

(
η`(uk

`
) + Cstab(1 + qk(`)−m(`)

ctr)|||u?` − um

`
|||
)
.

For λctr < (1 − qctr)/[Cstabqctr(1 + qk(`)−m(`)
ctr)] we can absorb the last term to obtain

|||u?` − um

`
||| ≤ qctr

1 − qctr

(
1 − Cstabqctr

1 − qctr
(1 + qk(`)−m(`)

ctr)λctr
)−1

λctrη`(uk

`
).

68

3.4 Numerical examples

Finally, we observe that

|||uk

`
− uk−1

`
||| ≤ (1 + qctr)|||u?` − uk−1

`
||| ≤ (1 + qctr)qk−m−1

ctr |||u?` − um

`
|||.

Combining the last two estimates we obtain that

|||uk

`
− uk−1

`
||| ≤ (1 + qctr)q k(`)−m(`)

ctr

(1 − qctr)
(
1 − qctr

1−qctr Cstab (1 + q k(`)−m(`)
ctr)λctr

) λctr η`(uk

`
).

Hence, (3.37) follows with q k(`)−m(`)
ctr ≤ qctr and |||zk` − zk−1

`
||| ≤ λctr ζ`(zk`) ≤ λ′ctr ζ`(z

k

`
). �

3.4 Numerical examples

In this section, we consider two numerical examples which solve the equation

−∆u? = f in Ω,
u? = 0 on ΓD,

∇u? · n = φ on ΓN,
(3.38)

where φ ∈ L2(ΓN) and n is the element-wise outwards facing unit normal vector. We refer the
reader to Remark 3.1 for a comment on the applicability of our results to this model problem. We
further suppose that the goal functional is a slight variant of the one proposed in [MS09], i.e.,

G(v) = −
∫
ω
∇v · g dx for v ∈ H1

D(Ω), (3.39)

with a subset ω ⊆ Ω and a fixed direction g(x) = g0 ∈ R2. Moreover, for error estimation, we
employ standard residual error estimators, which in our case, for all (`, k) ∈ Q and all T ∈ T̀ , read

η`(T, uk
`)2 := h2T ‖∆uk

` + f ‖2
L2(T) + hT ‖[[∇uk

` · n]]‖2L2(∂T∩Ω) + hT ‖∇uk
` · n − φ‖2L2(∂T∩ΓN),

ζ`(T, zk`)2 := h2T ‖ div(∇zk` + g)‖2
L2(T) + hT ‖[[(∇zk` + g) · n]]‖2

L2(∂T∩Ω),

where hT = |T |1/2 is the local mesh-width and [[·]] denotes the jump across interior edges. It is
well-known [CFPP14; FPZ16] that η` and ζ` satisfy the assumptions (A1)–(A4). The examples
are chosen to showcase the performance of the proposed GOAFEM algorithm for different types of
singularities.
Throughout this section, we solve (3.38) as well as the corresponding dual problem numerically

using Algorithm 3A, where we make the following choices:

• We solve the problems on the lowest order finite element space, i.e., with polynomial degree
p = 1.

• As initial values, we use u00 = z00 = 0.

• To solve the arising linear systems, we use a preconditioned conjugate gradient (PCG) method
with an optimal additive Schwarz preconditioner. We refer to [CNX12; Sch21] for details
and, in particular, the proof that this iterative solver satisfies (3.10).

69

3 GOAFEM with iterative solution

T1

Figure 3.1: Left: Initial mesh T0. The shaded area is the set T1 from Section (3.4.1). Right: Mesh
after 14 iterations of Algorithm 3A with#T14 = 4157.

• We use the marking criterion from Remark 3.2(a) and chooseM` such that it has minimal
cardinality.

• Unless mentioned otherwise, we use ϑ = 0.5 and λctr = 10−5.

3.4.1 Singularity in goal functional only

In our first example, the primal problem is (3.38) with f = 2x1(1 − x1) + 2x2(1 − x2) on the unit
square Ω = (0, 1)2, and ΓD = ∂Ω (and thus, ΓN = ∅). For this problem, the exact solution reads

u?(x) = x1x2(1 − x1)(1 − x2).

The goal functional is (3.39) with ω = T1 := {x ∈ Ω | x1 + x2 ≥ 3/2} and g0 = (−1, 0). The exact
goal value can be computed analytically to be

G(u?) =
∫
T1

∂u?

∂x1
dx = 11/960.

The initial mesh T0 as well as a visualization of the set T1 can be seen in Figure 3.1.
For this setting, we compare our iterative solver to a conjugate gradient method without precon-

ditioner in Figure 3.2, where we plot the computable upper bound from (3.22),

Ξk` :=
[
η`(uk

`) + |||uk
` − uk−1

` |||
] [
ζ`(zk`) + |||zk` − zk−1` |||

]
for all (`, k) ∈ Q,

over work(`, k) for all iterates (`, k) ∈ Q and the estimator product for the final iterates η`(uk

`
)ζ`(zk`)

over#T̀ . We stress that, for (`, k) ∈ Q, the computable upper bound Ξk
`
and the quasi-error product

Λk
`
from (3.28) are related by Λk

`
. Ξk

`
. Λk−1

`
so that linear convergence (3.29) with optimal

rates (3.34) of Λk
`
also yields linear convergence with optimal rates of Ξk

`
. Since in our experiments

λctr = 10−5 is small, it is plausible to assume that the final estimates on every level approximate the
exact solutions sufficiently well in the sense of estimator products, i.e., η`(uk

`
)ζ`(zk`) ≈ η`(u?`)ζ`(z?`)

(cf. Lemma 3.12 below) for which [FPZ16] proves optimal convergence rates with respect to #T̀ .
Indeed, we see optimal rates for η`(uk

`
)ζ`(zk`) with respect to #T̀ for both solvers in Figure 3.2.

However, the non-preconditioned CG method fails to satisfy uniform contraction (3.10) and thus

70

3.4 Numerical examples

101 103 105 107 109 1011

10−9

10−7

10−5

10−3

10−1

∝ (#T
)̀ −
1

performance measure

es
tim

at
or

pr
od

uc
t

CG ML

Ξk
`

over work(`, k)

η` (uk

`
)ζ` (zk`) over #T̀

|G(u?) −G` (uk
`
, zk

`
) | over work(`, k)

Figure 3.2: Comparison between iterative solvers for the problem from Section 3.4.1. A conjugate
gradient method without preconditioner (CG) leads to optimal rates with respect to
#T̀ for the final iterates where k = k(`), but not with respect to work(`, k) for every
(`, k) ∈ Q. Our choice of the iterative solver (ML) achieves optimal rates with respect
to both measures.

Theorem 3.7 cannot be applied. In fact, Figure 3.2 shows that this method fails to drive down Ξk
`

with optimal rates with respect to work(`, k) (cf. (3.27)), as opposed to the optimally preconditioned
PCG method.

Furthermore, we plot in Figure 3.3 different error measures over work(`, k) for every iterate
(`, k) ∈ Q. This shows that the corrector term

a(uk
` , z

k
`) − F(zk`) (3.40)

(which is the residual of uk
`
evaluated at the dual solution zk

`
) in the definition of the discrete

goal functional (3.11) is indeed necessary. We see that throughout the iteration, the goal value
G(uk

`
) highly oscillates and, for large values of λctr, even shows a different rate than the Ξk

`
over

work(`, k). In general, we thus cannot expect the quantity Ξk
`
to bound the uncorrected goal-error

|G(u?) − G(uk
`
)|.

For the discrete goal, the corrector term compensates the oscillations of the goal functional, such
that their sum decreases with the same rate as Ξk

`
, as predicted by (3.22). Smaller values of λctr

imply that on every level ` the approximate solutions uk
`
, zk
`
are computed more accurately, such that

the corrector term becomes smaller and the effect on the rate of the goal value becomes negligible.

71

3 GOAFEM with iterative solution

10−10

10−8

10−6

10−4

10−2
λctr = 1

er
ro

re
sti

m
at

es

Ξk
`

|G(u?) − G`(uk
`
, zk

`
)| |a(uk

`
, zk

`
) − F(zk

`
)| |G(u?) − G(uk

`
)|

λctr = 10−2

102 103 104 105 106 107 108 109

10−10

10−8

10−6

10−4

10−2 λctr = 10−4

102 103 104 105 106 107 108 109

λctr = 10−6

work(`, k)

Figure 3.3: Comparison between Ξk
`
, discrete goal G`(uk

`
, zk
`
), primal residual evaluated at the dual

solution zk
`
, and direct evaluation of goal functional G(uk

`
) for every iterate (`, k) ∈ Q

and different values of λctr ∈ {1, 10−2, 10−4, 10−6}. The primal residual evaluated at the
dual solution zk

`
is the difference between goal and discrete goal; see (3.11).

72

3.5 Proof of Theorem 3.5

T2

Figure 3.4: Left: Initial mesh T0. The shaded area is the setT2 from Section (3.4.2) and the Dirichlet
boundary at the re-entrant corner is marked in red. Right: Mesh after 13 iterations of
Algorithm 3A with#T13 = 4534.

3.4.2 Geometrical singularity

Our second example is the classical example of a geometric singularity on the so-called Z-shape
Ω = (−1, 1)2 \conv{(−1,−1), (0, 0), (−1, 0)}, where ΓD is only the re-entrant corner (cf. Figure 3.4).
The primal problem is (3.38) with f = 0 and φ = ∇u? · n, where the exact solution in polar
coordinates r(x) and ϕ(x) of x ∈ R2 is prescribed as

u?(x) = r(x)4/7 sin(47ϕ(x) + 3π
7).

The goal functional is (3.39) with ω = T2 := (0.5, 0.5)2∩Ω and g0 = (−1,−1) and can be computed
directly via numerical integration to be

G(u?) =
∫
T2

(∂u?

∂x1
+
∂u?

∂x2

)
dx ≈ 0.82962247157810.

In Figure 3.4, the initial triangulation T0 as well as the mesh after several iterations of Algorithm 3A
can be seen. The adaptive algorithm resolves the singularity at the re-entrant corner, as well as
critical points of the goal functional, which are at the corners of T2.
Figure 3.5 shows the rate of the estimator product η`(uk

`
)ζ`(zk`) of the final iterates over #T̀ as

well as the rate of Ξk
`
over work(`, k) for all (`, k) ∈ Q.

3.5 Proof of Theorem 3.5

The following core lemma extends one of the key observations of [GHPS21] to the present setting,
where we stress that the nonlinear product structure of ∆k

`
leads to technical challenges which go

much beyond [GHPS21].

Lemma 3.9. Suppose (A1)–(A3). Then, there exist constants µ,Caux > 0, and 0 < qaux < 1,
and some scalar sequence (R`)`∈N0 ⊂ R such that the quasi-error product

∆k` :=
[|||u?` − uk

` ||| + µ η`(uk
`)

] [|||z?` − zk` ||| + µ ζ`(zk`)
]

for all (`, k) ∈ Q0

satisfies the following statements (i)–(v):

73

3 GOAFEM with iterative solution

101 102 103 104 105 106 107 108 109 1010

10−7

10−5

10−3

10−1

∝ (#T
)̀ −
1

performance measure

es
tim

at
or

pr
od

uc
t

Ξk
`

over work(`, k)

η` (uk

`
)ζ` (zk`) over #T̀

|G(u?) −G` (uk
`
, zk

`
) | over work(`, k)

Figure 3.5: Rates of the estimator product for final iterates over #T̀ and Ξk
`
as well as goal error

over work(`, k) for all (`, k) ∈ Q.

(i) ∆k
`
≤ ∆j

`
for all 0 ≤ j ≤ k ≤ k(`).

(ii) ∆k−1
`
≤ Caux ∆

k

`
if k(`) < ∞.

(iii) ∆k
`
≤ qaux ∆k−1`

for all 0 < k < k(`).

(iv) ∆0`+1 ≤ qaux ∆
k−1
`
+ R` for all 0 < ` < `.

(v)
∑`−1
`=`′ R2

` ≤ Caux(∆k−1`
)2 for all 0 ≤ `′ < ` − 1.

The constants µ, Caux, and qaux depend only on Cstab, qred, Crel, and qctr as well as on the
(arbitrary) adaptivity parameters 0 < θ ≤ 1 and λctr > 0.

For the following proofs, we define

αk
` := |||u?` − uk

` |||, x?` := |||u?`+1 − u?` |||,
βk` := |||z?` − zk` |||, y?` := |||z?`+1 − z?` |||,

such that the quasi-error product reads ∆k
`
=

[
αk
`
+ µ η`(uk

`
)] [βk

`
+ µ ζ`(zk`)

]
with a free parameter

µ > 0 which will be fixed below.

Proof of Lemma 3.9(i). Recall from (3.24) that uk
`
= um

`
for all m(`) < k ≤ k(`). Thus, we have

that
αk
` + µ η`(uk

`) = α
m

`
+ µ η`(um

`
) for all m(`) < k ≤ k(`).

For 0 < k < m(`), on the other hand, the solution uk
`
is obtained by one step of the iterative solver.

74

3.5 Proof of Theorem 3.5

From stability (A1) and solver contraction (3.10), we have for all 0 ≤ j < k ≤ m(`) that

αk
` + µ η`(uk

`)
(A1)≤ αk

` + µ
[
η`(u j

`
) + Cstab |||uk

` − u j
`
|||]

(3.10)≤ (
qk−j
ctr + µCstab(1 + qk−j

ctr)
)
α
j
`
+ µ η`(u j

`
) ≤ (

qctr + 2µCstab

)
α
j
`
+ µ η`(u j

`
).

If µ is chosen small enough such that qctr + 2µCstab ≤ 1, together with the trivial case j = k, the
last two equations show that

αk
` + µ η`(uk

`) ≤ α j
`
+ µ η`(u j

`
) for all 0 ≤ j ≤ k ≤ k(`).

The same argument shows that

βk` + µ ζ`(zk`) ≤ β j` + µ ζ`(z
j
`
). for all 0 ≤ j ≤ k ≤ k(`). (3.41)

Multiplication of the last two estimates shows the assertion. �

Proof of Lemma 3.9(ii). Recall that for the index k(`) there holds (3.23). From the triangle inequal-
ity, we thus get for the primal estimator that

α
k−1
`
= |||u?` − uk−1

`
||| ≤ |||u?` − uk

`
||| + |||uk

`
− uk−1

`
|||(3.23)≤ αk

`
+ λctr η`(uk

`
).

Furthermore, stability (A1) leads to

η`(uk−1
`
)(A1)≤ η`(uk

`
) + Cstab |||uk

`
− uk−1

`
|||(3.23)≤ (

1 + λctrCstab

)
η`(uk

`
).

Combining the last two estimates, we see that

α
k−1
`
+ µ η`(uk−1

`
) ≤ (

1 + λctr(Cstab + µ
−1)) [

α
k

`
+ µ η`(uk

`
)] .

Together with the analogous estimate for βk−1
`
+ µ ζ`(zk−1`

), we conclude the proof with Caux =(
1 + λctr(Cstab + µ

−1))2. �

Proof of Lemma 3.9(iii). Without loss of generality, suppose that k(`) = m(`) and thus |||uk
`
−uk−1

`
||| >

λctr η`(uk
`
). Then, this yields that

η`(uk
`) < λ−1ctr |||uk

` − uk−1
` |||

(3.21)≤ λ−1ctr (1 + qctr)αk−1
` for all 0 < k < k(`).

With contraction of the solver (3.10), this leads to

αk
` + µ η`(uk

`) ≤ qctrαk−1
` + µλ−1ctr(1 + qctr)αk−1

` for all 0 < k < k(`).

From (3.41) for µ small enough, we see that βk
`
+ µ ζ`(zk`) ≤ βk−1

`
+ µ ζ`(zk−1`

). Together with the
previous estimate, this shows that

∆k` ≤
(
qctr + µλ−1ctr(1 + qctr)

)
∆k−1` . (3.42)

Up to the choice of µ, this concludes the proof. �

75

3 GOAFEM with iterative solution

Proof of Lemma 3.9(iv). First, we note that η`(uk

`
)ζ`(zk`) , 0, according to Algorithm 3A(iii) and

the assumption that ` < `. From reduction of the solver (3.10) and nested iteration, we get that

α0
`+1 = |||u?`+1 − uk

`
||| ≤ |||u?`+1 − u?` ||| + qctr |||u?` − uk−1

`
||| = x?` + qctr α

k−1
`

,

β0`+1 = |||z?`+1 − zk
`
||| ≤ |||z?`+1 − z?` ||| + qctr |||z?` − zk−1

`
||| = y?` + qctr β

k−1
`

(3.43)

and thus
α0
`+1β

0
`+1 ≤ q2

ctr α
k−1
`

β
k−1
`
+ qctr(αk−1

`
y?` + β

k−1
`

x?`) + x?` y
?
` . (3.44)

For the estimator terms, we have with stability (A1) and reduction (A2) that

η`+1(u0`+1)2 = η`+1(u
k

`
)2 = η`+1(T̀ +1 ∩ T̀ , uk

`
)2 + η`+1(T̀ +1 \ T̀ , uk

`
)2

≤ η`(T̀ +1 ∩ T̀ , uk

`
)2 + q2

red η`(T̀ \ T̀ +1, u
k

`
)2

= η`(uk

`
)2 − (1 − q2

red) η`(T̀ \ T̀ +1, u
k

`
)2.

On the one hand, with C1 := Cstab(1 + qred), this implies that

η`+1(u0`+1) ≤ η`(u
k

`
)(A1)≤ η`(uk−1

`
) + Cstab |||uk

`
− uk−1

`
|||(3.21)≤ η`(uk−1

`
) + C1 α

k−1
`

. (3.45)

On the other hand, with 0 < qθ := 1 − (1 − q2
red
)θ < 1, we get that

η`+1(u0`+1)2

η`(uk

`
)2
≤ qθ + (1 − q2

red)
[
θ − η`(T̀ \ T̀ +1, u

k

`
)2

η`(uk

`
)2

]
. (3.46)

Using (3.46), the corresponding estimate for the dual estimator, and the Young inequality, we obtain
that

η`+1(u0`+1)
η`(uk

`
)

ζ`+1(z0`+1)
ζ`(zk`)

≤ qθ +
(1 − q2

red
)

2

[
2θ − η`(T̀ \ T̀ +1, u

k

`
)2

η`(uk

`
)2

− ζ`(T̀ \ T̀ +1, z
k

`
)2

ζ`(zk`)2
]
.

The marking criterion (3.18), which is applicable due to ` < `, estimates the term in brackets by
zero. Thus stability (A1) leads to

η`+1(u0`+1)ζ`+1(z0`+1) ≤ qθ η`(uk

`
)ζ`(zk`)

(A1)≤ qθ
[
η`(uk−1

`
) + Cstab |||uk

`
− uk−1

`
|||] [ζ`(zk−1`

) + Cstab |||zk` − zk−1
`
|||]

(3.21)≤ qθ η`(uk−1
`
)ζ`(zk−1`

) + qθC1

[
η`(uk−1

`
)βk−1
`
+ ζ`(zk−1`

)αk−1
`

]
+ C2

1 α
k−1
`

β
k−1
`

.

(3.47)

For the mixed terms in ∆0`+1, we have with (3.43) and (3.45) that

η`+1(u0`+1)β0`+1 ≤
[
η`(uk−1

`
) + C1 α

k−1
`

] [
y?` + qctr β

k−1
`

]
= qctr η`(uk−1

`
)βk−1
`
+ η`(uk−1

`
)y?` + C1 α

k−1
`

y?` + C1qctr α
k−1
`

β
k−1
`

.
(3.48)

Analogously, we see that

ζ`+1(z0`+1)α0
`+1 ≤ qctr ζ`(zk−1`

)αk−1
`
+ ζ`(zk−1`

)x?` + C1 β
k−1
`

x?` + C1qctr α
k−1
`

β
k−1
`

. (3.49)

76

3.5 Proof of Theorem 3.5

Combining (3.44) and (3.47)–(3.49), we get that

∆0`+1 = α
0
`+1β

0
`+1 + µ

[
η`+1(u0`+1)β0`+1 + ζ`+1(z0`+1)α0

`+1

]
+ µ2 η`+1(u0`+1)ζ`+1(z0`+1)

≤ q2
ctr α

k−1
`

β
k−1
`
+ qctr(αk−1

`
y?` + β

k−1
`

x?`) + x?` y
?
`

+ µ
[
qctr η`(uk−1

`
)βk−1
`
+ η`(uk−1

`
)y?` + C1 α

k−1
`

y?` + C1qctr α
k−1
`

β
k−1
`

]
+ µ

[
qctr ζ`(zk−1`

)αk−1
`
+ ζ`(zk−1`

)x?` + C1 β
k−1
`

x?` + C1qctr α
k−1
`

β
k−1
`

]
+ µ2

[
qθ η`(uk−1

`
)ζ`(zk−1`

) + qθC1
(
η`(uk−1

`
)βk−1
`
+ ζ`(zk−1`

)αk−1
`

)
+ C2

1 α
k−1
`

β
k−1
`

]
.

Rearranging the terms, we obtain that

∆0`+1 ≤
(
q2
ctr + 2µqctrC1 + µ

2C2
1

)
α
k−1
`

β
k−1
`

+ µ
(
qctr + µqθC1

) [
η`(uk−1

`
)βk−1
`
+ ζ`(zk−1`

)αk−1
`

]
+ µ2 qθ η`(uk−1

`
)ζ`(zk−1`

) + R`,

(3.50)

where the remainder term is defined as

R` := µ
[
η`(uk−1

`
)y?` + ζ`(z

k−1
`
)x?`

]
+ (qctr + µC1)

[
α
k−1
`

y?` + β
k−1
`

x?`
]
+ x?` y

?
` . (3.51)

Up to the choice of µ, this concludes the proof. �

Proof of Lemma 3.9 (choosing µ). For Lemma 3.9(i), we choose µ small enough such that qctr +
2µCstab ≤ 1. From (3.42) and (3.50) in the proofs of Lemma3.9(iii)–(iv), we see thatwe additionally
require

qctr + µλ−1ctr(1 + qctr) < 1, q2
ctr + 2µqctrC1 + µ

2C2
1 < 1, and qctr + µqθC1 < 1. (3.52)

Choosing µ small enough, we satisfy all estimates. We define qaux < 1 as the maximum of all
terms in (3.52) and qθ . �

Proof of Lemma 3.9(v). First, we note that from stability (A1) it follows that

η`(uk−1
`
) . η`(u?`) + α

k−1
`

and η`(u?`)ζ`(z?`) . ∆j
`
for all 0 ≤ j ≤ k . (3.53)

Furthermore, Galerkin orthogonality and reliability (A3) imply that, for all n ∈ N with `′ + n < `,

`′+n∑̀
=`′
(y?`)2 =

`′+n∑̀
=`′
|||z?`+1 − z?` |||2 = |||z?`′+n+1 − z?`′ |||2 ≤ |||z? − z?`′ |||2

(A3)
. ζ`′(z?`′)2. (3.54)

With (3.53) and (3.54) for n = 1, we can bound the remainder term from (3.51) by

R` . η`(u?`)y?` + ζ`(z?`)x?` + α
k−1
`

y?` + β
k−1
`

x?` .

Next, let us recall from [CFPP14, Lemma 3.6] the quasi-monotonicity of the estimator, which
follows from (A1)–(A3) and the Céa lemma, i.e., for all `′ ≤ ` < `,

η`(u?`) ≤ η`′(u?`′) + Cstab |||u?` − u?`′ ||| ≤ η`′(u?`′) + Cstab |||u? − u?`′ ||| . η`′(u?`′). (3.55)

77

3 GOAFEM with iterative solution

For η`(u?`)y` , we get by summation for all 0 ≤ j ≤ k(`′) and all n ∈ N with `′ + n < ` that

`′+n∑̀
=`′

η`(u?`)2(y?`)2
(3.55)
. η`′(u?`′)2

`′+n∑̀
=`′
(y?`)2

(3.54)
. η`′(u?`′)2ζ`′(z?`′)2

(3.53)
. (∆j

`′)2.

Analogously, we see that

`′+n∑̀
=`′
(x?`)2 . η`′(u?`′)2 as well as

`′+n∑̀
=`′

ζ`(z?`)2(x?`)2 . (∆j
`′)2. (3.56)

We proceed with αk−1
`

y?` . From (3.43) and the Young inequality with δ > 0, we see for 0 < `′ ≤
` < ` that

(αk−1
`
)2 ≤ (α0

`)2
(3.43)≤ (1 + δ−1) (x?`−1)2 + qctr(1 + δ) (αk−1

`−1)2.
For δ small enough such that q2 := qctr(1 + δ) < 1 and all for 0 ≤ ` ≤ `′ < `, the geometric series
proves that

(αk−1
`
)2 ≤ (1 + δ−1)

`−1∑
j=`′
(x?j)2 + (α

k−1
`
)2
∞∑
j=0

q j
2

(3.56)
. η`′(u?`′)2 + (α

k−1
`′)2

and thus

`′+n∑̀
=`′
(αk−1
`
)2(y?`)2 ≤

[
η`′(u?`′)2 + (α

k−1
`′)2

] `′+n∑̀
=`′
(y?`)2

(3.54)
.

[
η`′(u?`′)2 + (α

k−1
`′)2

]
ζ`′(z?`′)2 . (∆

k−1
`′)2.

Analogously, we see that
∑`′+n
`=`′ (β

k−1
`
)2(x?`)2 . (∆

k−1
`′)2. Combining all estimates with

R2
` . η`(u?`)2(y?`)2 + ζ`(z?`)2(x?`)2 + (α

k−1
`
)2(y?`)2 + (β

k−1
`
)2(x?`)2,

we conclude the proof. �

With the foregoing auxiliary result, we are in the position to prove linear convergence.

Proof of Theorem 3.5. Let (`, k) ∈ Q. We recall the quasi-error products

Λk
` =

[|||u?` − uk
` ||| + η`(uk

`)
] [|||z?` − zk` ||| + ζ`(zk`)

]
,

∆k` =
[|||u?` − uk

` ||| + µ η`(uk
`)

] [|||z?` − zk` ||| + µ ζ`(zk`)
]

from Theorem 3.5 and Lemma 3.9, respectively. Note that

Λk
` ≤ ∆k` ≤ µ2Λk

` if µ ≥ 1, ∆k` ≤ Λk
` ≤ µ−2 ∆k` if µ < 1,

which yields the equivalence

min{1, µ2}Λk
` ≤ ∆k` ≤ max{1, µ2}Λk

` . (3.57)

78

3.5 Proof of Theorem 3.5

We first show linear convergence of ∆k
`
. By Lemma 3.9(i), we can absorb the term ∆k

`′ ≤ ∆
k−1
`′

for all `′. Paying attention to the possible case k = k(`), this allows us to estimate

∑
(`′,k′)∈Q

|(`′,k′) |≥ |(`,k) |

(∆k′`′)2 . (∆k`)2 +
k(`)−1∑
k′=k

(∆k′`)2 +
∑̀
`′=`+1

k(`′)−1∑
k′=0

(∆k′`′)2.

Lemma 3.9(iii) shows uniform reduction of the quasi-error on every level. This yields that

∑
(`′,k′)∈Q

|(`′,k′) |≥ |(`,k) |

(∆k′`′)2 . (∆k`)2
k(`)∑
k′=k

q2(k′−k)
aux +

∑̀
`′=`+1

(∆0`′)2
k(`′)−1∑
k′=0

q2k′
aux . (∆k`)2 +

∑̀
`′=`+1

(∆0`′)2.

To estimate the sum over all levels, we use that, for the refinement step, Lemma 3.9(iv) shows
contraction up to a remainder term. The Young inequality with δ > 0 and Lemma 3.9(i) then prove
that

(∆0`′)2 ≤ q2
aux(1 + δ) (∆k−1`′−1)2 + (1 + δ−1) R2

`′−1
≤ q2

aux(1 + δ) (∆0`′−1)2 + (1 + δ−1) R2
`′−1 for all 0 < `′ ≤ `.

Choosing δ small enough such that q := q2
aux(1 + δ) < 1, we obtain from repeatedly applying the

previous estimates that

(∆0`′)2 ≤ q`
′−` (∆k−1

`
)2 + (1 + δ−1)

`′−1∑
n=`

q(`
′−1)−n R2

n for all 0 ≤ ` < `′ ≤ `.

Using this estimate and a change of summation indices, the geometric series and Lemma 3.9(v)
uniformly bound the sum over all levels by

∑̀
`′=`+1

(∆0`′)2 .
∑̀
`′=`+1

[
q`
′−` (∆k−1

`
)2 +

`′−1∑
n=`

q(`
′−1)−n R2

n

]
. (∆k−1

`
)2 +

`−1∑
n=`

R2
n

∞∑
i=0

qi . (∆k−1
`
)2 +

`−1∑
n=`

R2
n

(v)
. (∆k−1

`
)2.

Combining the estimates above, we obtain that

∑
(`′,k′)∈Q

|(`′,k′) |≥ |(`,k) |

(∆k′`′)2 . (∆k`)2 +
∑̀
`′=`+1

(∆0`′)2 . (∆k`)2 + (∆
k−1
`
)2.

In the case k < k(`), Lemma 3.9(i) proves that∑
(`′,k′)∈Q

|(`′,k′) |≥ |(`,k) |

(∆k′`′)2 ≤ C (∆k`)2.

79

3 GOAFEM with iterative solution

In the case k = k(`), this follows with Lemma 3.9(ii). In either case, the constant C > 0
depends only on Caux and qaux from Lemma 3.9. Basic calculus then provides the existence of
C ′
lin

:= (1 + C)1/2 > 1 and 0 < qlin := (1 − C−1)−1/2 < 1 such that

∆k
′
`′ ≤ C ′linq |(`

′,k′) |− |(`,k) |
lin

∆k` for all (`, k), (`′, k ′) ∈ Q with (`′, k ′) ≥ (`, k);
see [CFPP14, Lemma 4.9]. Finally, the claim of Theorem 3.5 follows from (3.57) with Clin =

max{µ−2, µ2}C ′
lin
. �

3.6 Proof of Theorem 3.7 (optimal rates)

We recall the following comparison lemma from [FGH+16]. While [FGH+16] is concerned with
point errors in boundary element computations, we stress that the proof of [FGH+16, Lemma 14]
works on a completely abstract level and thus is applicable here as well.

Lemma 3.10 ([FGH+16, Lemma 14]). The overlay estimate (3.15) and the axioms (A1)–(A2)
and (A4) yield the existence of a constant C1 > 0 such that, given 0 < κ < 1, each mesh TH ∈ T
admits some refinement Th ∈ T(TH) such that for all s, t > 0, it holds that

ηh(u?h)2ζh(z?h)2 ≤ κ2ηH (u?H)2ζH (z?H)2, (3.58a)

#Th −#TH ≤ 2
(
C1κ

−1‖u?‖As ‖z?‖At

)1/(s+t) (
ηH (u?H)ζ(z?H)

)1/(s+t)
. (3.58b)

The constant C1 depends only on Cstab, qred, and Cdrel. �

Note that (3.58a) immediately implies that

ηh(uh)2 ≤ κηH (u?H)2 or ζh(z?h)2 ≤ κζH (z?H)2. (3.59)

We will employ this lemma in combination with the so-called optimality of Dörfler marking from
[CFPP14].

Lemma 3.11 ([CFPP14, Proposition 4.12]). Under (A1) and (A4), for all 0 < Θ′ < 1/(1 +
C2
stab

C2
drel
), there exists 0 < κΘ′ < 1 such that for all TH ∈ T and all Th ∈ T(TH), (3.59) with

κ = κΘ′ implies that

Θ′ηH (u?H)2 ≤ ηH (TH \ Th, u?H)2 or Θ′ζH (z?H)2 ≤ ζH (TH \ Th, z?H)2. (3.60)

The constant κΘ′ depends only on Cstab, Cdrel, and Θ′. �

The next lemma is already implicitly found in [GHPS18]. It shows that, if λctr > 0 is sufficiently
small, then Dörfler marking for the exact discrete solution implicitly implies Dörfler marking for
the approximate discrete solution. This will turn out to be the key observation to prove optimal
convergence rates. We include the proof for the convenience of the reader.

Lemma 3.12. Suppose (A1)–(A3). Let 0 < Θ ≤ 1 and 0 < λctr < λ? := (1 − qctr)/(qctrCstab).
Define Θ′ :=

(√Θ+λctr/λ?
1−λctr/λ?

)2. Then, as soon as the iterative solver terminates (3.23), there hold
the following statements (i)–(iv) for all 0 ≤ ` < ` and allU` ⊆ T̀ :

(i) (1 − λctr/λ?) η`(um

`
) ≤ η`(u?`) ≤ (1 + λctr/λ?) η`(u

m

`
).

80

3.6 Proof of Theorem 3.7 (optimal rates)

(ii) Θ η`(um

`
)2 ≤ η`(U`, um

`
)2 provided that Θ′ η`(u?`)2 ≤ η`(U`, u?`)2.

(iii) (1 − λctr/λ?) ζ`(zn`) ≤ ζ`(z?`) ≤ (1 + λctr/λ?) ζ`(z
n

`
).

(iv) Θ ζ`(zn`) ≤ ζ`(U`, z
n

`
) provided that Θ′ ζ`(z?`)2 ≤ ζ`(U`, z?`)2.

Proof. It holds that

η`(U`, u?`)
(A1)≤ η`(U`, um

`
) + Cstab |||u?` − um

`
||| (3.21)≤ η`(U`, um

`
) + Cstab

qctr
1 − qctr

|||um

`
− um−1

`
|||

(3.23)≤ η`(U`, um

`
) + Cstab

qctr
1 − qctr

λctr η`(um

`
) = η`(U`, um

`
) + λctr

λ?
η`(um

`
).

The same argument proves that

η`(U`, um

`
) ≤ η`(U`, u?`) +

λctr
λ?

η`(um

`
).

ForU` = T̀ , the latter two estimates lead to

(1 − λctr/λ?) η`(um

`
) ≤ η`(u?`) ≤ (1 + λctr/λ?) η`(u

m

`
).

This concludes the proof of (i). To see (ii), we use the assumption

(1 − λctr/λ?)
√
Θ′ η`(um

`
) (i)≤
√
Θ′ η`(u?`) ≤ η`(U`, u?`) ≤ η`(U`, u

m

`
) + λctr

λ?
η`(um

`
).

Noting that
√
Θ = (1 − λctr/λ?)

√
Θ′ − λctr/λ?, this concludes the proof of (ii). The remaining

claims (iii)–(iv) follow verbatim. �

Proof of Theorem 3.7. By Corollary 3.6, it is sufficient to prove that

Cs+t = sup
(`,k)∈Q

(
#T̀ −#T0 + 1

)s+t
Λk
` . max{‖u?‖As ‖z?‖At ,Λ

0
0}.

We prove this inequality in two steps.
Step 1: In this step, we bound the number of marked elements #M`′ for arbitrary 0 ≤ `′ < `.

Let Θ > 0 and corresponding Θ′ from Lemma 3.12 such that

Θ′ =
(√Θ + λctr/λ?
1 − λctr/λ?

)2
<

1

1 + C2
stab

C2
drel

. (3.61)

Let Th(`′) ∈ T(T̀ ′) be the corresponding mesh as in Lemma 3.10. With Lemma 3.11, this yields that

Θ′η`′(u?`′)2 ≤ η`′(T̀ ′ \ Th(`′), u?`′)2 or Θ′ζ`′(z?`′)2 ≤ ζ`′(T̀ ′ \ Th(`′), z?`′)2.

Lemma 3.12 withU`′ = T̀ ′ \ Th(`′) shows that

Θη`′(um

`′)2 ≤ η`′(T̀ ′ \ Th(`′), u?`′)2 or Θζ`′(zn`′)2 ≤ ζ`′(T̀ ′ \ Th(`′), z?`′)2. (3.62)

We consider the marking strategies from Remark 3.2 separately.

81

3 GOAFEM with iterative solution

For strategy (a), we have with Θ := 2θ and assumption (3.33) that (3.61) is satisfied. Hence,
(3.62) implies that there holds (3.18), i.e.,

2θη`′(um

`′)2ζ`′(z
n

`′)2 ≤ η`′(T̀ ′ \ Th(`′), u
m

`′)2ζ`′(z
n

`′)2 + η`′(u
m

`′)2ζ`′(T̀ ′ \ Th(`′), z
n

`′)2.
By assumption of Theorem 3.7,M`′ is essentially minimal with (3.18). We infer that

#M`′ ≤ Cmark#(T̀ ′ \ Th(`′))
(3.13)
. #Th(`′) −#T̀ ′ . (3.63)

For the strategies (b)–(c), we set Θ = θ and note that assumption (3.33) (as well as the weaker
assumption (3.35)) imply (3.61), and hence (3.62). Again, by assumption of Theorem 3.7,M` is
chosen essentially minimal (with an additional factor two for the strategy (c)) such that (3.62) holds.
For all three strategies, we therefore conclude that

#M`′ . #Th(`′) −#T̀ ′
(3.58b)
.

(‖u?‖As ‖z?‖At

)1/(s+t) (
η`′(u?`′)ζ`′(z?`′)

)−1/(s+t)
Lem.3.12
.

(‖u?‖As ‖z?‖At

)1/(s+t) (
η`′(um

`′)ζ`′(z
n

`′)
)−1/(s+t)

.

Recall that (3.21) and (3.23) give that η`′(uk

`′)ζ`′(z
k

`′) ' Λ
k

`′. This finally shows that

#M`′ .
(‖u?‖As ‖z?‖At

)1/(s+t)(Λk

`′)−1/(s+t).
Step 2: Let (`, k) ∈ Q. First, we consider ` > 0 and thus #T̀ > #T0. The closure estimate and

Step 1 prove that

#T̀ −#T0 + 1 ' #T̀ −#T0
(3.14)
.

`−1∑̀
′=0

#M`′ .
(‖u?‖As ‖z?‖At

)1/(s+t) `−1∑̀
′=0
(Λk

`′)−1/(s+t)

≤ (‖u?‖As ‖z?‖At

)1/(s+t) ∑
(`′,k′)∈Q

|(`′,k′) |≥ |(`,k) |

(Λk′
`′)−1/(s+t).

Linear convergence of Theorem 3.5, further shows that

#T̀ −#T0 + 1 .
(‖u?‖As ‖z?‖At

)1/(s+t)C1/(s+t)
lin

(Λk
`)−1/(s+t)

∑
(`′,k′)∈Q

|(`′,k′) |≥ |(`,k) |

(q1/(s+t)
lin

) |(`,k) |− |(`′,k′) |

≤ (‖u?‖As ‖z?‖At

)1/(s+t) C1/(s+t)
lin

1 − q1/(s+t)
lin

C1/(s+t)
lin

(Λk
`)−1/(s+t).

Rearranging this estimate, we see that

(#T̀ −#T0 + 1)s+tΛk
` . ‖u?‖As ‖z?‖At for all (`, k) ∈ Q with ` > 0.

It remains to consider ` = 0. By Theorem 3.5, we have that

(#T̀ −#T0 + 1)s+tΛk
` = Λ

k
0 . Λ

0
0 for all (`, k) ∈ Q with ` = 0.

This concludes the proof. �

82

4 Adaptive FEM for parameter-errors in elliptic
linear-quadratic parameter estimation
problems

Sections 4.2–4.6 of this chapter are taken from:
R. Becker, M. Innerberger, and D. Praetorius. Adaptive FEM for parameter-errors in
elliptic linear-quadratic parameter estimation problems, 2021. arXiv: 2111.03627

4.1 Introduction

While the last two chapters are concerned with analytical aspects of fundamental extensions to the
setting from Chapter 1, the present chapter applies this setting to a practical example: parameter
estimation for PDEs in a linear-quadratic setting (this refers to the equation and the optimization
problem, respectively). Many models arising from applications depend on (a finite number of)
parameters, which adjust the general model to a particular experimental situation, e.g., a specific
material. For the sake of presentation, we focus here on a particular basic model problem,

− div(A∇u(p)) = f (p) in Ω, u(p) = 0 on ∂Ω, (4.1)

where the right-hand side f (p) ∈ H−1(Ω) and, hence, also the solution u(p) depend linearly on some
finite dimensional parameter p ∈ Q ⊆ RnQ for fixed nQ ∈ N. We suppose that set Q of admissible
parameters is convex and closed, and print parameter vectors in boldface for better readability.
In practice, the parameter p ∈ Q is usually unknown and has to be determined by experiments.

However, the individual parameters hardly ever correspond to independently and directlymeasurable
physical quantities like the spatial dimensions of an object. Instead, the parameter can be inferred
by indirect measurement: We suppose that some experimental measurements, modeled by a vector-
valued measurement operator G : H1

0 (Ω) → C := RnC for fixed nC ∈ N, are given to obtain exact
simulated values G(u(p?)). The simulated values are then compared to experimentally obtained
ones G? ∈ C, and a parameter p? ∈ Q is chosen by a least squares computation. Simulation can be
done by FEM on a mesh TH , which leads to an approximation p?H ∈ Q of the real parameter p?.

This problem allows for different viewpoints: First, since the unknown parameter p? is a quantity
derived from the solution of a PDE (model problem (4.1)), it can be viewed as a goal value, on which
a GOAFEM algorithm can be based. The goal error then is the parameter error ‖p?− p?H ‖Q , where
we denote the Euclidean norm on Q by ‖ · ‖Q (analogous for C). Second, the parameter estimation
problem can be viewed as a special case of an optimal control problem with finite dimensional
control (the parameter p). In this context, the solution u(p) is called state and the solution z(p)
of a suitable dual problem introduced below, is called co-state. Thus, we use the ideas of existing
literature on (GO)AFEM for optimal control problems.

83

http://arxiv.org/abs/2111.03627

4 Parameter estimation

There, adaptivity is usually driven by residual based a posteriori estimators for energy norms by
means of the estimate ([BM11; GY17])

‖p? − p?H ‖Q + |||u(p?) − uH (p?H)||| + |||z(p?) − zH (p?H)||| . ηH (uH (p?H)) + ζH (zH (p?H)), (4.2)

and optimality is shown with respect to the upper bound. However, the convergence rate of the
(co-)state energy error |||u(p?) − uH (p?H)||| + |||z(p?) − zH (p?H)||| is typically of lower order than that
of the parameter error; see, e.g., Figure 4.2. Thus, the upper bound in (4.2) is not sharp. A partial
remedy investigated by [GYZ16; LC17] employs L2-norm error estimators in the spirit of [DS11].
This approach indeed leads to a sharp upper bound, but requires strong regularity assumptions to
the co-state problem, thus essentially allowing only for convex domains. For a full remedy for the
special case that is treated in this chaper, we completely replace (4.2).

Improved a priori estimates

For the GOAFEM presented in Chapter 1, the goal error estimate (1.21) is directly derived from the
a priori estimate (1.17) by (A3). The first main part of this chapter is therefore dedicated to find a
suitable a priori estimate for the parameter error ‖p? − p?H ‖. To this end, we look into ideas from
the works [BV04; BV05], which propose a GOAFEM algorithm where the convergence rate of the
a posteriori estimators experimentally matches that of the parameter error. Since these works are
concerned with dual-weighted residual error estimators, they lack a rigorous convergence analysis
for their GOAFEM algorithms. However, they provide the key ideas to derive the desired a priori
estimate; see Theorem 4.5 below. We note that instead of the sum structure of (4.2), the upper
bound of this estimate has a product structure similar to (1.17):

‖p? − p‖Q .
[nQ∑
i=0

|||ui − uH,i |||2
]1/2 [nC∑

j=1

‖zj − zH, j ‖2
]1/2

(4.3)

where the terms on the right-hand side estimate the contributions of the separate components of
parameters pi and measurements G?

j .

Optimal GOAFEM for the parameter estimation problem

Once the a priori estimate is in place, we can again use (A3) to obtain an a posteriori estimate, which
can, in turn, be used to drive a GOAFEM algorithm. However, estimate (4.3) has a non-standard
product-of-sums structure. It is therefore not completely straight-forward to design a GOAFEM
algorithm that can be shown to converge with optimal rates.
To remedy this, we turn to the idea of product (or combined) estimators used in Chapter 2 and

generalize this concept to an arbitrary number of components. They are subsequently used to
summarize all component estimators of the state and co-state sum, respectively, ending up with
the well-known product structure (1.21). From there, optimality results follow analogously to
Section 1.3.

Chapter outline

We begin by providing details of the problem formulation and its numerical solution by FEM in
Section 4.2. This is cast into an adaptive algorithm in Section 4.3, where also our main results are

84

4.2 Parameter estimation problem

stated: Theorem 4.5 precisely formulates the a priori estimate (4.3) for the parameter error, which
is an interesting result on its own; linear convergence with optimal algebraic rates of our GOAFEM
is then stated in Theorems 4.13 and 4.14. The subsequent Sections 4.4 and 4.5 are dedicated to the
proofs of our main results. To conclude, we underline our analysis with numerical experiments in
Section 4.6.
Finally, we note that, in this chapter, for a function J : H1 →H2 between Hilbert spacesH1,H2,

we denote the gradient and Hessian of J at v ∈ H1 by J ′[v] : H1 →H2 and J ′′[v] : H1×H1 →H2,
respectively.

4.2 Parameter estimation problem

4.2.1 Problem formulation

We consider the linear elliptic PDE problem (4.1) in weak formulation: For p ∈ Q, find u(p) ∈
X := H1

0 (Ω) such that

a(u(p), v) :=
∫
Ω

A∇u(p) · ∇v dx = F0(v) + b(p, v) for all v ∈ X. (4.4)

We suppose that A is a piecewise constant and positive definite matrix and that there exist fi ∈ L2(Ω)
as well as f i ∈ [L2(Ω)]d for i = 0, . . . , nQ such that

F0(v) =
∫
Ω

f0v − f 0 · ∇v dx and b(p, v) =
nQ∑
i=1

pi

∫
Ω

fiv − f i · ∇v dx for all v ∈ X.

In particular, this implies that b(·, ·) : Q ×X → R is linear in both arguments and that, for all p ∈ Q,
F0, b(p, ·) ∈ X′ = H−1(Ω) are linear and continuous functionals on X. Under these assumptions,
the Lax–Milgram theory implies that problem (4.4) has a unique solution u(p) ∈ X, which is called
state (variable), for all parameters p ∈ Q.
Remark 4.1. We note that our analysis below readily extends to more general problems, where

a(u(p), v) =
∫
Ω

A∇u(p) · ∇v + b · ∇u(p)v + c u(p)v dx,

and to mixed (inhomogeneous) Dirichlet / Neumann boundary data. For such problems, the obvious
adaptions are to be made for solution theory and error estimation.

We suppose that, for all i = 1, . . . , nC , the components Gi : X → R of the measurement operator
G : X → C take the form

Gi(v) =
∫
Ω

giv − gi · ∇v dx for all v ∈ X,

for some given gi ∈ L2(Ω) and gi ∈ [L2(Ω)]d.
We seek a parameter p? ∈ Q such that the modeled measurements G(u(p?)) match the real

measurements G? in some sense. To this end, we define the residual with respect to the parameter
p ∈ Q as

r(p) := G(u(p)) − G? ∈ C.

85

4 Parameter estimation

Allowing for an additional (regularization) constant α ≥ 0, we obtain the sought parameter as
solution of the parameter problem

J(p) := 1

2
‖r(p)‖2C +

α

2
‖p‖2Q → min in Q, (4.5)

with the (regularized) least-squares functional J. Note that J is quadratic due to linearity of the
residual r and α can be chosen such that J is strictly convex; see (4.10) below. With such a choice
of α, since Q is a closed and convex set, there exists a unique minimizer of (4.5), which we call p?.
In particular, the corresponding state u(p?) ∈ X also exists and is unique in this case.

Remark 4.2. While the linear-quadratic parameter estimation problem (4.4)–(4.5) is interesting
on its own account, we note that such problems also appear as linearization of nonlinear param-
eter estimation problems, e.g., in the course of a Gauss–Newton iteration. Nonlinear parameter
estimation problems in the context of adaptive iterative linearized algorithms as presented, e.g.,
in [HPW21] will be the subject of future work.

4.2.2 Solution components

Due to the linearity of (4.4) with respect to the parameter p, we can decompose the solution u(p)
into components. To this end, we denote by ei ∈ RnQ the i-th unit vector and define

u0 ∈ X : a(u0, v) = F0(v) for all v ∈ X,
ui ∈ X : a(ui, v) = b(ei, v) for all v ∈ X, and all i = 1, . . . , nQ .

(4.6)

Considering the solution u(p) to (4.4) as a mapping u : Q → X, we can compute the derivative
u′ : Q → L(Q,X) with respect to the parameter to see that, for every p, q ∈ Q, the function
u′(p) := u′[q](p) is independent of the linearization point q and solves

a(u′(p), v) = b(p, v) for all v ∈ X. (4.7)

Due to linearity of b(·, ·) in both arguments and p =
∑nQ

i=1 piei, we have that

u(p) = u0 +
nQ∑
i=1

piui, u′(p) =
nQ∑
i=1

piui . (4.8)

4.2.3 Least squares system and solution

By the assumptions on Q and quadraticity of J : Q → R, the problem (4.5) is a convex optimization
problem. The first-order necessary condition for the minimizer p? ∈ Q of (4.5) is

J ′[p?](p − p?) ≥ 0 for all p ∈ Q. (4.9)

Since the least squares functional is quadratic, theHessian J ′′ ∈ RnQ×nQ is constant and, in particular,
independent of the evaluation point. We assume that there exists a constant κ > 0 such that the
second-order sufficient condition

J ′′(p, p) ≥ κ‖p‖2Q for all p ∈ Q (4.10)

86

4.2 Parameter estimation problem

holds, i.e., that every solution to (4.9) is indeed a minimizer; see the general text [NW06] for
existence and uniqueness of minimizers and Remark 4.3(ii) below for the role of κ.

From linearity of the measurement functional G : X → C, we infer that G′[v](u′(q)) = G(u′(q))
for all v ∈ X and q ∈ Q. Thus, it holds that

J ′[p?](q) = 〈
r(p?) , r ′[p?](q)〉C + α〈p? , q〉Q

=
〈
G(u(p?)) − G? , G(u′(q))〉C + α〈p? , q〉Q . (4.11)

Defining B ∈ RnQ×nC by Bi j := G j(ui), we can use linearity in the last equation to obtain that

J ′[p?](q) =
nQ∑

i, j=1

nC∑
k=1

[(
Gk(u0) + p?i Gk(ui) − G?

k

) (
qjGk(u j)

)]
+ α〈p? , q〉Q

= qᵀ(BBᵀ + αI)p? + qᵀB(G(u0) − G?). (4.12)

From this representation, a solution to (4.9) can be computed, heeding the constraints induced by Q;
see [NW06] for a comprehensive treatment of algorithms for such (possibly non-linear) numerical
optimization problems.

Remark 4.3. (i) For the unconstrained case Q = RnQ , solving the optimality condition (4.9)
simplifies to solving the (linear) least-squares system

(BBᵀ + αI)p? = B(G? − G(u0)).
(ii) From the explicit representation

J ′′(p, p) = pᵀ
(
BBᵀ + αI

)
p, (4.13)

one infers two sufficient conditions such that (4.10) holds: The first one is that the system matrix
BBᵀ has full rank, in which case α = 0 is an admissible choice. In particular, this requires
nC ≥ nQ , i.e., more measurements than parameters. The second condition is that α > 0.

4.2.4 FEM discretization

For a conforming triangulation TH of Ω ⊂ Rd into compact simplices and a polynomial degree
k ≥ 1, let

XH := {vH ∈ H1
0 (Ω) | ∀T ∈ TH : vH |T is a polynomial of degree ≤ k}.

To obtain a conforming finite element approximation u(p) ≈ uH (p) ∈ XH for p ∈ Q, we consider
the Galerkin discretization of (4.4), which reads: Find uH (p) such that

a(uH (p), vH) = F0(vH) + b(p, vH) for all vH ∈ XH .
Moreover, the functions uH,0, uH,i ∈ XH are defined analogously to (4.6), which is why (4.8) holds
accordingly.
On TH , an approximation of the continuous parameter p? can be obtained by minimizing a

discretized version of the least-squares functional (4.5):

JH (p) := 1

2
‖rH (p)‖2C +

α

2
‖p‖2Q with rH (p) := G(uH (p)) − G?. (4.14)

87

4 Parameter estimation

The minimizer p?H ∈ Q of the discrete least-squares functional satisfies

J ′H [p?H](p − p?H) ≥ 0 for all p ∈ Q. (4.15)

We note that a discrete representation of (4.14) can be derived in complete analogy to (4.12), with
BH,i j := G j(uH,i).

4.2.5 Co-state components

In the following adaptive algorithm and its analysis we also need information about the measurement
operators. To this end, we introduce the co-state components

zj ∈ X : a(v, zj) = G j(v) for all v ∈ X, j = 1, . . . , nC (4.16)

and their discretizations zH, j ∈ XH .
To give a concise presentation of our analysis, we further define for p ∈ Q the functions

z(p) :=
nC∑
j=1

rH, j(p)zj and zH (p) :=
nC∑
j=1

rH, j(p)zH, j

and note that they satisfy

a(v, z(p)) = 〈
rH (p) , G(v)

〉
C for all v ∈ X,

a(vH, zH (p)) =
〈
rH (p) , G(vH)

〉
C for all vH ∈ XH .

(4.17)

Taking the derivative of the last equations with respect to the parameter, we obtain

a(v, z′(p)) = 〈
G(u′H (p)) , G(v)

〉
C for all v ∈ X,

a(vH, z′H (p)) =
〈
G(u′H (p)) , G(vH)

〉
C for all vH ∈ XH

(4.18)

and note that the following identities hold:

z′H (p) =
nC∑
j=1

G j

(
u′H (p)

)
zj and z′H (p) =

nC∑
j=1

G j

(
u′H (p)

)
zH, j . (4.19)

Remark 4.4. By considering the co-state components zH, j from (4.16), the matrix entries BH,i j

can be computed by the nQ state components uH,i, or the nC co-state components zH, j via

BH,i j = G j(uH,i) (4.16)= a(uH,i, zj) = a(uH,i, zH, j) (4.6)= b(ei, zH, j). (4.20)

Thus, for assembling BH , one can decide between computing state or co-state components. For our
adaptive algorithm below, however, we need the state as well as the co-state components anyway to
compute the necessary a posteriori estimators.

4.3 Adaptive algorithm and main results

4.3.1 A priori estimate

Our first main result is an a priori estimate for the parameter error. To the best of our knowledge,
this is a novel result. Its proof is given in Section 4.4 below.

88

4.3 Adaptive algorithm and main results

Theorem 4.5
There exists a constant CQ > 0 such that

‖p? − p?H ‖Q ≤ CQ
[nQ∑
i=0

|||ui − uH,i |||2
]1/2 [nC∑

j=1

‖zj − zH, j ‖2
]1/2

for all TH ∈ T. (4.21)

The constant CQ depends only on Q, Ω, G?, κ, α, and the data A, fi, gj , f i, and g j .

Remark 4.6. The proof of the estimate (4.21) relies heavily on the linear dependence of the primal
and dual solution on the parameter, as well as the finite dimension of Q. Problems which depend
on the parameter in a nonlinear fashion are usually solved iteratively, such that the linearization in
each step again depends linearly on the parameter. Thus, a result analogous to Theorem 4.5 might
also hold in this case. For optimal control problems with dimQ = ∞, however, it is not clear how
to replace the components ui and zj as well as their discretizations in (4.21).

The estimate (4.21) is the fundamental result that allows to design the adaptive algorithm that is
presented in the following sections.

4.3.2 Mesh refinement

LetT0 be a given conforming triangulation ofΩwhich is admissible for d ≥ 3 in the sense of [Ste08].
For mesh refinement, we employ newest vertex bisection; see [BDD04; KPP13; Ste08]. For each
conforming triangulation TH and marked elementsMH ⊆ TH , let Th := refine(TH,MH) be the
coarsest conforming triangulation where all T ∈ MH have been refined, i.e.,MH ⊆ TH\Th. We
write Th ∈ T(TH), if Th results from TH by finitely many steps of refinement. To abbreviate notation,
let T := T(T0). We note that there holds nestedness of finite element spaces, i.e., Th ∈ T(TH) implies
that XH ⊆ Xh.
We note that newest vertex bisection generates a family of shape-regular meshes, i.e., there exists

a constant γ > 0 such that

sup
T∈T

max
T ∈T

diam(T)d
|T | ≤ γ < ∞.

4.3.3 A posteriori error estimation

We consider standard residual error estimators, i.e., for TH ∈ T, T ∈ TH , and vH ∈ XH we define

ηH,i(T, vH)2 := h2T

 fi + div(f i + A∇vH)

2
L2(T) + hT

[[(f i + A∇vH) · n]]

2
L2(∂T∩Ω),

ζH, j(T, vH)2 := h2T

gj + div(g j + A∇vH)

2
L2(T) + hT

[[(g j + A∇vH) · n]]

2
L2(∂T∩Ω),

for all 0 ≤ i ≤ nQ and 1 ≤ j ≤ nC , where hT := |T |1/d and [[·]] is the jump across element
boundaries. For a subsetUH ⊆ TH , we further define

ηH,i(UH, vH)2 :=
∑

T ∈UH

ηH,i(T, vH)2, ζH, j(UH, vH)2 :=
∑

T ∈UH

ζH, j(T, vH)2, (4.22)

89

4 Parameter estimation

and we abbreviate

ηH,i(vH) := ηH,i(TH, vH), ηH,i(UH) := ηH,i(UH, uH,i), ηH,i := ηH,i(TH),
ζH, j(vH) := ζH, j(TH, vH), ζH, j(UH) := ζH, j(UH, zH, j), ζH, j := ζH, j(TH).

(4.23)

It is well-known that, in our setting, these estimators satisfy the so-called axioms of adaptivity;
see, e.g., [CFPP14].

Proposition 4.7. There exist constants Cstab,Crel,Cdrel > 0 and 0 < qred < 1 such that for all
TH ∈ T(T0), Th ∈ T(TH), 0 ≤ i ≤ nQ , and 1 ≤ j ≤ nC the residual error estimators satisfy the
following properties:

(A1) Stability: For all vh ∈ Xh, vH ∈ XH , andUH ⊆ Th ∩ TH , it holds that��ηh,i(UH, vh) − ηH,i(UH, vH)
�� + ��ζh, j(UH, vh) − ζH, j(UH, vH)

�� ≤ Cstab |||vh − vH |||.

(A2) Reduction: For all vH ∈ XH , it holds that

ηh,i(Th\TH, vH) ≤ qred ηH,i(TH\Th, vH) and ζh, j(Th\TH, vH) ≤ qred ζH, j(TH\Th, vH).

(A3) Reliability: The state and co-state components uH,i, zH, j ∈ XH satisfy that

|||ui − uH,i ||| ≤ Crel ηH,i and |||zj − zH, j ||| ≤ Crel ζH, j .

(A4) Discrete reliability: The components uH,i, zH, j ∈ XH and uh,i, zh, j ∈ Xh satisfy

|||uh,i − uH,i ||| ≤ Cdrel ηH,i(TH\Th) and |||zh, j − zH, j ||| ≤ Cdrel ζH, j(TH\Th). �

Together with our a priori estimate Theorem 4.5, reliability (A3) immediately implies that
a suitable combination of error estimators of the components is indeed an upper bound to the
parameter error.

Theorem 4.8
With the constant CQ > 0 from Theorem 4.5, there holds

‖p? − p?H ‖Q ≤ C2
rel CQ

[nQ∑
i=0

η2H,i

]1/2 [nC∑
j=1

ζ2H, j

]1/2
for all TH ∈ T. (4.24)

Remark 4.9. The usual (residual) a posteriori estimate for optimal control problems in the literature
is an upper bound for the sum

‖p? − p?H ‖Q + |||u(p?H) − uH (p?H)||| + |||z(p?H) − zH (p?H)|||.

Since the error in the parameter can be expected to be of higher order than that of the state and the
co-state variable, such an estimate is sub-optimal with respect to the parameter error. Our estimate
in (4.42) neatly exploits the finite dimension of Q to gain two advantages:

90

4.3 Adaptive algorithm and main results

• it shows an improved rate of convergence compared to the usual estimator for the sum above
(see the numerical experiments in Section 4.6);

• it does not use p?H , so that its (possibly costly) computation can be avoided, if one is only
interested in an a posteriori estimate. For instance, one can improve the mesh by use of
Algorithm 4A below until the upper bound in (4.24) is sufficiently small. Then, p?H is only
computed once for the final mesh.

4.3.4 Adaptive algorithm

Once Theorem 4.8 provides an error estimator for the parameter error on a mesh TH ∈ T involving
only (co-)state components, we can define weighted refinement indicators in the spirit of [BET11]:

%H (T)2 :=
[nQ∑
i=0

η2H,i

] [nC∑
j=1

ζH, j(T)2
]
+

[nQ∑
i=0

ηH,i(T)2
] [nC∑

j=1

ζ2H, j

]
. (4.25)

For a subsetUH ⊆ TH , we again define %H (UH)2 :=
∑

T ∈UH
%H (T)2 and %H := %H (TH).

This allows us to devise an adaptive algorithm for the parameter estimation problem.

Algorithm 4A
Input: Initial triangulation T0, marking parameter θ ∈ (0, 1].
For ` = 0, 1, 2, . . ., do

(i) Compute u`,i and z`, j for i = 0, . . . , nQ and j = 1, . . . , nC .

(ii) Compute refinement indicators %`(T).
(iii) Find a minimal setM` ⊆ T̀ of elements such that %`(M`)2 ≥ θ%2` .
(iv) Compute T̀ +1 := refine(T̀ ,M`).

Output: Sequence of triangulations (T̀)` , components (u`,i)`, (z`, j)` , and corresponding error
estimators.

Remark 4.10. We note that the proposed weighted error estimator (4.25) satisfies

%2H = 2
[nQ∑
i=0

η2H,i

] [nC∑
j=1

ζ2H, j

]
, (4.26)

which is essentially the square of the upper bound of the parameter error (4.24) from Theorem 4.8.
Thus, by proving convergence (with optimal rates) of Algorithm 4A with respect to the weighted
estimator %H , we can draw the same conclusion for the parameter error.

Remark 4.11. Note that computing the parameter p?H from (4.15) can involve high computational
effort, depending on the precise constraints imposed by Q. For this reason, we stress that Algo-
rithm 4A relies only on the unweighted (co-)state components uH,i and zH, j for error estimation and
refinement in each step. Therefore, p?H will only be computed once, namely when the upper bound
in (4.24) for TH = T̀ is sufficiently small and, hence, Algorithm 4A is terminated for this step `.

91

4 Parameter estimation

Remark 4.12. Instead of the weighted marking strategy in Algorithm 4A(iii), the marking strategies
from [FPZ16] and the seminal work [MS09] can also be used in our analysis below. Both strategies
first find minimal setsMu

`
andMz

`
that satisfy

θ

nQ∑
i=0

η2`,i ≤
nQ∑
i=0

η`,i(Mu
`)2 and θ

nC∑
j=1

ζ2`, j ≤
nC∑
j=1

ζ`, j(Mz
`
)2,

respectively. The set of marked elements is then defined as suitable subsetM` ⊆ Mu
`
∪Mz

`
with

#M` ≤ Cmarkmin{#Mu
`
,#Mz

`
}, where Cmark = 1 in [MS09] and Cmark = 2 in [FPZ16]. In

particular, the minimality assumption toM` ,Mu
`
, andMz

`
can be weakened to only hold up to an

arbitrary but fixed factor greater than 1; see [FPZ16].

4.3.5 Convergence of Algorithm 4A

Our second main result concerns linear convergence of the error estimator.

Theorem 4.13
Suppose 0 < θ ≤ 1. Then, Algorithm 4A satisfies linear convergence

%`+n ≤ Clinqn
lin %` for all `, n ∈ N0. (4.27)

The constants Clin > 0 and 0 < qlin < 1 depend only on Cstab, qred, Crel, and the (arbitrary)
adaptivity parameter 0 < θ ≤ 1.

For our last main result, linear convergence of the error estimator %` with optimal algebraic rates,
we introduce so-called approximation classes. Given N ∈ N0, let T(N) be the set of all TH ∈ Twith
#TH −#T0 ≤ N . For all r > 0, we define

‖ui ‖Ar := sup
N ∈N0

(N + 1)r min
Topt∈T(N)

ηopt,i(uopt,i) ∈ [0,∞], for 0 ≤ i ≤ nQ,

‖zj ‖Ar := sup
N ∈N0

(N + 1)r min
Topt∈T(N)

ζopt, j(zopt, j) ∈ [0,∞], for 1 ≤ j ≤ nC .
(4.28)

By definition, e.g., ‖ui ‖Ar < ∞ yields that ηopt,i(uopt,i) decays at least with algebraic rate r > 0
along a sequence of optimal meshes. The following theorem states that any possible overall rate for
the upper bound of (4.24) will indeed be realized by Algorithm 4A.

Theorem 4.14
Let 0 < θ < θopt := (1 + C2

stab
C2
drel
)−1. Let si, tj > 0 with

nQ∑
i=0

‖ui ‖2Asi
+

nC∑
j=1

‖zj ‖2At j
< ∞.

92

4.4 Proof of Theorem 4.5

Then, there exists a constant Copt > 0 such that for all ` ∈ N0 there holds that

%` ≤ Copt

[nQ∑
i=0

‖ui ‖2Asi

]1/2 [nC∑
j=1

‖zj ‖2At j

]1/2 (
#T̀ −#T0

)−β
, (4.29)

where β := min{si | 0 ≤ i ≤ nQ} +min{tj | 1 ≤ j ≤ nC}. The constant Copt depends only on
Ccls, Cstab, qred, Crel, Cdrel, θ, nQ , nC , si, and tj .

Remark 4.15. Note that our adaptive algorithm drives down only the upper bound of the parameter
error with optimal rates and not the parameter error itself. However, in general, one cannot expect
to obtain a rate higher than min{si | 0 ≤ i ≤ nQ} +min{tj | 1 ≤ j ≤ nC} for the parameter error.
This is due to the fact that the assembly of the matrix entries B`,i j , which are needed to compute
p?` , uses all state or co-state components and thus its accuracy is constricted by their respective
minimal rate.

Remark 4.16. Theorem 4.14 holds true for all mesh refinement strategies as long as there hold the
son estimate

#(TH\Th) +#TH ≤ #Th for all TH ∈ T and all Th ∈ T(TH), (4.30)

the overlay estimate

#(TH ⊕ Th) ≤ #TH +#Th −#T0, for all TH ∈ T and all Th ∈ T(TH), (4.31)

and the closure estimate (with constant Ccls > 0)

#T̀ −#T0 ≤ Ccls

`−1∑
j=0

#M j for all ` ∈ N, (4.32)

as well as the axioms (A1)–(A4); see [CFPP14]. In this sense, the present analysis is indeed
independent of newest vertex bisection.

4.4 Proof of Theorem 4.5

4.4.1 Auxiliary a priori bounds

We start by stating some well-known a priori estimates, which are used throughout the subsequent
analysis.

Lemma 4.17. There exists a constant CA > 0 such that, for all TH ∈ T,

|||uH,i ||| ≤ |||ui ||| ≤ CA

[‖ fi ‖L2(Ω) + ‖ f i ‖L2(Ω)
]

for all 0 ≤ i ≤ nQ,
|||zH, j ||| ≤ |||zj ||| ≤ CA

[‖gj ‖L2(Ω) + ‖g j ‖L2(Ω)
]

for all 1 ≤ j ≤ nC .
(4.33)

The constant CA depends only on A and Ω. �

Since u′(p), z′(p), and their discrete counterparts depend linearly on the parameter, we can use
the a priori bounds to split parameters and component errors.

93

4 Parameter estimation

Lemma 4.18. There exists a constant C > 0 such that, for all p ∈ Q,

|||u′(p) − u′H (p)||| ≤ ‖ p‖Q
[nQ∑
i=1

|||ui − uH,i |||2
]1/2

,

|||z′(p) − z′H (p)||| ≤ C ‖p‖Q
[nC∑
j=1

|||zj − zH, j |||2
]1/2

.

(4.34)

The constant C depends only on Ω as well as the data A, fi, gj , f i, and g j .

Proof. Let p ∈ Q. With the representation (4.8), the triangle inequality, and the Cauchy–Schwarz
inequality, we obtain the first inequality of (4.34) by

|||u′(p) − u′H (p)|||
(4.8)≤

nQ∑
i=1

|pi | |||ui − uH,i ||| ≤ ‖ p‖Q
[nQ∑
i=1

|||ui − uH,i |||2
]1/2

.

The same arguments, together with a priori bounds for uH,i, can be used to show that

|||u′H (p)|||
(4.8)≤ ‖p‖Q

[nQ∑
i=1

|||uH,i |||2
]1/2 (4.33)≤ ‖ p‖QCA

[nQ∑
i=1

(‖ fi ‖L2(Ω) + ‖ f i ‖L2(Ω)
)2]1/2

. (4.35)

For the second inequality in (4.34), we can again employ the triangle inequality. Together with
continuity of the measurement functionals G j , which depend only on gj and g j , and (4.35) this
leads to

|||z′(p) − z′H (p)|||
(4.19)≤

nC∑
j=1

��G j

(
u′H (p)

) �� |||zj − zH, j |||

≤

G (

u′H (p)
)

C
[nC∑
j=1

|||zj − zH, j |||2
]1/2 (4.35)

. ‖p‖Q
[nC∑
j=1

|||zj − zH, j |||2
]1/2

.

This concludes the proof. ||
���� �

Lemma 4.19. There exists a constant C? > 0 such that, for all TH ∈ T,

‖p?‖Q ≤ C? and ‖p?H ‖Q ≤ C?. (4.36)

The constant C? depends only on α, G?, Ω, κ, min{‖q‖Q | q ∈ Q}, and the data A, fi, gj , f i,
and g j .

Proof. We first define C := min{‖q‖Q | q ∈ Q} and choose p ∈ Q such that ‖p‖Q = C (such a
choice exists since Q is closed and convex). From the first and second order optimality condition,
(4.9) and (4.10), and the explicit form of J ′ in (4.12), we have that

κ ‖p?‖2Q
(4.10)≤ J ′′(p?, p?) (4.13)= (p?)ᵀ (BBᵀ + αI) p? (4.12)

= J ′p? − (p?)ᵀB (
G(u0) − G?

)
(4.9)≤ J ′[p?](p) − (p?)ᵀB (

G(u0) − G?
)

(4.12)
= (p?)ᵀ (BBᵀ + αI) p + (p − p?)ᵀB (

G(u0) − G?
)
.

94

4.4 Proof of Theorem 4.5

We denote by ‖ · ‖L(Q) the natural matrix norm induced by the Euclidean norm ‖ · ‖Q , i.e., the
spectral norm. Using the Cauchy–Schwarz inequality together with ‖p‖Q = C, we see that

κ ‖p?‖2Q ≤ ‖p?‖Q
(
C ‖BBᵀ + αI ‖L(Q) + ‖B(G(u0) − G?)‖Q

)
+ C ‖B(G(u0) − G?)‖Q .

In the case ‖p?‖Q < 1, there already holds the first inequality of (4.36) with C? = 1. In the case
‖p?‖Q ≥ 1, we can divide by κ‖p?‖ ≥ κ > 0 and further estimate the last inequality by

‖p?‖Q ≤ κ−1
(
C ‖BBᵀ + αI ‖L(Q) + (1 + C)‖B(G(u0) + G?)‖Q

)
. (4.37)

From the definition of B, we have that, for all 1 ≤ i ≤ nQ and 1 ≤ j ≤ nC ,

|Bi j | = |G j(ui)| = a(ui, zj)
(4.33)≤ C2

A

[‖ fi ‖L2(Ω) + ‖ f i ‖L2(Ω)
] [‖gj ‖L2(Ω) + ‖g j ‖L2(Ω)

]
.

We can thus estimate the Frobenius-norm ‖ · ‖F of B by

‖B‖2F =
nQ∑
i=1

nC∑
j=1

|Bi j |2 ≤ C4
A

nQ∑
i=1

nC∑
j=1

[‖ fi ‖L2(Ω) + ‖ f i ‖L2(Ω)
]2 [‖gj ‖L2(Ω) + ‖g j ‖L2(Ω)

]2
.

Using these estimates together with

‖BBᵀ + αI ‖L(Q) ≤ ‖B‖2F + α and ‖B(G(u0) − G?)‖Q ≤ ‖B‖F ‖G(u0) − G?‖C

to bound the matrix norms in (4.37), we show the continuous estimate in (4.36). Since the estimate
of Bi j holds in the discrete case as well, the discrete estimate in (4.36) follows analogously. �

The next lemma shows an estimate similar to Lemma 4.18, but without the additional factor
‖p‖Q . Note that such an additional factor cannot be expected since neither u(p) nor z(p) are linear
in the parameter.

Lemma 4.20. There exists a constant C > 0 such that, for all TH ∈ T and p ∈ {p?, p?H },

|||u(p) − uH (p)||| ≤ C
[nQ∑
i=0

|||ui − uH,i |||2
]1/2

,

|||z(p) − zH (p)||| ≤ C
[nC∑
j=1

|||zj − zH, j |||2
]1/2

.

(4.38)

The constant C depends only on G?, the data A, fi, gj , f i, and g j , and the constants CA from
Lemma 4.17 and C? from Lemma 4.19.

Proof. The estimate for the difference in the state u follows along the same lines as in the proof of
Lemma 4.18, where the parameter can be estimated by (4.36). For the difference in the co-state, we
note that (4.33) and p ∈ {p?, p?H } imply that

|||uH (p)||| ≤ C < ∞, (4.39)

95

4 Parameter estimation

where the constant C > 0 depends only on CA from Lemma 4.17, the data fi and f i, and C? from
Lemma 4.19. Thus, with continuity of the measurement functionals G j , which depend only on gj ,
g j , we have that

|||z(p) − zH (p)||| ≤
nC∑
j=1

��G j

(
uH (p)

) − G?
j

�� |||zj − zH, j |||

≤

G (

uH (p)
) − G?

C
[nC∑
j=1

|||zj − zH, j |||2
]1/2

.
(|||uH (p)||| + ‖G?‖C

) [nC∑
j=1

|||zj − zH, j |||2
]1/2 (4.39)

.
[nC∑
j=1

|||zj − zH, j |||2
]1/2

.

This concludes the proof. �

4.4.2 Error bound for parameter error

The next lemma estimates the error in the derivative of the least-squares functional.

Lemma 4.21. For all q, p ∈ Q, it holds that

|J ′[p](q) − J ′H [p](q)| ≤ |||u(p) − uH (p)||| |||z′(q) − z′H (q)|||
+ |||u′(q) − u′H (q)||| |||z(p) − zH (p)|||

+ |||u(p) − uH (p)||| |||u′(q) − u′H (q)|||
nC∑
j=1

|||zj − zH, j |||2.
(4.40)

Proof. Let q, p ∈ Q. Note that r ′(q) = G(u′(q)) and r ′H (q) = G(u′H (q)). Therefore, we have that

J ′[p](q)−J ′H [p](q)
(4.11)
=

〈
r(p) , r ′(q)〉 − 〈

rH (p) , r ′H (q)
〉

=
〈
r(p) − rH (p) , r ′(q)

〉
+

〈
rH (p) , r ′(q) − r ′H (q)

〉
(4.41)

=
〈
r(p) − rH (p) , G(u′(q))

〉
+

〈
rH (p) , G

(
u′(q) − u′H (q)

)〉
.

The first term in (4.41) can be reformulated by inserting the term G(u′H (q)), the definition of z′(q),
and the Galerkin orthogonality. This yields that〈

r(p) − rH (p) , G(u′(q))
〉

=
〈
G

(
u(p) − uH (p)

)
, G

(
u′(q) − u′H (q)

)〉
+

〈
G

(
u(p) − uH (p)

)
, G

(
u′H (q)

)〉
(4.18)
=

〈
G

(
u(p) − uH (p)

)
, G

(
u′(q) − u′H (q)

)〉
+ a

(
u(p) − uH (p), z′(q)

)
=

〈
G

(
u(p) − uH (p)

)
, G

(
u′(q) − u′H (q)

)〉
+ a

(
u(p) − uH (p), z′(q) − z′H (q)

)
.

We employ the definition of the co-state components zj and the Galerkin orthogonalities to obtain

96

4.4 Proof of Theorem 4.5

that 〈
G

(
u(p) − uH (p)

)
, G

(
u′(q) − u′H (q)

)〉
=

nC∑
j=1

G j

(
u(p) − uH (p)

)
G j

(
u′(q) − u′H (q)

)
(4.16)
=

nC∑
j=1

a
(
u(p) − uH (p), zj

)
a
(
u′(q) − u′H (q), zj

)
=

nC∑
j=1

a
(
u(p) − uH (p), zj − zH, j

)
a
(
u′(q) − u′H (q), zj − zH, j

)
.

For the second term in (4.41), we use the definition of z(q) and the Galerkin orthogonality to obtain
that 〈

rH (p) , G
(
u′(q) − u′H (q)

)〉(4.17)
= a

(
u′(q) − u′H (q), z(p)

)
= a

(
u′(q) − u′H (q), z(p) − zH (p)

)
.

Finally, the claim (4.40) results from combining above identities and using the Cauchy–Schwarz
inequality. �

Finally, we combine the last auxiliary results to obtain an estimate for the error in the parameter.

Lemma 4.22. There exists a constant C > 0 such that the approximation error in the parameter
can be estimated by

‖p? − p?H ‖Q ≤ C
[
|||u(p?H) − uH (p?H)|||

[nC∑
j=1

|||zj − zH, j |||2
]1/2

×
(
1 +

[nC∑
j=1

|||zj − zH, j |||2
]1/2 [nQ∑

i=1

|||ui − uH,i |||2
]1/2) (4.42)

+ |||z(p?H) − zH (p?H)|||
[nQ∑
i=1

|||ui − uH,i |||2
]1/2]

.

The constant C > 0 depends only on Ω and κ as well as the data A, fi, gj , f i, and g j .

Proof. In the following, let q := p?H − p?. Note that the second order optimality condition (4.10)
holds for all q ∈ RnQ , since J ′′ is independent of its linearization point. Therefore, we have that

κ‖q‖2Q
(4.10)≤ J ′′(q, q) (4.12),(4.13)= J ′[p?H](q) − J ′[p?](q),

since J ′[·](q) is affine. With the continuous and discrete first order optimality conditions, (4.9)
and (4.15), respectively, we see that

κ‖q‖2Q ≤
(
J ′[p?H](q) − J ′H [p?H](q)

)
+

(
J ′H [p?H](q) − J ′[p?](q))

≤ J ′[p?H](q) − J ′H [p?H](q).

97

4 Parameter estimation

This last expression can be further bounded by Lemma 4.21:

κ‖q‖2Q
(4.40)≤ |||u(p?H) − uH (p?H)||| |||z′(q) − z′H (q)||| + |||u′(q) − u′H (q)||| |||z(p?H) − zH (p?H)|||

+ |||u(p?H) − uH (p?H)||| |||u′(q) − u′H (q)|||
nC∑
j=1

|||zj − zH, j |||2.

From the right-hand side, a factor ‖q‖Q can be split off from the q-dependent terms by Lemma 4.18
to obtain that

κ‖q‖2Q
(4.34)
. |||u(p?H) − uH (p?H)|||‖q‖Q

[nC∑
j=1

|||zj − zH, j |||2
]1/2

+ ‖q‖Q
[nQ∑
i=1

|||ui − uH,i |||2
]1/2
|||z(p?H) − zH (p?H)|||

+ |||u(p?H) − uH (p?H)|||‖q‖Q
[nQ∑
i=1

|||ui − uH,i |||2
]1/2 nC∑

j=1

|||zj − zH, j |||2.

The claim follows by division through κ‖q‖Q = κ‖p? − p?H ‖Q . �

From (4.42), we can absorb higher order terms to deduce an upper bound for the parameter error,
which is the assertion of Theorem 4.5.

Proof of Theorem 4.5. Note that due to the stability estimate (4.33) there holds for all 0 ≤ i ≤ nQ
and all 1 ≤ j ≤ nC that

|||ui − uH,i ||| ≤ 2CA

[‖ fi ‖L2(Ω) + ‖ f i ‖L2(Ω)
]
, |||zj − zH, j ||| ≤ 2CA

[‖gj ‖L2(Ω) + ‖g j ‖L2(Ω)
]
.

Using these estimates on the factor in (4.42), we obtain that

1 +
[nC∑
j=1

|||zj − zH, j |||2
]1/2 [nQ∑

i=1

|||ui − uH,i |||2
]1/2
. 1, (4.43)

where the hidden constant depends only on CA and the data fi, gj , f i, and g j . Hence, (4.42) reads
as

‖p? − p?H ‖Q . |||u(p?H) − uH (p?H)|||
[nC∑
j=1

|||zj − zH, j |||2
]1/2

+ |||z(p?H) − zH (p?H)|||
[nQ∑
i=1

|||ui − uH,i |||2
]1/2

.

Lemma 4.20 allows to bound the energy norms to finally obtain (4.21). This concludes the proof. �

Remark 4.23. Note that our adaptive Algorithm 4A guarantees convergence[nC∑
j=1

|||zj − zH, j |||2
]1/2 [nQ∑

i=0

|||ui − uH,i |||2
]1/2
→ 0 as ` →∞.

In particular, this implies that the estimate (4.43) is too pessimistic, as the estimated term asymp-
totically tends to 1.

98

4.5 Proof of Theorems 4.13 and 4.14

4.5 Proof of Theorems 4.13 and 4.14

4.5.1 Linear convergence

We aim to employ the analysis of goal-oriented AFEM done by [FGH+16; FPZ16] to prove con-
vergence rates with optimal algebraic rates for the error estimator. To this end, we first note that
the axioms presented in Proposition 4.7 also hold for the sums of state and co-state components,
respectively. For convenience of the reader, we state the main intermediate results for proving
Theorems 4.13 and 4.14.
In view of Algorithm 4A, we define estimators η̃H on XnQ+1

H and ζ̃H on XnC
H by

η̃H (T, vH)2 :=
nQ∑
i=0

ηH,i(T, vH,i)2 for all vH ∈ XnQ+1
H ,

ζ̃H (T, wH)2 :=
nC∑
j=1

ζH, j(T,wH, j)2 for all wH ∈ XnC
H

(4.44)

such that there holds
%H (T)2 = 2 η̃H (T, uH)2 ζ̃H (T, zH)2, (4.45)

where we set uH = (uH,i)nQi=0 ∈ X
nQ+1
H and zH = (zH, j)nCj=1 ∈ X

nC
H . We employ the same notation,

e.g., η̃H (UH, vH) or ζ̃H (wH), as for ηH,i and ζH, j in (4.22)–(4.23). Moreover, we equip the spaces
XnQ+1 and XnC with the norms

|||v |||nQ :=
[nQ∑
i=0

|||vi |||2
]1/2

for all v ∈ XnQ+1, |||w |||nC :=
[nC∑
j=1

|||wj |||2
]1/2

for all w ∈ XnC,

and note thatXnQ+1
H ⊆ XnQ+1 as well asXnC

H ⊆ XnC for all TH ∈ T. Then, the properties (A1)–(A4)
from Proposition 4.7 also hold for η̃H and ζ̃H :

Proposition 4.24. Let Cstab,Crel,Cdrel > 0, and 0 < qred < 1 be the constants from Proposi-
tion 4.7. Then, for all TH ∈ T(T0), and all Th ∈ T(TH), there hold the following properties:

(A1+) Stability: For all vh ∈ XnQ+1
h

, vH ∈ XnQ+1
H , wh ∈ XnC

h
, wH ∈ XnC

H , and UH ⊆ Th ∩ TH ,
it holds that ��η̃h(UH, vh) − η̃H (UH, vH)

�� ≤ Cstab |||vh − vH |||nQ,��ζ̃h(UH, wh) − ζ̃H (UH, wH)
�� ≤ Cstab |||wh − wH |||nC .

(A2+) Reduction: For all vH ∈ XnQ+1
H and wH ∈ XnC

H , it holds that

η̃h(Th\TH, vH) ≤ qred η̃H (TH\Th, vH), ζ̃h(Th\TH, wH) ≤ qred ζ̃H (TH\Th, wH).

(A3+) Reliability: The state and co-state components uH = (uH,i)nQi=0 ∈ X
nQ+1
H and zH =

(zH, j)nCj=1 ∈ X
nC
H satisfy that

|||u − uH |||nQ ≤ Crel η̃H and |||z − zH |||nC ≤ Crel ζ̃H .

99

4 Parameter estimation

(A4+) Discrete reliability: The state and co-state components uH ∈ XnQ+1
H , uh ∈ XnQ+1

h
,

zH ∈ XnC
H , and zh ∈ XnC

h
satisfy that

|||uh − uH |||nQ ≤ Cdrel η̃H (TH\Th), |||zh − zH |||nC ≤ Cdrel ζ̃H (TH\Th).
Proof. For stability (A1+) of the state, the inverse triangle inequality proves that��η̃h(UH, vh) − η̃H (UH, vH)

�� = ��� [nQ∑
i=0

ηh,i(UH, vh,i)2
]1/2
−

[nQ∑
i=0

ηH,i(UH, vH,i)2
]1/2���

≤
��� nQ∑
i=0

[
ηh,i(UH, vh,i) − ηH,i(UH, vH,i)

]2���1/2
(A1)≤ Cstab

��� nQ∑
i=0

|||vh,i − vH,i |||2
���1/2 = Cstab |||vh − vH |||nQ .

The estimate for the co-state follows analogously. Finally, the properties (A2+)–(A4+) follow
directly from the corresponding properties from Proposition 4.7. �

Since the problems for the state and co-state components, (4.6) and (4.16), fit into the Lax–
Milgram setting, there hold the Pythagoras identities

|||u − u`+n |||2nQ + |||u`+n − u` |||2nQ = |||u − u` |||2nQ,

|||z − z`+n |||2nC + |||z`+n − z` |||2nC = |||z − z` |||2nC,
for all `, n ∈ N0. Overall, we get the following Proposition as an immediate consequence from, e.g.,
[FPZ16, Theorem 12]. From this, Theorem 4.13 follows readily with (4.45).

Proposition 4.25. Suppose (A1)–(A3) and 0 < θ ≤ 1. Then, Algorithm 4A guarantees linear
convergence

η̃`+n ζ̃`+n ≤ Clinqn
lin η̃` ζ̃` for all `, n ∈ N0. (4.46)

The constants Clin > 0 and 0 < qlin < 1 depend only on Cstab, qred, Crel, and the (arbitrary)
adaptivity parameter 0 < θ ≤ 1. �

4.5.2 Proof of optimal rates

For all r > 0, we define the (combined) approximation classes

‖u‖Ar := sup
N ∈N0

(N + 1)r min
Topt∈T(N)

η̃opt(uopt) ∈ [0,∞],

‖ z‖Ar := sup
N ∈N0

(N + 1)r min
Topt∈T(N)

ζ̃opt(zopt) ∈ [0,∞].
(4.47)

For these, we get the following result from, e.g., [FPZ16, Theorem 13].
Proposition 4.26. Let 0 < θ < θopt := (1 + C2

stab
C2
drel
)−1. Suppose that the set of marked

elementsM` in Algorithm 4A(iv) has minimal cardinality. Let s, t > 0 with ‖u‖As + ‖ z‖At < ∞.
Then, there exists a constant C̃opt > 0 such that

η̃` ζ̃` ≤ C̃opt ‖u‖As ‖ z‖At

(
#T̀ −#T0

)−(s+t) for all ` ∈ N0. (4.48)

100

4.5 Proof of Theorems 4.13 and 4.14

The constant C̃opt depends only onCstab, qred,Crel,Cdrel,Cmark, θ, s, t, and the properties (4.30)–
(4.32) of the mesh-refinement. �

Finally, Theorem 4.14 follows from Proposition 4.26 by relating the different approximation
classes used in both results.

Proof of Theorem 4.14. Let r > 0. We show that
∑nQ

i=0 ‖ui ‖2Ar
' ‖u‖2Ar

. From the definitions (4.28)
and (4.47) of the approximation classes, we immediately see that, for all i = 0, . . . , nQ ,

‖ui ‖Ar = sup
N ∈N0

(N + 1)r min
Topt∈T(N)

ηopt,i(uopt,i)

≤ sup
N ∈N0

(N + 1)r min
Topt∈T(N)

[nQ∑
i=0

ηopt,i(uopt,i)2
]1/2
= ‖u‖Ar .

Summing the last estimate for all i = 0, . . . , nQ , we obtain that

1

nQ + 1

nQ∑
i=0

‖ui ‖2Ar
≤ ‖u‖2Ar

. (4.49)

For the converse estimate, we fix N ∈ N and define K := bN/(nQ +1)c. Let further be Tk ∈ T (K)
for k = 0, . . . , nQ such that

ηk,k(uk,k) = min
Topt∈T(K)

ηopt,k(uopt,k).

With the overlay estimate (4.31), we have that

#

nQ⊕
k=0

Tk =
[nQ∑
k=0

#Tk
]
− nQ#T0 =

[nQ∑
k=0

(#Tk −#T0)
]
+#T0 =

[nQ∑
k=0

K
]
+#T0 = N +#T0.

Therefore, it holds that T4 :=
⊕nQ

k=0
Tk ∈ T(N). From this, we infer that

min
Topt∈T(N)

[nQ∑
i=0

ηopt,i(uopt,i)2
]1/2
≤

[nQ∑
i=0

η4,i(u4,i)2
]1/2 (4.27)≤ Clin

[nQ∑
i=0

ηi,i(ui,i)2
]1/2

.

Multiplying this by (N + 1)r , we obtain that

(N + 1)r min
Topt∈T(N)

[nQ∑
i=0

ηopt,i(uopt,i)2
]1/2
≤ Clin (N + 1)r

[nQ∑
i=0

ηi,i(ui,i)2
]1/2

= Clin

(N + 1
K + 1

)r
(K + 1)r

[nQ∑
i=0

ηi,i(ui,i)2
]1/2

= Clin

(N + 1
K + 1

)r
(K + 1)r

[nQ∑
i=0

min
Topt∈T(K)

ηopt,i(uopt,i)2
]1/2

≤ Clin

(N + 1
K + 1

)r [nQ∑
i=0

‖ui ‖2Ar

]1/2
.

101

4 Parameter estimation

Taking the supremum over all N ∈ N of the last estimate and using (N + 1)/(K + 1) ≤ nQ + 2, we
finally arrive at

‖u‖Ar ≤ Clin (nQ + 2)r
[nQ∑
i=0

‖ui ‖2Ar

]1/2
. (4.50)

Thus, by combining (4.49)–(4.50), we have that

1

nQ + 1

nQ∑
i=0

‖ui ‖2As
≤ ‖u‖2As

≤ C2
lin(nQ + 2)2s

nQ∑
i=0

‖ui ‖2As
.

Clearly, it thus holds ‖u‖As < ∞ if and only if s = min{si | 0 ≤ i ≤ nQ}. Analogously, it follows
that

1

nC

nC∑
j=1

‖zj ‖2At
≤ ‖ z‖2At

≤ C2
lin (nC + 1)2t

nC∑
j=1

‖zj ‖2At
,

and ‖ z‖At < ∞ if and only if t = min{tj | 1 ≤ j ≤ nC}.
Finally, combining the last statements with the statement of Proposition 4.26, we conclude the

proof with Copt := C2
lin
(nQ + 2)s+1/2(nC + 1)t+1/2C̃opt. �

4.6 Numerical examples

For the following examples, we consider the initial mesh T0 ofΩ := (0, 1)2 ⊆ R2 shown in Figure 4.1
with the sets

T1 := {x ∈ R2 | x1 + x2 > 3/2} ∩Ω,
T2 := {x ∈ R2 | x1 + x2 < 1/2} ∩Ω,
T3 := {x ∈ R2 | max{x1, x2} < 1/4} ∩Ω.

With the characteristic function χω of a measurable subset ω ⊆ Ω, we define
f1 := 4x1(1 − x1) + 4x2(1 − x2), f2 := 5π2 sin(πx1) sin(2πx2),
g1 := (1, 0)ᵀ χT1, g2 := (−1, 0)ᵀ χT2, g3 := χT3,

as well as f0 = g1 = g2 = 0 and f 0 = f 1 = f 2 = g3 = 0. In all our experiments, we set
α = 0. Since all fi, gj, f i, g j are linearly independent, the matrix BᵀB has full rank. In particular,
condition (4.10) is satisfied; see Remark 4.3. As marking parameter, we use θ = 0.5.

4.6.1 Single parameter and measurement

For our first experiment, we consider the following parametrized discrete PDE problem with pa-
rameter p ∈ Q := R: Find uH (p) ∈ XH such that

a(uH (p), vH) :=
∫
Ω

∇uH (p) · ∇vH dx = p1

∫
Ω

f1vH dx =: b(p, v) for all vH ∈ XH . (4.51)

The exact (continuous) solution of this problem is known to be

u(p) = p1u1 = p1x1x2(1 − x1)(1 − x2).

102

4.6 Numerical examples

T1

T2

T3

Figure 4.1: Left: Initial mesh T0 of the unit square (0, 1)2 for numerical experiments. Middle:
Mesh with #T10 = 11096 elements for the setting of Section 4.6.1. Right: Mesh with
#T9 = 16080 elements for the setting of Section 4.6.2.

We further suppose that we have one measurement (corresponding to p? = 1)

G? =
11

960
= G(u(p?)) := −

∫
Ω

g1 · ∇u(p?)dx = −
∫
T1

∂u(p?)
∂x1

dx.

We compute an approximation to p? by two methods:

• The approximations p?` are obtained by our adaptive Algorithm 4A, which is driven by the
estimator %` from (4.25).

• The approximations p?` are obtained by our adaptive algorithm, where %` is substituted by
%`(p?`) := η`(p?`) + ζ`(p?`), which is the prevalent error estimator from the existing literature
on AFEM for optimal control problems [BM11; GY17]. Here, for p ∈ Q, ηH (p) and
ζH (p) are the residual error estimators of the energy errors of uH (p) from (4.4) and zH (p)
from (4.17), respectively.

The results can be seen in Figure 4.2. We see that the classical estimator %`(p?`) drastically
underestimates the rate of the parameter error, whereas our estimator %` matches it perfectly. Also,
the parameter error of our approach is uniformly better by some (small) multiplicative factor.
However, this effect is negligible for large#T̀ .

4.6.2 Multiple parameters and measurements with perturbation

For our second experiment, we consider the following parametrized discrete PDE problem with
parameter p ∈ Q := R2: Find uH (p) ∈ XH such that

a(uH (p), vH) :=
∫
Ω

∇uH (p) · ∇vH dx

= p1

∫
Ω

f1vH dx + p2

∫
Ω

f2vH dx =: b(p, v) for all vH ∈ XH .
(4.52)

The exact (continuous) solution of this problem is known to be

u(p) = p1u1 + p2u2 = p1x1x2(1 − x1)(1 − x2) + p2 sin(πx1) sin(2πx2).

103

4 Parameter estimation

101 102 103 104 105 106 107

10−8

10−5

10−2

∝ (#T̀) −1

∝ (#T̀)−1/2

#T̀

er
ro

r/
es

tim
at

or

%` from (4.24)
‖ p? − p?

`
‖Q

%`(p?`) = η`(p?`) + ζ`(p?`)
‖ p? − p?` ‖Q

Figure 4.2: Results for the problem from Section 4.6.1. The p?` are computed by our adaptive
Algorithm 4A driven by the estimator %`; the p?` are computed by an algorithm driven
by %`(p?`) = η`(p?`) + ζ`(p?`).

101 102 103 104 105 106 107
10−11

10−7

10−3

101

∝ (#T̀) −1

#T̀

er
ro

r/
es

tim
at

or

%` from (4.24)
‖ p? − p?

`
‖Q, σ = 10−3

‖ p? − p?
`
‖Q, σ = 10−5

‖ p? − p?
`
‖Q, σ = 10−7

‖ p? − p?
`
‖Q, σ = 0

Figure 4.3: Results for the problem from Section 4.6.2. Differently marked lines are obtained by
perturbing the true measurements by Gaussian noise with standard deviation σ.

104

4.6 Numerical examples

We further suppose that we have three exact measurements (corresponding to the exact parameter
p? = (2, 1/2)ᵀ)

G
?
=

(11π + 160
480π

,
11π − 160

480π
,
121

4608

)ᵀ
=

(
G1(u(p?)),G2(u(p?)),G3(u(p?))

)ᵀ
:=

(
−

∫
Ω

g1 · ∇u(p?)dx,−
∫
Ω

g2 · ∇u(p?)dx,
∫
Ω

g3u(p?)dx
)ᵀ

=
(
−

∫
T1

∂u(p?)
∂x1

dx,
∫
T2

∂u(p?)
∂x1

dx,
∫
T3

u(p?)dx
)ᵀ
.

These exact measurements are perturbed by Gaussian random noise Xk ∼ N(0, σ2) for i = 1, 2, 3 and
for some standard deviation σ ≥ 0, such that G? = G

?
+ (X1, X2, X3)ᵀ. Note that, for non-vanishing

perturbation, G? does not necessarily coincide with G(u(p?)) anymore. Likewise, the sequence
(p?`)`∈N does not converge to the given parameter p? but rather to some p? ∈ Q which is the
least-squares solution to (4.5) on the continuous level with the perturbed measurements G?.

We compute p?` by Algorithm 4A with different levels of perturbation. The results can be seen
in Figure 4.3. We see that, for the different levels of perturbation, the parameter error cannot
fall beyond a threshold that depends on the standard deviation σ of the perturbation. This is to
be expected, since inference of parameters from experiments is limited by the accuracy of the
measurement. Our estimator, however, is independent of the discrete parameter and measurements
and, hence, continues to converge independently of the perturbation. In particular, the matrix B`
on the finest level of the algorithm can be stored and reused to compute a refined parameter value if
a new set of measurements with improved accuracy becomes available. This is not the case for the
sum estimator %`(p?`) from the last section, since it explicitly depends on the parameter estimates.

105

5 MooAFEM: An object oriented Matlab code for
higher-order (nonlinear) adaptive FEM

Sections 5.2–5.5 of this chapter are taken from:
M. Innerberger and D. Praetorius. MooAFEM: An object oriented Matlab code for
higher-order (nonlinear) adaptive FEM, 2022. arXiv: 2203.01845

5.1 Introduction

This last chapter is dedicated to the implementation of the numerical methods presented in chap-
ters 1–4. This is an integral part of research on numerical analysis, yet often treated superficially.
The implementation efforts for the problems of this thesis culminated in the development of our own
research code, the Matlab object oriented AFEM library MooAFEM. We give here an overview
over its structure and capabilities.
A reasonably general class of problems to consider for research in numerical analysis is the

following: With notation and assumptions from Chapter 1, we assume the (polygonal) boundary of
the domainΩ to consist of Robin,Neumann, andDirichlet boundary, i.e., ∂Ω = ΓR∪ΓN ∪ΓD where
ΓR, ΓN , ΓD are pairwise disjoint and relatively open. With this decomposition of the boundary, we
consider the model problem

−div A∇u + b · ∇u + cu = f − div f in Ω, (5.1a)
α u + A∇u · n = γ on ΓR, (5.1b)

A∇u · n = φ on ΓN, (5.1c)
u = 0 on ΓD, (5.1d)

where we note that we do not assume A(x) ∈ Rd×d to be symmetric here, and that additional
functions α, γ ∈ L2(ΓR), and φ ∈ L2(ΓN) are given. This, in particular, encompasses the linear
model problems from Chapters 3–4, and even the nonlinear setting of Chapter 2, where we linearize
the nonlinear goal to obtain the computable linearized dual problem (2.9). We stress that this is not
specific to the situation presented here, but to all nonlinear problems: In order to solve them on a
computer they are linearized, leading to one or more problems of the form (5.1) to be solved.
Implementationally, to cover all cases mentioned above, it must be possible ot let the coefficients

in (5.1) depend on the spatial variable x ∈ Ω as well as on FEM functions, even for higher-order
FEM discretizations. Existing software that is able to tackle this problem can be divided into two
categories, which turn out to be both unsatisfactory for our purpose of thoroughly validating our
theoretical results.

107

http://arxiv.org/abs/2203.01845

5 Object oriented Matlab AFEM

Large general-purpose libraries

The first category is made up of widely known and well established FEM libraries like deal.II,
FEniCS, Dune, and NGSolve; see [ABD+21; ABH+15; BBD+21; Sch14]. They have enormous
codebases that are often conglomerates of parts in different (compiled) languages like C/C++,
Fortran, or assembly for efficiency, which is often their most pronounced and important feature.
Most of them employ object oriented programming (OOP) to structure these vast amounts of source
code and keep it maintainable. For these reasons, they are usually not very accessible, in the sense
that the average user can obtain a near complete understanding of most code parts; however, an
unproportional share of the blame for this is usually assigned to OOP, entailing its bad reputation
of overengineered and convoluted code.
Whereas the assessment on efficiency and accessibility is usually quite clear, it is more compli-

cated for flexibility. In recent years, some FEM packages have introduced easy-to-use interfaces in a
scripting language like Python, which often greatly simplifies implementation of a specific problem
if it is in the scope of the library. However, extending the library code to implement new methods
that are not already provided is still tedious; see, e.g., [BHL+21] for an extension of FEniCS to
AFEM. This is often further complicated by the scripting language interface, since this adds another
obfuscating layer to the library.

Small specialized research codes

The other category are small in-house research codes that are often specialized to only compute
one specific method or problem type and written in a high level scripting language like Python or
Matlab [Che09; FGS15; FPW11]. Therefore, they are usually very accessible in the above sense,
which is an essential feature for numerical analysis.
However, researchers are often content if their code additionally is either flexible or efficient,

which implies increased computation time or implementation effort for future projects. In this
chapter, we argue on the example of MooAFEM that, despite its bad reputation, OOP allows to have
FEM software that combines all desired properties: By use of well-known object oriented design
principles [GHJV95] and coding best-practices, our MooAFEM package is

• accessible, since it uses a consistent and descriptive naming scheme together with a lean class
hierarchy that closely resembles the mathematical structure of FEM and is well documented;

• flexible, since the classes are loosely coupled and cooperate only through well-defined in-
terfaces, which allow for easy extension; modification is also facilitated by an extensive
collection of unit tests, which helps catching errors early on;

• efficient, since all actual computations are internally done on large chunks of data by built-in
Matlab routines, maximizing the gain through parallelization, and frequently used data (like
the underlying mesh structure) is cached for inexpensive reuse.

Our MooAFEM package thus aims to support the use of OOP and the reuse of code in AFEM
research in order to keep implementation and computation time small, while still having reliable
and well-tested code.

108

5.2 Adaptive algorithm and importance of OOP

Chapter outline

The first part of this chapter, Section 5.2, is dedicated to list the advantages of object oriented
design for FEM in Matlab. These advantages are showcased on a schematic algorithm for solving
a simple Poisson problem with our MooAFEM package. The remainder of the chapter then
deals with implementation of the package: Section 5.3 explains the three modules that make up
MooAFEM and goes into various levels of detail for all contained classes. Section 5.4 lays out some
finer details of the implementation, such as the underlying memory layout of the data structures. In
the concluding part of this thesis, Section 5.5, we finally showcase what MooAFEM is capable of:
higher-order AFEM and GOAFEM for linear problems as well as iterative linearization of nonlinear
equations, all of which are needed in the preceding chapters.

5.2 Adaptive algorithm and importance of OOP

To solve equation (5.1), we employFEMwith underlying triangulationTH ofΩ. To this triangulation,
we associate the FEM space Sp(TH) := Pp(TH) ∩ H1(Ω) with

Pp(TH) :=
{
v ∈ L2(Ω)

�� v |T is a polynomial of degree p for all T ∈ TH
}
.

With H1
D(Ω) := {v ∈ H1(Ω) | v |ΓD = 0}, we set Sp

D(TH) := Sp(TH) ∩ H1
D(Ω). The discrete weak

form of (5.1) then reads: Find u ∈ Sp
D(TH) such that

a(uH, vH) :=
∫
Ω

A∇uH · ∇vH + b · ∇uHvH + c uHvH dx +
∫
ΓR

α uHvH ds (5.2)

=

∫
Ω

f vH + f · ∇vH dx +
∫
ΓN

φ vH ds +
∫
ΓR

γ vH ds =: F(vH) for all vH ∈ Sp
D(TH).

Our software is intended to solve equation (5.2) by adaptive finite element methods (AFEM), an
abstract form of which is presented in the following [BR03; Ste07].

Algorithm 5A
Input: Initial triangulation T0 of Ω
Loop: For ` = 0, 1, . . . do

(i) Solve equation (5.2) to obtain u`

(ii) Estimate the error by computing refinement indicators η`(T) for all T ∈ T̀
(iii) Mark elementsM` ⊆ T̀ based on η`

(iv) Refine marked elements to obtain T̀ +1 := refine(T̀ ,M`)
Output: Sequence of solutions u`

A realization of the abstract adaptive Algorithm 5A is shown in the code snippet in Listing 5.1
below. It computes the lowest-order FEM solution of the Poisson equation −∆u = 1 on the unit
square Ω := (0, 1)2 with homogeneous Dirichlet data u = 0 on the boundary ΓD := ∂Ω.

109

5 Object oriented Matlab AFEM

1 mesh = Mesh. loadFromGeometry (’unitsquare ’);
2 fes = FeSpace (mesh , LowestOrderH1Fe);
3 u = FeFunction (fes);
4 blf = BilinearForm (fes);
5 blf.a = Constant (mesh , 1);
6 lf = LinearForm (fes);
7 lf.f = Constant (mesh , 1);
8
9 while mesh. nElements < 1e6

10 A = assemble (blf);
11 F = assemble (lf);
12 freeDofs = getFreeDofs (fes);
13 u. setFreeData (A(freeDofs , freeDofs) \ F(freeDofs));
14
15 hT = sqrt(getAffineTransformation (mesh).area);
16 qrEdge = QuadratureRule . ofOrder (1, ’1D’);
17 qrTri = QuadratureRule . ofOrder (1, ’2D’);
18 volumeRes = integrateElement (CompositeFunction (@(x) x.^2 , lf.f), qrTri);
19 edgeRes = integrateNormalJump (Gradient (u), qrEdge , @(j) j.^2 , {}, ’:’);
20 edgeRes (mesh. boundaries {:}) = 0;
21 eta2 = hT .^2.* volumeRes + hT .* sum(edgeRes (mesh. element2edges), Dim. Vector);
22
23 marked = markDoerflerSorting (eta2 , 0.5);
24 mesh. refineLocally (marked , ’NVB ’);
25 end

Listing 5.1: Adaptive P1-FEM for Poisson problem −∆u = 1 onΩ = (0, 1)2 subject to u = 0 on ∂Ω.

In Listing 5.1, lines 1–7 are setup code that initializes all necessary data structures. Lines 10–13
solve equation (5.2), i.e., they realize Algorithm 5A(i). For Algorithm 5A(ii), the error is then
estimated in lines 15-21 by local contributions of the residual a posteriori error estimator [Ver13]

η`(T)2 := |T | ‖ f ‖2
L2(T) + |T |1/2‖[[∇u · n]]‖2

L2(∂T∩Ω) for all T ∈ T̀ .
In line 23, Algorithm 5A(iii) is executed by the so-called Dörfler marking criterion [Dör96]

θ
∑
T ∈T̀

η`(T)2 ≤
∑

T ∈M`

η`(T)2 with θ = 0.5.

Finally, line 24 corresponds to Algorithm 5A(iv) and uses newest vertex bisection (NVB) [Ste08]
to refine (at least) the marked elements.
In the following, we assume that there is a fixed initial triangulation T0 ofΩ. We write Th ∈ T(TH)

if Th is obtained from TH by a finite number of refinement steps, i.e., there exist T1, . . . ,Tn and
Mi ⊆ Ti with T1 = TH , Tn = Th, and Ti+1 := refine(Ti) for all i = 1, . . . , n − 1. Furthermore, we
abbreviate T := T(T0). Finally, we denote the set of edges in the mesh TH ∈ T by EH and the set of
vertices byVH .

Remark 5.1. We note that all other coefficients from (5.1) can be set just as easily as in line 6–7 of
Listing 5.1. The corresponding members of blf and lf are the following:

• blf.a, blf.b, blf.c, lf.f, and lf.fvec for the data of (5.1a);

• blf.robin and lf.robin for the data of (5.1b);

• lf.neumann for the data of (5.1c).
The types of functions that can be used are described in Section 5.3 below. There, also quadrature
rules are presented, which can be assigned to the corresponding members qra, qrb, qrc, and
qrRobin for blf as well as qrf, qrfvec, qrRobin, and qrNeumann for lf.

110

5.2 Adaptive algorithm and importance of OOP

5.2.1 Necessity of OOP in Matlab FEM

The use of OOP is not mandatory in Matlab, but it facilitates code that is powerful yet concise and
flexible. In particular, the code from Listing 5.1 relies heavily on OOP due to some peculiarities
of the Matlab programming language. Most notably, the referencing mechanics of Matlab differ
greatly from languages like C/C++, Java, or Python, where referencing variables is either done by
default, or explicitly. We proceed by outlining the language specific topics that are necessary to
understand how MooAFEM works.

Function argument passing

Matlab has a lazy copy policy for function arguments1: Arguments are generally passed by
reference, but copied if they are modified within the function. However, no local copy is made of
variables that are assigned to themselves by returning data:
1 function z = foo(x, y, z)
2 y(1) = x;
3 z = y + z;
4 end
5 z = foo(x, y, z)

In this example, x is passed by reference, y is copied because it is modified in line 2 (which is
equivalent to passing the argument by value), and z is modified but not copied since the output
value is again assigned to z in line 5.
FEM computations often re-use data throughout many sub-tasks; e.g., element areas are used

in assembly of FEM systems, a posteriori error estimation, and even interpolation, via integration
routines. With the passing mechanics outlined above, there are two options to approach this issue:
First, data can be recomputed in each of the sub-tasks, yielding a clear public API, but causing
superfluous operations. Second, the data can be precomputed explicitly and held in memory. In this
case, the data management has to be done on the highest level of code by the user, or computations
have to be grouped to respect data availability; both lead to a public API that is error-prone and
inflexible. It is therefore highly desirable to have proper call by reference mechanics, which, in
Matlab, are only available through OOP.

Value vs. handle classes

Value classes cannot change their state2. This is the default for objects in Matlab. The reason for
this is the argument passing mechanism described above. In fact, except for pathological cases, the
method invocation obj.method(...) and the function call method(obj, ...) are equivalent3.
Hence, the copy-on-modify mechanics for function arguments also apply to instances of (value)
classes. To change fields of already existing objects, a method must return an object, which
overwrites the original object. However, classes that are derived from the abstract handle class
can overcome the limitations of value classes in the sense that they allow for modifications of state
through methods:

1https://mathworks.com/help/matlab/matlab_prog/avoid-unnecessary-copies-of-data.html
2https://mathworks.com/help/matlab/matlab_oop/comparing-handle-and-value-classes.html
3https://mathworks.com/help/matlab/matlab_oop/method-invocation.html

111

https://mathworks.com/help/matlab/matlab_prog/avoid-unnecessary-copies-of-data.html
https://mathworks.com/help/matlab/matlab_oop/comparing-handle-and-value-classes.html
https://mathworks.com/help/matlab/matlab_oop/method-invocation.html

5 Object oriented Matlab AFEM

1 classdef MyClass
2 % ...
3 function obj = modify (obj , value)
4 obj. field = value ;
5 end
6 end
7 obj = MyClass ();
8 obj = modify (obj , 1);

1 classdef MyClass < handle
2 % ...
3 function modify (obj , value)
4 obj. field = value
5 end
6 end
7 obj = MyClass ()
8 obj. modify (1)

Both code snippets result in obj.field being equal to one.
Also, handle classes can inherently be referenced: assigning an instance of a handle class to a

variable does not copy the underlying data, but only assigns a reference. Finally, handle classes have
native support for the observer pattern, which is one of the central design elements of our code; see
Section 5.3.1 for details.
In order to communicate clearly, where methods can possibly alter the state of an object, we

adhere to a coding best-practice called command query separation throughout documentation and
examples: Commands, i.e., methods that alter the internal state of the calling object, are called with
dot-notation obj.method(...) and never return data; queries, i.e., methods that do not alter the
state of the calling object but may return data, are called with function call-notation method(obj,
...).

Emulating statically typed languages

One of the disadvantages of dynamically typed languages like Matlab is the lack of automatic type
checks and function overloading. By using classes to represent (even trivial) data, this behavior can
be emulated to a certain degree4.
Type checks can be automated by function argument validation, which was introduced recently

in Matlab. This is achieved by an optional arguments-block after the function head that performs
some checks on all input arguments of that function. In particular, it can check class, dimension,
and values of the input. This greatly improves usability and error mitigation.
Since method invocation obj.method(...) and function call method(obj, ...) are virtually

equivalent, function dispatch in Matlab goes by the first argument of a function. This emulates
function overloading at least in the first argument; e.g., in Listing 5.1 (solving the Poisson problem),
one can readily use plot(mesh) and plot(u) to plot the mesh and the FEM solution. While this
might be seen as syntactic sugar, it also greatly aids debugging.

Vectorization

One of the key features of Matlab are efficiently vectorized built-in linear algebra operations.
The usual local FEM formulation (i.e., on single elements and edges), however, does not allow for
performance improvements through vectorization and parallelization, which are most pronounced
if used with sufficiently large arrays to compensate for possible overhead. It is therefore desirable
to defer actual computation as long as possible to make optimal use of Matlab built-in routines.
Our code provides several well-defined interfaces very close to the natural (local) formulation of

FEMwhich can be used to extend the functionality; see Section 5.3.3. The referencing mechanics of

4https://martinfowler.com/bliki/ValueObject.html

112

https://martinfowler.com/bliki/ValueObject.html

5.3 Code structure

Geometry

Mesh

AffineTransformation

NVB

AbstractBisection

Integration

Evaluable

QuadratureRule

Barycentric

FEM

FeSpace

FiniteElement

BilinearForm

LinearForm

Prolongation

Figure 5.1: Overall structure of the presented software package. Shown are all classes of the software
package, subdivided into three modules. The most important class of each submodule
is at the top of the respective list.

handle classes then allow the internal generation of global data from this local code by pre-existing
routines and passing it to the built-in routines.

5.3 Code structure

Some FEM packages have a huge code-base and, necessarily, a cleverly designed class hierarchy
that may require significant effort to understand in many cases. Since one of our aims is that our
code is easy to modify and extend, we strive for a relatively small code-base that nevertheless covers
the most widespread demands of academic FEM software. Thus, the core of our software package
is made up of only twelve classes and interfaces that can be roughly divided into three modules:
Geometry, integration, and FEM. This partition is shown in Figure 5.1.
What follows is a description of the separate core classes as well as their inter relationship to one

another. Following the partition of the code, our presentation is divided into three parts.

5.3.1 Module geometry

The geometry module can be used entirely on its own. It handles mesh generation as well as local
mesh refinement.

Mesh representation

As the underlying mesh is the cornerstone in any adaptive FEM algorithm, the Mesh class is
the central building block of MooAFEM. It consists of all data that is important for the digital
representation of a 2D triangulation: coordinates, edges, elements, connectivity of edges and
elements, edge orientation, and boundary information. The precise data structures for storing this
information are described in Section 5.4 below.
Here, we focus on the role of the class in the code compound. Most other classes need a

Mesh to function properly and, hence, store a reference to a suitable instance. Validity of data is
strongly coupled to the underlying mesh: as soon as the mesh changes, derived data (e.g., geometric
information as well as the data used in FEM computations) may be invalid. It is therefore of vital

113

5 Object oriented Matlab AFEM

Observable

Listener A

Listener B

Event 1 Event 2 Event 3

Figure 5.2: Schematic functionality of the observer pattern. The timelines represent the lifetimes
of the observable object and the listeners. Two listeners are temporarily registered to
receive events (highlighted in gray). If the listeners are registered during the broadcast
of an event (dashed lines), some internal reaction is triggered (bold dots). For each
additional observable or event type of the same observable, a separate graph is needed.

importance that changes in the mesh are made public to every object that stores a reference to it,
contrary to the usual flow of information in object oriented code. Also, objects that do not explicitly
depend on a mesh may need to act if the mesh changes. A well-known remedy for this issue is
presented in the next section.

Observer pattern

The observer pattern [GHJV95] is used to broadcast events from a central object (the observable)
to other objects (the observers, termed listeners in Matlab), which can react to the event in a
predefined way and which can, at runtime, register and de-register to receive such events5; see
Figure 5.2. The events signal, e.g., a change of state of the observable. All classes that derive from
handle in Matlab automatically implement the interfaces necessary to be the source of events. In
particular, our Mesh class broadcasts events that signal a change in the mesh (e.g., after refinement)
as well as completed computation of bisection data to signal imminent refinement; this is covered
in the next two sections.

Refinement

Mesh refinement is implementationally divided into bisection of single elements T ∈ TH and
coordination of bisections on the whole mesh TH to obtain Th = refine(TH,MH). In the class
AbstractBisection, possible bisections of a single triangle T ∈ TH are encoded. Subclasses of
this class manage the generation of all Mesh data structures (see Section 5.4 below) in the passage
from T ∈ TH to its children {T ′ ∈ Th | T ′ ⊆ T} in Th. The subclasses that are currently implemented
are shown in Figure 5.3 and build on the implementation of [FPW11].
Local bisections are combined in mesh refinement routines derived from newest vertex bisection

(NVB) [KPP13; Ste08], in the course of which all elements T ∈ TH are assigned a subclass
of AbstractBisection. We follow the iterative algorithm given in [KPP13] for NVB, which
terminates regardless of the mesh TH under consideration. Given a subsetMH ⊆ TH of marked
elements, the abstract scheme is the following:

5https://mathworks.com/help/matlab/matlab_oop/learning-to-use-events-and-listeners.html

114

https://mathworks.com/help/matlab/matlab_oop/learning-to-use-events-and-listeners.html

5.3 Code structure

Figure 5.3: Implemented bisection methods (top left to bottom right): Bisec1, Bisec12, Bisec13,
Bisec123, Bisec5, and BisecRed. The refinement edge of the parent triangle is the
bottom line, those of the children are highlighted by parallel lines.

(i) Determine all edges in EH that have to be bisected in order to bisect all elements inMH by
a given bisection rule.

(ii) Compute the mesh closure, i.e., determine all edges that additionally have to be refined to
eliminate hanging vertices.

(iii) For every element in TH determine which bisection method to employ, based on the marked
edges.

(iv) Execute bisection of all elements according to their assigned bisection methods.

The first three steps are executed by subclasses of NVB, the fourth step is carried out by the mesh
itself. The rationale behind this splitting is that, before the fourth step, all necessary information to
carry out mesh refinement is already known; thus, this provides a natural hook for other classes to
harness this information, e.g., prolongation operators or multi-grid solvers.
Several realizations of the abstract scheme presented above are implemented in our software

package: NVB1, NVB3 (= NVB), NVB5, and RGB, which are outlined in [FPW11], as well as NVBEdge,
which is an edge-driven refinement strategy used in [DKS16; IP21].

Additional geometric information

For triangular meshes, all elements can be obtained by affine transformations of the so-called
reference triangle Tref := conv{(0, 0), (1, 0), (0, 1)}, i.e., for all T ∈ TH , there exists an affine
diffeomorphism FT : Tref → T . Many computations in FEM need additional geometric information
based on this diffeomorphism. In particular, the transposed inverse D F−ᵀT and the determinant
detD FT = 2|T | of its derivative are of utmost importance in integration and assembly routines.
Together with the length ds = |E | of each edge E ∈ EH and its unit-normal vector nE , these data
are stored in instances of AffineTransformation, which take a Mesh to construct.
For performance reasons, instances of AffineTransformation are requested from the mesh

and are cached, i.e., computed at the first request, then stored as a reference within the mesh object
and returned if further requests occur.

115

5 Object oriented Matlab AFEM

5.3.2 Module integration

Integration is a crucial part of FEM assembly and postprocessing (e.g., a posteriori error estima-
tion). The module defines two classes that encapsulate data for numerical integration (also termed
quadrature) routines and one to encapsulate function evaluation with a unified interface. This
module can be used only in conjunction with the geometry module.

Barycentric coordinates

We denote all evaluation points and quadrature nodes in barycentric coordinates. On a triangle
T = conv{z(1), z(2), z(3)} and a point x ∈ T , we denote by λ ∈ [0, 1]3 the barycentric coordinates of
x, determined by the equations

3∑
i=1

λi = 1 and
3∑
i=1

λiz(i) = x.

If the triangle T is non-degenerate, λ is unique. In MooAFEM, 2D barycentric coordinates are
implemented in the class Barycentric2D, which is derived from the abstract class Barycentric.
For convenience, this class stores a collection of barycentric coordinates.
The concept of barycentric coordinates can be generalized to d-simplices with d ≥ 1 such that

λ ∈ [0, 1]d+1. In particular, in the case d = 1 we have λ ∈ [0, 1]2, which is used for evaluation
points and quadrature rules on edges and implemented in the class Barycentric1D. For any
point x ∈ Tref = conv{(0, 0), (1, 0), (0, 1)} in the reference triangle, the barycentric coordinates are
λ = (1− x1− x2, x1, x2); for any point x ∈ Eref = [0, 1] on the reference edge, they are λ = (x, 1− x).
Denoting all function evaluation points in barycentric coordinates allows for triangle independent

representation. This is reflected by Evaluable.eval below, which is the core of our vectorization
efforts and paramount for the efficiency of MooAFEM.

Quadrature data

To approximate the integral of a (possibly vector-valued) function f on a triangle T ∈ TH , we
employ numerical quadrature: ∫

T

f (x)dx ≈ |T |
N∑
k=1

ωk f
(
x(λ(k),T)), (5.3)

where (λ(k))N
k=1

is a collection of barycentric coordinates, x(λ(k),T) is the Cartesian coordinate
corresponding to the k-th barycentric coordinate on T , and (ωk)Nk=1 are weights with

∑N
k=1 ωk = 1.

Barycentric coordinates and weights make up a QuadratureRule object. Quadrature rules can
either be constructed explicitly by giving barycentric coordinates and weights, or by the static
method
1 qr = QuadratureRule . ofOrder (order , [dim]);

The optional string argument dim is used to distinguish between ’1D’ and ’2D’ quadrature rules, the
default being ’2D’. For 1D, suitable Gauss-rules are implemented. For 2D, symmetric quadrature
rules up to order 5 are implemented [ZCL09]. Higher order quadrature rules on triangles use
tensorized Gauss-rules on [0, 1]2 and the Duffy transform Φ : [0, 1]2 → Tref,Φ(s, t) =

(
s, t(1 −

s)); [Duf82].
116

5.3 Code structure

Function evaluation

The core of the integration module is a wrapper for functions, the abstract Evaluable class:
1 classdef Evaluable < handle
2 properties (Abstract , GetAccess =’public ’, SetAccess =’protected ’)
3 mesh
4 end
5 methods (Abstract , Access =’public ’)
6 eval(obj , bary , idx)
7 end
8 end

The abstract method eval is intended to evaluate the function at all points x(λ(k),T) for all barycen-
tric coordinates λ(k) in bary and all elements given by the index set idx.
By programming all routines (e.g., integration, plotting, finite element assembly) only to this

interface, one can wrap virtually anything in a suitable subclass of Evaluable and readily use the
predefined routines. The most important classes that implement this interface are:

• Constant: Efficiently wraps constant functions in the Evaluable interface.

• MeshFunction: General functions f : Ω→ Rn for some n ∈ N.
• FeFunction: FEM functions, e.g., u ∈ Sp(TH).
• Gradient, Hessian: Element-wise gradient ∇u and Hessian ∇2u for FEM functions.

• CompositeFunction: Arbitrarily combine any of the above; see the following explanation.

In particular, all of the above can be used as coefficients in (5.1).
Especially powerful is the subclass CompositeFunction, which uses the composite pattern (see,

e.g., [GHJV95]):
1 f = CompositeFunction (funcHandle , funcArgument1 , ... , funcArgumentN)

This class takes a function handle and one Evaluable for every argument of the function handle.
E.g., xu2 can be implemented by
1 f = CompositeFunction (@(x,u) x.*u.^2 , ...
2 MeshFunction (mesh , @(x) x(1 ,: ,:)), FeFunction (fes));

If f is evaluated, first all arguments are evaluated, then the resulting data is processed by the function
handle. By polymorphism, the Evaluable arguments can be of any subclass. This allows to define
complex functions that still can be evaluated efficiently, since evaluation of the function handle is
deferred until the data for all requested elements and quadrature nodes is available. In this way, the
vectorization capabilities of Matlab are used to full extent.

Quadrature routines

There are several routines for quadrature implemented in our MooAFEM package:

• integrateElement: Integration on elements; cf. (5.3).

• integrateEdge: An analogue over edges. This can only be used for subclasses of
Evaluable that implement the method evalEdge. Edge evaluation is not well-defined
for some functions that are not continuous across edges (e.g., element-wise polynomials).

117

5 Object oriented Matlab AFEM

• integrateJump, integrateNormalJump: Integrate [[·]] and [[(·)·n]] over edges, respectively.
All quadrature routines take an Evaluable, a QuadratureRule, and an optional set of indices
that corresponds to a subset of elements or edges on which the quadrature should be evaluated.
The routines handling (normal) jumps take additional arguments: a function handle, a cell array of
Evaluable, and edge indices.
1 int = integrateJump (f, qr , funcHandle , funcArg , idx)

This is used for post-processing the jump with the first argument of the function handle being
reserved for the jump; i.e., the routine works roughly as follows: First, compute the jump by
jump = [[f]] (or jump = [[f · n]]). Then, all additional Evaluables are evaluated on the edges
indicated by idx, where also the value of the jump is updated by the function handle:
1 val = { evalEdge (funcArg {1} , idx), ... , evalEdge (funcArg {N}, idx)};
2 jump(idx) = functionHandle (jump(idx), val {1} , ... , val{N});

Multiple such triplets funcHandle, funcArg, idx for post-processing are allowed and sequentially
applied as in the above listing, one after another.

5.3.3 Module FEM

This last module uses the classes presented in the last sections to conveniently represent FEM
functions and efficiently assemble FEM data.

Finite element spaces

Finite elements are usually defined on the reference triangle Tref , everything else follows from using
the affine transformation FT for every T ∈ TH . This viewpoint is represented accordingly in our
code. The abstract class FiniteElement asks to implement evaluation of all basis functions (as
well as their gradient and their Hessian) on Tref . Furthermore, evaluation on a reference edge (if
applicable) and the connectivity of the degrees of freedom (DOFs), i.e., how the finite element
couples across edges and vertices, have to be specified.
The class FeSpace combines the local information of finite elements with the global geometry

of the mesh. It takes a Mesh and a FiniteElement to assemble lists of global DOFs per element
and edge, as well as free DOFs, i.e., DOFs that do not lie on ΓD .

So far, Lagrange finite elements of arbitrary order are implemented; both H1(Ω)-conforming (i.e.,
Sp(TH) = Pp(TH)∩H1(Ω)) and L2(Ω)-conforming (i.e., Pp(TH)). The underlying implementation
uses Bernstein–Bézier polynomials [AAD11]. For lowest-order finite elements (both continuous
and discontinuous), additional optimized implementations are available.

FEM system assembly

Let (ϕk)Nk=1 be a basis of Sp(TH). Responsible for the assembly of the data

Ai j :=

∫
Ω

A∇ϕj · ∇ϕi + b · ∇ϕjϕi + c ϕjϕi dx +
∫
ΓR

α ϕjϕi ds, (5.4a)

Fi :=

∫
Ω

f ϕi + f · ∇ϕi dx +
∫
ΓN

φ ϕi ds +
∫
ΓR

γ ϕi ds (5.4b)

118

5.4 Data structures

are the classes BilinearForm and LinearForm, respectively. Both classes have fields for their
respective coefficients and quadrature rules for each of the terms in (5.4); see Remark 5.1. The data
in (5.4) are then obtained by calling the assemble methods of both classes.
Note that Evaluable is a handle class. Thus, no data must be copied to set (bi-)linear form

coefficients. Furthermore, in situationswhere the coefficients change frequently, e.g., in the presence
of iterative solvers for nonlinear PDEs, the coefficients of the (bi-)linear form can change between
two consecutive calls of assemble. This results in much cleaner code since one does not need to
re-set the coefficients.

Prolongation

It is often necessary to prolongate FEM functions (e.g., uH ∈ Sp(TH)) to a refined mesh (i.e.,
Sp(Th) for Th ∈ T(TH)). This is handled by subclasses of the abstract class Prolongation. The
implemented prolongation methods are LoFeProlongation and FeProlongation for lowest-
order and general (in particular, higher-order) FEM functions, respectively. Note that the latter is
not tailored to a specific finite element and, hence, its computational effort is slightly higher than
that of the former. The syntax of prolongation of a function u = FeFunction(fes) on a finite
element space fes from a coarse to a refined mesh is as follows:
1 P = FeProlongation (fes);
2 mesh. refineLocally (marked);
3 u. setData (P. prolongate (u));

The call to P.prolongate performs a matrix-vector multiplication with the (sparse) prolongation
matrix P.matrix, which is set automatically whenever the mesh is refined, due to the events sent
by the mesh; see Section 5.3.1 and the examples in Section 5.5.

5.4 Data structures

5.4.1 Mesh

The Mesh class stores information about coordinates, edges, and elements. In the following, let
nV, nE, nT ∈ N denote the number of vertices, edges, and elements, respectively. The class has the
following fields:

• coordinates (2× nV): Coordinates of mesh vertices. The entries coordinates(1,i) and
coordinates(2,i) store the x- and y-coordinates of the i-th vertex, respectively. The order
of the coordinates is provided by the user.

• edges (2×nE): Indices of vertices of all edges in the mesh. The i-th edge of the mesh starts at
vertex edges(1,i) and ends at vertex edges(2,i). The order is determined automatically
from information provided in elements. Boundary edges are oriented such that the domain
lies on its left; inner edges cannot be assigned a meaningful orientation and, therefore, it is
chosen randomly.

• elements (3×nT): Indices of vertices of which elements are comprised. The i-th element is
spanned by the vertices with indices elements(:,i), where the order is counter-clockwise.
The order of elements is provided by the user.

119

5 Object oriented Matlab AFEM

• element2edges (3 × nT): Indices of edges which are contained in elements. The i-th
element contains edges with indices element2edges(:,i). The j-th edge element2edges
(j,i) of the i-th element is the one between the vertices with indices elements(j,i)
and elements(mod(j+1,3)+1, i) (but not necessarily in that order). This information is
determined automatically.

• boundaries (cell array): Indices of all edges that form a specific part of the boundary. The
cell boundaries{i} is a vector of edge indices that form the i-th boundary (if present). The
boundary parts are provided by the user (see below), but the association with edge indices is
done automatically.

The orientation of the normal vector from AffineTransformation follows the orientation of
the edges: it points to the right of the edge. In particular, this means that the normal vectors on
boundary edges point out of the domain.

5.4.2 Mesh construction

An instance of the Mesh class can be constructed by
1 mesh = Mesh(coordinates , elements , bndEdges);

Here, coordinates and elements have to be given as they are stored in the class (see above). The
cell array bndEdges describes the boundary parts, where the i-th edge of the k-th boundary part lies
between the vertices with indices bndEdges{k}(1,i) and bndEdges{k}(2,i). This is necessary
because the user does not know the internal edge numbering before construction. Special attention
has to be payed to the correct orientation of the elements (counter-clockwise) and the edges on the
boundary (domain on their left), because this is not checked by the constructor.
The arrays required by the constructor can be assembled and passed from a Matlab script, or

loaded from comma separated value files by the static method
1 mesh = Mesh. loadFromGeometry (’<name >’);

These files must be placed in a subdirectory lib/mesh/@Mesh/geometries/<name> and be
named coordinates.dat, elements.dat, and boundary<n>.dat, where boundary parts are
enumerated by n ∈ N.
Mesh construction and data structures are showcased in Figure 5.4. Note that the orientation of

the user-provided edges in bndEdges is preserved by the automatically generated field edges.

5.4.3 Array layout

The array layout is chosen such that the first three dimensions of arrays correspond to modeling
concepts of finite elements; see Figure 5.5:

• 1. dimension (columns): This corresponds to the components of vector- or matrix-valued
data. Matrices are stored column-wise.

• 2. dimension (rows): This corresponds to the different units of the mesh, i.e., elements,
edges, or vertices.

• 3. dimension (pages): This corresponds to different barycentric coordinates, e.g., for numer-
ical quadrature.

120

5.4 Data structures

1 2

34

5

1

2

3

4

1

2

3

4

5

6

78

n 1 2 3 4 5 6 7 8

coordinates
0.0 1.0 1.0 0.0 0.5
0.0 0.0 1.0 1.0 0.5

edges
1 4 1 2 2 3 3 4
2 1 5 3 5 4 5 5

elements
1 2 3 4
2 3 4 1
5 5 5 5

element2edges
1 4 6 2
5 7 8 3
3 5 7 8

n 1 2

bndEdges{1}
1 4
2 1

bndEdges{2}
2 3
3 4

boundaries{1} 1 2
boundaries{2} 4 6

Figure 5.4: Example mesh on the unit square (0, 1)2 ⊂ R2 as well as corresponding data structures.
Boundary part 1 (e.g., ΓD) is marked in red, boundary part 2 (e.g., ΓN) is marked in
green.

The rationale behind this order is twofold. First, objects on the same element often need to be
multiplied together. Hence, it is of advantage if the data representing these objects are continuous
in memory. This is achieved by arranging them along the columns of the array, since Matlab
stores arrays in column-major order. Second, arrays that extend into the third dimension are
somewhat clumsy to work with and hard to debug for programmers. Since evaluations on multiple
barycentric coordinates occur mostly internally (e.g., for quadrature rule or plotting), arranging
different barycentric coordinates along the third dimension minimizes exposure of the user to more-
than-two dimensional arrays. Within MooAFEM, one can use the enumeration class Dim to access
these dimensions by Dim.Vector, Dim.Elements, and Dim.QuadratureNodes, respectively.
As an illustrative example, consider the call

1 f = MeshFunction (mesh , @(x) x);
2 val = eval(f, bary);

which evaluates f : Ω → R2 : x 7→ x on a collection bary of barycentric coordinates and a given
mesh element-wise. The value stored in val(i,j,k) corresponds to xi(λ(k),Tj), i.e., the i-th
component of f evaluated at the k-th barycentric coordinate on the j-th element. The matrix valued
function

f : Ω→ R2×2 : x 7→
(
1x1 3x1
2x1 4x1

)
can be implemented by f = MeshFunction(mesh, @(x) [1;2;3;4].*x(1,:,:)). The corre-
sponding evaluation val(i,j,k) is equal to i · x1(λ(k),Tj), since matrices are stored column-wise.
See also Figure 5.5 for a sketch of this memory layout.

5.4.4 Efficient linear algebra

According to the last section, 3D arrays are essentially interpreted as collections of matrices stored
column-wise. To efficiently execute matrix operations within this memory layout, the function
1 C = vectorProduct (A, B, sizeA , sizeB);

is used. It computes the product of two 3D arrays A and B, where the first dimension is interpreted
as matrix with given size sizeA and sizeB, respectively. In particular, for all admissible i, j ∈ N,
the output of above call satisfies
1 C(:,i,j) = reshape (A(:,i,j), sizeA) * reshape (B(:,i,j), sizeB);

121

5 Object oriented Matlab AFEM

49 52 55 58 61 64 67 70

50 53 56 59 62 65 68 71

51 54 57 60 63 66 69 72

25 28 31 34 37 40 43 46

26 29 32 35 38 41 44 47

27 30 33 36 39 42 45 48

1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24 barycentric
coordinates

FEM units

ve
ct

or
da

ta

Figure 5.5: Illustration of the memory layout chosen in our implementation. The numbers indicate
the order in which the items are stored in memory.

If either sizeA or sizeB is a column-vector, the corresponding factor in the above listing is
transposed. For an example, consider the vector v := (1, 2, 3, 4, 5, 6)ᵀ, which, in our memory model,
can be interpreted as

[2,3] : A :=

(
1 3 5
2 4 6

)
or [3,2] : B :=

©­«
1 4
2 5
3 6

ª®¬ .
Clearly there holds Aᵀ , B. Therefore, transposing the size is necessary to indicate transposition
of the corresponding factor in the matrix product:

AB = vectorProduct(v, v, [2,3], [3,2]),

AAᵀ = vectorProduct(v, v, [2,3], [2,3]’),

BᵀB = vectorProduct(v, v, [3,2]’, [3,2]).

The function vectorProduct thus enables all possible matrix operations within our memory
layout in a convenient, yet very efficient way. In fact, this routine can also deal with arrays of
arbitrary dimension, where extension of singleton dimensions is done automatically, as is common
in Matlab. Per default, the sizes are chosen such that the dot product
1 C(:,i,j) = A(:,i,j)’ * B(:,i,j);

is computed, which is the most common application; this is also reflected in the name.

5.5 Examples

In this section, we discuss several extensions of the basic AFEM algorithm that is implemented in
Listing 5.1. We do not claim that MooAFEM can deal with all FEM applications out of the box,
but are convinced that our code structure makes extensions and modifications relatively easy.

5.5.1 Higher order AFEM with known solution

As a first example we consider the L-shape Ω := (−1, 1)2\([0, 1] × [−1, 0]) with boundary parts
ΓR = ∅, ΓN :=

([0, 1] × {0}) ∪ ({0} × [−1, 0]) , and ΓD := ∂Ω\ΓN . With
(
r(x), ϕ(x)) being the

122

5.5 Examples

polar coordinates of x ∈ R2, we prescribe the exact solution

u(x) := r(x)2/3 sin(2π/3)

and note that it solves

− ∆u = 0 in Ω, ∇u · n =: φ on ΓN, u = 0 on ΓD . (5.5)

To solve (5.5) numerically with MooAFEM, only minor adjustments of the code from Listing 5.1
are necessary. First, obviously, the correct mesh must be loaded via
1 mesh = Mesh. loadFromGeometry (’Lshape ’);

This geometry has two predefined boundary parts: The first (boundary index 1) is at the re-entrant
corner (ΓD), the second (boundary index 2) is everything else (ΓN). Next, the finite element space
has to be chosen accordingly with some p ∈ N:
1 fes = FeSpace (mesh , HigherOrderH1Fe (p), ’dirichlet ’, 1);

This loads an implementation of Sp
D(T0). No further adjustments regarding the implementation of

higher-order finite elements are necessary.
The next changes concern the coefficients of the linear form lf. Our problem (5.5) includes only

the Neumann part of the right-hand side from (5.2), which can be implemented by the following
listing.
1 lf. neumann = MeshFunction (mesh , @exactSolutionNeumannData);
2 lf. bndNeumann = 2;
3 function y = exactSolutionNeumannData (x)
4 x1 = x(1 ,: ,:);
5 x2 = x(2 ,: ,:);
6 % determine boundary parts
7 right = (x1 > 0) & (abs(x1) > abs(x2));
8 left = (x1 < 0) & (abs(x1) > abs(x2));
9 top = (x2 > 0) & (abs(x1) < abs(x2));

10 bottom = (x2 < 0) & (abs(x1) < abs(x2));
11 % compute d/dn u
12 [phi , r] = cart2pol (x(1 ,: ,:) , x(2 ,: ,:));
13 Cr = 2/3 * r.^(-4/3);
14 Cphi = 2/3 * (phi + 2* pi *(phi < 0));
15 dudx = Cr .* (x1 .* sin(Cphi) - x2 .* cos(Cphi));
16 dudy = Cr .* (x2 .* sin(Cphi) + x1 .* cos(Cphi));
17 y = zeros (size(x1));
18 y(right) = dudx(right);
19 y(left) =-dudx(left);
20 y(top) = dudy(top);
21 y(bottom) =-dudy(bottom);
22 end

Here, the main part is the implementation of the Neumann derivative ∇u · n, rather than making the
function available to the assembly routines. Finally, we need to set quadrature rules of sufficiently
high order for the corresponding terms of the (bi-)linear form:
1 blf.qra = QuadratureRule . ofOrder (max (2*p-2, 1));
2 lf. qrNeumann = QuadratureRule . ofOrder (2*p, ’1D’);

With these preparatory steps, the FEM system is solved by lines 10–13 of Listing 5.1.
Finally, the a posteriori indicators have to be adjusted to the current setting:

ηH (T)2 = h2T ‖∆uH ‖2L2(T) + hT
[‖[[∇uH · n]]‖2L2(∂T∩Ω) + ‖(∇uH − ∇u) · n‖2

L2(∂T∩ΓN)
]
. (5.6)

123

5 Object oriented Matlab AFEM

101 102 103 104 105 106 107
10−11

10−8

10−5

10−2

101

α = −1/2

α
= −2

dimSp(T̀)

η
`

p = 1
p = 2
p = 3
p = 4

101 102 103 104 105 106 107
10−12

10−9

10−6

10−3

100

α = −1/2

α
= −2

dimSp(T̀)

|||u
−

u `
|||

p = 1
p = 2
p = 3
p = 4

Figure 5.6: Error estimator η` (left) and energy error |||u − u` ||| (right) over number of DOFs for
problem (5.5) with different polynomial orders p.

Recall from Section 5.4.3 that matrices are stored column-wise in the first dimension of 3D arrays.
Thus, the L2-norm of the volume term can be computed by
1 f = CompositeFunction (@(D2u) (D2u (1 ,: ,:) + D2u (4 ,: ,:)).^2 , Hessian (u));
2 qr = QuadratureRule . ofOrder (max (2*(p -2) , 1));
3 volumeRes = integrateElement (f, qr);

The edgewise L2-norms are a bit more involved. This is handled by
1 qr = QuadratureRule . ofOrder (p, ’1D’);
2 edgeRes = integrateNormalJump (Gradient (u), qr , ...
3 @(j) zeros (size(j)), {}, mesh. boundaries {1} , ...
4 @(j,phi) j-phi , {lf. neumann }, mesh. boundaries {2} , ...
5 @(j) j.^2 , {}, ’:’);

The syntax of integrateNormalJump is explained in Section 5.3.2. First, the jump [[∇uH · n]] is
computed on every edge. Then, since the edges on ΓD (boundary index 1) do not contribute to the
error estimator, the corresponding contributions are set to zero. Furthermore, the term ∇u · n, which
is stored in lf.neumann, is subtracted on ΓN (boundary index 2). Finally, every edge contribution
is squared to obtain the edgewise L2-norms of (5.6).
The remainder of the code is analogous to the one presented in Listing 5.1. Note that virtually all

changes are due to the different model problem and not for implementational reasons. Figure 5.6
shows the results obtained for p = 1, 2, 3, 4. Note that, from an implementational point of view, the
polynomial degree p ∈ N can be chosen arbitrarily high. Computation times for the different parts
of the adaptive algorithm are shown in Figure 5.7. In both the lowest and the higher order case,
most time is spent for solution of the linear system. In the higher order case, one clearly sees that
solving with the Matlab backslash operator has more than linear complexity.

As a final note, the exact error of the finite element solution uH can be easily computed by the
following code snippet. Recall that A is the finite element matrix of the Laplacian.
1 uex = FeFunction (fes);
2 uex. setData (nodalInterpolation (MeshFunction (mesh , @exactSolution), fes));
3 deltaU = u.data - uex.data;
4 H1Error = sqrt(deltaU * A * deltaU ’);

124

5.5 Examples

101 102 103 104 105 106 107

10−7

10−6

10−5

10−4

10−3

10−2

10−1

dimSp(T̀)

co
m
pu

ta
tio

n
tim

e
[s
]/

d
im
Sp
(T̀
) solve estimate

assemble A mark
refine assemble F

all combined

102 103 104 105 106 107

10−8

10−7

10−6

10−5

10−4

10−3

10−2

dimSp(T̀)

solve estimate
assemble A mark

refine assemble F
all combined

Figure 5.7: Computation time per DOF over number of DOFs for the different parts of the AFEM
algorithm for problem (5.5) with polynomial degree p = 1 (left) and p = 4 (right).

5
6 function y = exactSolution (x)
7 [phi , r] = cart2pol (x(1 ,: ,:) , x(2 ,: ,:));
8 phi = phi + 2* pi *(phi < 0);
9 y = r .^(2/3) .* sin (2/3 * phi);

10 end

5.5.2 Goal-oriented AFEM with discontinuous data

With Ω := (0, 1)2 and ΓD := ∂Ω, we consider an example from [MS09]:

− ∆u = − div f in Ω, u = 0 on ΓD, where f (x) :=
{
(1, 0) if x1 + x2 < 1/2,
(0, 0) else.

(5.7)

For most FEM software, discontinuous coefficients or data demand some caution: for quadrature
nodes that lie on the discontinuity, evaluation is not well-defined. A first solution is to make the
initial triangulation T0 of Ω resolve the regions of discontinuity. In our case, this can be achieved
by uniform refinement using the RGB-strategy:
1 mesh = Mesh. loadFromGeometry (’unitsquare ’);
2 mesh. refineUniform (1, ’RGB ’);

This is also needed for residual error estimators, since they are comprised of element-wise L2-norms
of div f (which vanishes if the discontinuity is resolved by the mesh and is not defined otherwise).
A second problem is the jump term [[·]] in the error estimators, since this is evaluated on edges,

where the discontinuity now lies. This can be solved by interpolating the data to a non-continuous
FEM space. To obtain vector-valued data, we first interpolate the non-continuous first component
and then compose this with the vanishing second component, according to the memory layout
presented in Section 5.4.3:
1 ncFes = FeSpace (mesh , LowestOrderL2Fe);
2 w = FeFunction (ncFes);

125

5 Object oriented Matlab AFEM

3 chiT = MeshFunction (mesh , @(x) sum(x, Dim. Vector) < 1/2);
4 w. setData (nodalInterpolation (chiT , ncFes));
5 lfF = LinearForm (fes);
6 lfF.fvec = CompositeFunction (@(w) [w; zeros (size(w))], w);

The nodal interpolation in the listing above only sets the data for w on the initial mesh T0. To have w
available on refined meshes, we can repeat this interpolation process after every mesh refinement.
A more efficient method is to use the prolongation class P = LoFeProlongation(fes) that is
tailored specifically to lowest order L2- and H1-elements; see Section 5.3.3. Data for prolongation
is computed automatically whenever the mesh is refined; see Section 5.3.1. After updating w
by w.setData(P.prolongate(w)), the next call of assemble(lfF) already yields the updated
right-hand side, since the coefficient lfF.fvec stores a reference to w.
In goal-oriented adaptive FEM (GOAFEM), we are interested in the goal value G(u) for a linear

functional

G : H1
D(Ω) → R, G(v) =

∫
Ω

g · ∇v dx with g(x) :=
{
(−1, 0) if x1 + x2 > 3/2,
(0, 0) else.

Approximating the goal value G(u) is often more interesting in applications than approximating the
solution u as a whole. To efficiently approximate the goal value in the spirit of Algorithm 5A, one
introduces the so-called dual problem

− ∆z = − div g in Ω, z = 0 on ΓD, (5.8)

which can be implemented and solved analogously to (5.7). Since solving is often the most time
consuming part of AFEM, we can do this in parallel for (5.7) and (5.8):
1 rhs = [assemble (lfF), assemble (lfG)];
2 uz = A(freeDofs , freeDofs) \ rhs(freeDofs ,:);
3 u. setFreeData (uz (: ,1));
4 z. setFreeData (uz (: ,2));

After solving (5.7) and (5.8) by FEM on a triangulation TH to obtain the discrete solutions uH

and zH , respectively, one can compute the a posteriori residual error estimators

ηH (T)2 = h2T ‖∆uH ‖2L2(T) + hT ‖[[(∇uH − f) · n]]‖2
L2(∂T∩Ω),

ζH (T)2 = h2T ‖∆zH ‖2L2(T) + hT ‖[[(∇zH − g) · n]]‖2
L2(∂T∩Ω)

analogously to (5.6). The error in the goal functional is controlled by the estimator product

|G(u) − G(uH)| .
[∑
T ∈TH

ηH (T)2
]1/2 [∑

T ∈TH
ζH (T)2

]1/2
, (5.9)

for which different marking criteria have been analyzed [FPZ16]. Thus, the remaining implemen-
tation comprises only minor modifications of Listing 5.1. The upper bounds of this last equation
for different polynomial orders p can be seen in Figure 5.8 and the resulting meshes for p = 1, 3 are
shown in Figure 5.9.

126

5.5 Examples

101 102 103 104 105 106 107
10−19

10−14

10−9

10−4

101

U = −1

U
= −3

dimS? (Tℓ)

[
ℓ
Z
ℓ

? = 1
? = 2
? = 3

10−2 10−1 100 101 102

10−3

10−2

10−1
U
= −1/2

total computation time [s]

[
ℓ

Zarantonello
Kačanov
Newton

Figure 5.8: Left: Estimator for the goal error (5.9) over number of DOFs for problem (5.7) from
Section 5.5.2 with different polynomial orders p. Right: Error estimator over total
computation time for the linearization methods from Section 5.5.3.

Figure 5.9: Meshes generated from the GOAFEM algorithm from Section 5.5.2 with polynomial
orders p = 1 (left) and p = 3 (right).

5.5.3 Iterative solution of nonlinear equations

In this last example, we consider the L-shapeΩ := (−1, 1)2\([0, 1]×[−1, 0]) with Dirichlet boundary
ΓD := ∂Ω. On this domain, we consider the quasi-linear problem

− div
(
µ
(|∇u|2)∇u

)
= 1 in Ω, u = 0 on ΓD, with µ(t) = 1 + exp(−t). (5.10)

This is a variation of an example given in [HPW21], where also adaptive iterative linearization
techniques (AILFEM) for this class of problems are presented. With a given initial guess u0 ∈
H1
D(Ω), we consider the following linearizations:
(i) Zarantonello iteration: Let δ > 0 be sufficiently small. Given un ∈ H1

D(Ω), the next iterate
un+1 ∈ H1

D(Ω) reads un+1 := un + δv, where v ∈ H1
D(Ω) solves

−∆v = div
(
µ
(|∇un |2)∇un

)
+ 1.

127

5 Object oriented Matlab AFEM

(ii) Kačanov iteration: Given un ∈ H1
D(Ω), the next iterate un+1 ∈ H1

D(Ω) solves
− div

(
µ
(|∇un |2)∇un+1

)
= 1.

(iii) Newton iteration: Given un ∈ H1
D(Ω), the next iterate un+1 ∈ H1

D(Ω) reads un+1 := un + v,
where v ∈ H1

D(Ω) solves
−div

(
µ(|∇un |2)∇v + 2µ′(|∇un |2)(∇un ⊗ ∇un)∇v) = div

(
µ
(|∇un |2)∇un

)
+ 1.

All iterations (i)–(iii) feature coefficients that depend in a nonlinear fashion on the previous iterate
un. However, their implementation is relatively simple, owing to the uniform evaluation mechanics
of the Evaluable interface, from which also FeFunction is derived. Assuming that, for some
triangulation TH of Ω, the previous iterates un

H correspond to the FeFunction instance u, the
following code snippet acts as template for all three iterations with u0H = 0:
1 % set coefficients of blf & lf
2 u = FeFunction (fes);
3 u. setData (0);
4 v = FeFunction (fes);
5 freeDofs = getFreeDofs (fes);
6 while true
7 A = assemble (blf);
8 F = assemble (lf);
9 % solve linear systems and update data of u

10 end

The two steps in this template that are merely outlined in a comment differ for each method. They
are described in the following listing, separated by comments:
1 % --- Zarantonello : setup
2 blf.a = Constant (mesh , 1);
3 lf.f = Constant (mesh , 1);
4 lf.fvec = CompositeFunction (@(p) -mu(vectorProduct (p, p)) .* p, Gradient (u));
5 % --- Zarantonello : update
6 v. setFreeData (A(freeDofs , freeDofs) \ F(freeDofs));
7 u. setData (u.data + delta *v.data);
8 % --- Kacanov : setup
9 blf.a = CompositeFunction (@(p) mu(vectorProduct (p, p)), Gradient (u));

10 lf.f = Constant (mesh , 1);
11 % --- Kacanov : update
12 u. setFreeData (A(freeDofs , freeDofs) \ F(freeDofs));
13 % --- Newton : setup
14 blf.a = CompositeFunction (@(p) mu(vectorProduct (p, p)) .* [1;0;0;1] ...
15 + 2* muPrime (vectorProduct (p, p)).* vectorProduct (p, p, [2 ,1] , [2 ,1] ’) , ...
16 Gradient (u));
17 lf.f = Constant (mesh , 1);
18 lf.fvec = CompositeFunction (@(p) -mu(vectorProduct (p, p)) .* p, Gradient (u));
19 % --- Newton : update
20 v. setFreeData (A(freeDofs , freeDofs) \ F(freeDofs));
21 u. setData (u.data + v.data);
22 % --- Additional functions
23 mu = @(t) 1 + exp(-t);
24 muPrime = @(t) -exp(-t);

As explained in Section 5.4.4, with p = Gradient(u), the two calls of vectorProduct in the
Newton bilinear form represent

|∇un
H |2 = vectorProduct(p, p),

∇un
H ⊗ ∇un

H = vectorProduct(p, p, [2,1], [2,1]’).

128

5.5 Examples

To get an adaptive algorithm in the spirit of Algorithm 5A for lowest order FEM, i.e., p = 1, error
estimation is done by

ηH (T)2 := h2T ‖1‖2L2(T) + hT ‖[[µ(|∇un
H |2)∇un

H · n]]‖2L2(∂T∩Ω),

which is analogous to (5.6). Finally, we remark that [HPW21] suggests to use u00 = 0 ∈ S1
D(T0)

only on the coarsest level and then to proceed by nested iteration

u0`+1 := un(`)
`
∈ S1

D(T̀ +1) for all ` ∈ N,

where n(`) is the last iteration on the previous level T̀ , i.e., un(`)
`

is the final iterate on T̀ . For lowest-
order H1

D(Ω)-conforming FEM, this can be done by the prolongation class LoFeProlongation;
see Section 5.3.3.
A numerical comparison of the three presented iterative linearization methods can be seen in

Figure 5.8.

129

Bibliography

[AAD11] M. Ainsworth, G. Andriamaro, and O. Davydov. Bernstein-Bézier finite elements of
arbitrary order and optimal assembly procedures. SIAM J. Sci. Comput., 33(6):3087–
3109, 2011. doi: 10.1137/11082539X.

[ABD+21] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier,
J.-P. Pelteret, B. Turcksin, and D. Wells. The deal.II finite element library: Design,
features, and insights. Comput. Math. Appl., 81:407–422, 2021. doi: 10.1016/j.
camwa.2020.02.022.

[ABH+15] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J.
Ring, M. E. Rognes, and G. N. Wells. The FEniCS Project Version 1.5. Arch. Numer.
Software, Vol 3, 2015. doi: 10.11588/ans.2015.100.20553.

[AFP12] M. Aurada, S. Ferraz-Leite, and D. Praetorius. Estimator reduction and convergence of
adaptive BEM. Appl. Numer. Math., 62(6):787–801, 2012. doi: 10.1016/j.apnum.
2011.06.014.

[AO93] M. Ainsworth and J. T. Oden. A posteriori error estimators for second order elliptic
systems. I. Theoretical foundations and a posteriori error analysis. Comput. Math.
Appl., 25(2):101–113, 1993. doi: 10.1016/0898-1221(93)90227-M.

[AS92] F. Alouges and A. Soyeur. On global weak solutions for Landau-Lifshitz equations:
existence and nonuniqueness. Nonlinear Anal., 18(11):1071–1084, 1992. doi: 10.
1016/0362-546X(92)90196-L.

[AW15] M. Amrein and T. P. Wihler. Fully adaptive Newton-Galerkin methods for semilinear
elliptic partial differential equations. SIAM J. Sci. Comput., 37(4):A1637–A1657,
2015. doi: 10.1137/140983537.

[BBC+13] L. Beirão daVeiga, F. Brezzi, A. Cangiani, G.Manzini, L. D.Marini, andA. Russo. Ba-
sic principles of virtual elementmethods.Math.ModelsMethods Appl. Sci., 23(1):199–
214, 2013. doi: 10.1142/S0218202512500492.

[BBD+21] P. Bastian, M. Blatt, A. Dedner, N.-A. Dreier, C. Engwer, R. Fritze, C. Gräser, C.
Grüninger,D.Kempf,R.Klöfkorn,M.Ohlberger, andO. Sander. TheDune framework:
Basic concepts and recent developments. Comput. Math. Appl., 81:75–112, 2021. doi:
10.1016/j.camwa.2020.06.007.

[BBI+21] R. Becker,M. Brunner,M. Innerberger, J.M.Melenk, andD. Praetorius. Goal-oriented
adaptive finite elementmethod for semilinear elliptic PDEs, 2021. arXiv: 2112.06687.

[BDD04] P. Binev, W. Dahmen, and R. DeVore. Adaptive finite element methods with conver-
gence rates.Numer. Math., 97(2):219–268, 2004. doi: 10.1007/s00211-003-0492-
7.

131

https://doi.org/10.1137/11082539X
https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1016/j.apnum.2011.06.014
https://doi.org/10.1016/j.apnum.2011.06.014
https://doi.org/10.1016/0898-1221(93)90227-M
https://doi.org/10.1016/0362-546X(92)90196-L
https://doi.org/10.1016/0362-546X(92)90196-L
https://doi.org/10.1137/140983537
https://doi.org/10.1142/S0218202512500492
https://doi.org/10.1016/j.camwa.2020.06.007
http://arxiv.org/abs/2112.06687
https://doi.org/10.1007/s00211-003-0492-7
https://doi.org/10.1007/s00211-003-0492-7

Bibliography

[BET11] R. Becker, E. Estecahandy, and D. Trujillo. Weighted marking for goal-oriented adap-
tive finite element methods. SIAM J. Numer. Anal., 49(6):2451–2469, 2011. doi:
10.1137/100794298.

[BGIP21] R. Becker, G. Gantner, M. Innerberger, and D. Praetorius. Goal-oriented adaptive finite
element methods with optimal computational complexity, 2021. arXiv: 2101.11407.

[BGMP16] A. Buffa, C. Giannelli, P. Morgenstern, and D. Peterseim. Complexity of hierarchical
refinement for a class of admissiblemesh configurations.Comput. AidedGeom.Design,
47:83–92, 2016. doi: 10.1016/j.cagd.2016.04.003.

[BHL+21] R. Bulle, J. S. Hale, A. Lozinski, S. P. A. Bordas, and F. Chouly. Hierarchical a
posteriori error estimation of Bank-Weiser type in the FEniCS Project, 2021. arXiv:
2102.04360.

[BHP17] A. Bespalov, A. Haberl, and D. Praetorius. Adaptive FEM with coarse initial mesh
guarantees optimal convergence rates for compactly perturbed elliptic problems. Com-
put. Methods Appl. Mech. Engrg., 317:318–340, 2017. doi: 10.1016/j.cma.2016.
12.014.

[BIP21a] R. Becker, M. Innerberger, and D. Praetorius. Adaptive FEM for parameter-errors in
elliptic linear-quadratic parameter estimation problems, 2021. arXiv: 2111.03627.

[BIP21b] R. Becker, M. Innerberger, and D. Praetorius. Optimal convergence rates for goal-
orientedFEMwith quadratic goal functional.Comput.MethodsAppl.Math., 21(2):267–
288, 2021. doi: 10.1515/cmam-2020-0044.

[BM11] R. Becker and S. Mao. Quasi-optimality of an adaptive finite element method for an
optimal control problem. Comput. Methods Appl. Math., 11(2):107–128, 2011. doi:
10.2478/cmam-2011-0006.

[BN10] A. Bonito and R. H. Nochetto. Quasi-optimal convergence rate of an adaptive discon-
tinuous Galerkin method. SIAM J. Numer. Anal., 48(2):734–771, 2010. doi: 10.1137/
08072838X.

[BR01] R. Becker and R. Rannacher. An optimal control approach to a posteriori error es-
timation in finite element methods. Acta Numer., 10:1–102, 2001. doi: 10.1017/
S0962492901000010.

[BR03] W. Bangerth and R. Rannacher. Adaptive Finite Element Methods for Differential
Equations. Springer, Basel, 2003. doi: 10.1007/978-3-0348-7605-6.

[BS08] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods.
Springer, New York, third edition, 2008. doi: 10.1007/978-0-387-75934-0.

[BV04] R. Becker and B. Vexler. A posteriori error estimation for finite element discretization
of parameter identification problems. Numer. Math., 96(3):435–459, 2004. doi: 10.
1007/s00211-003-0482-9.

[BV05] R. Becker and B. Vexler. Mesh refinement and numerical sensitivity analysis for
parameter calibration of partial differential equations. J. Comput. Phys., 206(1):95–
110, 2005. doi: 10.1016/j.jcp.2004.12.018.

132

https://doi.org/10.1137/100794298
http://arxiv.org/abs/2101.11407
https://doi.org/10.1016/j.cagd.2016.04.003
http://arxiv.org/abs/2102.04360
https://doi.org/10.1016/j.cma.2016.12.014
https://doi.org/10.1016/j.cma.2016.12.014
http://arxiv.org/abs/2111.03627
https://doi.org/10.1515/cmam-2020-0044
https://doi.org/10.2478/cmam-2011-0006
https://doi.org/10.1137/08072838X
https://doi.org/10.1137/08072838X
https://doi.org/10.1017/S0962492901000010
https://doi.org/10.1017/S0962492901000010
https://doi.org/10.1007/978-3-0348-7605-6
https://doi.org/10.1007/978-0-387-75934-0
https://doi.org/10.1007/s00211-003-0482-9
https://doi.org/10.1007/s00211-003-0482-9
https://doi.org/10.1016/j.jcp.2004.12.018

[BV84] I. Babuška and M. Vogelius. Feedback and adaptive finite element solution of one-
dimensional boundary value problems. Numer. Math., 44(1):75–102, 1984. doi: 10.
1007/BF01389757.

[CFPP14] C. Carstensen, M. Feischl, M. Page, and D. Praetorius. Axioms of adaptivity. Comput.
Math. Appl., 67(6):1195–1253, 2014. doi: 10.1016/j.camwa.2013.12.003.

[CHB09] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric analysis. John Wiley &
Sons, Chichester, 2009. doi: 10.1002/9780470749081.

[Che09] L. Chen. iFEM: an integrated finite element methods package in MATLAB. Technical
report, 2009. url: https://github.com/lyc102/ifem.

[CKNS08] J. M. Cascon, C. Kreuzer, R. H. Nochetto, and K. G. Siebert. Quasi-optimal conver-
gence rate for an adaptive finite element method. SIAM J. Numer. Anal., 46(5):2524–
2550, 2008. doi: 10.1137/07069047X.

[CNX12] L. Chen, R. H. Nochetto, and J. Xu. Optimal multilevel methods for graded bisection
grids. Numer. Math., 120(1):1–34, 2012. doi: 10.1007/s00211-011-0401-4.

[Cou43] R. Courant. Variational methods for the solution of problems of equilibrium and
vibrations. Bull. Amer. Math. Soc., 49:1–23, 1943. doi: 10.1090/S0002- 9904-
1943-07818-4.

[DFGP19] G. Di Fratta, T. Führer, G. Gantner, and D. Praetorius. Adaptive Uzawa algorithm for
the Stokes equation. ESAIMMath. Model. Numer. Anal., 53(6):1841–1870, 2019. doi:
10.1051/m2an/2019039.

[DIP20] G. Di Fratta, M. Innerberger, and D. Praetorius. Weak-strong uniqueness for the
Landau–Lifshitz–Gilbert equation in micromagnetics. Nonlinear Anal. Real World
Appl., 55:103122, 2020. doi: 10.1016/j.nonrwa.2020.103122.

[DKS16] L.Diening, C.Kreuzer, andR. Stevenson. Instance optimality of the adaptivemaximum
strategy. Found. Comput. Math., 16(1):33–68, 2016. doi: 10.1007/s10208-014-
9236-6.

[Dör96] W. Dörfler. A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer.
Anal., 33(3):1106–1124, 1996. doi: 10.1137/0733054.

[DS11] A. Demlow and R. Stevenson. Convergence and quasi-optimality of an adaptive finite
element method for controlling L2 errors. Numer. Math., 117(2):185–218, 2011. doi:
10.1007/s00211-010-0349-9.

[Duf82] M. G. Duffy. Quadrature over a pyramid or cube of integrands with a singularity at a
vertex. SIAM J. Numer. Anal., 19(6):1260–1262, 1982. doi: 10.1137/0719090.

[EEHJ95] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to adaptive methods for
differential equations.ActaNumer., 4:105–158, 1995. doi:10.1017/S0962492900002531.

[EG04] A. Ern and J.-L. Guermond. Theory and practice of finite elements. Springer, New
York, 2004. doi: 10.1007/978-1-4757-4355-5.

[Eva10] L. C. Evans. Partial differential equations. American Mathematical Society, Provi-
dence, second edition, 2010. doi: 10.1090/gsm/019.

133

https://doi.org/10.1007/BF01389757
https://doi.org/10.1007/BF01389757
https://doi.org/10.1016/j.camwa.2013.12.003
https://doi.org/10.1002/9780470749081
https://github.com/lyc102/ifem
https://doi.org/10.1137/07069047X
https://doi.org/10.1007/s00211-011-0401-4
https://doi.org/10.1090/S0002-9904-1943-07818-4
https://doi.org/10.1090/S0002-9904-1943-07818-4
https://doi.org/10.1051/m2an/2019039
https://doi.org/10.1016/j.nonrwa.2020.103122
https://doi.org/10.1007/s10208-014-9236-6
https://doi.org/10.1007/s10208-014-9236-6
https://doi.org/10.1137/0733054
https://doi.org/10.1007/s00211-010-0349-9
https://doi.org/10.1137/0719090
https://doi.org/10.1017/S0962492900002531
https://doi.org/10.1007/978-1-4757-4355-5
https://doi.org/10.1090/gsm/019

Bibliography

[FFP14] M. Feischl, T. Führer, and D. Praetorius. Adaptive FEM with optimal convergence
rates for a certain class of nonsymmetric and possibly nonlinear problems. SIAM J.
Numer. Anal., 52(2):601–625, 2014. doi: 10.1137/120897225.

[FGH+16] M. Feischl, G. Gantner, A. Haberl, D. Praetorius, and T. Führer. Adaptive boundary
element methods for optimal convergence of point errors. Numer. Math., 132(3):541–
567, 2016. doi: 10.1007/s00211-015-0727-4.

[FGS15] Z. Fu, L. F. Gatica, and F.-j. Sayas. Algorithm 949: MATLAB Tools for HDG in Three
Dimensions. ACM Trans. Math. Software, 41(3):1–21, 2015. doi: 10.1145/2658992.

[FPW11] S. Funken, D. Praetorius, and P. Wissgott. Efficient implementation of adaptive P1-
FEM in Matlab. Comput. Methods Appl. Math., 11(4):460–490, 2011. doi: 10.2478/
cmam-2011-0026.

[FPZ16] M. Feischl, D. Praetorius, and K. G. van der Zee. An abstract analysis of optimal goal-
oriented adaptivity. SIAM J. Numer. Anal., 54(3):1423–1448, 2016. doi: 10.1137/
15M1021982.

[FT17] M. Feischl and T. Tran. Existence of regular solutions of the Landau-Lifshitz-Gilbert
equation in 3D with natural boundary conditions. SIAM J. Math. Anal., 49(6):4470–
4490, 2017. doi: 10.1137/16M1103427.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
reusable object-oriented software. Addison-Wesley Reading, Massachusetts, 1995.

[GHP17] G. Gantner, D. Haberlik, and D. Praetorius. Adaptive IGAFEM with optimal conver-
gence rates: hierarchical B-splines. Math. Models Methods Appl. Sci., 27(14):2631–
2674, 2017. doi: 10.1142/S0218202517500543.

[GHPS18] G. Gantner, A. Haberl, D. Praetorius, and B. Stiftner. Rate optimal adaptive FEMwith
inexact solver for nonlinear operators. IMA J. Numer. Anal., 38(4):1797–1831, 2018.
doi: 10.1093/imanum/drx050.

[GHPS21] G. Gantner, A. Haberl, D. Praetorius, and S. Schimanko. Rate optimality of adaptive
finite element methods with respect to overall computational costs. Math. Comp.,
90(331):2011–2040, 2021. doi: 10.1090/mcom/3654.

[GP22] G. Gantner and D. Praetorius. Adaptive Finite Element Methods: Convergence &
optimal convergence rates. In preparation, 2022.

[Gri11] P.Grisvard.Elliptic problems in nonsmooth domains. Society for Industrial andApplied
Mathematics, Philadelphia, 2011. doi: 10.1137/1.9781611972030.ch1.

[GS02] M. B. Giles and E. Süli. Adjoint methods for PDEs: a posteriori error analysis
and postprocessing by duality. Acta Numer., 11:145–236, 2002. doi: 10 . 1017 /
S096249290200003X.

[GW12] M. J. Gander and G. Wanner. From Euler, Ritz, and Galerkin to modern computing.
SIAM Rev., 54(4):627–666, 2012. doi: 10.1137/100804036.

[GY17] W. Gong and N. Yan. Adaptive finite element method for elliptic optimal control
problems: convergence and optimality. Numer. Math., 135(4):1121–1170, 2017. doi:
10.1007/s00211-016-0827-9.

134

https://doi.org/10.1137/120897225
https://doi.org/10.1007/s00211-015-0727-4
https://doi.org/10.1145/2658992
https://doi.org/10.2478/cmam-2011-0026
https://doi.org/10.2478/cmam-2011-0026
https://doi.org/10.1137/15M1021982
https://doi.org/10.1137/15M1021982
https://doi.org/10.1137/16M1103427
https://doi.org/10.1142/S0218202517500543
https://doi.org/10.1093/imanum/drx050
https://doi.org/10.1090/mcom/3654
https://doi.org/10.1137/1.9781611972030.ch1
https://doi.org/10.1017/S096249290200003X
https://doi.org/10.1017/S096249290200003X
https://doi.org/10.1137/100804036
https://doi.org/10.1007/s00211-016-0827-9

[GYZ16] W. Gong, N. Yan, and Z. Zhou. Convergence of L2-norm based adaptive finite element
method for elliptic optimal control problems, 2016. arXiv: 1608.08699.

[HP16] M. Holst and S. Pollock. Convergence of goal-oriented adaptive finite element meth-
ods for nonsymmetric problems. Numer. Methods Partial Differential Equations,
32(2):479–509, 2016. doi: 10.1002/num.22002.

[HPW21] P. Heid, D. Praetorius, and T. P. Wihler. Energy contraction and optimal convergence
of adaptive iterative linearized finite element methods. Comput. Methods Appl. Math.,
21(2):407–422, 2021. doi: 10.1515/cmam-2021-0025.

[HPZ15] M. Holst, S. Pollock, and Y. Zhu. Convergence of goal-oriented adaptive finite element
methods for semilinear problems. Comput. Vis. Sci., 17(1):43–63, 2015. doi: 10.
1007/s00791-015-0243-1.

[IP21] M. Innerberger and D. Praetorius. Instance-optimal goal-oriented adaptivity. Comput.
Methods Appl. Math., 21(1):109–126, 2021. doi: 10.1515/cmam-2019-0115.

[IP22] M. Innerberger and D. Praetorius. MooAFEM: An object oriented Matlab code for
higher-order (nonlinear) adaptive FEM, 2022. arXiv: 2203.01845.

[IWPK20] M. Innerberger, P. Worm, P. Prauhart, and A. Kauch. Electron-light interaction in
nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians. Eur.
Phys. J. Plus, 135:922, 2020. doi: 10.1140/epjp/s13360-020-00919-2.

[KPP13] M. Karkulik, D. Pavlicek, and D. Praetorius. On 2D newest vertex bisection: optimality
of mesh-closure and H1-stability of L2-projection. Constr. Approx., 38(2):213–234,
2013. doi: 10.1007/s00365-013-9192-4.

[KS16] C. Kreuzer and M. Schedensack. Instance optimal Crouzeix-Raviart adaptive finite
elementmethods for the Poisson and Stokes problems. IMA J. Numer. Anal., 36(2):593–
617, 2016. doi: 10.1093/imanum/drv019.

[KWP+20] A. Kauch, P. Worm, P. Prauhart, M. Innerberger, C. Watzenböck, and K. Held. En-
hancement of impact ionization in Hubbard clusters by disorder and next-nearest-
neighbor hopping. Phys. Rev. B, 102(24):245125, 2020. doi: 10.1103/PhysRevB.
102.245125.

[LC17] H. Leng and Y. Chen. Convergence and quasi-optimality of an adaptive finite element
method for optimal control problems on L2 errors. J. Sci. Comput., 73(1):438–458,
2017. doi: 10.1007/s10915-017-0425-8.

[Man10] E. Manousakis. Photovoltaic effect for narrow-gap Mott insulators. Phys. Rev. B,
82:125109, 2010. doi: 10.1103/PhysRevB.82.125109.

[Mau95] J. M. Maubach. Local bisection refinement for n-simplicial grids generated by reflec-
tion. SIAM J. Sci. Comput., 16(1):210–227, 1995. doi: 10.1137/0916014.

[MNS00] P. Morin, R. H. Nochetto, and K. G. Siebert. Data oscillation and convergence
of adaptive FEM. SIAM J. Numer. Anal., 38(2):466–488, 2000. doi: 10 . 1137 /
S0036142999360044.

[Mor16] P.Morgenstern. Globally structured three-dimensional analysis-suitable T-splines: def-
inition, linear independence and m-graded local refinement. SIAM J. Numer. Anal.,
54(4):2163–2186, 2016. doi: 10.1137/15M102229X.

135

http://arxiv.org/abs/1608.08699
https://doi.org/10.1002/num.22002
https://doi.org/10.1515/cmam-2021-0025
https://doi.org/10.1007/s00791-015-0243-1
https://doi.org/10.1007/s00791-015-0243-1
https://doi.org/10.1515/cmam-2019-0115
http://arxiv.org/abs/2203.01845
https://doi.org/10.1140/epjp/s13360-020-00919-2
https://doi.org/10.1007/s00365-013-9192-4
https://doi.org/10.1093/imanum/drv019
https://doi.org/10.1103/PhysRevB.102.245125
https://doi.org/10.1103/PhysRevB.102.245125
https://doi.org/10.1007/s10915-017-0425-8
https://doi.org/10.1103/PhysRevB.82.125109
https://doi.org/10.1137/0916014
https://doi.org/10.1137/S0036142999360044
https://doi.org/10.1137/S0036142999360044
https://doi.org/10.1137/15M102229X

Bibliography

[MP15] P. Morgenstern and D. Peterseim. Analysis-suitable adaptive T-mesh refinement with
linear complexity. Comput. Aided Geom. Design, 34:50–66, 2015. doi: 10.1016/j.
cagd.2015.02.003.

[MS09] M. S. Mommer and R. Stevenson. A goal-oriented adaptive finite element method
with convergence rates. SIAM J. Numer. Anal., 47(2):861–886, 2009. doi: 10.1137/
060675666.

[MSV08] P. Morin, K. G. Siebert, and A. Veeser. A basic convergence result for conforming
adaptive finite elements.Math. Models Methods Appl. Sci., 18(5):707–737, 2008. doi:
10.1142/S0218202508002838.

[NW06] J. Nocedal and S. J. Wright. Numerical optimization. Springer, New York, second edi-
tion, 2006. doi: 10.1007/978-0-387-40065-5.

[PP20] C.-M. Pfeiler and D. Praetorius. Dörfler marking with minimal cardinality is a linear
complexity problem. Math. Comp., 89(326):2735–2752, 2020. doi: 10.1090/mcom/
3553.

[Sch14] J. Schöberl. C++11 implementation of finite elements in NGSolve. ASCReport No. 30,
2014. url: https://www.asc.tuwien.ac.at/preprint/2014/asc30x2014.
pdf.

[Sch21] S. Schimanko. On rate-optimal adaptive algorithms with inexact solvers. PhD thesis,
TU Wien, Institute of Analysis and Scientific Computing, 2021.

[Sie11] K. G. Siebert. A convergence proof for adaptive finite elements without lower bound.
IMA J. Numer. Anal., 31(3):947–970, 2011. doi: 10.1093/imanum/drq001.

[SQ61] W. Shockley and H. J. Queisser. Detailed Balance Limit of Efficiency of p-n Junction
Solar Cells. J. Appl. Phys., 32:510–519, 1961. doi: 10.1063/1.1736034.

[Ste07] R. Stevenson. Optimality of a standard adaptive finite element method.Found. Comput.
Math., 7(2):245–269, 2007. doi: 10.1007/s10208-005-0183-0.

[Ste08] R. Stevenson. The completion of locally refined simplicial partitions created by bi-
section. Math. Comp., 77(261):227–241, 2008. doi: 10.1090/S0025-5718-07-
01959-X.

[Tra97] C. T. Traxler. An algorithm for adaptive mesh refinement in n dimensions. Computing,
59(2):115–137, 1997. doi: 10.1007/BF02684475.

[Ver13] R. Verfürth.A posteriori error estimation techniques for finite element methods. Oxford
University Press, Oxford, 2013. doi: 10.1093/acprof:oso/9780199679423.001.
0001.

[WZ17] J. Wu and H. Zheng. Uniform convergence of multigrid methods for adaptive meshes.
Appl. Numer. Math., 113:109–123, 2017. doi: 10.1016/j.apnum.2016.11.005.

[XHYM22] F. Xu, Q. Huang, H. Yang, and H. Ma. Multilevel correction goal-oriented adaptive
finite element method for semilinear elliptic equations. Appl. Numer. Math., 172:224–
241, 2022. doi: 10.1016/j.apnum.2021.10.001.

[ZCL09] L. Zhang, T. Cui, and H. Liu. A set of symmetric quadrature rules on triangles and
tetrahedra. J. Comput. Math., 27(1):89–96, 2009.

136

https://doi.org/10.1016/j.cagd.2015.02.003
https://doi.org/10.1016/j.cagd.2015.02.003
https://doi.org/10.1137/060675666
https://doi.org/10.1137/060675666
https://doi.org/10.1142/S0218202508002838
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1090/mcom/3553
https://doi.org/10.1090/mcom/3553
https://www.asc.tuwien.ac.at/preprint/2014/asc30x2014.pdf
https://www.asc.tuwien.ac.at/preprint/2014/asc30x2014.pdf
https://doi.org/10.1093/imanum/drq001
https://doi.org/10.1063/1.1736034
https://doi.org/10.1007/s10208-005-0183-0
https://doi.org/10.1090/S0025-5718-07-01959-X
https://doi.org/10.1090/S0025-5718-07-01959-X
https://doi.org/10.1007/BF02684475
https://doi.org/10.1093/acprof:oso/9780199679423.001.0001
https://doi.org/10.1093/acprof:oso/9780199679423.001.0001
https://doi.org/10.1016/j.apnum.2016.11.005
https://doi.org/10.1016/j.apnum.2021.10.001

Curriculum Vitae

Name: Michael Innerberger

Date of birth: November 15, 1992 in Salzburg, Austria

Citizenship: Austria

E-mail: michael.innerberger@asc.tuwien.ac.at

Homepage: https://www.asc.tuwien.ac.at/~minnerberger/

Education
10/2018–04/2022

(expected)
PhD studies in Technical Mathematics, TU Wien, Austria.
Member of Doctoral program Dissipation and dispersion in nonlinear PDEs.
Supervisor: Prof. Dirk Praetorius.

01/2016–10/2018 Master’s degree in Technical Mathematics, TU Wien, Austria.
Passed with distinction, Master thesis:
On instance optimality of adaptive 2D FEM, Supervisor: Prof. Dirk Praetorius.

02/2014–02/2018 Bachelor’s degree in Technical Physics, TU Wien, Austria.
Passed with distinction, Bachelor thesis supervisor: Prof. Karsten Held.

10/2012–01/2016 Bachelor’s degree in Technical Mathematics, TU Wien, Austria.
Passed with distinction, Bachelor thesis supervisor: Prof. Anton Arnold.

09/2011–05/2012 Military service, Austria.
06/2011 AHS Matura, PG Borromäum, Salzburg, Austria.

Research experience
since 10/2018 Project assistent, TU Wien, Austria.

Institute of Analysis and Scientific Computing, work group on Numerics of
PDEs.

2021 Research stay, Université de Pau, France.
2018 Research internship, Jülich Supercomputing Centre, FZ Jülich, Germany.

Distributed memory parallelization of a fast multipole method in C++.

2017 Research internship, Austrian Institute of Technology, Austria.
Co-simulation for HVAC building models.

https://www.asc.tuwien.ac.at/~minnerberger/

Bibliography

Teaching experience
2020 & 2021 Co-supervision of Bachelor theses, TU Wien, Austria.

Conforming bisection of simplicial triangulations in 3D, in progress.
An elementary proof for convergence of adaptive FEM, 2020.

2021 Teaching assistant, TU Wien, Austria.
A posteriori error estimation and adaptive FEM, exercise class.

2019 & 2020 Teaching assistant, TU Wien, Austria.
Numerical solution of differential equations, exercise class.

2019 Teaching assistant, TU Wien, Austria.
Numerics of partial differential equations: stationary problems, exercise class.

2015–2018 Teaching assistant, TU Wien, Austria.
Introduction to programming for technical mathematics, exercise class.

Scholarships and Awards
2021 BGF scholarship of the French government.

2017–2018 Scholarship, TUWien, Institute of Analysis and Scientific Computing, Austria.
Master’s thesis funded by the Austrian Science Fund (FWF) under grant P27005
Optimal adaptivity for BEM and FEM-BEM coupling.

2014–2017 Scholarship of the Scholarship Foundation of TU Wien.
Granted annually for excellent achievements in the preceding academic year.

2013–2017 Merit-based scholarship of the faculty of Mathematics of TU Wien.
Granted annually for excellent achievements in the preceding academic year.

2011 Dr. Hans Riegel Award for outstanding High School Thesis.
On the problem of squaring the circle.

Scientific talks
2020 14th World Congress in Computational Mechanics and ECCOMAS

Congress (WCCM-ECCOMAS 2020), Paris, France (online). Optimal con-
vergence rates for goal-oriented FEM with quadratic goal functional.

2019 Reliable Methods of Mathematical Modeling (RMMM 2019), TU Wien,
Austria. Instance-optimal goal-oriented adaptivity.

138

Own scientific publications
2022 M. Innerberger and D. Praetorius. MooAFEM: An object oriented Matlab code for higher-

order (nonlinear) adaptive FEM, 2022. arXiv: 2203.01845

2021 R. Becker, M. Brunner, M. Innerberger, J. M. Melenk, and D. Praetorius. Goal-oriented
adaptive finite element method for semilinear elliptic PDEs, 2021. arXiv: 2112.06687

2021 R. Becker, M. Innerberger, and D. Praetorius. Adaptive FEM for parameter-errors in elliptic
linear-quadratic parameter estimation problems, 2021. arXiv: 2111.03627, accepted for
publication in SIAM J. Numer. Anal.

2021 R. Becker, G. Gantner, M. Innerberger, and D. Praetorius. Goal-oriented adaptive finite
element methods with optimal computational complexity, 2021. arXiv: 2101.11407

2021 R. Becker, M. Innerberger, and D. Praetorius. Optimal convergence rates for goal-oriented
FEM with quadratic goal functional. Comput. Methods Appl. Math., 21(2):267–288, 2021.
doi: 10.1515/cmam-2020-0044

2021 M. Innerberger and D. Praetorius. Instance-optimal goal-oriented adaptivity. Comput.
Methods Appl. Math., 21(1):109–126, 2021. doi: 10.1515/cmam-2019-0115

2020 A. Kauch, P.Worm, P. Prauhart, M. Innerberger, C.Watzenböck, and K. Held. Enhancement
of impact ionization in Hubbard clusters by disorder and next-nearest-neighbor hopping.
Phys. Rev. B, 102(24):245125, 2020. doi: 10.1103/PhysRevB.102.245125

2020 M. Innerberger, P. Worm, P. Prauhart, and A. Kauch. Electron-light interaction in nonequi-
librium: exact diagonalization for time-dependent Hubbard Hamiltonians. Eur. Phys. J.
Plus, 135:922, 2020. doi: 10.1140/epjp/s13360-020-00919-2

2020 G. Di Fratta, M. Innerberger, and D. Praetorius. Weak-strong uniqueness for the Landau–
Lifshitz–Gilbert equation inmicromagnetics. Nonlinear Anal. RealWorld Appl., 55:103122,
2020. doi: 10.1016/j.nonrwa.2020.103122

139

http://arxiv.org/abs/2203.01845
http://arxiv.org/abs/2112.06687
http://arxiv.org/abs/2111.03627
http://arxiv.org/abs/2101.11407
https://doi.org/10.1515/cmam-2020-0044
https://doi.org/10.1515/cmam-2019-0115
https://doi.org/10.1103/PhysRevB.102.245125
https://doi.org/10.1140/epjp/s13360-020-00919-2
https://doi.org/10.1016/j.nonrwa.2020.103122

	Introduction
	The finite element method
	Model problem
	Discretization of the domain: meshes
	Discretization of the equation
	Goal-oriented FEM

	A goal-oriented adaptive FEM algorithm
	Mesh refinement: newest vertex bisection
	A posteriori error estimation
	Marking
	Adaptive algorithm

	Optimal convergence of GOAFEM
	Necessary abstract properties
	Rate optimality
	Main steps of proof

	Outline of thesis
	Other scientific contributions
	Instance optimal GOAFEM
	GOAFEM for semilinear problems
	Weak-strong uniqueness for solutions of the LLG equation
	Exact diagonalization of time-dependent Hamiltonians
	Impact ionization in solar-cell models

	Optimal convergence rates for goal-oriented FEM with quadratic goal functional
	Introduction
	Adaptive algorithm & main result
	Variational formulation
	Finite element method
	Linearization of the goal functional
	Mesh-refinement
	Error estimators
	Adaptive algorithm
	Alternative adaptive algorithm
	Extension of analysis to compactly perturbed elliptic problems

	Numerical experiments
	Weighted L2-norm
	Nonlinear convection
	Force evaluation
	Discussion of numerical experiments

	Auxiliary results
	Axioms of adaptivity
	Quasi-orthogonality

	Proof of plain convergence of Algorithm ?? and ??
	Algorithm ??
	Algorithm ??

	Proof of Theorem ??
	Linear convergence
	Optimal rates

	Proof of Theorem ??

	Goal-oriented adaptive finite element methods with optimal computational complexity
	Introduction
	Goal-oriented adaptive finite element method
	Variational formulation
	Finite element discretization and solution
	Discrete goal quantity
	Mesh refinement
	Estimator properties
	Marking strategy
	Adaptive algorithm

	Main results
	Linear convergence with optimal rates
	Alternative termination criteria for iterative solver

	Numerical examples
	Singularity in goal functional only
	Geometrical singularity

	Proof of Theorem ??
	Proof of Theorem ?? (optimal rates)

	Adaptive FEM for parameter-errors in elliptic linear-quadratic parameter estimation problems
	Introduction
	Parameter estimation problem
	Problem formulation
	Solution components
	Least squares system and solution
	FEM discretization
	Co-state components

	Adaptive algorithm and main results
	A priori estimate
	Mesh refinement
	A posteriori error estimation
	Adaptive algorithm
	Convergence of Algorithm ??

	Proof of Theorem ??
	Auxiliary a priori bounds
	Error bound for parameter error

	Proof of Theorems ?? and ??
	Linear convergence
	Proof of optimal rates

	Numerical examples
	Single parameter and measurement
	Multiple parameters and measurements with perturbation

	MooAFEM: An object oriented Matlab code for higher-order (nonlinear) adaptive FEM
	Introduction
	Adaptive algorithm and importance of OOP
	Necessity of OOP in Matlab FEM

	Code structure
	Module geometry
	Module integration
	Module FEM

	Data structures
	Mesh
	Mesh construction
	Array layout
	Efficient linear algebra

	Examples
	Higher order AFEM with known solution
	Goal-oriented AFEM with discontinuous data
	Iterative solution of nonlinear equations

	Bibliography
	Curriculum vitae

