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Kurzfassung. Diese Arbeit schafft einen axiomatischen Rahmen für den
Beweis von optimalen Konvergenzraten adaptiver Algorithmen. Das Haupt-
anwendungsfeld hierfür sind die Finite-Element-Methode sowie auch die
Randelement-Methode. Drei Axiome für den Fehlerschätzer und drei wei-
tere für die zugehörige Netzverfeinerung garantieren optimale Konvergenz-
raten. Der axiomatische Zugang erlaubt es, spezielle Fragen nach der Not-
wendigkeit von (diskreten) unteren Fehlerschranken, dem Einsatz von ap-
proximativen Lösern, der Einbindung von inhomogenen Randdaten oder
auch der Verwendung von äquivalenten Fehlerschätzern zu beantworten.
Die Weiterentwicklungen und Verbesserungen im Vergleich zum aktuellen
Stand der Forschung (ausgenommen der eigenen Arbeit [24], welche in die-
ser Dissertation teilweise erweitert wird) werden im Folgenden zusammen-
gefasst:

• Es wird ein einheitlicher und komplett abstrakter theoretischer Rah-
men geschaffen, der die aktuelle Literatur zum Thema optimaler Konver-
genzraten umfasst. Die abstrakte Form erlaubt es, lineare sowie nichtlineare
Probleme zu behandeln, und sie ist unabhängig von der zugrundeliegenden
(konformen, nicht-konformen, gemischten) Methode. Verwendet und analy-
siert wird einzig der Fehlerschätzer, welcher als Funktion der Triangulierung
betrachtet wird. Dieser Zugang ermöglicht es, Axiome zu formulieren, die
unabhängig von allen Annahmen an das konkrete Modell sind.

• Die Beweise für Konvergenz und Konvergenz mit optimaler Rate kom-
men ohne Effizienz des Fehlerschätzers aus. Effizienz wird in dieser Arbeit
nur verwendet, um die Approximationsklasse mittels Best-Approximations-
fehler und Datenfehler zu charakterisieren. Als Konsequenz davon und im
Unterschied zur gegenwärtigen Literatur hängt die obere Schranke für op-
timale Markierungsparameter nicht mehr von der Effizienzkonstante ab.

• Die Arbeit führt eine allgemeine Quasi-Galerkinorthogonalität ein, die
nicht nur hinreichend, sondern auch notwendig für die R-lineare Konver-
genz des Fehlerschätzers ist. Betrachtet man die optimale Konvergenzrate
des Fehlerschätzers bezüglich der Komplexität des Verfahrens (das heißt:
die Komplexität der Berechnung des aktuellen Schritts und die Komplexi-
tät aller vorausgegangenen Schritte), so stellt sich die R-lineare Konvergenz
selbst als notwendig heraus. Die optimale Komplexität wird dann als Kon-
sequenz der optimalen Konvergenzraten des Fehlerschätzers bewiesen.

• Schlussendlich behandelt diese Arbeit equivalente Fehlerschätzer, ap-
proximative Löser sowie inhomogene und gemischte Randdaten. Zusätzlich
wird eine neue Methode zur adaptiven Geometrie-Approximation für eine
spezielle Randelement-Methode eingeführt und deren Konvergenz bewie-
sen.
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Abstract. This work aims first at the development of an axiomatic frame-
work for the proof of optimal convergence rates for adaptive algorithms,
with the main field of application being the finite element method and the
boundary element method. Second, the axiomatic view allows refinements
of particular questions like the avoidance of (discrete) lower bounds, inex-
act solvers, inhomogeneous boundary data, or the use of equivalent error
estimators. Three axioms which are related to the estimator guarantee op-
timal convergence rates in terms of the error estimator for any refinement
strategy which satisfies additional three triangulation related axioms. Com-
pared to the state of the art in the literature (except for the recent own
work [24] which is partially generalized), the improvements of this work
can be summarized as follows:

• First, a general and completely abstract framework is presented which
covers the existing literature on rate optimality of adaptive algorithms. The
abstract analysis covers linear as well as nonlinear problems and is inde-
pendent of the underlying (conforming, non-conforming, or mixed) finite
element or boundary element method. Solely, the error estimator, consid-
ered as a function of the underlying triangulation, is used and analyzed.
This allows to formulate axioms which are not restricted to any concrete
model assumption.

• Second, efficiency of the error estimator is neither needed to prove
convergence nor quasi-optimal convergence behavior of the error estima-
tor. In this work, efficiency exclusively characterizes the approximation
classes involved in terms of the best-approximation error and data resolu-
tion. Therefore, the upper bound on the optimal marking parameters does
not depend on the efficiency constant.

• Third, some general quasi-Galerkin orthogonality is not only sufficient,
but also necessary for the R-linear convergence of the error estimator, which
turns out to be necessary itself when it comes to optimal complexity es-
timates. The latter means the optimality of the adaptive algorithm when
considering the overall cost of the algorithm (which includes the computa-
tion of all previous steps) and is proved as a by-product of rate optimality.

• Finally, the general analysis allows for equivalent error estimators and
inexact solvers as well as different non-homogeneous and mixed boundary
conditions and is even employed to prove convergence of some novel adap-
tive geometry approximation for a certain boundary element method.
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CHAPTER 1

Outline & Introduction

1.1. Adaptivity

In this work, adaptivity is understood as the property of some numerical algorithm to
adapt its behavior to the given instance of a problem. In contrast to that, a uniform algorithm
is assumed to show more or less the same behavior for any given problem in a certain class
for which the algorithm is designed. This means, that the algorithm uses a priori knowledge
of the problem only. One example for that difference is the numerical integration, i.e, the

approximation of
∫ 1

0
f(x) dx for some given function f : [0, 1] → R. A uniform algorithm

evaluates the function f at a priori determined grid points and computes an approximation.
An adaptive quadrature, on the other hand, tries to add grid points, where f appears to
be rough, and to remove grid points, where f appears to be smooth. This is done with the
overall goal of reducing the computational cost to reach a certain accuracy (see Figure 1 for
an example). The key difference of both approaches is that the uniform algorithm uses all
evaluations of f for the computation of the approximation. The adaptive algorithm, invests
some of the evaluations in the determination of better evaluation points. This strategy makes
only sense, if the additional investment of computational time pays at some point in terms
of an improved accuracy. Therefore, an adaptive algorithm is only useful, if the problem
at hand benefits from a non-uniform approach. In terms of the quadrature example above,
this is the case if one wants to design a black-box algorithm, which integrates a large class
of functions equally well in terms of accuracy, since for any particular function, one could
design an optimal grid of evaluation points a priori.

But also for very specific problems, an adaptive approach can make sense. An illustrative
example for this situation (which however is way beyond the current state of theory), is the
following: Assume one wants to predict how a car will deform under a front impact. It is
obvious that the front bumpers and the hood will suffer from major deformation and thus
require high computational accuracy. However, in low speed crashes, the strong cylinder
block could survive without any deformation and thus it suffices to compute how the cylinder
block translates and rotates within the car. This is, of course, much cheaper in terms of
computational time, than computing the local deformations of the block. For high speed
crashes, when even the cylinder block deforms, this might not be sufficiently accurate any
more. Therefore, a detailed computation is necessary. The particular threshold speed, which
separates those two cases, may not be known a priori. Hence, it might not be possible to
design a uniform algorithm, which uses only a priori knowledge of the problem, but still
computes the solution efficiently.

An often heard argument in favor of uniform algorithms is that computing power and
memory have become so cheap that one just increases the size of the computing facility, if a
given algorithm does not produce the desired accuracy. This argument is misleading for two
reasons: First, even the upgraded computers can benefit from an adaptive approach which
focuses the computational power on where it is needed most. Second, it might be not even
possible to reach a given accuracy just by upscaling the facilities. To illustrate that, assume
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Figure 1. Numerical integration of some given function with uniform grid
(left) and adaptively generated (grid).

that the approximation error (e.g., the quadrature error or the geometric differences of the
simulated crash compared to an actual crash test) behaves as a function of the degrees of
freedom of the discretized system, i.e.,

err(N) ≃ N−s

for some s > 0 and N ∈ N denoting the degrees of freedom (e.g., the number of evalua-
tion points). This is a very realistic assumption for many problem classes. Note that the
convergence rate s does not only depend on the problem itself, but also on the method of
approaching this problem. A quadrature algorithm which wastes computational time on
smooth parts of the integrand, will achieve a lower rate s′ < s. Furthermore, assume that
the computational time needed to compute the approximate solution is related to the degrees
of freedom in the sense of

time(N) ≃ N t seconds

for some t > 0 (for the direct solution of a densely populated linear system of N equations
we have, e.g., t = 3). If the exact solution is known, one can design custom made grids to
approximate the exact solution with some optimal rate sopt > 0, i.e.,

err(N) ≃ N−sopt.

Hence, to reach a desired accuracy of, e.g. 10−5, it suffices to use N ≈ 105/sopt degrees of
freedoms, when they are optimally distributed. In terms of computational time, we obtain

time ≃ 105t/sopt seconds.

Under realistic assumptions of the involved parameters, i.e., t = 1 (linear time) and sopt = 1
(e.g., lowest order finite element method), this results in

105 seconds ≈ 1 day.

However, it is entirely possible, that due to non-uniformities in the solution a uniform ap-
proach will reveal a reduced rate of convergence of s = 1/2 (due to degrees of freedom wasted
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for mostly uniform parts of the solution, whereas non-uniform parts lack the necessary res-
olution). Then, we end up with

1010 seconds ≈ 316 years.

Even increasing the computational power by an order of magnitude does not bring the
uniform approach anywhere near feasibility. This is the reason why the understanding of
adaptivity plays a crucial role.

The concept of adaptivity aims to provide a method which automatically, without user
intervention, reaches optimal convergence rates, i.e., s = sopt. Moreover, it aims to rigor-
ously prove that this optimal convergence is achieved for a given problem. The existing
literature on adaptivity focuses on very specific model problems (see the historical overview
in Section 2.8 for references), i.e., certain types of (elliptic) partial differential equations. In
contrast to that, this work provides a framework, sort of a construction guide, for adaptive
algorithms which realize optimal convergence rates. To that end, certain requirements on
the algorithm (later called axioms) are derived, which are sufficient and even necessary to
prove the optimal convergence behavior. This allows to apply the abstract theory to a large
number of model problems and particularly determines what are the key properties of an
optimally convergent adaptive algorithm. This might help in the design of new algorithms
for complex problems and situations.

1.2. An exemplary adaptive algorithm

This introductory section demonstrates an adaptive refinement algorithm for a very sim-
ple approximation problem. To that end, consider some function u ∈ L2(0, 1) and a partition
T of [0, 1] into compact intervals T ∈ T such that [0, 1] =

⋃
T∈T T . Let U(T ) ∈ P0(T ) denote

the L2-orthogonal projection of u onto the space of T -piecewise constant functions

P0(T ) :=
{
V ∈ L2(0, 1) : V |T ∈ R, for all T ∈ T

}

defined by

b(U(T ) , V ) :=

∫ 1

0

U(T )V dx =

∫ 1

0

uV dx for all V ∈ P0(T ). (1.2.1)

Suppose that one is interested in the weighted error measure

err(T ) :=
(∑

T∈T

|T |2‖u− U(T )‖2L2(T )

)1/2

= ‖h(T )(u− U(T ))‖L2(0,1),

where h(T )|T := |T | for all T ∈ T and |T | denotes the length of the interval T . This could
be of interest, if one wants to approximate the volume force of some second-order elliptic
PDE (which usually has to be approximated in the H−1(0, 1)-norm). Standard results show
that for u ∈ L2(0, 1) ⊂ H−1(0, 1) it holds ‖u− U(T )‖H−1(0,1) . err(T ).

Provided that u ∈ H1(0, 1), the Poincaré inequality proves that

err(T ) ≤ Capriori‖h(T )2u′‖L2(0,1) ≤ Capriori‖u′‖L2(0,1) max
T∈T

|T |2. (1.2.2)

Thus, the naive strategy is to uniformly reduce |T | in some sequence of partitions (T unif
ℓ )ℓ∈N0

such that maxT∈T unif
ℓ

|T | ≤ 2−ℓ. If u ∈ H1(0, 1), this results in a convergence rate of

‖u− U(T unif
ℓ )‖L2(0,1) . 2−2ℓ for all ℓ ∈ N0,

which one could call exponential convergence. The reason why we do not consider this as
exponential convergence, is because the number of steps ℓ has nothing to do with the degrees
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of freedom of the linear system (1.2.1). However, the computational effort involved to get
U(T unif

ℓ ) is directly related to the degrees of freedom, since the linear system (even if it
is diagonal in this case) has |T | many rows and columns (here |T | denotes the counting
measure, i.e., the number of elements). In terms of degrees of freedom, the convergence rate
decreases to

‖u− U(T unif
ℓ )‖L2(0,1) . |T unif

ℓ |−2 for all ℓ ∈ N0.

This shows algebraic convergence rate s = 2 if u ∈ H1(0, 1). If u has less regularity, e.g.,
u(x) := xα for some −1/2 < α < 1/2, the convergence rate is even slower, see Figure 2

for an example. However, one can construct graded partitions T grad
ℓ , such that the function

u(x) := xα can be approximated with rate s = 2. To that end, a uniform partition T unif
ℓ is

mapped via an appropriate function x 7→ xβ for β := 3/(2 + α), i.e., T grad
ℓ = (T unif

ℓ )β; see
Figure 2–3 for an example. Standard estimates prove

‖u− U(T grad
ℓ )‖L2(0,1) ≤ Cgrad|T grad

ℓ |−2 for all ℓ ∈ N0 (1.2.3)

for some uniform Cgrad > 0, even though the exact solution is not in H1(0, 1) for α < 1/2.
The ultimate goal of adaptivity is to automatically generate such partitions for a general class
of exact solutions u. To that end, the following algorithm is widely used in the literature:

Algorithm 1.2.1. Input: Initial partition T0 and bulk parameter 0 < θ ≤ 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Compute the refinement indicators ηT (Tℓ) := |T |‖u− U(Tℓ)‖L2(T ) for all T ∈ Tℓ.
(ii) Determine some set Mℓ ⊆ Tℓ of minimal cardinality such that

1

2

∑

T∈Tℓ

ηT (Tℓ)
2 ≤

∑

T∈Mℓ

ηT (Tℓ)
2. (1.2.4)

(iii) Define the next triangulation Tℓ+1 by bisection of all marked elements.

Output: Sequence of approximations U(Tℓ) for all ℓ ∈ N0.

Figure 2 shows the performance of this algorithm in terms of error reduction and Figure 3
plots the generated partitions Tℓ.

We aim to prove the observed convergence behavior of Algorithm 1.2.1 in Figure 2, i.e.,
the fact that err(Tℓ) . |Tℓ|−2 for all ℓ ∈ N0. To that end, we first prove a contraction
property of the error as illustrated in Figure 2, i.e.,

‖h(Tℓ+1)(u− U(Tℓ+1))‖L2(0,1) ≤ κ‖h(Tℓ)(u− U(Tℓ))‖L2(0,1) for all ℓ ∈ N0 (1.2.5)

for some 0 < κ < 1. This follows with the fact that bisection halves the element lengths and
that U(Tℓ)|T depends only on u|T by

‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(0,1)

= ‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(∪(Tℓ+1\Tℓ))
+ ‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(∪(Tℓ+1∩Tℓ))

≤ 1/4‖h(Tℓ)(u− U(Tℓ))‖2L2(∪(Tℓ+1\Tℓ))
+ ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪(Tℓ+1∩Tℓ))

≤ (1/4− 1)‖h(Tℓ)(u− U(Tℓ))‖2L2(∪(Tℓ+1\Tℓ))
+ ‖h(Tℓ)(u− U(Tℓ))‖2L2(0,1).

With the marking criterion (1.2.4), the fact that Mℓ = Tℓ \ Tℓ+1, and
⋃
(Tℓ \ Tℓ+1) =⋃

(Tℓ+1 \ Tℓ), this implies

‖h(Tℓ+1)(u− U(Tℓ+1))‖2L2(0,1) ≤ (1− (1− 1/4)/2)‖h(Tℓ)(u− U(Tℓ))‖2L2(0,1),
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partitions (right). Each row shows the nodes of a partition T grad
ℓ resp. Tℓ in

the interval [0, 1]. The height of the row indicates the number of elements in
the particular partition.

which is (1.2.5) with κ =
√
5/8 (see also Figure 2 for the comparison with the experimental

results). Hence, the error converges linearly to zero. This linear convergence is the backbone
of the optimality analysis. The next step is to compare the adaptively generated partitions
with some optimal partitions. As discussed above (and demonstrated in Figure 2), there

exist graded partitions T grad
ℓ , which realize the optimal convergence rate s = 2 in (1.2.3).

Hence, the necessary thing to do is to look at the difference of Tℓ and T grad
ℓ . To that end,
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the error is more or less equidistributed on the adaptive partitions, whereas
for the uniform partitions the error is concentrated around the singularity at
x = 0. In this example, there holds err(T34) ≈ 10−7 and err(T unif

10 ) ≈ 10−5.

choose the minimal k ∈ N such that

|T grad
k |−2 ≤ C−1

graderr(Tℓ)/4. (1.2.6)

For simplicity assume that k > 1 in this case. Minimality of k then implies |T grad
k−1 |−2 >

C−1
graderr(Tℓ)/4, i.e., |T grad

k−1 | < 2C
1/2
graderr(Tℓ)

−1/2. Since we have by construction |T grad
k | =

|T unif
k | = 2|T unif

k−1 | = 2|T grad
k−1 |, the minimality of k shows

|T grad
k | = 2|T grad

k−1 | ≤ 4C
1/2
graderr(Tℓ)

−1/2. (1.2.7)

The overlay of T grad
k and Tℓ gives some measure of the distance of those two partitions, i.e.,

T grad
k ⊕Tℓ :=

{
T ∩T ′ : T ∈ T grad

k , T ′ ∈ Tℓ, |T ∩T ′| > 0
}

is the coarsest common refinement

of Tℓ and T grad
k . Assume T0 ∈ (T grad

k ⊕ Tℓ) \ Tℓ. By definition, there exist T ∈ T grad
k and

T ′ ∈ Tℓ such that T0 = T ∩ T ′ and |T ∩ T ′| > 0. Moreover, since T is not in Tℓ, there holds
T 6⊆ T ′. This shows that there holds

(T grad
k ⊕ Tℓ) \ Tℓ =

{
T ∩ T ′ : T ∈ T grad

k , T ′ ∈ Tℓ, |T ∩ T ′| > 0, T ′ 6⊆ T
}
.

Since T ∈ T grad
k is an interval, there exist at most two T ′ ∈ Tℓ with |T ∩ T ′| > 0 and T ′ 6⊆ T

(the elements T ′ must contain at least one endpoint of T ). This, however, implies

|(T grad
k ⊕ Tℓ) \ Tℓ| = |

{
T ∩ T ′ : T ∈ T grad

k , T ′ ∈ Tℓ, |T ∩ T ′| > 0, T ′ 6⊆ T
}
|

≤ 2|T grad
k |.

(1.2.8)

On the other hand, each T ∈ Tℓ \ (T grad
k ⊕ Tℓ) has at least two sons T ′ ⊆ T with T ′ ∈

(T grad
k ⊕ Tℓ) \ Tℓ. This implies

|Tℓ \ (T grad
k ⊕ Tℓ)| ≤ |(T grad

k ⊕ Tℓ) \ Tℓ|. (1.2.9)
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Together with (1.2.7) this shows

|Tℓ \ (T grad
k ⊕ Tℓ)|

(1.2.8)

≤ 2|T grad
k |

(1.2.7)

≤ 8C
1/2
graderr(Tℓ)

−1/2. (1.2.10)

It remains to relate |(T grad
k ⊕Tℓ) \ Tℓ| to |Mℓ|. To that end, note that the element-wise best

approximation property U(Tℓ) shows

err(T grad
k ⊕ Tℓ) ≤ err(T grad

k )
(1.2.3)

≤ Cgrad|T grad
k |−2

(1.2.6)

≤ err(Tℓ)/4.

With err(T grad
k ⊕ Tℓ) = ‖h(T grad

k ⊕ Tℓ)(u− U(T grad
k ⊕ Tℓ))‖L2(0,1), this implies

err(Tℓ)
2 = ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪((T grad

k ⊕Tℓ)\Tℓ))

+ ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪((T grad
k ⊕Tℓ)∩Tℓ))

≤ ‖h(Tℓ)(u− U(Tℓ))‖2L2(∪((T grad
k ⊕Tℓ)\Tℓ))

+ ‖h(T grad
k ⊕ Tℓ)(u− U(T grad

k ⊕ Tℓ))‖2L2(0,1)

≤
∑

T∈Tℓ\(T
grad
k ⊕Tℓ)

ηT (Tℓ)
2 + err(Tℓ)

2/16.

(1.2.11)

Hence, we derive

1

2

∑

T∈Tℓ

ηT (Tℓ)
2 ≤ 15

16
err(Tℓ)

2 ≤
∑

T∈Tℓ\(T
grad
k ⊕Tℓ)

ηT (Tℓ)
2. (1.2.12)

Since Mℓ is a set of minimal cardinality with (1.2.4), we obtain

|Mℓ| ≤ |Tℓ \ (T grad
k ⊕ Tℓ)|

(1.2.10)

≤ 8C
1/2
graderr(Tℓ)

−1/2 for all ℓ ∈ N0.

By definition of the refinement in Step (iii) of Algorithm 1.2.1, there holds

|Tℓ| − |T0| =
ℓ−1∑

k=0

(|Tk+1| − |Tk|) =
ℓ−1∑

k=0

|Mk| ≤ 8C
−1/2
grad

ℓ−1∑

k=0

err(Tk)
−1/2.

By induction, the linear convergence (1.2.5) proves

err(Tℓ) ≤ κℓ−kerr(Tk).

Hence, by convergence of the geometric series, we obtain

ℓ−1∑

k=0

err(Tk)
−1/2 ≤ err(Tℓ)

−1/2
ℓ−1∑

k=0

κ(ℓ−k)/2 ≤ (1−√
κ)−1err(Tℓ)

−1/2.

Altogether, this yields

|Tℓ| − |T0| ≤ 8C
1/2
grad(1−

√
κ)−1err(Tℓ)

−1/2,

and we end up with convergence rate s = 2, i.e.,

err(Tℓ) ≤ (1−√
κ)−282Cgrad(|Tℓ| − |T0|)−2 for all ℓ ∈ N.

17



1.3. Discussion of the example

The sketch of the optimality proof above reveals certain interesting things. First, we
extensively used the fact that the error estimator

∑
T∈T ηT (T )2 and the error ‖h(T )(u −

U(T ))‖2L2(0,1) coincide for this example, since we approximate a known function. If one thinks

of u as the solution of some PDE, it is more likely that one computes the approximations
to u without knowing u itself (i.e., by solving a finite element system). Then, the error
estimator differs from the error, but can be related to it by reliability

err(T ) ≤ Crel

(∑

T∈T

ηT (T )2
)1/2

(1.3.1)

and/or efficiency

C−1
eff

(∑

T∈T

ηT (T )2
)1/2

≤ err(T ) + data(T ) (1.3.2)

for some uniform constants Crel, Ceff > 0 and some perturbation term data(T ), which often
depends on the given data.

The linear convergence (1.2.5) is an important tool for the analysis. To prove it, we used
that fact that U(Tℓ) satisfies the orthogonality

‖u− U(Tℓ)‖2L2(0,1) = ‖u− U(Tℓ+1)‖2L2(0,1) + ‖U(Tℓ+1)− U(Tℓ)‖2L2(0,1).

This identity holds only for the case of a bilinear form b(· , ·) which is a scalar product on
the given Hilbert space and hence restricts the applicability of the analysis.

The overlay estimate (1.2.8) bounds the difference between the optimal partition T grad
k

and the adaptively generated partition Tℓ. In the 1D case, the overlay estimate seems almost
trivial, however for 2D and 3D refinement strategies, it is not straightforward to prove, and
it is even wrong for some strategies (see Section 3.2.9 below for a counterexample for red-
green-blue refinement in 2D).

Finally, the identity

|Tℓ| − |T0| =
ℓ−1∑

k=0

|Mk|

is trivial in our case, but poses a real issue in the case of certain practical refinement strate-
gies. The main problem here is, that usual refinement strategies have to refine more elements
than only the marked ones, to keep the partition regular in a certain sense (e.g., avoidance of
hanging nodes; see Section 3.2 for details). Then, the question is how to bound the number
of refined elements by the number of marked elements.

Chapter 2 states exactly, what is necessary to prove optimal convergence rates for some
given problem in a very abstract and general framework and will thus focus on the error
estimator instead of the error.

1.4. Outline

This section states the main results of the following chapters and sections.
Chapter 2:

The chapter introduces an abstract framework for adaptive algorithms and formulates a
particular algorithm (Algorithm 2.2.1). Within this framework, the adaptive approximation
problem formulated in Section 2.2.3, is stated. This problem assumes a certain quantity η(·)
(the error estimator) which is a function of an underlying discretization (the triangulation).
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The goal is to drive the error estimator to zero as fast as possible, i.e., limℓ→∞ η(Tℓ) = 0
with optimal rate for a sequence of triangulations (Tℓ)ℓ∈N0. We state six axioms (E1)–(E3)
& (T1)–(T3) which determine the behavior of the adaptive algorithm and suffice to show
that optimal convergence rates are obtained, i.e.,

η(Tℓ) . |Tℓ|−s for all ℓ ∈ N0,

where |Tℓ| denotes the number of elements in the triangulation Tℓ and s > 0 denotes the
best possible convergence rate which is achievable for a particular problem. The latter is
the main result of this chapter and stated formally in Theorem 2.3.3. The axioms can
roughly be categorized into estimator related axioms (E1)–(E3) and triangulation related
axioms (T1)–(T3). The first category (E1)–(E3) can be paraphrased as follows:

(E1) Stability and reduction: The estimator is a Lipschitz continuous function of the
triangulation, and it is contractive up to a perturbation when the triangulation is
locally refined.

(E2) General quasi-orthogonality: The perturbation from (E1) is ℓ2-summable and also
bounded by the estimator on the coarsest triangulation.

(E3) Discrete reliability: The error estimator is a local upper bound of the perturbation
from (E1).

The triangulation related axioms (T1)–(T3) can be heuristically formulated as follows:

(T1) Son estimate: The refinement strategy increases the number of elements at most
linearly.

(T2) Closure estimate: The number of elements is bounded by the number of marked
elements.

(T3) Uniform approximability: The problem allows for a certain convergence rate.

Chapter 3:

This chapter applies the abstract theory from Chapter 2 to certain model problems. We
consider the conforming finite element method (FEM) for the Poisson problem with bisection
based refinement. The optimality result for general second-order elliptic PDEs marks the
main achievement of this chapter (Section 3.5.1). This includes also an adaptive algorithm for
problems which satisfy a Gårding inequality only, where the difficulty is, that the discrete
system is not necessarily solvable in each step (Section 3.5.2). Therefore, we propose an
algorithm which guarantees unique solvability after a finite number of steps. Moreover, we
consider non-linear problems with quite general coefficients. Altogether, we prove optimality
results for the following problem classes:

• FEM for the Poisson problem (Consequence 3.4.2),
• FEM for general second-order elliptic PDEs with

– ellipticity estimate (Consequence 3.5.2),
– Gårding inequality (Consequence 3.5.15),
– non-linear coefficients (Consequence 3.6.5),

• boundary element method (BEM) for
– weakly-singular integral equation (Consequence 3.4.6),
– hyper-singular integral equation (Consequence 3.4.8–3.4.9).

Chapter 4:

This chapter extends the abstract theory of Chapter 2 to equivalent error estimators, where
Theorem 4.3.1 states the main result. We consider error estimators which satisfy the axioms
only in average, but not in every single step of the adaptive algorithm. This abstract setting
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covers inexact solve, i.e., the case of iterative solvers, where instead of the error estimator
only an approximation

η̃(T ) ≈ η(T )

is computed but the axioms are only satisfied for the exact error estimator. Moreover, we
cover estimators which are equivalent to some weighted error estimator, i.e.,

η̃(T ) ≃ ‖h(T )res(T )‖,
where h(T ) is a triangulation related weight function and res(·) is some quantity which mea-
sures the error in the appropriate norm, e.g., the residual in case of a weighted-residual error
estimator. To that end, we exploit certain properties which are automatically satisfied by
weighted error estimators and develop a super contractive weight function (Proposition 4.5.4)
which enables us to control the equivalence constants.

Chapter 5:

This chapter applies the extended theory of Chapter 4 to certain model problems. The main
result of this section is the incorporation of inhomogeneous boundary data into the FEM
optimality analysis. This is possible by use of the super contractive weight function from
Chapter 4 in combination with the Scott-Zhang projection. Altogether, we consider the
following problems:

• FEM for non-residual error estimators in the frame of the Poisson problem (Conse-
quence 5.2.3–5.2.11),

• FEM for the p-Laplacian (Consequence 5.3.3),
• FEM for non-trivial boundary conditions (Consequence 5.4.3).

Chapter 6:

This chapter steps out of the line of the other chapters, as we introduce a new adaptive
algorithm (Algorithm 6.2.2) for the solution of integral equations on piecewise smooth ge-
ometries. The idea is to approximate the exact geometry with piecewise affine line segments
and to solve a standard BEM problem on the approximate geometry. A posteriori analysis
for this kind of problem is available for FEM, but is missing entirely for BEM, where very
different techniques are necessary. We introduce an error estimator

η(T )2 = ρ(T )2 + geo(T )2,

where ρ(T ) is a standard residual error estimator for the weakly singular integral equation
on piecewise affine geometries and geo(T ) is a geometric error estimator which measures
the approximation quality of the approximate geometry. We prove that the error estima-
tor provides an upper error bound and use this to prove convergence of the corresponding
adaptive algorithm (Consequence 6.4.2). The convergence proof is done within the frame of
Chapter 2. Although we are convinced that optimal convergence rates are possible with the
given algorithm, the proof requires additional ideas which are beyond the scope of this work.

Chapter 7:

The final chapter is focused on the general quasi-orthogonality (E2). The reason for this
is that for many problem classes (e.g., for non-symmetric or non conforming approaches)
the general quasi-orthogonality is the most difficult axiom to verify. We show that the
general quasi-orthogonality holds for the non-symmetric and non-linear example problems
in Chapter 3.
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CHAPTER 2

Abstract Theory

2.1. Introduction, state of the art & outline

The purpose of this chapter is to find an abstract framework within, e.g., the results of the
introductory chapter can be reproduced. The reproduction of existing results is, of course,
not the main reason for developing the abstract framework. The abstract point of view
sheds new light on this terrain and enables us to prove new results for a very general class of
problems (as is demonstrated in the applications of Chapter 3, 5, 6). To that end, we abandon
the framework of exact solutions and their discrete approximations and focus completely
on the error estimator. The function η(·) can be seen as a function on the underlying
triangulations with some specific properties. Then, the goal of the adaptive algorithm is to
manipulate the triangulation in such a way, that the error estimator converges to zero as fast
as possible. An immediate consequence of this viewpoint is that it removes the need for the
lower error bound (1.3.2). An earlier version of this abstract framework can be found in [24].
However, this work takes one step further into the abstraction of the concrete problems. This,
for example, enables us to prove optimal convergence rates of the adaptive algorithm for
refinement strategies which do not satisfy the overlay property (1.2.8) (e.g., red-green-blue
refinement). Moreover, the conditions (axioms) which we derive in this chapter turn out to
be sufficient for optimal convergence rates, and, under realistic assumptions, even necessary.
Therefore, we obtain explicit criteria which determine if a given problem or problem class
will reveal optimal convergence behavior. For the state of the art in the literature, we refer
the reader to the historic overview of Section 2.8. The remainder of this chapter is organized
as follows: Section 2.2 describes the abstract framework which is necessary to formulate
the axioms. This includes a formal definition of the error estimator, the triangulations,
the approximation problem of driving the estimator to zero, and the adaptive algorithm to
solve the approximation problem. Section 2.3 states the main theorem (Theorem 2.3.3) of
this chapter as well as the axioms which are then used to prove optimal convergence rates.
Section 2.4–2.5 give alternative approximation problems (optimal convergence of the error
and optimal complexity in terms of computational work) and state the respective results.
Section 2.6 proves that the axioms are not only sufficient, but even necessary for proving
optimal convergence rates. Section 2.7 demonstrates certain problem classes, for which one
or more of the axioms are a priori satisfied. Finally, Section 2.8 concludes with a historic
overview and motivates the particular choice of axioms in Section 2.3.1.

2.2. Abstract setting

This section is devoted to the definition of the problem and the precise statement of the
adaptive algorithm.

2.2.1. Triangulations. Let T∞ be a countable set. Each finite subset T ⊆ T∞ with
|T | < ∞ elements is called a triangulation. Let T be a set of triangulations (which is
countable since the set of all triangulations is countable) with the corresponding refinement
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strategy T(·, ·) :
{
(T ,M) : T ∈ T, M ⊆ T

}
→ T. This is a function which satisfies

T(T ,M) ∩ M = ∅ for all M ⊆ T and all T ∈ T. Here, M is called the set of marked

elements. Given T ∈ T, define T(T ) ⊆ T such that T̂ ∈ T(T ) if and only if there exists a

sequence of triangulations T0 = T , T1, . . . , Tℓ = T̂ as well as a sequence of marked elements
M0, . . . ,Mℓ−1 with Mj ⊆ Tj for all j = 0, . . . , ℓ − 1 such that Tj+1 = T(Tj ,Mj) for all
j = 0, . . . , ℓ− 1. We call T(T ) the set of refinements of T . We assume that there exists an

initial triangulation T0 ∈ T such that T(T0) = T. Additionally, we assume that T ∈ T̂ ∩ T
if and only if T ∈ Tj for all j = 0, . . . , ℓ.

The subset of all refinements which have at most N ∈ N elements more than a triangu-
lation T ∈ T reads

T(T , N) :=
{
T̂ ∈ T(T ) : |T̂ \ T | ≤ N

}
,

where | · | = card(·) is the counting measure. Since each triangulation T ∈ T allows for
at most 2|T | sets of marked elements, there holds |T(T , N)| < ∞. Moreover, we write
T(N) := T(T0, N).

2.2.2. Error estimator. The error estimator is a function η(·) : T → ⋃
T ∈T[0,∞)T

(where AB denotes the set of functions mapping B to A) with η(T ) : T → [0,∞) for all
T ∈ T. By ηT (T ) for some T ∈ T , we denote the evaluation of the function η(·)(T ) := η(T ).

For brevity of notation, we also write η(T ) :=
(∑

T∈T ηT (T )2
)1/2 ≥ 0, which is the global

error estimator.

2.2.3. Adaptive approximation problem. The goal of the adaptive approximation
problem is to find a sequence of triangulations Tℓ, ℓ ∈ N0 such that

sup
ℓ∈N0

η(Tℓ)(|Tℓ|+ 1)s <∞

for s > 0 as large as possible. This implies that the error estimator converges to zero with
rate s, i.e., there exists a constant C > 0 such that

η(Tℓ) ≤ C|Tℓ|−s for all ℓ ∈ N0.

2.2.4. Adaptive algorithm. The algorithm to solve the adaptive approximation prob-
lem from Section 2.2.3 reads

Algorithm 2.2.1. Input: Initial triangulation T0 and bulk parameter 0 < θ ≤ 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Compute refinement indicators ηT (Tℓ) for all T ∈ Tℓ.
(ii) Determine set Mℓ ⊆ Tℓ of (up to the multiplicative constant Cmin) minimal cardi-

nality such that

θ η(Tℓ)
2 ≤

∑

T∈Mℓ

ηT (Tℓ)
2. (2.2.1)

(iii) Define the next triangulation Tℓ+1 := T(Tℓ,Mℓ).

Output: Error estimators η(Tℓ) for all ℓ ∈ N0.

Remark 2.2.2. Suppose that Sℓ ⊆ Tℓ is some (not necessarily unique) set of minimal
cardinality which satisfies the Dörfler marking criterion (2.2.1). In step (iii) the phrase up
to the multiplicative constant minimal cardinality means that |Mℓ| ≤ Cmin |Sℓ| with some
ℓ-independent constant Cmin ≥ 1.
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Remark 2.2.3. A greedy algorithm for (2.2.1), sorts the elements Tℓ = {T1, . . . , TN}
such that ηT1(Tℓ) ≥ ηT2(Tℓ) ≥ . . . ≥ ηTN

(Tℓ) and takes the minimal 1 ≤ J ≤ N such that

θη(Tℓ)
2 ≤ ∑J

j=1 ηTj
(Tℓ)

2. This results in logarithmic-linear growth of the complexity. The
relaxation to almost minimal cardinality of Mℓ allows to employ a sorting algorithm based
on binning so that Mℓ in (2.2.1) can be determined in linear complexity [78, Section 5] with
Cmin = 2.

Remark 2.2.4. Small adaptivity parameters 0 < θ ≪ 1 lead to only few marked ele-
ments and so to possibly very local refinements. The other extreme, θ = 1, basically leads to
uniform refinement, where (almost) all elements are refined.

2.2.5. Approximability. Given T ∈ T and s > 0, define

‖η,T(T )‖s := sup
N∈N0

min
T̂ ∈T(T ,N)

((N + 1)sη(T̂ )). (2.2.2)

The fact ‖η,T(T )‖s <∞ implies that there exists a sequence of triangulations (T opt
ℓ )ℓ∈N in

T(T ) which satisfies convergence

lim
ℓ→∞

η(T opt
ℓ ) = 0

and the convergence rate

η(T opt
ℓ ) . (|T opt

ℓ \ T |)−s for all ℓ ∈ N.

Remark 2.2.5. The quantity ‖η,T(T )‖s measures how fast the error estimator can be
driven to zero when starting from the triangulation T . The main interest, of course, lies in
the approximability when starting from the initial triangulation ‖η,T‖s.

2.3. The axioms

This section introduces the set of axioms and states the main result (Theorem 2.3.3) derived
from these axioms. In the following, Tℓ denotes a triangulation generated in the ℓ-th step of
Algorithm 2.2.1.

2.3.1. Set of axioms. The following axioms (E1)–(E3), (T1)–(T3) act on the function
η(·) : T → ⋃

T ∈T

(
[0,∞)T

)
with η(T ) : T → [0,∞) for all T ∈ T, some perturbation function

̺(·, ·) : T× T → [0,∞), T(·) : T → 2T, and involve the set T as well as the constants s > 0,
Cdrel, Cref , Cqo, Cson, Cclosure ≥ 1, 0 < κdlr ≤ ∞, and 0 ≤ ρred, εqo, εdrel < 1.

(E1) Stability and reduction: For all refinements T̂ ∈ T(T ) of a triangulation T ∈ T,

there exist sets S(T , T̂ ) ⊆ T and Ŝ(T , T̂ ) ⊆ T̂ with T \ T̂ ⊆ S(T , T̂ ) such
that (E1a)–(E1b) hold

(a)
∣∣∣
( ∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2
)1/2

−
( ∑

T∈T \S(T ,T̂ )

ηT (T )2
)1/2∣∣∣ ≤ ̺(T , T̂ ),

(b)
∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 ≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + ̺(T , T̂ )2.

(E2) General quasi-orthogonality: There holds

0 ≤ εqo < sup
δ>0

1− (1 + δ)(1− (1− ρred)θ)

2 + δ−1
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and the sequence of triangulations (Tℓ)ℓ∈N0 from Algorithm 2.2.1 satisfies for all
ℓ, N ∈ N0

ℓ+N∑

k=ℓ

(
̺(Tk, Tk+1)

2 − εqoη(Tk)
2
)
≤ Cqo η(Tℓ)

2.

(E3) Discrete reliability: For all refinements T̂ ∈ T(T ) of a triangulation T ∈ T with

η(T̂ ) ≤ κdlrη(T ), there exists a subset R(T , T̂ ) ⊆ T with S(T , T̂ ) ⊆ R(T , T̂ ) and

|R(T , T̂ )| ≤ Cref |T \T̂ | such that

̺(T , T̂ )2 ≤ εdrelη(T )2 + C2
drel

∑

T∈R(T ,T̂ )

ηT (T )2.

(T1) Son estimate: The sequence of triangulations (Tℓ)ℓ∈N0 from Algorithm 2.2.1 satis-
fies |Tℓ+1| ≤ Cson|Tℓ| for all ℓ ∈ N0.

(T2) Closure estimate: The sequence of triangulations (Tℓ)ℓ∈N0 from Algorithm 2.2.1

satisfies |Tℓ \ T0| ≤ Cclosure

∑ℓ−1
j=0 |Mj| for all ℓ ∈ N0.

(T3) Uniform approximability: The sequence of triangulations (Tℓ)ℓ∈N0 from Algo-
rithm 2.2.1 satisfies Capprox(s) := supℓ∈N0

‖η,T(Tℓ)‖s <∞ for all ℓ ∈ N0.

Definition 2.3.1. We say that a certain subset of the axioms defined above A ⊆
{(E1), . . . , (E3), (T1), . . . , (T3)} is satisfied, if the error estimator η(·) and the refinement
strategy T(·) (which are clear from the context if not mentioned otherwise) allow for the
necessary functions and constants from Section 2.3.1, which are involved in the axioms of
A, to exist.

Remark 2.3.2. Proposition 2.6.2 below shows that general quasi-orthogonality (E2)
together with (E1) implies (E2) even with εqo = 0 and 0 < Cqo <∞.

2.3.2. Optimal convergence rates for the error estimator. The main results of
this Section state convergence and optimality of the adaptive algorithm in the sense that
the error estimator converges with optimal convergence rate. This is a generalization of
existing results as discussed in Section 2.4. On the other hand, Theorem 2.3.3 (iii) shows
that the adaptive algorithm characterizes the approximability of a problem in the sense of
Section 2.2.5.

Theorem 2.3.3. (i) Suppose (E1) is satisfied and assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0.
Then, for all 0 < θ ≤ 1, the estimator is convergent in the sense

lim
ℓ→∞

η(Tℓ) = 0. (2.3.1)

(ii) Suppose (E1)–(E2) are satisfied. Then, for all 0 < θ ≤ 1, the estimator is R-linear
convergent in the sense that there exists 0 < ρconv < 1 and Cconv > 0 such that

η(Tℓ+j)
2 ≤ Cconvρ

j
conv η(Tℓ)

2 for all j, ℓ ∈ N0. (2.3.2)

(iii) Suppose (E1)–(E3) and (T1)–(T3) are satisfied for some s > 0. Then 0 < θ <
θ⋆ := (1−εdrel)/(1+C2

drel) implies quasi-optimal convergence of the estimator in the
sense of

coptCapprox(s) ≤ sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s
≤ CoptCapprox(s), (2.3.3)

where the lower bound requires only (T1) to hold.
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The constants Cconv, ρconv > 0 depend only on ρred, Cqo, εqo, and on θ. The constant Copt > 0
depends additionally on Cmin, Cref , Cclosure, Cdrel, εdrel, and on s, while copt > 0 depends only
on Cson and |T0|.

Remark 2.3.4. The upper bound in (2.3.3) states that given Capprox(s) < ∞, the
estimator sequence η(Tℓ) of Algorithm 2.2.1 will decay with order s, i.e., if a decay with
order s is possible if the optimal triangulations are chosen, this decay will in fact be realized
by the adaptive algorithm. The lower bound in (2.3.3) states that the asymptotic convergence
rate of the estimator sequence characterizes the theoretically optimal convergence rate.

2.3.3. Estimator reduction and convergence of η(Tℓ). We start with the obser-
vation that stability (E1a) and reduction (E1b) lead to a perturbed contraction of the error
estimator in each step of the adaptive loop.

Lemma 2.3.5. Let 0 < θ ≤ 1 and let T̂ ∈ T(T ) denote a refinement of T ∈ T such
that

θη(T )2 ≤
∑

T∈S(T ,T̂ )

ηT (T )2. (2.3.4)

Then, the following relaxation of (E1a)
( ∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2
)1/2

≤
( ∑

T∈T \S(T ,T̂ )

ηT (T )2
)1/2

+ ̺(T , T̂ ) (2.3.5)

and reduction (E1b) imply the estimator reduction

η(T̂ )2 ≤ ρest η(T )2 + Cest ̺(T̂ , T )2 (2.3.6)

with the constants 0 < ρest < 1 and Cest > 0 which relate via

ρest = (1 + δ)(1− (1− ρred)θ) and Cest = 2 + δ−1 (2.3.7)

for all sufficiently small δ > 0 such that ρest < 1. This particularly implies

η(Tℓ+1)
2 ≤ ρest η(Tℓ)

2 + Cest ̺(Tℓ, Tℓ+1)
2 (2.3.8)

for all ℓ ∈ N0.

Proof. The Young inequality together with stability (2.3.5) and reduction (E1b) shows
for each δ > 0 and Cest = 2 + δ−1 that

η(T̂ )2 =
∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 +
∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2

≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + (1 + δ)
∑

T∈T \S(T ,T̂ )

ηT (T )2 + Cest̺(T , T̂ )2.

Therefore, the Dörfler marking (2.3.4) leads to

η(T̂ )2 ≤ (1 + δ)
(
η(T )2 − (1− ρred)

∑

T∈S(T ,T̂ )

ηT (T )2
)
+ Cest̺(T , T̂ )2

≤ (1 + δ)
(
1− (1− ρred)θ

)
η(T )2 + Cest̺(T , T̂ )2.

The choice of a sufficiently small δ > 0 allows for ρest = (1 + δ)
(
1 − (1 − ρred)θ

)
< 1.

This shows (2.3.6). By definition of the refinement strategy T(·, ·) in Section 2.2.1, there
holds Mℓ ⊆ Tℓ \ Tℓ+1 ⊆ S(Tℓ, Tℓ+1). Hence, Dörfler marking (2.2.1) for Mℓ implies Dörfler
marking (2.3.4) for S(Tℓ, Tℓ+1). This concludes the proof. �
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The estimator reduction concept used in the the following proof is studied in [5] and
applies to a general class of problems and error estimators.

Lemma 2.3.6. Suppose that the estimator satisfies estimator reduction (2.3.8) and sup-
pose that

lim
ℓ→∞

̺(Tℓ, Tℓ+1) = 0.

Then, there holds estimator convergence in the sense limℓ→∞ η(Tℓ) = 0.

Proof. Mathematical induction on ℓ proves with (2.3.8) for all ℓ ∈ N0

η(Tℓ+1)
2 ≤ ρℓ+1

est η(T0)
2 + Cest

ℓ∑

j=0

ρℓ−j
est ̺(Tj , Tj+1)

2

≤ η(T0)
2 + Cest sup

j∈N0

̺(Tj , Tj+1)
2

ℓ∑

j=0

ρℓ−j
est

≤ η(T0)
2 + Cest sup

j∈N0

̺(Tj , Tj+1)
2(1− ρest)

−1.

(2.3.9)

The assumption ̺(Tℓ, Tℓ+1) → 0 implies supℓ∈N η(Tℓ) <∞. Moreover, (2.3.8) yields

lim sup
ℓ→∞

η(Tℓ+1)
2 ≤ lim sup

ℓ→∞

(
ρest η(Tℓ)

2 + Cest ̺(Tℓ, Tℓ+1)
2
)

= ρest lim sup
ℓ→∞

η(Tℓ+1)
2.

This shows lim supℓ→∞ η(Tℓ)
2 = 0, and hence elementary calculus proves convergence η(Tℓ) →

0. �

Proof of Theorem 2.3.3 (i). Lemma 2.3.6 is applicable and concludes the proof. �

2.3.4. Uniform R-linear convergence of η(Tℓ) on any level. The general quasi-
orthogonality (E2) allows to improve (2.3.1) to R-linear convergence on any level. To that
end, we prove the following auxiliary lemma.

Remark 2.3.7. The term uniform R-linear convergence on any level needs some ex-
planation. A sequence (ak)k∈N0 is said to converge (Q-)linearly to zero, if

lim sup
k→∞

|ak+1|
|ak|

= q < 1.

A sequence (bk)k∈N0 is said to converge R-linearly to zero if there exists a Q-linearly conver-
gent sequence (ak)k∈N0 with

|bk| ≤ |ak| for all k ∈ N0. (2.3.10)

The R stands for root, since the definition above is equivalent to

lim sup
k→∞

|bk|1/k = q < 1. (2.3.11)

To see that, note that (2.3.10) implies (2.3.11) since |ak| ≤ qk−k0|ak0| for all k ≥ k0 and
some sufficiently large k0 ∈ N. On the other hand, (2.3.11) implies (2.3.10) with ak :=
(supj≥k |bj |1/j)k.
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Uniform R-linear convergence on any level of a sequence (bk)k∈N0 (in the following denoted
by R-linear convergence) means that there exists a constant C > 0 and some 0 < q < 1 such
that

|bℓ+k| ≤ Cqk|bℓ| for all ℓ, k ∈ N0.

This particularly implies (2.3.11) for all sequences (bk+ℓ)k∈N0, ℓ ∈ N0.

Lemma 2.3.8. Given a real sequence (aℓ)ℓ∈N0 with aℓ ≥ 0 for all ℓ ∈ N0 such that aℓ = 0
implies ak = 0 for all k ≥ ℓ. Then, the statements (i)–(iii) are pairwise equivalent.

(i) Uniform summability: There exists a constant C1 > 0 such that
∞∑

k=ℓ+1

a2k ≤ C1a
2
ℓ for all ℓ ∈ N0. (2.3.12)

(ii) Inverse summability: For all s > 0, there exists a constant C2 > 0 such that

ℓ−1∑

k=0

a
−1/s
k ≤ C2a

−1/s
ℓ for all ℓ ∈ N with aℓ > 0. (2.3.13)

(iii) Uniform R-linear convergence on any level: There exist constants 0 < ρ1 < 1 and
C3 > 0 such that

a2ℓ+k ≤ C3ρ
k
1 a

2
ℓ for all k, ℓ ∈ N0. (2.3.14)

The relation between the respective constants is given by

C2 ≤
C

1/(2s)
3

1− ρ
1/(2s)
1

, ρ1 ≤
C1

1 + C1
, C3 ≤ 1 + C1,

C1 ≤
C3ρ1
1 + ρ1

, ρ1 ≤
( C2

1 + C2

)2s
, C3 ≤ (1 + C2)

2s.

(2.3.15)

Proof. For sake of simplicity, we show the equivalence of (i)–(iii) by proving the equiv-
alences (iii) ⇐⇒ (i) and (iii) ⇐⇒ (ii).

For the proof of the implication (iii) ⇒ (i), suppose (iii) and use the convergence of the
geometric series to see

∞∑

k=ℓ+1

a2k ≤ C3a
2
ℓ

∞∑

k=ℓ+1

ρk−ℓ
1 = C3ρ1(1− ρ1)

−1a2ℓ .

This proves (i) with C1 = C3ρ1(1− ρ1)
−1.

Similarly, the implication (iii) ⇒ (ii) follows via

ℓ−1∑

k=0

a
−1/s
k ≤ C

1/(2s)
3 a

−1/s
ℓ

ℓ−1∑

k=0

ρ
(ℓ−k)/(2s)
1

≤ C
1/(2s)
3 (1− ρ

1/(2s)
1 )−1a

−1/s
ℓ .

This shows (ii) with C2 = C
1/(2s)
3 (1− ρ

1/(2s)
1 )−1.

For the proof of the implication (i) ⇒ (iii), suppose (i) and conclude

(1 + C−1
1 )

∞∑

j=ℓ+1

a2j ≤
∞∑

j=ℓ+1

a2j + a2ℓ =

∞∑

j=ℓ

a2j .
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By mathematical induction, this implies
∞∑

j=ℓ+k

a2j ≤ (1 + C−1
1 )−1

∞∑

j=ℓ+k−1

a2j ≤ (1 + C−1
1 )−k

∞∑

j=ℓ

a2j

and hence

a2ℓ+k ≤
∞∑

j=ℓ+k

a2j ≤ (1 + C−1
1 )−k

∞∑

j=ℓ

a2j

≤ (1 + C1)(1 + C−1
1 )−ka2ℓ .

This proves (iii) with ρ1 = (1 + C−1
1 )−1 and C3 = (1 + C1).

The implication (ii) ⇒ (iii) follows analogously. To that end, assume aℓ+k > 0. Then,
there holds

(1 + C−1
2 )

ℓ−1∑

j=0

a
−1/s
j ≤

ℓ∑

j=0

a
−1/s
j .

Mathematical induction shows then shows
ℓ∑

j=0

a
−1/s
j ≤ (1 + C−1

2 )−1

ℓ+1∑

j=0

a
−1/s
j ≤ (1 + C−1

2 )−k

ℓ+k∑

j=0

a
−1/s
j

and hence

a
−1/s
ℓ ≤

ℓ∑

j=0

a
−1/s
j ≤ (1 + C−1

2 )−k

ℓ+k∑

j=0

a
−1/s
j

≤ (1 + C2)(1 + C−1
2 )−ka

−1/s
ℓ+k .

With the assumption that aℓ+k = 0 implies aℓ+k+n = 0 for all n ∈ N0, this proves a2ℓ+k ≤
(1 + C2)

2s(1 + C−1
2 )−2ska2ℓ for all ℓ, k ∈ N0. This is (iii) with ρ1 = (1 + C−1

2 )−2s and
C3 = (1 + C2)

2s. �

Proposition 2.3.9. Suppose estimator reduction (2.3.8). Then, general quasi-ortho-
gonality (E2) implies (2.3.12)–(2.3.14) with aℓ = η(Tℓ) for all ℓ ∈ N0. The constant C1 > 0
depends only on ρest, Cest, and εqo, whereas the constants C2, C3 > 0, and 0 < ρ1 < 1 are
given by (2.3.15).

Proof. In the following, the general quasi-orthogonality (E2) implies each the state-
ments (2.3.12)–(2.3.14) since (E2) implies (2.3.12). To that end, the estimator reduc-
tion (2.3.8) from Lemma 2.3.5 yields for any ν > 0 that

ℓ+N+1∑

k=ℓ+1

η(Tk)
2 ≤

ℓ+N+1∑

k=ℓ+1

(
ρestη(Tk−1)

2 + Cest̺(Tk−1, Tk)
2
)

=
ℓ+N+1∑

k=ℓ+1

(
(ρest + ν)η(Tk−1)

2 + Cest

(
̺(Tk−1, Tk)

2 − νC−1
est η(Tk−1)

2
))
.

(2.3.16)

With the constants ρest and Cest from (2.3.7), the constraint on εqo in (E2) reads

0 ≤ εqo <
1− ρest
Cest

≤ sup
δ>0

1− (1 + δ)(1− (1− ρred)θ

2 + δ−1
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for some choice of δ > 0. Note that this choice is valid since ρest < 1. In particular, it exists
ν < 1− ρest such that εqo ≤ νC−1

est . This allows to apply general quasi-orthogonality (E2) to
the last term of (2.3.16), i.e.,

ℓ+N+1∑

k=ℓ+1

̺(Tk−1, Tk)
2 − νC−1

est η(Tk−1)
2 ≤ Cqoη(Tℓ)

2. (2.3.17)

The combination of (2.3.16)–(2.3.17) and passing to the limit N → ∞ proves

∞∑

k=ℓ+1

η(Tk)
2 ≤

∞∑

k=ℓ+1

(ρest + ν)η(Tk−1)
2 + CestCqoη(Tℓ)

2.

Some rearrangement leads to

(1− (ρest + ν))

∞∑

k=ℓ+1

η(Tk)
2 ≤ (ρest + ν + CestCqo)η(Tℓ)

2.

This shows that aℓ := η(Tℓ) satisfies that aℓ = 0 implies ak = 0 for all k ≥ ℓ. Hence, we
have (2.3.12) with C1 = (ρest + ν + CestCqo)/(1− (ρest + ν)) and conclude the proof of (E2)
⇒ (2.3.12). Lemma 2.3.8 yields the equivalence (2.3.12)–(2.3.14). �

Proof of Theorem 2.3.3, (ii). Stability and reduction (E1) guarantee estimator re-
duction (2.3.8) for η(Tℓ) by Lemma 2.3.5. Together with quasi-orthogonality (E2), Proposi-
tion 2.3.9 shows (2.3.14) for aℓ = η(Tℓ). This proves Theorem 2.3.3 (ii) with Cconv = C3 and
ρconv = ρ1. �

2.3.5. Optimality of Dörfler marking. Theorem 2.3.3 (i)–(ii) state that Dörfler
marking (2.2.1) essentially guarantees limℓ→∞ η(Tℓ) = 0 or even R-linear convergence to
zero. The next statement asserts the converse.

Proposition 2.3.10. Let T̂ ∈ T(T ) denote a refinement of T ∈ T. Stability (E1a)
and discrete reliability (E3) imply that for all 0 < θ0 < θ⋆ := (1 − εdrel)/(1 + C2

drel), there
exists some 0 < κ0 < min{κdlr, 1} such that

η(T̂ )2 ≤ κ0η(T )2 =⇒ θ η(T )2 ≤
∑

T∈R(T ,T̂ )

ηT (T )2 (2.3.18)

holds for all 0 < θ ≤ θ0, where S(T , T̂ ) ⊆ R(T , T̂ ) ⊆ T with |T \ T̂ | ≤ |R(T , T̂ )| ≤
Cref |T \ T̂ | from (E3). The constant κ0 depends only on Cdrel, εdrel, and θ0.

Remark 2.3.11. Note that the proof requires (E3) to hold only for the particular T
and T̂ in (2.3.18).

Proof. The Young inequality and stability (E1a) show, for any δ > 0, that

η(T )2 =
∑

T∈S(T ,T̂ )

ηT (T )2 +
∑

T∈T \S(T ,T̂ )

ηT (T )2

≤
∑

T∈S(T ,T̂ )

ηT (T )2 + (1 + δ−1)
∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2 + (1 + δ)̺(T , T̂ )2.
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Recall S(T , T̂ ) ⊆ R(T , T̂ ) by (E3). The application of the discrete reliability (E3) and the

assumption η(T̂ )2 ≤ κ0η(T )2 yield

η(T )2 ≤ (1 + δ−1)κ0η(T )2 + (1 + δ)εdrelη(T )2

+
(
1 + (1 + δ)C2

drel

) ∑

T∈R(T ,T̂ )

ηT (T )2.

Some rearrangement of those terms reads

1− (1 + δ−1)κ0 − (1 + δ)εdrel
1 + (1 + δ)C2

drel

η(T )2 ≤
∑

T∈R(T ,T̂ )

ηT (T )2.

Recall εdrel < 1 by (E3), choose δ > 0 sufficiently small, and determine 0 < κ0 < 1 such that

θ0 ≤
1− (1 + δ−1)κ0 − (1 + δ)εdrel

1 + (1 + δ)C2
drel

<
1− εdrel
1 + C2

drel

= θ⋆. (2.3.19)

�

The next result is a variant of Proposition 2.3.10 which is not actually needed in the
forthcoming analysis. However, we include it for completeness.

Corollary 2.3.12. Let T̂ ∈ T(T ) denote a refinement of T ∈ T. For all 0 < κ0 <
1 with κ0 ≤ κdlr, there exists a constant 0 < θ0 < 1 and some 0 < ε0 < 1 such that
stability (E1a), discrete reliability (E3) with εdrel ≤ ε0, and 0 < θ ≤ θ0 imply (2.3.18). The
constants θ0, ε0 depend only on Cdrel and κ0.

Proof. For arbitrary 0 < κ0 < 1 with κ0 ≤ κdlr choose δ, ε0 > 0 sufficiently small such
that (2.3.19) becomes

θ0 :=
1− (1 + δ−1)κ0 − (1 + δ)εdrel

1 + (1 + δ)C2
drel

≥ 1− (1 + δ−1)κ0 − (1 + δ)ε0
1 + (1 + δ)C2

drel

> 0.

As in the proof of Proposition 2.3.10, this concludes (2.3.18). �

2.3.6. Quasi-optimality of adaptive algorithm. This section proves optimal con-
vergence rates for the estimator and thereby renders the theoretical heart of the proof of
Theorem 2.3.3 (iii).

Lemma 2.3.13. Let T ∈ T such that η(T ) > 0. Then, for s > 0 with ‖η,T(T )‖s <∞,

there exists a refinement T̂ ∈ T(T ) with

η(T̂ )2 ≤ κ0η(T )2, (2.3.20a)

|T̂ \ T | < ‖η,T(T )‖1/ss κ
−1/s
0 η(T )−1/s. (2.3.20b)

Assume that the implication (2.3.18) is valid for one particular choice of 0 < κ0, θ0 < 1 and

the triangulations T and T̂ . Then, the set R(T , T̂ ) ⊇ T \T̂ from Proposition 2.3.10 satisfies

|R(T , T̂ )| < Crefκ
1/(−2s)
0 η(T )−1/s‖η,T(T )‖1/ss (2.3.21a)

and satisfies the Dörfler marking for all 0 < θ ≤ θ0, i.e.,

θη(T )2 ≤
∑

T∈R(T ,T̂ )

ηT (T )2. (2.3.21b)
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Proof. Choose a minimal N ∈ N0, such that ‖η,T(T )‖s(N + 1)−s ≤ κ
1/2
0 η(T ) (note

that N > 0 by the fact that η(T ) ≤ ‖η,T(T )‖s and κ0 < 1). By assumption (and the fact
that T(T , N) is finite), there holds

min
T̂ ∈T(T ,N)

((N + 1)sη(T̂ )) ≤ ‖η,T(T )‖s

and hence, there exists a triangulation T̂ ∈ T(T , N) with (N + 1)sη(T̂ ) ≤ ‖η,T(T )‖s. This
implies

η(T̂ ) ≤ (N + 1)−s‖η,T(T )‖s ≤ κ
1/2
0 η(T ).

The minimality of N implies N−s > κ
1/2
0 η(T )‖η,T(T )‖−1

s and hence

N < κ
1/(−2s)
0 η(T )−1/s‖η,T(T )‖1/ss . (2.3.22)

Since T̂ ∈ T(T , N), this concludes (2.3.20). The implication (2.3.18) thus guarantees that

the set R(T , T̂ ) ⊆ T with |R(T , T̂ )| ≃ |(T \ T̂ )| satisfies the Dörfler marking (2.3.21b).
Estimate (2.3.21a) follows from (2.3.22), i.e.,

C−1
ref |R(T , T̂ )| ≤ |(T \T̂ )| ≤ N < κ

1/(−2s)
0 η(T )−1/s‖η,T(T )‖1/ss .

This concludes the proof. �

The following two propositions state the optimality of the adaptive algorithm.

Proposition 2.3.14. The son estimate (T1) implies

coptCapprox(s) ≤ sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s
, (2.3.23)

where the constant copt > 0 depends only on Cson and |T0|.
Proposition 2.3.15. Suppose that (2.3.20)–(2.3.21a) of Lemma 2.3.13 are valid for

one particular 0 < κ0 < 1 and s > 0, as well as for all T = Tℓ, ℓ ∈ N0 with η(Tℓ) > 0.
Assume that there holds (T2)–(T3) and that (2.3.13) from Lemma 2.3.8 holds for αℓ := η(Tℓ).

Then, |Mℓ| ≤ Cmin|R(Tℓ, T̂ℓ)| for all ℓ ∈ N0 (with R(Tℓ, T̂ℓ) from Lemma 2.3.13) implies

sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s
≤ CoptCapprox(s). (2.3.24)

There holds Copt = 2sCs
2C

s
closureC

s
minC

s
refκ

−1/2
0 and copt > 0 depends only on Cson and |T0|.

Proof of Proposition 2.3.14. Choose N ∈ N0, ℓ ∈ N0, and the largest possible
k ∈ N0 with |Tℓ+k \ Tℓ| ≤ N . Due to the maximality of k and (T1), there holds N + 1 <
|Tℓ+k+1 \ Tℓ| + 1 ≤ |Tℓ+k+1| + 1 . Cson(|Tℓ+k| + 1) . Cson(|Tℓ+k \ T0| + 1), where the hidden
constant depends only on |T0|. This leads to

inf
T̂ ∈T(Tℓ,N)

(N + 1)sη(T̂ ) . (|Tℓ+k \ T0|+ 1)sη(Tℓ+k)

and concludes the proof. �

Proof of Proposition 2.3.15. If η(Tℓ0) = 0. Then, (2.3.13) implies η(Tℓ) = 0 for all
ℓ ≥ ℓ0. Hence, we may consider 0 ≤ ℓ ≤ ℓ0 only. By assumption (2.3.21a), there holds

|Mℓ| ≤ Cmin|R(Tℓ, T̂ℓ)| ≤ CminCrefκ
1/(−2s)
0 η(Tℓ)

−1/s‖η,T(Tℓ)‖1/ss .
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The uniform approximability (T3) shows

|Mℓ| ≤ CminCrefCapprox(s)
1/sκ

1/(−2s)
0 η(Tℓ)

−1/s for all ℓ ∈ N0. (2.3.25)

The inverse summability (2.3.13) together with (2.3.25) and the closure estimate (T2) show
for all ℓ ∈ N0

|Tℓ \ T0|+ 1 ≤ 2(|Tℓ \ T0|) ≤ 2Cclosure

ℓ−1∑

j=0

|Mj|

≤ 2CclosureCminCrefCapprox(s)
1/sκ

1/(−2s)
0

ℓ−1∑

j=0

η(Tj)
−1/s

≤ 2C2CclosureCminCrefCapprox(s)
1/sκ

1/(−2s)
0 η(Tℓ)

−1/s.

(2.3.26)

Consequently,

η(Tℓ)(|Tℓ \ T0|+ 1)s ≤ 2sCs
2C

s
closureC

s
minC

s
refκ

−1/2
0 Capprox(s) for all ℓ ∈ N.

This leads to the upper bound in (2.3.24). �

Proof of Theorem 2.3.3 (iii). Choose θ0 := θ < θ⋆. Stability (E1a) and discrete
reliability (E3) guarantee that (2.3.18) holds for θ0, some 0 < κ0 < 1, and in particular
for all T = Tℓ, ℓ ∈ N0. This implies that (2.3.20)–(2.3.21) of Lemma 2.3.13 are valid
particularly for all T = Tℓ, ℓ ∈ N0. Step (iii) of Algorithm 2.2.1 selects some set Mℓ with
(almost) minimal cardinality which satisfies the Dörfler marking (2.2.1) for θ. The Dörfler

marking (2.3.21b) for θ = θ0 implies |Mℓ| ≤ Cmin|R(Tℓ, T̂ℓ)|. Reduction and stability (E1)
proves the estimator reduction (2.3.8) from Lemma 2.3.5. This and quasi-orthogonality (E2)
allow to employ Proposition 2.3.9 which ensures that (2.3.12)–(2.3.14) hold for αℓ := η(Tℓ).
Finally, Proposition 2.3.14–2.3.15 conclude the proof. �

Remark 2.3.16. Note that the proof of Theorem 2.3.3 (iii) requires (2.3.18) only for
T = Tℓ, ℓ ∈ N0. Hence, Remark 2.3.11 shows that it is sufficient to claim (E3) for all
T = Tℓ, ℓ ∈ N0 to obtain Theorem 2.3.3 (iii). This relaxation is exploited in Section 3.5.2,
below.

2.4. Equivalent approximation problems

Assume that there exist constants Crel, Ceff > 0 as well as functions err(·) : T → [0,∞)
and data(·) : T → [0,∞) such that there holds reliability

err(T ) ≤ Crelη(T ) for all T ∈ T. (2.4.1)

as well as efficiency

C−1
eff η(T ) ≤ err(T ) + data(T ) for all T ∈ T. (2.4.2)

Suppose that the functions err(·) and data(·) are quasi-monotone (see also (2.7.6) below) in

the sense that there exists a constant Cmon > 0 such that all T̂ ∈ T(T ) and all T ∈ T satisfy

err(T̂ ) ≤ Cmonerr(T ) and data(T̂ ) ≤ Cmondata(T ). (2.4.3)
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We define the corresponding approximability norms analogously to (2.2.5) as

‖err,T(T )‖s := sup
N∈N0

min
T̂ ∈T(T ,N)

((N + 1)serr(T̂ )),

‖data,T(T )‖s := sup
N∈N0

min
T̂ ∈T(T ,N)

((N + 1)sdata(T̂ )).

Analogously to (T3), we say that err(·) and data(·) satisfy uniform approximability if

Cerr
approx(s) := sup

T ∈T
‖err,T(T )‖s <∞, (2.4.4a)

Cdata
approx(s) := sup

T ∈T
‖data,T(T )‖s <∞. (2.4.4b)

for some s > 0.

Proposition 2.4.1. Assume that there holds reliability (2.4.1), efficiency (2.4.2),
and quasi-monotonicity (2.4.3). Then, the uniform approximability statements in (2.4.4)
and (T3) are equivalent in the sense that

(i) 2−sC−1
eff Capprox(s) ≤ Cerr

approx(s) + CmonC
data
approx(s),

(ii) Cerr
approx(s) ≤ CrelCapprox(s).

Remark 2.4.2. The literature, e.g., [78, 35], usually assumes ‖err,T‖s+‖data,T‖s <
∞ and uses the equivalence (2.4.1)–(2.4.2) as well as the overlay estimate (2.5.1) below to
obtain rate optimality of the error estimator and the so called total error err(T ) + data(T ).
Our approach, however, is much more fundamental as we only use properties of the error
estimator itself to deduce the rate optimality of Theorem 2.3.3 (iii). The statements on
error convergence are derived in this section by bootstrapping the results on the estimator.
This point of view allows to include a much broader class of applications as is shown in the
examples of Chapter 3, 5, 6, below.

Proof. The upper bound (2.4.1) shows

‖err,T(T )‖s ≤ Crel‖η,T(T )‖s for all s > 0.

This proves (ii).
To see (i), suppose (2.4.4) for some s > 0. For all even N ∈ N0, this guarantees the

existence of a triangulation TN/2 ∈ T(T , N/2) with

err(TN/2)(N/2 + 1)s ≤ Cerr
approx(s)

and also the existence of a triangulation TN ∈ T(TN/2, N/2) with

data(TN)(N/2 + 1)s ≤ Cdata
approx(s). (2.4.5)

With quasi-monotonicity (2.4.3), there holds

err(TN) ≤ Cmonerr(TN/2) ≤ Cmon(N/2 + 1)−sCerr
approx(s).

This and the lower bound (2.4.2) yield

C−1
eff η(TN) ≤ err(TN ) + data(TN )

≤ (Cdata
approx(s) + CmonC

err
approx(s))(N/2 + 1)−s

≤ 2s(Cdata
approx(s) + CmonC

err
approx(s))(N + 1)−s.

By definition, there holds |TN \ T | ≤ |TN \ TN/2| + |TN/2 \ T | ≤ N . This shows TN ∈
T(T , N) and hence proves ‖η,T(T )‖s ≤ 2sCeff(C

data
approx(s) + CmonC

err
approx(s)). This concludes

the proof. �
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In the frame of this section, we prove following analog of Theorem 2.3.3 which provides
convergence results for the error instead of the estimator.

Theorem 2.4.3. (i) Suppose (E1) is satisfied and assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0
(with ̺(·, ·) from Section 2.3.1). Then, for all 0 < θ ≤ 1, the error is convergent in
the sense

lim
ℓ→∞

err(Tℓ) = 0. (2.4.6)

(ii) Suppose (E1)–(E2) are satisfied. Then, for all 0 < θ ≤ 1, the error is R-linear
convergent in the sense that there exists 0 < ρconv < 1 and Cconv > 0 such that

err(Tℓ+j)
2 ≤ C2

effCconvρ
j
conv (err(Tℓ) + data(Tℓ))

2 for all j, ℓ ∈ N0. (2.4.7)

(iii) Suppose (E1)–(E3) and (T1)–(T3) are satisfied for some s > 0. Then 0 < θ < θ⋆ :=
(1− εdrel)/(1 +C2

drel) implies quasi-optimal convergence of the error in the sense of

coptC
err
approx(s) ≤ sup

ℓ∈N0

err(Tℓ)

(|Tℓ \ T0|+ 1)−s

≤ 2sCoptCrelCeff(C
data
approx(s) + CmonC

err
approx(s)),

(2.4.8)

where the lower bound requires only (T1) to hold.
The constants Cconv, ρconv, copt, Copt are defined in Theorem 2.3.3.

Proof. The statements (i)–(ii) follow immediately from Theorem 2.3.3 (i)–(ii) and the
equivalences (2.4.1)–(2.4.2). To see the upper bound in (iii), combine the upper bound in
Theorem 2.3.3 (iii) with Proposition 2.4.1 and the upper bound (2.4.1). For the lower bound
in (iii), choose N ∈ N0, ℓ ∈ N0, and the largest possible k ∈ N0 with |Tℓ+k \ Tℓ| ≤ N .
Due to maximality of ℓ and (T1), there holds N + 1 < |Tℓ+k+1 \ Tℓ| + 1 ≤ |Tℓ+k+1| + 1 .
Cson(|Tℓ+k|+1) . Cson(|Tℓ+k \T0|+1), where the hidden constant depends only on |T0|. This
leads to

inf
T ∈T(Tℓ,N)

(N + 1)serr(T ) . (|Tℓ+k \ T0|+ 1)serr(Tℓ+k)

and concludes the proof. �

Before we conclude the section, we provide a criterion, under which reliability (2.4.1)
follows from discrete reliability (E3).

Proposition 2.4.4. Suppose a constant C > 0 such that the following holds. Given

T ∈ T, there exists a sequence of triangulations T̂ℓ ∈ T(T ) with limℓ→∞ η(T̂ℓ) = 0 such that

C−1err(T ) ≤ lim
ℓ→∞

̺(T , T̂ℓ)

with ̺(·, ·) from Section 2.3.1. Then, discrete reliability (E3) (where the restriction εdrel <
1 is not necessary) and quasi-monotonicity (2.7.6) imply reliability (2.4.1) with C2

rel =
C2(C2

drel + εdrel).

Proof. Assume η(T ) = 0. Then, (2.7.6) implies η(T̂ℓ) = 0 for all ℓ ∈ N and hence

η(T̂ ) ≤ κdlrη(T ) for all ℓ ∈ N. Assume η(T ) > 0. Then, limℓ→∞ η(T̂ℓ) = 0 shows η(T̂ ) ≤
κdlrη(T ) for all ℓ ≥ ℓ0 for some sufficiently large ℓ0 ∈ N. In either case, (E3) is applicable
and shows

C−2err(T )2 ≤ lim
ℓ→∞

̺(T , T̂ℓ)
2 ≤ (εdrel + C2

drel)η(T )2.

This concludes the proof. �
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2.5. Optimal complexity

This section understands complexity as a measure of computational effort necessary to
compute one step of Algorithm 2.2.1. We assume that the effort is related to

|Tℓ|γ

for some γ > 0 and call this quantity single-step complexity. This is a reasonable assumption,
since usually the solution of some linear or nonlinear systems is involved where the complex-
ity is related to the degrees of freedom. To compute the ℓ-th step of Algorithm 2.2.1, it
is necessary to compute all the previous steps, too. Therefore, we define the cumulative
complexity of the ℓ-th step of Algorithm 2.2.1 by

ℓ∑

j=0

|Tj|γ.

The following theorem shows that for the adaptive algorithm, both measures coincide. To
that end, we define the overlay estimate which states that there exists a constant C4 > 0

such that any two triangulations T , T̂ ∈ T have a coarsest common refinement T ⊕ T̂ ∈
T(T ) ∩ T(T̂ ) with

|(T ⊕ T̂ ) \ T | ≤ C4|T̂ \ T0|. (2.5.1)

Theorem 2.5.1. Suppose a sequence (T opt
ℓ )ℓ∈N0 ⊂ T with T opt

ℓ+1 ∈ T(T opt
ℓ ) and |T opt

ℓ+1 | ≤
Cson|Tℓ| for all ℓ ∈ N0 such that T opt

0 = T0 and that there holds the single-step complexity
rate

sup
ℓ∈N0

η(T opt
ℓ )

(|T opt
ℓ |γ)−s

<∞ (2.5.2)

for some s > 0 and some γ > 0. Suppose (E1)–(E3) and (T1)–(T2) as well as the overlay es-
timate (2.5.1). Then, given 0 < θ < θ⋆ := (1−εdrel)/(1+C2

drel), the output of Algorithm 2.2.1
satisfies the same cumulative complexity rate

sup
ℓ∈N0

η(Tℓ)

(
∑ℓ

j=0 |Tj|γ)−s
<∞. (2.5.3)

Remark 2.5.2. The above result shows that Algorithm 2.2.1 realizes any possible single-
step complexity rate even with respect to the cumulative complexity

∑ℓ
j=0 |Tj|γ. This means

that the overall investment of computational time is asymptotically optimal and the iter-
ative steps of Algorithm 2.2.1 do not spoil the performance. Particularly, it shows that
under the assumptions of Theorem 2.5.1, the adaptive approach converges faster or at least
with the same complexity rate as the uniform refinement strategy which realizes T unif

ℓ+1 :=
T(T unif

ℓ , T unif
ℓ ). To see this, note that the uniform refinement does not require to compute

each previous step of the algorithm. Hence, its complexity to compute the ℓ-th step is best
measured by the single-step complexity |T unif

ℓ |γ. If uniform refinement satisfies the single-step
complexity rate s > 0, i.e.,

sup
ℓ∈N0

η(T unif
ℓ )

(|T unif
j |γ)−s

<∞,

Theorem 2.5.1 (with T unif
ℓ = T opt

ℓ ) shows that Algorithm 2.2.1 converges with at least the
same rate of cumulative complexity. Particularly, the same effort in terms of computational
time leads to asymptotically better approximation accuracy.
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Proof. The assumption (2.5.2) implies ‖η,T‖sγ < ∞. To see this, we follow the proof

of Proposition 2.3.14. Choose N ∈ N0 and the largest possible ℓ ∈ N0 with |T opt
ℓ \ T0| ≤ N .

Due to the maximality of ℓ and by |T opt
ℓ+1 | ≤ Cson|T opt

ℓ |, there holds N +1 < |T opt
ℓ+1 \ T0|+1 .

Cson(|T opt
ℓ \ T0|+ 1), where the hidden constant depends only on |T0|. This leads to

min
T̂ ∈T(N)

(N + 1)sγη(T̂ ) . (|T opt
ℓ \ T0|+ 1)sγη(T opt

ℓ )

and concludes

‖η,T‖sγ = sup
N∈N0

min
T̂ ∈T(N)

(N + 1)sγη(T̂ ) <∞.

Lemma 2.7.5 below shows quasi-monotonicity (2.7.6) of η(·). With the above, Lemma 2.7.4
implies Capprox(sγ) < ∞. This shows that (T3) holds. Therefore, Theorem 2.3.3 (i)–(iii)
apply and prove

η(Tj) ≤ CoptCapprox(sγ)(|Tj \ T0|+ 1)−sγ . CoptCapprox(sγ)|Tj|−sγ, (2.5.4)

where the hidden constant depends only on |T0| and sγ. Moreover, there holds R-linear
convergence (2.3.2). We assume η(Tℓ) > 0 for all ℓ ∈ N0, since otherwise R-linear conver-
gence (2.3.2) implies η(Tℓ) = 0 for all ℓ ≥ ℓ0 for some ℓ0 ∈ N and hence (2.5.3) follows
immediately. With (2.5.4), this implies

|Tj |γ . η(Tj)
−1/s for all j ∈ N0.

Together with R-linear convergence (2.3.2) and the equivalent inverse summability from
Lemma 2.3.8 (ii), this shows

ℓ∑

j=0

|Tj|γ .

ℓ∑

j=0

η(Tj)
−1/s . η(Tℓ)

−1/s.

We obtain immediately (2.5.3) and conclude the proof. �

2.6. Necessity of the axioms

The convergence results in Theorem 2.3.3 show that the axioms (E1)–(E3), (T1)–(T3)
are sufficient for rate optimality. By definition of the axioms (E1)–(E3), it is clear that if
there exists a function ̺(·, ·) such that (E1)–(E3) hold, we can choose the point wise minimal
̺min(·, ·) ≤ ̺(·, ·) to satisfy (E1), without violating (E2)–(E3). Given a triangulation T ∈ T,

a refinement T̂ ∈ T(T ), ρred, and sets T \ T̂ ⊆ S(T , T̂ ) ⊆ T , Ŝ(T , T̂ ) ⊆ T̂ , this reads

̺min(T , T̂ ) := max
{∣∣∣

( ∑

T∈T̂ \Ŝ(T ,T̂ )

ηT (T̂ )2
)1/2

−
( ∑

T∈T \S(T ,T̂ )

ηT (T )2
)1/2∣∣∣,

∣∣∣
∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 − ρred
∑

T∈S(T ,T̂ )

ηT (T )2
∣∣∣
1/2}

.

This section examines the necessity of the axioms with ̺(·, ·) = ̺min(·, ·).
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2.6.1. Convergence implies (E1). The stability and reduction (E1) leads to the con-
vergence result of Theorem 2.3.3 (i) and provides the basis for all the other convergence
results. The following result shows that (E1) is even necessary.

Proposition 2.6.1. Assume convergence (2.3.1). Then, (E1) holds for arbitrary 0 ≤
ρred < 1 and arbitrary sets Ŝ(·, ·), S(·, ·) with limℓ→∞ ̺min(Tℓ+1, Tℓ) = 0.

Proof. Stability and reduction (E1) is satisfied by definition of ̺min(·, ·). By conver-
gence (2.3.1), we obtain limℓ→∞ ̺(Tℓ, Tℓ+1) . limℓ→∞(η(Tℓ) + η(Tℓ+1)) = 0. This concludes
the proof. �

2.6.2. R-linear convergence implies (E2). Theorem 2.3.3 (ii) proves that (E1)–
(E2) yield linear convergence (2.3.2). The following proposition shows that linear conver-
gence (2.3.14) implies the general quasi-orthogonality (E2). In view of Proposition 2.6.1–
2.6.2, linear convergence (2.3.14) is equivalent (E1)–(E2).

Proposition 2.6.2. The R-linear convergence (2.3.2) implies general quasi-orthogo-
nality (E2) with εqo = 0 and Cqo > 0.

Proof. Since ̺min(T , T̂ ) . η(T ) + η(T̂ ), R-linear convergence (2.3.2) together with
Lemma 2.3.8 (where αk = η(Tk)) show

ℓ+N∑

k=ℓ

̺(Tk, Tk+1)
2 .

ℓ+N+1∑

k=ℓ

η(Tk)
2 . η(Tℓ)

2

for all ℓ, N ∈ N0. This is (E2) with εqo = 0. �

2.6.3. R-linear convergence implies (E3). The discrete reliability (E3) proves the
optimality of the Dörfler marking in Proposition 2.3.10. The following result shows that,
under some minor assumptions, also the converse is true.

Proposition 2.6.3. Assume R-linear convergence (2.3.2) and S(T , T̂ ) ≤ Cref |T \ T̂ |.
Then, discrete reliability (E3) holds on the sequence of triangulations (Tℓ)ℓ∈N0 generated by
Algorithm 2.2.1 with εdrel = 0, Cdrel = Cconvρconv/θ, and R(Tℓ, Tℓ+1) = S(Tℓ, Tℓ+1), i.e.,

̺min(Tℓ, Tℓ+1)
2 ≤ Cconvρconvθ

−1
∑

T∈S(Tℓ,Tℓ+1)

ηT (Tℓ)
2

for all ℓ ∈ N0.

Proof. The definition of ̺min(·, ·) implies that either (E1a) holds with equality, i.e.,
( ∑

T∈Tℓ+1\Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2
)1/2

=
( ∑

T∈Tℓ\S(Tℓ,Tℓ+1)

ηT (Tℓ)
2
)1/2

+ ̺(Tℓ, Tℓ+1) (2.6.1)

or (E1b) holds with equality, i.e.,
∑

T∈Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2 = ρred

∑

T∈S(Tℓ,Tℓ+1)

ηT (Tℓ)
2 + ̺(Tℓ, Tℓ+1)

2. (2.6.2)

In case of (2.6.1), we obtain

C1/2
convρ

1/2
convη(Tℓ) ≥ η(Tℓ+1) ≥

( ∑

T∈Tℓ+1\Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2
)1/2

≥ ̺(Tℓ, Tℓ+1).

37



Analogously, (2.6.2) implies

C1/2
convρ

1/2
convη(Tℓ) ≥ η(Tℓ+1) ≥

( ∑

T∈Ŝ(Tℓ,Tℓ+1)

ηT (Tℓ+1)
2
)1/2

≥ ̺(Tℓ, Tℓ+1).

Since the triangulations Tℓ satisfy the Dörfler marking (2.2.1), the above implies

̺(Tℓ, Tℓ+1)
2 ≤ Cconvρconvη(Tℓ)

2 ≤ Cconvρconvθ
−1

∑

T∈Mℓ

ηT (T )2. (2.6.3)

Since, by definition of the refinement strategy, there holds Mℓ ⊆ Tℓ \ Tℓ+1 ⊆ S(Tℓ, Tℓ+1), we
obtain (E3) with εdrel = 0, Cdrel = Cconvρconv/θ, and R(Tℓ, Tℓ+1) = S(Tℓ, Tℓ+1). �

The following result shows that Proposition 2.3.10 is sharp in the sense that (E3) is even
equivalent to (2.3.18).

Proposition 2.6.4. Assume stability and reduction (E1) with ̺(·, ·) := ̺min(·, ·). As-
sume that for κ0 = κdlr exists some θ0 such that the implication (2.3.18) holds. Then,

discrete reliability (E3) is satisfied with εdrel = 0 and R(T , T̂ ) from Proposition 2.3.10 and

Cdrel = θ
−1/2
0 .

Proof. Let T̂ ∈ T(T ) such that η(T̂ ) ≤ κdlrη(T ). By assumption, there exists 0 < θ0 <

1, which depends on κdlr, such that the implication (2.3.18) holds and shows that R(T , T̂ )
satisfies the Dörfler marking (2.2.1). As in (2.6.3), we obtain

̺(T , T̂ )2 ≤ η(T̂ )2 < η(T )2 ≤ θ−1
0

∑

T∈R(T ,T̂ )

ηT (T )2.

This concludes the proof. �

2.6.4. Optimal complexity implies R-linear convergence. The optimal complex-
ity result of Theorem 2.5.1 implies R-linear convergence (2.3.2) in the following sense. As-
sume that the error estimator converges with a certain rate

|Tℓ|−s . η(Tℓ) . |Tℓ|−s for all ℓ ∈ N0 (2.6.4)

and assume that the implication of Theorem 2.5.1, i.e., (2.5.2) implies (2.5.3), is true. Un-
der (T1), we may use T opt

ℓ := Tℓ and obtain

sup
ℓ∈N0

η(Tℓ)

(
∑ℓ

j=0 |Tj |γ)−s/γ
<∞.

With this, (2.5.3) shows

η(Tℓ)
−γ/s &

ℓ∑

j=0

|Tj |γ &

ℓ∑

j=0

η(Tj)
−γ/s

for all ℓ ∈ N0. Lemma 2.3.8 with αℓ = η(Tℓ) concludes R-linear convergence (2.3.2).

Remark 2.6.5. Although it is possible to construct examples which satisfy rate opti-
mality (2.3.3) but fail to satisfy (2.6.4), there are many practical examples with (2.6.4). In
this sense, R-linear convergence might not be necessary for any particular instance of the
approximation problem, but is definitely necessary for the general case.
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2.6.5. The refinement axioms (T1)&(T3). The assumption (T1) is not necessary
from a theoretical point of view. However, since |T | is usually related to the degrees of
freedom, a reasonable refinement strategy will aim to produce a refinement with |Tℓ+1| ≃ |Tℓ|.
The uniform approximability (T3) is necessary since it follows immediately from (2.3.3).

2.7. Particular realizations of the axioms

In many cases, some of the axioms (E1)–(E3), (T1)–(T3) hold due to some more specific
properties of the estimator η(·) or the refinement strategy T(·, ·).

2.7.1. A priori convergence. Suppose a Banach space X with norm ‖ · ‖2X as well as
a solver function U(·) : T → X . Assume that

̺(T , T̂ )2 := α‖U(T )− U(T̂ )‖2X
for some α > 0.

Lemma 2.7.1. Suppose that there exist subspaces X (Tℓ) ⊆ X for all ℓ ∈ N0 (where Tℓ

denotes the output of Algorithm 2.2.1) and a function U∞ ∈ X∞ :=
⋃

ℓ∈N0
X (Tℓ) such that

the Céa lemma holds, i.e.,

‖U∞ − U(Tℓ)‖X ≤ CCéa min
V ∈X (Tℓ)

‖U∞ − V ‖X for all ℓ ∈ N0, (2.7.1)

where CCéa > 0 is some constant which does not depend on ℓ ∈ N0. Then, there holds
a priori convergence

lim
ℓ→∞

‖U∞ − U(Tℓ)‖X = 0 = lim
ℓ→∞

̺(Tℓ, Tℓ+1). (2.7.2)

Proof. By definition of X∞, the right-hand side of (2.7.1) converges towards zero as
ℓ → ∞. The convergence limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 follows immediately with the triangle
inequality. This concludes the proof. �

2.7.2. ̺(·, ·) is a Hilbert norm. If the perturbation has the structure of a Hilbert
norm, the general quasi-orthogonality follows immediately.

Lemma 2.7.2. Suppose a Hilbert space X with ‖ · ‖2X := 〈· , ·〉X and U(·) : T → X .
Let ̺(·, ·) be given as in Section 2.7.1 and suppose that the solver U(·) satisfies Galerkin
orthogonality

〈U(Tℓ+k)− U(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉X = 0 for all k, ℓ ∈ N0. (2.7.3)

Then, discrete reliability (E3) with κdlr = ∞ (where the restriction εdrel < 1 is not necessary)
implies the general quasi-orthogonality (E2) with εqo = 0 and Cqo = εdrel + Cdrel. Moreover,
there holds a priori convergence

lim
ℓ→∞

̺(Tℓ, Tℓ+1) = 0. (2.7.4)

Proof. The Galerkin orthogonality (2.7.3) implies for k,N ∈ N0

‖U(Tk)− U(Tk+1)‖2X = ‖U(Tℓ+N )− U(Tk)‖2X − ‖U(Tℓ+N )− U(Tk+1)‖2X
− 2〈U(Tℓ+N)− U(Tk+1) , U(Tk)− U(Tk+1)〉X

= ‖U(Tℓ+N )− U(Tk)‖2X − ‖U(Tℓ+N )− U(Tk+1)‖2X .
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Hence, there holds for ℓ ∈ N0

ℓ+N∑

k=ℓ

̺(Tk, Tk+1)
2 ≤ α lim

N→∞

ℓ+N∑

k=ℓ

‖U(Tk)− U(Tk+1)‖2X

= α lim
N→∞

ℓ+N∑

k=ℓ

(
‖U(Tℓ+N )− U(Tk)‖2X − ‖U(Tℓ+N )− U(Tk+1)‖2X

)

= α lim
N→∞

(
‖U(Tℓ+N )− U(Tℓ)‖2X − ‖U(Tℓ+N)− U(Tℓ+N+1)‖2X

)

≤ α lim
N→∞

‖U(Tℓ+N )− U(Tℓ)‖2X
= lim

N→∞
̺(Tℓ, Tℓ+N)

2 ≤ (εdrel + Cdrel)η(Tℓ)
2.

The above for ℓ = 0 concludes also (2.7.4) and hence the proof. �

2.7.3. Quasi-orthogonality implies general quasi-orthogonality. In the litera-
ture, one often finds the following quasi-orthogonality: Let 0 ≤ ε < 1, and Crel > 0 such
that all ℓ ∈ N0 satisfy

C−1
rel ̺(Tℓ, Tℓ+1)

2 ≤ (1− ε)−1α2
ℓ − α2

ℓ+1, (2.7.5a)

for some αℓ ∈ R with

α2
ℓ ≤ Crelη(Tℓ)

2. (2.7.5b)

Lemma 2.7.3. The quasi-orthogonality (2.7.5) with 0 ≤ ε < 1 and Crel > 0 implies the
general quasi-orthogonality (E2) with εqo = Crelε/(1− ε) and Cqo = Crel.

Proof. There holds with εqo = Crelε/(1− ε) and (2.7.5)

N∑

k=ℓ

(
̺(Tk, Tk+1)

2 − εqoη(Tk)
2
)
≤

N∑

k=ℓ

( α2
k

1− ε
− α2

k+1 −
Crelεη(Tk)

2

1− ε

)

≤
N∑

k=ℓ

( α2
k

1− ε
− α2

k+1 −
εα2

k

1− ε

)

≤
N∑

k=ℓ

(α2
k − α2

k+1) ≤ α2
ℓ ≤ Crelη(Tℓ)

2.

�

2.7.4. Quasi-monotonicity and the overlay estimate. We say that a function λ(·) :
T → [0,∞) is quasi-monotone, if there exists a constant Cmon > 0 such that all triangulations
T ∈ T satisfy

λ(T̂ ) ≤ Cmonλ(T ) for all T̂ ∈ T(T ). (2.7.6)

Lemma 2.7.4. Assume that the refinement strategy T(·, ·) satisfies the overlay esti-
mate (2.5.1) and that the function λ(·) : T → [0,∞) is quasi-monotone (2.7.6). Then,
‖λ,T‖s <∞ for some s > 0 implies

sup
T ∈T

‖λ,T(T )‖s ≤ Cmon(C4 + 1)s‖λ,T‖s.

Particularly, for λ(·) = η(·), ‖η,T‖s <∞ implies (T3).
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Proof. Let N ∈ N0 and define M := floor(N/C4). The fact ‖λ,T‖s < ∞ allows to
choose some triangulation T N ∈ T(M) with

λ(T N)(M + 1)s ≤ ‖λ,T‖s.

Given any T ∈ T, the overlay estimate (2.5.1) states |(T N ⊕ T ) \ T | ≤ N and hence
T N ⊕ T ∈ T(T , N). The quasi-monotonicity (2.7.6) and N + 1 ≤ (M + 1)(C4 + 1) shows

λ(T N ⊕ T )(N + 1)s ≤ Cmon(C4 + 1)sλ(T N)(M + 1)s ≤ Cmon(C4 + 1)s‖λ,T‖s.

This implies

inf
T̂ ∈T(T ,N)

(N + 1)sλ(T̂ ) ≤ Cmon(C4 + 1)s‖λ,T‖s

and concludes the proof. �

The quasi-monotonicity (2.7.6) follows from the stability and reduction (E1) together
with discrete reliability (E3) or quasi-orthogonality (2.7.5).

Lemma 2.7.5. Assume (E1) (where the restriction ρred < 1 is not necessary) as well
as (E3) with κdlr = ∞. Then, there holds (2.7.6) with λ(·) = η(·) and Cmon =

(
max{ρred, 2}+

3(εdrel + C2
drel)

)1/2
.

Proof. The stability (E1a) and the reduction estimate (E1b) imply

η(T̂ )2 ≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + 2
∑

T∈T \S(T ,T̂ )

ηT (T )2 + 3̺(T , T̂ )2.

The discrete reliability (E3), leads to

η(T̂ )2 ≤ (max{ρred, 2}+ 3εdrel)η(T )2 + 3C2
drel

∑

T∈R(T ,T̂ )

ηT (T )2

≤
(
max{ρred, 2}+ 3(εdrel + C2

drel)
)
η(T )2.

This is (2.7.6) with Cmon :=
(
max{ρred, 2}+ 3(εdrel + C2

drel)
)1/2

. �

Lemma 2.7.6. Assume (E1) (where the restriction ρred < 1 is not necessary) as well

as the quasi-orthogonality (2.7.5) for Tℓ = T and Tℓ+1 = T̂ . Then, there holds (2.7.6) with

λ(·) = η(·) and Cmon =
(
(max{ρred, 2}+ 3C2

rel(1− ε)−1)
)1/2

.

Proof. The stability (E1a) and the reduction estimate (E1b) imply

η(T̂ )2 ≤ ρred
∑

T∈S(T ,T̂ )

ηT (T )2 + 2
∑

T∈T \S(T ,T̂ )

ηT (T )2 + 3̺(T , T̂ )2

(2.7.5)

≤ max{ρred, 2}η(T )2 + 3Crel((1− ε)−1α2
ℓ − α2

ℓ+1)

≤ (max{ρred, 2}+ 3C2
rel(1− ε)−1)η(T )2.

This concludes the proof. �
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2.7.5. Other versions of the overlay estimate (2.5.1) and of (T2). The following
estimate provides a lower bound for the number of newly generated elements, i.e.,

|T \ T̂ | ≤ |T̂ | − |T | for all T̂ ∈ T(T ) and all T ∈ T. (2.7.7)

This is particularly satisfied if each refined element T ∈ T \ T̂ generates at least two sons

T1, T2 ∈ T̂ \ T .

Lemma 2.7.7. Let the refinement strategy satisfy (2.7.7), then there holds for all re-

finements T̂ ∈ T(T )

|T̂ | − |T | ≤ |T̂ \ T | ≤ 2(|T̂ | − |T |). (2.7.8)

Proof. The first inequality follows from

|T̂ \ T | = |T̂ | − |T̂ ∩ T | ≥ |T̂ | − |T |.
The second inequality follows similarly by

|T̂ \ T | = |T̂ | − |T̂ ∩ T | = |T̂ | − (|T | − |T \ T̂ |) ≤ 2(|T̂ | − |T |),
where we used (2.7.7). �

Lemma 2.7.8. Under (2.7.7), the closure estimate (T2) is equivalent to

|Tℓ| − |T0| ≤ C̃closure

ℓ−1∑

j=0

|Mj| for all ℓ ∈ N0, (2.7.9)

where the closure estimate (T2) implies (2.7.9) with C̃closure = Cclosure and (2.7.9) im-

plies (T2) with Cclosure = 2C̃closure. Moreover, the overlay estimate (2.5.1) is equivalent
to

|(T ⊕ T̂ )| ≤ C̃4(|T̂ | − |T0|) + |T | for all T̂ ∈ T(T ), (2.7.10)

where (2.5.1) implies (2.7.10) with C̃4 = 2C4 and (2.7.10) implies (2.5.1) with C4 = 2C̃4.

Proof. Both statements follow directly with (2.7.8). �

2.8. Historical remarks

This section is based on and extends [24, Section 3.2]. This work provides some unifying
framework on the theory of adaptive algorithms and the related convergence and quasi-
optimality analysis. Some historic remarks are in order on the development of the arguments
over the years. In one way or another, the axioms arose in various works throughout the
literature. We aim to motivate the specific choice of axioms (which turn out to be even
necessary in Section 2.6) in terms of historic development of the field.

2.8.1. Reliability (2.4.1). Reliability basically states that the unknown error tends to
zero if the computable and hence known error bound is driven to zero by smart adaptive
algorithms. As the main result of this chapter (Theorem 2.3.3) focuses solely on the error
estimator, the reliability is not explicitly used in the analysis. However, Section 2.4 intro-
duces reliability to prove optimal convergence of the error. Since the invention of adaptive
FEM in the 1970s, the question of reliability was thus a pressing matter and first results for
FEM date back to the early works of Babuska & Rheinboldt [7] in 1D and Babuska &
Miller [6] in 2D. Therein, the error is estimated by means of the residual. In the context
of BEM, reliable residual-based error estimators date back to the works of Carstensen &
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Stephan [34, 33, 20]. Since the actual adaptive algorithm only knows the estimator, reli-
ability estimates have been a crucial ingredient for convergence proofs of adaptive schemes
of any kind.

2.8.2. Efficiency (2.4.2). Compared to reliability (2.4.1), efficiency (2.4.2) provides the
converse estimate and states that the error is not overestimated by the estimator, up to some
oscillation terms data(·) determined from the given data. An error estimator which satisfies
both, reliability and efficiency, is mathematically guaranteed to asymptotically behave like
the error, i.e., it decays with the same rate as the actual computational error. Consequently,
efficiency is a desirable property as soon as it comes to convergence rates. For FEM with
residual error estimators, efficiency has first been proved by Verfürth [82]. He used
appropriate inverse estimates and localization by means of bubble functions. In the frame
of BEM, however, efficiency (2.4.2) of the residual error estimators is widely open and only
known for particular problems [3, 19], although observed empirically, see also Section 3.4.2.

In terms of convergence proofs, efficiency is often a useful tool as is mentioned in the
following section. However, the main result of this chapter (Theorem 2.3.3) does not require
the efficiency estimate (2.4.2) and thus allows applications to a much wider problem class.

2.8.3. Discrete local efficiency and first convergence analysis of [40, 65]. Reli-
ability (2.4.1) and efficiency (2.4.2) are nowadays standard topics in textbooks on a poste-
riori FEM error estimation [1, 82], in contrast to the convergence of adaptive algorithms.
Babuska & Vogelius [8] already observed for conforming discretizations, that the se-
quence of discrete approximations U(Tℓ) always converges (see Section 2.7.1 for an abstract
form of this a priori convergence). The work of Dörfler [40] introduced the marking
strategy (2.2.1) for the Poisson model problem

−∆u = f in Ω and u = 0 on Γ = ∂Ω (2.8.1)

and conforming first-order FEM to show convergence up to any given tolerance. Morin,
Nochetto & Siebert [65] refined this and the arguments of Verfürth [82] and Dör-
fler [40] and proved the discrete variant

C−2
eff η(Tℓ)

2 ≤ ‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) + data(Tℓ)
2 (2.8.2)

of the efficiency (2.4.2). See also [50] for the explicit statement and proof. The proof relies
on discrete bubble functions and thus required an interior node property of the refinement
strategy, which is ensured, e.g., by bisection for d = 2 from Section 3.2.8 and five bisections
for each refined element. With this, [65] proved error reduction up to data oscillation terms
in the sense of

‖∇(u− U(Tℓ+1))‖2L2(Ω) ≤ κ ‖∇(u− U(Tℓ))‖2L2(Ω) + C data(Tℓ) (2.8.3)

with some ℓ-independent constants 0 < κ < 1 and C > 0. This and additional enrichment
of the marked elements Mℓ ⊆ Tℓ to ensure data(Tℓ) → 0 as ℓ→ ∞ leads to convergence

‖∇(u− U(Tℓ))‖L2(Ω)
ℓ→∞−−−→ 0. (2.8.4)

The reason why this work neglects the discrete local efficiency (2.8.2) is that it can only
be proven for a very narrow class of model problems, and thus does not allow for some general
framework. Moreover, the over refinement due to the interior node property is practically
observed to be unnecessary.
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2.8.4. Quasi-orthogonality (E2). The approach of [65] has been generalized to non-
symmetric operators in [64], to nonconforming and mixed methods in [26, 25], as well
as to the nonlinear obstacle problem in Braess, Carstensen & Hoppe [17, 18]. One
additional difficulty is the lack of the Galerkin orthogonality which is circumvented with
the general quasi-orthogonality axiom (2.7.5) in Section 2.7.3. Stronger variants of quasi-
orthogonality have been used in [26, 25, 64] and imply (2.7.5) in Section 2.7.3. In its current
form, however, the general quasi-orthogonality (E2) goes back to [46] for non-symmetric op-
erators without artificial assumptions on the initial triangulation as in [36, 64], see also
Section 3.5.1. Proposition 2.6.2 shows that the present form (E2) of the quasi-orthogonality
cannot be weakened if one aims to follow the analysis of [35, 78] to prove quasi-optimal
convergence rates. Moreover, Section 2.6.4 shows that the optimal complexity result of The-
orem 2.5.1 necessarily implies R-linear convergence and thus general quasi-orthogonality (E2)
by Proposition 2.6.2.

2.8.5. Optimal convergence rates and discrete reliability (E3). The seminal work
of Binev, Dahmen & DeVore [14] was the first one to prove algebraic convergence rates
for adaptive FEM of the Poisson model problem (2.8.1) and lowest-order FEM. They ex-
tended the adaptive algorithm of [65] by additional coarsening steps to avoid over-refinement.
Stevenson [78] removed this artificial coarsening step and introduced the basic form of the
axiom (E3) on discrete reliability, i.e., with εdrel = 0 and κdlr = ∞. He implicitly introduced
the concept of separate Dörfler marking : If the data oscillations data(Tℓ) are small compared
to the error estimator η(Tℓ), he used the common Dörfler marking (2.2.1) to single out the
elements for refinement. Otherwise, he suggested the Dörfler marking (2.2.1) for the local
contributions of the data oscillation term data(Tℓ). The core proof of [78] then uses the
observation from [64] that the so-called total error is contracted in each step of the adaptive
loop in the sense of

∆ℓ+1 ≤ κ∆ℓ for ∆ℓ := ‖∇(u− U(Tℓ))‖2L2(Ω) + γ data(Tℓ)
2 (2.8.5)

with some ℓ-independent constants 0 < κ < 1 and γ > 0.
Moreover, the analysis of [78] shows that the Dörfler marking (2.2.1) is not only sufficient

to guarantee contraction (2.8.5), but somehow even necessary, see Section 2.3.5 for the refined
analysis which avoids the use of efficiency (2.4.2).

2.8.6. Stability and reduction (E1). Anticipating the convergence of [39] for the p-
Laplacian, the AFEM analysis of [78] was simplified by Cascon, Kreuzer, Nochetto
& Siebert [35] with the introduction of the estimator reduction in the sense of

η(Tℓ+1)
2 ≤ κ η(Tℓ)

2 + C ‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) (2.8.6)

with constants 0 < κ < 1 and C > 0. This is an immediate consequence of stability and
reduction (E1b) in Section 2.3.3 and also ensures contraction of the so-called quasi-error

∆ℓ+1 ≤ κ∆ℓ for ∆ℓ := ‖∇(u− U(Tℓ))‖2L2(Ω) + γ η(Tℓ)
2 (2.8.7)

with some ℓ-independent constants 0 < κ < 1 and γ > 0. The analysis of [35] removed
the discrete local lower bound from the set of necessary axioms (and hence the interior node
property [65]). Implicitly, the axiom (E1) is part of the proof of (2.8.6) in [35]. While (E1a)
essentially follows from the triangle inequality and appropriate inverse estimates in practice,
the reduction (E1b) builds on the observation that the element sizes of the sons of a refined
element uniformly decreases. For instance, bisection-based refinement strategies yield |T ′| ≤
|T |/2, if T ′ ∈ Tℓ+1\Tℓ is a son of T ∈ Tℓ\Tℓ+1.
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2.8.7. Extensions of the analysis of [35]. The work [60] considers lowest-order
AFEM for the Poisson problem (2.8.1) for error estimators which are locally equivalent
to the residual error estimator. The works [36, 46] analyze optimality of AFEM for linear,
but non-symmetric elliptic operators. While [36] required that the corresponding bilinear
form induces a norm, such an assumption is dropped in [46], so that the latter work con-
cluded the AFEM analysis for linear second-order elliptic PDEs. Convergence with optimal
rates for adaptive boundary element methods has independently been proved in [47, 80].
The main additional difficulty was the development of appropriate local inverse estimates
for the nonlocal operators involved. The BEM analysis, however, still hinges on symmetric
and elliptic integral operators and excludes boundary integral formulations of mixed bound-
ary value problems as well as the FEM-BEM coupling. AFEM with nonconforming and
mixed FEMs is considered for various problems in [71, 32, 29, 31, 12, 61]. AFEM with
non-homogeneous Dirichlet and mixed Dirichlet-Neumann boundary conditions are analyzed
in [48] for 2D and in [4] for 3D. The latter work adapts the separate Dörfler marking from [78]
to decide whether the refinement relies on the error estimator for the discretization error or
the approximation error of the given continuous Dirichlet data, see Section 5.4. The results
of those works are reproduced and partially even improved in the frame of the abstract ax-
ioms of Section 2.3.1. Finally, the proofs of [4, 46] simplified the core analysis of [78, 35]
in the sense that the optimality analysis avoids the use of the total error and solely works
with the error estimator. The work [24] on which this work is based, derives a first set of
axioms to unify the theory of the mentioned works. In this work, we take one step further
and also drop the notion of exact solution and approximate solution, to solely focus on the
error estimator. Moreover, we relax some standard assumptions on the refinement strategy
to include a more general class of triangulations into the optimality analysis.
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CHAPTER 3

Applications I

3.1. Introduction, state of the art & outline

This chapter applies the abstract machinery of the previous chapter to concrete model
problems. This means that for each problem, the axioms of Section 2.3.1 are checked and
the abstract results are interpreted. We reproduce well-known optimality results (e.g., for
the Poisson problem of Section 3.4.1 which was firstly proved in [78] and then generalized
by [35]) and improve recent results for general elliptic second-order operators from Section 3.5
(which was firstly proved in [46] but is generalized in this work for operators which satisfy a
Gårding inequality). Some of the examples are already found in similar manner in [24]. The
remainder of this chapter is organized as follows: Section 3.2 introduces usual properties of
concrete refinement strategies and gives some examples. Section 3.3 introduces the notion
of weighted error estimators, for which some of the axioms follow from simpler assumptions.
Section 3.4 validates the axioms for examples from finite element and boundary element
methods. Section 3.5 extends the problem class to general second-order elliptic equations
and Section 3.6 introduces nonlinear model problems for which optimal convergence rates
can be proven.

3.2. Real world triangulations and refinement strategies

The following Sections 3.2.1–3.2.7 describe properties which refinement strategies from
Section 2.2.1 can additionally satisfy. Below, we provide several examples of possible refine-
ment strategies T(·, ·).

3.2.1. General assumptions. We consider a piecewise smooth d-dimensional Lipschitz
manifold Ω ⊆ RD for some d ≤ D with surface measure | · | such that there exists a constant
Cω > 0 with

|Bδ(x)| ≤ CΩδ
d for all x ∈ Ω and Bδ(x) :=

{
z ∈ Ω : |x− z| ≤ δ

}
. (3.2.1)

We assume that all triangulations T ∈ T consist of compact elements T ∈ T ⊆ T∞ (where T∞

is the set of all possible elements defined in Section 2.2.1) with
⋃

T∈T T = Ω and |T ∩T ′| = 0
for all T, T ′ ∈ T with T 6= T ′.

3.2.2. K-mesh property. The K-mesh property relates the size of neighboring ele-
ments in the sense

K(T ) := max
{
|T |/|T ′| : T, T ′ ∈ T , T ∩ T ′ 6= ∅

}
. (3.2.2)

We say that a refinement strategy preserves the K-mesh property, if there exists a constant
CK > 0 such that

K(T ) ≤ CKK(T0) for all T ∈ T. (3.2.3)
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3.2.3. Shape regularity. In the following applications, the shape regularity of trian-
gulations plays an important role. Define for d ≥ 2

γ(T ) := max
{
diam(T )/|T |1/d : T ∈ T

}
. (3.2.4)

We say that a refinement strategy preserves shape regularity, if there exists a constant
Cshp > 0 such that

γ(T ) ≤ Cshpγ(T0) for all T ∈ T. (3.2.5)

Lemma 3.2.1. Let T be shape regular and satisfy the K-mesh property. Then, all z ∈ Ω
and all T ∈ T satisfy

|
{
T ′ ∈ T : z ∈ T ′

}
| ≤ K(T )γ(T )dCΩ,

|
{
T ′ ∈ T : T ∩ T ′ 6= ∅

}
| ≤ K(T )2γ(T )dCΩ.

Proof. Let δ := diam(T0), z ∈ T0 denote the maximal diameter of all T ∈ T with
z ∈ T . Then,

⋃{
T ∈ T : z ∈ T

}
⊆ Bδ(z) :=

{
x ∈ Rd : |z− x| ≤ δ

}
. Shape regularity and

the K-mesh property imply |T | ≥ K(T )−1|T0| ≥ K(T )−1γ(T )−dδd. Altogether, this shows

|
{
T ∈ T : z ∈ T

}
| ≤ |Bδ(z)|δ−dK(T )γ(T )d ≤ K(T )γ(T )dCΩ.

Analogously, we obtain for T ′∩T 6= ∅ and T0∩T 6= ∅, that |T ′| ≥ K(T )−1|T | ≥ K(T )−2|T0| ≥
K(T )−2γ(T )−dδd. This and the above conclude the proof. �

3.2.4. Existence of a reference element. Most of the practically used shape regular
triangulations allow for a reference element Tref ⊆ Rd such that there exist bijective functions
FT : Tref → T for all T ∈ T∞. The functions are smooth and uniformly bounded, i.e., all
p ∈ N satisfy

sup
T∈T∞

(|T |−p/d‖DpFT‖L∞(Tref ) + |T |p/d‖DpF−1
T ‖L∞(T )) <∞, (3.2.6)

where Dp(·) denotes the p-th order derivative which is defined on Rd and on Ω (as a surface
derivative) such that there holds (DF−1

T ) ◦ FT = (DFT )
−1 with pointwise regular matrices

in Rd×d. This particularly implies bi-Lipschitz continuity

C−1
5 |x− y| ≤ |T |−1/d|FT (x)− FT (y)| ≤ C5|x− y| for all x, y ∈ Tref (3.2.7)

for some constant C5 > 0. Moreover, we suppose that all T, T ′ ∈ T with z ∈ T ∩ T ′ 6= ∅
satisfy

FT ◦ F−1
T ′ (z) = z. (3.2.8)

This allows to define the usual spaces of piecewise polynomials

Pp(T ) :=
{
V ∈ L2(Ω) : V ◦ FT is polynomial of degree ≤ p for all T ∈ T

}
(3.2.9)

and

Sp(T ) := Pp(T ) ∩ C(Ω). (3.2.10)
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3.2.5. Father-son relation. Often, a refinement strategy allows for a unique father son

relation, i.e., for all T̂ ∈ T(T ) and all T ∈ T \ T̂ , there exist son elements T ′
0, . . . , T

′
n ∈ T̂ \T

for some 2 ≤ n ≤ nson ∈ N such that

T =
n⋃

i=1

T ′
i . (3.2.11)

We call T the father of T ′
0, . . . , T

′
n. Note that (3.2.11) particularly implies (T1). Each of the

sons satisfies

q′con|T | ≤ |T ′| ≤ qcon|T |, (3.2.12)

for some constants 0 < q′con ≤ qcon < 1.

3.2.6. Closure estimate. The axiom (T2) states that the output of Algorithm 2.2.1
satisfies the closure estimate. However, a generally defined refinement strategy often satisfies

the closure estimate for any refinement T̂ ∈ T, i.e.,

|T̂ \ T0| ≤ Cclosure

ℓ−1∑

j=0

|Mj|, (3.2.13)

where T0 = T̂0, . . . , T̂ℓ = T̂ for some T̂j ∈ T and M̂j ⊆ Tj with T̂j+1 = T(T̂j ,M̂j) for all
j = 0, . . . , ℓ− 1. By Lemma 2.7.8, this is also equivalent to (2.7.9) if Section 3.2.5 applies.

3.2.7. Simplicial triangulations. Under the assumptions of Section 3.2.1–3.2.5, we as-
sume that Tref is a simplex of dimension d with set of nodes K(Tref). By K(T ) := FT (K(Tref)),
we denote the nodes of the elements T ∈ T∞ and K(T ) :=

⋃
T∈T K(T ) denotes the nodes of

the triangulation. We prohibit hanging nodes, i.e., all T, T ′ ∈ T satisfy K(T ) ∩ T ′ ⊆ K(T ′).
The element mappings FT : Tref → T are affine functions.

The following result is well-known in the literature

Lemma 3.2.2. Let T ∈ T and z ∈ K(T ) such that z /∈ T . Then, there holds

diam(T ) ≤ C6min
z′∈T

|z − z′|, (3.2.14)

where the constant C6 > 0 depends only on γ(T ), d, and K(T ).

3.2.8. Example 1: Bisection. For d ≥ 1, the elements in T∞ are compact simplices
T ⊆ Rd, i.e., affine line segments for d = 1, triangles for d = 2, and tetrahedra for d = 3.
All triangulations T ∈ T are regular in the sense that all vertices z ∈ K(T ) are vertices of
all elements T ∈ T with z ∈ T (no hanging nodes).

For d = 1, bisection splits the elements T ∈ M ⊆ T marked for refinement at a generic
point xT ∈ T (e.g., the barycenter) to generate two new elements T1 and T2 which both share
the endpoint xT . Additional bisections have to be imposed to ensure that the bisection
preserves the K-mesh property (3.2.3). We refer to [3] for some extended 1D bisection
algorithm.

For d ≥ 2, the bisection is described in [78] (called newest vertex bisection for d = 2)
and [79] (for d ≥ 3). Each element T ∈ T has a distinguished edge (the reference edge). If
the element is refined, first the reference edge is split. See Figure 1 for an illustration of the
refinement rules for d = 2.
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Figure 1. Refinement rules for 2D bisection (newest vertex bisection). The
reference edge is indicated in blue. The leftmost triangle depicts the bisec3
refinement of a marked element. The other three refinement rules (bisec2 and
bisec1 ) are recursively applied to avoid hanging nodes. The dashed line outside
of the triangles indicates where the neighboring triangle is refined.

Lemma 3.2.3. The bisection strategies for d ≥ 1 are refinement strategies in the sense of
Section 3.2.1–3.2.7 and satisfy (T1)–(T2) as well as the overlay estimate (2.5.1) and the son
estimate (2.7.7). For d ≥ 3, an appropriate labeling of the edges of the initial triangulation
T0 is necessary to guarantee (T2) (see [14, 79] for details).

Proof. The d = 1 case is proved in [3]. The estimate (2.7.7) holds since each of the
refinement strategies generates at least two son elements for each refined element. The proof

of (2.7.10) with C̃4 = 1 is found in [78, Proof of Lemma 5.2] for d = 2 and [35, Lemma 3.7]
for d ≥ 2. By Lemma 2.7.8, this is equivalent to (2.5.1) with C4 = 2. However, since [35,

Lemma 3.7] shows that the coarsest common refinement T ⊕ T̂ ∈ T(T ) ∩ T(T̂ ) is given by

T ⊕ T̂ :=
{
T ∈ T : ∃T̂ ∈ T̂ , T ⊆ T̂

}
∪
{
T̂ ∈ T̂ : ∃T ∈ T , T̂ ⊆ T

}
, (3.2.15)

counting the elements reveals

|(T ⊕ T̂ ) \ T | = |
{
T̂ ∈ T̂ : ∃T ∈ T , T̂ ( T

}
| ≤ |T̂ \ T | ≤ |T̂ \ T0|.

This, however, is (2.5.1) with C4 = 1.
For the proof of (2.7.9) and hence (T2) and (3.2.13) (by Lemma 2.7.8), we refer to [14]

for d = 2 and [79] for d ≥ 2. The works [14, 79] assume an appropriate labeling of the
edges of the initial triangulation T0 to prove (T2). This poses a combinatorial problem on
the initial triangulation T0 but does not concern any of the following triangulations Tℓ, ℓ ≥ 1.
For d = 2, it can be proven that each conforming triangular triangulation T allows for such
a labeling, while no efficient algorithm is known to compute this in linear complexity. For
d ≥ 3, such a result is missing. However, it is known that an appropriate uniform refinement
of an arbitrary conforming simplicial triangulation T for d ≥ 2 allows for such a labeling [79].
Moreover, for d = 2, it has recently been proved in [59] that (T2) even holds without any
further assumption on the initial triangulation T0. The axiom (T1) is proved by use of [52,
Corollary 3.5], which shows the level difference between some T ∈ T(T ,M) for some M ⊆ T
and its father element T ′ ∈ T with T ⊆ T ′ is uniformly bounded. Since the level measures
the number of bisections used to generate the element from T0, this implies that each father
element T ′ ∈ T has uniformly bounded number of sons in T(T ,M). This concludes the
proof. �

50



Figure 2. Refinement rules for 2D red-green-blue refinement. The leftmost
triangle is red-refined, i.e., all of its edges are bisected, the right most triangle
is blue-refined, i.e., only its reference edge is refined, and the other triangles
are green-refined. The reference edges of the son triangles are indicated with
a solid red line. Red refinement is used for marked elements, green and blue
refinement are used to avoid hanging nodes. There are two methods to deter-
mine the reference edge. The simplest one is to take the longest edge of the
triangle. The second one (also known as modified red-green-blue refinement)
is to choose a labeling of the initial triangulation T0 as for bisection from Sec-
tion 3.2.8. The reference edge of each son triangle is then chosen such that it
is congruent with its father triangle. Under certain conditions on the interior
angles of the triangles, [70, Satz 4.17] (in German) shows that both methods
coincide as is the case in the example above.

3.2.9. Example 2: Red-green-blue refinement. For d ≥ 2, the elements are com-
pact simplices T ⊆ Rd.

The red-green-blue refinement (discussed e.g., in [82]) refines a given triangulation for d =
2 according to Figure 2. For d = 3, the situation is more complicated as a tetrahedron is split
into four similar tetrahedra at the parents vertices plus an octahedron in the center which
has to be split furthermore. This is laid out in detail in [9]. In contrast to bisection from
Section 3.2.8, red-green-blue refinement fails to satisfy (2.5.1) as seen from a counterexample
in [70, Satz 4.15] (in German). For illustration purposes, we provide a slightly simplified
example in Figure 3

Lemma 3.2.4. The red-green-blue refinement strategies for d = 2, 3 are refinement
strategies in the sense of Section 3.2.1–3.2.7 and satisfy (T1)–(T2) as well as the son esti-
mate (2.7.7) at least for d = 2 (if reference edges are inherited as for 2D bisection and the
initial triangulation satisfies an appropriate labeling of the edges; see [14, 79] for details).

Proof. For the proof of (2.7.9) and hence (T2) and (3.2.13) (by Lemma 2.7.8), we refer
to [53, Appendix A] or [70, Satz 4.14] for d = 2 under the assumption of an appropriate
labeling of the edges of the initial triangulation T0 as is Section 3.2.8. The axiom (T1) is
obvious for d = 2, since all possibilities are depicted in Figure 2. The estimate (2.7.7) follows
since each refinement produces at least two sons. This concludes the proof. �

3.2.10. Example 3: Quad refinement with one hanging node. If one admits
hanging nodes, also quad-refinement is an option. The elements T ∈ T∞ are quadrilaterals
for d = 2 an hexahedra for d = 3. The refinement of an element is realized by dividing the
element into 2d congruent sons. This strategy is described in [16].

Lemma 3.2.5. The quad refinement strategies for d = 2, 3 are refinement strategies in
the sense of Section 3.2.1–3.2.6 and satisfy (T1)–(T2) as well as the overlay estimate (2.5.1)
and the son estimate (2.7.7).
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T T ′

T ⊕ T ′

Figure 3. Counter-example to (2.5.1) for red-green-blue refinement. With
j = 4, there holds |T ⊕T ′ \T | = 4j and |T ′| = 2. Obviously, the construction
can be extended to any j = 2n, n ∈ N by red-refinement of the marked triangles
in T and thus contradicts (2.5.1) for any constant.

Proof. The closure estimate (2.7.9) and hence (T2) and (3.2.13) (by Lemma 2.7.8) is
proved [16, Section 6.3]. The overlay estimate (2.5.1) follows from the fact that it is a binary
refinement strategy, i.e., there holds (3.2.15). The estimate (2.7.7) follows from the fact that
each refinement produces four sons. Finally, (T1) follows by consideration of all possible
element intersections. �

3.2.11. Example 4: Facet based refinement strategies. The refinement strategies
from Section 3.2.8 and Section 3.2.9 can be formulated in a facet based way. In this case,
T∞ is the set of facets which can be generated and T ⊆ T is a triangulation represented
by the element facets. For refinement, we mark facets M ⊆ T and generate the refinement
T(T ,M) according to the rules depicted in Figure 1–2 for d = 2. For d ≥ 3, we refer
to [79] for bisection and [9] for red-green-blue refinement. The results of Lemma 3.2.3 and
Lemma 3.2.4 hold also for facet based refinement.

3.2.11.1. Scott-Zhang projection. The Scott-Zhang projection was introduced in [76]. We
give a slightly modified definition.

Definition 3.2.6 (Scott-Zhang projection). Assume a triangulation T in the sense of
Section 3.2.1–3.2.7 and let p ∈ N. For each z ∈ K(T ) choose Tz ∈ T with z ∈ Tz. Consider
the nodal basis

{
φz ∈ S1(T ) : z ∈ K(T )

}
with φz(z

′) = 0 for all z′ 6= z and φz(z) = 1.
Let p ≥ 1 and consider the extended basis {b1, . . . , bn} ∈ Pp(Tref) for some n ∈ N with
‖bi‖L∞(Tref ) ≤ 1 such that

span
{{
φz : z ∈ K(T )

}
∪
{
bT,i := bi ◦ F−1

T : i = 1, . . . , n, T ∈ T
}}

= Sp(T ).

For each T ∈ T let {φ⋆
T,z, b

⋆
T,1, . . . , b

⋆
T,n} ⊆ Pp(T ) denote the dual basis functions with respect

to {φz|T , bT,1, . . . , bT,n}. Define for v ∈ L2(Ω)

J(T )v :=
∑

z∈K(T )

φz

∫

Tz

φ⋆
Tz ,zv dx+

∑

T∈T

n∑

i=1

bT,i

∫

T

b⋆T,iv dx.

Moreover, define the patch ω(T, T ) :=
{
T ′ ∈ T : T ∩ T ′ 6= ∅

}
.
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The stability estimates (3.2.16a)–(3.2.16b) are known since the seminal work [76]. How-
ever, the optimality estimate (3.2.16c) was first derived in [4] for triangulations which are
generated by bisection from Section 3.2.8. Later, this result was generalized in [81] to shape
regular triangulations. Below, we provide a simplified proof with the techniques of the
original proof in [4].

Lemma 3.2.7 (Scott-Zhang projection). Assume a triangulation T in the sense of
Section 3.2.1–3.2.7 and let p ∈ N. The Scott-Zhang projection from Definition 3.2.6 satisfies
for all T ∈ T and all v ∈ H1(Ω)

‖J(T )v‖L2(T ) ≤ Csz‖v‖L2(∪ω(T,T )), (3.2.16a)

‖∇J(T )v‖L2(T ) ≤ Csz‖∇v‖L2(∪ω(T,T )), (3.2.16b)

‖∇(1− J(T ))v‖L2(T ) ≤ Csz min
V ∈Pp−1

∇ (T )
‖∇v − V ‖L2(∪ω(T,T )), (3.2.16c)

where

Pp−1
∇ (T ) :=

{
V ∈ L2(Ω)d : V |T =W DF−1

T , W ∈ Pp−1(T )d, T ∈ T
}
. (3.2.16d)

The constant Csz > 0 depends only on the constants in Section 3.2.1–3.2.7, T, and p ∈ N.

Before we prove Lemma 3.2.7, we state the following auxiliary lemma from [41].

Lemma 3.2.8 (Generalized Poincaré-Friedrichs inequality). Assume a triangulation T
in the sense of Section 3.2.1–3.2.7. Let v ∈ H1(Ω), T, T ′ ∈ T with T ∩ T ′ 6= ∅. Then, there
holds with vT := |T |−1

∫
T
v dx

‖v − vT‖L2(T ) + |T |1/2|vT − vT ′ | ≤ C7|T |1/d‖∇v‖L2(∪ω(T,T )),

where C7 > 0 depends only the constants in Section 3.2.1–3.2.7. �

Proof of (3.2.16a)–(3.2.16b). By definition of the dual basis, J(T ) is a projection. To
see (3.2.16b), consider T ∈ T and b⋆ ∈ {φ⋆

T,z, b
⋆
T,1, . . . , b

⋆
T,n}. A scaling argument proves

‖b⋆‖L∞(T ) . |T |−1,

where the hidden constant depends only on γ(T ), p, and the reference element Tref from
Section 3.2.4. With this, there holds

∣∣
∫

T

b⋆v dx
∣∣ ≤ ‖b⋆‖L∞(T )‖v‖L1(T ) . |T |−1/2‖v‖L2(T ).

An inverse estimate shows for any basis function b ∈
{
φz : z ∈ K(T )

}
∪
{
bT,i : i =

1, . . . , n, T ∈ T
}

with |supp(b) ∩ T | > 0

‖∇b‖L2(T ) . |T |1/2−1/d,

where the hidden constant depends only on the constants in Section 3.2.1–3.2.7 and p.
Altogether, this implies

‖∇J(T )v‖L2(T ) ≤
∑

z∈K(T )

‖∇φz‖L2(Tz)

∣∣
∫

Tz

φ⋆
Tz ,zv dx

∣∣ +
n∑

i=1

‖∇bT,i‖L2(T )

∣∣
∫

T

b⋆T,iv dx
∣∣

. |T |−1/d‖v‖L2(∪ω(T,T )),

where the hidden constant depends only on the constants in Section 3.2.1–3.2.7, T , and
p. Define vT := |T |−1

∫
T
v dx. Then, there holds with the last estimate and the projection
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property J(T )vT = vT

‖∇J(T )v‖L2(T ) = ‖∇J(T )(v − vT )‖L2(T ) . |T |−1/d‖v − vT‖L2(∪ω(T,T )).

Lemma 3.2.8 implies

‖v − vT‖2L2(∪ω(T,T )) ≤ 2
∑

T ′∈ω(T,T )

‖v − vT ′‖2L2(T ′) + |T ′||vT − vT ′|2

≤ 2C2
7K(T )2/d|T |2/d‖∇v‖2L2(∪ω(T,T )).

Altogether, this proves (3.2.16b). The same argument shows also (3.2.16a). �

3.3. Weighted error estimators

Under the general assumption in Section 3.2.1, this section assumes that the error es-
timator η(·) depends not only on the triangulation, but also on a certain weight function
h ∈ L∞(Ω). We call the error estimator η(·, h) a weighted error estimator with weight
h. In the applications below, we define for each T ∈ T a certain natural weight function
h(T ) : Ω → (0,∞) for which we write η(T ) := η(T , h(T )). This natural weight function
must be continuous on Ω\⋃T∈T ∂T . Suppose that η(·, ·) satisfies the following homogeneity
condition: There exist constants 0 < r+ ≤ r− < ∞ such that all T ∈ T ∈ T, and all
α : Ω → [0, 1] with α ∈ L∞(Ω) satisfy

min
x∈T

|α(x)|r− ηT (T , h) ≤ ηT (T , αh) ≤ max
x∈T

|α(x)|r+ ηT (T , h). (3.3.1)

Suppose stability in the following sense: All refinements T̂ ∈ T(T ) of a triangulation T ∈ T
and all subsets S ⊆ T with Ŝ :=

{
T ∈ T̂ : T ⊆ ⋃S

}
satisfy

∣∣∣
(∑

T∈Ŝ

ηT (T̂ , h)2
)1/2

−
(∑

T∈S

ηT (T , h)2
)1/2∣∣∣ ≤ ˜̺(T , T̂ ), (3.3.2)

where h : Ω → (0,∞) is a weight function with h|T ≤ h(T̂ )|T for all T ∈ S and ˜̺(·, ·) :
T× T → [0,∞).

Proposition 3.3.1. Let the error estimator η(·) be a weighted error estimator which

satisfies homogeneity (3.3.1) and stability (3.3.2) and define S(T , T̂ ) :=
{
T ∈ T : h(T̂ )|T ≤

qconh(T )|T
}

for some 0 < qcon < 1. With Ŝ(T , T̂ ) :=
{
T ∈ T̂ : T ⊆ ⋃S(T , T̂ )

}
,

ρred = (1 + δ)q2r+con , and ̺(T , T̂ ) := (1 + δ−1)1/2 ˜̺(T , T̂ ) for all δ > 0, this implies (E1b). If

additionally h(T̂ )|T = h(T )|T for all T ∈ T \ S(T , T̂ ). This implies even (E1a).

Proof. Let h be a weight function. The homogeneity (3.3.1) implies for some T ∈ T
and

h̃ :=

{
h|T on T,

0 on Ω \ T
that

ηT (T , h) = min
x∈T

|h̃(x)/h(x)|r− ηT (T , h) ≤ ηT (T , h̃)

≤ max
x∈T

|h̃(x)/h(x)|r+ ηT (T , h) = ηT (T , h).

Hence ηT (T , h) depends only on h|T . With this, stability (E1a) follows from (3.3.2) with

S := T \ S(T , T̂ ) and h := h(T ), since ηT (T̂ , h(T )) = ηT (T , h(T̂ )) for all T ∈ S.
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Reduction (E1b) follows with (3.3.1) and (3.3.2). For δ > 0, there holds
∑

T∈Ŝ(T ,T̂ )

ηT (T̂ )2 ≤ (1 + δ)
∑

T∈S(T ,T̂ )

ηT (T , h(T̂ ))2 + (1 + δ−1)˜̺(T , T̂ )2

≤ (1 + δ)
∑

T∈S(T ,T̂ )

max
x∈T

h(T̂ )2r+(x)

h(T )2r+(x)
ηT (T )2 + (1 + δ−1)˜̺(T , T̂ )2

≤ (1 + δ)q2r+con

∑

T∈S(T ,T̂ )

ηT (T )2 + (1 + δ−1)˜̺(T , T̂ )2.

This concludes the proof. �

3.4. Example 1: Laplace problem with residual error estimator

This section applies the abstract analysis of the preceding sections to different discretizations
of the Laplace problem. The examples are taken from conforming finite element methods
(FEM) as well as the boundary element methods (BEM) for weakly-singular and hyper-
singular integral equations. More examples, e.g., non-conforming or mixed methods (with
the error estimator from [21]), are found and discussed in [24]. A general review on error
estimators for finite element methods is found in [23].

3.4.1. Conforming FEM. This section is based on [24, Section 5]. In the context
of conforming FEM for symmetric operators, the convergence and quasi-optimality of the
adaptive algorithm has finally been analyzed in the seminal works [35, 78]. In this section,
we show that their results can be reproduced and even extended in the abstract framework
developed.

Let Ω ⊂ Rd, d ≥ 2, be a bounded Lipschitz domain with polyhedral boundary Γ := ∂Ω.
With given volume force f ∈ L2(Ω), we consider the Poisson model problem

−∆u = f in Ω and u = 0 on Γ. (3.4.1)

For the weak formulation, let X := H1
0 (Ω) denote the usual Sobolev space, with the equiva-

lent H1-norm ‖v‖H1
0 (Ω) := ‖∇v‖L2(Ω) associated with the scalar product

b(u, v) :=

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx for all v ∈ H1
0 (Ω). (3.4.2)

Then, the weak form of (3.4.1) admits a unique solution u ∈ H1
0 (Ω). Based on a triangulation

T of Ω generated by bisection (Section 3.2.8), we use the conforming finite element spaces
Sp
0 (T ) := Pp(T ) ∩H1

0 (Ω) of fixed polynomial order p ≥ 1. The discrete form

b(U(T ), V ) =

∫

Ω

fV dx for all V ∈ Sp
0 (T ) (3.4.3)

also admits a unique FE solution U(T ) ∈ Sp
0 (T ). Following [35], we use the local weight

function

h(T ) ∈ P0(T ) with h(T )|T := |T |1/d, (3.4.4)

where |T | denotes the volume of an element T ∈ T . The standard residual error estimator
consists of the local contributions for all T ∈ T

ηT (T )2 := h(T )|2T ‖f +∆U(T )‖2L2(T ) + h(T )|T ‖[∂nU(T )]‖2L2(∂T∩Ω), (3.4.5)

see, e.g., [1, 82] as well as [35, 78].
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Here, [∂n(·)] denotes the jump of the normal derivative over interior facets of T . Hence,
η(·) is a weighted error estimator in the sense of Section 3.3 (the proofs of (3.3.1) and (3.3.2)
follow below).

Since the admissible triangulations T ∈ T are uniformly shape regular (3.2.5), we note
that h(T )|T ≃ diam(T ) with the Euclidean diameter diam(T ). In particular, η(·) coincides,
up to a multiplicative constant, with the usual definition found in textbooks, cf., e.g., [1, 82].
We refer to Section 5.2.2 for the proof that the choice of the weight function does not affect
convergence and quasi-optimality of the adaptive algorithm.

Proposition 3.4.1. The conforming discretization of the Poisson problem (3.4.1) with
residual error estimator (3.4.5) and bisection as refinement strategy T(·, ·) satisfies

(i) stability and reduction (E1) with ρred = 2−1/d, S(T , T̂ ) := T \ T̂ as well as

Ŝ(T , T̂ ) := T̂ \ T , and ̺(T , T̂ ) := Cpert‖U(T )− U(T̂ )‖H1
0 (Ω),

(ii) general quasi-orthogonality (E2) with εqo = 0,

(iii) discrete reliability (E3) with R(T , T̂ ) = T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the refinement axioms (T1)–(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satisfies reliability and efficiency (2.4.1)–(2.4.2) with err(T ) :=
‖u− U(T )‖H1

0 (Ω) and

data(T ) := min
F∈Pp−1(T )

‖h(T ) (f − F )‖L2(Ω). (3.4.6)

The constants Cdrel, Cqo, Cpert, Ceff , Crel depend only on the polynomial degree p ∈ N, T0, and
on Ω.

Proof. Stability (E1a) as well as reduction (E1b) are part of the proof of [35, Corol-
lary 3.4]. The discrete reliability (E3) is found in [35, Lemma 3.6] with εdrel = 0 and

κdlr = ∞. Since ̺(T , T̂ ) is a Hilbert norm and the Galerkin orthogonality (2.7.3) is satis-
fied by definition, Lemma 2.7.2 implies (E2) with εqo = 0 and Cqo = Cdrel. Lemma 3.2.3
shows (T1)–(T2) & (2.5.1), (2.7.7). Lemma 2.7.5 shows quasi-monotonicity (2.7.6). Hence,
Lemma 2.7.4 proves (iv).

The bounds (2.4.1)–(2.4.2) are well exposed in text books on a posteriori error estimation,
see, e.g., [1, 82].and hence concludes the proof. �

Consequence 3.4.2. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and
with optimal complexity in the sense of Theorem 2.5.1. �

Numerical examples for the 2D Laplacian with mixed Dirichlet-Neumann boundary con-
ditions are found in [51] together with a detailed discussion of the implementation. Examples
for 3D are found in [35].

3.4.2. Conforming BEM for weakly-singular integral equation. In this section
(which is based on [24, Section 5]), we consider the weighted-residual error estimator in
the context of BEM for integral operators of order −1. Unlike FEM, the efficiency of this
error estimator is still an open question in general and mathematically guaranteed only
for particular situations [3] while typically observed throughout, see, e.g. [20, 28, 33, 34].
Nevertheless, the abstract framework of Chapter 2 provides the means to analyze convergence
and quasi-optimality of the adaptive algorithm. Non-residual error estimators are proposed
in [30, 50], which are numerically straightforward to implement but lack the necessary
properties to prove optimality.
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In a specific setting, optimal convergence of adaptive algorithms has independently first
been proved by [47, 80] for lowest-order BEM. While the analysis of [80] covers general
operators, but is restricted to smooth boundaries Γ, the analysis of [47] focuses on the
Laplace equation only, but allows for polyhedral boundaries. In [44], these results are
generalized to BEM with ansatz functions of arbitrary, but fixed polynomial order.

Let Ω ⊂ Rd be a bounded Lipschitz domain with polyhedral boundary ∂Ω and d = 2, 3.
Let Γ ⊆ ∂Ω be a relatively open subset which has a Lipschitz boundary itself. For given
f ∈ H1/2(Γ) :=

{
φ|Γ : φ ∈ H1(Ω)

}
, we consider the weakly-singular first-kind integral

equation

Vu(x) = f(x) for x ∈ Γ. (3.4.7)

The sought solution satisfies u ∈ H̃−1/2(Γ). The negative-order Sobolev space H̃−1/2(Γ) is
the dual space of H1/2(Γ) with respect to the extended L2(Γ)-scalar product 〈· , ·〉L2(Γ). We
refer to the monographs [58, 62, 75] for details and proofs of this as well as of the following
facts on the functional analytic setting: With the fundamental solution of the Laplacian

G(z) :=

{
− 1

2π
log |z| for d = 2,

+ 1
4π

1
|z|

for d = 3,
(3.4.8)

the simple-layer potential reads

Vu(x) :=
∫

Γ

G(x− y)u(y) dΓ(y) for x ∈ Γ. (3.4.9)

We note that V : H−1/2+s(Γ) → H1/2+s(Γ) is a linear, continuous, and symmetric operator
for all −1/2 ≤ s ≤ 1/2. For 2D, we assume diam(Ω) < 1 which can always be achieved by
scaling. Then, V is also elliptic (see also Proposition 6.2.23, below) , i.e.,

b(u, v) := 〈Vu , v〉L2(Γ) (3.4.10)

defines an equivalent scalar product on X := H̃−1/2(Γ). We equip H̃−1/2(Γ) with the in-
duced Hilbert space norm ‖v‖2

H̃−1/2(Γ)
:= 〈Vv , v〉L2(Γ). According to the Hahn-Banach theo-

rem, (3.4.7) is equivalent to the variational formulation

b(u, v) = 〈f , v〉L2(Γ) for all v ∈ H̃−1/2(Γ). (3.4.11)

It relies on the scalar product b(·, ·) and hence admits a unique solution u ∈ H̃−1/2(Γ)
of (3.4.11).

Let T be a regular triangulation of Γ, generated by bisection from Section 3.2.8 from
some initial triangulation T0. We employ conforming boundary elements Pp(T ) ⊂ H−1/2(Γ)
of order p ≥ 0. The discrete formulation

b(U(T ), V ) = 〈f , V 〉L2(Γ) for all V ∈ Pp(T )

admits a unique BE solution U(T ) ∈ Pp(T ).
Under additional regularity of the data f ∈ H1(Γ), we consider the weighted-residual

error estimator of [20, 28, 33, 34] with local contributions

ηT (T )2 := h(T )|T ‖∇Γ(f − VU(T ))‖2L2(T ) for all T ∈ T . (3.4.12)

Here, ∇Γ(·) denotes the surface gradient and h(T ) ∈ P0(T ) denotes the weight function
defined by h(T )|T = |T |1/(d−1) for all T ∈ T as Γ is a (d−1)-dimensional manifold. We note
that the analysis of [20, 28, 33, 34] relies on a Poincaré-type estimate ‖R(T )‖H1/2(Γ) .
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‖h(T )1/2∇ΓR(T )‖L2(Γ) for the Galerkin residual R(T ) = f − VU(T ) and requires shape-
regularity of the triangulation T for d = 3, in particular, the fact that h(T )|T ≃ diam(T ).

Proposition 3.4.3. The conforming discretization of the Poisson problem (3.4.7) with
residual error estimator (3.4.12) satisfies

(i) stability and reduction (E1) with ̺(T , T̂ ) := Cpert‖U(T ) − U(T̂ )‖H̃−1/2(Γ), ρred =

2−1/(d−1), and S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T ,
(ii) general quasi-orthogonality (E2) with εqo = 0,
(iii) discrete reliability (E3) with

R(T , T̂ ) :=
{
T ∈ T : ∃T ′ ∈ T \T̂ T ∩ T ′ 6= ∅

}
, (3.4.13)

κdlr = ∞, and εdrel = 0,
(iv) the refinement axioms (T1)–(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satisfies reliability (2.4.1) with err(T ) := ‖u − U(T )‖H̃−1/2(Γ). The
constants Cdrel, Cqo, Cpert, Crel depend only on the polynomial degree p ∈ N, T0, and on Γ.

Proof. Reliability (2.4.1) is well-known in the literature (e.g. [28, 33, 34]). Stabil-
ity (E1a) as well as reduction (E1b) are part of the proof of [47, Proposition 4.2] and also
found in [44]. The proof essentially follows [35], but additionally relies on the novel inverse-
type estimate

‖h(T )1/2∇ΓVV ‖L2(Γ) . ‖V ‖H̃−1/2(Γ) for all V ∈ Pp(T ).

While the work [47] is concerned with the lowest-order case p = 0 only, we refer to [2,
Corollary 2] for general p ≥ 0 so that [47, Proposition 4.2] transfers to p ≥ 0. Discrete
reliability (E3) is proved in [47, Proposition 5.3] for p = 0, but the proof holds accord-
ingly for arbitrary p ≥ 0. Lemma 2.7.2 implies general quasi-orthogonality (E2) with
εqo = 0. Lemma 3.2.3 shows (T1)–(T2) & (2.5.1), (2.7.7). Lemma 2.7.5 shows quasi-
monotonicity (2.7.6). Hence, Lemma 2.7.4 proves (iv). �

Consequence 3.4.4. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and
optimal complexity in the sense of Theorem 2.5.1. �

Numerical examples that underline the above result can be found in [33].
The lower bound (2.4.2) for the weighted-residual error estimator (3.4.12) remains an

open question. The only result available [3] is for d = 2, and it exploits the equivalence
of (3.4.7) to some Dirichlet-Laplace problem: Assume Γ = ∂Ω and let

Kg(x) :=
∫

Γ

∂n(y)G(x− y) g(y) dy (3.4.14)

denote the double-layer potential K : H1/2+s(Γ) → H1/2+s(Γ), for all −1/2 ≤ s ≤ 1/2.
Then, the weakly-singular integral equation (3.4.15) for given Dirichlet data g ∈ H1/2(Γ)
and f := (K + 1/2)g is an equivalent formulation of the Dirichlet-Laplace problem

−∆φ = 0 in Ω and φ = g on Γ = ∂Ω. (3.4.15)

The density u ∈ H̃−1/2(Γ), which is sought in (3.4.7), is the normal derivative u = ∂nφ to
the potential φ ∈ H1(Ω) of (3.4.15).

For this special situation and lowest-order elements p = 0, the lower bound (2.4.2) is
proved in [3, Theorem 4].
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Proposition 3.4.5. We consider lowest-order BEM p = 0 for d = 2 and Γ = ∂Ω.
Let σ > 2 and g ∈ Hσ(∂Ω) :=

{
φ|∂Ω : φ ∈ Hσ+1/2(Ω)

}
. For f := (K + 1/2)g, the

weighted-residual error estimator (3.4.12) satisfies (2.4.1)–(2.4.2) for some (in general non-
computable) data(·) with Cdata

approx(3/2) <∞ (defined in Section 2.4).

Proof. The statement (2.4.2) is found in [3, Theorem 4], where data(T ) is based on
the regular part of the exact solution u. The definition [3, Definition 15] shows data(T ) .
‖h(T ))3/2+ε‖L∞(Γ) for T ∈ T and some σ-dependent ε > 0. �

For some smooth exact solution u, the generically optimal order of convergence is O(h3/2)
for lowest-order elements p = 0, where h denotes the maximal element size. For quasi-
uniform triangulations with N elements and 2D BEM, this corresponds to O(N−3/2) and
hence s = 3/2. With the foregoing proposition and according to Theorem 2.4.3, the adaptive
algorithm attains any possible convergence order 0 < s ≤ 3/2 and the generically optimal
rate is thus achieved.

Consequence 3.4.6. Let 0 < s ≤ 3/2 with ‖η,T‖s < ∞. Under the assumptions of
Proposition 3.4.5, the adaptive algorithm leads to the generically optimal rate for the error
in the sense of Theorem 2.4.3. �

Numerical examples that underline the above result can be found in [3, 20, 28, 33, 34,

47].

3.4.3. Conforming BEM for hyper-singular integral equation. In this section
(which is based on [24, Section 5]), we consider adaptive BEM for hyper-singular integral
equations, where the hyper-singular operator is of order +1. In this frame, convergence and
quasi-optimality of the adaptive algorithm has first been proved in [80], while the necessary
technical tools have independently been developed in [2]. While the analysis of [80] only
covers the lowest-order case p = 1 and smooth boundaries, the recent work [45] generalizes
this to BEM with ansatz functions of arbitrary, but fixed polynomial order p ≥ 1 and
polyhedral boundaries.

Throughout, we use the notation from Section 3.4.2. Additionally, we assume that Γ ⊆
∂Ω is connected. We consider the hyper-singular integral equation

Wu(x) = f(x) for x ∈ Γ, (3.4.16)

where the hyper-singular integral operator formally reads

Wv(x) := ∂n(x)

∫

Γ

∂n(y)G(x− y)v(y) dΓ(y). (3.4.17)

By definition, there holds Wg(x) = ∂nKg(x) if the double-layer potential Kg(x) is considered
as a function on Ω by evaluating (3.4.14) for x ∈ Ω. Again, we refer to the monographs [58,

62, 75] for details and proofs of the following facts on the functional analytic setting: The
hyper-singular integral operator W is symmetric as well as positive semi-definite and has
a one-dimensional kernel which consists of the constant functions, i.e., W1 = 0. To deal
with this kernel and to obtain an elliptic formulation, we distinguish the cases Γ $ ∂Ω and
Γ = ∂Ω.

3.4.3.1. Screen problem Γ $ ∂Ω. On the screen, the hyper-singular integral operator

W : H̃1/2+s(Γ) → H−1/2+s(Γ) is a continuous mapping for all −1/2 ≤ s ≤ 1/2. Here,

H̃1/2+s(Γ) :=
{
v|Γ : v ∈ H1/2+s(∂Ω) with supp(v) ⊆ Γ

}
denotes the space of functions

which can be extended by zero to the entire boundary, and H−1/2+s(Γ) denotes the dual

space of H̃1/2−s(Γ). For given f ∈ H−1/2(Γ), we seek the solution u ∈ H̃1/2(Γ) of (3.4.16).

59



We note that 1 /∈ H̃1/2(Γ) and W : H̃1/2(Γ) → H−1/2(Γ) is a symmetric and elliptic
operator. In particular,

b(u, v) := 〈Wu , v〉L2(Γ) (3.4.18)

defines an equivalent scalar product on X := H̃1/2(Γ). We equip H̃1/2(Γ) with the induced
Hilbert space norm ‖v‖2

H̃1/2(Γ)
:= b(v, v). The hyper-singular integral equation is thus equiv-

alently stated as

b(u, v) = 〈f , v〉L2(Ω) for all v ∈ H̃1/2(Γ) (3.4.19)

and admits a unique solution.
Given a regular triangulation T generated by bisection from Section 3.2.8 and a poly-

nomial degree p ≥ 1, we employ conforming boundary elements Sp
0 (T ) := Pp(T ) ∩ H̃1/2(Γ).

The discrete formulation

b(U(T ), V ) = 〈f , V 〉L2(Γ) for all V ∈ Sp
0 (T )

admits a unique BE solution U(T ) ∈ Sp
0 (T ).

Under additional regularity of the data f ∈ L2(Γ), we may define the weighted-residual
error estimator from [20, 27, 33, 34] with local contributions

ηT (T )2 := h(T )|T‖f −WU(T )‖2L2(T ) for all T ∈ T . (3.4.20)

As for the weakly-singular integral equation from Section 3.4.2, the lower bound (2.4.2) is
only observed empirically [20, 27, 33, 34], but a rigorous mathematical proof remains as
an open question.

Proposition 3.4.7. The conforming BEM discretization of the hyper-singular integral
equation (3.4.16) on the screen with weighted-residual error estimator (3.4.20) satisfies

(i) stability and reduction (E1) with ̺(T , T̂ ) := Cpert‖U(T ) − U(T̂ )‖H̃1/2(Γ), ρred =

2−1/(d−1), and S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T ,
(ii) general quasi-orthogonality (E2) with εqo = 0,

(iii) discrete reliability (E3) with R(T , T̂ ) := T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the refinement axioms (T1)–(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satisfies reliability (2.4.1) with err(T ) := ‖u− U(T )‖H̃(1/2)(Γ). The
constants Cdrel, Cqo, Cpert, Crel depend only on the polynomial degree p ∈ N, T0, and on Γ.

Proof. The reliability (2.4.1) is well-known in the literature (e.g. [20, 27, 33, 34]).
The discrete reliability (E3) follows with the techniques from [35] which are combined with
the localization techniques for the H1/2(Γ)-norm from [27]. We refer to [45] for details. For

the lowest-order case p = 1, an alternate proof is found in [80, Section 4], where R(T , T̂ ) are

the refined elements T \ T̂ plus one additional layer of elements, see (3.4.13). Stability (E1a)
and reduction (E1b) are proved in [45] and use the inverse estimate from [2, Corollary 2].
The remaining statements follow as in Proposition 3.4.3. �

Consequence 3.4.8. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and
optimal complexity in the sense of Theorem 2.5.1. �

Numerical examples that underline the above result can be found in [33].
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3.4.3.2. Laplace-Neumann problem Γ = ∂Ω. On the closed boundary Γ = ∂Ω, the hyper-
singular integral operator (3.4.17) is continuous for all −1/2 ≤ s ≤ 1/2

W : H1/2+s(Γ) → H−1/2+s(Γ).

Due to 1 ∈ H1/2(Γ), we have to stabilize W, e.g., with the rank-one operator Sv :=
〈v , 1〉L2(Ω) 1. Alternatively, it is possible to consider W on the factor space H1/2(Γ)/R ≃
H

1/2
⋆ (Γ) :=

{
v ∈ H1/2(Γ) :

∫
Γ
v ds = 0

}
. The (stabilized) hyper-singular integral equation

reads

(W + S)u(x) = f(x) for x ∈ Γ. (3.4.21)

The sought solution satisfies u ∈ X := H1/2(Γ). The stabilization S allows to define an
equivalent scalar product on H1/2(Γ) by

b(u, v) := 〈Wu , v〉L2(Γ) + 〈u , 1〉L2(Γ)〈v , 1〉L2(Γ).

We equip H1/2(Γ) with the induced Hilbert space norm ‖v‖2
H1/2(Γ)

= b(v, v). Then, the

equation (3.4.21) is equivalent to

b(u, v) = 〈f , v〉L2(Γ) for all v ∈ H1/2(Γ). (3.4.22)

In case of 〈f , 1〉L2(Γ) = 0, we see that 〈u , 1〉L2(Γ) = 0 by choice of the test function v = 1.
Then, the above formulation (3.4.21) resp. (3.4.22) is equivalent to (3.4.16).

For given g ∈ H−1/2(Γ) and the special right-hand side f = (1/2 − K′)g, it holds
〈f, 1〉L2(Γ) = 0. Moreover, (3.4.16) resp. (3.4.21) is an equivalent formulation of the Laplace-
Neumann problem

−∆φ = 0 in Ω and ∂nφ = g on Γ = ∂Ω. (3.4.23)

Clearly, the solution φ ∈ H1(Ω) is only unique up to an additive constant. If we fix this
constant by 〈φ , 1〉L2(Γ) = 0, the density u ∈ H1/2(Γ) which is sought in (3.4.16) for f =
(1/2−K′)g, is the trace u = φ|Γ of the potential φ.

For fixed p ≥ 1 and a regular triangulation T generated by bisection from Section 3.2.8
of Γ, we employ conforming boundary elements Sp(T ) := Pp(T ) ∩ H1/2(Γ). The discrete
formulation

b(U(T ), V ) = 〈f , V 〉L2(Γ) for all V ∈ Sp(T ) (3.4.24)

admits a unique solution U(T ) ∈ Sp(T ). In case of 〈f , 1〉L2(Γ) = 0, it follows as for the
continuous case that 〈U(T ) , 1〉Γ = 0 and therefore SU(T ) = 0. Hence, the definition of the
error estimator as well as the proof of the axioms (E1)–(E3), (T1)–(T3) is verbatim to the
screen problem in Section 3.4.3.1 and therefore omitted.

Consequence 3.4.9. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and
optimal complexity in the sense of Theorem 2.5.1. �

Numerical examples that underline the above result can be found in [27].
Although one may expect a lower bound (2.4.2) similar to that from [3] for Symm’s inte-

gral equation from Section 3.4.2, see Consequence 3.4.6, the details have not been worked out
yet. In particular, quasi-optimality of the adaptive algorithm in the sense of Theorem 2.4.3
remains as an open question.
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3.5. Example 2: General second-order elliptic equations

This section collects further fields of applications for the abstract theory developed in Chap-
ter 2 beyond the Laplace model problem from Section 3.4. The results of Section 3.5.1
appear first in [46]. A first version of this section can be found in the recent own work [24,
Section 6].

3.5.1. Conforming FEM for non-symmetric, elliptic linear problems. On the
bounded Lipschitz domain Ω ⊂ Rd, we consider the following linear second-order PDE

Lu := −divA∇u+ b · ∇u+ cu = f in Ω and u = 0 on Γ. (3.5.1)

For all x ∈ Ω, A(x) ∈ Rd×d is a symmetric matrix with A ∈ W 1,∞(Ω;Rd×d
sym). Moreover,

b(x) ∈ Rd is a vector with b ∈ L∞(Ω;Rd) and c(x) ∈ R is a scalar with c ∈ L∞(Ω). Note
that L is non-symmetric as

L 6= LT = −divA∇u− b · ∇u+ (c− divb)u.

We assume that the induced bilinear form

b(u , v) := 〈Lu , v〉 =
∫

Ω

A∇u · ∇v + b · ∇uv + cuv dx for u, v ∈ X := H1
0 (Ω) (3.5.2)

is continuous and H1
0 (Ω)-elliptic and denote by ‖v‖2 := b(v , v) the induced quasi-norm

on H1
0 (Ω), which satisfies ‖∇(·)‖L2(Ω) ≤ Cnorm‖ · ‖ for some Cnorm > 0. According to the

Lax-Milgram lemma and for given f ∈ L2(Ω), the weak formulation

b(u , v) =

∫

Ω

fv dx for all v ∈ H1
0 (Ω) (3.5.3)

admits a unique solution u ∈ H1
0 (Ω).

Historically, the convergence and quasi-optimality analysis for the adaptive algorithm has
first been developed for elliptic and symmetric operators, e.g., [40, 65, 14, 78, 35] to name
some milestones, and the analysis strongly used the fact that ‖v‖ is a Hilbert norm and hence
Lemma 2.7.2 applies. The work [64] introduced an appropriate quasi-orthogonality (2.7.5) in
theH1-norm to prove linear convergence of the so-called total error which is the weighted sum
of error plus oscillations. Later, [36] used this approach to prove quasi-optimal convergence
rates. However, [64, 36] are restricted to div b = 0 and sufficiently fine initial triangulations
T0 to prove this quasi-orthogonality. The recent work [46] removes these artificial assumption
by proving the general quasi-orthogonality (E2) with respect to the induced energy quasi-
norm ‖ · ‖. Moreover, the latter analysis also provides a framework for convergence and
quasi-optimality if b(· , ·) is not uniformly elliptic, but only satisfies some Gårding inequality.
For details, the reader is referred to Section 3.5.2

The discretization of (3.5.3) is done as in Section 3.4.1, from where we adopt the nota-
tion: For a given regular triangulation T generated by bisection from Section 3.2.8 and a
polynomial degree p ≥ 1, we consider Sp

0 (T ) := Pp(T ) ∩ H1
0 (Ω) with Pp(T ). The discrete

formulation also fits into the frame of the Lax-Milgram lemma and

b(U(T ), V ) =

∫

Ω

fV dx for all V ∈ Sp
0 (T ) (3.5.4)

hence admits a unique FE solution U(T ) ∈ Sp
0 (T ). Moreover, one has the Céa lemma

‖u− U(T )‖ ≤ CCéa min
V ∈Sp

0 (T )
‖u− V ‖ for all T ∈ T, (3.5.5)

where CCéa > 0 depends only on b(· , ·).
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The residual error-estimator η(·) differs slightly from the one in Section 3.4.1, namely

ηT (T )2 := h(T )|2T‖L|TU(T )− f‖2L2(T ) + h(T )|T‖[A∇U(T ) · n]‖2L2(∂T∩Ω) (3.5.6)

for all T ∈ T and L|TV := −div|TA(∇V ) + b · ∇V + cV , see e.g. [1, 82].

Proposition 3.5.1. The conforming discretization of problem (3.5.1) with residual
error estimator (3.5.6) satisfies

(i) stability and reduction (E1) with ρred = 2−1/d, ̺(T , T̂ ) := Cpert‖U(T )−U(T̂ )‖, and

S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T ,
(ii) general quasi-orthogonality (E2),

(iii) discrete reliability (E3) with R(T , T̂ ) = T \T̂ , κdlr = ∞, and εdrel = 0,
(iv) the refinement axioms (T1)–(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0 and the overlay estimate (2.5.1).

Moreover, the estimator satisfies reliability and efficiency (2.4.1)–(2.4.2) with err(T ) :=
‖u− U(T )‖ and

data(T )2 := min
F∈Pq(T )

∑

T∈T

h2T‖L|TU(T )− f − F‖2L2(T )

+ min
F∈Pq′(T )

∑

T∈T

hT‖[A∇U(T ) · n]− F‖2L2(∂T∩Ω),
(3.5.7)

where q, q′ ∈ N0 are arbitrary. If the differential operator L has piecewise polynomial coeffi-
cients, sufficiently large q, q′ ∈ N0 even provides (2.4.2) with

data(T ) = min
F∈Pp−1(T )

‖h(T ) (f − F )‖L2(Ω). (3.5.8)

In this case, there holds Cdata
approx(p/d) < ∞ (defined in Section 2.4) if f |T ∈ Hp−1(T ) for

all T ∈ T0. The constants Cdrel, Cqo, Cpert, Ceff , Crel depend only on the polynomial degrees
p, q, q′ ∈ N, T0, Ω, and on L.

Proof. The statements (i),(iii)–(iv) follow as for the Poisson model problem from Sec-
tion 3.4.1. Standard arguments from, e.g., [1, 82] provide (2.4.1)–(2.4.2). The bound on
Cdata

approx(p/d) follows as in Proposition 3.4.1. The general quasi-orthogonality (E2) is proved in

Theorem 7.2.5. The solution of (3.5.4) with X∞ :=
⋃

ℓ∈N0
Sp
0 (Tℓ) instead of Sp

0 (Tℓ) satisfies the
assumptions of Lemma 2.7.1. Hence, (2.7.2) and Theorem 2.3.3 (i) prove limℓ→∞ η(Tℓ) = 0.
Together with reliability (2.4.1), this implies limℓ→∞ ‖u−U(Tℓ)‖ = 0. Thus, all requirements
of Theorem 7.2.5 are satisfied. This concludes the proof. �

Consequence 3.5.2. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and
optimal complexity in the sense of Theorem 2.5.1. Moreover, the error converges in the sense
of Theorem 2.4.3 at least for s = 1/d. This is the optimal rate for lowest-order elements
p = 1. For piecewise polynomial coefficients of L and f |T ∈ Hp−1(T ) for all T ∈ T0, one
obtains even s = p/d. �

Numerical examples for the symmetric case that underline the above result can be found
in [64].
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3.5.2. Conforming FEM for non-symmetric problems which satisfy a Gårding

inequality. We consider the setting of Section 3.5.1 with the difference that the bilinear
form b(· , ·) from (3.5.2) satisfies only the Gårding inequality

b(u, u) + Cgrd‖u‖2L2(Ω) ≥ qgrd‖∇u‖2L2(Ω) for all u ∈ H1(Ω) (3.5.9)

with constants Cgrd, qgrd > 0. Suppose that T(·, ·) denotes bisection from Section 3.2.8. We
have to assume that b(·, ·) is definite on the continuous level, i.e., for all v ∈ H1

0 (Ω), it holds

b(v, w) = 0 for all w ∈ H1
0 (Ω) =⇒ v = 0. (3.5.10)

This together with Fredholm’s alternative guarantees the unique solvability of (3.5.3) and
implies a continuous inf-sup condition, i.e.,

inf
v∈H1

0 (Ω)\{0}
sup

w∈H1
0 (Ω)\{0}

b(v, w)

‖∇v‖L2(Ω)‖∇w‖L2(Ω)

≥ δ > 0. (3.5.11)

To account for the fact that not each triangulation T ∈ T allows for a solution of (3.5.4)
and hence for an error estimator, we set η(T ) := 1 if (3.5.4) is not uniquely solvable. With
this, ‖η,T‖s is well-defined.

We propose a modified adaptive algorithm to solve this particular problem.

Algorithm 3.5.3. Input: Initial triangulation T0, bulk parameter 0 < θ ≤ 1, expected
convergence rate s > 0 with ‖η,T‖s <∞.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Try to solve (3.5.4) on T = Tℓ:
(i1) If (3.5.4) is not uniquely solvable, set Tℓ+1 = T(Tℓ, Tℓ) and goto (i).

(ii) Compute ηT (Tℓ) for all T ∈ Tℓ.
(iii) Determine set Mℓ ⊆ Tℓ of (almost) minimal cardinality such that

θ η(Tℓ)
2 ≤

∑

T∈Mℓ

ηT (Tℓ)
2. (3.5.12)

(iv) Define the next triangulation as follows:

(i2) If
∑ℓ−1

k=0 |Mk| > (1 + log(ℓ+ 1))η(Tℓ)
−1/s, set Tℓ+1 := T(Tℓ, Tℓ).

(i3) If not (i2), set Tℓ+1 := T(Tℓ,Mℓ).

Output: Error estimators η(Tℓ) for all ℓ ∈ N0.

Remark 3.5.4. The algorithm requires the expected optimal rate of convergence s > 0
as an input parameter. This may be regarded as a drawback of the analysis. On the other
hand, we do not assume any discrete inf-sup condition and Lemma 3.5.11 below shows that
Algorithm 3.5.3 leads to convergence even for arbitrary s > 0.

Remark 3.5.5. Case (i1) requires the algorithm to decide whether the linear sys-
tem (3.5.4) is uniquely solvable. Due to finite dimension, this is equivalent to solvability.
However, an iterative solver usually produces an approximation regardless of the solvability
of the system. In this case, on may skip case (i1) and only check for case (i2)–(i3). The
analysis and all the results from this section remain valid.

Lemma 3.5.6. There exists a constant Crel > 0 such that all T ∈ T for which (3.5.4)
is uniquely solvable satisfy

‖∇(u− U(T ))‖L2(Ω) ≤ Crelη(T ), (3.5.13)

where η(·) is defined in (3.5.6).
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Proof. The reliability of η(·) is well-known and depends only on the continuous inf-sup
condition (3.5.11), see also Proposition 3.4.1 for references. �

Remark 3.5.7. Due to Lemma 3.5.6, we may assume that η(Tℓ) > 0 for all ℓ ∈ N0,
since otherwise u = U(Tℓ) and the adaptive algorithm converges with any rate by definition.

Proposition 3.5.8. The conforming discretization of problem (3.5.1) with residual
error estimator (3.5.6) satisfies under the assumptions of this section

(i) stability and reduction (E1) with ̺(T , T̂ ) := Cpert‖∇(U(T ) − U(T̂ ))‖L2(Ω), ρred =

2−1/d, and S(T , T̂ ) := T \ T̂ as well as Ŝ(T , T̂ ) := T̂ \ T if (3.5.4) is uniquely

solvable on T and T̂ ,
(ii) the refinement axiom (T1) and the closure estimate (3.2.13).

The constant Cpert > 0 depends only on the polynomial degree p ∈ N, Ω, and on L.

Proof. The proof of (i) in Proposition 3.5.1 (with ‖ · ‖ = ‖∇(·)‖L2(Ω)) is independent
of the bilinear form and thus remains valid. Moreover, (T1) and (3.2.13) are proved in
Lemma 3.2.3. �

Lemma 3.5.9. Let T′ ⊆ T denote a set of triangulations with the following property:
Any sequence (T ′

ℓ )ℓ∈N0 ⊆ T′ with T ′
ℓ 6= T ′

k for all ℓ 6= k satisfies limℓ→∞ ‖h(T ′
ℓ )‖L∞(Ω) = 0.

Then, there exists ε0 > 0 such that all but finitely many T ∈ T′ satisfy

inf
V ∈Sp

0 (T )\{0}
sup

W∈Sp
0 (T )\{0}

b(V,W )

‖∇V ‖L2(Ω)‖∇W‖L2(Ω)

≥ ε0 (3.5.14)

as well as the Céa Lemma

‖∇(u− U(T ))‖L2(Ω) ≤ CCéa min
V ∈Sp

0 (T )
‖∇(u− V )‖L2(Ω) (3.5.15)

for some constant CCéa > 0.

Proof. Assume that the statement (3.5.14) is wrong. Then, there exists a sequence of
triangulations T ′

ℓ and corresponding Vℓ ∈ Sp
0 (T ′

ℓ ) with ‖∇Vℓ‖L2(Ω) = 1 for all ℓ ∈ N0 such
that

lim
ℓ→∞

sup
W∈Sp

0 (Tℓ)\{0}

|b(Vℓ,W )|
‖∇W‖L2(Ω)

= 0. (3.5.16)

The boundedness implies the existence of a weak convergent subsequence Vℓk ⇀ V ∈ H1
0 (Ω)

where we assume without loss of generality that Tℓk 6= Tℓj for all k 6= j.

By assumption, there holds limℓ→∞ ‖h(T ′
ℓ )‖L∞(Ω) = 0 and hence

⋃
ℓ∈N0

Sp
0 (T ′

ℓ ) = H1
0 (Ω).

Let w ∈ H1
0 (Ω) and ε > 0. Then, the above guarantees some W ∈ Sp

0 (T ′
ℓ ) such that

|b(V, w)| ≤ |b(V,W )|+ |b(V, w −W )| ≤ |b(V,W )|+ ε = lim
ℓ→∞

|b(Vℓ,W )|+ ε.

Since ε > 0 is arbitrary, and with (3.5.16), this shows b(V, w) = 0 for all w ∈ H1
0 (Ω).

Definiteness (3.5.10) then implies V = 0. On the other hand, the Gårding inequality shows

|b(Vℓk , Vℓk)|+ Cgrd‖Vℓk‖2L2(Ω) ≥ qgrd for all k ∈ N0.

The Rellich compactness theorem implies Vℓk → 0 in L2(Ω). Hence, the above together
with (3.5.16) shows the contradiction

0 = lim
k→∞

(
|b(Vℓk , Vℓk)|+ Cgrd‖Vℓk‖2L2(Ω)

)
≥ qgrd.
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This concludes the proof of (3.5.14). The Céa lemma 3.5.15 follows by standard arguments.
�

Lemma 3.5.10. There exists ℓ0 ∈ N such that case (i1) in Algorithm 3.5.3 is not
executed for any step ℓ ≥ ℓ0.

Proof. Assume that case (i1) is executed in infinitely many steps ℓ ∈ N0. Since case (i1)
triggers a uniform refinement, this implies that limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. Lemma 3.5.9 with

T′ =
{
Tℓ : ℓ ∈ N0

}
shows that for all but finitely many Tℓ there holds (3.5.14). This implies

that (3.5.4) is uniquely solvable for all T = Tℓ and ℓ ≥ k for some k ∈ N0 and contradicts
the assumption that case (i1) is executed in infinitely many steps ℓ ∈ N0. �

Lemma 3.5.11. Algorithm 3.5.3 guarantees convergence of estimator and error, i.e.
limℓ→∞ η(Tℓ) = 0 = limℓ→∞ ‖∇(u− U(Tℓ))‖L2(Ω).

Proof. First, we prove convergence

‖∇(u− U(Tℓ))‖L2(Ω) → 0 as ℓ→ ∞. (3.5.17)

To that end, we distinguish two cases. First, assume that case (i2) is executed for in-
finitely many steps ℓ ≥ ℓ0. Then, since case (i2) triggers uniform refinement, it holds
limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. Lemma 3.5.9 with T′ =

{
Tℓ : ℓ ∈ N0

}
provides some k ∈ N0 such

that the Céa lemma (3.5.15) holds for all Tℓ with ℓ ≥ k. The fact u ∈ H1
0 (Ω) =

⋃∞
ℓ=0 Sp

0 (Tℓ)
implies minV ∈Sp

0 (Tℓ)
‖∇(u− V )‖L2(Ω) → 0 as ℓ→ ∞ and particularly (3.5.17).

Second, assume that case (i2) is not executed after some k ≥ ℓ0. Then, by definition,
there holds

ℓ−1∑

k=0

|Mk| ≤ (1 + log(ℓ+ 1))η(Tℓ)
−1/s for all ℓ ≥ k. (3.5.18)

Since |Mk| ≥ 1, this implies

η(Tℓ) ≤
((1 + log(ℓ+ 1))

ℓ

)s

→ 0 as ℓ→ ∞.

With (3.5.13), this shows (3.5.17). It remains to show limℓ→∞ η(Tℓ) = 0 in the case that
case (i2) is executed infinitely many times. To that end, recall that Proposition 3.5.8
shows (E1). Convergence (3.5.17) and Lemma 3.5.10 show limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 and since
Dörfler marking (3.5.12) is satisfied for each step, Lemma 2.3.6 implies limℓ→∞ η(Tℓ) = 0.
This concludes the proof. �

Lemma 3.5.12. Assume that there holds limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. Then, ‖η,T‖s <∞
for some s > 0 implies (T3).

Proof. We mimic the proof of Lemma 2.7.4. Let N ∈ N0 and define the integer M :=
floor(N/(2C2

4)). The fact ‖η,T‖s <∞ allows to choose some triangulation T N
0 ∈ T(M) with

η(T N
0 )(M + 1)s ≤ ‖η,T‖s.

If limN→∞ ‖h(T N
0 )‖L∞(Ω) = 0, set T N := T N

0 . Otherwise, consider a sequence of uniformly
refined triangulations T unif

ℓ with T unif
0 = T0 and T unif

ℓ+1 := T(T unif
ℓ , T unif

ℓ ). Given N ∈ N0,
define T N := T N

0 ⊕ T unif
ℓ , where ℓ is maximal with |T unif

ℓ \ T0| ≤ N/(2C4). The overlay
estimate (2.5.1) shows

|T N \ T0| ≤ |T N \ T unif
ℓ |+ |T unif

ℓ \ T0| ≤ C4|T N
0 \ T0|+N/(2C4) ≤ N/C4.
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Moreover, there holds limN→∞ ‖h(T N)‖L∞(Ω) = 0. Given any Tℓ, ℓ ∈ N0, the overlay esti-
mate (2.5.1) states |(T N ⊕ Tℓ) \ Tℓ| ≤ N and hence T N ⊕ Tℓ ∈ T(Tℓ, N). Lemma 3.5.9 with
T′ :=

{
Tℓ : ℓ ∈ N0

}
∪
{
T N ⊕ Tℓ : ℓ, N ∈ N0

}
shows that (3.5.4) is uniquely solvable and

the Céa lemma (3.5.15) holds for all but finitely many T ∈ T′. This, together with (3.5.13)
and (E1) from Proposition 3.5.8, implies

η(T N ⊕ Tℓ) . η(T N) + ̺(T N , T N ⊕ Tℓ) . η(T N) + ‖∇(u− U(T N ))‖L2(Ω) . η(T N)

for all N, ℓ ≥ k and some k ∈ N0. Consequently, there holds

η(T N ⊕ T )(N + 1)s . η(T N )(M + 1)s ≤ ‖λ,T‖s
and we obtain

inf
T̂ ∈T(Tℓ,N)

(N + 1)sη(T̂ ) . ‖λ,T‖s.

This concludes the proof. �

Lemma 3.5.13. There exists ℓ1 ∈ N such that case (i2) in Algorithm 3.5.3 is not
executed for any step ℓ ≥ ℓ1.

Proof. Assume that case (i2) is executed infinitely many times. Then, there holds⋃∞
ℓ=0 Sp

0 (Tℓ) = H1
0 (Ω) or equivalently limℓ→∞ ‖h(Tℓ)‖L∞(Ω) = 0. With this, Theorem 7.3.4

proves (E2) for all ℓ ≥ ℓ0.
Proposition 3.5.8 together with Lemma 3.5.10 and Lemma 3.5.12 prove (E1) and (T1)–

(T3) for the parameter s chosen in Algorithm 3.5.3. Lemma 2.3.13 then shows that for all

T = Tℓ, there exists T̂ℓ ∈ T(Tℓ) with (2.3.20). Moreover, Lemma 3.5.9 with T′ :=
{
Tℓ : ℓ ∈

N0

}
∪
{
T̂ℓ : ℓ ∈ N0

}
implies the discrete inf-sup condition (3.5.14) for all Tℓ and T̂ℓ with

ℓ ≥ k for some k ∈ N0.
Therefore, the proof of discrete reliability (E3) of Proposition 3.5.1 remains valid for all

T = Tℓ and T̂ = T̂ℓ, ℓ ≥ k since (3.5.14) implies

‖∇(U(Tℓ)− U(T̂ℓ))‖L2(Ω) . sup
W∈Sp

0 (T̂ℓ)

b(U(Tℓ)− U(T̂ℓ) , W )

‖∇W‖L2(Ω)

.

The remaining proof of (E3) follows as in the references given in the proof of Proposi-
tion 3.5.1. With this, Proposition 2.3.10 (and Remark 2.3.11) shows the implication (4.2.2)

for T = Tℓ and T̂ = T̂ℓ for all ℓ ≥ k and therefore (2.3.21) holds, too.
Since Mℓ satisfies Dörfler marking (3.5.12) for all ℓ ≥ ℓ0 with (almost) minimal cardi-

nality, there holds |Mℓ| . |R(Tℓ, T̂ℓ)| with the set R(Tℓ, T̂ℓ) from (2.3.21).
Theorem 2.3.3 (ii) implies R-linear convergence (2.3.2) for all ℓ ≥ k and Lemma 2.3.8

shows

ℓ−1∑

k=ℓ0

η(Tk)
−1/s ≤ C2η(Tℓ)

−1/s.

With this and (2.3.21), we obtain

ℓ−1∑

k=ℓ0

|Mk| .
ℓ−1∑

k=ℓ0

|R(Tk, T̂k)| . Capprox(s)
ℓ−1∑

k=ℓ0

η(Tk)
−1/s . Capprox(s)η(Tℓ)

−1/s.
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Since Capprox(s) <∞ by (T3), the above implies for all ℓ ≥ ℓ0 for which case (i2) is executed

(1 + log(ℓ+ 1)) . Capprox(s)
1/s.

Hence, the number of steps ℓ ≥ ℓ0 for which case (i2) is executed, must be finite. This,
however, contradicts the assumption and thus concludes the proof. �

Theorem 3.5.14. Given θ < θ⋆ = (1 − εdrel)/(1 + C2
drel), Algorithm 3.5.3 converges

with almost optimal rate s− ε for all ε > 0 (where s is chosen in Algorithm 3.5.3 such that
‖η,T‖s <∞) in the sense

coptCapprox(s− ε) ≤ sup
ℓ∈N0

η(Tℓ)

(|Tℓ \ T0|+ 1)−s+ε
≤ Copt, (3.5.19)

where Copt > 0 depends only on ε, ℓ0, ℓ1, |T0|, Cclosure and copt is defined in Theorem 2.3.3.

Proof. Lemma 3.5.10 and Lemma 3.5.13 show that after step k := max{ℓ0, ℓ1} only
case (i3) is executed. This particularly implies

ℓ−1∑

k=0

|Mk| ≤ (1 + log(ℓ+ 1))η(Tℓ)
−1/s for all ℓ > k.

The closure estimate (T2) and the fact that case (i1)–(i2) is executed only finitely many
times show

|Tℓ \ T0|+ 1 .

ℓ−1∑

k=0

|Mk|+ 1 . (1 + log(ℓ+ 1))η(Tℓ)
−1/s for all ℓ ∈ N0.

This implies

η(Tℓ) . (1 + log(ℓ+ 1))s(|Tℓ \ T0|+ 1)−s.

Since |Tℓ \T0|+1 ≥ ℓ+1, and supℓ∈N0
log(ℓ+1)s(ℓ+1)−ε <∞, this implies the upper bound

in (3.5.19). The lower bound follows as in the proof of Theorem 2.3.3 (iii). �

Consequence 3.5.15. Algorithm 3.5.3 converges with optimal rates in the sense of
Theorem (3.5.14).

3.6. Example 3: Conforming FEM for certain strongly-monotone operators

The result of this section is first found in [46]. A first version of this section can be found
in the recent own work [24, Section 10]. We consider the following non-linear operator

Lu(x) := −divA(x,∇u(x)) + g(x, u(x),∇u(x)),
for functions A : Ω × Rd → Rd and g : Ω × R × Rd → R. We assume that A(·,∇u),
g(·, u,∇u) ∈ L2(Ω) for all u ∈ H1

0 (Ω). On the polyhedral domain Ω ⊆ Rd, d ≥ 2 and given
f ∈ L2(Ω), the weak formulation of

Lu = f in Ω,

u = 0 on ∂Ω,
(3.6.1)

reads: Find u ∈ H1
0 (Ω) such that

〈Lu , v〉 =
∫

Ω

A(x,∇u(x)) · ∇v(x) + g(x, u(x),∇u(x))v(x) dx =

∫

Ω

fv dx (3.6.2)
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for all v ∈ H1
0 (Ω). Define two auxiliary operators A, C : H1

0 (Ω) → H−1(Ω) as

Av := −divA(·,∇v) and Cv := g(·, v,∇v) for all v ∈ H1
0 (Ω).

Let T(·, ·) denote the bisection strategy from Section 3.2.8. Given T ∈ T and p ∈ N, the
discrete form of (3.6.2) reads: Find U(T ) ∈ Sp

0 (T ) such that

〈LU(T ) , V 〉 =
∫

Ω

fV dx for all V ∈ Sp
0 (T ). (3.6.3)

We formally define the residual error estimator for a triangulation T ∈ T and all T ∈ T by

ηT (T )2 := |T |2/d‖L|TUℓ − f‖2L2(T ) + |T |1/d‖[A(·,∇Uℓ) · n]‖2L2(∂T∩Ω). (3.6.4)

The solvability and uniqueness of (3.6.2) as well as the regularity assumptions needed such
that (3.6.4) is well-defined are part of the subsequent sections.

3.6.0.1. Regularity assumptions. We consider the frame of strongly monotone operators
and require the following regularity assumptions on L:

‖A∇w −A∇v‖H−1(Ω) ≤ C8‖∇(w − v)‖L2(Ω), (3.6.5a)

‖Cw − Cv‖L2(Ω) ≤ C8‖∇(w − v)‖L2(Ω) (3.6.5b)

for all w, v ∈ H1
0(Ω) and some constant C8 > 0 as well as

〈Lw − Lv , w − v〉 ≥ C9‖∇(w − v)‖2L2(Ω) (3.6.6)

for all w, v ∈ H1
0 (Ω) and some constant C9 > 0. These assumptions, in particular, allow to

apply the main theorem on strongly monotone operators [86, Theorem 26.A] and to obtain
the unique solvability of (3.6.2) as well as of (3.6.3). Additionally, (3.6.5)–(3.6.6) guarantee
that the norms of the residual and the error are equivalent, i.e.,

‖Lu− LU(T )‖H−1(Ω) ≃ ‖∇(u− U(T ))‖L2(Ω) for all T ∈ T,

‖LU(T̂ )− LU(T )‖H−1(Ω) ≃ ‖∇(U(T̂ )− U(T ))‖L2(Ω) for all T̂ ∈ T(T ).
(3.6.7)

We also obtain the Céa lemma

‖∇(u− U(T ))‖L2(Ω) ≤ 2C8C
−1
9 min

V ∈Sp
0 (T )

‖∇(u− V )‖L2(Ω). (3.6.8)

Moreover, we require that (3.6.4) is well-defined and satisfies (E1) with ̺(T , T̂ ) ≃ ‖∇(U(T )−
U(T̂ ))‖L2(Ω). For possible non-linearities A which allow for (2.3.6), we refer to Lemma 3.6.2
below.

We assume that L : H1
0 (Ω) → H−1(Ω) as well as A : H1

0 (Ω) → H−1(Ω) are twice Fréchet
differentiable, i.e., there exist

DL, DA :H1
0 (Ω) → L(H1

0 (Ω), H
−1(Ω)),

D2L, D2A :H1
0 (Ω) → L

(
H1

0 (Ω), L(H
1
0 (Ω), H

−1(Ω))
)
.

(3.6.9)

The second derivative should be bounded locally around the solution u of (3.6.2), i.e., there
exists εℓoc > 0 with

C10 := sup
‖∇(u−v)‖L2(Ω)<εℓoc

(
‖D2L(v)‖

L
(
H1

0 (Ω),L(H1
0 (Ω),H−1(Ω))

)

+ ‖D2A(v)‖
L
(
H1

0 (Ω),L(H1
0 (Ω),H−1(Ω))

)
)
<∞.

(3.6.10)
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Finally, we assume that DA(v) : H1
0 (Ω) → H−1(Ω) is symmetric for all v ∈ H1

0 (Ω), i.e., for
all w1, w2 ∈ H1

0 (Ω) holds

〈DA(v)(w1) , w2〉 = 〈DA(v)(w2) , w1〉. (3.6.11)

Remark 3.6.1. Note that if A : Ω × Rd → Rd and g : Ω × R × Rd → R are twice
differentiable, and if the Jacobian JyA(x, y) ∈ Rd×d additionally is a symmetric matrix,
then L and A satisfy (3.6.9) as well as (3.6.10). Moreover, DA(v) is symmetric for all
v ∈ H1

0 (Ω), since there holds for w ∈ H1
0 (Ω)

DA(v)(w) = divx

((
JyA(x,∇v(x))

)(
∇xw(x)

))
.

We stress that the symmetry assumption (3.6.11) posed on DA covers in particular the
operator class from [54], where

A(x, y) = α(x, |y|2)y
for some function α : Ω × R → R with continuous derivative t 7→ ∂tα(x, t). In contrast
to [54] where α(x, ·) ∈ C1(R) is sufficient, the analysis here covers a wider class of operators,
however, for this special case needs α(x, ·) ∈ C2(R) to guarantee (3.6.10).

Lemma 3.6.2. Sufficient regularity assumptions in addition to (3.6.5b) and (3.6.6) to
guarantee that the error estimator (3.6.4) is well-defined and satisfies (E1) are, for instance,
either of the following conditions (i) and (ii):

(i) A(·, ·) : Ω × Rd → Rd is Lipschitz continuous and there exists a constant C11 > 0
such that for all T ∈ T and all V,W ∈ Sp

0 (T ) there holds divA(·, V (·)) ∈ L2(Ω) as
well as

‖div|T
(
A(·, V (·))−A(·,W (·))

)
‖L2(T ) ≤ C11‖V −W‖H2(T ) for all T ∈ T . (3.6.12)

(ii) There holds p = 1 (lowest-order case) as well as

A(x, y) = A(y) for all x ∈ Ω, y ∈ Rd,

and additionally A(·) : Rd → Rd is Lipschitz continuous.

Proof. The jump terms in (3.6.4) are well-defined in both cases (i) and (ii) since
A(·,∇U(·)) is a piecewise Lipschitz continuous function. Moreover, this immediately shows
that divA(·,∇U(T )(·)) ∈ L∞(T ) ⊂ L2(T ) for all T ∈ T . Therefore, (3.6.4) is well-defined.

Given T+, T− ∈ T as well as W,V ∈ Sp
0 (Tℓ), the Lipschitz continuity also proves the

following point wise estimate for all x ∈ T+ ∩ T−
|[(A(x,∇W (x))−A(x,∇V (x))) · n]|

≤
∣∣∣
(
A(x, (∇W )|T+(x))−A(x, (∇V )|T+(x))

)
· n|T+

∣∣∣

+
∣∣∣
(
A(x, (∇W )|T−(x))−A(x, (∇V )|T−(x))

)
· n|T−

∣∣∣

.
∣∣∣(∇W )|T+(x)− (∇V (x))|T+

∣∣∣+
∣∣∣(∇W )|T−(x)− (∇V )|T−(x)

∣∣∣.

Combining the estimate above with the trace inequality for polynomials, we obtain

|T+|1/d‖[(A(·,∇W )−A(·,∇V )) · n]‖2L2(T+∩T−) . ‖∇(W − V )‖2L2(T+∪T−). (3.6.13)
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This hidden constant depends only on the polynomial degree p ∈ N as well as the Lipschitz
continuity of A(·, ·) and the shape regularity γ(T ). It remains to prove a similar estimate
for the volume residual in (3.6.4), i.e.,

∑

T∈T

|T |2/d‖L|TW −L|TV ‖2L2(T ) . ‖∇(W − V )‖2L2(Ω) for all T ∈ T . (3.6.14)

In case of (i), this follows immediately from the combination of (3.6.12) and (3.6.5b) together
with a standard inverse estimate. In case of (ii), we observe that ∇Uℓ is piecewise constant.
Therefore, A(∇V ) is piecewise constant and hence A(∇V ) = divA(∇V (·)) = 0. Thus,
L|T = (CV )|T , and it suffices to apply (3.6.5b) to prove (3.6.14). The estimates (3.6.13)–

(3.6.14) imply stability and reduction (E1) with ̺(T , T̂ ) ≃ ‖∇(U(T ) − U(T̂ ))‖L2(Ω) and

S(T , T̂ ) = T \ T̂ as well as Ŝ(T , T̂ ) = T̂ \ T . To see this, note that η(·) is a weighted
error estimator in the sense of Section 3.3 and satisfies homogeneity (3.3.1) with r− = 1 and
r+ = 1/2. Moreover, stability (3.3.2) holds for some S ⊆ T and h ≤ h(T ) by

∣∣∣
(∑

T∈Ŝ

ηT (T̂ , h)2
)1/2

−
(∑

T∈S

ηT (T , h)2
)1/2∣∣∣

≤
(∑

T∈S

h(T )|2T‖L|TU(T )− L|TU(T̂ )‖2L2(T )

)1/2

+
(∑

T∈S

h(T )|T‖[(A(·,∇U(T ))−A(·,∇U(T̂ ))) · n]‖2L2(∂T∩Ω)

)1/2

. ‖∇(U(T )− U(T̂ ))‖2L2(Ω).

Therefore, Proposition 3.3.1 applies and proves (E1). �

3.6.0.2. Proof of the axioms.

Lemma 3.6.3. The residual error estimator η(·) satisfies discrete reliability (E3) and
reliability (2.4.1) with err(T ) := ‖∇(u− U(T ))‖L2(Ω). Moreover, there holds convergence

‖∇(u− U(Tℓ))‖L2(Ω) → 0 as ℓ→ ∞. (3.6.15)

Proof. The residual error estimator η(·) is well-defined under the assumptions in Sec-
tion 3.6.0.1. With the equivalence (3.6.7), the standard arguments from [35] apply to prove
discrete reliability (E3). Also the reliability (2.4.1) follows with standard arguments from
the literature. The estimator reduction (2.3.6) holds by assumption in Section 3.6.0.1. The
assumptions for a priori convergence of Section 2.7.1 are satisfied. The main theorem on
strongly monotone operators [86, Theorem 26.A] proves that there exists a solution U∞

of (3.6.3) when Sp
0 (T ) is exchanged with X∞ :=

⋃
ℓ∈N0

Sp
0 (Tℓ). Since the U(Tℓ) are also

Galerkin approximations to U∞ ∈ X∞, the Céa lemma (3.6.8) implies (2.7.1). Hence the re-
quirements of Lemma 2.7.1 are satisfied and we obtain limℓ→∞ ̺(Tℓ, Tℓ+1) = 0. Lemma 2.3.6
together with reliability (2.4.1) proves the convergence. �

Proposition 3.6.4. The conforming discretization of (3.6.1) with residual error esti-
mator (3.6.4) satisfies

(i) stability and reduction (E1) with ̺(T , T̂ ) ≃ ‖∇(U(T ) − U(T̂ ))‖L2(Ω) as well as

S(T , T̂ ) = T \ T̂ and Ŝ(T , T̂ ) = T̂ \ T ,
(ii) general quasi-orthogonality (E2),

(iii) discrete reliability (E3) with R(T , T̂ ) = T \T̂ , κdlr = ∞, and εdrel = 0,
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(iv) the refinement axioms (T1)–(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all
s > 0 and the overlay estimate (2.5.1).

The constants Cdrel, Cqo depend only on the polynomial degree p ∈ N, T0, Ω, and on L.

Proof. Stability and reduction (i) follows by assumption. Discrete reliability (iii) is
proved in Lemma 3.6.3. The refinement axioms (iv) follow as for the Poisson model problem
from Section 3.4.1. The proof of the general quasi-orthogonality (E2) follows with Theo-
rem 7.4.5. This concludes the proof. �

Consequence 3.6.5. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator η(·) in the sense of Theorem 2.3.3 and
optimal complexity in the sense of Theorem 2.5.1. �
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CHAPTER 4

Abstract Theory: Equivalent Error Estimators

4.1. Introduction, state of the art & outline

This sector extends the abstract approach of Chapter 2 and includes equivalent error
estimators. The idea behind is that the axioms do not have to be satisfied by the error
estimator itself, but only by an equivalent error estimator. Of course, this observation could
be included directly into the axioms in Chapter 2. However, we think that this separate
presentation of the arguments is clearer and is easier to understand. The overall idea is the
following: If a certain estimator is used for computations, this is often because it is easy
to implement or it possesses some nice numerical features. This, however, is often in stark
contrast with the analytic features in terms of Chapter 2 of the error estimator. For example,
an error estimator might satisfy the contraction in (E1) on average, but fails to satisfy it
in each single step (see, e.g., Section 5.2 for some examples). Moreover, any computation
is prone to numerical errors (e.g., round-off errors). This means that any implementation
of the adaptive algorithm will, in fact, compute an approximate error estimator (this is of
even more significance if iterative solvers are used; see Section 4.4 for details). Hence, the
computed error estimator will satisfy the axioms only up to some error and only the exact
(theoretical) error estimator fits into the abstract framework of Chapter 2.

The framework of this chapter allows to prove the axioms for some equivalent, well-
behaving, error estimator, and gives results for the error estimator in use. This idea firstly
appeared in [60], where several error estimators equivalent to the residual error estimator
for the Poisson problem of Section 3.4.1 are analyzed (see also the examples in Section 5.2).
A similar version of this chapter can be found in the recent own work [24]. However, this
work simplifies the arguments and generalizes the results.

The remainder of the chapter is organized as follows: Section 4.2 states the assump-
tions on the equivalent error estimator and Section 4.3 given the main result on optimal
convergence rates. Section 4.4 treats the particular case of approximate computations and
Section 4.5 proves the assumptions of Section 4.2 for the special case of weighted error es-
timators. Finally, Section 4.5.4 proves the existence of a super contractive weight function,
which might be of independent interest.

4.2. Abstract setting

4.2.1. Equivalent error estimator. Recall the sets T∞ and T from Section 2.2.1.

We assume that T̃ is a set of triangulations which is based on a set T̃∞ (where we allow

T̃∞ = T∞ as well as T̃ = T) and a refinement strategy T̃(·, ·) (also T̃(·, ·) = T(·, ·) is allowed).

We assume that there is a one-to-one correspondence between T ∈ T and T̃ ∈ T̃ and that

there exists a constant Ceq ≥ 1 such that C−1
eq |T | ≤ |T̃ | ≤ Ceq|T |.

Additionally to the error estimator from Section 2.2.2, we define an equivalent error

estimator as a function η̃(·) : T̃ → ⋃
T̃ ∈T̃

(
[0,∞)T̃

)
(where AB denotes the set of functions
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mapping B to A) with η̃(T̃ ) : T̃ → [0,∞) for all T̃ ∈ T̃. As for the error estimator, we also

write η̃(T̃ ) :=
(∑

T∈T̃ η̃T (T )2
)1/2

, which is the global equivalent error estimator.
Suppose that the error estimators are equivalent in the sense that there exists Ceq ≥ 1

such that

C−1
eq η̃(T̃ )2 ≤ η(T )2 ≤ Ceqη̃(T̃ )2 for all T ∈ T, (4.2.1)

and such that for all M̃ ⊆ T̃ ∈ T̃ and all 0 < θ̃ ≤ 1, there exists M ⊆ T (where T is

uniquely determined by T̃ ) with C−1
eq |M̃| ≤ |M| ≤ Ceq|M̃| and

θ̃ η̃(T̃ )2 ≤
∑

T∈M̃

η̃T (T̃ )2 =⇒ C−1
eq θ̃ η(T )2 ≤

∑

T∈M

ηT (T )2. (4.2.2a)

Conversely, for all M ⊆ T ∈ T and all 0 < θ ≤ 1, there exists M ⊆ T̃ (where T̃ is uniquely
determined by T ) with C−1

eq |M| ≤ |M| ≤ Ceq|M| and

θ η(T̃ )2 ≤
∑

T∈M

ηT (T )2 =⇒ C−1
eq θ η̃(T̃ )2 ≤

∑

T∈M

η̃T (T̃ )2. (4.2.2b)

4.2.2. Equivalent adaptive approximation problem. The goal of the equivalent

adaptive approximation problem is to find a sequence of triangulations T̃ℓ, ℓ ∈ N0 such that

sup
ℓ∈N0

η̃(T̃ℓ)(|T̃ℓ|+ 1)s <∞

for s > 0 as large as possible.

4.2.3. Adaptive algorithm. The algorithm to solve the equivalent adaptive approxi-
mation problem from Section 4.2.2 reads

Algorithm 4.2.1. Input: Initial triangulation T̃0 and bulk parameter 0 < θ̃ ≤ 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iii).

(i) Compute refinement indicators η̃T (T̃ℓ) for all T ∈ T̃ℓ.

(ii) Determine set M̃ℓ ⊆ T̃ℓ of (up to the multiplicative constant Cmin) minimal cardi-
nality such that

θ̃ η̃(T̃ℓ)
2 ≤

∑

T∈M̃ℓ

η̃T (T̃ℓ)
2. (4.2.3)

(iii) Define the next triangulation as T̃ℓ+1 := T̃(T̃ℓ,M̃ℓ).

Output: Error estimators η̃(T̃ℓ) for all ℓ ∈ N0.

4.3. Optimal convergence

In the following, the notion that a certain subset A ⊆ {(E1), . . . , (E3), (T1), . . . , (T3)}
is satisfied means that the axioms in A are satisfied for the error estimator η(·), the corre-
sponding refinement strategy T(·, ·), and the respective constants from Section 2.3.1. The

triangulations (Tℓ)ℓ∈N0 in (E2), (T1)–(T3) are determined by (T̃ℓ)ℓ∈N0 via the function (̃·).
Theorem 4.3.1. Suppose that the error estimator η(·) satisfies the estimator reduc-

tion (2.3.8). Then, (i)–(iii) holds
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(i) Assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 (with ̺(·, ·) from Section 2.3.1). Then, for all 0 <

θ̃ ≤ 1, the equivalent estimator is convergent in the sense

lim
ℓ→∞

η̃(T̃ℓ) = 0. (4.3.1)

(ii) Suppose (E2) is satisfied by η(·). Then, for all 0 < θ̃ ≤ 1, the equivalent estimator

is R-linear convergent in the sense that there exists 0 < ρ̃conv < 1 and C̃conv > 0
such that

η̃(T̃ℓ+j)
2 ≤ C̃convρ̃

j
conv η̃(T̃ℓ)

2 for all j, ℓ ∈ N0. (4.3.2)

(iii) Suppose that R-linear convergence (4.3.2) holds and that (E1a), (E3) and (T1)–(T3)

are satisfied by η(·) and some s > 0. Then 0 < θ̃ < C−1
eq θ⋆ = C−1

eq (1−εdrel)/(1+C2
drel)

implies quasi-optimal convergence of the estimator in the sense of

c̃optCapprox(s) ≤ sup
ℓ∈N0

η̃(T̃ℓ)

(|T̃ℓ \ T̃0|+ 1)−s
≤ C̃optCapprox(s), (4.3.3)

where the lower bound requires only (T1) to hold.

The constants C̃conv, ρ̃conv > 0 depend only on ρred, Cqo, εqo, Ceq, and on θ̃. The constant

C̃opt > 0 depends additionally on C̃conv, ρ̃conv, Cmin, Cref , Cclosure, Cdrel, εdrel, and on s, while
c̃opt > 0 depends only on Cson and |T0|.

Proof of Theorem 4.3.1 (i). Lemma 2.3.6 for η(·) shows limℓ→∞ η(Tℓ) = 0. The
global equivalence (4.2.1) concludes the proof. �

Proof of Theorem 4.3.1 (ii). Proposition 2.3.9 together with the global equivalence
estimate (4.2.1) implies

η̃(T̃ℓ+j)
2 ≤ Ceqη(Tℓ+j)

2 ≤ CeqC3ρ
j
1η(Tℓ)

2 ≤ C2
eqC3ρ

j
1η̃(T̃ℓ)

2

for all ℓ, j ∈ N0. This concludes the proof. �

Lemma 4.3.2. Recall M̃ℓ ⊆ T̃ℓ from Algorithm 4.2.1. Let M0
ℓ ⊆ Tℓ (where Tℓ is

uniquely determined by T̃ℓ, cf. Section 4.2.1) be a set with minimal cardinality which satisfies

Ceqθ̃η(Tℓ)
2 ≤

∑

T∈M0
ℓ

ηT (Tℓ)
2. (4.3.4)

Then, the set Mℓ from (4.2.2a) satisfies |Mℓ| ≤ CminCeq|M0
ℓ | as well as

C−1
eq θ̃η(Tℓ)

2 ≤
∑

T∈Mℓ

ηT (Tℓ)
2. (4.3.5)

Proof. With (4.3.4), the implication (4.2.2b) states the existence of M0

ℓ ⊆ T̃ with

|M0

ℓ | ≤ Ceq|M0
ℓ | and

θ̃ η̃(T̃ℓ)
2 ≤

∑

T∈M
0
ℓ

η̃T (T̃ℓ)
2.

Since M̃ℓ is a set of almost minimal cardinality which satisfies (4.2.3), there holds C−1
eq |Mℓ| ≤

|M̃ℓ| ≤ Cmin|M0

ℓ | ≤ CminCeq|M0
ℓ |. The implication (4.2.2a) shows (4.3.5). �
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Proof of Theorem 4.3.1 (iii). Stability (E1a) and discrete reliability (E3) guarantee

that (2.3.18) holds for all 0 < θ0 < θ⋆ and some 0 < κ0 < 1. The assumption θ̃ < C−1
eq θ

allows to choose θ0 = Ceqθ̃. This implies that (2.3.20)–(2.3.21) of Lemma 2.3.13 are valid

for θ = Ceqθ̃. Since R(Tℓ, T̂ℓ) from 2.3.21 satisfies (2.3.21b) for all 0 < θ ≤ θ0 = Ceqθ̃, (4.3.4)

shows that |M0
ℓ | ≤ |R(Tℓ, T̂ℓ)|. Hence, Lemma 4.3.2 implies |Mℓ| ≤ CminCeq|R(Tℓ, T̂ℓ)|. By

assumption (4.3.2), Lemma 2.3.8 implies that (2.3.12)–(2.3.14) hold for αℓ := η(Tℓ). The

application of Proposition 2.3.14–2.3.15 shows (2.3.3) for all θ̃ < C−1
eq θ⋆. Additionally, there

holds

|Tℓ \ T0|+ 1 ≤ |Tℓ|+ 1 ≤ Ceq(|T̃ℓ|+ 1) . |T̃ℓ \ T̃0|+ 1 . |Tℓ \ T0|+ 1,

where the hidden constants depend only on Ceq and |T0|. Together with (4.2.1), this concludes
the proof. �

4.4. Inexact Solve

This section covers a particular case of the abstract theory from Section 4.2. To that end,

let T̃ = T and T̃ = T . We assume that there exists an approximate error estimator η̃(·),
which results from an inexact computation of the exact error estimator η(·) and satisfies for
all T ∈ T and all S ⊆ T

∣∣∣
(∑

T∈S

ηT (T )2
)1/2

−
(∑

T∈S

η̃T (T )2
)1/2∣∣∣ ≤ ϑη̃(T ) (4.4.1)

for some constant 0 < ϑ < 1. Naturally, it is convenient to check the axioms (E1)–(E3)
for the exact error estimator rather than incorporating the numerical error bounds into the
analysis.

4.4.1. Local and global equivalence.

Lemma 4.4.1. Under (4.4.1), there exists Ceq > 0 which depends only on ϑ < 1, such

that the approximate error estimator η̃(·) satisfies (4.2.1) as well as (4.2.2) with M = M̃ =
M.

Proof. The global equivalence (4.2.1) follows directly from (4.4.1) with S = T , i.e.,

(1− ϑ)η̃(T ) ≤ η(T ) ≤ (1 + ϑ)η̃(T ).

For (4.2.2a), set S = M to obtain for all δ > 0 with (1 + δ)ϑ < 1
∑

T∈M

η̃T (T )2 ≤ (1 + δ−1)
∑

T∈M

ηT (T )2 + (1 + δ)ϑ2
∑

T∈M̃

η̃T (T )2.

Moreover, there holds

θ̃η(T )2 ≤ θ̃(1 + ϑ)2η̃(T )2 ≤ (1 + ϑ)2
∑

T∈M̃

η̃T (T )2.

Together, this implies

θ̃η(T )2 ≤ (1 + ϑ)2(1− (1 + δ)ϑ2)−1(1 + δ−1)
∑

T∈M

ηT (T )2.
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Analogously, one derives (4.2.2b), i.e.,

θη̃(T )2 ≤ (1− ϑ)2(1 + 2ϑ2)−12
∑

T∈M̃

η̃T (T )2.

With Ceq := max{(1+ϑ), (1−ϑ)−1, (1+ϑ)2(1− (1+ δ)ϑ2)−1(1+ δ−1), 2(1−ϑ)2(1+2ϑ2)−1},
we conclude the proof. �

4.4.2. Optimal convergence.

Proposition 4.4.2. Let stability and reduction (E1) be satisfied. Then, η(·) satisfies
estimator reduction (2.3.8).

Proof. Lemma 4.4.1 shows that Dörfler marking (2.2.1) holds with θ = Ceqθ̃. Hence,
Lemma 2.3.5 concludes the proof. �

In the following, the notion that a certain subset A ⊆ {(E1), . . . , (E3), (T1), . . . , (T3)}
is satisfied means that the axioms in A are satisfied for the error estimator η(·), the corre-
sponding refinement strategy T(·, ·), and the respective constants from Section 2.3.1. The

triangulations (Tℓ)ℓ∈N0 in (E2), (T1)–(T3) are determined by (Tℓ)ℓ∈N0 = (T̃ℓ)ℓ∈N0 from Algo-
rithm 4.2.1.

Theorem 4.4.3. Suppose that the error estimator η(·) satisfies (E1).

(i) Assume limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 (with ̺(·, ·) from Section 2.3.1). Then, for all 0 <

θ̃ ≤ 1, the equivalent estimator is convergent in the sense

lim
ℓ→∞

η̃(T̃ℓ) = 0.

(ii) Suppose (E2) is satisfied by η(·). Then, for all 0 < θ̃ ≤ 1, the equivalent estimator

is R-linear convergent in the sense that there exists 0 < ρ̃conv < 1 and C̃conv > 0
such that

η̃(T̃ℓ+j)
2 ≤ C̃convρ̃

j
conv η̃(T̃ℓ)

2 for all j, ℓ ∈ N0.

(iii) Suppose that (E1a), (E2)–(E3) and (T1)–(T3) are satisfied by η(·) for some s > 0.

Then 0 < θ̃ < C−1
eq θ⋆ = C−1

eq (1− εdrel)/(1 + C2
drel) implies quasi-optimal convergence

of the estimator in the sense of

c̃optCapprox(s) ≤ sup
ℓ∈N0

η̃(T̃ℓ)

(|T̃ℓ \ T̃0|+ 1)−s
≤ C̃optCapprox(s),

where the lower bound requires only (T1) to hold.

The constants C̃conv, ρ̃conv > 0 depend only on ρred, Cqo, εqo, and on θ, ϑ. The constant

C̃opt > 0 depends additionally on Cmin, Cref , Cclosure, Cdrel, εdrel, and on s, while c̃opt > 0
depends only on Cson and |T0|.

Proof. Lemma 4.4.1 proves that the assumptions in Section 4.2.1 are satisfied and
Proposition 4.4.2 shows that the estimator reduction holds. Hence, the requirements of
Theorem 4.3.1 are fulfilled. This concludes the proof. �
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4.5. Weighted error estimators

This section covers the particular case of weighted error estimators of the abstract theory
from Section 4.2. Examples which fit in the abstract framework are presented in Section 5.2.
To that end, we assume the conventions and notation from Section 3.3, particularly, the
existence of a certain natural weight function h(T ) : Ω → (0,∞) for all T ∈ T such that
‖h(T )‖L∞(Ω) < ∞ and h(T ) is continuous on Ω \ ⋃

T∈T ∂T as well as the assumptions
on the triangulations in Section 3.2.1. In the following maxx∈T g := ess supx∈T g(x) and
minx∈T g := ess infx∈T g(x) denote the essential supremum resp. essential infimum of the
function g on the element T ∈ T . In addition to Section 3.3, this section assumes the
following: There exist constants 0 < qcon < 1 and Csum ≥ 1 such that

(i) The weight function h(·) satisfies for all T ∈ T ∈ T, all T̂ ∈ T(T )

h(T̂ )|T 6= h(T )|T or T /∈ T̂
=⇒

max
x∈T

h(T̂ ) = ‖h(T̂ )‖L∞(T ) ≤ qcon min
x∈T

h(T ),

(4.5.1)

where 6= is understood in the sense not equal on a set with positive measure. Note
that this assumptions implies particularly h(T̂ ) ≤ h(T ) almost everywhere in Ω.

(ii) All T ∈ T ∈ T and each sequence Ti ∈ T̂i ∈ T(T ), i = 1, . . . N for some N ∈ N with
|Ti ∩ Tj| = 0 and |T ∩ Ti| > 0 for 1 ≤ i 6= j ≤ N satisfy

N∑

i=1

max
x∈Ti

h(T̂i)
d ≤ Csum min

x∈T
h(T )d. (4.5.2)

Remark 4.5.1. Assumption (4.5.2) implies that the abstract area of an element h(T )|dT
derived from the weight function, is additive up to constants.

4.5.1. Definition of patches. Given a constant Cpatch > 0 and a weight function h(T )
for all T ∈ T, a patch ω(·, ·) satisfies the following properties:

(i) All T ∈ T and all S,S ′ ⊆ T satisfy S ⊆ ω(S, T ) ⊆ T and ω(S, T ) ∪ ω(S ′, T ) ⊆
ω(S ∪ S ′, T ).

(ii) All T ∈ T and all S ⊆ T satisfy

|S| ≤ |ω(S, T )| ≤ Cpatch|S|. (4.5.3)

(iii) All S ⊆ T ∈ T and all T̂ ∈ T(T ) with S ⊆ T̂ satisfy

⋃
ω(S, T̂ ) ⊆

⋃
ω2(S, T ), (4.5.4)

where ω2(S, T ) := ω(ω(S, T ), T ).
(iv) There holds for all T ∈ T ∈ T and all T ′ ∈ ω({T}, T )

C−1
patch min

x∈T ′
h(T ) ≤ h(T )|T ≤ Cpatch max

x∈T ′
h(T ). (4.5.5)

For brevity of notation, we also write ωk(T, T ) := ωk({T}, T ) for elements T ∈ T .
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4.5.2. Error estimators. Additionally to η(·) let η̃(·) denote the equivalent error es-

timator from Section 4.2.1. Suppose that for all M̃ℓ from Algorithm 4.2.1, the set Mℓ

from (4.2.2a) satisfies

Mℓ ⊆ ω(Tℓ \ Tℓ+1, Tℓ). (4.5.6)

Finally, suppose that η(·) is a weighted error estimator as defined in Section 3.3.

Remark 4.5.2. Examples of error estimators which fit in the abstract framework of
this section can be found in Section 5.2.

4.5.3. Optimal convergence. In the following, the notion that a certain subset of the
axioms A ⊆ {(E1), . . . , (E3), (T1), . . . , (T3)} is satisfied means that the axioms in A are
satisfied for the error estimator η(·), the quantities from (4.5.7) below, the corresponding re-
finement strategy T(·, ·), and the respective constants from Section 2.3.1. The triangulations

(Tℓ)ℓ∈N0 in (E2), (T1)–(T3) are determined by (T̃ℓ)ℓ∈N0 via the function (̃·).
The following theorem allows to drop the assumption of estimator reduction in Theo-

rem 4.3.1 due to the additional assumptions in this section.

Theorem 4.5.3. Under the assumptions of Section 4.5 (particularly (4.5.1)–(4.5.5))
and with homogeneity (3.3.1) and stability (3.3.2), η(·) satisfies (E1) with

S(T , T̂ ) :=
{
T ∈ T : h(T̂ )|T ≤ qconh(T )|T

}
,

Ŝ(T , T̂ ) :=
{
T ∈ T̂ : T ⊆

⋃
S(T , T̂ )

}
,

ρred = (1 + δ)q2r+con ,

̺(T , T̂ ) := (1 + δ−1)1/2 ˜̺(T , T̂ )

(4.5.7)

for all δ > 0 such that ρred < 1. Moreover, there holds the following:

(i) Assume limℓ→∞ ̺(Tℓ+1, Tℓ) = 0. Then, for all 0 < θ̃ ≤ 1, the equivalent estimator is
convergent in the sense

lim
ℓ→∞

η̃(T̃ℓ) = 0.

(ii) Suppose (E2) is satisfied by η(·). Then, for all 0 < θ̃ ≤ 1, the equivalent estimator

is R-linear convergent in the sense that there exists 0 < ρ̃conv < 1 and C̃conv > 0
such that

η̃(T̃ℓ+j)
2 ≤ C̃convρ̃

j
conv η̃(T̃ℓ)

2 for all j, ℓ ∈ N0.

(iii) Suppose that (E2)–(E3) and (T1)–(T3) are satisfied by η(·) for some s > 0. Then

0 < θ̃ < C−1
eq θ⋆ = C−1

eq (1− εdrel)/(1+C2
drel) implies quasi-optimal convergence of the

estimator in the sense of

c̃optCapprox(s) ≤ sup
ℓ∈N0

η̃(T̃ℓ)

(|T̃ℓ \ T̃0|+ 1)−s
≤ C̃optCapprox(s),

where the lower bound requires only (T1) to hold.

The constants C̃conv, ρ̃conv > 0 depend only on qcon, r+, r−, Cqo, εqo, qcon, Cpatch, Csum, and

on θ̃. The constant C̃opt > 0 depends additionally on Cmin, Cref , Cclosure, Cdrel, εdrel, and on
s, while c̃opt > 0 depends only on Cson and |T0|.
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Proof. The assumption (4.5.1) implies that h(T̂ ) = h(T ) on Ω\⋃S(T , T̂ ). Therefore,
Proposition 3.3.1 proves (E1) with (4.5.7). Since η(·) is a weighted error estimator, consider
η(·, hω(·)), where hω(·) denotes the super contractive weight function hω(·) from Proposi-
tion 4.5.4 below. The homogeneity (3.3.1) of η(·) and the equivalence (4.5.9) show for all
T ∈ T .

min
x∈T

|hω(T )/h(T )|r− ηT (T ) ≤ ηT (T , hω(T )) ≤ max
x∈T

|hω(T )/h(T )|r+ ηT (T )

and hence

C
−r−
12 ηT (T ) ≤ ηT (T , hω(T )) ≤ ηT (T ). (4.5.8)

Proposition 3.3.1 shows reduction (E1b) for the estimator η(·, hω(·)) with Sω(T , T̂ ) :={
T ∈ T : hω(T̂ )|T ≤ qschω(T )|T

}
, Ŝω(T , T̂ ) :=

{
T ∈ T̂ : T ⊆ ⋃S(T , T̂ )

}
, and ̺(·, ·)

from (4.5.7). Moreover, monotonicity (4.5.11), homogeneity (3.3.1), and stability of the
weighted error estimator (3.3.2) show

( ∑

T∈T̂ \Ŝω(T ,T̂ )

ηT (T̂ , hω(T̂ ))2
)1/2

≤
( ∑

T∈T̂ \Ŝω(T ,T̂ )

ηT (T̂ , hω(T ))2
)1/2

≤
( ∑

T∈T \Sω(T ,T̂ )

ηT (T , hω(T ))2
)1/2

+ ˜̺(T , T̂ ).

Since ˜̺(·, ·) ≤ ̺(·, ·), this shows stability (2.3.5). By (4.5.1) and Proposition 4.5.4 (ii), one

obtains ω(T, T ) ⊆ Sω(T , T̂ ) for all T ∈ T \T̂ . By assumption (i) in Section 4.5.1, this shows

ω(T \ T̂ , T ) ⊆ Sω(T , T̂ ) and the assumption (4.5.6) implies Mℓ ⊆ Sω(Tℓ, Tℓ+1). Since M̃ℓ

satisfies Dörfler marking (4.2.3), (4.2.2a) shows for all ℓ ∈ N0

C−1
eq θ̃ η(Tℓ)

2 ≤
∑

T∈Sω(Tℓ,Tℓ+1)

ηT (Tℓ)
2.

This and (4.5.8) imply immediately for all ℓ ∈ N0

C−1
eq C

−r−
12 θ̃ η(Tℓ, hω(Tℓ))

2 ≤
∑

T∈Sω(Tℓ,Tℓ+1)

ηT (Tℓ, hω(Tℓ))
2.

Therefore, Lemma 2.3.5 with T̂ = Tℓ+1 and T = Tℓ shows that estimator reduction (2.3.6)
and hence (2.3.8) holds for all ℓ ∈ N0 and η(Tℓ, hω(Tℓ)). Since ˜̺(·, ·) ≃ ̺(·, ·), Lemma 2.3.6
shows limℓ→∞ η(Tℓ, hω(Tℓ)) = 0 under the assumptions of (i). Equivalence (4.5.8) shows
limℓ→∞ η(Tℓ) = 0 and (4.2.1) implies (i).

Since (2.3.8) holds for all ℓ ∈ N0 and η(Tℓ, hω(Tℓ)), Proposition 2.3.9 shows that the gen-
eral quasi-orthogonality (E2) implies R-linear convergence (2.3.14) with αℓ = η(Tℓ, hω(Tℓ)).
Again (4.5.8) and (4.2.1) imply (ii).

The R-linear convergence from (ii), (4.5.7) and the assumptions from (iii) imply the
assumptions of Theorem 4.3.1 (iii). This proves (iii) and concludes the proof. �

4.5.4. Super contractive weight function. The next proposition defines an equiva-
lent weight function hω(·), which contracts even if h(·) contracts only nearby (namely within
the patch). To that end, recall the definition of maxx∈T and minx∈T from Section 4.5.

Proposition 4.5.4. Suppose a weight function h(·) with h(T ) ∈ L∞(Ω) for all T ∈ T.
Moreover, we assume that (4.5.1) and (4.5.2) are satisfied and that h(T ) is continuous on
Ω \⋃T∈T ∂T . Let ω(·, ·) denote a patch function which satisfies (4.5.3)–(4.5.5). Then, there
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T

Figure 1. Consider the standard patch from Remark 4.5.5. Then, the patch
area of the red triangle in the left figure coincides with the patch area of each
of its two sons after two bisections. The area of the large green square in the
right figure is 1. The average of areas in its patch is smaller than 0.22. After
two bisections, the average of areas of the patch of T is 0.25.

exists a super contractive weight function hω(·) such that hω(T ) is T -piecewise constant for
all T ∈ T, which satisfies (i)–(iii).

(i) Equivalence: For all T ∈ T and all T ∈ T , it holds:

C−1
eq min

x∈T
h(T ) ≤ hω(T )|T ≤ min

x∈T
h(T ). (4.5.9)

(ii) Contraction on the patch: All refinements T̂ ∈ T(T ) and all T ∈ T satisfy

hω(T̂ )|T ≤ qschω(T )|T if h(T )|∪ω(T,T ) 6= h(T̂ )|∪ω(T,T ). (4.5.10)

(iii) Monotonicity: All refinements T̂ ∈ T of a triangulation T ∈ T satisfy

hω(T̂ ) ≤ hω(T ) almost everywhere in Ω. (4.5.11)

The constants C12 ≥ 1 and 0 < qsc < 1 depend only on Cpatch, Csum, d, and qcon.

Remark 4.5.5. A typical example would be h(T )|T := |T |1/d and the standard patch
function ω(S, T ) :=

{
T ∈ T : ∃T ′ ∈ S, T ∩T ′ 6= ∅

}
for some T generated by bisection from

Section 3.2.8. Then, Proposition 4.5.4 provides a super contractive weight function hω(T )

which satisfies hω(T̂ )|T ≤ qschω(T )|T for all T ∈ ω(T \ T̂ , T ).
Even for very specific refinement strategies, i.e., bisection from Section 3.2.8, the straight-

forward constructions of hω(·) by averaging over the patch or by considering the area of the
patch fail to satisfy (i)–(iii). See Figure 1 for some counterexamples.

The proof of Proposition 4.5.4 requires the next three lemmas, which consider an arbitrary
sequence of consecutive triangulations

(Tℓ)ℓ∈N ⊂ T with Tℓ+1 ∈ T(Tℓ) for all ℓ ∈ N0. (4.5.12)

Note that throughout this section (Tℓ) is not necessarily the sequence generated by Algo-
rithm 2.2.1.

Lemma 4.5.6. Under the assumptions of Proposition 4.5.4 and given (4.5.12) and
ℓ, N ∈ N0, suppose a strictly monotone sequence 0 ≤ m0 < m1 < . . . < mN ∈ N0 with
h(Tℓ+mN

)|T = h(Tℓ)|T for some T ∈ ⋂mN

j=ℓ Tj. Suppose there exist elements Ti ∈ ω(T, Tℓ+mi
),
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i = 0, . . . , N such that all i = 0, . . . , N − 1 satisfy

min
x∈Ti+1

h(Tℓ+mi+1
) ≤ max

x∈Ti

h(Tℓ+mi+1
) ≤ qcon min

x∈Ti

h(Tℓ+mi
). (4.5.13)

Then, N ≤ 2 log(Cpatch)/| log(qcon)|.
Proof. The assumptions imply maxx∈TN

h(Tℓ+mN
) ≤ qNcon minx∈T0 h(Tℓ). The assump-

tion (4.5.5) shows

h(Tℓ)|T = h(Tℓ+mN
)|T ≤ Cpatch max

x∈TN

h(Tℓ+mN
)

≤ Cpatchq
N
con min

x∈T0

h(Tℓ) ≤ C2
patchq

N
conh(Tℓ)|T .

(4.5.14)

This implies that N is bounded above by the restriction 1 ≤ C2
patchq

N
con. �

Lemma 4.5.7. Under the assumptions of Proposition 4.5.4 and given (4.5.12) and
ℓ, N ∈ N0, suppose a strictly monotone sequence 0 ≤ m0 < m1 < . . . < mN ∈ N0 with
h(Tℓ+mN

)|T = h(Tℓ)|T for some T ∈ ⋂mN

j=ℓ Tj. Suppose that for all i = 0, . . . , N − 1 exists

Ti ∈ ω(T, Tℓ+mi
) with

max
x∈Ti

h(Tℓ+mi+1
) ≤ qcon min

x∈Ti

h(Tℓ+mi
). (4.5.15)

Then, N ≤ 2 log(Cpatch)/| log(qcon)|CsumC
2d+2
patch.

Proof. For all T ′ ∈ ω2(T, Tℓ) define

αT ′ :=
{
Ti from (4.5.15) : |Ti ∩ T ′| > 0

}
.

Since
⋃
ω(T, Tℓ+mi

) ⊆ ⋃
ω2(T, Tℓ) for all i = 0, . . . , N by definition of the patch, and

|ω2(T, Tℓ)| ≤ C2
patch, there exists at least one T ′

0 ∈ ω2(T, Tℓ) with n := |αT ′
0
| ≥ N/C2

patch.
Let now αT ′

0
= {Ti1 , . . . , Tin} such that i1 ≤ i2 ≤ . . . ≤ in. We define a directed graph G

with set of vertices αT ′
0
. Two vertices Tij , Tik ∈ αT ′

0
are connected by an edge Ejk ∈ G if and

only if there holds

min
x∈Tik

h(Tℓ+mik
) ≤ max

x∈Tij

h(Tℓ+mik
) ≤ qcon min

x∈Tij

h(Tℓ+mij
). (4.5.16)

With (4.5.1), the fact Ejk ∈ G implies immediately k > j and hence prohibits Ekj ∈ G.
Therefore, any path E := {Ej0j1 , Ej1,j2, . . . , Ejm−1jm} ⊆ G satisfies j1 < j2 < . . . < jm and
thus can’t be closed. Moreover, the corresponding vertices Tijk , k = 0, . . . , m satisfy the
requirements of Lemma 4.5.6. This shows

|E| = m ≤ mmax := 2 log(Cpatch)/| log(qcon)|. (4.5.17)

Consider the set of leafs L0 :=
{
Tij ∈ αT ′

0
: ∀Ej1j2 ∈ G, j1 6= j

}
of G. Moreover, for k ∈ N

define the set of leafs Lk of the subgraph Gk on the reduced vertices set αT ′
0
\⋃k−1

j=0 Lj . Since
no closed path E can exist, any path E which is maximal with respect to ⊆, must end with
a leaf.

First, we prove
mmax⋃

j=0

Lj = αT ′
0
. (4.5.18)

To that end, we show by induction that any path E ⊆ Gk satisfies

|E| ≤ mmax − k. (4.5.19)
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For k = 0 and G0 := G this is (4.5.17). Assume the induction hypothesis (4.5.19) holds for
k > 0. Since a path E ⊆ Gk+1, which is maximal with respect to ⊆, must end with a leaf, it
can not be maximal in Gk (otherwise the leaf is in Lk and hence not in αT ′

0
\⋃k

j=0Lj which

is the vertex set of Gk+1). This implies the existence of a path E ′ ⊆ Gk with |E| < |E ′| ≤
mmax − k and hence proves the hypothesis (4.5.19) for k + 1. Induction concludes (4.5.19)
for all 0 ≤ k ≤ mmax. Since no path of positive length can exist in Gmmax , there holds
Lmmax = Gmmax . This implies Lmmax+1 = ∅ and hence (4.5.18).

By definition, the Lj are disjoint. Therefore (4.5.18) implies that there exists 0 ≤ j0 ≤
mmax such that

|Lj0| ≥ |αT ′
0
|/mmax. (4.5.20)

Assume there holds |Tij ∩ Tik | > 0 for Tij , Tik ∈ Lj0 with Tij 6= Tik . Then, by definition in
Section 3.2.1, there holds ij 6= ik. Without loss of generality, assume ij < ik. Since |Tij ∩
Tik | > 0, there holds Tij /∈ Tℓ+mik

, and hence by (4.5.1), there holds maxx∈Tij
h(Tℓ+mik

) ≤
qcon minTij

h(Tℓ+mij
). This and |Tij ∩ Tik | > 0 imply (4.5.16) and hence Ejk ∈ Gj0. This,

however, contradicts the definition of Lj0 as a set of leafs. Therefore, all elements of Lj0

have pairwise intersections with measure zero. Hence, (4.5.5) and (4.5.2) imply

C−d
patch

∑

Tij
∈Lj0

min
x∈T

h(Tℓ+mij
)d ≤

∑

Tij
∈Lj0

max
x∈Tij

h(Tℓ+mij
)d

≤ Csum min
x∈T ′

0

h(Tℓ)
d ≤ CsumC

d
patch min

x∈T
h(Tℓ)

d.

This and the assumption h(Tℓ+mN
)|T = h(Tℓ)|T = h(Tℓ+mi

)|T for all i = 0, . . . , N imply

|Lj0| ≤ CsumC
2d
patch.

Together with (4.5.20), this implies

N/C2
patch ≤ |αT ′

0
| ≤ mmaxCsumC

2d
patch

and concludes the proof. �

Lemma 4.5.8. Under the assumptions of Proposition 4.5.4 and given (4.5.12), there

exists a weight function h̃ω(Tℓ) which satisfies for all ℓ ∈ N0 (i)–(iii)

(i) All T ∈ Tℓ satisfy:

qNmax/(Nmax+1)
con min

x∈T
h(Tℓ) ≤ h̃ω(Tℓ)|T ≤ h(Tℓ)|T pointwise almost everywhere.

(ii) All T ∈ Tℓ and all k ≥ ℓ satisfy

max
x∈T

h̃ω(Tk) ≤ q1/(Nmax+1)
con min

x∈T
h̃ω(Tℓ)|T if h(Tℓ)|∪ω(T,Tℓ) 6= h(Tk)|∪ω(T,Tℓ).

(iii) All k ≥ ℓ satisfy

h̃ω(Tk) ≤ h̃ω(Tℓ) almost everywhere in Ω.

There holds Nmax := 2 log(Cpatch)/| log(qcon)|CsumC
2d+2
patch.

83



Proof. For ℓ = 0, set h̃ω(T0) = h(T0). For ℓ ≥ 0 and for all T ∈ Tℓ set

h̃ω(Tℓ+1)|T :=





h(Tℓ+1)|T case 1: h(Tℓ+1)|T 6= h(Tℓ)|T ,
q1/(Nmax+1)
con min

x∈T
h̃ω(Tℓ) case 2:

h(Tℓ)|∪ω(T,Tℓ)
6=h(Tℓ+1)|∪ω(T,Tℓ)

h(Tℓ)|T=h(Tℓ+1)|T
,

h̃ω(Tℓ)|T case 3: else.

The upper bound in (i) follows immediately by induction on ℓ ∈ N: It holds for ℓ = 0.

Assume the upper bound holds for ℓ ∈ N. Then, the definition of h̃ω(Tℓ+1) implies for
T ∈ Tℓ+1 and all T ′ ∈ Tℓ with |T ′ ∩ T | > 0

h̃ω(Tℓ+1)|T∩T ′ ≤
{
h(Tℓ+1)|T∩T ′ case 1,

h̃ω(Tℓ)|T∩T ′ case 2 and 3.

The induction hypothesis for case 2–3 and the monotonicity from (4.5.1) for case 1 prove

h̃ω(Tℓ+1)|T∩T ′ ≤ h(Tℓ)|T∩T ′. This concludes the induction. The lower bound (i) follows by
contradiction. Consider an element T ∈ Tj , j ∈ N, with

min
x∈T

h̃ω(Tj) < qNmax/(Nmax+1)
con min

x∈T
h(Tj). (4.5.21)

Let ℓ ≤ j be the minimal index with T ∈ Tℓ. If ℓ = 0, there holds h̃ω(T0)|T = h(T0)|T by
definition. For ℓ > 0, the assumption (4.5.1) implies h(Tℓ)|T ′ 6= h(Tℓ−1)|T ′ for all T ′ ∈ Tℓ−1

with |T ′ ∩ T | > 0 and hence by definition h̃ω(Tℓ)|T ′ = h(Tℓ)|T ′ (case 1). Altogether, we have

an index 0 ≤ ℓ ≤ j with h̃ω(Tℓ)|T = h(Tℓ)|T . We redefine ℓ ≤ j to denote the largest index

smaller or equal to j with h̃ω(Tℓ)|T = h(Tℓ)|T . Therefore, case 1 cannot occur for any index

ℓ < i < j. This implies also T ∈ ⋂j−1
i=ℓ Ti. To obtain (4.5.21), there must exist at least

Nmax+1 indices ℓ+mi < j with case 2. This particularly implies h(Tℓ+mNmax+1
)|T = h(Tℓ)|T

and T ∈ ⋂ℓ+mNmax
j=ℓ Tj . We aim to verify the remaining assumptions of Lemma 4.5.7. To

that end, note that case 2 for T ∈ Tℓ+mi
and (4.5.1) imply the existence of Ti ∈ ω(T, Tℓ+mi

)
with maxx∈Ti

h(Tℓ+mi+1) ≤ qcon minx∈Ti
h(Tℓ+mi

). The monotonicity of h(Tℓ) from (4.5.1)
and ℓ + mi + 1 ≤ ℓ + mi+1 imply even (4.5.15). Hence, the requirements of Lemma 4.5.7
are satisfied and the contradiction Nmax + 1 ≤ 2 log(Cpatch)/| log(qcon)|CsumC

2d+2
patch = Nmax

follows. This proves the lower bound in (i).
To prove the contraction estimate (ii), distinguish two cases. If T ∈ Tℓ satisfies case 1 in

the definition of h̃ω(·), then, with the lower bound in (i) and (4.5.1), it holds

max
x∈T

h̃ω(Tℓ+1) = max
x∈T

h(Tℓ+1) ≤ qcon min
x∈T

h(Tℓ)

≤ qcon q
−Nmax/(Nmax+1)
con min

x∈T
h̃ω(Tℓ) = q1/(Nmax+1)

con min
x∈T

h̃ω(Tℓ).
(4.5.22)

If T ∈ Tℓ satisfies case 2 in the definition of h̃ω(·), then, it holds

max
x∈T

h̃ω(Tℓ+1) = q1/(Nmax+1)
con min

x∈T
h̃ω(Tℓ). (4.5.23)

Each case leads to some contraction with constant qsc = q
1/(Nmax+1)
con ∈ (0, 1).

This also implies monotonicity (iii) for case 1 and case 2. Let T ∈ Tℓ which satisfies
case 3. The definition shows

h̃ω(Tℓ+1)|T = h̃ω(Tℓ)|T
and hence (iii). This concludes the proof. �
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Proof of Proposition 4.5.4. The weight function h̃ω(·) depends on the sequence (Tℓ)
from (4.5.12). Hence, we write

h̃ω(Tℓ) = h̃ω(T0, . . . , Tℓ).

Given T ∈ T, define the set of all sequences which lead to that particular triangulation, i.e.,

T(T0, T ) :=
{
(T0, . . . , Tℓ = T ) : ℓ ∈ N, Tj+1 ∈ T(Tj) \ {Tj} for all j = 0, . . . , ℓ− 1

}
.

The definition of the refinement strategy T(·, ·) in Section 2.2.1 implies that T(T0, T ) is finite.
Define hω(T0)|T := minx∈T h(T0) for all T ∈ T0 and for T ∈ T \ {T0} by

hω(T )|T := min
(T0,...,Tℓ)∈T(T0,T )

min
x∈T

h̃ω(T0, . . . , Tℓ) for all T ∈ T .

We denote by (T T
0 , . . . , T T

ℓ ) ∈ T(T0, T ) a sequence which satisfies

min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ ) = hω(T )|T .

To see the equivalence (4.5.9), Lemma 4.5.8 (i) shows

min
x∈T

h(T ) . min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ ) ≤ min
x∈T

h(T ),

where the hidden constants do not depend on the particular sequence T T
0 , . . . , T T

ℓ . This
implies (4.5.9).

The contraction property (4.5.10) follows with Lemma 4.5.8 (ii). To see that, let T ∈ T
with h(T )|∪ω(T,T ) 6= h(T̂ )|∪ω(T,T ). There holds (T T

0 , . . . , T T
ℓ , T̂ ) ∈ T(T0, T̂ ) and hence for all

T ′ ∈ T̂ with |T ′ ∩ T | > 0

hω(T̂ )|T ′ ≤ min
x∈T ′

h̃ω(T T
0 , . . . , T T

ℓ , T̂ )

≤ max
x∈T

h̃ω(T T
0 , . . . , T T

ℓ , T̂ )

≤ q1/(Nmax+1)
con min

x∈T
h̃ω(T T

0 , . . . , T T
ℓ ) = q1/(Nmax+1)

con hω(T )|T .

(4.5.24)

Since the involved constants do not depend on the particular sequence T T
0 , . . . , T T

ℓ , this

shows (4.5.10) with qsc = q
1/(Nmax+1)
con .

Finally, we show (4.5.11). Therefore, let T ∈ T and T̂ ∈ T(T ). If T 6= T̂ , the contrac-

tion (4.5.24) applies and shows monotonicity (4.5.11) on T . If T ∈ T̂ , Lemma 4.5.8 (iii)
implies

hω(T̂ )|T ≤ min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ , T̂ )

≤ min
x∈T

h̃ω(T T
0 , . . . , T T

ℓ ) = hω(T )|T .

This concludes the proof. �
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CHAPTER 5

Applications II

5.1. Introduction, state of the art & outline

This chapter applies the abstract results from the previous chapter to certain model
problems. The examples below are found in a similar manner in [24]. Note that the super
contractive weight function from Section 4.5.4 allows to prove optimal convergence rates, even
if the equivalence of the error estimators is only patch wise. This is a major improvement
over [60], where all the patches are refined, too. Moreover the super contractive patch
function is used in Section 5.4 to prove the contraction of data oscillations. This improves
the work [4], where a modified marking strategy is employed to overcome this problem.
The remainder of the chapter is organized as follows: Section 5.2 shows rate optimality
for certain estimators which are equivalent to the residual estimator from Section 3.4.1.
Section 5.3 reproduces the results of [13] for the p-Laplacian and Section 5.4 demonstrates
the incorporation of inhomogeneous boundary data into the optimality analysis.

5.2. Example 1: Locally equivalent error estimators for the Poisson problem

This section applies the analysis Chapter 4 to a specific model problem, where the adaptive
algorithm is steered by some locally equivalent and possibly non-residual error estimator.

5.2.1. Poisson model problem. In the spirit of [60], consider the Poisson model
problem (3.4.1) in Ω ⊆ Rd,

−∆u = f in Ω and u = 0 on Γ,

and recall the weak formulation (3.4.2), and the FE discretization (3.4.3) by means of piece-
wise polynomials Sp

0 (T ) = Pp(T )∩H1
0 (Ω) of degree p ≥ 1. The residual error estimator η(·)

with local contributions

ηT (T )2 = ηT (T , h(T ))2 := h(T )|2T ‖f +∆T V ‖2L2(T ) + h(T )|T ‖[∂nV ]‖2L2(∂T∩Ω) (5.2.1)

with h(T )|T := |T |1/d for all T ∈ T and ∆T the T -element wise Laplacian serves as a
theoretical tool. Under the assumptions of Section 3.4.1 the following result holds.

Proposition 5.2.1. In addition to the properties stated in Proposition 3.4.1, the resid-
ual error estimator (5.2.1) satisfies homogeneity (3.3.1) with r+ = 1/2 and r− = 1 and
stability (3.3.2) with ˜̺(·, ·) = ̺(·, ·).

Proof. Stability (3.3.2) is well-known and follows by use of the triangle inequality as
well as standard inverse estimates analogously to the proof of [35, Corollary 3.4]. The
homogeneity (3.3.1) is obvious. �

The following sections concern different error estimators η̃(·) which are equivalent to η(·)
and fit into the framework of Section 4.5. Section 5.2.2 studies the influence of equivalent
choices of the weight function h(T ) for the residual error estimator (This is well-known by
experts but does not appear in the literature except for the recent own work [24]. Moreover, it
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fits perfectly into the abstract framework of Chapter 4). Section 5.2.3 concerns a facet-based
formulation of η(·), while Section 5.2.4 analyzes recovery-based error estimators. Further
examples for the lowest-order case p = 1, which also fit in the frame of the analysis from
Section 4.5, are found in [60].

5.2.2. Estimator based on equivalent weight function. This section is based on
the recent own work [24, Section 9]. Instead of |T |1/d for weighting the local contributions
of η(·), one can also use the local diameter diam(T ). This leads to

η̃T (T )2 := diam(T )2 ‖f +∆V ‖2L2(T ) + diam(T ) ‖[∂nV ]‖2L2(∂T∩Ω).

This variant of η(·) is usually found in textbooks as e.g. [1, 82]. Under the assumptions of
Section 3.4.1the shape regularity (3.2.5) leads to h(T )|T ≤ diam(T ) ≤ Cshpγ(T0) h(T )|T for
all T ∈ T ∈ T. In particular, η(·) and η̃(·) are element wise equivalent.

Proposition 5.2.2. The estimators η(·) and η̃(·) are globally equivalent in the sense

that (4.2.1) with T̃ = T, T̃(·, ·) = T(·, ·) and Ceq = C2
shpγ(T0)

2. Moreover, (4.2.2) holds with

M = M̃ = M. The weight-function h(T ) satisfies (4.5.1) and (4.5.2). Moreover, (4.5.6) is
satisfied with the trivial patch function ω(S, T ) = S for all S ⊆ T and all T ∈ T. Together
with Proposition 5.2.1, all the assumptions of Theorem 4.5.3 are satisfied.

Proof. Define the weight function h : Ω → (0,∞) by h|T := diam(T ) for all T ∈ T.
Then, there holds η̃T (T ) = ηT (T , h) for all T ∈ T . The homogeneity (3.3.1) of η(·) shows

min
x∈T

|(h(T )/h)(x)|r− η̃T (T ) ≤ ηT (T , h(T )) ≤ max
x∈T

|(h(T )/h)(x)|r+ η̃T (T )

and hence

C−1
shpγ(T0)

−1η̃T (T ) ≤ ηT (T ) ≤ η̃T (T ) for all T ∈ T .
From this element wise equivalence, the statements (4.2.1) and (4.2.2) follow immediately.

The estimate (3.2.12) implies (4.5.1) and (4.5.6) follows from M̃ = M. Finally, the esti-
mate (4.5.2) follows with Csum = 1. �

Consequence 5.2.3. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads
to convergence with optimal rate for the estimator η̃(·) in the sense of Theorem 4.5.3. �

5.2.3. Facet-based formulation of residual error estimator. This section is based
on [24, Section 9]. For a given triangulation T ∈ T generated by bisection from Section 3.2.8,

let T̃ := E(T ) denote the corresponding set of facets which lie inside Ω, i.e., for each E ∈ T̃
there are two unique elements T, T ′ ∈ T with T 6= T ′ and E = T ∩ T ′. Let

ω(E, T ) := {T, T ′} and
⋃

ω(E, T ) = T ∪ T ′ (5.2.2)

denote the patch of E ∈ T̃ . Let T(·, ·) denote bisection (Section 3.2.8) and let T̃(·, ·) denote
the corresponding facet based version from Section 3.2.11. Assume that each element T ∈ T
has at most one facet on the boundary Γ = ∂Ω which is a minor additional assumption on
the initial triangulation T0 to exclude pathological cases. In particular, each element T ∈ T
has at least one node z ∈ K(T ) inside Ω. For each facet E ∈ T̃ , let FE ∈ Pp−1(

⋃
ω(E, T ))

be the unique polynomial of degree p− 1 such that

‖∆T V − f − FE‖L2(∪ω(E,T )) = min
F∈Pp−1(∪ω(E,T ))

‖∆T V − f − F‖L2(∪ω(E,T )). (5.2.3)
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With the introduced notation, consider the following facet-based variant of the residual error
estimator (5.2.1)

η̃(T̃ )2 =
∑

E∈T̃

ηE(T̃ )2, (5.2.4a)

η̃E(T̃ )2 = diam(E)2 ‖∆T V − f − FE‖2L2(∪ω(E,T )) + diam(E) ‖[∂nV ]‖2L2(E). (5.2.4b)

Convergence and quasi-optimality for this estimator is directly proved for d = 2 and p = 1
in [48] via the technical and non-obvious observation that the edge oscillations are contrac-
tive [69, 68]. The novel approach of this paper generalizes the mentioned works to arbitrary
dimension d ≥ 2 and polynomial degree p ≥ 1.

Proposition 5.2.4. The estimators η(·) and η̃(·) are globally equivalent in the sense
of (4.2.1). Moreover, (4.2.2) holds with

M :=
⋃

E∈M̃

ω(E, T ) and M :=
{
E ∈ T̃ : ∃T ∈ M, E ∩ T 6= ∅

}
.

The weight-function h(T ) satisfies (4.5.1) as well as (4.5.2) and (4.5.6) is satisfied with the
patch function

ω(S, T ) :=
{
T ∈ T : ∃T ′ ∈ S, T ∩ T ′ 6= ∅

}

for all S ⊆ T and all T ∈ T. Together with Proposition 5.2.1, all the assumptions of
Theorem 4.5.3 are satisfied.

The proof of Proposition 5.2.4 requires some technical lemmas and some further notation:

For an interior node z ∈ K(T )∩Ω of T , define the star Σ(z, T ) :=
{
E ∈ T̃ : z ∈ E

}
as well

as the patch ω(z, T ) :=
{
T ∈ T : z ∈ T

}
. Let Fz ∈ Pp−1(

⋃
ω(z, T )) denote the unique

polynomial of degree p− 1 such that

‖∆T V − f − Fz‖L2(∪ω(z,T )) = min
F∈Pp−1(∪ω(z,T ))

‖∆T V − f − F‖L2(∪ω(z,T )). (5.2.5)

To abbreviate notation, write r(T ) := ∆T U(T )− f for the residual.

Lemma 5.2.5. Any interior node z ∈ K(T ) ∩ Ω and T ∈ T with z ∈ T satisfies

C−1
13 ‖r(T )‖2L2(T ) ≤ h(T )|−1

T ‖[∂nU(T )]‖2L2(∪Σ(z,T )) + ‖r(T )− Fz‖2L2(∪ω(z,T )). (5.2.6)

The constant C13 > 0 depends only on γ(T ) and hence on T.

Proof. Consider the nodal basis function φz ∈ S1(T ) characterized by φz(z) = 1 and
φz(z

′) = 0 for all z′ ∈ K(T ) with z 6= z′. In particular, supp(φz) =
⋃
ω(z, T ). Let

Πp−1 : L2(
⋃
ω(z, T )) → Pp−1(

⋃
ω(z, T )) be the L2-orthogonal projection and note that

Fz = Πp−1r(T ). A scaling argument and ‖φz‖L∞(Ω) = 1 prove

‖Fz‖2L2(∪ω(z,T )) . ‖φ1/2
z Fz‖2L2(∪ω(z,T ))

=

∫

∪ω(z,T )

r(T )φzFz dx−
∫

∪ω(z,T )

(
(1− Πp−1)r(T )

)
φzFz dx

≤
∫

∪ω(z,T )

r(T )φzFz dx+ ‖(1−Πp−1)r(T )‖L2(∪ω(z,T ))‖Fz‖L2(∪ω(z,T )).

Consider the first term on the right-hand side and use that V := φzFz ∈ Sp
0 (T ) is a suitable

test function. With the Galerkin formulation (3.4.3) and element wise integration by parts,
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it follows that ∫

∪ω(z,T )

r(T )φzFz dx =

∫

∪ω(z,T )

r(T )V dx

=

∫

∪ω(z,T )

∆T U(T ) V dx+

∫

∪ω(z,T )

∇U(T ) · ∇V dx

=

∫

∪Σ(z,T )

[∂nU(T )]φzFz dx

≤ ‖[∂nU(T )]‖L2(∪Σ(z,T ))‖Fz‖L2(∪Σ(z,T )).

Since Fz ∈ Pp−1(
⋃
ω(z, T )), an inverse-type inequality with hz := diam(

⋃
ω(z, T )) shows

‖Fz‖L2(∪Σ(z,T )) . h−1/2
z ‖Fz‖L2(∪ω(z,T )).

The hidden constant depends only on γ(T ). The combination of the previous arguments
implies

‖Fz‖2L2(∪ω(z,T )) .
(
h−1/2
z ‖[∂nU(T )]‖L2(∪Σ(z,T )) + ‖r(T )− Fz‖L2(∪ω(z,T ))

)
‖Fz‖L2(∪ω(z,T )).

The triangle inequality together with hz ≃ h(T )|T proves

h(T )|2T‖∆T U(T ) + f‖2L2(T )

. h(T )|2T‖Fz‖2L2(∪ω(z,T )) + h(T )|2T‖r(T )− Fz‖L2(∪ω(z,T ))

. h(T )|T‖[∂nU(T )]‖2L2(∪Σ(z,T )) + h(T )|2T‖r(T )− Fz‖2L2(∪ω(z,T )).

This concludes the proof. �

The following lemma shows that edge oscillations (5.2.3) and node oscillations (5.2.5) are
equivalent on patches.

Lemma 5.2.6. Any interior node z ∈ K(T ) ∩ Ω and T ∈ T with z ∈ T satisfies

C−1
14 ‖r(T )− Fz‖2L2(∪ω(z,T )) ≤

∑

E∈Σ(z,T )

‖r(T )− FE‖2L2(∪ω(E,T ))

≤ C15 ‖r(T )− Fz‖2L2(∪ω(z,T )).

(5.2.7)

The constants C14, C15 > 0 depend only on T, the polynomial degree p ≥ 1, and the use of
bisection.

Proof. The upper bound in (5.2.7) follows from

‖r(T )− FE‖L2(∪ω(E,T )) ≤ ‖r(T )− Fz‖L2(∪ω(E,T )) ≤ ‖r(T )− Fz‖L2(∪ω(z,T ))

for all E ∈ Σ(z, T ) and the fact that the cardinality |Σ(z, T )| is uniformly bounded by
γ(T ) ≤ Cshpγ(T0).

The lower bound in (5.2.7) is first proved for a piecewise polynomial r(T ) ∈ Pp−1(T ). We
employ equivalence of seminorms on finite dimensional spaces and scaling arguments. Note
that both terms in (5.2.7) define seminorms on the finite dimensional space Pp−1(ω(z, T ))
with the kernel Pp−1(

⋃
ω(z, T )) and hence are equivalent with constants C14, C15 > 0. A

scaling argument proves that these constants depend only on the shape of
⋃
ω(E, T ) or⋃

Σ(z, T ). Since bisection from Section 3.2.8 only leads to finitely many shapes of triangles
and hence patches and facet stars, this proves that C14 and C15 depend only on T, p, and
the use of bisection.
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It remains to prove the lower bound in (5.2.7) for general f ∈ L2(Ω). Let Πp−1 : L2(Ω) →
Pp−1(T ) denote the L2-projection so that F (T ) = Πp−1r(T ) is the unique solution to

‖r(T )− F (T )‖L2(T ) = min
F∈Pp−1(T )

‖r(T )− F‖L2(T ) for all T ∈ T .

Note that Pp−1(
⋃
ω(E, T )) ⊂ Pp−1(ω(E, T )) and hence

〈(1−Πp−1)r(T ) , F (T )− Fz〉L2(T ) = 0 = 〈(1− Πp−1)r(T ) , F (T )− FE〉L2(T ).

According to the T -element wise Pythagoras theorem and the foregoing discussion for T -
piecewise polynomial r(T ), it follows

‖r(T )−Fz‖2L2(∪ω(z,T )) = ‖r(T )− F (T )‖2L2(∪ω(z,T )) + ‖F (T )− Fz‖2L2(∪ω(z,T ))

.
∑

E∈Σ(z,T )

(
‖r(T )− F (T )‖2L2(∪ω(E,T )) + ‖F (T )− FE‖2L2(∪ω(E,T ))

)

=
∑

E∈Σ(T ;z)

‖r(T )− FE‖2L2(∪ω(E,T )).

This concludes the proof. �

Proof of Proposition 5.2.4. Shape regularity (3.2.5) yields hE = diam(E) ≃ h(T )|T
for all E ∈ T̃ and T ∈ T with E ⊆ T . Hence

η̃E(T̃ )2 = h2E ‖r(T )− FE‖2L2(∪ω(E,T )) + hE ‖[∂nU(T )]‖2L2(E)

≤
∑

T∈ω(E,T )

(
h2E‖r(T )‖2L2(T ) + hE ‖[∂nU(T )]‖2L2(∂T∩Ω)

)

≃
∑

T∈ω(E,T ))

ηT (T )2.

Lemma 5.2.5 and 5.2.6 imply

ηT (T )2 = h(T )|2T ‖r(T )‖2L2(T ) + h(T )|T ‖[∂nU(T )]‖2L2(∂T∩Ω)

.
∑

z∈K(T )∩Ω

(
h(T )|2T ‖r(T )− Fz‖2L2(∪ω(T,z)) + h(T )|T ‖[∂nU(T )]‖2L2(∪Σ(z,T ))

)

≃
∑

z∈K(T )∩Ω

∑

E∈Σ(z,T )

(
h2E ‖r(T )− FE‖2L2(∪ω(E,T )) + ET ‖[∂nU(T )]‖2L2(E)

)

≤
∑

z∈K(T )∩Ω

∑

E∈Σ(z,T )

η̃E(T̃ )2.

The last two estimates imply immediately (4.2.1). The first implication (4.2.2a) follows by

θ̃η(T )2 . θ̃η̃(T̃ )2 ≤
∑

E∈M̃

η̃E(T̃ )2 .
∑

E∈M̃

∑

T∈ω(E,T )

ηT (T ) =
∑

T∈M

ηT (T )2.

To see the second implication (4.2.2b), consider

θη̃(T̃ )2 . θη(T )2 ≤
∑

T∈M

ηT (T )2 .
∑

T∈M

∑

z∈K(T )∩Ω

∑

E∈Σ(z,T )
z∈K(T )∩T

η̃E(T̃ )2 ≤
∑

E∈M

η̃E(T̃ )2.

The remaining statements follow as in Section 5.2.2. �
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Consequence 5.2.7. Let s > 0 with ‖η,T‖s < ∞. Then, the adaptive algorithm
leads to convergence with optimal rate for the facet based estimator η̃(·) in the sense of
Theorem 4.5.3.

Numerical examples that underline the above result can be found in for 2D and lowest-
order elements in [49]. Moreover, numerical examples for the obstacle problem with the
facet-based estimator are found in [69, 68].

5.2.4. Recovery-based error estimator. This section is based on [24, Section 9].
We consider recovery-based error estimators for FEM which are occasionally also called ZZ-
estimators after Zienkiewicz and Zhu [87]. These estimators are popular in computational
science and engineering because of their implementational ease and striking performance in
many applications. Reliability has independently been shown by [72, 22] for lowest-order
elements p = 1 and later generalized to higher-order elements p ≥ 1 in [10]. For the lowest-
order case, convergence and quasi-optimality of the related adaptive algorithm has been
analyzed in [60]. In the following, the result of [60] is reproduced and even generalized to
higher-order elements p ≥ 1. Moreover, the abstract analysis of Section 4.5 removes the
artificial refinements in [60].

Let G(T ) : L2(Ω) → Sp
0 (T ) denote the local averaging operator which is defined as

follows:

• For lowest-order polynomials p = 1, define G(T )(v) ∈ S1
0 (T ) by

G(T )(v)(z) :=
1

|ω(z, T )|

∫

∪ω(z,T )

v dx for all inner nodes z ∈ K(T ) ∩ Ω.

• For the general case p ≥ 1, define G(T ) = J(T ) : H1
0 (Ω) → Sp

0 (T ) as the Scott-
Zhang projection from [76], see also Definition 3.2.6.

Based on G(T ), the local estimator contributions of the recovery-based error estimator η̃(·)
read

η̃τ (T )2 :=

{
‖(1−G(T ))∇U(T )‖2L2(T ) for τ = T ∈ T ,
diam(E)2 ‖∆T U(T )− f − FE‖2L2(ω(E,T )) for τ = E ∈ E(T ),

(5.2.8)

where FE is defined in (5.2.3). Given a set of triangulations T with the bisection refinement

strategy T(·, ·) from Section 3.2.8, the recovery-based error estimator acts on the set T̃ :={
T̃ : T ∈ T

}
and T̃ := T ∪ E(T ). The refinement strategy T̃(·, ·) employs facet based

variant from Section 3.2.11, where each marked element T ∈ T marks the corresponding
facets E ⊆ ∂T . Moreover, given T ∈ T and S ⊆ T define the 2-patch

ω2(S, T ) :=
{
T ∈ T : ∃T0, T1 ∈ T , T0 ∈ S, T0 ∩ T1 6= ∅, T1 ∩ T 6= ∅

}
. (5.2.9)

Proposition 5.2.8. For general polynomial degree p ≥ 1, the error estimators η(·)
from (5.2.1) and η̃(·) from (5.2.8) satisfy for all E ∈ E(T ) with E = T0 ∩ T1 for some
T0, T1 ∈ T

η̃E(T̃ )2 + η̃T0(T̃ )2 ≤ C16

∑

T∈ω2(T0,T )

ηT (T )2, (5.2.10a)

as well as

ηT0(T )2 ≤ C16

∑

τ∈T̃
τ∩T0 6=∅

η̃τ (T̃ )2. (5.2.10b)

The constant C16 > 0 depends only on γ(T ), the use of bisection, and p.
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The proof requires the following lemma which states that the normal jumps are locally
equivalent to averaging. The result is well-known for the lowest-order case, and its proof is
included for the convenience of the reader.

Lemma 5.2.9. For some interior node z ∈ K(T ) ∩ Ω, it holds

C−1
17 hT ‖[∂nU(T )]‖2L2(∪Σ(z,T )) ≤ ‖(1−G(T ))∇U(T )‖2L2(∪ω(z,T ))

≤ C18

∑

z′∈Σ(z,T )∩K(T )∩Ω

hz′‖[∂nU(T )]‖2L2(∪Σ(z′,T )).
(5.2.11)

The constants C17, C18 > 0 depend only on T0, the polynomial degree p ≥ 1, and the use of
bisection.

Proof. We use equivalence of seminorms on finite dimensional spaces and scaling argu-
ments. To prove (5.2.11), it thus suffices to show that the chain of inequalities holds true if
one term is zero.

First, assume (1 − G(T ))∇U(T ) = 0 on
⋃
ω(z, T ). This implies ∇U(T ) ∈ Sp(ω(z, T ))

and hence [∂nU(T )] = 0 on
⋃
Σ(z, T ).

Second, assume [∂nU(T )] = 0 on
⋃

Σ(z′, T ) for all inner nodes z′ of Σ(z, T ). This
shows that the normal jumps of ∇U(T ) are zero over

⋃
Σ(z′, T ). Since U(T ) ∈ H1(Ω),

the tangential jumps of ∇U(T ) also vanish over Σ(z′, T ). Altogether, this implies ∇U(T ) ∈
Sp−1(ω(z′, T )) for all z′. If the Scott-Zhang projection defines the averaging, G(T )∇U(T )(z′)
depends only on ∇U(T )|ω(z′,T ), this implies G(T )∇U(T ) = ∇U(T ). In the particular case
p = 1 and patch averaging, ∇U(T ) is constant on ω(z′, T ). In any case, we thus derive
(1−G(T ))∇U(T ) = 0 on

⋃
ω(z, T ).

The constants in (5.2.11) depend on the shapes of patches
⋃
ω(z′, T ) involved. Since

bisection from Section 3.2.8 leads to only finitely many patch shapes, we deduce that the
these constants depend only on the polynomial degree p ∈ N and on T0. �

Proof of Proposition 5.2.8. In order to prove the local equivalence (5.2.10), let z ∈
K(T ) ∩ Ω be an interior node of T ∈ T . The upper estimate in (5.2.11) yields

η̃T (T̃ )2 .
∑

T ′∈ω2(T,T )

ηT ′(T )2.

For E = T0 ∩ T1 ∈ T̃ , it holds

η̃E(T̃ )2 = diam(E)2‖r(T )‖2L2(T0)
+ diam(E)2‖r(T )‖2L2(T1)

.
∑

T ′∈ω(T0,T )

ηT ′(T )2.

The combination of the last two estimates proves (5.2.10a). The proof of (5.2.10b) employs
Lemma 5.2.5 and 5.2.6 as well as the lower bound in (5.2.11). For an interior node z ∈
K(T ) ∩ Ω of T ∈ T , it follows

ηT (T )2 . h(T )|T ‖[∂nU(T )]‖2L2(∪Σ(z,T )) + h(T )|2T
∑

E∈Σ(z,T )

‖r(T )− FE‖2L2(∪ω(E,T )

.
∑

τ∈T̃
τ∩T 6=∅

η̃τ (T̃ )2.

This concludes the proof. �
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Proposition 5.2.10. With the patch functions from (5.2.2) and (5.2.9), the estimators
η(·) and η̃(·) are globally equivalent in the sense of (4.2.1). Moreover, (4.2.2) holds with

M :=
⋃

E∈M̃∩E(T )

ω2(ω(E, T ), T ) ∪
⋃

T∈M̃∩T

ω2(T, T )

and

M :=
{
τ ∈ T̃ : ∃T ∈ M, τ ∩ T 6= ∅

}
.

The weight-function h(T ) satisfies (4.5.1) and (4.5.2). Moreover, (4.5.6) is satisfied with the
patch function ω2(·, ·). Together with Proposition 5.2.1, all the assumptions of Theorem 4.5.3
are satisfied.

Proof. The global equivalence follows from Proposition 5.2.8. The implication (4.2.2a)
follows by (5.2.10a) and

θ̃η(T )2 . θ̃η̃(T̃ )2 ≤
∑

E∈M̃∩E(T )

η̃E(T̃ )2 +
∑

T∈M̃∩T

η̃T (T̃ )2

.
∑

E∈M̃

∑

T∈ω2(ω(E,T ),T )

ηT (T )2 =
∑

T∈M

ηT (T )2.

To see the second implication (4.2.2b), consider (5.2.10b) and

θη̃(T̃ )2 . θη(T )2 ≤
∑

T∈M

ηT (T )2 .
∑

T∈M

∑

τ∈T̃
τ∩T 6=∅

η̃τ (T̃ )2 =
∑

τ∈M

η̃τ (T̃ )2.

The remaining statements follow as in Section 5.2.2. �

Consequence 5.2.11. Let s > 0 with ‖η,T‖s < ∞. Then, the adaptive algorithm
leads to convergence with optimal rate for the facet based estimator η̃(·) in the sense of
Theorem 4.5.3.

5.3. Example 2: Conforming FEM for the p-Laplacian

This section is based on [24, Section 10]. The p-Laplacian allows for a review of the
results of [13] in terms of the abstract framework of Chapter 4. Since no lower error bound
is required, the present analysis provides some slight improvement over [13]. The following
allows generalizations to N -functions as in [13], which we, however, omit in favor of a
straightforward presentation.

Consider the energy minimization problem

J (u) = min
v∈W 1,p

0 (Ω)
J (v) with J (v) :=

1

p

∫

Ω

|∇v|p dx−
∫

Ω

fv dx (5.3.1)

for p > 1 and W 1,p
0 (Ω) equipped with the norm ‖v‖W 1,p(Ω) :=

(
‖v‖2Lp(Ω)+‖∇v‖2Lp(Ω)

)1/2
. The

direct method of the calculus of variations yields existence and strict convexity of J (·) even
uniqueness of the solution u ∈ W 1,p

0 (Ω). With the nonlinearity

A : Rd → Rd, A(Q) = |Q|p−2Q,

the Euler-Lagrange equations associated to (5.3.1) read

〈Lu , v〉 =
∫

Ω

A(∇u) · ∇v =
∫

Ω

fv dx for u, v ∈ X := W 1,p
0 (Ω). (5.3.2)
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The discretization of (5.3.2) and the notation follows Section 3.4.1. For a given regular
triangulation T ∈ T (where T is generated by bisection from Section 3.2.8), we consider
the lowest-order Courant finite element space S1

0 (T ) := P1(T ) ∩H1
0 (Ω). Arguing as in the

continuous case, we obtain that the minimization problem

J (U(T )) = min
V ∈S1

0 (T )
J (V ) (5.3.3)

admits a unique discrete solution U(T ) ∈ S1
0 (T ), which satisfies

〈LU(T ) , V 〉 =
∫

Ω

fV dx for all V ∈ S1
0 (T ). (5.3.4)

Define F (Q) := |Q|p/2−1Q for all Q ∈ Rd. There holds the Céa Lemma [13, Lemma 3.1] for
all T ∈ T

‖F (|∇u|)− F (|∇U(T )|)‖L2(Ω) ≤ CCéa min
V ∈Sp

0 (T )
‖F (|∇u|)− F (|∇V |)‖L2(Ω). (5.3.5)

In terms of Chapter 4, we define T̃ = T and T̃ = T . With 1/p+ 1/q = 1, the residual error
estimator η̃(·) reads

η̃T (T )2 := |T |2/d
∫

T

(
|∇U(T )|p−1 + |T |1/d|f |

)q−2|f |2 dx

+ |T |1/d‖[F (∇U(T )) · n]‖2L2(∂T∩Ω)

(5.3.6)

for all T ∈ T and all T ∈ T (see [13, Section 3.2]).
Since the first term of η̃(·) depends nonlinearly on U(T ), [13, Section 3.2] introduces an

equivalent error estimator η(·) with local contributions

ηT (T )2 := |T |2/d
∫

T

(
|∇u|p−1 + |T |1/d|f |

)q−2|f |2 dx

+ |T |1/d‖[F (∇U(T )) · n]‖2L2(∂T∩Ω)

(5.3.7)

for all T ∈ T and all T ∈ T. Note that η(·) can only serve as a theoretical tool as it employs
the unknown solution u.

Proposition 5.3.1. The residual error estimator (5.3.7) is a weighted error estimator
in the sense of Section 3.3, i.e.,

ηT (T , h)2 :=
∫

T

h|2T
(
|∇u|p−1 + h|T |f |

)q−2|f |2 dx+ h|T‖[F (∇U(T )) · n]‖2L2(∂T∩Ω)

and satisfies

(i) homogeneity (3.3.1) with r+ = 1/2 and r− = 1 and stability (3.3.2) with

˜̺(T , T̂ ) := Cpert‖F (|∇U(T )|)− F (|∇U(T̂ )|)‖L2(Ω),

(ii) general quasi-orthogonality (E2) with ̺(·, ·) given by Proposition 3.3.1,

(iii) discrete reliability (E3) for all εdrel > 0 with Cdrel := Cdrel(εdrel) and R(T , T̂ ) = T \T̂
as well as κdlr = ∞,

(iv) the refinement axioms (T1)–(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all
s > 0.

Moreover, the estimator is reliable (2.4.1) with err(T ) := ‖F (|∇u|) − F (|∇U(T )|)‖L2(Ω).
The constants Cdrel, Cqo, Cpert, Crel depend only on the parameter p > 1, T0, and on Ω.
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Proof. To see the homogeneity (3.3.1), consider the function g(t) := t2b2(a+ tb)q−2 for
some a, b ≥ 0. The function g is convex and hence there holds for 0 ≤ α ≤ 1 that

g(αt) ≤ αg(t) + (1− α)g(0) = αg(t).

This shows g(αt) ≤ α2r+g(t) for r+ = 1/2. Moreover, we have

α2r−g(t)

g(αt)
=
α2r−t2b2(a+ tb)q−2

α2t2b2(a+ αtb)q−2
= α2r−−2 (a+ tb)q−2

(a+ αtb)q−2
≤

{
α2r−−2 q ≤ 2,

α2r−−q q > 2.

For q ≤ 2, choose r− = 1 and for q > 2, choose r− = q/2 to ensure α2r−g(t) ≤ g(αt). Since
the first term of ηT (T , h) reads

∫
T
g(h|T ) dx with a = |∇u|p−1 and b = |f | pointwise, the

above considerations imply

min
x∈T

|α(x)|2r−
∫

T

h|2T
(
|∇u|p−1 + h|T |f |

)q−2|f |2 dx

≤
∫

T

(αh)|2T
(
|∇u|p−1 + (αh)|T |f |

)q−2|f |2 dx

≤ max
x∈T

|α(x)|2r+
∫

T

h|2T
(
|∇u|p−1 + h|T |f |

)q−2|f |2 dx.

Since the second term in the definition of η(·) behaves analogously, this implies homogene-
ity (3.3.1). Since the first term of η(·, h) does not depend on T , standard inverse esti-
mates as for the linear case (Proposition 5.2.1) prove stability (3.3.2) (see also [13, Propo-
sition 4.4]). Reliability (2.4.1) is proved in [13, Lemma 3.5]. The discrete reliability (E3)

with R(T , T̂ ) = T \T̂ for η̃(·) follows from [13, Lemma 3.7]. Together with the equivalence
from [13, Proposition 4.2], there holds for all δ > 0

̺(T , T̂ ) .
∑

T∈R(T ,T̂ )

η̃T (T )2 . Cδ

∑

T∈R(T ,T̂ )

ηT (T )2 + δerr(T )2.

The constant Cδ > 0 is defined in [13, Proposition 4.2]. Together with reliability (E3),
this proves discrete reliability (E3) for all εdrel > 0, where Cdrel > 0 depends on εdrel. The
statement (iv) follows as in Proposition 3.4.1. To see general quasi-orthogonality (E2),

consider [13, Lemma 3.2], which implies for all refinements T̂ ∈ T(T )

J (U(T̂ ))−J (u) ≃ ‖F (|∇u|)− F (|∇U(T )|)‖2L2(Ω),

J (U(T ))− J (U(T̂ )) ≃ ‖F (|∇U(T̂ )|)− F (|∇U(T )|)‖2L2(Ω)

with hidden constants, which depend only on p > 1. This immediately implies for all
ℓ ≤ N ∈ N that

N∑

k=ℓ

̺(T , T̂ )2 .

N∑

k=ℓ

J (U(Tℓ))−J (U(Tℓ+1))

= J (U(Tℓ))−J (U(TN+1))

≤ J (U(Tℓ))− J (u) ≃ ‖F (|∇u|)− F (|∇U(Tℓ)|)‖2L2(Ω).

Together with reliability (2.4.1), this implies (E2) with εqo = 0. �
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Proposition 5.3.2. The estimators η(·) and η̃(·) are globally equivalent in the sense
of (4.2.1). Moreover, (4.2.2) holds with

M = M̃ = M.

The weight-function h(T ) satisfies (4.5.1) as well as (4.5.2) and (4.5.6) is satisfied with the
trivial patch function ω(S, T ) := S. Together with Proposition 5.3.1, all the assumptions of
Theorem 4.5.3 are satisfied.

Proof. The global equivalence (4.2.1) is proved in [13, Corollary 4.3]. The equivalence
from [13, Proposition 4.2] implies for all δ > 0 and all T ∈ T

ηT (T )2 ≤ Cδη̃T (T )2 + δ‖F (|∇u|)− F (|∇U(T )|)‖2L2(T ),

η̃T (T )2 ≤ CδηT (T )2 + δ‖F (|∇u|)− F (|∇U(T )|)‖2L2(T ),

where Cδ > 0 depends only on p > 1 and on δ. With this, the implication (4.2.2a) follows
from reliability (2.4.1) and global equivalence (4.2.1) by

θ̃η(T )2 ≤ θ̃Cδ1 η̃(T )2 + θ̃δ1‖F (|∇u|)− F (|∇U(T )|)‖2L2(Ω)

≤ θ̃(Cδ1 + δ1C
2
relCeq)η̃(T )2

≤ (Cδ1 + δ1C
2
relCeq)

∑

T∈M̃

η̃T (T )2

≤ (Cδ1 + δ1C
2
relCeq)

(
Cδ2

∑

T∈M̃

ηT (T )2 + δ2‖F (|∇u|)− F (|∇U(T )|)‖2L2(Ω)

)

≤ (Cδ1 + δ1C
2
relCeq)

(
Cδ2

∑

T∈M̃

ηT (T )2 + δ2C
2
relη(T )2

)
.

For arbitrary δ1 > 0, choose δ2 sufficiently small such that (Cδ1 + δ1C
2
relCeq)δ2 < θ̃ to

conclude (4.2.2a). The analogous argument shows also (4.2.2b). The remaining statements
follow as in Section 5.2.2. �

Consequence 5.3.3. Let s > 0 with ‖η,T‖s <∞. Then, the adaptive algorithm leads
to convergence with optimal rate for η̃(·) in the sense of Theorem 4.5.3. �

Numerical examples for 2D that underline the above result can be found in [13].

5.4. Example 3: Non-homogeneous and mixed boundary conditions

The literature on adaptive finite elements focuses on homogeneous Dirichlet conditions
with the exception of [11, 66, 48, 4]. This section extends the previous results to non-
homogeneous boundary conditions of mixed Dirichlet-Neumann-Robin type, where inho-
mogeneous Dirichlet conditions enforce some additional discretization error. The present
section is based on [24, Section 11] and improves [4] since we show that standard Dörfler
marking (2.2.1) leads to convergence with optimal rates if the Scott-Zhang projection [76]
is used for the discretization of the Dirichlet data [4, 74]. The heart of the analysis is the
application of the super-contractive weight function hω(T ) from Proposition 4.5.4.
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5.4.1. Model problem. The Laplace model problem in Rd for d ≥ 2 with mixed
Dirichlet-Neumann-Robin boundary conditions splits the boundary Γ of the Lipschitz do-
main Ω ⊂ Rd into three (relatively) open and pairwise disjoint boundary parts ∂Ω =
ΓD ∪ ΓN ∪ ΓR. Given data f ∈ L2(Ω), gD ∈ H1(ΓD), φN ∈ L2(ΓN), φR ∈ L2(ΓR), and
α ∈ L∞(ΓR) with α ≥ α0 > 0 almost everywhere on ΓR, the problem seeks u ∈ H1(Ω) with

−∆u = f in Ω, (5.4.1a)

u = gD on ΓD, (5.4.1b)

∂nu = φN on ΓN , (5.4.1c)

φR − αu = ∂nu on ΓR. (5.4.1d)

The presentation focuses on the case that |ΓD|, |ΓR| > 0, with possibly ΓN = ∅. However,
the cases ΓD = ∅ and |ΓR| > 0, |ΓD| > 0 and ΓR = ∅, as well as the pure Neumann problem
ΓN = ∂Ω are also covered by the abstract analysis.

5.4.2. Weak formulation. The weak formulation of (5.4.1) seeks u ∈ X := H1(Ω)
such that

u = gD on ΓD in the sense of traces (5.4.2a)

and all v ∈ H1
D(Ω) :=

{
v ∈ H1(Ω) : v = 0 on ΓD

}
satisfy

b(u, v) :=

∫

Ω

∇u · ∇v dx+
∫

ΓR

αuv ds = RHS(v) (5.4.2b)

with

RHS(v) :=

∫

Ω

fv dx+

∫

ΓN

φNv ds+

∫

ΓR

φRv ds. (5.4.2c)

Since |ΓR| > 0 and α ≥ α0 > 0, the norm ‖ · ‖ := b(·, ·)1/2 is equivalent to the H1(Ω)-norm.
Let uD ∈ H1(Ω) with uD|Γ = gD be an arbitrary lifting of the given Dirichlet data and

set u0 := u− uD ∈ H1
D(Ω). Then, (5.4.2) is equivalent to seek u0 ∈ H1

D(Ω) with

b(u0, v) = RHS(v)− b(uD, v) for all v ∈ H1
D(Ω). (5.4.3)

According to the Lax-Milgram lemma, the auxiliary problem (5.4.3) admits a unique solution
u0 ∈ H1(Ω) and thus u := u0 + uD is the unique solution of (5.4.2).

5.4.3. FEM discretization and approximation of Dirichlet data. Assume the
initial triangulation T0, and hence all triangulations T ∈ T of Ω, to resolve the boundary
conditions in the sense that for all facets E ⊂ ∂Ω on the boundary, there holds E ⊆ γ for
some γ ∈ {ΓD,ΓN ,ΓR} and let T(·, ·) denote bisection from Section 3.2.8. Let Sp

D(T ) :=
Pp(T ) ∩ H1

D(Ω) with fixed polynomial order p ≥ 1. To discretize the given Dirichlet data
gD, for any given triangulation T ∈ T, choose an approximation

GD(T ) ∈ Sp(T |ΓD
) :=

{
V |ΓD

: V ∈ Sp(T )
}

of the Dirichlet data gD. Here and throughout this section, let T |ΓD
:=

{
T |ΓD

: T ∈ T
}

de-
note the restriction of the volume triangulation to the Dirichlet boundary ΓD, and Sp(T |ΓD

)
is the discrete trace space. A convenient way to choose this approximation independently of
the spatial dimension is the Scott-Zhang projection J(T ) : H1(Ω) → Sp(T ) from [76]. The
formal definition also allows for an operator J(T |ΓD

) : L2(ΓD) → Sp(T |ΓD
) on the boundary

(see also Definition 3.2.6 for details). The reader is referred to [4] for details and further
discussions.
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The discrete counterpart of (5.4.2) seeks U(T ) ∈ Sp(T ) such that

U(T )|ΓD
= GD(T ), (5.4.4a)

b(U(T ), V ) = f(V ) for all V ∈ Sp
D(T ). (5.4.4b)

As in the continuous case, (5.4.4) admits a unique solution and there holds a general Céa
lemma

‖u− U(T )‖H1(Ω) ≤ C19 min
V ∈Sp(T )

‖u− V ‖H1(Ω), (5.4.5)

where C19 > 0 depends only on the boundary parts, p, the shape regularity (3.2.5), and on
α. The Céa lemma (5.4.5) is proved in [4, Proposition 2] for the case ΓR = ∅. The proof,
however, transfers to the present case with the obvious modifications.

5.4.4. Quasi-optimal convergence. The derivation of the residual-based error esti-
mator η(T ) follows similarly to the homogeneous case and differs only by adding an oscillation
term to control the approximation of the Dirichlet data [4, 11, 48, 74]. With the weight
function h(T )|T := |T |1/d for all T ∈ T , the local contributions read

ηT (T ) := h(T )|2T‖f +∆T U(T )‖2L2(T ) + h(T )|T‖[∂nU(T )]‖2L2(∂T∩Ω)

+ ‖h(T )1/2(φR − αU(T )− ∂nU(T ))‖2L2(∂T∩ΓR)

+ ‖h(T )1/2(φN − ∂nU(T ))‖2L2(∂T∩ΓN ) + dirT (T )2,

where

dirT (T )2 := h(T )|T‖(1−Πp−1(T |ΓD
))∇ΓgD‖2L2(∂T∩ΓD)

and Πp−1(T |ΓD
) : L2(ΓD) → Pp−1(T |ΓD

) :=
{
V |ΓD

: V ∈ Pp−1(T )
}

is the (piecewise)
L2-orthogonal projection, and ∇Γ(·) denotes the surface gradient.

For each facet E ⊂ ∂Ω, there exists a unique element T ∈ T such that E ⊂ ∂T . In
particular, h(T ) also induces a weight function on γ ∈ {ΓD,ΓN ,ΓR}.

The following proposition shows that inhomogeneous (and mixed) boundary data fit in
the framework of our abstract analysis. Emphasis is on the novel quasi-orthogonality (E2)
which improves the analysis of [4] on separate Dörfler marking. The super-contractive weight
function hω(T ) from Proposition 4.5.4 establishes optimal convergence of Algorithm 2.2.1
with the standard Dörfler marking (2.2.1).

Given T ∈ T and S ⊆ T , define the 5-patch by

ω5(S, T ) :=
{
T ∈ T : ∃T0, . . . , T4 ∈ T , T0 ∈ S, T4 ∩ T 6= ∅,

Ti ∩ Ti+1 6= ∅, i = 0, . . . , 3
}
.

(5.4.6)

Proposition 5.4.1. The conforming discretization of the Poisson problem (5.4.2) with
residual error estimator η(·) satisfies

(i) stability and reduction (E1) with ̺(T , T̂ ) := Cpert‖U(T ) − U(T̂ )‖H1
0 (Ω) as well as

S(T , T̂ ) := T \ T̂ and Ŝ(T , T̂ ) := T̂ \ T ,
(ii) general quasi-orthogonality (E2),

(iii) discrete reliability (E3) with R(T , T̂ ) = ω5(T \T̂ , T ), κdlr = ∞, and εdrel = 0,
(iv) the refinement axioms (T1)–(T3) with Capprox(s) ≤ Cmon(C4 + 1)s‖η,T‖s for all

s > 0.
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Moreover, the estimator satisfies (2.4.1)–(2.4.2) with err(T ) := ‖u− U(T )‖H1(Ω) and

data(T )2 := dir(T )2 + min
F∈Pp−1(T )

‖h(T )(f − F )‖2L2(Ω)

+ min
Φ∈Pp−1(T |ΓN

)
‖h(T )1/2(φN − Φ)‖2L2(ΓN )

+ min
Φ∈Pp−1(T |ΓR

)
‖h(T )1/2(φR − Φ)‖2L2(ΓR).

(5.4.7)

The constants Cdrel, Cqo, Cpert, Crel, Ceff depend only on the parameter p > 1, T0, and on Ω.

Proof. Efficiency (2.4.2) can be found in [11, 74] or [4, Proposition 3]. The proof
of (5.4.7) follows similarly to that of Proposition 3.4.1 and exploits that ∆T U(T )|T is a
polynomial of degree ≤ p− 2.

The proofs of stability and reduction (E1) are verbatim to the case with ΓR = ∅ from [4,
Proposition 11]. The proof of discrete reliability (E3) is more involved, however, the difficul-
ties arise only due to the approximation of the Dirichlet data and the non-local H1/2(ΓD)-
norm. The proof in [4, Proposition 21] for ΓR = ∅ generalizes to the present case. The
statement (iv) follows as for the homogeneous case in Section 3.4.1.

It remains to verify the quasi-orthogonality (2.7.5) which implies (E2) by virtue of
Lemma 2.7.3. The 5-patch ω5(·, ·) is a patch function in the sense of Section 4.5.1. Moreover,
the weight function h(T ) satisfies the assumptions of Section 4.5. Hence, Proposition 4.5.4
provides a super contractive weight function hω5(·). It is proved in [4, Lemma 20] for ΓR = ∅
that there holds for all εqo > 0 and all T̂ ∈ T(T ), T ∈ T, that

‖U(T̂ )− U(T )‖2 ≤ ‖u− U(T )‖2 − (1− εqo)‖u− U(T̂ )‖2

+ Cpythεqo
−1‖(J(T̂ |ΓD

)− J(T |ΓD
))gD‖2H1/2(ΓD),

(5.4.8)

where Cpyth > 0 depends only on T and ΓD. Although [4] considers ΓR = ∅ and hence
‖ · ‖ = ‖∇(·)‖L2(Ω), the proof transfers to the present case.

The focus in the derivation of quasi-orthogonality (2.7.5) is on the last term on the

right-hand side. First, let ω5
D(T \T̂ , T ) ⊆ T |ΓD

denote the set of all facets E of T with

E ⊆ ΓD ∩ ⋃
ω5(T \T̂ , T ). It is part of the proof of [4, Proposition 21] that there exists a

uniform constant C20 > 0 such that any triangulation T ∈ T and all refinements T̂ ∈ T(T )
of T ∈ T satisfy

‖(J(T̂ |ΓD
)− J(T |ΓD

))v‖H1/2(ΓD) ≤ C20‖h(T )1/2(1−Πp−1(T |ΓD
))∇Γv‖L2(∪ω5

D(T \T̂ ,T ))

for all v ∈ H1(ΓD). We note that this result hinges on the use of bisection (Section 3.2.8) in
the sense that the constant C20 > 0 depends on the shape of all possible patches. By means
of Lemma 3.2.7, the proof of [4, Proposition 21] can be extended to triangulations in the
sense of Section 3.2.1–3.2.7.

This estimate is applied for v = gD. The definition of hω5(T ) in Proposition 4.5.4 implies

hω5(T̂ ) ≤ hω5(T ) pointwise on all T ∈ T ,
hω5(T̂ ) ≤ qschω5(T ) pointwise on all T ∈ T with h(T )|∪ω5(T,T̂ ) 6= h(T̂ )|∪ω5(T,T̂ ).

Recall that h(T )|∪ω5(T,T̂ ) 6= h(T̂ )|∪ω5(T,T̂ ) is in the present case equivalent to ω5(T, T ) ∩ T \
T̂ 6= ∅ or T ∈ ω5(T \ T̂ , T ). Hence, we obtain

hω5(T̂ ) ≤ qschω5(T ) pointwise on all T ∈ ω5(T \ T̂ , T ).
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This implies

(1− qsc) hω5(T )|∪ω5(T \T̂ ,T ) ≤ hω5(T )− hω5(T̂ ) pointwise in Ω.

The contraction above allows to write

(1− qsc)‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(∪ω5

D(T \T̂ ,T ))

≤ ‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(ΓD) − ‖hω5(T )1/2(1− Πp−1(T |ΓD

))∇ΓgD‖2L2(ΓD).

This and the element wise best-approximation property of Πp−1(T̂ |ΓD
) prove that

‖hω5(T )1/2(1− Πp−1(T̂ |ΓD
))∇ΓgD‖2L2(ΓD) ≤ ‖hω5(T )1/2(1− Πp−1(T |ΓD

))∇ΓgD‖2L2(ΓD).

With h(T ) ≤ C12hω5(T ) from Proposition 4.5.4, we obtain

(1− qsc)C
−1
12 ‖h(T )1/2(1− Πp−1(T |ΓD

))∇ΓgD‖2L2(∪ω5
D(T \T̂ ,T ))

≤ ‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(ΓD)

− ‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖2L2(ΓD).

The combination of the previous arguments leads to

‖(J(T̂ |ΓD
)− J(T |ΓD

))gD‖2H1/2(ΓD) ≤ α(T )2 − α(T̂ )2,

where

α(T ) := C
1/2
20 C

1/2
12 (1− qsc)

−1/2‖hω5(T )1/2(1− Πp−1(T |ΓD
))∇ΓgD‖L2(ΓD).

By equivalence (4.5.9), one obtains (2.7.5b) and hence Lemma 2.7.3 proves general quasi-
orthogonality (E2). This concludes the proof. �

Remark 5.4.2. We briefly comment on the case ΓR = ∅ with

‖v‖2 := ‖∇v‖2L2(Ω) + ‖v‖2H1/2(ΓD) 6= b(v, v).

The Rellich compactness theorem guarantees that ‖ · ‖ is an equivalent norm in H1(Ω). The
combination with [4, Lemma 20] (i.e. (5.4.8) with ‖ · ‖ = ‖∇(·)‖L2(Ω)) proves for sufficiently
small εqo ≪ 1 that

‖U(T̂ )− U(T )‖2 ≤ ‖∇(u− U(T ))‖2L2(Ω) − (1− εqo)‖∇(u− U(T̂ ))‖2L2(Ω)

+ C̃pythεqo
−1‖(J(T̂ |ΓD

)− J(T |ΓD
))gD‖2H1/2(ΓD).

(5.4.9)

With (5.4.9) instead of (5.4.8), the arguments in the proof of Proposition 5.4.1 remain valid.

The adaptive FEM for the mixed boundary value boundary (5.4.1) satisfies all assump-
tions of the abstract framework.

Consequence 5.4.3. The adaptive algorithm leads to convergence with optimal rate
for the estimator η(T ) in the sense of Theorem 2.3.3. For optimal rates of the discretization
error in the sense of Theorem 2.4.3, additional regularity of the data has to be imposed for
higher-order elements p ≥ 1, cf. Consequence 3.4.2. �

101





CHAPTER 6

Applications III: Adaptive BEM with Geometry Approximation

6.1. Introduction, state of the art & outline

This chapter treats the weakly-singular integral equation from Section 3.4.2 for gen-
eral boundaries. Most of the literature concerns piecewise polynomial boundary geome-
tries [20, 28, 33, 34, 27, 47]. One way to circumvent this, is to employ the isogeometric
approach, where the boundary is given in terms of B-splines or NURBS which stem from
computer aided design systems. This, however, involves the drawback, that one has to
compute the integral operators on nonstandard geometries, which is at the moment not
supported by available BEM libraries, and moreover is expensive. The approach proceeded
here, is to approximate the boundary by piecewise affine line segments and to perform the
computation on the approximate polygonal boundary. This allows to employ standard BEM
implementations and moreover enables to compute the operator matrices analytically in 2D.
To estimate the approximation error, we develop an error estimator, which reliably estimates
the discretization error of the approximation spaces as well as the geometric approximation
error introduced by the approximate boundary. While there are some results on geometry
approximation for the finite element method [15, 63, 38, 42], this is the first a posteriori
analysis of geometry approximation for the boundary element method (several a priori results
for BEM are available in, e.g. [75, 67]). Under some assumptions, we are able to prove plain
convergence in the sense of (2.3.1) of the error estimator and the approximate solutions.
The remainder of the chapter is organized as follows: Section 6.2 states the assumptions on
the geometry and introduces the geometric error estimator. The main result of this chapter
is stated in Section 6.4 and the convergence proof is given in Section 6.3.

6.2. Setting

Consider the weakly-singular integral equation on the boundary Γ := ∂Ω of a connected
Lipschitz domain Ω ⊆ R2 with diam(Ω) < 1

Vu = f,

where the weakly-singular integral operator V : H−1/2(Γ) → H1/2(Γ) is given by (3.4.9).
6.2.0.1. Exact and approximate geometry. Let the exact boundary Γ := ∂Ω allow for a

piecewise smooth parametrization γ : [0, 1] → Γ such that both γ and γ−1 are Lipschitz
continuous with constant Cγ > 0 and |γ′(s)| = |Γ| for all s ∈ [0, 1] (to avoid problems
with the endpoints of [0, 1], we identify {0} and {1} and consider the metric d(s, t) :=
min{|s − t|, |1 − s| + |0 − t|, |0 − s| + |1 − t|} on [0, 1]). Let tΓ denote the unit tangent
on Γ and let nΓ denote the unit normal. By ∂Γ, we denote the arc-length derivative on
Γ (see Definition 6.2.5 below). We assume that Γ has bounded curvature in the sense
that ‖∂ΓtΓ‖L∞(Γ) ≤ κΓ (where ∂Γ is understood piecewise on smooth parts of Γ) for some
κΓ > 0. Any approximate boundary Γ⋆ must be a nodal interpolation of Γ with nodes
K⋆ ⊆ Γ ∩ Γ⋆. The finitely many non-smooth points PΓ of Γ have to satisfy PΓ ⊂ K⋆ and
the enclosed domain Ω⋆ (i.e., ∂Ω⋆ = Γ⋆) must satisfy diam(Ω⋆) ≤ 1− εscale for some uniform
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εscale > 0 (Note that this can always be achieved by scaling of the exact boundary Γ). The
approximation Γ⋆ is associated with the partition T⋆ which consists of the compact line
segments of Γ⋆. We call the pair (T⋆,Γ⋆) an approximate geometry. Each element T ∈ T⋆

satisfies

T ∩ Γ ⊆ K⋆ or T ∩ Γ = T,

i.e., the exact boundary touches elements only at the nodes or coincides exactly with the
element. Each T ∈ T⋆ defines a unique compact curve segment T Γ ⊆ Γ with the same
endpoints as T . The collection of all this curve segments defines a partition T Γ

⋆ of Γ. To
avoid degenerate cases, we consider only partitions with |T Γ| < |Γ|/2 for all T ∈ T⋆.

Consider the map γ⋆ : Γ → Γ⋆ (see Figure 2 for an illustration) implicitly defined by

γ⋆(T ) ⊆ T Γ for all T ∈ T⋆,

(x− γ⋆(x)) · tΓ(x) = 0 for all x ∈ Γ \ PΓ,

γ⋆(x) = x for all x ∈ K⋆.

(6.2.1)

Note that the subscript ⋆ denotes the relation to the approximate geometry (T⋆,Γ⋆).

Remark 6.2.1. In Lemma 6.2.17 below, we introduce an extension γ⋆ : R2 → R2.
Hence, after Lemma 6.2.17, γ⋆ is also used to denote its extension, where the meaning will
be clear from the context.

The approximate geometry (T⋆,Γ⋆) must be sufficiently close to Γ such that (Γ2)–(Γ4)
hold for uniform constants CLip, Cµ > 0

(Γ1) The orthogonal projection γ⋆ : Γ → Γ⋆ from (6.2.1) is well-defined and uniquely
determined, piecewise smooth, and is a continuous one-to-one map.

(Γ2) All x, y ∈ Γ satisfy

C−1
Lip|x− y| ≤ |γ⋆(x)− γ⋆(y)| ≤ CLip|x− y|.

(Γ3) All T ∈ T⋆ with endpoints xT , yT ∈ Γ satisfy that each x ∈ T defines a unique
y ∈ T Γ with

(x− y) · (xT − yT ) = 0.

This defines a map µ⋆ : Γ → Γ⋆ by µ⋆(y) := x (see Figure 2 for an illustration).
(Γ4) There holds

C−1
µ ‖idΓ − γ⋆‖2L∞(Γ) ≤ ‖idΓ − µ⋆‖2L∞(Γ) ≤ ‖idΓ − γ⋆‖2L∞(Γ).

Note that the upper bound holds for any geometry Γ⋆, since µ⋆ is the orthogonal
projection onto Γ⋆.

Lemma 6.2.9 below gives some sufficient conditions which imply (Γ1)–(Γ4).
6.2.0.2. Approximate solution. With the T⋆-piecewise constant functions P0(T⋆), the

Galerkin approximation U(T⋆) ∈ P0(T⋆) is the solution of
∫

Γ⋆

V⋆U(T⋆) V dx =

∫

Γ⋆

f⋆V dx for all V ∈ P0(T⋆), (6.2.2)

where

V⋆w(x) := − 1

2π

∫

Γ⋆

log |x− y|w(y) dy

denotes the weakly-singular integral operator on Γ⋆ and f⋆ := f ◦ γ−1
⋆ .
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Figure 1. Boundary Γ with tangent vector tΓ and normal vector nΓ as well
as approximate geometry (T⋆,Γ⋆) with element T ∈ T⋆ and corresponding
T Γ ⊆ Γ.

γ⋆(x) µ⋆(x)

tΓ

x

T

TΓ

Figure 2. The mappings γ⋆ and µ⋆.

We propose to approximate the exact solution u ≈ U(T⋆)
Γ by

U(T⋆)
Γ := U(T⋆) ◦ γ⋆|∂Γγ⋆|.

6.2.1. Error estimator. The partition T⋆ induces a local weight function h⋆|T := |T | :=
length(T ) for all T ∈ T⋆. The error quantity of interest is

‖u− U(T⋆)
Γ‖H−1/2(Γ).

With the identity mapping idΓ : Γ → Γ and the geometric error

geo(T⋆) := max{‖idΓ − γ⋆‖1/2L∞(Γ), ‖tΓ − ∂Γγ⋆‖L∞(Γ)}, (6.2.3)

the error estimator reads

η(T⋆) :=
(
‖h1/2⋆ ∂Γ⋆(VU(T⋆)− f⋆)‖2L2(Γ⋆)

+ geo(T⋆)
3(1 + | log(geo(T⋆))|2)‖U(T⋆)‖2L2(Γ⋆)

)1/2

.
(6.2.4)

For brevity of notation, we write ρ(T⋆) := ‖h1/2⋆ ∂Γ⋆(VU(T⋆)−f⋆)‖L2(Γ⋆) and define the element
wise contributions for all T ∈ T⋆

ρT (T⋆) := h⋆|1/2T ‖∂Γ⋆(VU(T⋆)− f⋆)‖L2(T ),

geoT (T⋆) := max{‖idΓ − γ⋆‖1/2L∞(TΓ)
, ‖tΓ − ∂Γγ⋆‖L∞(TΓ)}.

(6.2.5)

6.2.2. Adaptive geometry approximation. We propose a modified version of Algo-
rithm 2.2.1 which includes also the geometric error (a similar algorithm can also be found
in [15] for FEM). To that end, choose an initial approximation Γ0 as well as the corresponding
partition T0 of Γ0 such that the requirements of Section 6.2.0.1 are satisfied.
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Figure 3. The curve segments Γy
x and Γy

⋆,x.

Algorithm 6.2.2. Input: Initial triangulation T0 and parameters 0 < θ ≤ 1, 0 ≤
ϑ < 1.
Loop: For ℓ = 0, 1, 2, . . . do (i)− (iv).

(i) Compute solution U(Tℓ) of (6.2.2).
(ii) Compute error estimators ρT (Tℓ) and geoT (Tℓ) for all T ∈ Tℓ.
(iii) Determine a set of marked elements Mℓ ⊆ Tℓ with minimal cardinality which satis-

fies the Dörfler marking

θρ(Tℓ)
2 ≤

∑

T∈Mℓ

ρT (Tℓ)
2 (6.2.6a)

as well as

Mℓ ⊇
{
T ∈ Tℓ : geoT (Tℓ) > ϑgeo(Tℓ)

}
. (6.2.6b)

(iv) Define the next partition Tℓ+1 = T(Tℓ,Mℓ) as detailed in Section 6.2.5 below.

Output: Error estimators (η(Tℓ))ℓ∈N0 and approximations (U(Tℓ)
Γ)ℓ∈N0.

6.2.3. Some definitions. Below, we provide some definitions which are used through-
out this chapter.

Definition 6.2.3. Given x, y ∈ Γ, define the compact and connected set Γy
x ⊆ Γ with

x, y ∈ Γy
x as

∫

Γy
x

1 dx = inf
{∫

Γ̃

1 dx : Γ̃ ⊆ Γ compact and connected with x, y ∈ Γ̃
}
.

The set on the right-hand side is non-empty due to the fact that Γ is connected by assumption.
Let xT , yT ∈ T ∩ Γ denote the endpoints of T ∈ T⋆. Note that since |T Γ| < |Γ|/2, there holds
T Γ = ΓyT

xT
. Given the approximate geometry Γ⋆ and x, y ∈ Γ⋆, define the compact and

connected set Γy
⋆,x ⊆ Γ⋆ with x, y ∈ Γy

⋆,x as
∫

Γy
⋆,x

1 dx = inf
{∫

Γ̃

1 dx : Γ̃ ⊆ Γ⋆ compact and connected with x, y ∈ Γ̃
}
.

See also Figure 3 for an illustration.

Definition 6.2.4. For a boundary part ω ⊆ Γ∪Γ⋆ with a given approximate geometry
Γ⋆, we denote by |ω| :=

∫
ω
1 dx the length of the curve. Moreover, given subsets ω, ω′ ⊆ Γ∪Γ⋆,

define

dist(ω, ω′) := inf
x∈ω, y∈ω′

|x− y| ≥ 0.
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Definition 6.2.5 (Arc-length derivative). Given any approximate geometry Γ⋆ (also
the exact geometry Γ is allowed here), x ∈ Γ⋆, and g : Γ⋆ → Rd, d ∈ {1, 2}, the arc-length
derivative ∂Γ⋆g(x) (if exists) is defined as follows: Choose some δ > 0 and some continuous
one-to-one mapping γx : (−δ, δ) → Γ⋆ with γ⋆,x(0) = x and γ′⋆,x(s) = tΓ⋆ ◦ γ⋆,x(s) almost
everywhere in (−δ, δ). Then, define

∂Γ⋆g(x) := (g ◦ γ⋆,x)′(0) ∈ Rd. (6.2.7)

The definition is unique since γx is uniquely defined locally around zero.
Given another approximate geometry Γ• (also the exact geometry Γ is allowed here) and

g : Γ⋆ → Γ•, the arc-length derivative ∂Γ⋆g(x) can be defined as in (6.2.7), or in the scalar
version as

∂sΓ⋆
g(x) := (γ−1

•,g(x) ◦ g ◦ γ⋆,x)′(0) ∈ R. (6.2.8)

There holds the identity

∂Γ⋆g(x) = (γ•,g(x) ◦ γ−1
•,g(x) ◦ g ◦ γ⋆,x)′(0) = γ′•,g(x)(0)∂

s
Γ⋆
g(x) = tΓ• ◦ g(x)∂sΓ⋆

g(x). (6.2.9)

Finally, for a function g : Rd → Γ⋆, d ≥ 1, and some z ∈ Rd define

∂szg(x) := ∂z(γ
−1
g(x) ◦ g)(x) ∈ R.

There holds the identity

∂zg(x) = γ′g(x)(0)∂
s
zg(x) = tΓ ◦ g(x)∂szg(x). (6.2.10)

Definition 6.2.6. Given any approximate geometry Γ⋆ (also the exact geometry Γ is
allowed here), choose a parametrization γΓ⋆ : [0, |Γ⋆|] → Γ⋆ with γΓ⋆(0) = γΓ⋆(|Γ⋆|) and γ′Γ⋆

=

tΓ⋆ ◦ γΓ⋆. Then, there holds for smooth functions g1, g2 : Γ⋆ → R that ∂Γ⋆gi = (gi ◦ γΓ⋆)
′ ◦ γ−1

Γ⋆

and integration by parts
∫

Γ⋆

∂Γ⋆g1 g2 dx =

∫ |Γ⋆|

0

(∂Γ⋆g1) ◦ γΓ⋆ g2 ◦ γΓ⋆ dx =

∫ |Γ⋆|

0

(g1 ◦ γΓ⋆)
′ g2 ◦ γΓ⋆ dx

= −
∫ |Γ⋆|

0

g1 ◦ γΓ⋆ (g2 ◦ γΓ⋆)
′ dx = −

∫

Γ⋆

g1 ∂Γ⋆g2 dx.

With this, we define

H1(Γ⋆) :=
{
g ∈ L2(Γ⋆) : ∂Γ⋆g ∈ L2(Γ⋆) in the weak sense

}
.

The spaces Hs(Γ⋆) := [L2(Γ⋆), H
1(Γ⋆)]s,2 are defined by real interpolation for all s ∈ (0, 1).

By H−s(Γ⋆) we denote the dual space of Hs(Γ⋆) with respect to the extended L2(Γ⋆) scalar
product.

Lemma 6.2.7 (Chain-rule). Given the approximate geometries Γ⋆, Γ•, Γ+ (also the
exact geometry Γ is allowed instead of each of the approximate geometries) as well as µ :
Γ⋆ → Γ•, λ : Γ• → Γ+, and g : Γ• → Rd. Then, there holds almost everywhere in Γ⋆

∂Γ⋆(g ◦ µ) = (∂Γ•g) ◦ µ ∂sΓ⋆
µ and ∂sΓ⋆

(λ ◦ µ) = (∂sΓ•
λ) ◦ µ ∂sΓ⋆

µ (6.2.11a)

in the sense that each side exists if and only if the other one does, too. Moreover, for
µ : R2 → Γ•, there holds

∂z(λ ◦ µ) = (∂Γ•λ) ◦ µ∂szµ. (6.2.11b)
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Proof. By definition, there holds

∂Γ⋆(g ◦ µ)(x) = (g ◦ µ ◦ γ⋆,x)′(0) = (g ◦ γ•,µ(x) ◦ γ−1
•,µ(x) ◦ µ ◦ γ⋆,x)′(0)

= (∂Γ•g) ◦ µ(x)∂sΓ⋆
µ,

as well as

∂sΓ⋆
(λ ◦ µ) = (γ−1

+,λ◦µ(x) ◦ λ ◦ µ ◦ γ⋆,x)′(0) = (γ−1
+,λ◦µ(x) ◦ λ ◦ γ•,µ(x) ◦ γ−1

•,µ(x) ◦ µ ◦ γ⋆,x)′(0)
= (∂sΓ•

λ) ◦ µ(x) ∂sΓ⋆
µ(x).

The identity (6.2.11b) follows by

∂z(λ ◦ µ)(x) = ∂z(λ ◦ γ•,µ(x) ◦ γ−1
•,µ(x) ◦ µ)(x) = (∂Γ•λ) ◦ µ∂szµ.

�

Lemma 6.2.8. Given an approximate geometry T⋆ with (Γ1)–(Γ2), there holds

(∂sΓ⋆
γ−1
⋆ ) ◦ γ⋆ = (∂sΓγ⋆)

−1 and |(∂Γ⋆γ
−1
⋆ ) ◦ γ⋆| = |∂Γγ⋆|−1. (6.2.12)

Proof. The chain rule (6.2.11) shows

1 = ∂sΓ(γ
−1
⋆ ◦ γ⋆) = (∂sΓ⋆

γ−1
⋆ ) ◦ γ⋆ ∂sΓγ⋆.

Since (Γ2) implies ∂sΓγ⋆ 6= 0, the first statement follows. The identity (6.2.9) proves the
second statement. �

6.2.4. Sufficient conditions for approximate geometries. Below, we investigate
the claimed properties of the exact and approximate geometries.

Lemma 6.2.9. There exists a constant CΓ > 0 which depends only on Γ, such that all
x, y ∈ Γ satisfy

C−1
Γ |x− y| ≤ |Γy

x| ≤ CΓ|x− y|. (6.2.13)

Under (Γ2) all x, y ∈ Γ⋆ satisfy

C−1
Γ C−1

Lip|x− y| ≤ |Γy
⋆,x| ≤ CLipCΓ|x− y| (6.2.14)

and under (Γ1), there holds

(∂sΓγ⋆)
−1 = ∂sΓ⋆

(γ−1
⋆ ) ◦ γ⋆ > 0 (6.2.15)

almost everywhere on Γ. Moreover, there exist constants hΓ > 0 and εΓ > 0 such that for
the approximate geometry T⋆ holds

(i) h⋆ ≤ C−1
Γ κ−1

Γ /2 implies (Γ3) and (Γ4) with Cµ = 2CΓ,
(ii) h⋆ ≤ C−1

Γ κ−1
Γ /2 and geo(T⋆) ≤ κ−1

Γ /2 imply (Γ1),
(iii) geo(T⋆) ≤ C−1

Γ /2 implies (Γ2).

Proof of (6.2.13). Without loss of generality, assume that {0, 1} /∈ γ−1(Γy
x). The as-

sumption that |γ′| is constant and the minimality of Γy
x shows that |γ−1(Γy

x)| ≤ 1/2 and
hence |γ−1(x) − γ−1(y)| = d(γ−1(x), γ−1(y)) (where d(·, ·) defines the metric on [0, 1] from
Section 6.2.0.1). With this, there holds

|Γy
x| =

∫

Γy
x

1 dx =

∫ γ−1(y)

γ−1(x)

|γ′(z)| dz ≤ ‖γ′‖L∞([0,1])|γ−1(x)− γ−1(y)| . |x− y|,
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as well as

|x− y| . |γ−1(x)− γ−1(y)| =
∣∣
∫ γ−1(y)

γ−1(x)

1 dz
∣∣ =

∣∣
∫

Γy
x

|∂Γγ−1|
∣∣ . |Γy

x|.

�

Proof of (ii). To see (Γ1), we apply the implicit function theorem. Let T ∈ T⋆ with
endpoints xT , yT ∈ T , and let γT : (0, 1) → T, γT (s) := (xT − yT )s + yT be an affine
parametrization of the interior of T . The implicit definition (6.2.1) rewrites as follows: Find
γ̃T : [0, 1] → [0, 1] such that

F (t, γ̃T (t)) = 0 for all t ∈ γ−1(T Γ), where F (t, s) = (γ(t)− γT (s)) · tΓ ◦ γ(t). (6.2.16)

Since Γ and γ are piecewise smooth, there holds that F : γ−1(T Γ) × (0, 1) → R is smooth.
If ∂sF (t0, s0) 6= 0 for all (t0, s0) ∈ γ−1(T Γ) × [0, 1], the implicit function theorem provides
a unique map γ̃T : γ−1(T Γ) → (0, 1) which is smooth and satisfies (6.2.16). With this,
γ⋆(x) := γT ◦ γ̃T ◦ γ−1(x) for all x ∈ T \ {xT , yT} satisfies (Γ1) up to injectiveness (which is
shown below).

To prove ∂sF (t0, s0) = (xT − yT ) · tΓ ◦ γ(t0) 6= 0, assume

0 = ∂sF (t0, s0) = (xT − yT ) · tΓ ◦ γ(t0) =
∫

TΓ

tΓ(z) · tΓ ◦ γ(t0) dz. (6.2.17)

The integrand r(z) := tΓ(z) · tΓ ◦ γ(t0) satisfies r(γ(t0)) = 1. Due to (6.2.17), there exists at
least one z′ ∈ T Γ with r(z′) = 0. This implies the existence of z′′ ∈ T Γ such that

κΓ ≥ |(∂ΓtΓ)(z′′)| ≥ |(∂Γr)(z′′)| ≥ |T Γ|−1 ≥ C−1
Γ |xT − yT |−1,

where we used T Γ = ΓyT
xT

. This shows

κ−1
Γ C−1

Γ ≤ |xT − yT | ≤ ‖h⋆‖L∞(Γ⋆).

This shows that for h⋆ ≤ κ−1
Γ C−1

Γ , ∂sF (t0, s0) 6= 0 and hence (Γ1) up to injectiveness.
To prove that γ⋆ is injective, consider

0 = ∂tF (t, γ̃T (t)) = (∂tF )(t, γ̃T (t)) + (∂sF )(t, γ̃T (t))γ̃
′
T (t),

which implies by use of γ′(t) = |Γ|tΓ ◦ γ(t)

|γ̃′T (t)| =
∣∣∣ ∂tF (t, γ̃T (t))

(xT − yT ) · tΓ ◦ γ(t)
∣∣∣

=
∣∣∣γ

′(t) · tΓ ◦ γ(t) + (γ(t)− γT ◦ γ̃T (t)) · (tΓ ◦ γ)′(t)
(xT − yT ) · tΓ ◦ γ(t)

∣∣∣

≥ |γ′(t)| − |(γ(t)− γT ◦ γ̃T (t))||∂ΓtΓ||γ′(t)|
h⋆

.

Hence, for |(γ(t)−γT ◦ γ̃T (t))| ≤ geo(T⋆)
2 ≤ κ−1

Γ /2, there holds with the Lipschitz continuity
of γ

|γ̃′T (t)| ≥ |γ′(t)|/2 ≥ C−1
γ > 0,

which implies that γ̃T : [0, 1] → [0, 1] is strictly monotone and hence injective. By definition,
γ⋆|TΓ := γT ◦ γ̃T ◦ γ−1 is also injective. �
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Proof of (i) =⇒ (Γ3). The property (Γ3) can be seen as follows: Let y1, y2 ∈ T Γ such
that (y1 − x) · (xT − yT ) = (y2 − x) · (xT − yT ) = 0 for some x ∈ T . Then, there holds

0 = (y1 − y2) · (xT − yT ) =

∫

Γ
y2
y1

tΓ(z) · (xT − yT ) dz. (6.2.18)

Rolle’s theorem provides z0 ∈ T Γ with |tΓ(z0) · (xT − yT )| = |xT − yT |. Hence, the integrand
r(z) := tΓ(z) · (xT − yT ) satisfies |r(z0)| = |xT − yT |. Assume y1 6= y2, then (6.2.18) shows
r(z1) = 0 for at least one z1 ∈ Γy2

y1
. This implies for some z2 ∈ T Γ

|T Γ|−1|xT − yT | ≤ |Γz1
z0
|−1|xT − yT | ≤ |∂Γr(z2)| ≤ |xT − yT |κΓ.

Hence, y1 = y2 for |T Γ| ≤ κ−1
Γ /2 or h⋆ ≤ κ−1

Γ C−1
Γ /2. This implies (Γ3). �

Proof of (iii). To see (Γ2) consider

|γ⋆(x)− γ⋆(y)| ≤ |x− y|+ |x− γ⋆(x)− (y − γ⋆(y))|

≤ |x− y|+
∣∣
∫

Γy
x

tΓ(z)− ∂Γγ⋆(z) dz
∣∣

≤ |x− y|+ geo(T⋆)|Γy
x|

≤ (1 + CΓgeo(T⋆))|x− y|,
as well as

|γ⋆(x)− γ⋆(y)| ≥ |x− y| − |x− γ⋆(x)− (y − γ⋆(y))|
≤ (1− CΓgeo(T⋆))|x− y|.

Therefore, (Γ2) holds for geo(T⋆) ≤ C−1
Γ /2. �

Proof of (6.2.14)–(6.2.15). To see (6.2.15), apply (6.2.11) to see

1 = ∂sΓ(idΓ) = ∂sΓ(γ
−1
⋆ ◦ γ⋆) = ∂sΓ⋆

(γ−1
⋆ ) ◦ γ⋆ ∂sΓγ⋆.

This shows that ∂sΓγ⋆ 6= 0 almost everywhere on Γ. Moreover, since γ⋆ is piecewise smooth,
∂sΓγ⋆ < 0 is only possible if ∂sΓγ⋆ < 0 in the interior of some element T Γ for T ∈ T⋆ with
endpoints xT and yT . However, this in combination with (6.2.9) and tΓ⋆ = (yT−xT )(|yT−xT |)
yields the contradiction

yT − xT = γ⋆(yT )− γ⋆(xT ) =

∫

TΓ

∂Γγ⋆(z) dz
(6.2.9)
=

∫

TΓ

tΓ⋆ ◦ γ⋆(z)∂sΓγ⋆(z) dz

=
yT − xT
|yT − xT |

∫

TΓ

∂sΓγ⋆(z) dz.

This proves (6.2.15).

To see (6.2.14), assume (Γ2). Then there holds γ−1
⋆ (Γy

x,⋆) = Γ
γ−1
⋆ (y)

γ−1
⋆ (x)

, since the bi-Lipschitz

property (Γ2) ensures that endpoints are mapped to endpoints. This, however, implies

|Γy
x,⋆| =

∫

Γy
x,⋆

1 dx =

∫

γ−1
⋆ (Γy

x,⋆)

1|∂Γ⋆γ
−1
⋆ (x)| dx ≃ |Γγ−1

⋆ (y)

γ−1
⋆ (x)

| ≃ |x− y|,

where we used C−1
Lip ≤ |∂Γ⋆γ

−1
⋆ | ≤ CLip. �

110



cT

zT

T

T1 T2

TΓ

Figure 4. The bisection of an element T ∈ T⋆ into its sons T1, T2 according
to Algorithm 6.2.10.

Proof of (i) =⇒ (Γ4). Let x ∈ T Γ for some T ∈ T⋆ and consider the right triangle
with nodes (x, γ⋆(x), µ⋆(x)) as depicted in Figure 2. Let α ≥ 0 denote the interior angle
at the point x. By definition, the right-angle is at µ⋆(x). There holds by the Pythagoras
theorem

|x− γ⋆(x)|2 = |x− µ⋆(x)|2 + |µ⋆(x)− γ⋆(x)|2 = |x− µ⋆(x)|2 + |x− γ⋆(x)|2 sin2(α)

and hence

cos2(α)|x− γ⋆(x)|2 = |x− µ⋆(x)|2. (6.2.19)

Obviously, α is also the angle between T and tΓ(x). Hence, one obtains with xT , yT ∈ Γ∩ T
denoting the endpoints of T

| cos(α)| = |tΓ(x) ·
xT − yT
|xT − yT |

| =
∣∣∣|xT − yT |−1

∫

Γ
yT
xT

tΓ(x) · tΓ(z) dz
∣∣∣.

The integrand r(z) := tΓ(x) · tΓ(z) satisfies r(x) = 1 and therefore also |r(z) − r(x)| ≤
‖∂Γr‖L∞(Γ

yT
xT

)|ΓyT
xT
| ≤ κΓ|ΓyT

xT
|. For h⋆ ≤ C−1

Γ κ−1
Γ /2, this implies r(z) ≥ 1/2 for all z ∈ ΓyT

xT

and hence

| cos(α)| ≥ |xT − yT |−1|ΓyT
xT
|/2 ≥ C−1

Γ /2 > 0. (6.2.20)

Together with (6.2.19), this implies

1

2CΓ
|x− γ⋆(x)|2 ≤ |x− µ⋆(x)|2 ≤ |x− γ⋆(x)|2.

�

6.2.5. Mesh refinement. Assume an approximate geometry (T⋆,Γ⋆) and define the
convex hull of two points x, y ∈ R2 by [x, y] :=

{
λ(x− y) + y : 0 ≤ λ ≤ 1

}
⊂ R2. To bisect

a given element T ∈ T⋆, apply the following algorithm (see also Figure 4 for an illustration)

Algorithm 6.2.10. T +
⋆ := bisect(T⋆, T )

(i) Compute cT := (xT + yT )/2, where xT , yT ∈ K⋆ ∩ T are the endpoints of T .
(ii) Find zT ∈ T Γ ⊆ Γ with (zT − cT ) · (xT − yT ) = 0.
(iii) Set T +

⋆ = (T⋆ \ {T}) ∪ {T1, T2} with T1 := [xT , zT ] and T2 := [zT , yT ].

Lemma 6.2.11. With (Γ3), Algorithm 6.2.10 is well-defined and satisfies

max{|T1|2, |T2|2} ≤ |T |2
4

+ ‖idΓ − µ⋆‖L∞(T ) ≤
(1
4
+ C2

γ‖γ′′‖2L∞([0,1])|T |2
)
|T |2, (6.2.21)

as well as |T |/2 ≤ min{|T1|, |T2|}, where {T1, T2} = T +
⋆ \ T⋆ denote the sons of T and

‖γ′′‖L∞([0,1]) is understood piecewise.
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Proof. Since yT in Step (ii) of Algorithm 6.2.10 is unique due to (Γ3), the algorithm is
well-defined. The Pythagoras theorem implies |Ti|2 = |T |2/4 + |zT − µ⋆(zT )|2. This implies
|Ti| ≥ |T |/2 and the first ≤ in (6.2.21). Since Γ⋆ is a nodal interpolation of Γ, a possible
parametrization of Γ⋆ is given by I⋆γ : [0, 1] → Γ⋆, where I⋆ : C([0, 1]) → S1(T[0,1]) is the
affine nodal interpoland on the partition T[0,1] which is induced by the nodes γ−1(K⋆) ⊆ [0, 1].
By definition, (I⋆γ) ◦ γ−1(x) ∈ T for all x ∈ T Γ. There holds for y ∈ T Γ

|y − µ⋆(y)| = min
x∈T

|y − x| ≤ |x− (I⋆γ) ◦ γ−1(x)| = |(γ − I⋆γ) ◦ γ−1(x)|

≤ |γ−1(T )|2‖γ′′‖L∞([0,1]) ≤ C2
γ |T |2‖γ′′‖L∞([0,1]),

where the last norm on the right-hand side is understood piecewise. Thus, the above con-
cludes (6.2.21). �

Given a set of marked elements M⋆ := {T1, . . . , Tn} ⊆ T⋆, we define the refinement
T(T⋆,M⋆) by bisection from Section 3.2.8, where we use bisect(·, ·) to split the elements.
Note that the assumptions of Section 3.2.1–3.2.7 are satisfied.

6.2.6. Auxiliary results. This section provides several results which are used for the
a posteriori analysis of this chapter. Some of the techniques used in the proofs below are
similar to the a priori analysis (with uniform partitions on smooth geometries) in [75, Chap-
ter 8].

Lemma 6.2.12. Let x, y ∈ Γ such that Γy
x ∩ PΓ = ∅. Then, there holds for an approxi-

mate geometry T⋆ ∈ T

|(x− y) · (γ⋆(x)− x)| ≤ κΓC
2
Γ|x− y|2‖idΓ − γ⋆‖L∞(Γ).

Proof. Define r(z) := tΓ(z) · (γ⋆(x)−x). By definition of γ⋆, there holds r(x) = 0. This
implies

|(x− y) · (γ⋆(x)− x)| =
∣∣∣
∫

Γy
x

r(z) dz
∣∣∣ =

∣∣∣
∫

Γy
x

∫

Γz
x

∂Γr(w) dw dz
∣∣∣

≤ |Γy
x|2‖∂Γr(w)‖L∞(Γy

x) ≤ κΓC
2
Γ|x− y|2‖idΓ − γ⋆‖L∞(Γ).

�

Lemma 6.2.13. There exists a constant C21 > 0 such that all x, y ∈ Γ satisfy (i)–(iii).

(i) If Γy
x ∩ PΓ = ∅

C−1
21

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ) + ‖idΓ − γ⋆‖L∞(Γ).

(ii) If Γy
x ∩ PΓ = {z0}

C−1
21

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ)

+ ‖idΓ − γ⋆‖L∞(Γ)

(
1 +

|z0 − x| + |z0 − y|
|x− y|2

)

as well as

C−1
21

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖L∞(Γ).
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(iii) If x 6= y

C−1
21

∣∣∣ log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ) + ‖idΓ − γ⋆‖L∞(Γ)

(
1 +

1

|x− y|2
)
.

Proof. There holds for all a ∈ R

1− 1

a
≤ log(a) ≤ a− 1.

This implies

|x− y|2 − |γ⋆(x)− γ⋆(y)|2
|x− y|2 ≤ log

( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
≤ |x− y|2 − |γ⋆(x)− γ⋆(y)|2

|γ⋆(x)− γ⋆(y)|2

and hence
∣∣∣ log

( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)∣∣∣ ≤ C2
Lip

∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2
∣∣

|x− y|2

= C2
Lip

|x− γ⋆(x)− (y − γ⋆(y))|2
|x− y|2

+ 2C2
Lip

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)|
|x− y|2 .

(6.2.22)

The first term on the right-hand side is estimated by

|x− γ⋆(x)− (y − γ⋆(y))|2 = |
∫

Γy
x

∂Γ(idΓ − γ⋆)(s) ds|2 ≤ ‖tΓ − ∂Γγ⋆‖2L∞(Γ)|Γy
x|2

≤ C2
Γ‖tΓ − ∂Γγ⋆‖2L∞(Γ)|x− y|2. (6.2.23)

The second term on the right-hand side of (6.2.22) is treated separately for each case.
Case (i): There holds with Lemma 6.2.12

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)| ≤ 2κΓC
2
Γ|x− y|2‖idΓ − γ⋆‖L∞(Γ).

Case (iii): There holds

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)| ≤ 2‖idΓ − γ⋆‖L∞(Γ)|x− y|.
Case (ii): Lemma 6.2.12 shows

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)|
≤ |(x− γ⋆(x)− (y − γ⋆(y))) · (x− z0))|+ |(x− γ⋆(x)− (y − γ⋆(y))) · (z0 − y)|
≤ ‖idΓ − γ⋆‖L∞(Γ)

(
κΓC

2
Γ|x− z0|2 + |x− z0|+ κΓC

2
Γ|y − z0|2 + |y − z0|

)

≤ ‖idΓ − γ⋆‖L∞(Γ)

(
2κΓC

6
Γ|x− y|2 + |x− z0|+ |y − z0|

)
,

where we used |x− z0| ≤ CΓ|Γz0
x | ≤ CΓ|Γy

x| ≤ C2
Γ|x− y|. To see the second estimate in (ii),

proceed as in (6.2.23) to obtain

|(x− γ⋆(x)− (y − γ⋆(y))) · (x− y)| ≤ |x− y||x− γ⋆(x)− (y − γ⋆(y))|
. |x− y|2‖tΓ − ∂Γγ⋆‖L∞(Γ).

This concludes the proof. �
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Lemma 6.2.14. Let ν > 0 and let the approximate geometry T⋆ ∈ T satisfy (Γ1)–(Γ2).
Then, there holds ∂sΓγ⋆ = |∂Γγ⋆| and

C−1
ν ‖1− |∂Γγ⋆|‖L∞(Γ) ≤ ‖1− |∂Γγ⋆|ν‖L∞(Γ) ≤ Cν‖1− |∂Γγ⋆|‖L∞(Γ),

as well as for all T ∈ T⋆

‖1− |∂Γγ⋆|‖L∞(TΓ) ≤ ‖1− |∂Γγ⋆|2‖L∞(TΓ) ≤ (1 + 2κΓ)geoT (T⋆)
2.

The constant Cν > 0 depends only on CLip and ν.

Proof. The identity (6.2.9) and (6.2.15) show

|∂Γγ⋆| = |tΓ⋆ ◦ γ⋆|∂sΓγ⋆ = ∂sΓγ⋆.

Taylor expansion shows that for all 0 < δ ≤ a ≤ δ−1 <∞ exists za > 0 with |1−za| ≤ |1−a|
such that aν − 1 = νzν−1

a (a − 1). Since aν − 1 and a − 1 have the same sign for all ν > 0,
this implies

C−1
δ |aν − 1| ≤ |a− 1| ≤ Cδ|aν − 1|, (6.2.24)

where Cδ > 0 depends only on δ and ν. Due to (Γ2), there holds

C−1
Lip ≤ |∂Γγ⋆| ≤ CLip almost everywhere on Γ.

This and (6.2.24) with δ = C−1
Lip and a = |∂Γγ⋆| show

‖1− |∂Γγ⋆|‖L∞(Γ) ≃ ‖1− |∂Γγ⋆|ν‖L∞(Γ).

Moreover, there holds for all a ≥ 0 that |1−a| ≤ |1−a2|. It remains to estimate 1−|∂Γγ⋆|2.
To that end, calculate

1− |∂Γγ⋆|2 = |∂Γγ⋆ − tΓ|2 − 2(∂Γγ⋆ − tΓ) · tΓ.
By definition of γ⋆, there holds (γ⋆ − idΓ) · tΓ = 0. This implies almost everywhere

0 = ∂Γ
(
(γ⋆ − idΓ) · tΓ

)
= (∂Γγ⋆ − tΓ) · tΓ + (γ⋆ − idΓ) · ∂ΓtΓ

and hence

|(∂Γγ⋆ − tΓ) · tΓ| ≤ ‖∂ΓtΓ‖L∞(Γ)‖idΓ − γ⋆‖L∞(TΓ) ≤ κΓ‖idΓ − γ⋆‖L∞(TΓ).

The combination of the last estimates concludes the proof. �

Lemma 6.2.15. Any g ∈ L2(Γ) with supp(g) ⊆ Γy
x for some x, y ∈ Γ satisfies

‖|g|‖H−1/2(Γ) ≤ Cabs|Γy
x|1/2(1 + | log(|Γy

x|)|)1/2‖g‖L2(Γ).

The constant Cabs > 0 depends only on Γ and Cγ.

Proof. Without loss of generality, assume g ≥ 0. Construct a uniform partition U of
Γ, with h(U) := |U | ≃ |Γy

x|1/2 for all U ∈ U and supp(g) ⊂ U0 for some U0 ∈ U . Let
Π0 : L2(Γ) → P0(U) denote the corresponding L2-orthogonal projection. There holds

‖g‖H−1/2(Γ) ≤ ‖Π0g‖H−1/2(Γ) + ‖(1−Π0)g‖H−1/2(Γ)

. ‖Π0g‖H−1/2(Γ) + h(U)1/2‖g‖L2(Γ).
(6.2.25)

By construction, there holds Π0g = αχU0 for some α ≥ 0, where χU0 denotes the character-
istic function with respect to U0. Since 〈V· , ·〉1/2 is an equivalent norm on H−1/2(Γ), there
holds

‖Π0g‖H−1/2(Γ) = α‖χU0‖H−1/2(Γ) ≃ α〈VχU0 , χU0〉1/2Γ .
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Without loss of generality, assume {0, 1} /∈ γ−1(U0). With the parametrization γ and h :=
|γ−1(U0)|, there holds

2π〈VχU0 , χU0〉Γ =
∣∣∣
∫

U0

∫

U0

log |x− y| dx dy
∣∣∣

≤
∫

γ−1(U0)

∫

γ−1(U0)

∣∣ log |γ(s)− γ(t)|
∣∣|γ′(s)||γ′(t)| dt ds

≤ C2
γ

∫

γ−1(U0)

∫

γ−1(U0)

| log(Cγ)|+
∣∣ log |s− t|

∣∣ dt ds,

= C2
γ

(
h2| log(Cγ)|+

∫ h

0

∫ h

0

∣∣ log |s− t|
∣∣ dt ds

)
.

The integral term on the right-hand side is further estimated by
∫ h

0

∫ h

0

∣∣ log |s− t|
∣∣ dt ds = h2

∫ 1

0

∫ 1

0

| log(h)|+
∣∣ log |s− t|

∣∣ dt ds

. h2(1 + | log(h)|),
since the remaining integral is finite. The Lipschitz continuity of γ shows h ≃ h(U). Alto-
gether, this proves

‖Π0g‖H−1/2(Γ) ≃ α〈VχU0 , χU0〉1/2Γ . αh(U)(1 + | log(h(U))|)1/2.
The fact ‖Π0g‖L2(Γ) ≃ αh(U)1/2 and h(U) ≃ |Γy

x| together with (6.2.25) conclude the proof.
�

The following lemma is well-known and repeated here only for completeness.

Lemma 6.2.16. Let O1, . . . , ON denote an open cover of some compact set C ⊆ Rd,
d ∈ N. Then, there exists ε > 0 such that for all x ∈ C, there exists i ∈ {1, . . . , N} with
Bε(x) ⊆ Oi.

Proof. Assume that the statement is wrong. Then, there exists a sequence xn ∈ C
with B1/n(xn) 6⊆ Oi for all i = 1, . . . , N and all n ∈ N. The compactness of C provides a
subsequence xnk

→ x ∈ C. By definition, there exists i ∈ {1, . . . , N} with x ∈ Oi. Hence,
there also exists k ∈ N with B1/nk

(xnk
) ⊆ Oi, which contradicts the assumption. �

Lemma 6.2.17. Given an approximate geometry T⋆ ∈ T with (Γ1)–(Γ3), there exists a
continuous extension γ̂⋆ : R2 → R2 of γ⋆ such that

γ̂⋆|Γ = γ⋆, (6.2.26)

‖γ̂⋆ − idR2‖L∞(R2) ≤ ‖γ⋆ − idΓ‖L∞(Γ), (6.2.27)

‖∇γ̂⋆ − I‖L∞(R2) ≤ Cext‖∂Γγ⋆ − tΓ‖L∞(Γ), (6.2.28)

where I ∈ R2×2 denotes the identity matrix and Cext > 0 depends only on Γ. For geo(T⋆) ≤
C−1

ext/2, γ̂⋆ is bijective and bi-Lipschitz such that

|x− y|/2 ≤ |γ̂⋆(x)− γ̂⋆(y)| ≤ (1 + Cext/2)|x− y|. (6.2.29)

Particularly, there holds γ⋆(Ω) = Ω⋆ (with ∂Ω⋆ = Γ⋆ from Section 6.2.0.1) and

‖(∇γ̂⋆)−1‖L∞(R2) ≤ 2. (6.2.30)

Definition 6.2.18. After the following proof and throughout this chapter, we will not
distinguish between γ⋆ and its extension γ⋆ := γ̂⋆. The meaning will be clear from the context.

115



Proof. Without loss of generality, let the parametrization γ satisfy γ′|Γ|−1 = tΓ. Ap-
proximate γ by some smooth γε : [0, 1] → R2, ∂ks γε(0) = ∂ks γε(1) for all k ∈ N0 such that
‖γ−γε‖W 1,∞([0,1]) ≤ ε. Let M ∈ R2×2 denote the orthogonal matrix which satisfies MtΓ = nΓ.
Then, define nε := M(γ′ε ◦ γ−1)|Γ|−1 ∈ W 1,∞(Γ,R2). With nΓ = M(γ′ ◦ γ−1)|Γ|−1, there
holds

‖nΓ − nε‖L∞(Γ) ≤ |Γ|−1‖(γ′ε − γ′) ◦ γ‖L∞(Γ) ≤ ε|Γ|−1.

Define the function ζ : [0, 1]×R → R2 by ζ(s, t) := γ(s)+tnε◦γ(s). There holds with (6.2.11a)

∇ζ(s, t) =
(
∂sγ(s) + t(∂Γnε) ◦ γ(s)∂ssγ(s) , nε ◦ γ(s)

)
∈ R2×2.

By definition, there holds

|∂sγ(s) ·M−1(nε ◦ γ(s))| ≥ |∂sγ(s) ·M−1(nΓ ◦ γ(s))| − |∂sγ(s)|‖nΓ − nε‖L∞(Γ)

≥ |∂sγ(s) · ∂sγ(s)||Γ|−1 − |∂sγ(s)|ε|Γ|−1

= |∂sγ(s)|2|Γ|−1 − ε|Γ|−1|∂sγ(s)|.
as well as

|t(∂Γnε) ◦ γ(s)∂ssγ(s) ·M−1(nε ◦ γ(s))| ≤ |t|‖∂Γnε‖L∞(Γ)|∂ssγ(s)|‖nε‖L∞(Γ)

≤ |t|‖∂Γnε‖L∞(Γ)|∂ssγ(s)|(1 + ε|Γ|−1).

Since M realizes a rotation by π/2, this shows

|det(∇ζ(s, t))| = |∂sζ(s, t) ·M−1∂tζ(s, t)|
≥ |∂sγ(s)|2|Γ|−1 − ε|Γ|−1|∂sγ(s)| − |t|‖∂Γnε‖L∞(Γ)|∂ssγ(s)|(1 + ε|Γ|−1).

Since |∂sγ(s)| = |∂ssγ(s)| = |Γ|, sufficiently small ε, t0 > 0 with |t| ≤ t0 imply

|det(∇ζ(s, t))| ≥ |Γ|/2.
Analogously, we bound for the Frobenius matrix norm ‖ · ‖F by

‖∇ζ(s, t)‖2F = (|Γ|+ |t|‖∂Γnε‖L∞(Γ)|Γ|)2 + (1 + ε|Γ|−1)2

and hence

‖(∇ζ(s, t))−1‖F =
1

|det(∇ζ(s, t))|‖(∇ζ(s, t))‖F

≤ 2|Γ|−1
√

(|Γ|+ |t|‖∂Γnε‖L∞(Γ)|Γ|)2 + (1 + ε|Γ|−1)2 := Cζ,

(6.2.31)

where Cζ > 0 depends only on ε, t0 and Γ. The inverse mapping theorem proves that
ζ is a local diffeomorphism. The compactness of [0, 1] × [−t0, t0] implies the existence of
an open cover O1, . . . , ON such that ζ |Oi

is a diffeomorphism onto its image. Let now
(si, ti) ∈ [0, 1]× [−t0, t0], i = 1, 2 with ζ(s1, t1) = ζ(s2, t2). Then, there holds

|γ(s1)− γ(s2)| ≤ 2max{t1, t2}‖∂Γnε‖L∞(Γ).

Lemma 6.2.16 shows that for t1, t2 ≤ t′0 and t′0 > 0 sufficiently small, there holds (si, ti) ∈ Oj

for some j ∈ {1, . . . , N} and i = 1, 2. Since ζ |Oi
is a diffeomorphism, this shows (s1, t1) =

(s2, t2). Hence, ζ |[0,1]×(−t′0,t
′
0)

is injective, and by the inverse mapping theorem also a diffeo-
morphism. Particularly, due to (6.2.31), ζ is a bi-Lipschitz, bijective function onto its image
O := ζ([0, 1] × (−t′0, t′0)) ⊆ R2, which is [0, 1]-periodic with respect to its first argument.
We prove that ζ is also bi-Lipschitz with respect to the metric d(·, ·) which identifies 0 and
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1 of [0, 1] (as defined in Section 6.2.0.1). To that end, consider s1, s2 ∈ [0, 1], such that
|s1 − 0|+ |s2 − 1| ≤ |s1 − s2|. There holds

|ζ(s1, t1)− ζ(s2, t2)| ≤ |ζ(s1, t1)− ζ(s2, t2)|
≤ |ζ(s1, t1)− ζ(0, t1)|+ |ζ(1, t1)− ζ(s2, t2)|
. |s1 − 0|+ |1− s2|+ |t1 − t2| = d(s1, s2) + |t1 − t2|

as well as with bi-Lipschitz continuity on [0, 1]× [0, 1] (without identification)

|ζ(s1, t1)− ζ(s2, t2)| & |s1 − s2|+ |t1 − t2| ≥ d(s1, s2) + |t1 − t2|.
Since the set [0, 1] × (−t′0, t′0) is open with respect to the product topology generated by
d(·, ·) and the Euclidean topology, the set O is open by the bi-Lipschitz continuity above.
Particularly, O is a neighborhood of Γ. With π1 denoting the projection onto the first
argument, the function

P := γ ◦ π1 ◦ ζ−1 : O → Γ

is also Lipschitz continuous (where the periodicity of ζ is used) and satisfies P (x) = x for
all x ∈ Γ. Choose a smooth cut-off function χ : R2 → [0, 1] with χ|Γ = 1 and supp(χ) ⊆ O.
Then, define

γ̂⋆(x) := x+ χ(x)(γ⋆ ◦ P (x)− P (x)).

There holds γ̂⋆|Γ = γ⋆ as well as

|γ̂⋆(x)− x| ≤ ‖idγ − γ⋆‖L∞(Γ).

This implies (6.2.27). Moreover, with the chain-rule (6.2.11b), we obtain for z ∈ R2

∂z(γ̂⋆ − I) = (∂Γγ⋆ − tΓ) ◦ P (x) ∂szP (x).
The identity (6.2.10) shows |∂szP (x)| = |∂zP (x)| and hence proves (6.2.28) with Cext :=
‖∇P‖L∞(O). For geo(T⋆) < C−1

ext/2 and all x, z ∈ R2, there holds

x · (∇γ̂⋆)(z)x ≥ |x|2 − |I −∇γ̂⋆(z)||x|2 ≥ |x|2/2. (6.2.32)

This implies (6.2.30). Assume that γ̂⋆(x) = γ̂⋆(y) for some x, y ∈ R2. There holds with the
convex hull [x, y] :=

{
λx+ (1− λ)y : 0 ≤ λ ≤ 1

}
and (6.2.32)

0 =
∣∣(x− y) · (γ̂⋆(x)− γ̂⋆(y))

∣∣ =
∣∣
∫

[x,y]

(x− y) · (∇γ̂⋆(z))
x− y

|x− y| dz
∣∣

≥ |x− y|
∫

[x,y]

1/2 dz.

This implies x = y. Hence γ̂⋆ is injective. The inverse mapping theorem shows that γ⋆ is
a global diffeomorphism. The estimate (6.2.30) implies that γ̂⋆ is even bi-Lipschitz. The
estimate (6.2.29) follows from (6.2.28) and(6.2.30). It remains to show that γ̂⋆(Ω) = Ω⋆.
Assume that there exist x, y ∈ Ω such that γ̂⋆(x) ∈ Ω⋆ and γ̂⋆(y) ∈ R2 \ Ω⋆. Then, there
exists a compact path G ⊆ Ω which connects x and y. Since γ̂⋆(G) is also a continuous and
compact path, there exists z ∈ G such that γ̂⋆(z) ∈ Γ⋆ and hence z ∈ Γ by bijectivity of γ̂⋆
and γ⋆. This, however, contradicts G ⊆ Ω. We showed that γ̂⋆(Ω) ⊆ Ω⋆ or γ̂⋆(Ω) ⊆ R2 \Ω⋆.
The same arguments prove γ̂⋆(R2\Ω) ⊆ Ω⋆ or γ̂⋆(R2\Ω) ⊆ R2\Ω⋆. However, the bi-Lipschitz
continuity prohibits γ̂⋆(R2 \ Ω) ⊆ Ω⋆, since R2 \ Ω is unbounded. This shows γ̂⋆(Ω) = Ω⋆

and hence concludes the proof. �
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By use of the chain-rule, there holds under the assumptions of Lemma 6.2.17 that

I = ∇(γ−1
⋆ ◦ γ⋆) = (∇γ−1

⋆ ) ◦ γ⋆∇γ⋆
and since ∇γ⋆ is a regular matrix by (6.2.30), this shows

(∇γ−1
⋆ ) ◦ γ⋆ = (∇γ⋆)−1. (6.2.33)

Lemma 6.2.19. Given an approximate geometry T⋆ ∈ T which satisfies (Γ2), there
holds for all ψ ∈ H−1/2(Γ) and all v ∈ H1/2(Γ)

C
−1/2
Lip ‖ψ‖H−1/2(Γ) ≤ ‖ψ ◦ γ−1

⋆ |∂Γ⋆γ
−1
⋆ |‖H−1/2(Γ⋆) ≤ C

1/2
Lip‖ψ‖H−1/2(Γ) (6.2.34)

as well as

C
−1/2
Lip ‖v‖H1/2(Γ) ≤ ‖v ◦ γ−1

⋆ ‖H1/2(Γ⋆) ≤ C
1/2
Lip‖v‖H1/2(Γ). (6.2.35)

Proof. There holds for v ∈ H1(Γ) with (6.2.12)

‖∂Γ⋆(v ◦ γ−1
⋆ )‖L2(Γ⋆) = ‖(∂Γv) ◦ γ−1

⋆ |∂Γ⋆γ
−1
⋆ |‖L2(Γ⋆)

=
( ∫

Γ⋆

((∂Γv) ◦ γ−1
⋆ )2|∂Γ⋆γ

−1
⋆ |2 dx

)1/2

=
( ∫

Γ

(∂Γv)
2|(∂Γ⋆γ

−1
⋆ ) ◦ γ⋆|2|∂Γγ⋆| dx

)1/2
= ‖∂Γv|∂Γγ⋆|−1/2‖L2(Γ)

as well as

‖v ◦ γ−1
⋆ ‖L2(Γ⋆) = ‖v|∂Γγ⋆|1/2‖L2(Γ).

Due to (Γ2), there holds C−1
Lip ≤ |∂Γγ⋆| ≤ CLip and hence

C
−1/2
Lip ‖∂Γv‖L2(Γ) ≤ ‖∂Γ⋆(v ◦ γ−1

⋆ )‖L2(Γ⋆) ≤ C
1/2
Lip‖∂Γv‖L2(Γ),

C
−1/2
Lip ‖v‖L2(Γ) ≤ ‖v ◦ γ−1

⋆ ‖L2(Γ⋆) ≤ C
1/2
Lip‖v‖L2(Γ)

Interpolation theory concludes (6.2.35).
On the other hand, there holds

‖ψ ◦ γ−1
⋆ |∂Γγ⋆|−1‖H−1/2(Γ⋆) = sup

v∈H1/2(Γ⋆)

〈ψ ◦ γ−1
⋆ |∂Γγ⋆|−1 , v〉Γ⋆

‖v‖H1/2(Γ⋆)

= sup
v∈H1/2(Γ⋆)

〈ψ , v ◦ γ⋆〉Γ
‖v‖H1/2(Γ⋆)

= sup
v∈H1/2(Γ)

‖v‖H1/2(Γ)

‖v ◦ γ−1
⋆ ‖H1/2(Γ⋆)

〈ψ , v〉Γ
‖v‖H1/2(Γ)

(6.2.35)≃ sup
v∈H1/2(Γ)

〈ψ , v〉Γ
‖v‖H1/2(Γ)

= ‖ψ‖H−1/2(Γ).

This concludes the proof. �

Lemma 6.2.20. Given an approximate geometry T⋆ ∈ T with (Γ1)–(Γ3) and geo(T⋆) ≤
C−1

ext/2, there exists a lifting operator L⋆ : H
1/2(Γ⋆) → H1(R2) with

(L⋆v)|Γ⋆ = v and ‖L⋆v‖H1(R2) ≤ Clift‖v‖H1/2(Γ⋆) for all v ∈ H1/2(Γ⋆).

The constant Clift > 0 depends only on Γ and Cext, CLip.
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Proof. Let L : H1/2(Γ) → H1(R2) denote a standard lifting operator. Define

L⋆v := (L(v ◦ γ⋆)) ◦ γ−1
⋆ .

Then, there holds (L⋆v)|Γ⋆ = (Lv ◦ γ⋆) ◦ γ−1
⋆ |Γ⋆ = v|Γ⋆ . Moreover, we obtain

‖L⋆v‖2H1(R2) = ‖L⋆v‖2L2(R2) + ‖∇(L⋆v)‖2L2(R2)

= ‖L⋆v‖2L2(R2) + ‖∇(Lv ◦ γ⋆) ◦ γ−1
⋆ ∇γ−1

⋆ ‖2L2(R2).

The identity (6.2.33) implies

‖∇(Lv ◦ γ⋆) ◦ γ−1
⋆ ∇γ−1

⋆ ‖2L2(R2) =

∫

R2

∣∣∇(Lv ◦ γ⋆) ◦ γ−1
⋆ ∇γ−1

⋆

∣∣2 dx

≤
∫

R2

∣∣∇(Lv ◦ γ⋆)
∣∣2∣∣(∇γ−1

⋆ ) ◦ γ⋆
∣∣2|∇γ⋆| dx

= ‖∇(Lv ◦ γ⋆)|∇γ⋆|−1/2‖2L2(R2)

≤ ‖|∇γ⋆|−1‖L∞(R2)‖∇(Lv ◦ γ⋆)‖2L2(R2)

as well as

‖L⋆v‖2L2(R2) = ‖L(v ◦ γ⋆)|∇γ⋆|1/2‖2L2(R2)

≤ ‖|∇γ⋆|‖L∞(R2)‖L(v ◦ γ⋆)‖2L2(R2).

With (6.2.30) and the continuity of L, the last two inequalities prove

‖L⋆v‖2H1(R2) . (1 + ‖∇γ⋆‖L∞(R2))‖Lv ◦ γ⋆‖2H1(R2)

≤ ‖v ◦ γ⋆‖H1/2(Γ).

With (6.2.35), we see

‖v ◦ γ⋆‖H1/2(Γ) ≤ C
1/2
Lip‖v‖H1/2(Γ⋆).

Moreover, (6.2.28) implies ‖∇γ⋆‖L∞(R2) ≤ 1+Cextgeo(T⋆) ≤ 3/2 and concludes the proof. �

The proofs of Lemma 6.2.21–6.2.22 and Proposition 6.2.23 are well-known in the liter-
ature. We repeat them for the sole purpose of ensuring the uniform boundedness of the
constants appearing with respect to the domains Ω⋆, as this is usually not found in the
literature.

Lemma 6.2.21. Given an approximate geometry T⋆ ∈ T with (Γ1)–(Γ3) and geo(T⋆) ≤
C−1

ext/2, there holds

〈V⋆v , v〉Γ⋆ ≥ C−1

Ṽ
‖v‖H−1/2(Γ⋆) for all v ∈ H−1/2(Γ) with 〈v , 1〉Γ = 0. (6.2.36)

The constant CṼ > 0 depends only on Γ and Cext.

Proof. Let v ∈ L2(Γ⋆) with 〈v , 1〉Γ⋆ = 0. Define the interior and exterior normal
derivatives ∂intn , ∂extn . Then, there holds by Greens-identity, the fact ∆V⋆v = 0 in R2 \ Γ⋆,
and |(V⋆v)(x)| ≃ |x|−1 as |x| → ∞, that

‖∇V⋆v‖2L2(R2) = 〈∂intn V⋆v − ∂extn V⋆v , V⋆v〉Γ⋆ .

The jump property of V⋆, i.e., ∂intn V⋆v − ∂extn V⋆v = v, shows

‖∇V⋆v‖2L2(R2) = 〈v , V⋆v〉Γ⋆ .
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On the other hand, the jump property implies

‖v‖H−1/2(Γ⋆) ≤ ‖∂intn V⋆v‖H−1/2(Γ⋆) + ‖∂extn V⋆v‖H−1/2(Γ⋆).

With the lifting L⋆ from Lemma 6.2.20 and ∆V⋆v = 0 in R2 \ Γ⋆, we get

‖∂intn V⋆v‖H−1/2(Γ⋆) = sup
w∈H1/2(Γ⋆)\{0}

〈∂intn V⋆v , w〉Γ⋆

‖w‖H1/2(Γ⋆)

≤ sup
w∈H1/2(Γ⋆)\{0}

|〈∇V⋆v , ∇L⋆w〉R2\Γ⋆
|

‖w‖H1/2(Γ⋆)

. ‖∇V⋆v‖L2(R2).

The analogous statement holds for ∂estn Vv. Altogether, this concludes (6.2.36) �

Lemma 6.2.22. There exists ueq(T⋆) ∈ H−1/2(Γ⋆) with V⋆ueq(T⋆) = λeq(T⋆) ∈ R and
〈ueq(T⋆) , 1〉Γ⋆ = 1. All approximate geometries T⋆ ∈ T satisfy

λeq(T⋆) ≥ 2π| log(diam(Ω⋆))| ≥ 2π| log(1− εscale)| > 0.

Proof. Let (v⋆, λ⋆) ∈ H−1/2(Γ⋆)× R solve the saddle-point problem

〈V⋆v⋆ , v〉Γ⋆ − 〈v , λ⋆〉Γ⋆ = 0,

−〈v⋆ , µ〉Γ⋆ = −µ

for all (v, µ) ∈ H−1/2(Γ⋆) × R. Since Lemma 6.2.21 proves that V⋆ is elliptic on the kernel
of 〈· , µ〉Γ⋆ , standard LBB theory shows

‖v⋆‖H−1/2(Γ⋆) + |λ⋆| . 1,

where the hidden constant depends only on CV but not on the particular geometry T⋆. There
holds ueq(T⋆) = v⋆ and λeqT⋆ = λ⋆. Define Robins constant of the set Γ⋆ by

VΓ⋆ := − inf
µ∈B

∫

Γ⋆

∫

Γ⋆

log |x− y| dµ(x) dµ(y),

where B denotes the set of all Borel probability measures on Γ⋆. A well-known result of
potential theory (see, e.g., [84, Section 1] for the proof) is that the logarithmic capacity
exp(−VΓ⋆) satisfies exp(−VΓ⋆) ≤ diam(Γ⋆) = diam(Ω⋆). The result [84, Theorem 1.2] shows
that

1
2π
λ⋆ = 〈v⋆ , 1〉Γ⋆VΓ⋆ = VΓ⋆ .

Altogether, this implies by definition of Ω⋆ in Section 6.2.0.1

1
2π
λ⋆ ≥ − log(diam(Ω⋆)) ≥ − log(1− εscale) > 0.

This concludes the proof. �

Proposition 6.2.23. Given an approximate geometry T⋆ ∈ T with (Γ1)–(Γ3) with
geo(T⋆) ≤ C−1

ext/2, there holds

‖V⋆v‖H1/2(Γ⋆) ≤ CV‖v‖H−1/2(Γ⋆) for all v ∈ H−1/2(Γ⋆) (6.2.37)

as well as

〈V⋆v , v〉Γ⋆ ≥ C−1
V ‖v‖2H−1/2(Γ⋆)

for all v ∈ H−1/2(Γ⋆). (6.2.38)
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The constant CV > 0 depends only on εscale, CṼ, Γ, Cext and T. This particularly implies for

any closed subspace P0(T⋆) ⊆ X ⊆ H−1/2(Γ⋆) and the solution UX ∈ X of 〈V⋆UX , V 〉Γ⋆ =
〈f⋆ , V 〉Γ⋆ for all V ∈ X that

‖UX − U(Tℓ)‖H−1/2(Γ⋆) ≤ C2
V min

V ∈P0(Tℓ)
‖UX − V ‖H−1/2(Γ⋆). (6.2.39)

Proof. To see (6.2.38), we use Lemma 6.2.21 and Lemma 6.2.22. Let v ∈ H−1/2(Γ⋆)
and v0 := v − ueq(T⋆)〈v , 1〉Γ⋆. Then, 〈v0 , 1〉Γ⋆ = 0 and with (6.2.36)

〈V⋆v , v〉Γ⋆ = 〈V⋆v0 , v0〉Γ⋆ + 2〈v , 1〉Γ⋆〈V⋆ueq(T⋆) , v0〉Γ⋆

+ 〈v , 1〉2Γ⋆
〈V⋆ueq(T⋆) , ueq(T⋆)〉Γ⋆

= 〈V⋆v0 , v0〉Γ⋆ + 〈v , 1〉2Γ⋆
〈λeq(T⋆) , ueq(T⋆)〉Γ⋆

≥ C−1

Ṽ
‖v0‖2H−1/2(Γ⋆)

+ λeq(T⋆)〈v , 1〉2Γ⋆
& ‖v‖2H−1/2(Γ⋆)

,

where the hidden constant depends only on εscale and on CṼ.

To see (6.2.37), let Ω⋆ ⊂ R2 denote the domain enclosed by Γ⋆, i.e., Γ⋆ = ∂Ω⋆. Let Ω̂ ⊂ R2

denote a bounded Lipschitz domain such that Ω⋆ ⊆ Ω̂ for all T⋆ ∈ T with geo(T⋆) ≤ C−1
ext/2

as well as Ω ⊆ Ω̂. There holds for v ∈ H−1/2(Γ⋆) and g ∈ L2(Ω⋆)

〈V⋆v , g〉Ω⋆ =
1
2π

∫

Γ⋆

v(x)

∫

Ω⋆

log |x− y|g(y) dy dx

= 1
2π

∫

Γ⋆

v(x)

∫

Ω̂

log |x− y|g(y) dy dx = 〈v , N g〉Γ⋆,

where N : H̃−1(Ω̂) → H1(Ω̂) denotes the Newton potential (see, e.g., [75] for the mapping
properties). We obtain

〈v , N g〉Γ⋆ = 〈v ◦ γ⋆|∂Γγ⋆| , (N g) ◦ γ⋆〉Γ
. ‖v ◦ γ⋆|∂Γγ⋆|‖H−1/2(Γ)‖(N g) ◦ γ⋆‖H1(Ω).

Lemma 6.2.19 shows ‖v ◦ γ−1
⋆ |∂Γγ−1

⋆ |‖H−1/2(Γ) ≃ ‖v‖H−1/2(Γ⋆) and Lemma 6.2.17 implies that
γ⋆ is globally bi-Lipschitz and γ⋆(Ω) = Ω⋆. Hence, we have

‖(N g) ◦ γ⋆‖2H1(Ω) . ‖N g‖2H1(γ⋆(Ω)) ≤ ‖N g‖2
H1(Ω̂)

.

Moreover, since supp(g) ⊆ Ω⋆, there holds

‖N g‖H1(Ω̂) . ‖g‖H̃−1(Ω̂) = sup
v∈H1(Ω̂)\{0}

〈g , v〉Ω̂
‖v‖H1(Ω̂)

≤ ‖g‖H̃−1(Ω⋆)
sup

v∈H1(Ω̂)\{0}

‖v‖H1(Ω⋆)

‖v‖H1(Ω̂)

≤ ‖g‖H̃−1(Ω⋆)
.

Altogether, this shows

〈V⋆v , g〉Ω⋆ . ‖v‖H−1/2(Γ⋆)‖g‖H̃−1(Ω⋆)
.

Taking the supremum over all g shows ‖V⋆v‖H1(Ω⋆) . ‖v‖H−1/2(Γ⋆). Finally, there holds
with (6.2.35)

‖V⋆v‖H1/2(Γ⋆) . ‖(V⋆v) ◦ γ⋆‖H1/2(Γ) . ‖(V⋆v) ◦ γ⋆‖H1(Ω)

. ‖V⋆v‖H1(Ω⋆),
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where the hidden constant depends again on the bi-Lipschitz continuity of γ⋆ and γ⋆(Ω) = Ω⋆.
This shows (6.2.37). The Céa Lemma (6.2.39) follows by standard arguments from (6.2.38)–
(6.2.37). This concludes the proof. �

Lemma 6.2.24. Given x, y ∈ R2 and the approximate geometry T⋆ ∈ T with (Γ1)–(Γ3)
and geo(T⋆) ≤ C−1

ext/2, the kernel

κ⋆(x, y) := log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
(6.2.40)

satisfies for j = 1, 2

1
2
∂xj

κ⋆(x, y) =
x− y

|x− y|2 ·
(
ej − ∂xj

γ⋆(x)
)
+
( x− y

|x− y|2
|γ⋆(x)− γ⋆(y)|2 − |x− y|2

|γ⋆(x)− γ⋆(y)|2

+
(x− y)− (γ⋆(x)− γ⋆(y))

|γ⋆(x)− γ⋆(y)|2
)
· ∂xj

γ⋆(x). (6.2.41)

This particularly implies

∣∣∇xκ⋆(x, y)
∣∣ ≤ C(1 + geo(T⋆))

1

|x− y|‖tΓ − ∂Γγ⋆‖L∞(Γ) (6.2.42)

for all x, y ∈ R2, where C > 0 depends only on CLip, Cext, and Γ. For x, y ∈ Γ, there holds
even

∣∣∇xκ⋆(x, y)
∣∣ ≤ CCΓ(1 + geo(T⋆))

1

|x− y| max
T∈T⋆

|TΓ∩Γ
y
x|>0

‖tΓ − ∂Γγ⋆‖L∞(TΓ). (6.2.43)

as well as

C−1
∣∣∂Γ,xκ⋆(x, y)

∣∣ ≤ |(tΓ − ∂Γγ⋆)(x)|
|x− y| + (1 + geo(T⋆))geo(T⋆)

2 1

|x− y|2 . (6.2.44)

Proof. The identity (6.2.41) follows from straightforward differentiation. Since ∇γ⋆ ∈
L∞(R2), there holds with [x, y] :=

{
λ(x− y) + y : 0 ≤ λ ≤ 1

}

∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2
∣∣ ≤

(
|γ⋆(x)− γ⋆(y)| − |x− y|

)(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ |γ⋆(x)− γ⋆(y)− (x− y)|
(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ (1 + CLip)
∣∣∣
∫

[x,y]

(I −∇γ⋆(z)) ·
x− y

|x− y| dz
∣∣∣|x− y|

≤ ‖I −∇γ⋆(x)‖L∞(R2)|x− y|2.

This and (6.2.28) show

|γ⋆(x)− γ⋆(y)|2 − |x− y|2
|γ⋆(x)− γ⋆(y)|2

. ‖tΓ − ∂Γγ⋆‖L∞(Γ).

Finally, the same argument shows

γ⋆(x)− γ⋆(y)− (x− y)

|γ⋆(x)− γ⋆(y)|2
.

1

|x− y|‖tΓ − ∂Γγ⋆‖L∞(Γ).
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The bound (6.2.28) implies |∂xj
γ⋆(x)| ≤ 1 + geo(T⋆). This shows (6.2.42). The esti-

mate (6.2.43) follows analogously by use of [x, y] := Γy
x instead, i.e.,

∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2
∣∣ ≤

(
|γ⋆(x)− γ⋆(y)| − |x− y|

)(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ |γ⋆(x)− γ⋆(y)− (x− y)|
(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

≤ (1 + CLip)
∣∣∣
∫

Γy
x

tΓ(z)− ∂Γγ⋆(z) dz
∣∣∣|x− y|

≤ ‖tΓ − ∂Γγ⋆‖L∞(Γy
x)|x− y|2.

The estimate (6.2.44) follows from (6.2.41) and
∣∣|γ⋆(x)− γ⋆(y)|2 − |x− y|2

∣∣ ≤
(
|γ⋆(x)− γ⋆(y)| − |x− y|

)(
|γ⋆(x)− γ⋆(y)|+ |x− y|

)

. geo(T⋆)
2|x− y|.

This concludes the proof. �

The following result can be found in [43, 77, 83] for real and complex interpolation. We
include the proof for completeness and to underline the fact that the constant is independent

of Γ̃.

Lemma 6.2.25. Let Γ̃ = ∂Ω̃ ⊂ R2 denote a Lipschitz boundary. Let f1, . . . , fN ∈ H1(Γ̃)
such that the supports supp(fi) are connected and pairwise disjoint, i.e., supp(fi)∩supp(fj) =
∅ for all 1 ≤ i 6= j ≤ N . Then, there holds

‖
N∑

i=1

fi‖2H1/2(Γ̃)
≤ 2

N∑

i=1

‖fi‖2H1/2(supp(fi))
.

Proof. Define the auxiliary operators T0 :
∏N

i=1 L
2(supp(fi)) → L2(Γ̃) as well as T1 :∏N

i=1H
1(supp(fi)) → H1(Γ̃) by

Tϑ((f1, . . . , fN)) :=

N∑

i=1

fi for ϑ ∈ {0, 1}.

Obviously, there holds

‖T0(f1, . . . , fN)‖2L2(Γ̃)
≤

N∑

i=1

‖fi‖2L2(supp(fi))
= ‖(f1, . . . , fN)‖2∏N

i=1 L
2(supp(fi))

,

‖T1(f1, . . . , fN)‖2H1(Γ̃)
≤

N∑

i=1

‖fi‖2H1(supp(fi))
= ‖(f1, . . . , fN)‖2∏N

i=1 H
1(supp(fi))

for all (f1, . . . , fN) ∈ ∏N
i=1 L

2(supp(fi)) resp. all (f1, . . . , fN) ∈ ∏N
i=1H

1(supp(fi)). Real

interpolation shows for T1/2 : X → H1/2(Γ̃), T1/2(f1, . . . , fN) :=
∑N

i=1 fi that

‖T1/2(f1, . . . , fN)‖2H1/2(Γ̃)
≤ ‖(f1, . . . , fN)‖2X ,

where X := [
∏N

i=1 L
2(supp(fi)),

∏N
i=1H

1(supp(fi))]1/2 denotes the space defined with real

interpolation. There holds X =
∏N

i=1H
1/2(supp(fi)) with equivalent norms. It remains to

bound the equivalence constants. By definition of X , there holds

‖(f1, . . . , fN)‖2X :=

∫ ∞

0

t−2K2
t dt, (6.2.45)
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where

Kt := inf
{( N∑

i=1

‖f0,i‖2L2(supp(fi))

)1/2
+ t

( N∑

i=1

‖f1,i‖2H1(supp(fi))

)1/2
: fi = f0,i + f1,i,

f0,i ∈ L2(supp(fi)), f1,i ∈ H1(supp(fi))
}
.

Define

K̃2
t,i := inf

{
‖f0,i‖2L2(supp(fi))

+ t2‖f1,i‖2H1(supp(fi))
: fi = f0,i + f1,i,

f0,i ∈ L2(supp(fi)), f1,i ∈ H1(supp(fi))
}
.

Given ε > 0, let g0,i ∈ L2(supp(fi)) and g1,i ∈ H1(supp(fi)) such that fi = g0,i + g1,i and

‖g0,i‖2L2(supp(fi))
+ t2‖g1,i‖2H1(supp(fi))

≤ ε

N
+ K̃2

t,i for all i = 1, . . . , N.

Then, there holds

K2
t /2 ≤

N∑

i=1

‖g0,i‖2L2(supp(fi))
+ t2

N∑

i=1

‖g1,i‖2H1(supp(fi))
≤ ε+

N∑

i=1

K̃2
t,i.

Since ε > 0 is arbitrary and a2 + b2 ≤ (a+ b)2 for all a, b ≥ 0, the above implies

K2
t /2 ≤

N∑

i=1

K̃2
t,i ≤

N∑

i=1

K2
t,i,

where

K2
t,i := inf

{(
‖f0,i‖L2(supp(fi)) + t‖f1,i‖H1(supp(fi))

)2
: fi = f0,i + f1,i,

f0,i ∈ L2(supp(fi)), f1,i ∈ H1(supp(fi))
}
.

Together with (6.2.45), this shows

‖(f1, . . . , fN)‖2X ≤ 2

N∑

i=1

∫ ∞

0

t−2K2
t,i dt = 4

N∑

i=1

‖fi‖2H1/2(supp(fi))
.

Altogether, this concludes the proof. �

Given T ∈ T⋆, define the k-patch of T for all k ≥ 1 as

ω(T, T⋆) := ω1(T, T⋆) :=
⋃{

T ′ ∈ T⋆ : T ∩ T ′ 6= ∅
}
,

ωk(T, T⋆) := ωk−1(ω(T, T⋆), T⋆).

Note that ω(·, ·) is a patch function in the sense of Section 4.5.1.
A similar result to the following is proved in [43] for certain residuals.

Lemma 6.2.26. Let T denote a partition of Γ into connected curve segments. Define
the weight-function h(T )|T := |T | for all T ∈ T . Let J(T ) : H1(Γ) → S1(T ) denote the
Scott-Zhang projection from Definition 3.2.6. Then, there exists a constant Cfaer > 0, such
that all v ∈ H1/2(Γ) satisfy

‖(1− J(T ))v‖2H1/2(Γ) ≤ Cfaer

∑

T∈T

‖(1− J(T ))v‖2H1/2(∪ω2(T,T )).

The constant Cfaer depends only on Γ and K(T ) (where K(·) is defined in Section 3.2.2).
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Proof. Let ξ1, . . . , ξN ∈ C(Γ) denote a T -piecewise smooth partition of unity on Γ such
that all j = 1, . . . , N satisfy

‖ξj‖L∞(Γ) ≤ 1,

supp(ξj) ⊆ Tj,1 ∪ Tj,2 for some Tj,1, Tj,2 ∈ T with Tj,1 ∩ Tj,2 6= ∅,
‖∂Γξj‖L∞(Tj,i) ≤ Ch(T )|−1

Tj,i
for i = 1, 2

for some constant C > 1. There holds

‖(1− J(T ))v‖2H1/2(Γ) = ‖
N∑

j=1

ξz(1− J(T ))v‖2H1/2(Γ).

Let K1
T ∪ K2

T = {1, . . . , N} such that |supp(ξj) ∩ supp(ξk)| = 0 for all j 6= k, j, k ∈ K1
T and

for all j 6= k, j, k ∈ K2
T . Lemma 6.2.25 shows

‖
N∑

j=1

ξj(1− J(T ))v‖2H1/2(Γ)

≤ 2‖
∑

j∈K1
T

ξj(1− J(T ))v‖2H1/2(Γ) + 2‖
∑

j∈K2
T

ξj(1− J(T ))v‖2H1/2(Γ)

≤ 4
∑

j∈KT

‖ξj(1− J(T ))v‖2H1/2(supp(ξj))
.

(6.2.46)

With ωj := supp(ξj), by definition of the H1/2-norm by real interpolation, and with w :=
(1− J(T ))v, there holds

‖ξjw‖2H1/2(ωj)
=

∫ ∞

0

t−2K2
t dt,

where

Kt := inf
{
‖w0‖L2(ωj) + t‖w1‖H1(ωj) : ξjw = w0 + w1, w0 ∈ L2(ωj), w1 ∈ H1(ωj)

}
.

Additionally, consider

K̃t := inf
{
‖w0‖L2(ω2

j )
+ t‖w1‖H1(ω2

j )
: w = w0 + w1, w0 ∈ L2(ω2

j ), w1 ∈ H1(ω2
j )
}

with ω2
j :=

⋃{
T ∈ T : T ∩ ωj 6= ∅

}
. Choose w̃0, w̃1 such that ‖w̃0‖L2(ω2

j )
+ t‖w̃1‖H1(ω2

j )
≤

K̃t + ε for some ε > 0. Since (1 − J(T ))w = w, there holds w = w̃0 + w̃1 = w0 + w1 on ωj

with wi := (1− J(T ))w̃i for i = 1, 2. With ξjw = ξjw1 + ξjw2 and |∂Γξj| ≃ diam(ωj)
−1, this

allows to estimate

Kt ≤ ‖ξjw0‖L2(ωj) + t‖ξjw1‖H1(ωj)

. ‖w0‖L2(ωj) + t
(
‖w1‖L2(ωj) + ‖∂Γ(ξjw1)‖L2(ωj)

)

. ‖w0‖L2(ωj) + t
(
‖w1‖L2(ωj) + ‖∂Γw1‖L2(ωj) + diam(ωj)

−1‖w1‖L2(ωj)

)
.

The fact that wi = (1 − J(T ))w̃i for i = 1, 2 as well as the stability and approximation
properties (3.2.16) of J(T ) lead to

Kt . ‖w̃0‖L2(ω2
j )
+ t

(
‖w̃1‖L2(ω2

j )
+ ‖∂Γw̃1‖L2(ω2

j )

)

. ‖w̃0‖L2(ω2
j )
+ t‖w̃1‖H1(ω2

j )
. K̃t + ε.
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Tk,4 Tk,2

T ′

Tk,1

Tk,3

Tk,5

Figure 5. Illustration of the situation in the proof of Lemma 6.2.27.

Since ε > 0 is arbitrary and the hidden constants depend only on K(T ) (where K(·) is

defined in Section 3.2.2) and Γ, there holds Kt . K̃t and hence

‖ξj(1− J(T ))v‖2H1/2(ωj)
=

∫ ∞

0

t−2K2
t dt .

∫ ∞

0

t−2K̃2
t dt = ‖(1− J(T ))v‖2H1/2(ω2

j )
.

In combination with (6.2.46), this concludes the proof. �

Lemma 6.2.27. There exists a constant CΣ > 0 such that each partition T of Γ satisfies
for α ≥ 1

max
T ′∈T

∑

T∈T
dist(T,T ′)>0

|T |α
dist(T, T ′)α

≤
{
CΣ| log

(
maxh(T )
minh(T )

)
|(log(|T |)|+ 1) for α = 1,

CΣ| log
(maxh(T )
minh(T )

)
| for α > 1,

where h(T )|T := |T | for all T ∈ T and the constant CΣ depends only on K(T ) (with K(·)
from Section 3.2.2) and Γ.

Proof. For T, T ′ ∈ T , define ΓT ′

T = Γy
x for some x ∈ T and y ∈ T ′ with |ΓT ′

T | =
minx∈T,y∈T ′ |Γy

x|. Let T ′ ∈ T . Define Pk :=
{
T ∈ T : |Γ|2−k ≤ |T | < |Γ|2−k+1

}
and

choose a numbering {Tk,1, . . . , Tk,nk
} =

{
T ∈ Pk : dist(T, T ′) > 0

}
such that Γ

Tk,j

Tk,1
contains

⌊ j−2
2
⌋ elements from Pk and dist(Tk,1, T

′) is minimal (see Figure 5 for an illustration of the
concept). This implies

dist(T ′, Tk,j)
(6.2.13)

≥ C−1
Γ |ΓTk,j

T ′ | ≥ C−1
Γ (⌊j − 2

2
⌋ − 1)2−k.

Moreover, for 1 ≤ j < 4, the K-mesh regularity and the fact that dist(Tk,1, T
′) is minimal

imply

dist(T ′, Tk,j) ≥ dist(T ′, Tk,1) ≥ K(T )−1|Tk,1| ≥ K(T )−12−k ≥ K(T )−1/2|Tk,j|.
With this, compute

∑

T∈T
dist(T,T ′)>0

|T |α
dist(T, T ′)α

=
∞∑

k=0

∑

T∈Pk
dist(T,T ′)>0

|T |α
dist(T, T ′)α

=
∞∑

k=0

nk∑

j=1

|Tk,j|α
dist(Tk,j, T ′)α

.

max
{
k∈N :nk>0

}
∑

k=0

(
1 +

nk∑

j=4

2α(−k+1)

(⌊ j−2
2
⌋ − 1)α2−αk

)

.

max
{
k∈N :nk>0

}
∑

k=0

(
1 +

nk∑

j=1

1

jα

)
.
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There are at most | log2(maxh(T ))− log2(min h(T ))| numbers k ∈ N0 with nk > 0. Hence,
an asymptotic estimate for the harmonic series shows for α = 1

∑

T∈Tℓ
dist(T,T ′)>0

|T |
dist(T, T ′)

.
∑

k∈N0
nk>0

(
| log(|Pk|))|+ 1

)

. | log
(maxh(T )

min h(T )

)
|(log(|T |)|+ 1).

For α > 1, the Dirichlet series converges and hence

∑

T∈Tℓ
dist(T,T ′)>0

|T |α
dist(T, T ′)α

. | log
(maxh(T )

min h(T )

)
|.

This concludes the proof. �

6.2.7. Reliable error control. The following results prove the reliability of the error
estimator.

Theorem 6.2.28. There exists Crel > 0 such that all approximate geometries T⋆ ∈ T
with h⋆ ≤ C−1

Γ κ−1
Γ /2 and geo(T⋆) ≤ min{C−1

ext/2, C
−1
Γ /2, C−1

Γ κ−1
Γ /2} satisfy the reliable error

estimate

‖u− U(T⋆)
Γ‖H−1/2(Γ) ≤ Crelη(T⋆). (6.2.47)

The proof is divided into several lemmas.

Lemma 6.2.29. The approximate geometry T⋆ ∈ T defines the formal operator

M⋆g(x) :=

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
g(x) dx for all x ∈ Ω ∪ Γ. (6.2.48)

If T⋆ satisfies (Γ1)–(Γ3), there exists a constant Cres > 0 such that all v⋆ ∈ L2(Γ⋆) with
vΓ⋆ := v⋆ ◦ γ⋆|∂Γγ⋆| satisfy

C−1
res ‖u− vΓ⋆ ‖H−1/2(Γ) ≤ sup

w∈H−1/2(Γ⋆)

〈f⋆ − V⋆v⋆ , w〉Γ⋆

‖w‖H−1/2(Γ⋆)

+ ‖M⋆v
Γ
⋆ ‖H1/2(Γ),

where we define ‖M⋆v
Γ
⋆ ‖H1/2(Γ) := ∞ for M⋆v

Γ
⋆ /∈ H1/2(Γ). This holds particularly for

v⋆ = U(T⋆) and hence vΓ⋆ = U(T⋆)
Γ.

Proof. The error ‖u− vΓ⋆ ‖H−1/2(Γ) satisfies for w̃ := w ◦ γ−1
⋆ |∂Γ⋆γ

−1
⋆ |

‖u− vΓ⋆ ‖H−1/2(Γ) ≃ sup
w∈H−1/2(Γ)

〈V(u− vΓ⋆ ) , w〉Γ
‖w‖H−1/2(Γ)

= sup
w∈H−1/2(Γ)

〈f − VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

= sup
w∈H−1/2(Γ)

〈f , w〉Γ − 〈V⋆v⋆ , w̃〉Γ⋆ + 〈V⋆v⋆ , w̃〉Γ⋆ − 〈VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

.

The identity 〈f , w〉Γ = 〈f⋆ , w ◦ γ−1
⋆ |∂Γ⋆γ

−1
⋆ |〉Γ⋆ = 〈f⋆ , w̃〉Γ⋆ shows

‖u− vΓ⋆ ‖H−1/2(Γ) ≃ sup
w∈H−1/2(Γ)

〈f⋆ − V⋆v⋆ , w̃〉Γ⋆ + 〈V⋆v⋆ , w̃〉Γ⋆ − 〈VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

. sup
w̃∈H−1/2(Γ⋆)

〈f⋆ − V⋆v⋆ , w̃〉Γ⋆

‖w̃‖H−1/2(Γ⋆)

+ sup
w∈H−1/2(Γ)

〈V⋆v⋆ , w̃〉Γ⋆ − 〈VvΓ⋆ , w〉Γ
‖w‖H−1/2(Γ)

,

(6.2.49)
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where we used Lemma 6.2.19 to get ‖w‖H−1/2(Γ) ≃ ‖w̃‖H−1/2(Γ⋆). The numerator of the last
term in (6.2.49) transforms to

−4π
(
〈V⋆v⋆ , w ◦ γ−1

⋆ |∂Γγ−1
⋆ |〉Γ⋆ − 〈VvΓ⋆ , w〉Γ

)
= −4π

(
〈(V⋆v⋆) ◦ γ⋆ − VvΓ⋆ , w〉Γ

)

=

∫

Γ

(∫

Γ⋆

log
(
|γ⋆(x)− y|2

)
v⋆(y) dy −

∫

Γ

log
(
|x− y|2

)
vΓ⋆ (y) dy

)
w(x) dx

=

∫

Γ

(∫

Γ

log
(
|γ⋆(x)− γ⋆(y)|2

)
vΓ⋆ (y) dy −

∫

Γ

log
(
|x− y|2

)
vΓ⋆ (y) dy

)
w(x) dx

= −
∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
vΓ⋆ (y) dy w(x) dx = −〈M⋆v

Γ
⋆ , w〉Γ.

(6.2.50)

This concludes the proof. �

The following result can also be found in [34, 28]. We refine the proof to ensure that
the involved constants behave uniformly with respect to the approximate geometries Γ⋆.

Lemma 6.2.30. Given the approximate geometry T⋆ ∈ T, there holds

sup
w∈H−1/2(Γ⋆)

〈f⋆ − V⋆U(T⋆) , w〉Γ⋆

‖w‖H−1/2(Γ⋆)

≤
√
8K(T⋆)

1/2(5K(T⋆)
2 + 3)1/4 ρ(T⋆)

with K(T⋆) from Section 3.2.2.

Proof. Let ξ1, . . . , ξN ∈ C(Γ) denote a T⋆-piecewise smooth partition of unity on Γ⋆

such that all j = 1, . . . , N satisfy

‖ξj‖L∞(Γ⋆) ≤ 1,

supp(ξj) ⊆ Tj,1 ∪ Tj,2 for some Tj,1, Tj,2 ∈ T⋆with Tj,1 ∩ Tj,2 6= ∅,
‖∂Γ⋆ξj‖L∞(Tj,i) ≤ 2h⋆|−1

Tj,i
for i = 1, 2.

There holds

sup
w∈H−1/2(Γ⋆)

〈f⋆ − V⋆U(T⋆) , w〉Γ⋆

‖w‖H−1/2(Γ⋆)

= ‖f⋆ − V⋆U(T⋆)‖H1/2(Γ⋆)

= ‖
N∑

j=1

ξj(f⋆ − V⋆U(T⋆))‖H1/2(Γ⋆).

Let K1 ∪K2 = {1, . . . , N} such that |supp(ξj)∩ supp(ξk)| = 0 for all j 6= k, j, k ∈ K1 and all

j 6= k, j, k ∈ K2. Lemma 6.2.25 with Γ̃ = Γ⋆ shows

‖
N∑

j=1

ξj(f⋆ − V⋆U(T⋆))‖2H1/2(Γ⋆)
≤ 2‖

∑

j∈K1

ξj(f⋆ − V⋆U(T⋆))‖2H1/2(Γ⋆)

+ 2‖
∑

j∈K2

ξj(f⋆ − V⋆U(T⋆))‖2H1/2(Γ⋆)

≤ 4

N∑

j=1

‖ξj(f⋆ − V⋆U(T⋆))‖2H1/2(supp(ξj))
.
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Real interpolation theory shows

‖ξj(f⋆ − V⋆U(T⋆))‖2H1/2(supp(ξj))

. ‖ξj(f⋆ − V⋆U(T⋆))‖L2(supp(ξj))‖ξj(f⋆ − V⋆U(T⋆))‖H1(supp(ξj)),

where the hidden constant depends only on the scalar field of the involved Hilbert spaces,
which is, in our case, R. Hence, with vj := ξj(f⋆ − V⋆U(T⋆)), there holds

‖f⋆ − V⋆U(T⋆)‖2H1/2(Γ) ≤ 4

N∑

j=1

‖vj‖L2(supp(ξj))

(
‖vj‖2L2(supp(ξj))

+ ‖∂Γ⋆vj‖2L2(supp(ξj))

)1/2
.

Elementary calculus and the definition of the ξj show

‖vj‖L2(supp(ξj)) ≤ ‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj)),

‖∂Γvj‖L2(supp(ξj)) ≤ 2max
i=1,2

h⋆|−1
Tj,i

‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj))

+ ‖∂Γ(f⋆ − V⋆U(T⋆))‖L2(supp(ξj)).

Since U(T⋆) solves (6.2.2) and f⋆ −V⋆U(T⋆) ∈ H1(Γ⋆), there exists at least one zero zT ∈ Γ⋆

with (f⋆ − V⋆U(T⋆))(zT ) = 0 for all T ∈ T⋆. Hence, Friedrich’s inequality proves

‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj)) ≤ max
i=1,2

h⋆|Ti,j
‖∂Γ⋆(f⋆ − V⋆U(T⋆))‖L2(supp(ξj)).

The above together with the K-mesh property show

‖f⋆ − V⋆U(T⋆)‖2H1/2(Γ)

≤ 4

N∑

j=1

‖vj‖L2(supp(ξj))

(
‖vj‖2L2(supp(ξj))

+ ‖∂Γ⋆vj‖2L2(supp(ξj))

)1/2

≤ 4

N∑

j=1

(
‖f⋆ − V⋆U(T⋆)‖L2(supp(ξj))

(
5max

i=1,2
h⋆|−2

Tj,i
‖f⋆ − V⋆U(T⋆)‖2L2(supp(ξj))

+ 3‖∂Γ⋆(f⋆ − V⋆U(T⋆))‖2L2(supp(ξj))

)1/2)

≤ 4

N∑

j=1

(
K(T⋆)‖h⋆∂Γ⋆(f⋆ − V⋆U(T⋆))‖L2(supp(ξj))

(5K(T⋆)
2 + 3)1/2‖∂Γ⋆(f⋆ − V⋆U(T⋆))‖L2(supp(ξj))

)

≤ 4K(T⋆)(5K(T⋆)
2 + 3)1/2

N∑

j=1

‖h1/2⋆ ∂Γ(f⋆ − V⋆U(T⋆))‖2L2(supp(ξj))

≤ 8K(T⋆)(5K(T⋆)
2 + 3)1/2‖h1/2⋆ ∂Γ(f⋆ − V⋆U(T⋆))‖2L2(Γ⋆)

.

This concludes the proof. �

Lemma 6.2.31. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)–(Γ3). Then, there
exists CL2 > 0 such that all g ∈ L2(Γ) satisfy

‖M⋆g‖L2(Γ) ≤ CL2geo(T⋆)
2(1 + | log(geo(T⋆))|)‖g‖L2(Γ),

where M⋆ is defined in (6.2.48).
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Proof. By definition of M⋆, there holds

‖M⋆g‖2L2(Γ) =

∫

Γ

(∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
g(y) dy

)2

dx

≤
∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx‖g‖2L2(Γ).

The remaining integral is split. Let Γ1, . . . ,ΓN denote the smooth and connected parts of Γ.
There holds

∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx =

N∑

i=1

N∑

j=1

∫

Γi

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx.

Case Γi = Γj: Lemma 6.2.13 (i) implies

∫

Γi

∫

Γi

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx . |Γ|2geo(T⋆)
4.

Case Γi ∩ Γj = ∅: Lemma 6.2.13 (iii) implies

∫

Γi

∫

Γi

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx . |Γ|2min
x∈Γi
y∈Γj

|x− y|−2geo(T⋆)
4

. geo(T⋆)
4.

Case Γi ∩ Γj = {z} ⊆ PΓ: Given ε > 0, define Bε :=
{
y ∈ Γ : |y − z| < ε

}
. There holds

∫

Γi

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx (6.2.51)

=

∫

Γi\Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx+

∫

Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx.

For the first term, Lemma 6.2.13 (ii) and |x− z| ≤ Γz
x ≤ Γy

x . |x− y| for all x ∈ Γi, y ∈ Γj

imply

∫

Γi\Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx

. geo(T⋆)
4

∫

Γi\Bε

∫

Γj

(
1 +

|z − x|+ |z − y|
|x− y|2

)2
dx dy

. geo(T⋆)
4

∫

Γi\Bε

∫

Γj

1 + |x− y|−2 dx dy.
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Without loss of generality, there holds [a, b− δ] = γ−1(Γi \Bε) and [b, c] = γ−1(Γj) for some
a < b < c ∈ [0, 1] and 0 < δ ≃ ε. The Lipschitz continuity of γ shows

∫

Γi\Bε

∫

Γj

|x− y|−2 dx dy =

∫

γ−1(Γi\Bε)

∫

γ−1(Γj)

|γ(s)− γ(t)|−2|γ′|2 ds dt

.

∫

γ−1(Γi\Bε)

∫

γ−1(Γj)

|s− t|−2 ds dt

=

∫ b−δ

a

∫ c

b

(s− t)−2 ds dt

=

∫ b−δ

a

(b− t)−1 − (c− t)−1 dt

. 1 + | log(δ)| ≃ 1 + | log(ε)|.
For the second term of (6.2.51), Lemma 6.2.13 (ii) shows

∫

Bε

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx . geo(T⋆)
2|Bε||Γ| . εgeo(T⋆)

2.

Altogether, this proves
∫

Γ

∫

Γ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx =
N∑

i=1

N∑

j=1

∫

Γi

∫

Γj

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)2

dy dx

. N2(geo(T⋆)
4 + geo(T⋆)

4| log(ε)|+ geo(T⋆)
2ε).

Since N depends only on Γ, the choice ε := geo(T⋆)
2 concludes the proof. �

Lemma 6.2.32. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)–(Γ3) and geo(T⋆) ≤
C−1

ext/2. Given g ∈ L∞(Γ) and with M⋆ from 6.2.48, there holds M⋆g ∈ H1(Ω), whereas
g ∈ L2(Γ) implies M⋆g ∈ H1(Γ).

Proof. Given x ∈ Ω, κ⋆(x, y) is smooth and hence (6.2.42) shows

|∇xM⋆g(x)| := |
∫

Γ

∇xκ⋆(x, y)g(y) dy| . ‖g‖L∞(Γ)

∫

Γ

|x− y|−1 dy

. ‖g‖L∞(Γ)(1 + | log(dist(x,Γ))|),
where the hidden constants depend only on Cγ and an upper bound of geo(T⋆). This proves
that ∇xM⋆g(x) ∈ L2(Ω). Lemma 6.2.31 concludes M⋆g ∈ H1(Ω). There holds

M⋆g(x) = Vg(x)−
∫

Γ

log |γ⋆(x)− γ⋆(y)|g(y) dy = Vg(x)−
(
V⋆(g ◦ γ−1

⋆ |∂γ−1
⋆ |)

)
◦ γ⋆(x).

Since g ∈ L2(Γ) and g ◦ γ−1
⋆ |∂γ−1

⋆ | ∈ L2(Γ⋆), the mapping properties of V and V⋆ show
Vg ∈ H1(Γ),V⋆(g ◦ γ−1

⋆ |∂γ−1
⋆ |) ∈ H1(Γ⋆). Since γ⋆ is continuous and piecewise smooth, this

concludes the proof. �

Lemma 6.2.33. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)–(Γ3) and geo(T⋆) ≤
C−1

ext/2. Then, there exists a constant CH̃1/2 > 0, such that all g ∈ L2(Γ) with supp(g) ⊆ Γy
x

for some x, y ∈ Γ satisfy

‖M⋆g‖H1/2(Γ) ≤ CH̃1/2

(
geo(T⋆)|Γy

x|1/2(1 + | log(|Γy
x|)|)1/2

+ geo(T⋆)
2(1 + | log(geo(T⋆))|)

)
‖g‖L2(Γ),
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where M⋆ is defined in (6.2.48). The constant CH̃1/2 depends only on CL2, CLip, Cext, and
on Ω.

Proof. Define the volume potential

Dv(x) :=

∫

Ω

∇yκ⋆(x, y)v(y) dy.

Assume for the moment g ∈ L∞(Γ). Lemma 6.2.32 shows M⋆g ∈ H1(Ω). Given v ∈ L2(Ω),
there holds

〈∇M⋆g , v〉Ω =

∫

Ω

∫

Γ

∇yκ⋆(x, y)g(x) dx v(y) dy

=

∫

Γ

∫

Ω

∇yκ⋆(x, y)v(y) dy g(x) dx = 〈g , Dv〉Γ.
(6.2.52)

Consider the simple-layer potential VΩ : H̃−1/2(Ω) → H1/2(Ω) on the 2D manifold Ω

VΩg(x) :=
1

4π

∫

Ω

|x− y|−1g(y) dy for all x ∈ R3.

The identity (6.2.52) together with (6.2.42), shows

〈g , D(v)〉Γ .

∫

Γ

|g(x)|
∣∣∣
∫

Ω

∇yκ⋆(x, y)v(y) dy
∣∣∣dx

. ‖tΓ − ∂Γγℓ‖L∞(Γ)

∫

Γ

|g(x)|
∣∣∣
∫

Ω

1

|x− y| |v(y)| dy
∣∣∣dx

≃ ‖tΓ − ∂Γγℓ‖L∞(Γ)〈|g| , VΩ(|v|)〉Γ.

With |Γy
x| = h, Lemma 6.2.15 shows ‖|g|‖H−1/2(Γ) . h1/2(1 + | log(h)|)1/2‖g‖L2(Γ). This and

the continuity VΩ : L2(Ω) → H1(Ω) show

sup
v∈L2(Ω)

〈g , D(v)〉Γ . ‖tΓ − ∂Γγℓ‖L∞(Γ)‖|g|‖H−1/2(Γ)‖VΩ(|v|)‖H1/2(Γ)

. ‖tΓ − ∂Γγℓ‖L∞(Γ)h
1/2(1 + | log(h)|1/2)‖g‖L2(Γ)‖VΩ(|v|)‖H1(Ω)

. geo(T⋆)h
1/2(1 + | log(h)|1/2)‖g‖L2(Γ)‖v‖L2(Ω).

Altogether, this proves

‖∇M⋆g‖L2(Ω) = sup
v∈L2(Ω)

〈∇M⋆g , v〉Ω
‖v‖L2(Ω)

. geo(T⋆)h
1/2(1 + | log(h)|1/2)‖g‖L2(Γ).

Continuous extension shows that the restriction g ∈ L∞(Γ) is not necessary.
Let M := |Γ|−1

∫
Γ
M⋆g(x) dx denote the integral mean. Rellich’s compactness theorem

proves ‖M⋆g −M‖H1(Ω) . ‖∇M⋆g‖L2(Ω). Altogether, this shows

‖Mg‖H1/2(Γ) ≤ ‖M‖H1/2(Γ) + ‖M⋆g −M‖H1/2(Γ)

. ‖M‖L2(Γ) + ‖∇M⋆g‖L2(Ω)

. ‖M⋆g‖L2(Γ) + h1/2| log(h)|1/2geo(T⋆)‖g‖L2(Γ).

(6.2.53)

Lemma 6.2.31 and (6.2.53) conclude the proof. �
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Lemma 6.2.34. Let the approximate geometry T⋆ ∈ T satisfy (Γ1)–(Γ3) and geo(T⋆) ≤
C−1

ext/2. There exists a constant CH1/2 > 0 such that all g ∈ L2(Γ) satisfy

‖M⋆g‖H1/2(Γ) ≤ CH1/2geo(T⋆)
3/2(1 + | log(geo(T⋆))|)‖g‖L2(Γ),

where M⋆ is defined in (6.2.48). The constant CH1/2 depends only on CH̃1/2, CL2, Cfaer, C21,
Cext, CLip, CΣ, and on Ω,

Proof. Construct a uniform partition U of Γ with element size h(U) ≃ geo(T⋆). With
the Scott-Zhang projection J(U) : L2(Γ) → S1(U) from Definition 3.2.6, split

‖M⋆g‖H1/2(Γ) ≤ ‖J(U)M⋆g‖H1/2(Γ) + ‖(1− J(U))M⋆g‖H1/2(Γ)

. h(U)−1/2‖M⋆g‖L2(Γ) + ‖(1− J(U))M⋆g‖H1/2(Γ),

where we applied the inverse estimate from [57]. The first term on the right-hand side is
considered in Lemma 6.2.31. Lemma 6.2.26 applies for the second term to obtain

‖(1− J(U))M⋆g‖2H1/2(Γ) .
∑

U∈U

‖(1− J(U))M⋆g‖2H1/2(∪ω2(U,U)).

With gU,1 := g|∪ω4(U,U) and gU,2 := g−gU,1 and by use of the approximation properties (3.2.16)
of J(U), each term on the right-hand side is bounded by

‖(1−J(U))M⋆g‖2H1/2(∪ω2(U,U))

. ‖M⋆gU,1‖2H1/2(∪ω3(U,U)) + ‖(1− J(U))M⋆gU,2‖2H1/2(∪ω2(U,U))

. ‖M⋆gU,1‖2H1/2(∪ω3(U,U))

+ ‖(1− J(U))M⋆gU,2‖L2(∪ω2(U,U))‖∂Γ(1− J(U))M⋆gU,2‖L2(∪ω2(U,U))

. ‖M⋆gU,1‖2H1/2(∪ω3(U,U)) + h(U)‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U)),

(6.2.54)

where Lemma 6.2.32 shows that the right-hand side is well-defined. Since |supp(gU,1)| ≃
h(U), Lemma 6.2.33 applies for the first term and, with h(U) ≃ geo(T⋆), leads to

∑

U∈U

‖M⋆gU,1‖2H1/2(∪ω3(U,U)) . geo(T⋆)
3(1 + | log(geo(T⋆))|)

∑

U∈U

‖gU,1‖2L2(Γ)

. geo(T⋆)
3(1 + | log(geo(T⋆))|)‖g‖2L2(Γ).

Given U ∈ U , an explicit computation together with Lemma 6.2.24 shows
∫

∪ω3(U,U)

(∫

Γ\∪ω4(U,U)

∂Γ,xκ⋆(x, y)g(y) dy
)2

dx

. geo(T⋆)
2

∫

∪ω3(U,U)

(∫

Γ\∪ω4(U,U)

|x− y|−1|g|(y) dy
)2

dx (6.2.55)

≤ geo(T⋆)
2| ∪ ω3(U,U)|

sup
x∈∪ω3(U,U)

(
‖|x− ·|−1/2‖2L2(Γ\∪ω4(U,U))‖|x− ·|−1/2g(·)‖2L2(Γ\∪ω4(U,U))

)
.

A computation in the parameter domain shows for x ∈ ⋃
ω3
U

‖|x− ·|−1/2‖2L2(Γ\∪ω4(U,U)) .

∫

γ−1(Γ\∪ω4(U,U))

|γ−1(x)− t|−1 dt

. (1 + | log(h(U))|),
(6.2.56)
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since |γ−1(x) − t| & |x − γ(t)| & h(U). With (6.2.13), there holds for all U ′ ∈ U with
U ′ 6⊆ ω4(U,U)

dist(U, U ′) . dist(∪ω3(U,U), U ′) + 2h(U) ≤ 3dist(∪ω3(U,U), U ′)

and hence

sup
x∈∪ω3(U,U)

‖|x− ·|−1/2g(·)‖2L2(Γ\∪ω4(U,U)) = sup
x∈∪ω3(U,U)

∑

U ′∈U\ω4(U,U)

∫

U ′

|x− y|−1g(y)2 dy

.
∑

U ′∈U\ω4(U,U)

1

dist(U, U ′)
‖g‖2L2(U ′).

Plugging the last two estimates into (6.2.55), we end up with

‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U)) =

∫

∪ω3(U,U)

(∫

Γ\∪ω4(U,U)

∂Γ,xκ⋆(x, y)g(y) dy
)2

dx

. geo(T⋆)
2| ∪ ω3(U,U)|(1 + | log(h(U))|)

∑

U ′∈U\ω4(U,U)

1

dist(U, U ′)
‖g‖2L2(U ′)

. geo(T⋆)
2(1 + | log(geo(T⋆))|)

∑

U ′∈U\ω4(U,U)

|U |
dist(U, U ′)

‖g‖2L2(U ′).

With the convention dist(U, U ′) = 1 for U ∩ U ′ 6= ∅ and h(U) ≃ geo(T⋆), this leads to
∑

U∈U

h(U)‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U))

. (1 + | log(geo(T⋆))|)geo(T⋆)
3
∑

U∈U

∑

U ′∈U\ω4(U,U)

‖g‖2L2(U ′)

|U |
dist(U, U ′)

≤ (1 + | log(geo(T⋆))|)geo(T⋆)
3
∑

U ′∈U

‖g‖2L2(U ′)

∑

U∈U

|U |
dist(U, U ′)

.

Lemma 6.2.27 provides an estimate for the last sum of the right-hand side. Altogether, this
shows

∑

U∈U

h(U)‖∂ΓM⋆gU,2‖2L2(∪ω3(U,U)) . (1 + | log(geo(T⋆))|)geo(T⋆)
3‖g‖2L2(Γ)(1 + | log(|U|)|).

Since |U| ≃ |Γ|/h(U) ≃ geo(T⋆)
−1, the combination of the previous estimates concludes the

proof. �

Proof of Theorem 6.2.28. Lemma 6.2.29–6.2.30, and Lemma 6.2.34 show the state-
ment. �

6.3. Convergence

Throughout this section, we assume that Lemma 6.2.9 (i)–(iii) and geo(T⋆) ≤ C−1
ext/2 hold

for all approximate geometries T⋆ ∈ T. Moreover, we assume that the exact boundary Γ
satisfies the following: All approximate geometries T⋆ ∈ T and all elements T ∈ T⋆ allow for
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a parametrization

γT : [0, 1] → T Γ,

γ′T (s) ∈ span{tΓ ◦ γT (s)} for all s ∈ [0, 1],

C−1
par|T Γ| ≤ |γ′T | ≤ Cpar|T Γ|,

‖γ′′T‖L∞([0,1]) + ‖(γ⋆ ◦ γT )′′‖L∞([0,1]) ≤ Cpar|T Γ|

(6.3.1a)

for some constant Cpar > 0 which depends only on Γ. Moreover, there exists some p ∈ N
such that for all T ∈ T⋆ exist γ̃T , γ̃T,⋆ ∈ Pp([0, 1])2 such that

‖γT − γ̃T‖W 1,∞([0,1]) + ‖γ⋆ ◦ γT − γ̃T,⋆‖W 1,∞([0,1]) ≤ CpargeoT (T⋆)
2. (6.3.1b)

Remark 6.3.1. The assumption (6.3.1) basically states that the Taylor expansion of
the parametrization γ behaves nicely. Since γ⋆ is uniquely determined by γ, (6.3.1b) is an as-
sumption on the Taylor expansion of γ, since inf γ̃T∈Pp([0,1]) ‖γT − γ̃T‖W 1,∞([0,1]) . ‖γ′′T‖L∞([0,1])

and geoT (T⋆) & minTΓ |γ′′ ◦ γ−1|. Assumption (6.3.1) holds for example if Γ is parametrized
by piecewise polynomials of arbitrary order, i.e., B-splines, or by NURBS.

Lemma 6.3.2. Under assumption 6.3.1 and with Lemma 6.2.9 (i)–(iii) as well as
geo(T⋆) ≤ C−1

ext/2, there exists a constant Cinv > 0 such that the approximate geometry
T⋆ ∈ T satisfies for all T ∈ T⋆

‖tΓ − ∂Γγ⋆‖L∞(TΓ) ≤ Cinv|T |−1geoT (T⋆)
2. (6.3.2)

Given x, y ∈ Γ with x ∈ T Γ
0 for some T0 ∈ T⋆, there holds additionally

|∂Γ,xκ⋆(x, y)| ≤ Cinv

( |T0|−1

|x− y| +
1

|x− y|2
)

max
T∈T⋆

TΓ∩Γ
y
x 6=∅

geoT (T⋆)
2 (6.3.3)

as well as for x, y ∈ ⋃
ω(T Γ

0 , T Γ
⋆ )

|∂Γ,xκ⋆(x, y)| ≤ Cinv
|T0|−1/2

|x− y| max
T∈ω(T0,T⋆)

geoT (T⋆)
3/2. (6.3.4)

The constant Cinv depends only on Cpar, K(T⋆) (with K(·) from Section 3.2.2), and CΓ.

Proof. Given T ∈ T⋆, there holds with (γT − γ⋆ ◦ γT )′ = (tΓ − ∂Γγ⋆) ◦ γTγ′T and (6.3.1a)
that

‖tΓ − ∂Γγ⋆‖L∞(TΓ) ≃ |T Γ|−1‖(γT − γ⋆ ◦ γT )′‖L∞([0,1]). (6.3.5)

Assumption (6.3.1b) and norm equivalence on Pp([0, 1]) imply

‖(γT − γ⋆ ◦ γT )′‖L∞([0,1]) ≤ ‖(γ̃T − γ̃T,⋆)
′‖L∞([0,1]) + geoT (T⋆)

2

. ‖γ̃T − γ̃T,⋆‖L∞([0,1]) + geoT (T⋆)
2

. ‖γT − γ⋆ ◦ γT‖L∞([0,1]) + geoT (T⋆)
2.

Finally, there holds

‖γT − γ⋆ ◦ γT‖L∞([0,1]) = ‖idΓ − γ⋆‖L∞(TΓ).

The combination of the last three estimates concludes the proof of (6.3.2). To see (6.3.3),
combine (6.2.44) and (6.3.2). The estimate (6.3.4) follows from (6.3.2) and

‖tΓ − ∂Γγ⋆‖L∞(TΓ) . |T |−1/2geoT (T⋆)‖tΓ − ∂Γγ⋆‖1/2L∞(TΓ)
≤ |T |−1/2geoT (T⋆)

3/2.
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Together with the K-mesh property and (6.2.43), this implies (6.3.4) and concludes the
proof. �

Lemma 6.3.3. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)–(iii) as well as
geo(T⋆) ≤ C−1

ext/2 hold for T⋆ ∈ T. Given T ∈ T⋆, define

gT (s) :=

∫ 1

0

log
( |γT (s)− γT (t)|2
|γ⋆ ◦ γT (s)− γ⋆ ◦ γT (t)|2

)
|γ′T (t)||∂Γγ⋆| ◦ γT (t) dt.

There holds for all ε > 0

‖g′T‖L2([0,1]) ≤ Capx|T Γ|(ε+ (1 + | log(ε)|)‖tΓ − ∂Γγ⋆‖L∞(TΓ)). (6.3.6)

where the constant Capx > 0 depends only on Cpar, Cext, and on CLip.

Proof. Let κT (s, t) denote the logarithmic kernel of gT . Straightforward differentiation
shows for γT,⋆ := γ⋆ ◦ γT
1

2
∂sκT (s, t)

=
(γT (s)− γT (t)) · γ′T (s)|γT,⋆(s)− γT,⋆(t)|2 − (γT,⋆(s)− γT,⋆(t)) · γ′T,⋆(s)|γT (s)− γT (t)|2

|γT (s)− γT (t)|2|γT,⋆(s)− γT,⋆(t)|2
.

Taylor expansion shows for some z1, z2, z3, z4 ∈ [0, 1] and s, t ∈ [0, 1] that

|∂sκT (s, t)||γT (s)− γT (t)|2|γT,⋆(s)− γT,⋆(t)|2/2
= (s− t)|γ′T (s)|2|γT,⋆(s)− γT,⋆(t)|2 + (s− t)2γ′′T (z1) · γ′T (s)|γT,⋆(s)− γT,⋆(t)|2

− (s− t)|γ′T,⋆(s)|2|γT (s)− γT (t)|2 − (s− t)2γ′′T,⋆(z2) · γ′T,⋆(s)|γT (s)− γT (t)|2

= (s− t)3|γ′T (s)|2|γ′T,⋆(s)|2 + (s− t)5|γ′′T,⋆(z3)|2|γ′T (s)|2

− (s− t)3|γ′T (s)|2|γ′T,⋆(s)|2 + (s− t)5|γ′′T (z4)|2|γ′T,⋆(s)|2

+ (s− t)2γ′′T (z1) · γ′T (s)|γT,⋆(s)− γT,⋆(t)|2

− (s− t)2γ′′T,⋆(z2) · γ′T,⋆(s)|γT (s)− γT (t)|2.
Assumption (6.3.1a) bounds the above by

|∂sκT (s, t)||γT (s)− γT (t)|2|γT,⋆(s)− γT,⋆(t)|2

. (s− t)5(‖γ′′T,⋆‖2L∞([0,1])‖γ′T‖2L∞([0,1]) + ‖γ′′T‖2L∞([0,1])‖γ′T,⋆‖2L∞([0,1]))

+ (s− t)2‖γ′′T‖L∞([0,1])‖γ′T‖L∞([0,1])|γT,⋆(s)− γT,⋆(t)|2

+ (s− t)2‖γ′′T,⋆‖L∞([0,1])‖γ′T,⋆‖L∞([0,1])|γT (s)− γT (t)|2

. (s− t)5(‖γ′′T,⋆‖2L∞([0,1])‖γ′T‖2L∞([0,1]) + ‖γ′′T‖2L∞([0,1])‖γ′T,⋆‖2L∞([0,1]))

+ (s− t)4
(
‖γ′′T‖L∞([0,1])‖γ′T‖L∞([0,1])‖γ′T,⋆‖2L∞([0,1])

+ ‖γ′′T,⋆‖L∞([0,1])‖γ′T,⋆‖L∞([0,1])‖γ′T‖2L∞([0,1])

)

. |T Γ|4((s− t)5 + (s− t)4),

where the hidden constants depend only on Cpar and on CLip. Again with (6.3.1a), the above
implies

|∂sκT (s, t)| . 1 + |s− t|, (6.3.7)
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where the hidden constant depends only on Cpar and on CLip. On the other hand, there
holds κT (s, t) = κ⋆(γT (s), γT (t)) and hence by use of (6.2.43)

|∂sκT (s, t)| ≃ |(∂1κ)(γT (s), γT (t))||T Γ| . |T Γ||γT (s)− γT (t)|−1‖tΓ − ∂Γγ⋆‖L∞(TΓ)

≃ |s− t|−1‖tΓ − ∂Γγ⋆‖L∞(TΓ). (6.3.8)

The estimates (6.3.7)–(6.3.8) and |∂Γγ⋆| ◦ γT ≤ 1 + geo(T⋆) ≤ 1 + C−1
ext/2 show for ε > 0

|g′T (s)| .
∣∣
∫

[0,s−ε)∪(s+ε,1]

∂sκT (s, t)|γ′T (t)| dt
∣∣+

∣∣
∫ s+ε

s−ε

∂sκT (s, t)|γ′T (t)| dt
∣∣

.
∣∣
∫

[0,s−ε)∪(s+ε,1]

|s− t|−1 dt
∣∣‖tΓ − ∂Γγ⋆‖L∞(TΓ)|T Γ|+ ε|T Γ|

. |T Γ|(1 + | log(ε)|)‖tΓ − ∂Γγ⋆‖L∞(TΓ) + |T Γ|ε.
This concludes the proof. �

Lemma 6.3.4. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)–(iii) as well as
geo(T⋆) ≤ C−1

ext/2 hold for T⋆ ∈ T. Given G⋆ ∈ P0(T Γ
⋆ ), there holds for all T ∈ T⋆

|T |1/2‖∂ΓM⋆((G⋆|∂Γγ⋆|)|∪ω(TΓ,T Γ
⋆ ))‖L2(TΓ)

≤ CMgeo(T⋆)
3/2(1 + | log(geo(T⋆))|)‖G⋆‖L2(∪ω(TΓ,T Γ

⋆ )),

where M⋆ is defined in (6.2.48) and the constant CM > 0 depends only on Cinv, CLip, Cext,
CΓ, Capx, K(T⋆) (with K(·) from Section 3.2.2), and on Γ.

Proof. We abbreviate G := (G⋆|∂Γγ⋆|)|∪ω(TΓ,T Γ) and get

‖∂ΓM⋆G‖2L2(TΓ) =

∫

TΓ

(∫

∪ω(TΓ,T Γ
⋆ )

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

.

∫

TΓ

(∫

∪ω(TΓ,T Γ
⋆ )\TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

+

∫

TΓ

(∫

TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx.

(6.3.9)

There holds with (6.3.4)
∫

TΓ

(∫

∪ω(TΓ,T Γ)\TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

. (1 + geo(T⋆))|T |−1 max
T ′∈ω(T,T⋆)

geoT ′(T⋆)
3

∫

TΓ

(∫

∪ω(TΓ,T Γ
⋆ )\TΓ

|x− y|−1|G(y)| dy
)2

dx.

Let T1, T2 ∈ T Γ
⋆ such that T1 ∪ T2 =

⋃
ω(T Γ, T Γ

⋆ ) \ T Γ. Then, there holds for i = 1, 2
∫

TΓ

( ∫

Ti

|x− y|−1|G(y)| dy
)2

dx ≤ |G⋆|Ti
|2‖∂Γγ⋆‖2L∞(Ti)

∫

TΓ

(∫

Ti

|x− y|−1 dy
)2

dx

≤ (1 + geo(T⋆)
2)|G⋆|Ti

|2
∫

TΓ

log(dist(x, Ti))
2 dx.

The Lipschitz continuity of γ and (6.2.13) show for zi := Ti ∩ T ∈ Γ

C−1|x− zi| ≤ dist(x, Ti) ≤ C|x− zi|
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for some constant C > 0. This implies
∫

TΓ

log(dist(x, Ti))
2 dx .

∫

TΓ

(log |x− zi|)2 dx+
∫

T

(log(C))2 dx . |T Γ|(log(|T Γ|)2 + 1).

Altogether, this shows
∫

TΓ

(∫

∪ω(TΓ,T Γ)\TΓ

∂Γ,x log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

. (1 + geo(T⋆))|T |−1(log(|T |)2 + 1) max
T ′∈ω(TΓ,T Γ

⋆ )\TΓ
geoT ′(T⋆)

3‖G⋆‖2L2(∪ω(TΓ,T Γ
⋆ ))

. (1 + geo(T⋆))|T |−1(log(|T |)2 + 1)geo(T⋆)
3‖G⋆‖2L2(∪ω(TΓ,T Γ

⋆ )),

(6.3.10)

where we used the K-mesh property for the last estimate. The remaining term in (6.3.9) is
bounded by use of Lemma 6.3.3 with ε := geo(T⋆)

3/2. Since G⋆|TΓ is constant, consider

‖∂ΓM⋆G|TΓ‖2L2(TΓ) =

∫

TΓ

(
∂Γ,x

∫

TΓ

log
( |x− y|2
|γ⋆(x)− γ⋆(y)|2

)
G(y) dy

)2

dx

= |G⋆|TΓ|2‖∂Γ(g ◦ γ−1
T )‖2L2(TΓ) = |T Γ|−1|G⋆|TΓ |2‖g′‖2L2([0,1])

.
(
ε2 + (1 + | log(ε)|)2‖tΓ − ∂Γγ⋆‖2L∞(TΓ)

)
‖G⋆‖2L2(TΓ)

.
(
geo(T⋆)

3 + (1 + | log(geo(T⋆))|)2‖tΓ − ∂Γγ⋆‖2L∞(TΓ)

)
‖G⋆‖2L2(TΓ).

Lemma 6.3.2 then shows |T |‖tΓ − ∂Γγ⋆‖2L∞(Γ) . geo(T⋆)
3 and hence

|T |‖∂ΓM⋆G|TΓ‖2L2(TΓ)

. (1 + | log(geo(T⋆))|)2geo(T⋆)
3‖G‖2L2(TΓ).

(6.3.11)

Putting together the estimates (6.3.9), (6.3.10), (6.3.11), we end up with

|T |‖∂ΓM(G|∪ω(TΓ,T Γ
⋆ ))‖2L2(T ) . geo(T⋆)

3(log(|T |)2 + log(geo(T⋆))
2 + 1)‖G⋆‖2L2(∪ω(TΓ,T Γ

⋆ ).

This concludes the proof. �

Lemma 6.3.5. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)–(iii) as well as
geo(T⋆) ≤ C−1

ext/2 hold forT⋆ ∈ T. All G ∈ L2(Γ) satisfy
∑

T∈T⋆

|T Γ|‖∂ΓM⋆(G|Γ\∪ω(TΓ,T Γ
⋆ ))‖2L2(TΓ)

≤ CMgeo(T⋆)
3|1 + log(min h⋆)|2(| log(|T⋆|)|+ 1)‖G‖2L2(Γ),

where M⋆ is defined in (6.2.48) and the constant CM > 0 depends only on Capx, Cext, CLip,
CΣ, K(T⋆) (with K(·) from Section 3.2.2), and on Γ.

Proof. Let x ∈ T Γ for some T ∈ T⋆. The estimate (6.3.3) shows

|∂Γ,xκ⋆(x, y)| .
( |T |−1

|x− y| +
1

|x− y|2
)
geo(T⋆)

2.

The estimate (6.2.42) shows also

|∂Γ,xκ⋆(x, y)| . |x− y|−1geo(T⋆).
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The combination of the last two estimates implies

|∂Γ,xκ⋆(x, y)| .
geo(T⋆)

3/2

|x− y|1/2
( |T |−1

|x− y| +
1

|x− y|2
)1/2

. geo(T⋆)
3/2

( |T |−1/2

|x− y| +
1

|x− y|3/2
)
.

We abbreviate G := G|Γ\∪ω(TΓ,T Γ
⋆ ) and employ the above estimate to obtain

‖∂ΓM⋆G‖2L2(T ) =

∫

T

(∫

Γ\∪ω(TΓ,T Γ
⋆ )

∂Γ,xκ⋆(x, y)G(y) dy
)2

dx

. |T |−1geo(T⋆)
3

∫

T

(∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|−1|G(y)| dy
)2

dx

+ geo(T⋆)
3

∫

T

( ∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|−3/2|G(y)| dy
)2

dx.

For α ∈ {−1,−3/2}, there holds
∫

T

( ∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|α|G(y)| dy
)2

dx

≤ |T | sup
x∈T

‖|x− ·|−1/2‖2L2(Γ\∪ω(TΓ,T Γ
⋆ )‖|x− ·|α+1/2|G(y)|‖2L2(Γ\∪ω(TΓ,T Γ

⋆ )).

The first term is estimated as in (6.2.56) to obtain
∫

T

(∫

Γ\∪ω(TΓ,T Γ
⋆ )

|x− y|α|G(y)| dy
)2

dx

≤ |T | sup
x∈T

‖|x− ·|−1/2‖2L2(Γ\∪ω(TΓ,T Γ
⋆ ))

∑

T0∈T Γ
⋆ \ω(TΓ,T Γ

⋆ )

‖|x− ·|α+1/2|G(·)|‖2L2(T0)

. |T |(1 + | log(|T |)|)
∑

T0∈T Γ
⋆ \ω(TΓ,T Γ

⋆ )

1

dist(T, T0)−2α−1
‖G‖2L2(T0)

.

Altogether, this yields
∑

T∈T⋆

|T |‖∂ΓM⋆G‖2L2(T )

.
∑

T∈T⋆

|T |2geo(T⋆)
3(1 + | log(|T |)|)

∑

T0∈T Γ
⋆ \ω(TΓ,T Γ

⋆ )

( |T |−1

dist(T, T0)
+

1

dist(T, T0)2

)
‖G‖2L2(T0)

≤ geo(T⋆)
3(1 + | log(min h⋆)|)

∑

T0∈T Γ
⋆

‖G‖2L2(T0)

∑

T∈T Γ
⋆ \ω(T0,T Γ

⋆ )

( |T |
dist(T, T0)

+
|T |2

dist(T, T0)2

)
.

Lemma 6.2.27 implies

max
T0∈T⋆

∑

T∈T Γ
⋆ \ω(T0,T Γ

⋆ )

( |T |
dist(T, T0)

+
|T |2

dist(T, T0)2

)
. | log

(maxh⋆
min h⋆

)
|(log(|T⋆|)|+ 1)

and thus concludes the proof. �
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To formulate the next lemma, we define an auxiliary error estimator on the exact bound-
ary. Of course, this in only a theoretical tool and does not have to be computed. For all
T Γ ∈ T Γ

⋆ , define

ρTΓ(T Γ
⋆ ) := ‖h1/2⋆ ◦ γ⋆ ∂Γ(VU(T⋆)

Γ − f)‖L2(TΓ). (6.3.12)

Lemma 6.3.6. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)–(iii) as well as
geo(T⋆) ≤ C−1

ext/2 hold for T⋆ ∈ T. Given some S⋆ ⊆ T⋆, there holds
∣∣∣
( ∑

TΓ∈SΓ
⋆

ρTΓ(T Γ
⋆ )2

)1/2

−
( ∑

T∈S⋆

ρT (T⋆)
2
)1/2∣∣∣ ≤ α⋆, (6.3.13)

where SΓ
⋆ :=

{
T Γ : T ∈ S⋆

}
and

α⋆ := geo(T⋆)
3/2

(
2κΓCνρ(T⋆)geo(T⋆)

1/2

+ CMCLip(1 + | log(geo(T⋆))|)(1 + | log(min h⋆)|)(1 + | log(|T⋆|)|)1/2‖U(T⋆)‖L2(Γ⋆)

)
.

Proof. There holds with ω⋆ :=
⋃S⋆ and ωΓ

⋆ :=
⋃SΓ

⋆
( ∑

TΓ∈SΓ
⋆

ρTΓ(T Γ
⋆ )2

)1/2

= ‖h1/2⋆ ◦ γ⋆∂Γ(VU(T⋆)
Γ − f)‖L2(ωΓ

⋆ )

≤ ‖h1/2⋆ ◦ γ⋆
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)
◦ γ⋆|∂Γγ⋆|1/2‖L2(ωΓ

⋆ )
(6.3.14)

+ ‖h1/2⋆ ◦ γ⋆
(
∂Γ(VU(T⋆)

Γ − f)−
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)
◦ γ⋆|∂Γγ⋆|1/2

)
‖L2(ωΓ

⋆ )
.

We introduce the notation

A := ∂Γ(VU(T⋆)
Γ − f),

B :=
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)
◦ γ⋆|∂Γγ⋆|1/2,

C := ∂Γ((V⋆U(T⋆)− f⋆) ◦ γ⋆).
The first term on the right-hand side of (6.3.14) transforms to

‖h1/2⋆ ◦ γ⋆B‖2L2(ωΓ
⋆ )

=

∫

ωΓ
⋆

h⋆ ◦ γ⋆
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)2 ◦ γ⋆|∂Γγ⋆| dx

=

∫

ω⋆

h⋆
(
∂Γ⋆(V⋆U(T⋆)− f⋆)

)2
dx =

∑

T∈S⋆

ρT (T⋆)
2.

(6.3.15)

The second term on the right-hand side of (6.3.14) is further split into

‖h1/2⋆ ◦ γ⋆(A−B)‖L2(ωΓ
⋆ )

≤ ‖h1/2⋆ ◦ γ⋆(A− C)‖L2(ωΓ
⋆ )
+ ‖h1/2⋆ ◦ γ⋆(C − B)‖L2(ωΓ

⋆ )
.

The chain rule (6.2.11) implies

C = (∂Γ⋆(V⋆U(T⋆)− f⋆)) ◦ γ⋆ ∂sΓγ⋆.
With (6.2.15) and (6.2.9), we get ∂sΓγ⋆ = |∂Γγ⋆|. This shows together with (6.3.15) and
Lemma 6.2.14

‖h1/2⋆ ◦ γ⋆(C − B)‖L2(ωΓ
⋆ )

= ‖h1/2⋆ ◦ γ⋆(1− |∂Γγ⋆|1/2)B‖L2(ωΓ
⋆ )

≤ ‖1− |∂Γγ⋆|1/2‖L∞(Γ)‖h1/2⋆ ◦ γ⋆B‖L2(ωΓ
⋆ )

≤ 2κΓCνgeo(T⋆)
2
( ∑

T∈S⋆

ρT (T⋆)
2
)1/2

.
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Moreover, since f⋆ = f ◦ γ−1
⋆ , there holds

‖h1/2⋆ ◦ γ⋆(A− C)‖L2(ωΓ
⋆ )

≤ ‖h1/2⋆ ◦ γ⋆∂Γ
(
VU(T⋆)

Γ − (V⋆U(T⋆)) ◦ γ⋆
)
‖L2(ωΓ

⋆ )
.

We obtain for x ∈ Γ

−2π(V(U(T⋆)
Γ)− (V⋆U(T⋆)) ◦ γ⋆)(x)

=

∫

Γ

log |x− y|U(T⋆) ◦ γ⋆(y)|∂Γγ⋆| dy −
∫

Γ

log |γ⋆(x)− γ⋆(y)|U(T⋆) ◦ γ⋆(y)|∂Γγ⋆| dy

=
1

2
M⋆(U(T⋆)

Γ)(x).

We employ Lemma 6.3.4–6.3.5 to obtain

1

2
‖h1/2⋆ ◦ γ⋆∂ΓM⋆(U(T⋆)

Γ)‖2L2(Γ)

≤
∑

T∈T⋆

‖h1/2⋆ ◦ γ⋆∂ΓM⋆(U(T⋆)
Γ|∪ω(TΓ,T Γ

⋆ ))‖2L2(TΓ)

+
∑

T∈T⋆

‖h1/2⋆ ◦ γ⋆∂ΓM⋆(U(T⋆)
Γ|Γ\∪ω(TΓ,T Γ

⋆ ))‖2L2(TΓ)

≤ C2
Mgeo(T⋆)

3(1 + | log(geo(T⋆))|)2‖U(T⋆) ◦ γ⋆‖2L2(Γ)

+ C2
Mgeo(T⋆)

3(1 + | log(min h⋆)|)2(| log(|T⋆|)|+ 1)‖U(T⋆)
Γ‖2L2(Γ)

≤ C2
MC

2
Lipgeo(T⋆)

3(1 + | log(geo(T⋆))|)2

(1 + | log(min h⋆)|)2(| log(|T⋆|)|+ 1)‖U(T⋆)‖2L2(Γ⋆)
.

This concludes
( ∑

TΓ∈SΓ
⋆

ρTΓ(T Γ
⋆ )2

)1/2

≤
( ∑

T∈S⋆

ρT (T⋆)
2
)1/2

+ α⋆.

The converse inequality follows analogously by replacing all triangle inequalities with reverse
triangle inequalities. This concludes the proof. �

Lemma 6.3.7. Let assumption 6.3.1 hold and suppose Lemma 6.2.9 (i)–(iii) as well as
geo(T⋆) ≤ C−1

ext/2 hold for T⋆ ∈ T. With G⋆ ∈ P0(T Γ
⋆ ), there holds

‖h1/2⋆ ◦ γ⋆G⋆|∂Γγ⋆|‖L2(Γ) ≤ Cinv‖G⋆|∂Γγ⋆|‖H−1/2(Γ) + geo(T⋆)
2‖G⋆‖L2(Γ).

The constant Cinv > 0 depends only on K(T⋆) (with K(·) from Section 3.2.2), (Γ2), and on
Γ.

Proof. There holds with (Γ2) and the inverse estimate from [57]

‖h1/2⋆ ◦ γ⋆G⋆|∂Γγ⋆|‖L2(Γ) ≤ CLip‖h1/2⋆ ◦ γ⋆G⋆‖L2(Γ)

. ‖G⋆‖H−1/2(Γ)

≤ ‖G⋆|∂Γγ⋆|‖H−1/2(Γ) + ‖G⋆(1− |∂Γγ⋆|)‖H−1/2(Γ).

Lemma 6.2.14 proves

‖G⋆(1− |∂Γγ⋆|)‖H−1/2(Γ) ≤ ‖1− |∂Γγ⋆|‖L∞(Γ)‖G⋆‖L2(Γ) . geo(T⋆)
2‖G⋆‖L2(Γ).

This concludes the proof. �
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Theorem 6.3.8 (Stability and reduction (E1)). Let assumption 6.3.1 hold. Given two
approximate geometries T⋆ ∈ T and T• ∈ T(T⋆) such that Lemma 6.2.9 (i)–(iii) as well as

geo(T⋆), geo(T•) ≤ C−1
ext/2 hold. Let q :=

√
1/4 + C2

γ‖γ′′‖2L2([0,1])maxh2⋆ < 1. Then, there

holds (E1) for ρ(·) from (6.2.5), with

̺(T⋆, T•) := Cpert(‖U(T⋆)
Γ − U(T•)

Γ‖H−1/2(Γ) + α⋆ + α•

+ (geo(T⋆)
2 + geo(T•)

2)(‖U(T⋆)‖L2(Γ⋆) + ‖U(T•)‖L2(Γ•))),

α⋆, α• from Lemma 6.3.6, S(T⋆, T•) := T⋆ \T•, Ŝ(T⋆, T•) := T• \T⋆, and 0 < ρred < 1 depends
only on q, whereas Cpert > 0 depends additionally on Cinv, CLip, Γ, and K(T•), K(T⋆) (with
K(·) from Section 3.2.2).

Proof. To see (E1a), we employ Lemma 6.3.6 two times with S⋆ := S1 := T⋆ \S(T⋆, T•)

and S⋆ := S2 := T• \ Ŝ(T⋆, T•) to obtain

∣∣∣
( ∑

T∈S1

ρT (T⋆)
2
)1/2

−
( ∑

T∈S2

ρT (T•)
2
)1/2∣∣∣

≤
∣∣∣
( ∑

T∈S1

ρT (T⋆)
2
)1/2

−
( ∑

TΓ∈SΓ
1

ρTΓ(T Γ
⋆ )2

)1/2∣∣∣

+
∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

T∈S2

ρT (T•)
2
)1/2∣∣∣

+
∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

TΓ∈SΓ
1

ρTΓ(T Γ
⋆ )2

)1/2∣∣∣

≤
∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

TΓ∈SΓ
1

ρTΓ(T Γ
⋆ )2

)1/2∣∣∣+ α⋆ + α•.

(6.3.16)

By definition of the bisection rule in Algorithm 6.2.10, there holds
⋃SΓ

1 =
⋃SΓ

2 . Moreover,
h⋆ ◦ γ⋆ = h• ◦ γ• on

⋃SΓ
1 . Hence, the remaining term in the above estimate satisfies

∣∣∣
( ∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2

)1/2

−
( ∑

TΓ∈SΓ
1

ρT (T⋆)
2
)1/2∣∣∣ ≤ ‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ).

The inverse estimate from [2] shows

‖h1/2• ◦ γ•∂ΓV(U(T•)
Γ − U(T⋆)

Γ)‖L2(Γ) . ‖h1/2• ◦ γ•(U(T•)
Γ − U(T⋆)

Γ)‖L2(Γ)

+ ‖U(T•)
Γ − U(T⋆)

Γ‖H−1/2(Γ),
(6.3.17)
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where the hidden constant depends only on Γ as well as K(T⋆) and K(T•) (with K(·) from
Section 3.2.2). Lemma 6.3.7 and Lemma 6.2.14 conclude

‖h1/2• ◦ γ•(U(T•)
Γ − U(T⋆)

Γ)‖L2(Γ)

. ‖h1/2• ◦ γ•(U(T•)
Γ − U(T⋆) ◦ γ⋆|∂Γγ•|)‖L2(Γ)

+ ‖1− |∂Γγ•|‖L∞(Γ)‖U(T⋆)‖L2(Γ⋆)

. ‖(U(T•)
Γ − U(T⋆) ◦ γ⋆)|∂Γγ•|)‖H−1/2(Γ)

+ geo(T•)
2‖U(T•) ◦ γ• − U(T⋆) ◦ γ⋆‖L2(Γ)

+ ‖1− |∂Γγ•|‖L∞(Γ)‖U(T⋆)‖L2(Γ⋆)

. ‖U(T•)
Γ − U(T⋆)

Γ)‖H−1/2(Γ)

+ (geo(T⋆)
2 + geo(T•)

2)(‖U(T⋆)‖L2(Γ⋆) + ‖U(T•)‖L2(Γ•)).

(6.3.18)

This concludes (E1a). To see (E1b), we use Lemma 6.3.6 two times with S⋆ := S1 :=

S(T⋆, T•) and S⋆ := S2 := \Ŝ(T⋆, T•) to obtain for δ > 0
∑

T∈S2

ρT (T•)
2 ≤ (1 + δ)

∑

TΓ∈SΓ
2

ρTΓ(T Γ
• )2 + (1 + δ)−1α2

•

≤ (1 + δ)2‖h1/2• ◦ γ•∂ΓV(U(T⋆)
Γ − f)‖2L2(∪SΓ

1 )

+ (1 + δ)−1α2
• + (1 + δ)(1 + δ−1)‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ)

≤ (1 + δ)2‖h⋆ ◦ γ⋆/h• ◦ γ•‖L∞(∪SΓ
1 )
‖h1/2⋆ ◦ γ⋆∂ΓV(U(T⋆)

Γ − f)‖2L2(∪SΓ
1 )

+ (1 + δ)−1α2
• + (1 + δ)(1 + δ−1)‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ)

≤ (1 + δ)3‖h⋆ ◦ γ⋆/h• ◦ γ•‖L∞(∪SΓ
1 )

∑

T∈S1

ρT (T⋆)
2 + (1 + δ)2(1 + δ−1)α2

⋆

+ (1 + δ)−1α2
• + (1 + δ)(1 + δ−1)‖h1/2• ◦ γ•∂ΓV(U(T•)

Γ − U(T⋆)
Γ)‖L2(Γ).

Lemma 6.2.11 implies that

‖h⋆ ◦ γ⋆/h• ◦ γ•‖L∞(∪SΓ
1 )

≤ q < 1.

Hence, sufficiently small δ > 0 together with (6.3.17)–(6.3.18) conclude the proof. �

To prove convergence of Algorithm 6.2.2, we require the following assumption on the
exact boundary Γ and the initial geometry T0: There exists 0 < qgeo < 1 such that all T⋆ ∈ T
satisfy

geoT ′(T•) ≤ qgeogeo(T⋆) for all T ′ ∈ T• \ T⋆. (6.3.19)

This assumption is met if, for example, the exact boundary Γ can be parametrized in terms
of piecewise polynomials of arbitrary degree or NURBS and h⋆ is sufficiently small.

Moreover, we need the assume that there holds

sup
ℓ∈N0

max{ϑ, qgeo}(1−ε)3ℓ/2‖U(Tℓ)‖L2(Γℓ) <∞ (6.3.20)

for some ε > 0.

Remark 6.3.9. In case of quasi-uniform partitions with min hℓ ≃ maxhℓ, assump-
tion (6.3.20) is straightforward to prove even with ε = 1, i.e., supℓ∈N ‖U(Tℓ)‖L2(Γℓ) < ∞.
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However, we did not succeed in finding a proof for the general case of locally refined parti-
tions. We conjecture that there exists ν > 0 such that

sup
ℓ∈N0

ℓ−ν‖U(Tℓ)‖L2(Γℓ) <∞,

which would imply (6.3.20). Note that not even uniform stability of the continuous problem
V−1
⋆ : H1(Γ⋆) → L2(Γ⋆) for all T⋆ ∈ T is known in the literature. From the uniform case, we

derive the (very conservative) worst case estimate ‖U(Tℓ)‖L2(Γℓ) . 2ℓ. Assumption (6.3.20)
is easy to check numerically and in this sense, one should understand the convergence re-
sults of Lemma 6.3.10 and Theorem 6.4.1. If one numerically detects stability (6.3.20),
Algorithm 6.2.2 leads to convergence towards the exact solution.

Lemma 6.3.10. Suppose Lemma 6.2.9 (i)–(iii) as well as geo(Tℓ) ≤ C−1
ext/2 for all

ℓ ∈ N0. Under assumption (6.3.1), (6.3.19), and (6.3.20) there exists U∞ ∈ H−1/2(Γ) such
that there holds a priori convergence limℓ→∞ ‖U∞ − U(Tℓ)

Γ‖H−1/2(Γ) = 0. Moreover, there
holds limℓ→∞ ̺(Tℓ, Tℓ+1) = 0, where ̺(Tℓ, Tℓ+1) is defined in Theorem 6.3.8.

Proof. There holds

geoT (Tℓ)
(6.2.6b)

≤ ϑgeo(Tℓ) for T ∈ Tℓ \Mℓ

and

geoT ′(Tℓ+1)
(6.3.19)

≤ qgeogeo(Tℓ) for all T ′ ∈ Tℓ+1 \ Tℓ.

Since all T ∈ Tℓ+1 satisfy either T ∈ Tℓ+1 \ Tℓ or T ∈ Tℓ+1 ∩ Tℓ ⊆ Tℓ \Mℓ, the combination
implies

geo(Tℓ+1) = max
T∈Tℓ+1

geoT (Tℓ+1) ≤ max{qgeo, ϑ}geo(Tℓ). (6.3.21)

This implies geo(Tℓ) → 0 as ℓ → ∞. Define X∞ :=
⋃

ℓ∈N0

{
v|∂Γγℓ| : v ∈ P0(T Γ

ℓ )
}

⊆
H−1/2(Γ) and the a priori limit U∞ ∈ X∞ by

〈VU∞ , v〉Γ = 〈f , v〉Γ for all v ∈ X∞.

For all ℓ ∈ N0, define X∞(Tℓ) :=
⋃

k∈N0

{
v ◦ γ−1

ℓ |∂Γℓ
(γk ◦ γ−1

ℓ )| : v ∈ P0(T Γ
k )

}
⊆ H−1/2(Γℓ)

and U∞(Tℓ) ∈ X∞(Tℓ) by

〈VℓU∞(Tℓ) , v〉Γℓ
= 〈fℓ , v〉Γℓ

for all v ∈ X∞(Tℓ).

Then, there holds for all v ∈ X∞

〈VU∞ , v〉Γ = 〈f , v〉Γ = 〈fℓ , v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ |〉Γℓ

.

For v ∈ ⋃
ℓ∈N0

{
v|∂Γγℓ| : v ∈ P0(T Γ

ℓ )
}

(which is a dense subset of X∞), there holds v =

w|∂Γγk| for some w ∈ P0(T Γ
k ) and k ∈ N0. In this case, we get with (6.2.12) that

v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ | = w ◦ γ−1

ℓ |∂Γγk| ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ |

= w ◦ γ−1
ℓ |∂Γℓ

(γk ◦ γ−1
ℓ )| ∈ X∞(Tℓ).

(6.3.22)

Together with ‖v‖H−1/2(Γ) ≃ ‖v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ |‖H−1/2(Γℓ)

by Lemma 6.2.19, this implies

v ◦ γ−1
ℓ |∂Γℓ

γ−1
ℓ | ∈ X∞(Tℓ) for all v ∈ X∞. (6.3.23)

Analogously, we obtain

w ◦ γℓ|∂Γγℓ| ∈ X∞ for all w ∈ X∞(Tℓ). (6.3.24)
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This shows

〈VU∞ , v〉Γ = 〈fℓ , v ◦ γ−1
ℓ |∂Γγ−1

ℓ |〉Γℓ
= 〈VℓU∞(Tℓ) , v ◦ γ−1

ℓ |∂Γℓ
γ−1
ℓ |〉Γℓ

(6.3.25)

for all v ∈ X∞.
With U∞ − U∞(Tℓ)

Γ ∈ X∞ by (6.3.24), we obtain with w̃ = w ◦ γ−1
ℓ |∂Γγ−1

ℓ |

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) ≃ sup

w∈X∞\{0}

〈V(U∞ − U(Tℓ)
Γ) , w〉Γ

‖w‖H−1/2(Γ)

= sup
w∈X∞\{0}

〈Vℓ(U∞(Tℓ)− U(Tℓ)) , w̃〉Γℓ
+ 〈VℓU(Tℓ) , w̃〉Γℓ

− 〈VU(Tℓ)
Γ , w〉Γ

‖w‖H−1/2(Γ)

.

(6.3.26)

As in (6.2.49), there holds with Lemma 6.2.19 and (6.2.37)

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) . ‖U∞(Tℓ)− U(Tℓ)‖H−1/2(Γℓ)

+ ‖MℓU(Tℓ)
Γ‖H1/2(Γ).

The Céa Lemma 6.2.39 (since P0(Tℓ) ⊆ X∞(Tℓ) and Lemma 6.2.34 conclude

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) . min

Vℓ∈P0(Tℓ)
‖U∞(Tℓ)− Vℓ‖H−1/2(Γℓ)

+ geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|)‖U(Tℓ)‖L2(Γℓ).

(6.3.27)

As in (6.3.26), we get for Vℓ ∈ P0(Tℓ) and V Γ
ℓ := Vℓ ◦ γℓ|∂Γγℓ| that

‖U∞ − V Γ
ℓ ‖H−1/2(Γ) ≃ sup

w∈X∞\{0}

〈V(U∞ − V Γ
ℓ ) , w〉Γ

‖w‖H−1/2(Γ)

= sup
w∈X∞\{0}

〈Vℓ(U∞(Tℓ)− Vℓ) , w̃〉Γℓ
+ 〈VℓVℓ , w̃〉Γℓ

− 〈VV Γ
ℓ , w〉Γ

‖w‖H−1/2(Γ)

,

(6.3.28)

which implies together with Lemma 6.2.34, Lemma 6.2.19, and the uniform ellipticity (6.2.38)
that

‖U∞(Tℓ)− Vℓ‖H−1/2(Γℓ)
. sup

w̃∈X∞(Tℓ)\{0}

〈Vℓ(U∞(Tℓ)− Vℓ) , w̃〉Γℓ

‖w̃‖H−1/2(Γℓ)

(6.3.23)≃ sup
w∈X∞\{0}

〈Vℓ(U∞(Tℓ)− Vℓ) , w̃〉Γℓ

‖w‖H−1/2(Γ)

(6.3.28)

. ‖U∞ − V Γ
ℓ ‖H−1/2(Γℓ)

+ geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|))‖Vℓ‖L2(Γℓ).

This and (6.3.27) imply

‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) . min

Vℓ∈P0(Tℓ)

(
‖U∞ − V Γ

ℓ ‖H−1/2(Γ)

+ geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|)(‖Vℓ‖L2(Γℓ) + ‖U(Tℓ)‖L2(Γℓ))

)
.

(6.3.29)

For all k ∈ N0, there holds with Lemma 6.2.14

‖U∞ − V Γ
ℓ ‖H−1/2(Γ) ≤ ‖U∞ − Vℓ ◦ γℓ‖H−1/2(Γ) + ‖1− |∂Γγℓ|‖L∞(Γ)‖Vℓ ◦ γℓ‖L2(Γ)

. ‖U∞ − Vℓ ◦ γℓ‖H−1/2(Γ) + geo(Tℓ)
2‖Vℓ‖L2(Γℓ).

145



With (6.3.29), this shows

‖U∞−U(Tℓ)
Γ‖H−1/2(Γ) . min

Vℓ∈P0(Tℓ)

(
‖U∞ − Vℓ ◦ γℓ‖H−1/2(Γ) (6.3.30)

+ (geo(Tℓ)
2 + geo(Tℓ)

3/2(1 + | log(geo(Tℓ))|))(‖Vℓ‖L2(Γℓ) + ‖U(Tℓ)‖L2(Γℓ)

)
.

The term geo(Tℓ)
3/2(1 + | log(geo(Tℓ))|)‖U(Tℓ)‖L2(Γℓ) converges to zero by use of assump-

tion (6.3.20) and (6.3.21).

It thus remains to prove that U∞ ∈ ⋃
ℓ∈N0

{
Vℓ ◦ γℓ : Vℓ ∈ P0(Tℓ)

}
=

⋃
ℓ∈N0

P0(T Γ
ℓ ) ⊆

H−1/2(Γ). To that end, we show that X∞ ∩ ⋃
ℓ∈N0

P0(T Γ
ℓ ) is dense in X∞ ∩ L2(Γ) with

respect to the L2-norm. Consider Γ0 :=
{
x ∈ Γ : limℓ→∞ hℓ ◦ γℓ(x) = 0

}
. Obviously,⋃

ℓ∈N0
P0(T Γ

ℓ )|Γ0 is dense in L2(Γ0) and thus also in X∞ ∩ L2(Γ0). For all x ∈ Γ \ Γ0, there
exists ℓ0 ∈ N such that x ∈ Tx ∈ Tℓ0 with Tx ⊆ Γ and Tx ∈ Tℓ for all ℓ ≥ ℓ0. This implies
∂Γγℓ|Tx = tΓ|Tx and hence constant for all ℓ ≥ ℓ0. Moreover, ∂Γγℓ|Tx = cℓ for all ℓ < ℓ0,
where cℓ ∈ R2 depends only on tΓ|Tx and the father element T ′ ∈ Tℓ of Tx. This shows that
X∞|Γ\Γ0

=
⋃

ℓ∈N0
P0(T Γ

ℓ )|Γ\Γ0
. Altogether, this implies that X∞ ∩⋃

ℓ∈N0
P0(T Γ

ℓ ) is dense in

X∞ ∩L2(Γ) with respect to the L2-norm. Hence,
⋃

ℓ∈N0
P0(T Γ

ℓ ) is dense in X∞ with respect

to the H−1/2(Γ)-norm and thus U∞ ∈ ⋃
ℓ∈N0

P0(T Γ
ℓ ).

Given ε > 0, this allows to choose Vℓ0 ∈ Pp(Tℓ0) such that ‖U∞ − Vℓ0 ◦ γℓ0‖H−1/2(Γ) ≤ ε.
Then, choose k ≥ ℓ0 such that all ℓ ≥ k satisfy

(geo(Tℓ)
2 + geo(Tℓ)

3/2(1 + | log(geo(Tℓ))|))‖Vℓ0‖L2(Γ) ≤ ε.

Since Vℓ0 ◦ γℓ0 ◦ γ−1
ℓ ∈ P0(Tℓ) and Vℓ0 ◦ γℓ0 ◦ γ−1

ℓ ◦ γℓ = Vℓ0 ◦ γℓ, (6.3.30) shows ‖U∞ −
U(Tℓ)

Γ‖H−1/2(Γ) . 2ε for all ℓ ≥ k. This concludes ‖U∞ − U(Tℓ)
Γ‖H−1/2(Γ) → 0 as ℓ→ ∞.

The above and the definition of ̺(Tℓ, Tℓ+1) shows limℓ→∞ ̺(Tℓ, Tℓ+1) = 0, where we use

(| log(|Tℓ|)|+ | log(min hℓ)|) . ℓ for all ℓ ∈ N0,

which follows from the fact that each step maximally doubles the number of elements and
approximately halves the size of the elements. This concludes the proof. �

6.4. Main result

Theorem 6.4.1. Define T as in Section 6.2.5. Assume that all T⋆ ∈ T satisfy h⋆ ≤
C−1

Γ κ−1
Γ /2 and geo(T⋆) ≤ min{C−1

ext/2, C
−1
Γ /2, C−1

Γ κ−1
Γ /2} (such that Lemma 6.2.9 (i)–(iii)

hold). Then, the error estimator η(·) satisfies reliability (6.2.47). Under the assump-
tion (6.3.1), the error estimator ρ(·) from (6.2.5) satisfies (E1) with ̺(·, ·) as stated in
Theorem 6.3.8. Moreover, under the assumptions (6.3.19)–(6.3.20), there holds convergence

‖u− U(Tℓ)
Γ‖H−1/2(Γ) ≤ Crelη(Tℓ) → 0 as ℓ→ ∞.

Proof. Since T0 satisfies (i)–(iii) from Lemma 6.2.9, all T⋆ ∈ T satisfy (i)–(iii), too.
Therefore, Theorem 6.2.28 and Theorem 6.3.8 prove (6.2.47) and (E1). The estimator ρ(·)
satisfies Dörfler marking (6.2.6a) in each step of Algorithm 6.2.2. Therefore, Lemma 2.3.5
proves estimator reduction 2.3.8 for ρ(·). Lemma 6.3.10 shows limℓ→∞ ̺(Tℓ, Tℓ+1) = 0. Hence,
Lemma 2.3.6 concludes the proof. �

Consequence 6.4.2. Under the assumptions (6.3.1)–(6.3.20), Algorithm 6.2.2 leads
to limℓ→∞ ̺(Tℓ, Tℓ+1) = 0 and hence convergence in the sense of Theorem 2.3.3 (i).
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CHAPTER 7

General Quasi-Orthogonality (E2) For Non-Symmetric Problems

7.1. Introduction, state of the art & outline

The general quasi-orthogonality (E2) renders an important tool for the optimality proofs
of the previous chapters. Section 2.6 shows that it is even necessary if the algorithm is
R-linear convergent. The following investigations provide sufficient assumptions for (E2) to
hold. Section 7.2–7.4 appear in similar manner in [46]. Figure 1 depicts a geometric view
on the general quasi-orthogonality (E2).

7.2. General quasi-orthogonality (E2) for linear second-order elliptic equations

We stress that the quasi-orthogonality proof makes explicit use of the fact that we already
have convergence U(Tℓ) → u in H1

0 (Ω). We consider the setting of Section 3.5.1. The

u

U(T2)

U(T1)

U(T0)

Figure 1. Geometric view on the general quasi-orthogonality (E2). For

̺(T , T̂ ) ≃ ‖U(T )−U(T̂ )‖, the general quasi-orthogonality bounds the ℓ2-sum
of the squared perturbations. Since the adaptive algorithm performs a step-
by-step optimization of the triangulations without any foresight, it controls the
perturbations ̺(Tℓ, Tℓ+1) only. By Galerkin orthogonality, the solutions are in
some sense orthogonal to each other. The general quasi-orthogonality (E2)
ensures that the overall approximation (dashed green line), which is measured
by η(Tℓ), is an upper bound for the sum of the individual steps. This would
be automatically the case if η(Tℓ) is a Hilbert norm which corresponds to the
orthogonality between the solutions. If (E2) is not satisfied, one has no argu-
ment that the individual steps approach the exact solution in an efficient way
(dotted red line).
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operator L is split as follows

Au = −divA∇u,
Cu = b · ∇u+ cu.

The following observation is the key element of the proof of (E2).

Lemma 7.2.1. The operators A, C : H1
0 (Ω) → H−1(Ω) are bounded. Moreover, A is

symmetric, i.e., 〈Au , v〉 = 〈Av , u〉 for all u, v ∈ H1
0 (Ω), and C is compact.

Proof. The symmetry of A is obvious as A(x) is symmetric, and both operators A and
C are also bounded, i.e.,

‖Av‖H−1(Ω) ≤ ‖A‖L∞(Ω)‖∇v‖L2(Ω),

‖Cv‖H−1(Ω) ≤ ‖Cv‖L2(Ω) . (‖b‖L∞(Ω) + ‖c‖L∞(Ω))‖∇v‖L2(Ω),

for all v ∈ H1
0 (Ω). This implies that C̃ : H1

0 (Ω) → L2(Ω), C̃v := Cv is well-defined and
bounded. It remains to prove that C is compact. The Rellich compactness theorem shows
that the embedding ι : H1

0(Ω) →֒ L2(Ω) is a compact operator. Therefore, according to
Schauder’s theorem, see e.g. [73, Theorem 4.19], the adjoint operator ι⋆ : L2(Ω) → H−1(Ω)
is also compact. Obviously, ι⋆ : L2(Ω) → H−1(Ω) coincides with the natural embedding,
and we may write

C = ι⋆ ◦ C̃ : H1
0 (Ω) → L2(Ω) → H−1(Ω).

Therefore, C is the composition of a bounded operator and a compact operator and hence
compact. This concludes the proof. �

Lemma 7.2.2. Let (Tℓ)ℓ∈N0 denote the output of Algorithm 2.2.1. Assume that there
holds convergence limℓ→∞ ‖U(Tℓ) − u‖H1

0 (Ω) = 0 with u and U(Tℓ) from Section 3.5.1. The

sequences (eℓ)ℓ∈N and (Eℓ)ℓ∈N defined by

eℓ :=

{
u−U(Tℓ)

‖∇(u−U(Tℓ))‖L2(Ω)
, for u 6= U(Tℓ),

0, else,
and

Eℓ :=

{
U(Tℓ+1)−U(Tℓ)

‖∇(U(Tℓ+1)−U(Tℓ))‖L2(Ω)
, for U(Tℓ+1) 6= U(Tℓ),

0, else,

converge to zero, weakly in H1
0 (Ω), i.e.,

lim
ℓ→∞

〈w , eℓ〉 = 0 = lim
ℓ→∞

〈w , Eℓ〉 for all w ∈ H−1(Ω), (7.2.1)

where 〈· , ·〉 denotes the extended L2(Ω)-scalar product.

Proof. We prove weak convergence of eℓ to zero. The weak convergence of Eℓ fol-
lows with the same arguments. Let (eℓj) be a subsequence of (eℓ). Due to boundedness
‖∇eℓj‖L2(Ω) ≤ 1 for all j ∈ N, we may extract a weakly convergent subsequence (eℓk) of (eℓj)
with

eℓk ⇀ w ∈ H1
0 (Ω).

First, note that convergence limℓ→∞ ‖U(Tℓ) − u‖H1
0 (Ω) = 0 implies that u, U(Tℓ) ∈ X∞ :=⋃

ℓ∈N0
Sp
0 (Tℓ) ⊆ H1

0 (Ω) implies eℓ ∈ X∞ and hence w ∈ X∞. Second, for all ℓk ≥ ℓ with
eℓk 6= 0 and all V ∈ Sp

0 (Tℓ), it holds

b(eℓk , V ) = ‖∇(u− Uℓk)‖−1
L2(Ω)b(u− Uℓk , V ) = 0.
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For all ℓ ∈ N0, V ∈ Sp
0 (Tℓ), and ε > 0, there exists k0 ∈ N such that all k ≥ k0 satisfy

|b(w , V )| = |〈w , L⋆V 〉| ≤ ε+ |〈eℓk , L⋆V 〉| = ε+ |b(eℓk , V )| = ε,

since k0 is chosen large enough such that ℓk ≥ ℓ. Therefore

b(w , V ) = 0 for all V ∈ Sp
0 (Tℓ) and ℓ ∈ N.

Due to definiteness of b(·, ·) and w ∈ X∞ :=
⋃

ℓ∈N Sp
0 (Tℓ), this implies w = 0. Altogether, we

have now shown that each subsequence of eℓ has a subsequence which converges weakly to
zero. This immediately implies weak convergence eℓ ⇀ 0 as ℓ→ ∞. �

The previous lemma shows that although (Eℓ)ℓ∈N is no orthonormal sequence, it shares
the property of weak convergence to zero with orthonormal systems. Note that our proof
already used convergence Uℓ → u as ℓ→ ∞ in the sense that we required u−Uℓ ∈ X∞. This
suffices to prove the following quasi-Pythagoras theorem.

Proposition 7.2.3. Define ‖ · ‖ := b(· , ·)1/2 with b(· , ·) from Section 3.5.1. Assume
that limℓ→∞ ‖U(Tℓ)− u‖H1

0 (Ω) = 0. Then, for all 0 < ε < 1, there exists ℓqo ∈ N such that

‖U(Tℓ+1)− U(Tℓ)‖2 ≤
1

1− ε
‖u− U(Tℓ)‖2 − ‖u− U(Tℓ+1)‖2 (7.2.2)

for all ℓ ≥ ℓqo, where u and U(Tℓ) are defined in Section 3.5.1.

Remark 7.2.4. As in [36, Theorem 5.1], the quasi-orthogonality (7.2.2) is an asymp-
totic statement. The advantage here is that (7.2.2) is automatically guaranteed after ℓ0 steps
of Algorithm 2.2.1. In contrast to that, [36, Assumption 4.3] used to prove [36, Theorem 5.1],
includes a element-size condition of the form |T |1/d ≤ hmax ≪ 1 for all T ∈ Tℓ which is not
necessarily enforced by Algorithm 2.2.1, unless the initial triangulation is already sufficiently
fine. Moreover, hmax is unknown in general and depends on the regularity of the dual prob-
lem.

Proof. Lemma 7.2.2 shows that eℓ, Eℓ ⇀ 0 as ℓ → ∞. Due to Lemma 7.2.1, C is
compact. Therefore, we have strong convergence Ceℓ, CEℓ → 0 in H−1(Ω) as ℓ → ∞. With
〈· , ·〉 := 〈· , ·〉H−1(Ω)×H1

0 (Ω), this shows

〈C(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉 = 〈Ceℓ+1 , U(Tℓ+1)− U(Tℓ)〉‖∇(u− U(Tℓ+1))‖L2(Ω)

≤ ‖Ceℓ+1‖H−1(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)

as well as

〈C(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉
= 〈CEℓ , u− U(Tℓ+1)〉‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)

≤ ‖CEℓ‖H−1(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω).

For any δ > 0, this may be employed to obtain some ℓ0 ∈ N such that for all ℓ ≥ ℓ0, it holds

|〈C(U(Tℓ+1)− U(Tℓ)) , u−U(Tℓ+1)〉|+ |〈C(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|
≤ δ‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω).

Together with Galerkin orthogonality

0 = b(u− U(Tℓ+1), Vℓ+1) = 〈L(u− U(Tℓ+1)) , Vℓ+1〉 for all Vℓ+1 ∈ Sp
0 (Tℓ+1),

149



we estimate

|〈L(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|
= |〈A(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉+ 〈C(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|
≤ |〈L(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|+ |〈C(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|

+ |〈C(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|
≤ δ‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω).

(7.2.3)

The definition of ‖ · ‖ and Galerkin orthogonality (2.7.3) yield

‖u− U(Tℓ+1)‖2 + ‖U(Tℓ+1)− U(Tℓ)‖2 + 2〈L(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉
= ‖u− U(Tℓ)‖2,

whence

‖U(Tℓ+1)− U(Tℓ)‖2 ≤ ‖u− U(Tℓ)‖2 − ‖u− U(Tℓ+1)‖2

+ 2δC2
norm‖u− U(Tℓ+1)‖‖U(Tℓ+1)− U(Tℓ)‖,

where Cnorm > 0 is defined in Section 3.5.1. The application of Young’s inequality 2ab ≤
a2 + b2 and the choice ε = δC2

norm conclude the proof. �

Theorem 7.2.5. Assume that limℓ→∞ ‖U(Tℓ) − u‖ = 0 with u and U(Tℓ) from Sec-
tion 3.5.1. Then, for all εqo > 0, there exists Cqo > 0 such that (E2) holds with ̺(Tℓ, Tℓ+1) :=
‖U(Tℓ)− U(Tℓ+1)‖L2(Ω) and each estimator η(·) which is reliable, i.e.,

‖u− U(Tℓ)‖ ≤ Crelη(Tℓ) for all ℓ ∈ N0.

Particularly, this is satisfied by the error estimator η(·) from Section 3.5.1.

Proof. Proposition 7.2.3 proves the quasi-orthogonality (2.7.5) for all ℓ ≥ ℓ0 with
̺(Tℓ, Tℓ+1) = ‖∇(U(Tℓ) − U(Tℓ+1))‖ and αℓ := ‖u − U(Tℓ)‖2. The Céa lemma 3.5.5 and
reliability (in the setting of Section 3.5.1 from (2.4.1)) imply

̺(Tℓ, Tℓ+1) . ‖u− U(Tℓ)‖ . η(Tℓ) for all ℓ ∈ N0.

Therefore, Lemma 2.7.3 proves for all ℓ ≥ ℓ0.

∞∑

k=ℓ

(
‖U(Tk)− U(Tk+1)‖2 − εqoη(Tk)

2
)
≤ C ′

qoη(Tℓ)
2.

For all ℓ < ℓ0, there exists Cℓ > 0 with

ℓ0∑

k=ℓ

(
‖U(Tk)− U(Tk+1)‖2 − εqoη(Tk)

2
)
≤ Cℓη(Tℓ)

2,

since both sides of the inequality are finite and if η(Tℓ) = 0, then reliability (2.4.1) and the
Céa lemma (3.5.5) imply

‖U(Tk)− U(Tk+1)‖ . ‖u− U(Tℓ)‖ . η(Tℓ) = 0 for all k ≥ ℓ.

With Cqo := C ′
qo +maxℓ=0,...,ℓ0−1Cℓ, this concludes the proof. �
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7.3. General quasi-orthogonality (E2) for problems with Gårding inequality

Lemma 7.3.1. Let (Tℓ)ℓ∈N0 denote the output of Algorithm 3.5.3. Assume definiteness

for all v ∈ X∞ :=
⋃∞

ℓ=0 Sp
0 (Tℓ), i.e.,

b(w , v) = 0 for all v ∈ X∞ =⇒ w = 0. (7.3.1)

Then, the sequences (eℓ)ℓ∈N and (Eℓ)ℓ∈N (with u and U(Tℓ) from Section 3.5.2) defined by

eℓ :=

{
u−U(Tℓ)

‖∇(u−U(Tℓ))‖L2(Ω)
, for u 6= U(Tℓ),

0, else,
and

Eℓ :=

{
U(Tℓ+1)−U(Tℓ)

‖∇(U(Tℓ+1)−U(Tℓ))‖L2(Ω)
, for U(Tℓ+1) 6= U(Tℓ),

0, else,

for all ℓ ≥ ℓ0 (from Lemma 3.5.10) converge to zero, weakly in H1
0 (Ω) in the sense (7.2.1).

Proof. We prove weak convergence of eℓ to zero. The weak convergence of Eℓ fol-
lows with the same arguments. Let (eℓj) be a subsequence of (eℓ). Due to boundedness
‖∇eℓj‖L2(Ω) ≤ 1 for all j ∈ N, we may extract a weakly convergent subsequence (eℓk) of (eℓj )
with

eℓk ⇀ w ∈ H1
0 (Ω).

Lemma 3.5.11 proves limℓ→∞ ‖∇(u−U(Tℓ))‖L2(Ω) = 0 and particularly u ∈ X∞. This implies
eℓ ∈ X∞ and hence w ∈ X∞. For all ℓk ≥ ℓ with eℓk 6= 0 and all V ∈ Sp

0 (Tℓ), it holds

b(eℓk , V ) = ‖∇(u− Uℓk)‖−1
L2(Ω)b(u− Uℓk , V ) = 0.

For all ℓ ∈ N, V ∈ Sp
0 (Tℓ), and ε > 0, there exists k0 ∈ N such that all k ≥ k0 satisfy

|b(w , V )| = |〈w , L⋆V 〉| ≤ ε+ |〈eℓk , L⋆V 〉| = ε+ |b(eℓk , V )| = ε,

since k0 is chosen large enough such that ℓk ≥ ℓ. Therefore

b(w , V ) = 0 for all V ∈ Sp
0 (Tℓ) and ℓ ∈ N.

Due to (7.3.1) and w ∈ X∞, this implies w = 0. Altogether, we have now shown that each
subsequence of eℓ has a subsequence which converges weakly to zero. This immediately
implies weak convergence eℓ ⇀ 0 as ℓ→ ∞. �

Lemma 7.3.2. Assume definiteness (7.3.1). There exists an index ℓnorm ∈ N such that
for all ℓ ≥ ℓnorm there holds

C−1
norm‖u− Uℓ‖ ≤ ‖∇(u− Uℓ)‖L2(Ω) ≤ Cnorm‖u− Uℓ‖ and

C−1
norm‖Uℓ+1 − Uℓ‖ ≤ ‖∇(Uℓ+1 − Uℓ)‖L2(Ω) ≤ Cnorm‖Uℓ+1 − Uℓ‖

with u and U(Tℓ) from Section 3.5.2.

Proof. With (3.5.9) and |b(·, ·)| = ‖ · ‖2, we may estimate

‖∇(u− Uℓ)‖2L2(Ω) . ‖u− Uℓ‖2 + ‖u− Uℓ‖2L2(Ω)

= ‖u− Uℓ‖2 + ‖eℓ‖2L2(Ω)‖∇(u− Uℓ)‖2L2(Ω).
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Lemma 7.3.1 shows weak convergence eℓ ⇀ 0 in H1
0 (Ω). The Rellich compactness theorem

thus implies strong convergence eℓ → 0 in L2(Ω). Therefore, there exists an index ℓnorm ∈ N
such that there holds

‖∇(u− Uℓ)‖2L2(Ω) . ‖u− Uℓ‖2 for all ℓ ≥ ℓnorm.

The remaining statements follow analogously. �

Proposition 7.3.3. Assume definiteness (7.3.1). Then, for all 0 < ε < 1, there exists
ℓqo ∈ N with ℓqo ≥ ℓnorm such that

‖U(Tℓ+1)− U(Tℓ)‖2 ≤
1

1− ε
‖u− U(Tℓ)‖2 − ‖u− U(Tℓ+1)‖2 (7.3.2)

for all ℓ ≥ ℓqo with u and U(Tℓ) from Section 3.5.2.

Proof. With Lemma 7.3.2 and Lemma 7.3.1, the proof follows analogously to the proof
of Proposition 7.2.3. �

Theorem 7.3.4. Assume definiteness (7.3.1) and the Céa lemma (3.5.15) for all ℓ ≥ ℓ1
and some ℓ1 ∈ N. Then, for all εqo > 0, there exists Cqo > 0 such that (E2) holds with
̺(Tℓ, Tℓ+1) := ‖∇(U(Tℓ)−U(Tℓ+1))‖L2(Ω) for all ℓ ≥ ℓ0 with ℓ0 from Lemma 3.5.10 and each
estimator η(·) which is reliable, i.e.,

‖∇(u− U(Tℓ))‖L2(Ω) ≤ Crelη(Tℓ) for all ℓ ∈ N0.

The solutions u and U(Tℓ) are defined Section 3.5.2. Particularly, this is satisfied by the
error estimator η(·) from Section 3.5.2.

Proof. Proposition 7.3.3 proves quasi-orthogonality (2.7.5) with ̺(Tℓ, Tℓ+1) = ‖U(Tℓ)−
U(Tℓ+1)‖ and αℓ := ‖u− U(Tℓ)‖2 for all ℓ ≥ ℓqo. With the Céa lemma 3.5.15, Lemma 7.3.2,
and reliability (in the setting of Section 3.5.2, reliability is proved in Lemma 3.5.6), this
shows for all ℓ ≥ max{ℓqo, ℓ1}

̺(Tℓ, Tℓ+1) . ‖u− U(Tℓ)‖ . η(Tℓ) for all ℓ ∈ N0.

Therefore, Lemma 2.7.3 proves for all ℓ ≥ max{ℓqo, ℓ1}.
∞∑

k=ℓ

‖U(Tk)− U(Tk+1)‖2 − εqoη(Tk)
2 ≤ C ′

qoη(Tℓ)
2.

For all ℓ0 < ℓ < max{ℓqo, ℓ1}, there exists Cℓ > 0 with

ℓ0∑

k=ℓ

‖∇(U(Tk)− U(Tk+1))‖2L2(Ω) − εqoη(Tk)
2 ≤ Cℓη(Tℓ)

2,

since both sides of the inequality are finite and, by Remark 3.5.7, also η(Tℓ) > 0. The
combination of the last estimates with the norm equivalence from Lemma 7.3.2 concludes
the proof. �
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7.4. General quasi-orthogonality (E2) for nonlinear second-order elliptic

equations

Similar to the proof in Section 7.2, we derive a corresponding result for the nonlinear
case. We consider the setting of Section 3.6.

Lemma 7.4.1. Recall X∞ :=
⋃

ℓ∈N0
Sp
0 (Tℓ) ⊆ H1

0 (Ω). The operator (DL)|X∞u : X∞ →
X ⋆

∞ defined in Section 3.6 is injective and has closed range.

Proof. With (3.6.6) and the definition of the Fréchet derivative, there holds for all
v ∈ X∞

〈((DL)|X∞u)(v) , v〉 = lim
δ→0

δ−1〈L(u+ δv)−Lu , v〉

= lim
δ→0

δ−2〈L(u+ δv)−Lu , u+ δv − u〉

& lim
δ→0

δ−2‖∇(u+ δv − u)‖2L2(Ω) = ‖∇v‖2L2(Ω).

Hence, we have ((DL)|X∞u)(v) 6= 0 in X ⋆
∞ for all v ∈ X∞ \ {0}. Let wn ∈ range((DL)|X∞u)

denote a Cauchy sequence. Then, the above estimate proves for ((DL)|X∞u)vn = wn

‖∇(vn − vm)‖2L2(Ω) . 〈((DL)|X∞u)(vn − vm) , vn − vm〉
≤ ‖wn − wm‖X ⋆

∞
‖∇(vn − vm)‖L2(Ω),

which concludes that vn → v ∈ X∞ and hence wn → ((DL)|X∞u)(v) ∈ X ⋆
∞ by continuity of

DL)|X∞u. This concludes the proof. �

Lemma 7.4.2 (Taylor). For all v, w ∈ H1
0 (Ω) with ‖∇(u−v)‖L2(Ω)+‖∇(u−w)‖L2(Ω) ≤

εℓoc, there holds

‖Lw − Lv −DL(w)(w − v)‖H−1(Ω) ≤ C10‖∇(w − v)‖2L2(Ω), (7.4.1a)

‖Aw −Av −DA(w)(w − v)‖H−1(Ω) ≤ C10‖∇(w − v)‖2L2(Ω), (7.4.1b)

where L and A are defined in Section 3.6.

Proof. The local boundedness (3.6.10) together with [37, Theorem 6.5] applied to the
operators L and A prove the statement. �

Lemma 7.4.3. The sequence (eℓ)ℓ∈N (with u and U(Tℓ) from Section 3.6) defined by

eℓ :=

{
u−U(Tℓ)

‖∇(u−U(Tℓ))‖L2(Ω)
, for u 6= U(Tℓ),

0, else

converges to zero, weakly in H1
0 (Ω) in the sense of (7.2.1).

Proof. With Galerkin-orthogonality and the convention ∞ · 0 = 0, we obtain

lim
ℓ→∞

〈Lu− LU(Tℓ) , Vk〉
‖∇(u− U(Tℓ))‖L2(Ω)

= 0 for all Vk ∈ Sp
0 (Tk) and k ∈ N.

By continuity of the duality brackets, this results in convergence for all v ∈ X∞

〈Lu−LU(Tℓ) , v〉
‖∇(u− U(Tℓ))‖L2(Ω)

→ 0 as ℓ→ ∞.
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By use of (7.4.1a) and convergence from (3.6.15), we observe for all v ∈ X∞ and all sufficiently
large ℓ ∈ N.

|〈Lu− LU(Tℓ) , v〉|
‖∇(u− U(Tℓ))‖L2(Ω)

≥ |〈(DLu)(u− U(Tℓ)) , v〉|
‖∇(u− U(Tℓ))‖L2(Ω)

− C10‖∇(u− U(Tℓ))‖L2(Ω)‖∇v‖L2(Ω).

Again, with convergence U(Tℓ) → u in H1
0 (Ω) from (3.6.15), this implies immediately for all

v ∈ X∞

|〈u− U(Tℓ) , ((DL)|X∞u)
⋆v〉|

‖∇(u− U(Tℓ))‖L2(Ω)

=
|〈(DLu)(u− U(Tℓ)) , v〉|
‖∇(u− U(Tℓ))‖L2(Ω)

→ 0 as ℓ→ ∞. (7.4.2)

According to Lemma 7.4.1, (DL)|X∞u is injective and has closed range. Therefore, its
adjoint operator ((DL)|X∞u)

⋆ has is surjective onto X ⋆
∞ by the closed range theorem [85].

Convergence (3.6.15) implies that eℓ ∈ X∞. Hence, (7.4.2) is equivalent to eℓ ⇀ 0 as ℓ→ ∞.
This concludes the proof. �

To abbreviate notation, we define the quasi-metric (which is symmetric, definite, and
satisfies the triangle inequality with a multiplicative constant)

dl(w, v)2 := 〈Lw − Lv , w − v〉 for all w, v ∈ H1
0 (Ω).

Note that due to (3.6.5)–(3.6.6), there holds

C−1
norm‖∇(w − v)‖L2(Ω) ≤ dl(w, v) ≤ Cnorm‖∇(w − v)‖L2(Ω) for all w, v ∈ H1

0 (Ω) (7.4.3)

with Cnorm = max{2C8, C
−1
9 } > 0.

Proposition 7.4.4. For any ε > 0, there exists ℓqo ∈ N such that

dl(Uℓ+1, U(Tℓ))
2 ≤ 1

1− ε
dl(u, U(Tℓ))

2 − dl(u, U(Tℓ+1))
2 (7.4.4)

for all ℓ ≥ ℓqo and with u and U(Tℓ) from Section 3.6.

Proof. Due to convergence U(Tℓ) → u in H1
0 (Ω) from (3.6.15), there exists ℓ1 ∈ N such

that for all ℓ ≥ ℓ1 we may apply (7.4.1b), to obtain

|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈DA(U(Tℓ+1))(U(Tℓ+1)− U(Tℓ)) , u− U(Tℓ+1)〉|

+ C10‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω).

Using the symmetry of DA(U(Tℓ+1)), we conclude

|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈DA(U(Tℓ+1))(u− U(Tℓ+1)) , U(Tℓ+1)− U(Tℓ)〉|

+ C10‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

≤ |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
+ C10‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ C10‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖2L2(Ω).

(7.4.5)
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Analogously to the estimate above but by use of the reverse triangle inequality, we obtain

|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉|
≥ |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|

− C10‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

− C10‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖2L2(Ω).

(7.4.6)

Given δ > 0, convergence U(Tℓ) → u as ℓ → ∞ provides an index ℓ0 ∈ N such that
C10(‖∇(u − U(Tℓ+1))‖L2(Ω) + ‖∇(U(Tℓ+1) − U(Tℓ))‖L2(Ω)) ≤ δ. With (7.4.5)–(7.4.6) this
implies

∣∣|〈AU(Tℓ+1)−AU(Tℓ) , u− U(Tℓ+1)〉| − |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
∣∣

≤ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

for all ℓ ≥ ℓ1. Since eℓ converges to zero weakly in H1
0 (Ω), we have strong convergence eℓ → 0

as ℓ→ ∞ in L2(Ω). This together with Lipschitz continuity (3.6.5b) implies

|〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|
. ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖eℓ+1‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

and hence

|〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|
≤ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

for all ℓ ≥ ℓ0 with ℓ0 ≥ ℓ1 sufficiently large. The adjoint term satisfies

|〈Cu− CU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
≤ |〈Cu− CU(Tℓ+1) , U(Tℓ+1)− u〉|+ |〈Cu− CU(Tℓ+1) , u− U(Tℓ)〉|
. ‖∇(u− U(Tℓ+1))‖2L2(Ω)‖eℓ+1‖L2(Ω)

+ ‖∇(u− U(Tℓ))‖L2(Ω)‖eℓ‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

≤ δ
(
‖∇(u− U(Tℓ+1))‖2L2(Ω)

+ ‖∇(u− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

)
.

So far, we end up with

|〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|+ |〈Cu− CU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
≤ δ

(
‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ ‖∇(u− U(Tℓ+1))‖2L2(Ω)

+ ‖∇(u− U(Tℓ+1))‖L2(Ω)‖∇(u− U(Tℓ))‖L2(Ω)

)

≤ δ/2‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) + 2δ‖∇(u− U(Tℓ+1))‖2L2(Ω)

+ δ/2‖∇(u− U(Tℓ))‖2L2(Ω)
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by use of Young’s inequality. Putting everything together and by use of Galerkin orthogo-
nality 〈(A+ C)u− (A+ C)U(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉 = 0, we obtain

|〈(A+ C)U(Tℓ+1)− (A+ C)U(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈Au−AU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|

+ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ |〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|
≤ |〈(A+ C)u− (A+ C)U(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|

+ δ‖∇(U(Tℓ+1)− U(Tℓ))‖L2(Ω)‖∇(u− U(Tℓ+1))‖L2(Ω)

+ |〈CU(Tℓ+1)− CU(Tℓ) , u− U(Tℓ+1)〉|+ |〈Cu− CU(Tℓ+1) , U(Tℓ+1)− U(Tℓ)〉|
≤ 3δ

(
‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω) + ‖∇(u− U(Tℓ+1))‖2L2(Ω) + ‖∇(u− U(Tℓ))‖2L2(Ω)

)
.

With that at hand, we obtain by definition of dl(·, ·)
dl(U(Tℓ+1), U(Tℓ))

2 ≤ dl(u, U(Tℓ))
2 − dl(u, U(Tℓ+1))

2

+ |〈(A+ C)U(Tℓ+1)− (A+ C)U(Tℓ) , u− U(Tℓ+1)〉|
≤ dl(u, U(Tℓ))

2 − dl(u, U(Tℓ+1))
2 + 3δ

(
‖∇(U(Tℓ+1)− U(Tℓ))‖2L2(Ω)

+ ‖∇(u− U(Tℓ+1))‖2L2(Ω) + ‖∇(u− U(Tℓ))‖2L2(Ω)

)
.

With the equivalence (7.4.3), we conclude

(1− 3Cnormδ)dl(U(Tℓ+1), U(Tℓ))
2

≤ (1 + 3Cnormδ)dl(u, U(Tℓ))
2 − (1− 3Cnormδ)dl(u, U(Tℓ+1))

2

for all ℓ ≥ ℓ0. Finally, we choose δ > 0 sufficiently small such that (1 + 3Cnormδ)/(1 −
3Cnormδ) ≤ 1/(1− ε) and conclude the proof. �

Theorem 7.4.5. Suppose the Céa lemma 3.6.8. For all εqo > 0, there exists Cqo > 0
such that (E2) holds with ̺(Tℓ, Tℓ+1) := ‖∇(U(Tℓ)− U(Tℓ+1))‖L2(Ω) (with u and U(Tℓ) from
Section 3.6), and each estimator η(·) which is reliable, i.e.,

‖∇(u− U(Tℓ))‖L2(Ω) ≤ Crelη(Tℓ) for all ℓ ∈ N0.

Particularly, this is satisfied by the error estimator η(·) from Section 3.6.

Proof. Proposition 7.4.4 proves the quasi-orthogonality (2.7.5) for all ℓ ≥ ℓ0 with
̺(Tℓ, Tℓ+1) = dl(U(Tℓ), U(Tℓ+1)) and αℓ := dl(u, U(Tℓ)). The Céa lemma 3.6.8, (7.4.3), and
reliability (in the setting of Section 3.6 from (2.4.1)) imply

̺(Tℓ, Tℓ+1) . ‖∇(u− U(Tℓ))‖L2(Ω) . η(Tℓ) for all ℓ ∈ N0.

Therefore, Lemma 2.7.3 proves for all ℓ ≥ ℓqo.

∞∑

k=ℓ

dl(U(Tk), U(Tk+1))
2 − εqoη(Tk)

2 ≤ C ′
qoη(Tℓ)

2.

For all ℓ < ℓ0, there exists Cℓ > 0 with

ℓ0∑

k=ℓ

dl(U(Tk), U(Tk+1))
2 − εqoη(Tk)

2 ≤ Cℓη(Tℓ)
2,
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since both sides of the inequality are finite and if η(Tℓ) = 0, then reliability (2.4.1) and the
Céa lemma (3.6.8) imply

dl(U(Tk), U(Tk+1)) . ‖∇(U(Tk)− U(Tk+1))‖L2(Ω) . ‖∇(u− U(Tℓ))‖L2(Ω) . η(Tℓ) = 0.

With (7.4.3), the last two estimates conclude the proof. �
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(to appear 2015), Math. Models Methods Appl. Sci. (2014) Calcolo (2014), Numer. Algorithms (2014), Comput.

Math. Appl. (2014), Int. J. Numer. Anal. Model. (2014), J. Comput. Appl. Math. (2014), Comput. Methods Appl.

Math. (2013, 2014), SIAM J. Numer. Anal. (2013, 2014), Eng. Anal. Bound. Elem. (2012, 2014), Comput. Mech.

(2013), J. Magn. Magn. Mater. (2012, 2013), M2AN Math. Model. Numer. Anal. (2012, 2013).

Currently, 15 publications are listed in MathSciNet and 19 in Scopus (state March 2015).

• Scientific talks

Workshop for Adaptive Wavelets and Frames for BEM in Acoustics (invited, 2014), 11th. World Congress

on Computational Mechanics (2014), IABEM Symposium (2013), WONAPDE (2013), MAFELAP (2013),

ECCOMAS (2012), Austrian Numerical Analysis Day (2010–2013), Workshop on Fast BEM in Industrial

Applications (2010–2013), Colloquium of Institute for Applied Mathematics at Humboldt-University of Berlin

(invited, 2012–2013), 7th Zürich Summerschool (2012).


