
Unterschrift (Betreuer)

D I P L O M A R B E I T

Isogeometrische Randelementmethode

für die Lamé-Gleichung
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Kurzfassung

In dieser Arbeit betrachten wir das Dirichlet Randwertproblem für die homogene Lamé
Gleichung für lineare Elastizität in zwei Dimensionen. Die Lamé Gleichung kann äquivalent
als System von Randintegralgleichungen formuliert werden. Der Fokus dieser Arbeit liegt
in der numerischen Approximation der Lösung dieser Randintegralgleichungen mittels iso-
geometrischer Randelementmethode (BEM, boundary element method). Die zentrale Idee
der isogeometrischen Analysis ist, die gleichen Ansatzfunktionen für die Approximation
der Lösung der Randintegralgleichungen zu verwenden, die auch für die Darstellung der
Geometrie in Computer Aided Design (CAD) verwendet werden. Wir nehmen daher an,
dass die Diskretisierung des Randes in Form von NURBS Funktionen gegeben ist, welche
in [dB86] beschrieben werden.

Zuerst beschäftigen wir uns mit der eindeutigen Lösbarkeit der Symm’schen Integralglei-
chung, welche äquivalent zum Dirichlet Problem ist. Zusätzlich betrachten wir die Hyper-
singuläre Integralgleichung, welche äquivalent zum Neumann Problem ist.

Wir beschäftigen uns mit der numerischen Approximation der Integraloperatoren, die in
der Symm’schen Integralgleichung auftreten, also die Spur des Einfachschicht- und Doppel-
schichtpotentialoperators. Wir verfolgen dafür die Ansätze von [Gan14] für isogeometrische
BEM für die Laplace Gleichung und wenden diese auf die Lamé Gleichung an. Insbesondere
sind für die Spur des Doppelschichtpotentialoperators bestimmte Integraltransformationen
notwendig, da seine Darstellung nur als Cauchyscher Hauptwert eines Randintegrals exis-
tiert und nicht wie im Falle der Laplace Gleichung uneigentlich integrierbar ist. Wir wenden
uniforme und adaptive Netzverfeinerung an, wobei wir für einen adaptiven Algorithmus die
Ansätze von [FGHP16] verfolgen. Als a posteriori Fehlerschätzer und Verfeinerungsidikator
betrachten wir den h–h/2–Fehlerschätzer und seine lokalen Beiträge.

Um unsere Implementierung der Operatoren zu validieren und unsere theoretischen Er-
gebnisse zu unterstreichen, beschäfitgen wir uns mit verschiedenen Tests und präsentieren
einige numerische Beispiele.





Abstract

In this work, we deal with the Dirichlet boundary value problem for the homogeneous Lamé
equation from linear elasticity in two dimensions. The equation can then be equivalently
reformulated as boundary integral equations. The focus of this work lies on the numerical
approximation of the solution to these boundary integral equations via isogeometric BEM
(boundary element method). The central idea of isogeometric analysis is to use the same
ansatz functions of the approximation of the solution of the boundary integral equation
as for the representation of the geometry in computer aided design (CAD). Therefore, we
assume that the discretization of the boundary is given in NURBS functions which are
described in [dB86].

First, we deal with the unique solvability of the Symm’s integral equation, which is
equivalent to the Dirichlet problem. We also consider the hypersingular integral equation,
which is equivalent to the Neumann boundary value problem.

Then, we focus on the numerical approximation of the relevant integral operators oc-
curring in the Symm’s integral equation, namely the trace of the single and double layer
potential. We follow the approach and results given in [Gan14] for isogeometric BEM for
the Laplace equation and adapt them for the Lamé equation. However, the approximation
of the trace of the double layer potential has to be treated with specific integral transforma-
tions, as its representation only exists as Cauchy principal value of a surface integral and
the integral is not improperly integrable as it is the case for the Laplace equation. For mesh
refinement we use uniform and adaptive refinement, where for the adaptive algorithm we
follow the ideas of [FGHP16]. As an a posteriori error estimator and refinement indicator
we consider the h–h/2–estimator and its local contributions.

Finally we validate the implementation of the operators using different tests and also
present some numerical examples to underline our theoretical results.





Danksagung

Ich möchte vor allem Herrn Prof. Dirk Praetorius danken, der mich von Beginn meines
Studiums an durch viele interessante Lehrveranstaltungen für die Numerik begeistern hat
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1. Introduction

In this work, we deal with the analysis and numerical solution of an equation from the area
of linear elasticity theory using the isogeometric boundary element method. The Lamé
equation with Dirichlet boundary data reads

−µ∆u − (λ+ µ)∇div u = 0 in Ω (1.1a)

u = g on Γ := ∂Ω, (1.1b)

for Lamé constants λ, µ ∈ R and a bounded Lipschitz domain Ω ⊆ R2. In Chapter 2, we
derive the weak formulation of the above partial differential equation by generally following
the analysis of [Ste08] and [ME14]. To this end, we introduce the conormal derivative
dnu : Γ→ R2, i.e.,

dnu := σ(u)n ,

which is composed of the matrix valued stress tensor σ(u) and the outer unit normal vector
n on Γ. We collect several important results, i.e., Betti’s first and second formula and
Korn’s first and second inequality. Furthermore, we conclude the unique solvability of the
weak formulation of the Dirichlet boundary value problem. Besides the Dirichlet boundary
value problem, which is the main focus of our work, we also consider the Neumann boundary
value problem

−µ∆u − (λ+ µ)∇div u = 0 in Ω

dnu = φ on Γ.

Next, we present the fundamental solution as stated in [McL00] and investigate how the
conormal derivative of the fundamental solution dnU is to be understood, since the litera-
ture considered does not give a clear interpretation for it. We deal with integral operators,
namely the single and double layer potential operator as well as their trace and conormal
derivative. The conormal derivative of the fundamental solution does occur in the inte-
gral kernel of the double layer integral operator and is therefore of great importance to
us. In addition, we derive the boundary integral equations for the Dirichlet and Neumann
boundary value problem, namely Symm’s integral equation

V φ = (K + 1/2)g

and the hypersingular integral equation

Wg = (K ′ − 1/2)φ.

From Chapter 3 onwards, we focus entirely on the Dirichlet boundary value problem. In
that chapter, we present the Galerkin method for approximating the weak solution of the
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1. Introduction

Dirichlet boundary value problem. Furthermore, we introduce the NURBS functions and
their main properties as mentioned in [dB86]. The NURBS functions form the basis of the
idea of isogeometric analysis, as we assume that the boundary Γ is parametrized by these
types of functions. Therefore, we consider the same functions space as the ansatz space
for the Galerkin method. In addition, we follow the idea of the adaptive mesh refinement
algorithm presented in [FGHP16] and then consider the (h–h/2)–estimator and its local
contributions as the refinement indicators.

In Chapter, 4 we present a detailed description of the computation of the discrete bound-
ary integral equations. In particular, we focus on the operators V and K. We follow the
approach given in [Gan14] for the Laplace equation. For the occurring double integrals
with integration domain Γ, we consider a partition of Γ into boundary elements and then
distinguish between three different cases: separated elements, neighbouring elements and
identical (overlapping) elements. In particular, for the double layer boundary integral op-
erator K, we consider integral transformations presented in [SS11] for three dimensions in
order to deal with the Cauchy principal value occurring in the representation of K. Fur-
thermore, we present several sketches to visualize how the integral domain is transformed.
We also prove that our computation of the boundary integrals using Gauß quadrature
presents a reliable approximation. In Section 4.2 we present some numerical examples in
order to validate the implementation in C (via MATLAB’s MEX-Interface) of the integral
operators V and K.

In Chapter 5, we deal with some further numerical examples on curved boundary geome-
tries in order to underline our theoretical results. In Appendix A, we present our extension
for the Lamé equation of the MATLAB-C-Implementation for the Laplace equation from
[Gan14].

Throughout this work, |·| denotes the absolute value of scalars, the Euclidean norm of
vectors, and the Hausdorff measure of a set in Rn for n ≥ 1. We use the notation A . B
as an abbreviation for A ≤ cB with a generic constant c > 0. Furthermore, we abbreviate
A . B . A with A ' B.

1.1. Physical motivation: Lamé equation

The following physical motivation of the Lamé equation relies on the motivation given
in [ME14, Chapter 1.1]. However, we restate it here, as we think that it gives a good
introduction into the physical background.

As a model problem, we consider the Dirichlet problem

−µ∆u − (λ+ µ)∇div u = 0 in Ω (1.2a)

u = g on Γ (1.2b)

for a domain Ω ⊂ Rn with Γ := ∂Ω. The partial differential equation (1.2a) is called
Lamé-equation. In fact, we are dealing with a linear system of n equations: the unknown u
is a vector valued function u : Ω → Rn. Equation (1.2a) is also known as Navier–Cauchy
equation or equation of linear elasticity. The parameters µ, λ ∈ R are known as Lamé
parameters or Lamé constants.

2



1.1. Physical motivation: Lamé equation

We aim to give an idea of the importance of problem (1.2a)–(1.2b) in real life applications.
The Lamé equation essentially describes the deformation of an elastic body under the
influence of different forces. The domain Ω ⊂ Rn represents the body in its “reference
configuration”, i.e.: before deformation. The vector valued function u = (u1, . . . , un) : Ω→
Rn describes the so-called deplacement, i.e., the deformation in relation to the reference
configuration. This means that a point x ∈ Ω will be displaced to x+ u(x) ∈ Rn.

For an arbitrary part Ω∗ ⊂ Ω, we now consider its surface ∂Ω∗. The surface tension, which
is caused by the deformation of ∂Ω∗, can be described by the Cauchy stress tensor σ(u) =
(σij(u)) : Ω → Rn×n. The stress tensor represents a linear mapping which associates the
normal vector n at a point x ∈ ∂Ω∗ with the stress tensor σ(u) · n . Let us assume that
there is a volume force f : Ω → Rn acting on the body. With Newton’s second Law of
Motion (“force equals mass times acceleration”), we obtain that∫

Ω∗
ρ
d2u

dt2
=

∫
∂Ω∗

σ(u) · n +

∫
Ω∗

f .

The scalar valued function ρ represents the density of the body Ω. By applying the Gauss
divergence theorem and by keeping in mind that Ω∗ ⊂ Ω is arbitrary, it follows that

ρ
d2u

dt2
= div σ(u) + f in Ω. (1.3)

Here, the expression div σ(u) is understood componentwise as

(div σ(u))k =

n∑
i=1

∂iσki(u) for all k = 1, . . . , n.

In the case, that the body is not in motion, the time derivative disappears. Consequently,
equation (1.3) simplifies to

−div σ(u) = f in Ω.

In this case, we are talking about elastostatics. We will focus on the particular case f = 0:

−div σ(u) = 0 in Ω. (1.4)

Physical observations show that the stress tensor σ(u(x)) at some point x ∈ R depends
locally on the length distortions of the mapping x 7→ x + u(x). In other words, σ(u(x))
depends on the ratio of vT (In + ∇u)T (In + ∇u)v to vT v for v ∈ Rn, where In ∈ Rn×n
represents the identity matrix and ∇u = (∂jui)

n
i,j=1 is the Jacobian of u . The matrix

1

2
((In +∇u)T (In +∇u)− In) (1.5)

is referred to as strain tensor. In most of the relevant applications, one can assume that
∇u is comparably small. Hence, the term ∇uT∇u in (1.5) is negligible. Therefore, we can
derive the (linearised) strain tensor

ε(u) :=
1

2
(∇u +∇uT ). (1.6)

3



1. Introduction

According to Hooke’s Law, there is a linear relation between the stress tensor σ(u) and the
strain tensor ε(u), i.e.,

σ(u) = Aε(u). (1.7)

The following theory is then referred to as linear elastostatics. In the above equation (1.7),
the tensor A = (ak`ij ) ∈ Rn×n×n×n is a linear mapping Rn×n → Rn×n, which is determined
by particular properties of the material the body is made of. In general, A depends on
x ∈ Ω. However, if the material is homogeneous, then A is constant.

Let us assume that the material is also isotropic, meaning uniform in all orientations.
Then, in the three dimensional case, we can derive that the 34 = 81 matrix entries of
A = (ak`ij ) are fully determined by the two Lamé constants λ, µ ∈ R. More precisely,
the Lamé constants are actually defined over two other constants (see [Ste08, p.6 (1.24)]),
namely the Young modulus E > 0 and the Poisson ratio ν ∈ (0, 1/2)

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

Using the Lamé constants, the relation (1.7) can be written as

σ(u) = λ(div u)In + 2µε(u). (1.8)

For our purposes, (1.8) will be regarded as the definition of the stress tensor for n ≥ 2. By
using (1.8), we obtain that

(div σ(u))k =

n∑
i=1

∂iσik(u)

(1.8)
=

n∑
i=1

∂i(λ(div u)δik + 2µεik(u))

= λ∂k(div u) + µ

n∑
i=1

∂i(∂iuk + ∂kui)

= µ

n∑
i=1

∂2
i uk + (λ+ µ)∂k

n∑
i=1

∂iui

= µ∆uk + (λ+ µ)∂k(div u)

(1.9)

for all k = 1, . . . , n. Together with (1.4), it holds that

−µ∆u − (λ+ µ)∇div u = −div σ(u) = 0 in Ω. (1.10)

Consequently, we derive the Lamé equation (1.2a).
In conclusion, the Lamé equation (1.2a) describes at least in n = 3 dimensions the

behaviour of sufficiently small deformations u : Ω→ Rn of a stationary, elastic body made
of homogeneous, isotropic material, which fulfils all the requirements of Hooke’s Law. The
two dimensional case of plane elasticity can then be derived from the three dimension case
(cf. [Ste08, Chapter 1.2.1]).

4



1.1. Physical motivation: Lamé equation

Furthermore, one could also consider different boundary conditions. Instead of fixing the
displacement u at the boundary, one could fix the surface tension σ(u) · n on Γ, which
leads to a Neumann problem.

For further information concerning the theory of elasticity and modelling of the Lamé
equation, we refer to [Ste08, Chapter 1.2], [NH80] and [LL59].
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2. Lamé Operators

2.1. Sobolev spaces

Before we start, we have to make some fundamental definitions. We consider a Lipschitz
domain Ω ⊂ Rn with boundary Γ := ∂Ω, which means that Γ can be locally represented
by the graph of a Lipschitz continuous function (cf. [McL00, Definition 3.28]). Note that
by this definition Ω is open and Γ is compact. However, we do not necessarily assume that
Ω is bounded or connected. Moreover, we mention that Ω′ := Rn\Ω is also a Lipschitz
domain.

The L2-scalar products on Ω and Γ will be written as

(u, v)Ω :=

∫
Ω
u(x)v(x)dx and (u, v)Γ :=

∫
Γ
u(x)v(x)dx, (2.1)

where the integration in the second expression is understood with respect to the surface
measure. The definition of the surface measure can, e.g., be found in [Gan14, Chapter 2].
As we will be dealing with vector valued functions, we introduce the notation

L2(X) := L2(X)n = {u = (u1, . . . , un)T : ui ∈ L2(X) for all i = 1, . . . , n}

for X ∈ {Ω,Γ}. The canonical scalar product on the product space L2(X) reads

(u , v)X =
n∑
i=1

(ui, vi)X =

∫
X
u · v dx

with induced Hilbert norm ‖·‖2L2(X) := (·, ·)X . Analogeously, we define L∞(X) := L∞(X)n.
Furthermore, we use the same notation for the scalar product for matrix valued functions

U ,V : X → Rn×n, componentwise given as U = (Uij)
n
i,j=1 respective V = (Vij)

n
i,j=1, i.e.,

(U ,V )X :=

∫
X

n∑
i,j=1

UijVij dx.

Let D(Ω) be the space of all smooth test functions with compact support, i.e.

D(Ω) := {u ∈ C∞(Ω) : supp u ⊆ K, for some compact set K ⊆ Ω}.

we introduce the set of all distributions D∗(Ω) as the topological dual space of D(Ω). An
element of D∗(Ω) is then referred to as distribution.

For the definition of Sobolev Spaces, we would like to mention that all derivatives of
L2-functions shall be understood in the weak sense. According to [McL00, Chapter 3],

7



2. Lamé Operators

this means that for a function u ∈ L2(Ω) and a multi-index α = (α1, . . . , αn) ∈ Nn0 with
|α| = α1 + . . . + αn the “derivative” ∂αu is seen as a distribution on Ω. If there exists a
function gα ∈ L2(Ω) such that∫

Ω
gαφ dx = (−1)|α|

∫
Ω
u∂αφ dx for all φ ∈ D(Ω),

then we call gα the weak partial derivative of u and denote it by ∂αu.
For the definitions of Hs(Ω), H̃s(Ω), s ∈ R and Hs(Γ), s ∈ [−1, 1], we refer to [McL00,

Chapter 3] and [Ste08, Chapter 2]. In particular, for the definition of Hs(Γ) we also refer
to [ME14, Chapter 2], as the weak surface gradient ∇Γ (defined in [ME14, Chapter 2.1.2])
and related seminorms and spaces on Γ are examined more closely in this work.

In the following, we list some important special cases, which we will need in this work.

Definition 2.1.

• For s = 0 and X ∈ {Ω,Γ} we define H0(X) := L2(X).

• For s = 1, we define

H1(Ω) := {u ∈ L2(Ω) : ∇u ∈ L2(Ω)}

and

H1(Γ) := {u ∈ L2(Γ) : ∇Γu ∈ L2(Γ)}.

The Sobolev spaces H1(X) for X ∈ {Ω,Γ} are equipped with the norm

‖u‖2H1(X) := ‖u‖2L2(X) + |u|2H1(X),

where

|u|2H1(Ω) := ‖∇u‖2L2(Ω) and |u|2H1(Γ) := ‖∇Γu‖2L2(Γ) .

• Let s ∈ (0, 1), X ∈ {Ω,Γ} and

k =

{
n if X = Ω

n− 1 if X = Γ.

Then, the Sobolev space Hs(X) is defined by

Hs(X) := {u ∈ L2(X) : |u|Hs(X) <∞} (2.2)

with the Slobodjeckij seminorm given by

|u|2Hs(X) :=

∫
X

∫
X

|u(x)− u(y)|2

|x− y|k+2s
dx dy. (2.3)

Again, for s > 0, we equip the spaces with the norm

‖u‖2Hs(X) := ‖u‖2L2(X) + |u|2Hs(X).

8



2.1. Sobolev spaces

• Furthermore, we define the special case of

H1
0 (Ω) := D(Ω)

‖·‖H1(Ω)

as the closure of the subspace D(Ω) ⊂ H1(Ω) with respect to the ‖·‖H1(Ω) norm.

Additionally, we define Sobolev spaces with negative index, which can be characterised
as the topological dual spaces.

Definition 2.2. Let

H̃−s(Ω) := Hs(Ω)∗, for s > 0
H−s(Γ) := Hs(Γ)∗, for s ∈ [0, 1].

Furthermore, we would like to use the dual pairing on H−1/2(Γ), H1/2(Γ) as extension of
the L2 scalar product. In order to justify this, we recall Gelfand triples and some related
results from [SS11, Chapter 2.1.2.4].

Definition 2.3. If X ≤ Y are real Hilbert spaces such that the identity I : X → Y is a
continuous and dense embedding, we call (X,Y,X∗) a Gelfand triple.

Lemma 2.4. Let (X,Y,X∗) be a Gelfand triple. Then, X and Y are also continuously
and densely embedded into X∗.

With the following lemma (cf. [SS11, Proposition 2.5.2]), we can apply the theory of
Gelfand triples to the Hilbert spaces H1/2(Γ) and L2(Γ).

Lemma 2.5. The spaces X := H1/2(Γ), Y := L2(Γ), and H−1/2(Γ) form a Gelfand triple.

We can now extend the notation of the L2(Γ) scalar product to the dual pairing in H1/2(Γ).
More precisely, for u ∈ H−1/2(Γ) and v ∈ H1/2(Γ), in consistency with (2.1) we denote

(u, v)Γ := (v, u)Γ := u(v).

Moreover, we also introduce vector valued Sobolev spaces. For s ∈ R for Ω and s ∈ [−1, 1]
for Γ, we define

H s(X) := Hs(X)n for X ∈ {Ω,Γ}.

Then, the spaces are equipped with the canonical product space norm

‖u‖2H s(X) :=
n∑
i=1

‖ui‖2Hs(X) .

Analogeously, we define H 1
0(Ω) and the Slobdjeckij-seminorm for vector valued functions

| · |H s(X).
Furthermore, we introduce the trace operator and underline the importance of the space

H1/2(Γ) with the following theorem from [McL00, Theorem 3.37, Theorem 3.38 and The-
orem 3.40].

9



2. Lamé Operators

Theorem 2.6 (Trace theorem). We define the trace operator through

γ : C∞(Ω)→ C∞(Γ)

u 7→ γu := u|Γ.

Then, γ has a unique linear and continuous extension

γ : H1(Ω)→ H1/2(Γ)

which is surjective and has a continuous right inverse. Furthermore, there holds ker γ =
H1

0 (Ω). �

For vector valued functions u = (u1, . . . , un), the trace operator γ shall act component-
wise

γu := (γu1, . . . , γun).

In addition, for a Lipschitz domain Ω we can define the outer normal vector n = (ni)
n
i=1 ∈

Rn almost everywhere on Γ = ∂Ω. Hence, the Gauß divergence theorem holds and provides
the integration by parts formula

(∂iu, v)Ω = −(u, ∂iv)Ω + (niu, v)Γ for all i = 1, . . . , n and u, v ∈ C1(Ω). (2.4)

Since the embedding C1(Ω) ⊂ H1(Ω) is dense, Theorem 2.6 implies that (2.4) holds for all
u, v ∈ H1(Ω). As we are dealing with vector valued functions, we can generalize (2.4) to
higher dimensions:

(∂iu , v)Ω = −(u , ∂iv)Ω + (niu , v)Γ for all i = 1, . . . , n and u , v ∈ C 1(Ω),

with C 1(Ω) := C1(Ω)n.
With the following proposition from [Pra17, Proposition 2.8], we can easily construct

equivalent norms on H1(Ω).

Proposition 2.7. Let | · |H1 be a continuous seminorm on H1(Ω) which is definite on the
constant functions, i.e., |c|H1 = 0 implies c = 0 for all c ∈ R. Then, there are constants
C1, C2 > 0 such that

|v|H1 ≤ C1 ‖v‖H1(Ω) as well as ‖v‖L2(Ω) ≤ C2 (‖∇v‖L2(Ω) + |v|H1)︸ ︷︷ ︸
=:|||v|||

for all v ∈ H1(Ω).

In particular, |||·||| defines an equivalent norm on H1(Ω), i.e.,

(1 + C1)−1 |||v||| ≤ ‖v‖H1(Ω) ≤ (1 + C2) |||v||| for all v ∈ H1(Ω).

10



2.2. Variational methods

2.2. Variational methods

In the later part of this work, we aim to solve operator equations of the following type: Let
X be a Hilbert space with the inner product 〈·, ·〉, f ∈ X∗ and A : X → X∗ a bounded
linear operator, i.e. for C > 0 it holds that

‖Av‖X∗ ≤ C ‖v‖X for all v ∈ X.

We assume that A is self-adjoint with respect to the inner product 〈·, ·〉. For a Hilbert
space X and a given f ∈ X∗, we aim to find the solution of the operator equation

Au = f. (2.5)

The above equation can be formulated equivalently as a variational problem: Find u ∈ X
such that

〈Au, v〉 = 〈f, v〉 for all v ∈ X. (2.6)

Every solution of the operator equation (2.5) is also a solution to the variational problem
(2.6) and vice versa.

The operator A : X → X∗ induces a bilinear form

α : X ×X → R
(u, v) 7→ 〈Au, v〉.

(2.7)

Conversely, according to [Ste08, Lemma 3.1], also each bounded bilinear form (2.7) defines
a bounded operator.

Lemma 2.8. Let α(·, ·) : X ×X → R be a bounded linear form, i.e.

|α(u, v)| ≤ C1 ‖u‖X ‖v‖X for all u, v ∈ X,

for some constant C1 > 0. For any u ∈ X, define Au ∈ X∗ by

〈Au, v〉 = α(u, v) for all v ∈ X.

Then, the induced operator A : X → X∗ is linear and bounded, i.e.

‖Au‖X∗ ≤ C1 ‖u‖X for all u ∈ X.

�

With the above understanding, results proven for operators can be applied to bilinear
forms and vice versa.

Furthermore, another important result that we want to mention is the well-known Lax-
Milgram lemma [SS11, Lemma 2.1.51].

11



2. Lamé Operators

Lemma 2.9 (Lax-Milgram). Let X be a Hilbert space and a(·, ·) be a bounded and elliptic
bilinear form on X, i.e.,

a(u, v) ≤ L ‖u‖X ‖v‖X and a(u, u) ≥M ‖u‖2X for all u, v ∈ X,

for given L,M > 0. Then, for all f ∈ X∗, there exists a unique u ∈ X such that

a(u, v) = f(u) for all v ∈ X.

Furthermore, it holds that

‖u‖X ≤
1

M
‖f‖X∗ .

�

In the later part of this work we aim to solve an operator equation with an additional
constraint. We therefore regard the following setting: Let X,Y be Hilbert spaces, f ∈ X∗
and g ∈ Y ∗. For operators A : X → X∗ and B : X → Y ∗, we want to find a solution u ∈ X
of

Au = f in X∗

Bu = g in Y ∗,
(2.8)

where Au = f is the main equation we want to solve under the constraint Bu = g. Of
course, in order for a solution to exist, f, g have to satisfy g ∈ range(B) and f ∈ range(A|Vg),
where the manifold Vg is given through

Vg := {v ∈ X : Bv = g}. (2.9)

In particular, it holds that V0 = kerB. The problem (2.8) can then be rewritten in the
variational form: Find u ∈ Vg such that

〈Au, v〉 = 〈f, v〉 for all v ∈ V0.

The unique solvability now follows from the following result (cf. [Ste08, Theorem 3.8]).

Theorem 2.10. Let X,Y be Hilbert spaces. Let A : X → X∗ be bounded and V0-elliptic,
i.e.

〈Av, v〉 ≥ CA ‖v‖2X for all v ∈ V0 := kerB,

where B : X → Y ∗. Then, for f ∈ range(A|Vg) and g ∈ range(B) there exists a unique
solution u ∈ X of the operator equation (2.8).

12



2.3. Weak formulation of the Lamé equation

2.3. Weak formulation of the Lamé equation

Let us consider the Lamé operator from Section 1.1

Lu = −div σ(u) = −µ∆u − (λ+ µ)∇div u , (2.10)

which is a linear differential operator of second order. We use the strain tensor from (1.6)

ε(u) =
1

2
(∇u +∇uT ), (2.11)

componentwise given as

εij(u) =
1

2
(∂iuj + ∂jui) for i, j = 1, . . . , n, (2.12)

and the stress tensor from (1.8)

σ(u) = λ(div u)In + 2µε(u), (2.13)

componentwise given as

σij(u) = λδij

n∑
k=1

∂kuk + 2µεij(u) for i, j = 1, . . . , n. (2.14)

We can then write (2.10) componentwise as

(Lu)k = −div (σ(u))k = −
n∑
i=1

∂iσki(u). (2.15)

In this work, we are looking at the following equation for u ∈ H 2(Ω)

Lu = 0 . (2.16)

By using the componentwise representation of L from (2.15), multiplying with a test func-
tion v = (v1, . . . , vn)T ∈ H 2(Ω), integrating over Ω and applying integration by parts, we
obtain that

0 = −
∫

Ω

n∑
j=1

∂jσij(u)vi dx

=

∫
Ω

n∑
j=1

σij(u)∂jvi dx−
∫

Γ

n∑
j=1

njσij(u)vi dx (2.17)
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2. Lamé Operators

for i = 1, . . . , n, where the last integral over Γ occurs with respect to the surface measure.
We now define the so-called induced bilinear form of L

α(u , v) :=

∫
Ω

n∑
i,j=1

σij(u)∂jvi dx

=

∫
Ω

n∑
i,j=1

σij(u)
1

2
(∂jvi + ∂ivj) dx

=

∫
Ω

n∑
i,j=1

σij(u)εij(v) dx

= (σ(u), ε(v))Ω,

where the second equality holds due to symmetry of σ(u). Using the componentwise
representation (2.14) of σ(u), we can rewrite α(u , v) as

α(u , v) = λ

∫
Ω

n∑
i,j=1

δijεij(v)

n∑
k=1

∂kuk dx+ 2µ

∫
Ω

n∑
i,j=1

εij(u)εij(v) dx

= λ

∫
Ω

div v div u dx+ 2µ

∫
Ω

n∑
i,j=1

εij(u)εij(v) dx

= λ(div u , div v)Ω + 2µ(ε(u), ε(v))Ω.

From the above representation, we can now conclude the symmetry of the bilinear form
α(·, ·).

In addition, we introduce the conormal derivative dnu : Γ→ Rn as

(dnu)i :=

n∑
j=1

σij(u)nj for i = 1, . . . , n. (2.18)

If we now sum over all components in (2.17), we obtain that

−
∫

Ω

n∑
i,j=1

∂jσij(u)vi dx = −(div σ(u), v)Ω = (Lu , v)Ω = α(u , v)− (γv , dnu)Γ, (2.19)

which is called Betti’s first formula in [Ste08, Chapter 1.2]. Betti’s first formula is a special
case of the first Green identity (see for instance in [ME14, Lemma 3.1, (3.7)]) for the Lamé
equation.
Due to the fact that α(u , v) = α(v ,u) and by using Betti’s first formula from (2.19), we
obtain Betti’s second formula

−(div σ(u), v)Ω + (γv , dnu)Γ = −(div σ(v),u)Ω + (γu , dnv)Γ. (2.20)

Again, Betti’s second formula is a special case of the second Green identity (see for instance
[ME14, Lemma 3.2]).

14



2.3. Weak formulation of the Lamé equation

2.3.1. Solvability of the weak formulation of the Lamé equation

First, we rewrite Betti’s first formula to

α(u , v) = (Lu , v)Ω + (γv , dnu)Γ.

As we want to apply the theory of Section 2.2 in order to get unique solvability, we need
to show that the bilinear form α(·, ·) is bounded and elliptic. It is shown in [Ste08, Lemma
4.13], that α(·, ·) is bounded.

Lemma 2.11. For all u, v ∈ H1(Ω), it holds that

|α(u, v)| ≤ L|u|H1(Ω)|v|H1(Ω),

where the constant L > 0 depends only on E, ν > 0 from section 1.1. �

Note that the above lemma also holds with the seminorm | · |H 1(Ω) replaced by the full
norm ‖·‖H 1(Ω).

In order to show the H 1
0(Ω)-ellipticity of the bilinear form α(·, ·), we require several steps

from [Ste08, Chpater 4.2].

Lemma 2.12. For v ∈ H1(Ω) we have

α(v, v) ≥ C(ε(v), ε(v))Ω,

where the constant C > 0 depends only on E, ν > 0 from Section 1.1. �

Next, we can formulate Korn’s first inequality.

Lemma 2.13 (Korn’s first inequality). For all v ∈ H1
0(Ω), it holds that

(ε(v), ε(v))Ω ≥
1

2
|v|2

H1(Ω)
.

�

We can now conclude the H 1
0(Ω)-ellipticity of the bilinear form α(·, ·). The following

result is proven by using equivalent norms on H 1(Ω).

Corollary 2.14. For all v ∈ H1
0(Ω), it holds that

α(v, v) ≥ C ‖v‖H1(Ω) ,

where the constant C > 0 depends only on E, ν from section 1.1 and a norm equivalence
constant. �

According [Ste08, Chpater 4.2], we can extend the bilinear form α(·, ·) by some L2 norm
to obtain an equivalent norm in H 1(Ω). This is a direct consequence of Korn’s second
inequality, or sometimes just simply referred to as Korn’s inequality in literature.

Theorem 2.15 (Korn’s second inequality). Let Ω ⊆ Rn be a bounded domain with piecewise
smooth boundary Γ = ∂Ω. Then we have

(ε(v), ε(v))Ω + ‖v‖2L2(Ω) ≥ C ‖v‖
2
H1(Ω) for all v ∈ H1(Ω).

for a constant C > 0. �
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2. Lamé Operators

2.3.2. Dirichlet boundary value problem

For mechanical applications, the boundary Γ is often divided into parts, where different
boundary conditions hold, i.e., Γ = ΓD∪ΓN for Dirichlet and Neumann boundary conditions
respectively. Given g ∈ H 1/2(Γ), we consider the homogeneous Dirichlet boundary value
problem

−µ∆u − (λ+ µ)∇div u = 0 in Ω,

γu = g on Γ.
(2.21)

Note that the first equation holds in H−1(Ω). We define a solution manifold in H 1(Ω)

Vg :=
{
v ∈ H 1(Ω) : γv = g

}
,

where V0 = H 1
0(Ω). We have to find u ∈ Vg such that

α(u , v) = 0 for all v ∈ V0. (2.22)

Since the bilinear form α(·, ·) is bounded (cf. Lemma 2.11) and H 1
0(Ω)-elliptic (cf. Corollary

2.14) we conclude the unique solvability of (2.22) by applying Theorem 2.10. In addition,
the unique solution of (2.22) satisfies that

‖u‖H 1(Ω) ≤ C ‖g‖H1/2(Γ) ,

for some C > 0.

2.3.3. Neumann boundary value problem

We first consider the case of the homogeneous Neumann boundary value problem with
homogeneous boundary conditions

−µ∆u − (λ+ µ)∇div u = 0 in Ω,

dnu = 0 on Γ.
(2.23)

The non-trivial solutions of the above boundary value problem are given by the rigid body
motions r ∈ R, where

R = span

{(
1
0

)
,

(
0
1

)
,

(
−x2

x1

)}
(2.24)

for n = 2. We can see that ε(r) = 0 and ∆r = 0 = div r for all r ∈ R. Consequently also
σ(r) = 0 and therefore also dnr = 0 for all r ∈ R. As a conclusion we see that the rigid
body motions do indeed solve the homogeneous Neumann boundary value problem.

In order to justify the inverse statement, namely that all solutions of (2.23) are given by
the rigid body motions, we have to add the condition that Ω is connected. The proof for
the following lemma is found in [McL00, Lemma 10.5] for n = 3 but can analogously be
done for n = 2.
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2.3. Weak formulation of the Lamé equation

Lemma 2.16. Let n = 2 and Ω ⊂ Rn be open and connected. Then, for all distributions
r ∈ D∗(Ω), ε(r) = 0 in Ω already implies that r ∈ R. �

If we now insert the rigid body motions r ∈ R into Betti’s second formula (2.20), we get
the following orthogonality

−(div σ(u), r)Ω + (γr , dnu)Γ = 0 (2.25)

for all r ∈ R. Next, we consider a homogeneous Neumann boundary value problem with
inhomogeneous boundary conditions

−µ∆u − (λ+ µ)∇div u = 0 in Ω,

dnu = φ on Γ,
(2.26)

with φ ∈ H 1/2(Γ). Due to the orthogonality (2.25) we have to assume the solvability
condition

(γr ,φ)Γ = 0 for all r ∈ R, (2.27)

in order for a solution to exist. Note the solution of the Neumann boundary value problem
is only unique up to the rigid body motions according to [Ste08, p.8]. In order to fix the
rigid body motions, we can formulate appropriate scaling conditions. To this end, we define

H 1
∗(Ω) =

{
v ∈ H 1(Ω) : (r , v)Ω = 0 for all r ∈ R

}
.

Then, the weak formulation of the Neumann boundary value problem (2.26) reads: Find
u ∈ H 1

∗(Ω) such that

α(u , v) = (φ, γv)Γ for all v ∈ H 1
∗(Ω). (2.28)

Using Theorem 2.7, we can introduce an equivalent norm in H 1(Ω) as stated in the following
corollary from [Ste08, Corollary 4.18].

Corollary 2.17. For the space of all rigid body motions R = span{rk}dimR
k=1 with the basis

(rk)
dimR
k=1 as in (2.24),

‖v‖H1(Ω),Γ :=

(
dimR∑
k=1

(rk, v)2
Ω + (ε(v), ε(v))Ω

)1/2

.

defines an equivalent norm on H1(Ω). �

With the above Corollary 2.17 and Lemma 2.12 we can establish the H 1
∗(Ω)-ellipticity of

the bilinear form α(·, ·) and hence get unique solvability of the variational problem (2.28).
In addition, for a weak solution u ∈ H 1

∗(Ω) we can define other solutions to the Neumann
boundary problem just by adding a linear combination of rigid body motions

ũ := u +
dimR∑
k=1

akrk ∈ H 1(Ω),

for ak ∈ R and rk as in Corollary 2.17.

17



2. Lamé Operators

2.4. Fundamental solutions

Next, we consider the Lamé operator Lu from (2.10) and Betti’s second formula (2.20).
Since this work considers only Lu = 0 , Betti’s second formula simplifies to

(Lv ,u)Ω = −(div σ(v),u)Ω = (γv , dnu)Γ − (γu , dnv)Γ.

Let us assume that for every x ∈ Ω and for every component k = 1, 2 there exists a function
v(·) := U ∗k(x, ·) which satisfies

((LU ∗k)(x, ·),u)Ω = uk(x).

Then, the solution u = (u1, . . . , un)T of Lu = 0 is given by the representation formula for
x ∈ Ω

uk(x) = (U ∗k(x, ·), dnu)Γ − (dnU
∗
k(x, ·), γu)Γ

=

∫
Γ
U ∗k(x, y)dnu(y) dy −

∫
Γ
dnU

∗
k(x, y)γu(y) dy,

(2.29)

for k = 1, 2, where the integration occurs with respect to the surface measure. Therefore,
it is enough to know the Cauchy data (γu , dnu) on Γ in order to compute a solution to
the equation Lu = 0 . Since

uk(x) =

∫
Ω
δ0(x− y)uk(y) dy for x ∈ Ω,

where δ0 is the Dirac delta, we have to solve the partial differential equation for j, k = 1, 2

(LyU ∗k)j(x, y) = δ0(y − x), for j = k

(LyU ∗k)j(x, y) = 0, for j 6= k
(2.30)

for x, y ∈ R2 in the distributional sense. Note that with the notation Ly, we want to imply
that the operator acts only on the y component of the function. A solution U ∗ = (U ∗1,U

∗
2)

to the equation (2.30) is called fundamental solution. In order to compute a solution
u to the Lamé equation via the representation formula (2.29), we need the existence of
a fundamental solution U ∗(x, y). Using the representation formula, we can formulate
appropriate boundary integral equations to find the complete Cauchy data on the boundary.
According to [Ste08, p. 90], the existence of a fundamental solution is ensured for the Lamé
equation.

In [McL00, Theorem 10.4] the fundamental solution for the Lamé equation in two di-
mensions is given.

Theorem 2.18 (Fundamental solution of the Lamé equation). If µ 6= 0 and 2µ + λ 6= 0,
then a fundamental solution U∗(x, y) := U∗(x− y) for the Lamé operator (2.10) in n = 2
dimensions is given by

U∗(z) :=
1

4πµ(2µ+ λ)

(
−(3µ+ λ) log |z|I2 + (µ+ λ)

zzT

|z|2

)
,

where I2 ∈ R2×2 is the identity matrix. Note that U∗ = (U∗ij)
2
i,j=1 is a matrix valued

function and consists of two separate vector valued functions U∗ = (U∗1,U
∗
2). �

For further details on the computation of the fundamental solution we refer to [ME14,
section 3.2] and [Ste08, section 5.2].
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2.5. Integral operators

As we will be considering the Dirichlet boundary value problem (2.21) and the Neumann
boundary value problem (2.26), we have to derive appropriate boundary integral equations
in order to find the complete Cauchy data (γu , dnu) on Γ. By inserting the Cauchy data
in the representation formula (2.29), we then have a representation of the solution. We
consider the surface potentials that occur in the representation formula including their
mapping properties. The following approach is called direct approach in literature.

For x ∈ Ω ∪ ΩC , the single layer potential

V : H−1/2(Γ)→ H 1(Ω).

for a function w ∈ H−1/2(Γ) is given by

(Vw)k(x) :=

∫
Γ
(U ∗(x, y)w(y))k dy

for k = 1, . . . , n, where U ∗(x, y)w(y) is a matrix vector multiplication and we integrate
the k-th entry of the resulting vector over Γ.

Remark 2.19. Note that the single layer potential Vw for any w ∈ H−1/2(Γ) is a solution
to L(Vw) = 0 according to [SS11, Proposition 3.4.1].

Before we introduce the double layer potential, we will take a closer look at the conormal
derivative of the fundamental solution. We will denote derivatives ∂k with respect to y by
∂k,y. Similarly, dn ,y means that the occurring derivatives act only on the variable y and
the normal vector n = (n1, n2)T is in point y. Since dnu is defined in (2.18) only for vector
valued functions u , we will explain how dn ,yU

∗ is to be interpreted. By comparing with
[Ste08, Section 5.2, (5.11)], we can see that the fundamental solution is to be understood

row-wise and therefore, for U ∗ =
(
U∗ij

)2

i,j=1
there holds

dn ,yU
∗ =

(
dn ,y(U

∗
11, U

∗
12)T

dn ,y(U
∗
21, U

∗
22)T

)
,

where dn ,y(U
∗
i1, U

∗
i2) is a column vector for i = 1, 2. Using (2.14) and (2.18), we have for

vector valued u = (u1, u2)T

(dnu)i =
2∑
j=1

σij(u)nj =
2∑
j=1

(
λδij

(
2∑

k=1

∂kuk

)
+ µ(∂jui + ∂iuj)

)
nj , for i = 1, 2.

For the fundamental solution U ∗, we thus see that

(dnU
∗)kp =

2∑
q=1

σkpq(U
∗)nq

:=
2∑
q=1

(
λδpq

(
2∑
r=1

∂r,yU
∗
kr

)
+ µ(∂p,yU

∗
kq + ∂q,yU

∗
kp)

)
nq,

(2.31)
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2. Lamé Operators

for k, p = 1, 2. Note that σkpq(U
∗) is a 3-dimensional tensor and that dn ,yU

∗(x, y) is a
matrix. We write (dn ,yU

∗(x, y)v(y))k for the k-th entry of the vector dn ,yU
∗(x, y)v(y).

Then, for x ∈ Ω ∪ ΩC , the double layer potential

K : H 1/2(Γ)→ H 1(Ω)

of function v ∈ H 1/2(Γ) is given by

(Kv)k(x) :=

∫
Γ
(dn ,yU

∗(x, y)v(y))k dy for k = 1, . . . , n.

Using the introduced surface integral potentials, the representation formula (2.29) can
be written as

u = V(dnu)−K(γu). (2.32)

According to [ME14, Corollary 3.12] and [McL00, Theorem 6.11] the operators V and K
are continuous for bounded Ω.

In order to obtain the complete Cauchy data, we have to consider the trace γ and
the conormal derivative dn of the operators V and K. First, we consider the single layer
potential. According to [Ste08, Section 6.7], the trace of V defines a bounded linear operator

V := γV : H−1/2(Γ)→ H 1/2(Γ).

The operator V has a representation as a weakly singular surface integral for w ∈ L∞(Γ)

(Vw)i(x) =

∫
Γ

n∑
j=1

U∗ij(x, y)wj(y) dy for x ∈ Γ and i = 1, . . . , n, (2.33)

as stated in [Ste08, (6.58)] and [SS11, (3.32)]. As in [SS11, Remark 5.1.7], this means
that (2.33) exists as an improper integral. According to [Ste08, p.158/Section 6.7] we can
assume for simplicity that x ∈ Γ is on a smooth part of the boundary. In particular, for
n = 2 this means that we exclude the cases, where x ∈ Γ is a corner point.

Next, we consider the trace of the operator K. To this end, we define

K :=

(
1

2
I + γK

)
: H 1/2(Γ)→ H 1/2(Γ),

where I is the identity operator. Then, it holds that

γK =

(
K − 1

2
I

)
: H 1/2(Γ)→ H 1/2(Γ).

Furthermore, K is linear and has the following representation

(Kv)i(x) := lim
ε→0

∫
y∈Γ:|y−x|≥ε

n∑
j=1

(dn ,yU
∗(x, y))ijvj(y) dy for vj ∈ L∞(Γ), (2.34)

20



2.5. Integral operators

for i = 1, . . . , n. Note that the above integral is a Cauchy principal value and not necessarily
improperly integrable. The above representation holds for all points x ∈ Γ, where Γ
is differentiable (cf. [McL00, Theorem 7.4]). According to [McL00, Theorem 6.11] the
operator K : H 1/2(Γ)→ H 1/2(Γ) is also bounded.

Later, we will also need the adjoint operator K ′ of K,

K ′ : H−1/2(Γ)→ H−1/2(Γ).

According to [Ste08, Section 6.7], the operatorK ′ has a representation as a Cauchy principal
value of a surface integral

(K ′w)k(x) = lim
ε→0

∫
y∈Γ:|y−x|≥ε

n∑
j=1

n∑
`=1

σk`(U
∗
j (·, y))(x)n`(x)wj(y) dy for k = 1, . . . , n.

Next, we consider the conormal derivative (2.18), or alternatively referred to as interior
boundary stress operator, of the operators V and K. The operator

dnV : H−1/2(Γ)→ H−1/2(Γ)

is linear and bounded (cf. [Ste08, Section 6.7]) and can be represented by

(dnVw)i(x) = lim
Ω3x̃→x∈Γ

n∑
j=1

σij(Vw)(x̃)nj(x̃) for i = 1, . . . , n.

An alternative representation is given by

dnV =
1

2
I +K ′.

By applying the interior boundary stress operator dn on the double layer potential K we
obtain a bounded linear operator

dnK : H 1/2(Γ)→ H−1/2(Γ),

according to [Ste08, Section 6.7, p. 163]. We define the hypersingular boundary integral
operator by W := −dnK.

Remark 2.20 (Symmetry of W ). For E resp. ν being the Young modulus and Poisson
ratio from Section 1.1, let

Gij(x, y) :=
1

4π

E

1− ν2

(
− log |x− y| δij +

(xi − yi)(xj − yj)
|x− y|2

)
for i, j = 1, 2.

According to [Ste08, p.163] for C(Γ) := C(Γ)×C(Γ) and u, v ∈ H1/2(Γ)∩C(Γ), we obtain
for the hypersingular boundary integral operator that

(Wu, v)Γ =
2∑

i,j=1

∫
Γ
dxvj(x)

∫
Γ
Gij(x, y)dyui(y) dy dx,

where dx, dy denotes the derivative with respect to the arclength. Since C(Γ) ∩H1/2(Γ) is
dense in H1/2(Γ), we therefore obtain that W is symmetric on H1/2(Γ).
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2. Lamé Operators

In order to gain a better overview, we summarize the relations between the potential V
and K and the different boundary integrals V,K,K ′,W . There holds

γV = V, γK = K − 1

2
I,

dnV = K ′ +
1

2
I, dnK = −W.

(2.35)

When considering the representation formula (2.29) on Γ, we can separately apply γ and
dn . Using the identities from (2.35), we then obtain that(

γu
dnu

)
=

(
1
2I −K V
W 1

2I +K ′

)(
γu
dnu

)
, (2.36)

where the involved operator matrix

C :=

(
1
2I −K V
W 1

2I +K ′

)
is called Calderón projector. According to [Ste08, p. 163] the Calderón projector defines
a projector fulfilling C = C2. When rearranging the first row of equation (2.36), we obtain
the following boundary integral equation

V dnu =

(
1

2
I +K

)
γu in H 1/2(Γ), (2.37)

which is called Symm’s integral equation. The second row of equation (2.36) simplifies to

Wγu =

(
1

2
I −K ′

)
dnu in H−1/2(Γ) (2.38)

and is called the hypersingular integral equation.
In addition, we consider the rigid body motions from (2.24). Since dnr = 0 for all r ∈ R,

inserting r ∈ R into the representation formula from (2.32), we get that

r = −Kr on Ω.

Moreover, considering equation (2.37) and (2.38) gives(
1

2
I +K

)
γr = 0 (2.39)

and

Wγr = 0 . (2.40)

As we later want to solve (2.37) for dnu , we need the ellipticity of the operator V . We
define for n = 2

H
−1/2
+ (Γ) :=

{
w ∈ H−1/2(Γ) : (wi, 1)Γ = 0 for i = 1, 2

}
.

According to [Ste08, Theorem 6.36], we then get ellipticity in H
−1/2
+ (Γ) for n = 2.
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2.5. Integral operators

Theorem 2.21. It holds that Then we have

(Vw,w)Γ ≥ CV ‖w‖2H−1/2(Γ)
, for all w ∈ H

−1/2
+ (Γ).

where CV > 0 depends only on Γ. �

In [Ste08, Section 6.7], the ellipticity of V in H−1/2(Γ) is shown, which requires some
more steps and suitable scaling of the domain Ω. In the following theorem from [ME14,
Theorem 3.18] a shorter explanation is given.

Theorem 2.22. For a Lipschitz domain Ω ⊂ R2, we may either consider hΩ for a suffi-
ciently small scaling parameter h > 0, or, equivalently, we may consider Ω and the scaled
fundamental solution Uc(z) = U(z) + cI with sufficiently large c > 0. Then, we obtain the
ellipticity of V in H−1/2(Γ), i.e.,

(Vw,w)Γ ≥ C̃V ‖w‖2H−1/2(Γ)
for all w ∈ H−1/2(Γ).

In particular, V is an isomorphism with
∥∥V −1

∥∥ ≤ C̃−1
V and

(w, v)V := (Vw, v)Γ for all v,w ∈ H−1/2(Γ)

define an equivalent scalar product on H−1/2(Γ).

By applying the Lax-Milgram lemma (Lemma 2.9) we then get existence of the inverse
operator V −1 : H 1/2(Γ)→ H−1/2(Γ). We define

H
−1/2
∗ (Γ) :=

{
w ∈ H−1/2(Γ) : (w , r)Γ = 0 for all r ∈ R

}
,

and

H
1/2
∗ (Γ) :=

{
v ∈ H 1/2(Γ) : (V −1v , r)Γ = 0 for all r ∈ R

}
.

Then, V : H
−1/2
∗ (Γ)→ H

1/2
∗ (Γ) is an isomorphism.

Furthermore, the single layer operator V is symmetric as stated in the following corollary.

Corollary 2.23. The single layer operator V ∈ L(H−1/2(Γ);H1/2(Γ) is a symmetric op-
erator, i.e. (V φ,ψ)Γ = (φ, Vψ)Γ for all φ,ψ ∈ H−1/2(Γ).

For the Laplace operator the above corollary is proven in [Pra07, Corollary 4.24]. The
proof for Corollary 2.23 can be done in the same way for the Lamé operator, since the
fundamental solution for the Lamé equation U ∗(x− y) = U ∗(y−x) from Theorem 2.18 is
symmetric.

As for V , we also need an ellipticity result for the hypersingular boundary integral

operator W . According to [Ste08, p. 164], W is H
1/2
∗ (Γ)-ellipticity, i.e.,

(Wv , v)Γ ≥ CW ‖v‖2H 1/2(Γ)
for all v ∈ H

1/2
∗ (Γ),
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2. Lamé Operators

for some constant CW > 0 which only depends on Γ. Moreover, we introduce

H
1/2
∗∗ (Γ) :=

{
v ∈ H 1/2(Γ) : (v , r)Γ = 0 for all r ∈ R

}
,

which essentially equips the space H 1/2(Γ) with the solvability condition (2.27). Then,
there exits a constant C̃W > 0, which depends only on Γ, such that

(Wv , v)Γ ≥ C̃W ‖v‖2H 1/2(Γ)
for all v ∈ H

1/2
∗∗ (Γ); (2.41)

see [Ste08, p. 165].

2.6. Boundary integral equations

In this section, we consider boundary value problems for Lu = 0 for a bounded, simple
connected domain Ω with Lipschitz boundary Γ := ∂Ω.

2.6.1. Dirichlet boundary value problem

First, we consider the Dirichlet boundary value problem. For given g ∈ H 1/2(Γ), it reads

−µ∆u − (λ+ µ)∇div u = 0 in Ω,

γu = g on Γ.

When looking at the representation formula (2.32), we still have to find the unknown
Neumann data dnu ∈ H−1/2(Γ). By inserting into Symm’s integral equation (2.37), we
obtain

V dnu =

(
1

2
I +K

)
g . (2.42)

The above equation is in fact equivalent to the Dirichlet problem, because for each solution
dnu we can construct a solution u ∈ H 1(Ω) to the Dirichlet problem via the representation
formula (2.32). On the other hand, for a solution u ∈ H 1(Ω), the trace γu = g and
conormal derivative dnu fulfil equation (2.42).

According to [Ste08, p.173] we may also consider (2.42) in the equivalent variational
formulation: Find dnu ∈ H−1/2(Γ) such that

(V dnu , v)Γ = ((
1

2
I +K)g , v)Γ for all v ∈ H−1/2(Γ). (2.43)

As V is bounded and H−1/2(Γ)-elliptic according to Theorem 2.22 when assuming a
suitable scaling of domain Ω, we conclude the unique solveability of the boundary integral
equation (2.43) by applying the Lax-Milgram lemma (Lemma 2.9). Moreover, since V ,
V −1, K are bounded, it holds that

‖dnu‖H−1/2(Γ) ≤
1

CV

∥∥∥∥(1

2
I +K

)
g

∥∥∥∥
H 1/2(Γ)

≤ CK
CV
‖g‖H 1/2(Γ) ,

where CV , CK > 0 are the boundedness constants for V and K. The above inequalities are
stated in [Ste08, p. 172] for the Laplace equation, but still hold for the Lamé equation as
the operators remain bounded.
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2.6. Boundary integral equations

2.6.2. Neumann boundary value problem

Next, we consider the Neumann boundary value problem. For given φ ∈ H−1/2(Γ), it
reads

−µ∆u − (λ+ µ)∇div u = 0 in Ω,

dnu = φ on Γ.

In order for a solution to exist, we have to assume the solvability condition (2.27)

(γr ,φ)Γ = 0 for all r ∈ R.

Note that the solution of the Neumann boundary value problem is only unique up to the
rigid body motions. When considering the representation formula (2.32), we still have
to find the unknown Dirichlet data γu ∈ H 1/2(Γ). By inserting into the hypersingular
integral equation (2.38), we obtain

Wγu =

(
1

2
I −K ′

)
φ. (2.44)

The above equation is equivalent to the Neumann problem, since for each solution γu of
(2.44), we can construct a solution u ∈ H 1(Ω) to the Neumann problem via the repre-
senation formula (2.32). On the other hand, for a solution u ∈ H 1(Ω) the trace γu and
conormal derivative dnu = φ fulfil equation (2.44).

As Wγr = 0 for all rigid body motions r ∈ R, we have kerW = γR. In order to ensure
the solvability of (2.44), similar as done in [Ste08, Section 7.2] for the Laplace equation,
we need to assume the following solvability condition

(
1

2
I −K ′)φ ∈ range(W ) = (kerW )0, (2.45)

where

(kerW )0 := {f ∈ H−1/2(Γ) : 〈f, v〉 = 0 for all v ∈ kerW} ⊆ H−1/2(Γ)

and the last equality in (2.45) results from the closed range theorem (cf. [Pra17, Theo-
rem 5.7]) and Remark 2.20. Instead of (2.44), we can consider the equivalent variational
formulation: find γu ∈ H 1/2(Γ)

(Wγu , v)Γ = ((
1

2
I −K ′)φ, v)Γ for all v ∈ H 1/2(Γ). (2.46)

As the operator W is bounded and H
1/2
∗∗ (Γ)-elliptic due to (2.41) we obtain that the

variational formulation

(Wγu , v)Γ = ((
1

2
I −K ′)φ, v)Γ for all v ∈ H

1/2
∗∗ (Γ), (2.47)

has a unique solution γu ∈ H
1/2
∗∗ (Γ).
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2. Lamé Operators

Remark 2.24. Since we cannot prove the ellipticity of operator W in H1/2(Γ) we may
consider a modified formulation of the problem: find γu ∈ H1/2(Γ) such that

(Ŵγu, v)Γ = ((
1

2
I −K ′)φ, v)Γ for all v ∈ H1/2(Γ), (2.48)

where (ri)
dimR
i=1 is a basis of R. The modified hypersingular integral operator Ŵ : H1/2(Γ)→

H−1/2(Γ) is given by

(Ŵw, v)Γ := (Ww, v)Γ +
dimR∑
i=1

(w, γri)Γ(v, γri)Γ for v,w ∈ H1/2(Γ).

As W is bounded, also Ŵ is bounded.
A proof that the problem formulations (2.47) and (2.48) are equivalent and that the

operator Ŵ is H1/2(Γ)–elliptic, remains open.
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3. Compact presentation of BEM

As the boundary integral equations of the previous section can in general not be solved
analytically, in this chapter we will present the Galerkin boundary element method and
related theory in order to solve these boundary integral equations numerically. From this
chapter on, we will only consider the Dirichlet problem.

3.1. Galerkin method

We consider a Hilbert space H with norm ‖·‖H and a continuous and elliptic bilinear form
〈〈·, ·〉〉 on H. For a given F ∈ H∗, we then get existence and uniqueness of the solution
u ∈ H of

〈〈u, v〉〉 = F (v) for all v ∈ H, (3.1)

by applying the Lax-Milgram lemma (Lemma 2.9). The Galerkin scheme then consists of
replacing the continuous space H by a finite dimensional and hence closed subspace X` of
H. Since the Lax-Milgram lemma applies as well to the subspace X`, there also exists a
unique Galerkin solution u` ∈ X` of

〈〈u`, v`〉〉 = F (v`) for all v` ∈ X`.

The solution fulfils an important property called the Galerkin orthogonality

〈〈u− u`, v`〉〉 = 0 for all v` ∈ X`. (3.2)

The projection G` : H → X` characterised by

〈〈G`u, v`〉〉 = 〈〈u, v`〉〉 for all v` ∈ X`,

is called Galerkin projection. Due to the Galerkin orthogonality (3.2) the Galerkin pro-
jection is an orthogonal projection. If 〈〈·, ·〉〉 is additionally symmetric, then it is a scalar
product. Hence, we call the scalar product 〈〈·, ·〉〉 and the induced norm |||·||| := 〈〈·, ·〉〉1/2 the
energy scalar product and energy norm respectively.

With the Pythagoras theorem, we have that

|||u−G`u|||2 + |||G`u− v`|||2 = |||u− v`|||2 for all v` ∈ X`.

This implies that G`u is the best approximation of u in X` with respect to the energy norm
|||·|||, i.e.

|||u−G`u||| ≤ |||u− v`||| for all v` ∈ X`.

By switching to an equivalent norm in H, we obtain the Céa lemma [Pra07, Lemma 5.3]
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3. Compact presentation of BEM

Lemma 3.1 (Céa-Lemma). The Galerkin error is quasi-optimal, i.e.

‖u−G`u‖H ≤ CCéa min
v`∈X`

‖u− v`‖H for all u ∈ H,

where the constant CCéa > 0 depends only on the ellipticity and continuity of 〈〈·, ·〉〉. If 〈〈·, ·〉〉
is additionally symmetric, it holds that

|||u−G`u||| = min
v`∈X`

|||u− v`||| for all u ∈ H.

The Galerkin method then consists of constructing a sequence of finite dimensional sub-
spaces X` of H with X` ⊆ X`+1.

3.1.1. Dirichlet problem

We consider the Dirichlet problem (2.21) with the variational formulation of Symm’s inte-
gral equation from (2.43):

(V dnu , v)Γ = ((
1

2
I +K)g , v)Γ for all v ∈ H−1/2(Γ), (3.3)

where we seek dnu ∈ H−1/2(Γ) for given Dirichlet data g ∈ H 1/2(Γ). For simplicity we
set f := (1

2I+K)g ∈ H 1/2(Γ), φ := dnu and (φ, v)V := (V φ, v)Γ. The above formulation

(3.3) can then be rewritten as: find φ ∈ H−1/2(Γ) such that

(φ, v)V = (f , v)Γ for all v ∈ H−1/2(Γ).

The right–hand side defines a continuous linear form for v . The left hand side (φ, v)V
defines a symmetric bounded bilinear form, which is under certain assumptions on the
scaling of the domain Ω also elliptic (see Theorem 2.22). Hence, (·, ·)V defines an equivalent
scalar product on H−1/2(Γ). We can therefore apply the Galerkin method and replace
H−1/2(Γ) by a suitable finite dimensional subspace X`. Then, our problem (3.3) reads:
find Φ` ∈ X`, such that

(Φ`,Ψ`)V = (f ,Ψ`)Γ for all Ψ` ∈ X`. (3.4)

The seized solution Φ` is then the Galerkin projection onto X` of the exact solution φ ∈
H−1/2(Γ) with respect to the energy scalar product 〈〈·, ·〉〉 := (·, ·)V . Hence there holds the
Galerkin orthogonality and we get that Φ` is the best approximation of φ in X`.

3.2. Discretization

In this section, we discuss the discretization of the boundary Γ as well as the ansatz
spaces X`. Before we give the boundary discretization, we introduce the so–called NURBS
functions.
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3.2. Discretization

3.2.1. B-splines and NURBS

In this section we aim to introduce B-splines as well as NURBS and mention some basic
properties.

We consider a sequence of knots Ǩ := (ti)i∈Z on R with ti−1 ≤ ti for i ∈ Z and
limi→±∞ ti = ±∞. For the multiplicity of any knot ti we write #ti := j ∈ Z : ti = tj . We
denote the corresponding set of nodes Ň := {ti : i ∈ Z} = {žj : j ∈ Z} with žj−1 < žj for
j ∈ Z. For i ∈ Z, the i-th B-spline of degree p is defined inductively by

Bi,0 := χ[ti−1,ti),

Bi,p := βi−1,pBi,p−1 + (1− βi,p)Bi+1,p−1 for p ∈ N,

where, for t ∈ R,

βi,p(t) :=

{
t−ti

ti+p−ti if ti 6= ti+p,

0 if ti = ti+p.

We may also use the notations BǨi,p := Bi,p and βǨi,p := βi,p in order to stress the dependence

on the knots Ǩ.
The following properties of B-splines are taken from [dB86]. We refer to [dB86, Section

2-4,6] for the proof.

Lemma 3.2. For p ∈ N0 and a finite interval I = [a, b), the following assertions hold:

(i) For i ∈ Z and ` ∈ Z, Bi,p|[t`−1,t`) is a polynomial of degree p.

(ii) For i ∈ Z, Bi,p vanishes outside the interval [ti−1, ti+p) and is positive on the open
interval (ti−1, ti+p).

(iii) For i ∈ Z, Bi,p is completely determined by the p+ 2 knots ti−1, . . . , ti+p.

(iv) The B-splines of degree p form a (locally finite) partition of unity, i.e.∑
i∈Z

Bi,p = 1 on R.

(v) The set {Bi,p|I : i ∈ Z with Bi,p|I 6= 0} is a basis for the space of all right-continuous
Ň -piecewise polynomials of degree lower or equal to p on I with break points Ň ∩(a, b)
and which are, at each break point ti, p − #ti times continuously differentiable if
p−#ti ≥ 0. �

In addition to the knots Ǩ, we consider a sequence of fixed positive weightsW := (wi)i∈Z
with wi > 0. Then, we define the corresponding NURBS functions.

Definition 3.3. For i ∈ Z and p ∈ N0, we define the i-th non-uniform rational B-spline of
degree p, or shortly NURBS, as

Ri,p :=
wiBi,p∑
`∈Zw`B`,p

. (3.5)

Note that the denominator is never zero due to Lemma 3.2 (ii) and (iv). We also use the

notation RǨ,Wi,p := Ri,p.
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3. Compact presentation of BEM

Furthermore, we define for p ∈ N0 the B-spline space

S p(Ǩ) :=

{∑
i∈Z

aiB
Ǩ
i,p : ai ∈ R

}
as well as the NURBS space

N p(Ǩ,W) :=

{∑
i∈Z

aiR
Ǩ,W
i,p : ai ∈ R

}
=

S p(Ǩ)∑
`∈Zw`B

Ǩ,W
`,p

.

We also define the NURBS space on Γ

N̂ p(Ǩ,W) := N p(Ǩ,W)|[a,b) ◦ γ|−1
[a,b).

Note that with Lemma 2.5, it holds that

N̂ p(Ǩ,W) ⊂ L2(Γ) ⊂ H−1/2(Γ). (3.6)

The following result is from [dB86, corollary 2] and gives us nestedness of the B-spline
spaces, if we refine the knots.

Corollary 3.4. Let p ∈ N0. For a refinement Ǩ′ of Ǩ, i.e., Ǩ = (ti)i∈Z is a subsequence
of Ǩ′ = (ti)

′
i∈Z, it holds that

S p(Ǩ) ⊆ S p(Ǩ′).

3.2.2. Boundary discretization

We assume that Ω ⊆ R2 is a bounded Lipschitz domain whose boundary Γ := ∂Ω can be
parametrised by a fixed regular closed curve γ : [a, b]→ Γ. Moreover, we demand that γ is
continuous, piecewise continuously differentiable and that γ|[a,b) is bijective. Furthermore,
we make the assumption that γ is positively orientated. We also assume that for the left
and right derivative of γ, there holds γ′`(t) 6= 0 and γ′r(t) 6= 0 for t ∈ [a, b). Furthermore,
we demand that

γ′`(t) + cγ′r(t) 6= 0 for all c > 0 and t ∈ [a, b].

For the discretization, we introduce some further notation.

• Nodes
Let Ň? := {žj ∈ [a, b] : j = 0, . . . , n} be a set of nodes with a = ž0 < ž1 < . . . < žn = b
and such that γ|[žj−1,žj ] ∈ C1([žj−1, žj ]). The corresponding nodes on Γ are then given
by N? := {zj := γ(žj) : j = 1, . . . , n}, where z0 := zn.

• Multiplicity and knots
Let p ∈ N0 be some fixed polynomial order. Each node zj ∈ N? has a fixed multiplicity
#zj ∈ {1, 2, . . . , p+ 1} with #z0 = #zn = p+ 1 and #zj ≤ p+ 1 for j = 1, . . . , n− 1.
This induces knots

K? = (z1, . . . , z1︸ ︷︷ ︸
#z1–times

, . . . , zn, . . . , zn︸ ︷︷ ︸
#zn–times

),

with corresponding knots Ǩ? := γ|−1
(a,b](K?) on the parameter domain (a, b].
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3.2. Discretization

• Elements and partitions
Let T? = {T1, . . . , Tn} be a partition of Γ into compact and connected segments
Tj = γ(Ťj) with Ťj = [žj−1, žj ]. Then, we define

[T?] := {[T ] : T ∈ T?} with [T ] := (T,#zT,1,#zT,2),

where zT,1 = zj−1 and zT,2 = zj are the two nodes of T = Tj . We will refer to T? as
mesh and denote the set of all meshes of Γ by T.

• Local mesh-sizes
Let h?,T denote the arclength of each element T ∈ T?. Then, we can define the local
mesh-width function h? ∈ L∞(Γ) by h?|T = h?,T .
In addition, for each element T ∈ T?, we define its length by ȟ?,T :=

∣∣γ−1(T )
∣∣

with respect to the parameter domain [a, b]. Again, we can define a global function
ȟ? ∈ L∞(Γ) with ȟ?|T := ȟ?,T .
Note that the lengths of h?,T and ȟ?,T of an element T are equivalent and the equiv-
alence constants depend only on γ.

• Local mesh-ratio (shape regularity constant)
The shape regularity constants of the mesh on [a, b] and Γ are given by

κ̌(T?) := max{ȟ?,T /ȟ?,T ′ : T, T ′ ∈ T? with T ∩ T ′ 6= ∅},
κ(T?) := max{h?,T /h?,T ′ : T, T ′ ∈ T? with T ∩ T ′ 6= ∅}.

Note that κ(T?) ' κ̌(T?), where the hidden constants depend only on the parametriza-
tion γ.

• Patches
For each set Γ0 ⊆ Γ and m ∈ N0, we define the patch inductively

ωm? (Γ0) :=


Γ0 if m = 0,

ω?(Γ0) :=
⋃
{T ∈ T? : T ∩ Γ0 6= ∅} if m = 1,

ω?(ω
m−1
? (Γ0)) if m > 1.

For nodes z ∈ Γ, we abbreviate ω?(z) := ω?({z}) for the node patch. Analogously,
for each set E ⊆ [T?] and m ∈ N0, we define inductively

[ωm? ](E) :=


E if m = 0,

[ω?](E) := {[T ] ∈ [T?] : ∃[T ′] ∈ E , T ∩ T ′ 6= ∅} if m = 1,

[ω?]([ω
m−1
? ](E)) if m > 1.

We also need ⋃
E :=

⋃
{T ∈ T? : [T ] ∈ E} ⊆ Γ

and

ωm? (E) := ωm?

(⋃
E
)
.
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3.2.3. Discretization space

We consider a mesh Th of Γ as defined in Section 3.2.2 with corresponding nodes Nh and
Ňh and knots Kh and Ǩh such that for a given p ∈ N0 and each node žj ∈ Ňh, it holds that
#žj ≤ p + 1 for j = 1, . . . , n − 1 and #ž0 = #žn = p + 1. Let the given partition of the
boundary Γ be denoted with T0 with corresponding knots K0. We assume that the mesh
Th is a refinement of T0, i.e., that K0 ⊂ Kh.

In addition, we assume that for N = #Kh we have weightsWh = (ωi)
N−p
i=1−p given. Then,

we define

S(Th) := N̂ p(Ǩh,Wh) := N p(Ǩh,Wh) ◦ γ|−1
[a,b).

A basis of S(Th) is given by

{Ri,p|[a,b) : i = 1− p, . . . , N −#b+ 1} ◦ γ|−1
[a,b).

The approximation space we use for the ansatz functions will be S(Th) := S(Th)×S(Th) ⊂
H−1/2(Γ) (cf. (3.6)). The canonical basis of S(Th) is

{Rk
i := Ri,p|[a,b)ek : i = 1− p, . . . , N −#b+ 1, k = 1, 2} ◦ γ|−1

[a,b), (3.7)

where ek ∈ R2 denotes the k-th identity vector.
A special case of the above described definition is to consider weightsWh = (1)N−pi=1−p and

knots Kh resp. Ǩh with full multiplicity #zj = p+1 for all j = 0, . . . , n. The corresponding
space of all B-splines S p(Ǩh) of degree p is then the space of all piecewise polynomials
of degree p. Note that these polynomials generally are discontinuous at the nodes zj for
j = 1, . . . , n. We will denote this space of piecewise polynomials of order p by Pp(Th). The
B-splines

{BǨhi,p |[a,b) : i = 1− p, . . . , N − p} ◦ γ|−1
[a,b),

form a basis of Pp(Th) as can be seen with Lemma 3.2. The two-dimensional space of
piecewise polynomials Pp(Th) := Pp(Th)× Pp(Th) then has a basis given by

{Bk
i := BǨhi,p |[a,b) · ek : i = 1− p, . . . , N − p and k = 1, 2} ◦ γ|−1

[a,b).

3.3. Mesh-refinement and adaptive algorithm

In this subsection, we describe an adaptive algorithm for the mesh refinement, which also
considers increasing the multiplicity of the knots.
To this end, we fix a polynomial order p ∈ N0, an adaptivity constant 0 < θ ≤ 1 and
a bound for the shape regularity constant κmax > 0. We denote the surface measure of
Γ with µΓ (for Definition see [Gan14, Chapter 2]). With the index ` ∈ N0, we count
the number of steps. For ` := 0 we start with an initial mesh [T0]. This includes nodes
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3.3. Mesh-refinement and adaptive algorithm

Ň0 = {ž[0]
j : j = 1, . . . , n0} and knots Ǩ0 with N0 := |Ǩ0|. Furthermore, we have initial

weights W0 = {w[0]
i : i = 1− p, . . . , N0−#b+ 1}. We then make the following assumptions

κ(T0) ≤ κmax

h0 ≤ µΓ(Γ)/4

n0 ≥ 4

p+ 1 ≤ N0.

For the mesh refinement, we will consider a node–based error estimator η` :=
∑

z∈N` η`(z)
2

with local contributions η`(z) for z ∈ N`. In the next Section 3.4, we will present an error
estimator of this form.

With a specific marking strategy which we will explain below, we then obtain a set of
marked nodes and elements which will be refined by additionally considering knot insertion.
The following algorithm is found in [FGHP16, Algorithm 2.2].

Algorithm 3.5. INPUT : initial mesh [T0], initial knots K0, initial weightsW0, polynomial
degree p ∈ N0, adaptivity parameter 0 < θ ≤ 1, counter ` := 0.

1. Compute discrete approximation Φ`.

2. Compute the refinement indicators η`(z) for all z ∈ N`.

3. Stop, if the error estimator η` is sufficiently small.

4. Determine a set of marked nodes M` ⊆ N` of minimal cardinality such that

θη` ≤
∑
z∈M`

η`(z)
2.

5. If both nodes of an element T ∈ T` are marked, T will be marked.

6. For all other nodes z ∈ M` the multiplicity will be increased, if it is smaller than
p + 1, otherwise, if the multiplicity is already p + 1, the elements which contain the
node z will be marked.

7. Refine all marked elements T ∈ T` by bisection (insertion of a node with multiplicity
one) of the corresponding Ť ∈ Ť`. Use further bisections to guarantee that the new
partition T`+1 satisfies

κ̌(T`+1) ≤ 2κ̌(T0).

8. For the obtained knots Ǩ`+1, we need new weights W`+1, which are uniquely chosen
such that the denominator of the NURBS functions does not change, i.e.,

N`−#b+1∑
i=1−p

w
[`]
i B

Ǩ`
i,p =

N`+1−#b+1∑
i=1−p

w
[`+1]
i B

Ǩ`+1

i,p , (3.8)

where N` resp. N`+1 denote #Ǩ` resp. #Ǩ`+1. As the new weights are convex com-
binations of the initial weights W0, it holds that minW0 ≤ minW`+1 ≤ maxW`+1 ≤
maxW0 for details see [FGP15, Section 4.2].

33



3. Compact presentation of BEM

9. Set `← `+ 1 and go to 1.

OUTPUT : We obtain approximate solutions Φ` and error estimators η` for all ` ∈ N.

Note that for θ = 1 the above algorithm leads to uniform refinement. Furthermore, with
Corollary 3.4 and (3.8) we also obtain nestedness of

N̂ p(Ǩ`,W`) ⊆ N̂ p(Ǩ`+1,W`+1),

which also implies S(T`) ⊆ S(T`+1). For further details we refer to [FGHP16, Section 2.9].

3.4. The (h–h/2)–estimator

In order to refine a mesh adaptively, we need certain indicators to determine where the
error is largest. To this end, we introduce the (h–h/2)–estimator and later also the local
(h–h/2)–estimator for the Dirichlet problem. For a mesh Th of Γ we consider the uniformly
refined mesh Th/2. The corresponding nodes are given byNh resp. Nh/2. The corresponding
approximation spaces are S(Th) and S(Th/2). Let Φh resp. Φh/2 be the Galerkin solution
of the Dirichlet problem (3.4) for Xh = S(Th) resp. Xh/2 = S(Th/2). As S(Th) ⊆ S(Th/2)
(cf. Corollary 3.4), we get with the Galerkin orthogonality (3.2) that∣∣∣∣∣∣φ− Φh/2

∣∣∣∣∣∣2 +
∣∣∣∣∣∣Φh/2 − Φh

∣∣∣∣∣∣2 = |||φ− Φh|||2 .

Note that as an immediate consequence there also holds that∣∣∣∣∣∣φ− Φh/2

∣∣∣∣∣∣ ≤ |||φ− Φh||| .

Therefore, we define the (h–h/2)–estimator as follows

µ(Th) :=
∣∣∣∣∣∣Φh/2 − Φh

∣∣∣∣∣∣ ≤ |||φ− Φh||| .

Due to the above estimate µ(Th) is an efficient error estimator. However, it does not contain
information about local contributions, which we need for an adaptive algorithm. Therefore,
we define the local (h–h/2)–estimator for node contributions as

µ̃(z) :=
∥∥∥h1/2(Φh/2 − Φh)

∥∥∥
L2(ω(z))

, for all z ∈ Nh

and the corresponding global estimator

µ̃(Th) =
∥∥∥h1/2(Φh/2 − Φh)

∥∥∥
L2(Γ)

,

where h ∈ L∞(Γ) denotes the local mesh-width function. Note that there holds

µ̃(Th)2 ≤
∑
z∈Nh

µ̃(z)2 ≤ 2µ̃(Th)2,

since the node patch contains two elements.
We will prove the equivalence between the (h–h/2)–estimator µ(Th) and the local (h–

h/2)–estimator µ̃(Th) for the space of elementwise piecewise polnomials Pp(Th) of order
p. For that, we need appropriate results, i.e., approximation estimates and inverse-type
estimates. The following lemma from [CP06, Theorem 4.1] gives an appoximation property
of the L2-orthogonal projection onto Pp(Th).
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3.4. The (h–h/2)–estimator

Lemma 3.6. Let Πh : L2(Γ) → Pp(Th) be the orthogonal projection onto Pp(Th). Then,
there exists a constant Capx > 0 such that

‖ψ −Πhψ‖H−1/2(Γ) ≤ Capx
∥∥∥h1/2(ψ −Πhψ)

∥∥∥
L2(Γ)

for all ψ ∈ L2(Γ).

The constant Capx depends only on the boundary Γ.

The following proposition is a special case of [FGHP17, Proposition 4.1] and gives us an
inverse-type estimate for NURBS.

Proposition 3.7. For a triangulation T as defined in Section 3.2.2, it holds that∥∥∥h1/2Ψ
∥∥∥
L2(Γ)

≤ Cinv ‖Ψ‖H−1/2(Γ) for all Ψ ∈ S(T ),

where Cinv > 0 depends only on κ̌(T ), p, γ,min(W),max(W) for weights W corresponding
to function Ψ.

The above result is formulated for NURBS functions S(T ), however we can apply it to
the space of all piecewise polynomials Pp(T ) when choosing the multiplicity of the knots
as p + 1 at each node. Although the above results are only formulated for scalar spaces,
they clearly hold for the vector–valued spaces. We can now prove the equivalence of the
two different (h–h/2)–estimators.

Lemma 3.8. The (h–h/2)–estimator is equivalent to the local (h–h/2)–estimator for the
ansatz space X` = Pp(Th), i.e., it holds that

C−1
L µ̃(Th) ≤ µ(Th) ≤ CH µ̃(Th).

The constant CH > 0 depends only on Γ and on the ellipticity and continuity of the energy
scalar product, while CL > 0 depends only on κ̌(Th), p, γ.

Proof. We first prove µ(Th) ≤ CH µ̃(Th). Since the energy norm |||·||| is equivalent to
‖·‖H−1/2 on Pp(Th/2), i.e.,∣∣∣∣∣∣Φh/2 − Φh

∣∣∣∣∣∣ ' ∥∥Φh/2 − Φh

∥∥
H−1/2(Γ)

,

we can switch to the ‖·‖H−1/2 norm. As Φh is also the Galerkin projection of Φh/2 onto
Pp(Th), we can apply the Céa-Lemma 3.1 to obtain that∥∥Φh/2 − Φh

∥∥
H−1/2(Γ)

≤ CCéa min
Ψh∈Pp(Th)

∥∥Φh/2 −Ψh

∥∥
H−1/2(Γ)

≤ CCéa

∥∥Φh/2 −ΠhΦh/2

∥∥
H−1/2(Γ)

,

with Πh : L2(Γ) → Pp(Th) being the L2(Γ)–orthogonal projection onto Pp(Th). Then we
can apply Lemma 3.6 and use the fact that Πh is a projection and that it acts elementwise
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on T ∈ Th to obtain that∥∥Φh/2 −ΠhΦh/2

∥∥
H−1/2(Γ)

≤ Capx
∥∥∥h1/2(Φh/2 −ΠhΦh/2)

∥∥∥
L2(Γ)

= Capx

∥∥∥h1/2(1−Πh)(Φh/2 − Φh)
∥∥∥
L2(Γ)

≤ 1√
2
Capx

∑
z∈Nh

∥∥∥h1/2(1−Πh)(Φh/2 − Φh)
∥∥∥2

L2(ω(z))

1/2

=
1√
2
Capx

∑
z∈Nh

∑
{T∈Th:T⊆ω(z)}

hT
∥∥(1−Πh)(Φh/2 − Φh)

∥∥2

L2(T )

1/2

≤ 1√
2
Capx

∑
z∈Nh

∑
{T∈Th:T⊆ω(z)}

hT
∥∥Φh/2 − Φh

∥∥2

L2(T )

1/2

≤ Capx

∑
T∈Th

hT
∥∥Φh/2 − Φh

∥∥2

L2(T )

1/2

= Capx

∥∥∥h1/2(Φh/2 − Φh)
∥∥∥
L2(Γ)

.

In the above inequalities we used the fact that the node patch consists of two elements.
Next, we consider µ̃(Th) ≤ CLµ(Th). This follows from Proposition 3.7 applied to Ψ :=

Φh/2 − Φh. With the equivalence of ‖·‖H−1/2(Γ) and the energy norm |||·|||, we obtain∥∥∥h1/2(Φh/2 − Φh)
∥∥∥
L2(Γ)

≤ Cinv
∣∣∣∣∣∣Φh/2 − Φh

∣∣∣∣∣∣ .
This concludes the proof.

Remark 3.9. When trying to prove a similar result as Lemma 3.8 for an ansatz space
X` = S(Th), we face several problems. The inverse equality from Proposition 3.7 holds for
NURBS and therefore the estimate µ̃(Th) ≤ CLµ(Th) would still hold when using S(Th)
instead of Pp(Th).
It is however not trivial to find an appropriate approximation property to prove the converse
estimate. In the proof of Lemma 3.8 we used that the L2-orthogonal-projection onto Pp(Th)
acts elementwise. If we were to replace Pp(Th) with S(Th), the orthogonal projection does
not necessarily act elementwise any more. The problem is that S(Th) might also require
continuity at certain nodes.
Another approach would be to use a Scott–Zhang type operator instead of the L2–orthogonal
projection. A definition for an operator J? : L2(Γ) → S(Th) of this type can be found in
[FGHP17, (5.9)]. In [FGHP17, Lemma 5.3] it is shown that J? has a local projection
property and that there holds local L2–stability, i.e., for ψ ∈ L2(Γ) and T ∈ Th there holds

‖J?ψ‖L2(T ) ≤ C ‖ψ‖L2(ωp(T )) ,

36



3.4. The (h–h/2)–estimator

where C = C(p, γ,max(Wh), κmax). We would however amongst other estimates still need
an appropriate first–order approximation property for the Scott–Zhang type estimator with
respect to the energy norm |||·||| or equivalently the the H−1/2 norm ‖·‖H−1/2(Γ). A proof for

Lemma 3.8 for X` = S(Th) therefore remains open.
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4. Numerical computation of discrete
integral operators

In this section, we deal with the computation of the occurring boundary operators and the
corresponding matrices. This section strongly relies on [Gan14, Chapter 5], as the matrices
for the Lamé equation are built up in a similar way compared to the Laplace equation.

We assume that Ω ⊂ R2 and the boundary parametrization γ is defined as in Section
3.2.2. In addition, we assume that γ is two times piecewise differentiable. More precisely,
let a = x̌γ0 < . . . < x̌γnγ = b such that γ|[x̌γj−1,x̌

γ
j ] is two times continuously differentiable for

j = 1, . . . , nγ . Furthermore, we write xγj := γ(x̌γj ). In addition, we assume that diam(Ω)
is sufficiently scaled such that V is an elliptic operator. The fact that γ is positively
orientated means that the outer normal vector ν at any point x = γ(t) = (γ1(t), γ2(t))T ∈
Γ\{γ(x̌γ1 , . . . , x̌

γ
nγ )} is given by

ν(x) =
1

|γ′(t)|

(
γ′2(t)
−γ′1(t)

)
. (4.1)

The boundary Γ is parametrised by a NURBS curve γ, which means that the parametri-
sation has the special form

γ(t) =

Nγ−#b+1∑
i=1−p

CiR
Ǩγ ,Wγ

i,pγ
(t) (4.2)

for all t ∈ [a, b] and Ǩγ and Wγ being the knots and weights of the initial mesh defined on

Γ. The polynomial degree is pγ ∈ N0 and (Ci)
Nγ−#b+1
i=1−p are control points in R2.

Moreover, we will use the discretization spaces described in Section 3.2.3.
In the following section we will also need the fundamental solution U ∗ = (U∗ij(x, y))2

i,j=1

from Theorem 2.18, where

U∗ij(x, y) =
1

4πµ(2µ+ λ)

(
−(3µ+ λ) log |x− y| δij + (µ+ λ)

(xi − yi)(xj − yj)
|x− y|2

)
and its `-th partial derivative with respect to the second coordinate y is given by

∂`,yU
∗
ij(x, y) =

3µ+ λ

4πµ(2µ+ λ)

x` − y`
|x− y|2

δij+

µ+ λ

4πµ(2µ+ λ)

2(x` − y`)(xi − yi)(xj − yj)− (δ`i(xj − yj) + δ`j(xi − yi)) |x− y|2

|x− y|4
.

(4.3)
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4.1. Dirichlet Problem

In this section, we aim to construct the setting for numerically solving problem (3.4): find
Φh ∈ Xh such that

(Φh,Ψh)V = (f ,Ψh)Γ for all Ψh ∈ Xh. (4.4)

For the approximation space Xh we chose S(Th) from Section 3.2.3 for given knots Ǩh and
weights Wh. We can then rewrite the above problem formulation with the basis function
Rk
i from (3.7) for i = 1 − p, . . . , n − #b + 1 and k = 1, 2. For abbreviation, we set

R̂
k

i := (Ri,p|[a,b) ◦ γ|−1
[a,b)) · ek. Then, we define the symmetric positive definite matrix

Vh := (((V R̂
m

j , R̂
k

i )Γ︸ ︷︷ ︸
=:V kmh,ij

)N−#b+1
i,j=1−p

︸ ︷︷ ︸
=:V kmh

)2
k,m=1 (4.5)

and the right-hand side vector

Fh := (((f , R̂
k

i )Γ︸ ︷︷ ︸
=:Fkh,i

)N−#b+1
i=1−p

︸ ︷︷ ︸
=:Fkh

)2
k=1. (4.6)

Then, there exists a unique vector

ch := (c1
h,1−p, . . . , c

1
h,N−#b+1︸ ︷︷ ︸

=:c1h

, c2
h,1−p, . . . , c

2
h,n−#b+1︸ ︷︷ ︸

=:c2h

) (4.7)

so that

Vhch = Fh and Φh =

N−#b+1∑
j=1−p

c1
h,jR̂

1

j + c2
h,jR̂

2

j , (4.8)

i.e., (4.8) is the algebraic system equivalent to the discrete variational formulation (4.4).
As the matrix Vh and the vectors Fh and ch are made up of sub-matrices and sub-vectors
from the definitions (4.5), (4.6) and (4.7), we can write (4.8) as(

V 11
h V 12

h

V 21
h V 22

h

)(
c1
h

c2
h

)
=

(
F 1
h

F 2
h

)
.

In order to calculate Φh we only have to solve the system of linear equations (4.8). In the
following sections, we will prepare the entries of the matrix Vh and the vector Fh so that
we can use tensor-Gauss quadrature to numerically approximate the integrals. For fixed
positive weight functions θ1, θ2 ∈ L1([0, 1]) and integrands f ∈ C([0, 1]2), we will have to
approximate integrals of the form

Qf :=

∫
[0,1]

∫
[0,1]

f(s, t)θ1(s)θ2(t) dt ds.
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4.1. Dirichlet Problem

For n1, n2 ∈ N and nodes ξ1,q1 resp. ξ2,q2 and weights ω1,q1 resp. ω2,q2 for the Gauß quadra-
ture on [0, 1] with weight function θ1 resp. θ2 (cf. [Pra10, Chapter 6.3]), we define the
tensor Gauß quadrature as

Qn1,n2f :=

n1∑
q1=1

n2∑
q2=1

f(ξ1,q1 , ξ2,q2)ω1,q1ω2,q2 .

We define the quadrature error as

En1,n2 := Q−Qn1,n2 .

For ` = 1, 2, we define linear functionals for f ∈ C([0, 1]) by

Q`n`f =

n∑̀
q`=1

f(ξ`,q`)ω`,q` ,

Q`f =

∫
[0,1]

f(r)θ`dr,

E`n` = Q` −Q`n` .

In [Gan14, Theorem 5.1] the following error estimate is shown.

Theorem 4.1. There holds the error estimate

|En1,n2(f)| ≤ ‖θ2‖L1([0,1]) max
s∈[0,1]

∣∣E1
n1
f(s, ·)

∣∣+ ‖θ1‖L1([0,1]) max
t∈[0,1]

∣∣E1
n1
f(·, t)

∣∣
for arbitrary f ∈ C([0, 1]2), where the right hand side converges to zero for n1 → ∞ and
n2 →∞. �

Before we continue with the details for the computation of Vh and Fh, we first show, that
the integral in the definition of the operator V defined in (2.33)

(Vw)i(x) =

∫
Γ

n∑
j=1

U ∗ij(x, y)wj(y) dy, for i = 1, 2,

does exist for w ∈ L2(Ω). Consider a fixed x = γ(s) ∈ Γ\{xγ1 , . . . , x
γ
nγ}. As the fundamental

solution is a sum of terms of the type log |x− y| and ((xi − yi)(xj − yj))/ |x− y|2 for
i, j = 1, 2, we will consider those terms separately. First, we look at the log-term which
also occurs for the Laplace equation. In [Gan14, Chapter 5, p. 52], it is shown for w ∈ L2(Γ)
that ∫

Γ
|log(|x− y|)w(y)| dy

≤ ‖w‖L2(Γ)

(∫
[a,b]

(
log

(
|γ(s)− γ(t)|
|s− t|

)
+ log(|s− t|)

)2 ∣∣γ′(t)∣∣ dt)1/2
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and that the first integral does exist. For the rational part, it holds that

∫
Γ

∣∣∣∣(xi − yi)(xj − yj)|x− y|2
w(y)

∣∣∣∣ dy ≤ ‖w‖L2(Γ)

(∫
Γ

∣∣∣∣(xi − yi)(xj − yj)|x− y|2

∣∣∣∣2 dy
)1/2

≤ ‖w‖L2(Γ)

∫
Γ

1 dy.

Consequently, the integral in the definition of V exists. Not that for the operator K, we
only have existence as a Cauchy principal value.

4.1.1. Numerical computation of Vh

In this section we will use several abbreviations

Ri := Ri,p|[a,b),

R̂i := Ri,p|[a,b) ◦ γ|−1
[a,b),

Ǔ∗km(s, t) := U∗km(γ(s), γ(t)),

H` := t` − t`−1,

Ǔ∗km,`1,`2(s, t) := Ǔ∗km(t`1−1H`1s, t`2−1 +H`2t),

R̃i(s) := Ri(s)
∣∣γ′(s)∣∣ ,

R̃i,`(s) := R̃i(t`−1 +H`s).

The aim of this section is to calculate the approximation of the left hand side of (3.4)

(Φh,Ψh)V = (V Φh,Ψh)Γ =

∫
Γ

∫
Γ

2∑
p=1

2∑
q=1

U∗pq(x, y)Φh,q(y)Ψh,p(x) dy dx,

where Φh,Ψh ∈ S(Th) ≤ H−1/2(Γ) with given knots Ǩh and weights Wh for S(Th). To
this end, we build up the matrix Vh. For i, j = 1− p, . . . , N −#b+ 1 we then obtain

V km
h,ij = (V R̂

m

j , R̂
k

i )Γ

=

∫
Γ

∫
Γ

2∑
r=1

2∑
q=1

U∗rq(x, y)R̂
m

j,q(y)R̂
k

i,r(x) dy dx.
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4.1. Dirichlet Problem

Since R̂
k

i = R̂iek, for the r-th entry (R̂ki )r it holds that (R̂ki )r = R̂iδkr. Then, by using the
properties of the support of Ri(·), we get

V km
h,ij =

∫
Γ

∫
Γ

2∑
r=1

2∑
q=1

U∗rq(x, y)R̂j(y)R̂i(x)δmqδkr dy dx

=

∫
Γ

∫
Γ
U∗km(x, y)R̂j(y)R̂i(x) dy dx

=

∫
[a,b)

∫
[a,b)

U∗km(γ(s), γ(t))Rj(t)Ri(s)
∣∣γ′(s)∣∣ ∣∣γ′(t)∣∣ dt ds

=

min(i+p,N)∑
`1=max(i,1)

min(j+p,N)∑
`2=max(j,1)

∫
[t`1−1,t`1 ]

∫
[t`2−1,t`2 ]

Ǔ∗km(s, t)R̃j(t)R̃i(s) dt ds

=

min(i+p,N)∑
`1=max(i,1)

min(j+p,N)∑
`2=max(j,1)

H`1H`2

∫
[0,1]

∫
[0,1]

Ǔ∗km,`1,`2(s, t)R̃j,`2(t)R̃i,`1(s) dt ds.

Now, for H`1 , H`2 > 0, we want to calculate the double integral∫
[0,1]

∫
[0,1]

Ǔ∗km,`1,`2(s, t)R̃j,`2(t)R̃i,`1(s) dt ds.

As the integrand is singular for γ(s) = γ(t), we differentiate between three cases.

Case 1.γ([t`1−1, t`1 ])∩ γ([t`2−1, t`2 ]) = ∅: In this case the integrand is continuous, we can
apply Theorem 4.1 and use tensor-Gauss quadrature with weight function 1.

Case 2.γ([t`1−1, t`1 ]) = γ([t`2−1, t`2 ]): This implies that ` := `1 = `2. Using the transfor-
mation (s, t) 7→ (s, s− t), it holds that∫

[0,1]

∫
[0,1]

Ǔ∗km,`,`(s, t)R̃i,`(s)R̃j,`(t) dt ds

=

∫
[0,1]

∫
[0,s]

Ǔ∗km,`,`(s, s− t)R̃i,`(s)R̃j,`(s− t) dt ds︸ ︷︷ ︸
=:(I)

+

∫
[0,1]

∫
[s−1,0]

Ǔ∗km,`,`(s, s− t)R̃i,`(s)R̃j,`(s− t) dt ds︸ ︷︷ ︸
=:(II)

.

(4.9)

For the first summand (I) in (4.9), we use the Duffy transformation (s, t) 7→ (s, st) on
[0, 1]× [0, 1] with Jacobi determinant s and then add and subtract log(st) in order for the
argument of the log to be non-singular. The aim of the Duffy transformation is to bring
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4. Numerical computation of discrete integral operators

the singularities to s = 0 or t = 0. We then obtain

(I) =

∫
[0,1]

∫
[0,1]

Ǔ∗km,`,`(s, s− st)R̃i,`(s)R̃j,`(s− st)s dt ds

= −δkm
3µ+ λ

4πµ(2µ+ λ)(∫
[0,1]

∫
[0,1]

log

(
|γ(t`−1 +H`s)− γ(t`−1 +H`s(1− t))|

st

)
R̃i,`(s)R̃j,`(s− st)s dt ds

+

∫
[0,1]

∫
[0,1]

log(s)R̃i,`(s)R̃j,`(s− st)s dt ds

+

∫
[0,1]

∫
[0,1]

log(t)R̃i,`(s)R̃j,`(s− st)s dt ds

)

+
µ+ λ

4πµ(2µ+ λ)

∫
[0,1]

∫
[0,1]

(γk(t`−1 +H`s)− γk(t`−1 +H`s(1− t)))(γm(t`−1 +H`s)− γm(t`−1 +H`s(1− t)))
|γ(t`−1 +H`s)− γ(t`−1 +H`s(1− t))|2

R̃i,`(s)R̃j,`(s− st)s dt ds.
(4.10)

For the second summand (II) in (4.9), we transform (s, t) 7→ (1 − s,−t) before we apply
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4.1. Dirichlet Problem

the Duffy transformation:

(II) =

∫
[0,1]

∫
[0,s]

Ǔ∗km,`,`(1− s, 1− s+ t)R̃i,`(1− s)R̃j,`(1− s+ t) dt ds

=

∫
[0,1]

∫
[0,1]

Ǔ∗km,`,`(1− s, 1− s+ st)R̃i,`(1− s)R̃j,`(1− s+ st)s dt ds

= −δkm
3µ+ λ

4πµ(2µ+ λ)(∫
[0,1]

∫
[0,1]

log

(
|γ(t`−1 +H`(1− s))− γ(t`−1 +H`(1− s+ st))|

st

)
· R̃i,`(1− s)R̃j,`(1− s+ st)s dt ds

+

∫
[0,1]

∫
[0,1]

log(s)R̃i,`(1− s)R̃j,`(1− s+ st)s dt ds

+

∫
[0,1]

∫
[0,1]

log(t)R̃i,`(1− s)R̃j,`(1− s+ st)s dt ds

)

+
µ+ λ

4πµ(2µ+ λ)

∫
[0,1]

∫
[0,1]

(γk(t`−1 +H`(1− s))− γk(t`−1 +H`(1− s+ st)))

|γ(t`−1 +H`(1− s))− γ(t`−1 +H`(1− s+ st))|2

(γm(t`−1 +H`(1− s))]− γm(t`−1 +H`(1− s+ st)))R̃i,`(1− s)R̃j,`(1− s+ st)s dt ds.

(4.11)

For the remaining eight double integrals, we use Gauß quadrature with weight functions 1,
log(s), log(t) resp. 1. The following corollary which strongly relies on [Gan14, Lemma 5.2]
shows that we can apply Theorem 4.1.

Corollary 4.2. If the parametrization γ is q ≥ 1 times continuously differentiable on
[x̌γm−1, x̌

γ
m] for m ∈ {1, . . . , nγ}, the integrands of the final terms in (4.10) and in (4.11)

are, up to log(s) resp. log(t), q − 1 times continuously partially differentiable on [0, 1]2.

Proof. For the first three double integrals in (4.10) and (4.11) each, the proof is found
in [Gan14, Lemma 5.2]. Therefore, we will only prove the statement for the last double
integral in (4.10), and (4.11) can be treated analogously. First, we rewrite for i = 1, 2

γi(t`−1 +H`s)− γi(t`−1 +H`s(1− t))

=

∫
[t`−1+H`s(1−t),t`−1+H`s]

γ′i(τ) dτ

= (t`−1 +H`s− t`−1 −H`s(1− t))
∫

[0,1]
γ′i(t`−1 +H`s(1− t) +H`stτ) dτ

= (H`st)

∫
[0,1]

γ′i(t`−1 +H`s(1− t) +H`stτ) dτ.
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4. Numerical computation of discrete integral operators

For s, t ∈ (0, 1], for the last integral in (4.10) we obtain that

(γk(t`−1 +H`s)− γk(t`−1 +H`s(1− t)))(γm(t`−1 +H`s)− γm(t`−1 +H`s(1− t)))
|γ(t`−1 +H`s)− γ(t`−1 +H`s(1− t))|2

=

(∫
[0,1] γ

′
k(t`−1 +H`s(1− t) +H`stτ)dτ

)(∫
[0,1] γ

′
m(t`−1 +H`s(1− t) +H`stτ)dτ

)
∣∣∣∫[0,1] γ

′(t`−1 +H`s(1− t) +H`stτ) dτ
∣∣∣2 .

The above term can be continuously extended for s = 0 or t = 0 with(
γ′k|[t`−1,t`](t`−1 +H`s(1− t))

) (
γ′m|[t`−1,t`](t`−1 +H`s(1− t))

)∣∣∣γ|′[t`−1,t`]
(t`−1 +H`s(1− t))

∣∣∣2 .

Since γ is injective and γ′ vanishes nowhere, its modulus is positive for all s, t ∈ [0, 1]. Due
to the smoothness of γ and the basis functions R̃i,`, R̃j,` the integrand of the last double
integral in (4.10) is q − 1 times continuously differentiable.

Case 3.|γ(t`1−1, t`1) ∩ γ(t`2−1, t`2)| = 1: In this case we have adjacent elements. Without
loss of generality, we assume that the singularity in the integrand appears at s = 0 and t = 1.
The other case can be treated analogously. We either have t`1−1 = t`2 or t`2 = b∧t`1−1 = a.
Using the transformation t 7→ 1− t, it holds that∫

[0,1]

∫
[0,1]

Ǔ∗km,`1,`2(s, t)R̃i,`1(s)R̃j,`2(t) dt ds

=

∫
[0,1]

∫
[0,s]

Ǔ∗km,`1,`2(s, 1− t)R̃i,`1(s)R̃j,`2(1− t) dt ds︸ ︷︷ ︸
=:(I)

+

∫
[0,1]

∫
[s,1]

Ǔ∗km,`1,`2(s, 1− t)R̃i,`1(s)R̃j,`2(1− t) dt ds︸ ︷︷ ︸
=:(II)

.

(4.12)

Again, we proceed similarly as in the previous case and split the two summands and first
apply the Duffy transformation. For the first summand (I) in (4.12) we then add and
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4.1. Dirichlet Problem

subtract log(s):∫
[0,1]

∫
[0,1]

Ǔ∗km,`1,`2(s, 1− st)R̃i,`1(s)R̃j,`2(1− st)s dt ds

= −δkm
3µ+ λ

4πµ(2µ+ λ)(∫
[0,1]

∫
[0,1]

log

(
|γ(t`1−1 +H`1s)− γ(t`2−1 +H`2(1− st))|

s

)
R̃i,`1(s)R̃j,`2(1− st)s dt ds

+

∫
[0,1]

∫
[0,1]

log(s)R̃i,`1(s)R̃j,`2(1− st)s dt ds

)

+
µ+ λ

4πµ(2µ+ λ)

∫
[0,1]

∫
[0,1]

(γk(t`1−1 +H`1s)− γk(t`2−1 +H`2(1− st)))(γm(t`1−1 +H`1s)− γm(t`2−1 +H`2(1− st)))
|γ(t`1−1 +H`1s)− γ(t`2−1 +H`2(1− st))|2

R̃i,`1(s)R̃j,`2(1− st)s dt ds.
(4.13)

For the second summand (II) in (4.12) we first apply Fubini’s theorem to get the inner
integral over the domain [0, t], apply the Duffy transformation, and then apply Fubini’s
theorem again. Then, we add and subtract log(t):∫

[0,1]

∫
[0,1]

Ǔ∗km,`1,`2(st, 1− t)R̃i,`1(st)R̃j,`2(1− t)t dt ds

= −δkm
3µ+ λ

4πµ(2µ+ λ)(∫
[0,1]

∫
[0,1]

log

(
|γ(t`1−1 +H`1st)− γ(t`2−1 +H`2(1− t))|

t

)
R̃i,`1(st)R̃j,`2(1− t)t dt ds

+

∫
[0,1]

∫
[0,1]

log(t)R̃i,`1(st)R̃j,`2(1− t)t dt ds

)

+
µ+ λ

4πµ(2µ+ λ)

∫
[0,1]

∫
[0,1]

(γk(t`1−1 +H`1st)− γk(t`2−1 +H`2(1− t)))(γm(t`1−1 +H`1st)− γm(t`2−1 +H`2(1− t)))
|γ(t`1−1 +H`1st)− γ(t`2−1 +H`2(1− t))|2

R̃i,`1(st)R̃j,`2(1− t)t dt ds.
(4.14)

For the remaining six double integrals, we use Gauß quadrature with weight functions 1,
log(s) resp. log(t). Due to the following corollary we can again apply Theorem 4.1.

Corollary 4.3. If the parametrization γ is q ≥ 1 times continuously differentiable on
[x̌γj−1, x̌

γ
j ] for j ∈ {1, . . . , nγ}, the integrands of the final terms in (4.13) and in (4.14) are,

up to log(s) resp. log(t), q − 1 times continuously partially differentiable on [0, 1]2.

47



4. Numerical computation of discrete integral operators

Proof. For the first two double integrals in (4.13) and (4.14), the proof is found in [Gan14,
Lemma 5.3]. We will only prove the statement for the last double integral in (4.13) and
(4.14) can be treated analogously. We first consider the case t`1−1 = t`2 . For i = 1, 2, we
rewrite

γi(t`1−1 +H`1−1s)− γi(t`2−1 +H`2(1− st)) =

∫
[t`2−H`2st,t`2+H`1s]

γ′i(τ)] dτ

= s

∫
[−H`2 t,H`1 ]

γ′i(t`2 + sτ) dτ.

Then, for s ∈ (0, 1], t ∈ [0, 1], we consider

(γk(t`1−1 +H`1s)− γk(t`2−1 +H`2(1− st)))(γm(t`1−1 +H`1s)]− γm(t`2−1 +H`2(1− st)))
|γ(t`1−1 +H`1s)− γ(t`2−1 +H`2(1− st))|2

=

(∫
[−H`2 t,H`1 ] γ

′
k(t`2 + sτ) dτ

)(∫
[−H`2 t,H`1 ] γ

′
m(t`2 + sτ) dτ

)
∣∣∣∫[−H`2 t,H`1 ] γ

′(t`2 + sτ) dτ
∣∣∣2 . (4.15)

Due to the smoothness of the integrand, it is q−1 times continuously partially differentiable.
For the case s→ 0, we rewrite

lim
s→0

∫
[−H`2 t,H`1 ]

γ′i(t`2 + sτ) dτ = lim
s→0

∫
[−H`2 t,0]

γ′i(t`2 + sτ) dτ + lim
s→0

∫
[0,H`1 ]

γ′i(t`2 + sτ) dτ

=

∫
[−H`2 t,0]

γ′`i (t`2) dτ +

∫
[0,H`1 ]

γ′ri (t`2) dτ

= H`2tγ
′`
i (t`2) +H`1γ

′r
i (t`2),

where γ′` resp. γ′r denote the left resp. right derivative of γ. Therefore, and due to
the injectivity of γ and the fact that γ′`(t`2) is no negative multiple of γ′r(t`2), we can
continuously extend the last term in (4.15) with(

H`2tγ
′`
k (t`2) +H`1γ

′r
k (t`2)

) (
H`2tγ

′`
m(t`2) +H`1γ

′r
m(t`2)

)
|H`2tγ

′`(t`2) +H`1γ
′r(t`2)|2

at s = 0. By multiplying with the terms g̃p,`2(1 − st)R̃i,`1(s), we obtain the integrand of
the last integral in (4.13). In the case that t`2 = b and t`1−1 = a, one can shift t`1 to
t`1−1 + (b− a) = b and the proof works as before.
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4.1. Dirichlet Problem

4.1.2. Numerical computation of Fh

Before we start, we add some more definitions in addition to the abbreviations that were
introduced at the beginning of Subsection 4.1.1:

dn ,yǓ
∗
(s, t) := dn ,yU

∗(γ(s), γ(t)),

dn ,yǓ
∗
`1,`2(s, t) := dn ,yǓ

∗
(t`1−1 +H`1s, t`2−1 +H`2t),

ǧ(s) := g(γ(s)),

g̃(s) := ǧ(s)
∣∣γ′(s)∣∣ ,

ǧ`(s) := ǧ(t`−1 +H`s),

g̃`(s) := g̃(t`−1 +H`s),

d(s, t)`1,`2 := |t`2−1 − t`1−1 +H`2t−H`1s| .

In this subsection, we aim to calculate the approximation of the right–hand side of (3.4)

(f , ψh)Γ = ((K +
1

2
I)g , ψh)Γ,

where ψh ∈ S(Th) ≤ H−1/2(Γ) with given knots Ǩh and weights Wh for S(Th). This is
realized by building up the vector Fh as defined in (4.6). The vector Fh is the sum of
two other vectors Gh := (G1

h, G
2
h) and Kgh := (Kg1

h,Kg
2
h), which are defined through the

equation below:

Fh =
1

2
Gh +Kgh

=
1

2
(((g , R̂

k

i )Γ︸ ︷︷ ︸
=:Gkh,i

)N−#b+1
i=1−p

︸ ︷︷ ︸
=:Gkh

)2
k=1 + (((Kg , R̂

k

i )Γ︸ ︷︷ ︸
=:Kgkh,i

)N−#b+1
i=1−p

︸ ︷︷ ︸
=:Kgkh

)2
k=1.
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4. Numerical computation of discrete integral operators

We first consider Gh. For k = 1, 2 and i = 1− p, . . . , N −#b+ 1, it holds that

Gkh,i = (g , R̂
k

i )Γ

=

∫
Γ

2∑
j=1

gj(x)(R̂ki (x))j dx

=

∫
Γ

2∑
j=1

gj(x)R̂i(x)δkj dx

=

∫
Γ
gk(x)R̂i(x) dx

=

∫
[a,b)

ǧk(s)Ri(s)
∣∣γ′(s)∣∣ ds

=

min(i+p,N)∑
`=max(i,1)

∫
[t`−1,t`]

ǧk(s)R̃i(s) ds

=

min(i+p,N)∑
`=max(i,1)

H`

∫
[0,1]

ǧk,`(s)R̃i,`(s) ds,

where we used the properties of the support of Ri(·). Next, we consider Kgh. For k = 1, 2
and i = 1− p, . . . , N −#b+ 1 and by using the properties of the support of Ri(·) and with
(2.31) and where (γy,1U

∗(x, y))kr denotes the kr-th entry of γy,1U
∗(x, y), it holds that

Kgkh,i =

= lim
ε→0

∫
Γ

∫
Γ

y∈Γ:|y−x|≥ε

2∑
`=1

2∑
r=1

(dn ,yU
∗(x, y))`r gr(y)(R̂ki (x))` dy dx

= lim
ε→0

∫
Γ

∫
Γ

y∈Γ:|y−x|≥ε

2∑
r=1

(dn ,yU
∗(x, y))krgr(y)R̂i(x) dy dx

= lim
ε→0

∫
[a,b)

∫
[a,b)

t∈[a,b):|t−s|≥ε

2∑
r=1

(dn ,yǓ
∗
(s, t))krǧr(t)Ri(s)

∣∣γ′(s)∣∣ ∣∣γ′(t)∣∣ dt ds
=

min(i+p,N)∑
`1=max(i,1)

N∑
`2=1

lim
ε→0

∫
[t`1−1,t`1 ]

∫
{t∈[t`2−1,t`2 ]:|t−s|≥ε}

2∑
r=1

(dn ,yǓ
∗
(s, t))krg̃r(t)R̃i(s) dt ds

=

min(i+p,N)∑
`1=max(i,1)

N∑
`2=1

H`1H`2

lim
ε→0

∫
[0,1]

∫
{t∈[0,1]:d(s,t)`1,`2≥ε}

2∑
r=1

(dn ,yǓ
∗
`1,`2(s, t))krg̃r,`2(t)R̃i,`1(s) dt ds.
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4.1. Dirichlet Problem

For H`1 , H`2 > 0, we take a closer look at the double integral

lim
ε→0

∫
[0,1]

∫
{t∈[0,1]:d(s,t)`1,`2≥ε}

2∑
r=1

(
dn ,yǓ

∗
`1,`2(s, t)

)
kr
g̃r,`2(t)R̃i,`1(s) dt ds. (4.16)

Again, we differentiate between three cases.

Case 1.γ([t`1−1, t`1 ]) ∩ γ([t`2−1, t`2 ]) = ∅: In this case the integrand has no singularities
and (4.16) simplifies to∫

[0,1]

∫
[0,1]

2∑
r=1

(
dn ,yǓ

∗
`1,`2(s, t)

)
kr
g̃r,`2(t)R̃i,`1(s) dt ds.

No further steps are required as the integrand is continuous. We use Gauss quadrature
with weight function 1 and apply Theorem 4.1.

Case 2.γ([t`1−1, t`1 ]) = γ([t`2−1, t`2 ]): This implies that ` := `1 = `2 and we have identical
elements. In this case, (4.16) is

lim
ε→0

∫
[0,1]

∫
[0,1]

t∈[0,1]:|t−s|≥ε

2∑
r=1

(
dn ,yǓ

∗
`1,`2(s, t)

)
kr
g̃r,`2(t)R̃i,`1(s)︸ ︷︷ ︸

=:κ(s,t)

dt ds, (4.17)

and we have the singularity along the diagonal of the square [0, 1]2. In order to simplify
notation, we let κ(s, t) be the integrand of the above integral. Then, we set z := t− s and
in the next step, we separate the integration domain and change the order of integration

lim
ε→0

∫
[0,1]

∫
{z∈[−s,1−s]:|z|≥ε}

κ(s, s+ z) dz ds =

= lim
ε→0

(∫
[ε,1]

∫
[0,1−z]

κ(s, s+ z) ds dz +

∫
[−1,−ε]

∫
[−z,1]

κ(s, s+ z) ds dz

)
.

We can see in Figure 4.1 how the integration domain is transformed. A red line indicates the
singularity. The original domain [0, 1]2 is divided into two triangles along the singularity,
namely Dε

1 and Dε
2. After the last step, the domains are as follows (cf. Figure 4.1c)

Dε
1 =

{
ε ≤ z ≤ 1

0 ≤ s ≤ 1− z

}
and Dε

2 =

{
−1 ≤ z ≤ −ε
−z ≤ s ≤ 1

}
.

In the next step, we substitute z̃ := −z in the second integral and s̃ := s + z in the first
integral and then redefine s := s̃ and z := z̃. We obtain that

lim
ε→0

(∫
[ε,1]

∫
[z,1]

κ(s̃− z, s̃) ds̃ dz +

∫
[ε,1]

∫
[z̃,1]

κ(s, s− z̃) ds dz̃

)

= lim
ε→0

(∫
[ε,1]

∫
[z,1]

κ(s− z, s) ds dz +

∫
[ε,1]

∫
[z,1]

κ(s, s− z) ds dz

)

= lim
ε→0

(∫
[ε,1]

∫
[z,1]

κ(s− z, s) + κ(s, s− z) ds dz

)
.

(4.18)
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4. Numerical computation of discrete integral operators

(a) original domain [0, 1]2 (b) z := t− s (c) change order of integration

Figure 4.1.: K, identical elements: Transformations step 1

The transformations of the integration domain are visualized in Figure 4.2. It is essential
that the singularity for both domains Dε

1 and Dε
2 occurs along the same line segment

{0}× [0, 1]. Then, we see that the domains Dε
1 and Dε

2 are identical and we can merge the
last two double integrals in (4.18).

Next, we substitute w1 := s and w2 := s− z to obtain that

lim
ε→0

∫
[ε,1]

∫
[0,w1−ε]

κ(w2, w1) + κ(w1, w2) dw2 dw1.

As a last step, we make a Duffy transformation with (w1, w2) 7→ (s, st) to obtain that

lim
ε→0

∫
[ε,1]

∫
[0,1−ε]

(κ(st, s) + κ(s, st)) s dt ds. (4.19)

In Figure 4.3, it is shown, how the last two transformations act on the integration domain.
Note that the singularity is transformed from the diagonal to two sides of the square [0, 1]2.

The following corollary shows that the limit in the statement (4.19) does exist.

Corollary 4.4. If the parametrization γ is q ≥ 2 times continuously differentiable on
[x̌γm−1, x̌

γ
m] for m ∈ {1, . . . , nγ} and if g ◦ γ is q − 2 times continuously differentiable

on [x̌γm−1, x̌
γ
m] for m ∈ {1, . . . , nγ}, then there exists a function f which is q − 2 times

continuously differentiable so that

(κ(st, s) + κ(s, st)) s = f(s, t), for (s, t) ∈ (0, 1)2,

and so that κ(st, s) + κ(s, st) can be continuously extended with f(s, t) onto [0, 1]2.

Proof. As we can see with (2.31) and (4.3) the conormal derivative is a sum of terms of
the following three different types

xi − yi
|x − y |2

nj︸ ︷︷ ︸
=:(I)

,
(xi − yi)(xj − yj)(xk − yk)

|x − y |4
nr︸ ︷︷ ︸

=:(II)

,
δik(xi − yi) + δij(xk − yk)

|x − y |2
nr︸ ︷︷ ︸

=:(III)

,
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4.1. Dirichlet Problem

(a) s̃ := s+ z (b) z̃ := −z

Figure 4.2.: K, identical elements: Transformations step 2

for x = γ(t` + H`s) and y = γ(t` + H`t) and for i, j, k, r = 1, 2. First we consider (I) and
rewrite

γi(t` +H`s)− γi(t` +H`t) =

∫ s

t
γ′i(t` +H`r)dr

= H`(s− t)
∫ 1

0
γ′i(t` +H`t+ ρH`(s− t)) dρ.

Then, we consider

κ1(s, t) :=
γi(t` +H`s)− γi(t` +H`t)

|γ(t` +H`s)− γ(t` +H`t)|2
nj

=
1

s− t
(γi(t` +H`s)− γi(t` +H`t))(s− t)
|γ(t` +H`s)− γ(t` +H`t)|2

nj

=
1

s− t

(s− t)2H`

(∫ 1
0 γ
′
i(t` +H`t+ ρH`(s− t)) dρ

)
(s− t)2H2

`

∣∣∣∫ 1
0 γ
′(t` +H`t+ ρH`(s− t)) dρ

∣∣∣2nj
=

1

s− t

(∫ 1
0 γ
′
i(t` +H`t+ ρH`(s− t)) dρ

)
H`

∣∣∣∫ 1
0 γ
′(t` +H`t+ ρH`(s− t)) dρ

∣∣∣2nj︸ ︷︷ ︸
=:f1(s,t)

.

(4.20)

We can see that if γ is q− 2 times differentiable, then f1 is q− 1 times differentiable. Now,
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4. Numerical computation of discrete integral operators

(a) w1 := s and w2 := s− z (b) w1 7→ s and w2 7→ st

Figure 4.3.: K, identical elements: Transformations step 3

we can rewrite

κ1(st, s) + κ1(s, st) =
1

st− s
f1(st, s) +

1

s− st
f1(s, st)

=

(
1

st− s
+

1

s− st

)
f1(st, s)− 1

s− st
(f1(st, s)− f1(s, st))

= − 1

s− st
(f1(st, s)− f1(s, st))

=
1

s− st
(f1(s, st)− f1(st, s)).

The function cst(τ) = (st, s)T + τ(s − st, st − s)T for τ ∈ [0, 1] describes the line segment
from (st, s)T to (s, st)T . Then, it holds that

f1(s, st)− f1(st, s) =

∫ (s,st)

(st,s)
Df1(x) dx

=

∫ 1

0
Df1(cst(τ))c′st(τ) dτ

=

∫ 1

0
Df1(cst(τ))

(
s− st
st− s

)
dτ

= s(1− t)
∫ 1

0
Df1(cst(τ))

(
1
−1

)
dτ.

Since f1 is smooth, the integral in the last step is also smooth. Consequently, it holds that

κ1(st, s) + κ1(s, st) =

∫ 1

0
Df1(cst(τ))

(
1
−1

)
dτ.
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4.1. Dirichlet Problem

For the terms (II) and (III) we can analogously give a similar representation as in (4.20)
and then proceed as before. The integral kernel κ defined in (4.17) is a sum of terms of
type (I), (II) or (III) multiplied with g ◦ γ and a basis function R̃i,`1 . Therefore, we can
define a function f(s, t) = (κ(st, s) + κ(s, st)) s, which is q − 2 times differentiable.

For the remaining integral, we use Gauß quadrature with weight function 1 and with
Corollary 4.4 also meet the requirements for Theorem 4.1.

Case 3.|γ([t`1−1, t`1 ]) ∩ γ([t`2−1, t`2 ])| = 1: In this case, we have adjacent elements. With-
out loss of generality, we assume that the singularity in the integrand appears at s = 0
and t = 1. The other case can be treated analogously. We have either t`1−1 = t`2 or
t`2 = b ∧ t`1−1 = a. Using the transformation (s, t) 7→ (s, 1− t), it holds that

lim
ε→0

∫
[0,1]

∫
{t∈[0,1]:d(s,t)`1,`2≥ε}

2∑
r=1

(
dn ,yǓ

∗
`1,`2(s, t)

)
kr
g̃r,`2(t)R̃i,`1(s)︸ ︷︷ ︸

=:κ(s,t)

dt ds

= lim
ε→0

∫
[0,1]

∫
{t∈[0,s]:d(s,1−t)`1,`2≥ε}

κ(s, 1− t) dt ds︸ ︷︷ ︸
(I)

+ lim
ε→0

∫
[0,1]

∫
{t∈[s,1]:d(s,1−t)`1,`2≥ε}

κ(s, 1− t) dt ds︸ ︷︷ ︸
(II)

,

(4.21)

where we defined the integrand as κ(s, t) for ease of notation.

(a) original domain [0, 1]2 (b) t 7→ 1− t

Figure 4.4.: K, adjacent elements: Transformations step 1

In Figure 4.4, we show how the transformations in (4.21) act on the integral domain. The
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4. Numerical computation of discrete integral operators

singularity is indicated with a red dot. We divide the domain into two triangles

Dε
1 :=

{
0 ≤ s ≤ 1
0 ≤ t ≤ s

}∖
Uε

(
0
0

)
and Dε

2 :=

{
0 ≤ s ≤ 1
s ≤ t ≤ 1

}∖
Uε

(
0
0

)
.

Note that the singularity lies on the diagonal and therefore occurs in both triangles.

For the first summand (I) in (4.21), we apply the Duffy transformation

(I) = lim
ε→0

∫
[0,1]

∫
{t∈[0,s]:d(s,1−st)`1,`2≥ε}

κ(s, 1− st)s dt ds. (4.22)

As we can see from Figure 4.5 the singularity is extended from the point (0, 0)T to the line
segment {0} × [0, 1] by the Duffy transformation.

Figure 4.5.: K, adjacent elements: Transformations for first summand

For the second summand (II) in (4.21), we first apply t 7→ 1−t and then apply Fubini’s the-
orem to get the inner integral over the domain [0, 1− t]. Next, we apply the transformation
s 7→ s(1− t) and then apply Fubini’s theorem again. We obtain that

(II) = lim
ε→0

∫
[0,1]

∫
{t∈[0,1−s]:d(s,t)`1,`2≥ε}

κ(s, t) dt ds

= lim
ε→0

∫
[0,1]

∫
{s∈[0,1−t]:d(s,t)`1,`2≥ε}

κ(s, t) ds dt

= lim
ε→0

∫
[0,1]

∫
{t∈[0,1]:d(s(1−t),t)`1,`2≥ε}

κ(s(1− t), t)(1− t) dt ds. (4.23)

In Figure 4.6, we can see that the above transformations transform the singularity from
a point to a line. Note however, that the first and the second integral from (4.21) do not
have the singularities on the same line segment in the end.

The following corollary strongly relies on [Gan14, Lemma 5.5].
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4.1. Dirichlet Problem

(a) t 7→ 1− t (b) change integration order

(c) s 7→ s(1− t) (d) change integration order

Figure 4.6.: K, adjacent elements: Transformations for second summand

Corollary 4.5. If the parametrization γ is q ≥ 2 times continuously differentiable on
[x̌γj−1, x̌

γ
j ] for j = 1, . . . , nγ and if g◦γ is q−1 times continuously differentiable on [x̌γj−1, x̌

γ
j ]

for j = 1, . . . , nγ, the integrands in (4.22) and (4.23) are q− 1 times continuously partially
differentiable on [0, 1]2.

Proof. We prove the assertion for (4.22), while (4.23) can be treated analogously. First,
we assume that t`1−1 = t`2 . As we can see with (2.31) and (4.3), the conormal derivative
is a sum of terms of the following three different types

xi − yi
|x − y |2

nj︸ ︷︷ ︸
=:(I)

,
(xi − yi)(xj − yj)(xk − yk)

|x − y |4
nr︸ ︷︷ ︸

=:(II)

,
δik(xi − yi) + δij(xk − yk)

|x − y |2
nr︸ ︷︷ ︸

=:(III)

, (4.24)

for x = γ(t`1 + H`1s) and y = γ(t`2 + H`2(1 − st)) and for i, j, k, r = 1, 2. Therefore,
the integrand occurring in (4.22) is composed of the above terms multiplied by the Jacobi
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4. Numerical computation of discrete integral operators

determinant s. For the transformed term (I) and for s ∈ (0, 1], t ∈ [0, 1], it holds that

γi(t`1 +H`1s)− γi(t`2 +H`2(1− st))
|γ(t`1 +H`1s)− γ(t`2 +H`2(1− st))|2

· s · nj

=
s2

|γ(t`1 +H`1s)− γ(t`2 +H`2(1− st))|2
· γi(t`1 +H`1s)− γi(t`2 +H`2(1− st)

s
· nj

=
s2∣∣∣∫[t`2−H`2st,t`2+H`1s]

γ′(τ)dτ
∣∣∣2 ·

∫
[t`2−H`2st,t`2+H`1s]

γ′i(τ)dτ

s
· nj

=

∫
[−H`2 t,H`1 ] γ

′
i(t`2 + sτ)dτ∣∣∣∫[−H`2 t,H`1 ] γ
′(t`2 + sτ)dτ

∣∣∣2 · nj . (4.25)

For the case s→ 0, we rewrite

lim
s→0

∫
[−H`2 t,H`1 ]

γ′i(t`2 + sτ)dτ = lim
s→0

∫
[−H`2 t,0]

γ′i(t`2 + sτ)dτ + lim
s→0

∫
[0,H`1 ]

γ′i(t`2 + sτ)dτ

=

∫
[−H`2 t,0]

γ′`i (t`2)dτ +

∫
[0,H`1 ]

γ′ri (t`2)dτ

= H`2tγ
′`
i (t`2) +H`1γ

′r
i (t`2),

where γ′`i resp. γ′ri denotes the left resp. right derivative of γ. Therefore, and since γ′ri (t`2)
is not a negative multiple of γ′`i(t`2), (4.25) can be continuously extended at s = 0 with

H`2tγ
′`
i (t`2) +H`1γ

′r
i (t`2)

|H`2tγ
′`(t`2) +H`1γ

′r(t`2)|2
· nj .

The above argumentation can be analogously applied for (II) and (III) from (4.24). There-
fore, the conormal derivative also has the desired regularity and by multiplying with
g̃r,`2(1− st)R̃i,`1(s) we obtain the integrand in (4.22), which as a consequence has the de-
sired regularity. In the case that t`2 = b and t`1−1 = a one can shift t`1 to t`1−1 +(b−a) = b
the proof works as before.

Corollary 4.5 states continuity for the integrands in (4.22) and (4.23). Therefore, we have
proven existence of the limit limε→0 in (4.22)–(4.23) and also the requirements for Theorem
4.1. Overall, we can thus use Gauß quadrature with weight function 1.

4.2. Validation of code with numerical examples

In this section, we validate the implementation of the integral operators V resp. K de-
scribed in Section 4.1.1 resp. 4.1.2 using different examples. In all the examples, we will
consider a Dirichlet boundary value problem as in (2.21). We therefore seek a solution
φ ∈ H−1/2(Γ) to Symm’s integral equation (2.37). We then use the Galerkin method to
find an approximate solution Φh ∈ Xh of (3.4), i.e., (Φh,Ψh)V = ((1/2I + K)g ,Ψh)Γ for
all Ψh ∈ Xh. To this end, we proceed as described in Section 4.1.
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4.2. Validation of code with numerical examples

The approximation spaces we use are S(Th) with given knots Ǩh and weights Wh and
in some cases also Pp(Th). The main idea of isogeometric analysis is to use the same
NUBRS functions for the parametrization of the geometry as for the ansatz spaces. For
the geometry, we have a polynomial degree pγ ∈ N, knots Ǩγ and weights Wγ of length

Nγ . Furthermore, we have control points (Ci)
Nγ−#b+1
i=1−p ∈ R2. Then, as in (4.2) we have

γ(t) =

Nγ−#b+1∑
i=1−p

CiR
Ǩγ ,Wγ

i,pγ
(t) for all t ∈ [a, b]. (4.26)

Hence, for the polynomial degree p, the initial knots Ǩ0 and weights W0 for the initial
ansatz space S(T0) in Algorithm 3.5, we choose p := pγ , Ǩ0 := Ǩγ and W0 := Wγ . In
some cases we also use Pp(Th) as an ansatz space. In this case, we chose the initial knots
Ǩ0 the same as Ǩγ with the modification that we increase the multiplicity of each node to
p+ 1. The initial weights W0 are all equal to 1. For the parameters of the Lamé equation,
we used λ = 0.4 and µ = 0.4 in accordance with Section 1.1.

(a) square
(b) circle (c) L-shape

Figure 4.7.: Geometries for code validation

We perform uniform and adaptive refinement according to Algorithm 3.5 with adaptivity
parameter θ = 0.9. According to [SS11, Corollary 4.1.34] one can expect the convergence
rate O(h3/2+p) = O(n−3/2−p) for the error and (h–h/2)–estimator for uniform refinement
and smooth solution φ for the Laplace equation. For the Lamé equation, we expect the same
convergence rate. The proof relies on the Céa-Lemma and some approximation property.

Another strategy that we use for mesh refinement is a special algorithm, that refines
the mesh asymmetrically and concentrates the refinement on particular sections of the
boundary. In this way, we can test how the implementation of the operators performs
under difficult conditions.

Algorithm 4.6. INPUT : initial mesh [T0], initial weights W0, polynomial degree p ∈ N0

and the number of steps ` := 0.

1. We mark the first and the last element of all the elements sorted accordingly to the
parametrization γ. Additionally, if the number of steps ` ≥ 2, then we mark the
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4. Numerical computation of discrete integral operators

element which corresponds to the floor of the 75%-quantile bq75c of the number of
nodes n.

2. We then follow steps 4.–7. from Algorithm 3.5.

3. Update `← `+ 1 and go to step 1.

OUTPUT : refined mesh T`.

4.2.1. Indirect BEM

When seeking solutions to the Dirichlet problem (2.21), another approach as opposed to
the direct approach, is to use the so-called indirect approach. We look for solutions of the
form

u := Vφ

for φ ∈ H−1/2(Γ). According to Remark 2.19 u solves Lu = 0 . In order to fulfil the
given boundary conditions u |Γ = g for an arbitrary g ∈ H 1/2(Γ), we obtain that φ is
φ := V −1g . Therefore, we have to solve a weakly singular integral equation

V φ = g on Γ. (4.27)

Note that φ in this case is not the conormal derivative of the solution u and does not
have a natural physical interpretation. For this reason, we cannot easily calculate the
corresponding φ, unless the solution u is prescribed and hence known.

Again, we can use the Galerkin method to find an approximate solution Φh in some finite
dimensional subspace Xh ⊂ H−1/2(Γ). To this end, we solve (Φh,Ψh)V = (g ,Ψh)Γ for all
Ψh ∈ Xh and then proceed as in Section 4.1.

4.2.2. Validation of K

We first validate our implementation of the right hand side Fh. The difficulty for the
implementation of Fh lies mostly in the implementation of Kgh. Moreover, computing
Kgh also takes up the largest part of the computational time.
We consider the rigid body motions r ∈ R with their basis (rk)

dimR
k=1 as defined in (2.24). In

the paragraph after (2.24), we explained that dnr = 0. Since rk, for k = 1, . . . ,dimR are a
solution to the Lamé equation (2.16), we can construct a Dirichlet problem. We assume that
rk is a solution to (2.21) with g := γrk. We obtain that V dnrk = (K+1/2)γrk = 0. Since
Vh is a regular matrix, we can perform numerical tests to see whether the corresponding
φh and Fh are equal to the zero vector.

We consider the square with edge length 0.25 (see Figure 4.7a) and then solve Symm’s
integral equation

V φ =

(
K +

1

2

)
γrk.
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4.2. Validation of code with numerical examples

The boundary of the geometry is parametrized on [0, 1] by the NURBS curve induced by

pγ = 1,

Ǩγ =

(
1

4
,
2

4
,
3

4
, 1, 1

)
,

Wγ = (1, 1, 1, 1, 1),

(Ci)
Nγ−#b+1
i=1−p =

1

4

((
1
0

)
,

(
1
1

)
,

(
0
1

)
,

(
0
0

)
,

(
0
0

))
.

(4.28)

As ansatz spaces, we consider S(Th), where we use the knots Ǩγ and weights Wγ from
(4.28) for the initial mesh T0, and then perform mesh refinement according to Algorithm
4.6. Furthermore, we also consider Pp(Th) for p ∈ {0, 1, 2} as ansatz space and refinement
according to Algorithm 4.6. In Figure 4.8 we can see how Algorithm 4.6 refines the mesh
on the square after 13 steps with a result of N = 50 knots. The algorithm does refine the
mesh asymmetrically and concentrates the refinement on a certain area of the boundary.

Figure 4.8.: Nodes on square after 13 steps of mesh refinement according to Algorithm 4.6
with resulting number of knots N = 50 for the validation of K from Section
4.2.2

First, we consider a constant g(x1, x2) = (1, 1)T for (x1, x2)T ∈ Γ. As we can see
from Table 4.1, the norm of the right–hand side vector ‖Fh‖2 is already very small from
the beginning onwards for all tested ansatz spaces Pp(Th) for p ∈ {0, 1, 2} and S(Th).
The same holds for the energy norms of the approximate solution |||Φh||| and the (h–h/2)–
estimator µ̃(Th). Also, after several steps of very concentrated refinement, the norms and
also the (h–h/2)–estimator slightly increase. This may be explained by the fact that the
mesh is strongly adapted with very small element size and therefore small instabilities arise.
Another fact worth noting is that the the energy norm of the approximate solution |||Φh|||
is significantly smaller than the norm of the right hand side ‖Fh‖.

Second, we consider g(x1, x2) = (−x2, x1)T for (x1, x2)T ∈ Γ, which corresponds to a
rotation of 90◦ in mathematical positive direction. In Table 4.2, we can see the results
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4. Numerical computation of discrete integral operators

Ansatz space N ‖Fh‖2 |||Φh||| µ̃(Th)

S(Th)
5 O(10−16) O(10−30) O(10−14)

53 O(10−14) O(10−24) O(10−11)

P0(Th)
4 O(10−16) O(10−30) O(10−14)

50 O(10−14) O(10−24) O(10−11)

P1(Th)
8 O(10−16) O(10−30) O(10−14)

52 O(10−14) O(10−23) O(10−11)

P2(Th)
12 O(10−16) O(10−29) O(10−14)

57 O(10−14) O(10−22) O(10−11)

Table 4.1.: Results for Dirichlet data g = (1, 1)T on initial and refined mesh (according to
Algorithm 4.6) for the validation of K from Section 4.2.2

for the ansatz spaces Pp(Th) for p ∈ {0, 1, 2} and S(Th). As for constant g , we see that
‖Fh‖2, |||Φh||| and µ̃(Th) are small already on the first grid and increase slightly with mesh
refinement according to Algorithm 4.6.

Ansatz space N ‖Fh‖2 |||Φh||| µ̃(Th)

S(Th)
5 O(10−17) O(10−32) O(10−15)

53 O(10−15) O(10−26) O(10−13)

P0(Th)
4 O(10−17) O(10−31) O(10−15)

50 O(10−15) O(10−26) O(10−13)

P1(Th)
8 O(10−17) O(10−32) O(10−15)

52 O(10−15) O(10−25) O(10−12)

P2(Th)
12 O(10−17) O(10−31) O(10−15)

57 O(10−15) O(10−24) O(10−12)

Table 4.2.: Results for Dirichlet data g = (−x2, x1)T on initial and refined mesh (according
to Algorithm 4.6) for the validation of K from Section 4.2.2

In conclusion, we see that the operator K shows correct results for for the rigid body
motions r ∈ R on the square.

4.2.3. Validation of V

In order to validate the correct implementation of the operator V , the following result for
the Laplace equation suggests that a similar behaviour can also be expected for the Lamé
equation.

Corollary 4.7. For Ω being the circle with radius r > 0 and midpoint in the origin, we set
Γ := ∂Ω the circular line. We consider the homogeneous Laplace equation with constant
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Dirichlet boundary data, i.e.,

−∆u = 0 in Ω

u = 1 on Γ.
(4.29)

When following an indirect approach as in Section 4.2.1, we obtain the equation V φ = 1.
Then, the solution φ ∈ H−1/2(Γ) is constant.

Proof. As a first step, we show that K(1) = −1/2 for any c ∈ R. To this end, we consider
the representation formula (see (2.32) for the Lamé equation), which holds accordingly for
the Laplace equation when replacing the fundamental solution of the Lamé equation with
the scalar valued fundamental solution of the Laplace equation and the conormal derivative
dnu with the normal derivative ∂nu. The representation formula reads

u = Vφ−Kg, (4.30)

with g := u|Γ and φ := ∂nu. The function u ≡ 1 solves the Laplace equation (4.29) with
g ≡ 1 and ∂nu ≡ 0. Next, we apply the external trace operator γext on the representation
formula (4.30) to obtain that

u|Γ = V φ−
(
K − 1

2

)
g,

with V := γextV and K := γextK + 1/2. When inserting for u ≡ 1, g ≡ 1 and φ ≡ 0, we
obtain that K(1) = −1/2.
As a next step, we consider an exterior boundary value problem, i.e.,

−∆u = 0 in Ω
C
,

u = g on Γ,

Mu = 0 on R2,

(4.31)

with g ∈ H1/2(Γ) and where the condition Mu = 0 incorporates some assumptions about
the behaviour of the solution at infinity (cf. [McL00, Chapter 7, Exterior Problems]). Let
g = −c for some c ∈ R. We know that the fundamental solution of the Laplace equation

U(x) = − 1

2π
log |x|

solves −∆U = 0. According to [McL00, Lemma 7.13], the fundamental solution also fulfils
MU = 0 in R2. Since the fundamental solution is radial symmetric, i.e., U = U(|x|),
which means that the argument only occurs as an absolute value, it holds that U = d :=
−(1/(2π)) log(r) on Γ. By considering ũ := −(c/d)U we have found a solution to (4.31).
According to [McL00, Lemma 7.15(i)], the problem (4.31) is equivalent to the boundary
integral equation

V φ =

(
K − 1

2

)
g.
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4. Numerical computation of discrete integral operators

Let c := 1 ∈ R and g = −1. Together with K(−1) = 1/2 we then obtain V φ = 1. The
solution is then ũ = (1/d)U and φ = ∂n ũ. There holds

∂nU(x) = − 1

2π

x · n
|x|2

and consequently

φ(x) = −x · n(x)

2πdr2
.

Since the normal vector n(x) in point x is simply x/ |x|, it follows that x·n(x) = (x·x)/ |x| =
|x| = r. Hence, φ is constant.

The above result cannot easily be applied to the Lamé equation, as we were not able to
show that the fractional term in the fundamental solution (2.30) of the Lamé equation is
radial symmetric. However, our numerical results show that Φh seems to be constant.

Following the indirect approach we therefore consider

V φ =

(
1
1

)
,

on the circle with radius r = 1/10, see Figure 4.7b. The boundary of the geometry is
parametrized on [0, 1] by the NURBS curve induced by

pγ = 2,

Ǩγ =
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)
,
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)
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)
,

(
1
0

)
,

(
1
1
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As ansatz spaces, we consider S(Th), where we use the knots Ǩγ and weights Wγ from
(4.28) for the initial mesh T0, and then perform uniform mesh refinement and refinement
according to Algorithm 4.6. Furthermore, we also consider Pp(Th) for p ∈ {0, 1, 2} as ansatz
space and refinement according to Algorithm 4.6. The results are presented in Table 4.3.

We see from the results that the (h–h/2)–estimator is already very small on the initial
mesh for all tested ansatz spaces. Similar to the examples in Section 4.2.2, we see that
the values for the estimator slightly rise with refinement. Only for the ansatz space S(Th),
the strongly adaptive refinement causes the estimator to increase in value. One possible
explanation might be that the error occurs due to cancellation effects.

The energy norm of the approximate solution |||Φh||| stays relatively stable and is not very
vulnerable to strongly adaptive refinement or different ansatz spaces. Changes only occur
in the 15th digit.
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4.2. Validation of code with numerical examples

p Refinement N |||Φh||| µ̃(Th)

S(Th)
none 9 2.953798637040423 O(10−14)

uniform 133 2.953798637040424 O(10−13)

Algorithm 4.6 105 2.953798637040426 O(10−8)

P0(Th)
none 4 2.953798637040427 O(10−14)

uniform 128 2.953798637040423 O(10−14)

Algorithm 4.6 102 2.953798637040424 O(10−13)

P1(Th)
none 8 2.953798637040427 O(10−14)

uniform 128 2.953798637040425 O(10−13)

Algorithm 4.6 100 2.953798637040426 O(10−12)

P2(Th)
none 12 2.953798637040426 O(10−13)

uniform 192 2.953798637040425 O(10−12)

Algorithm 4.6 102 2.953798637040424 O(10−11)

Table 4.3.: Results for Dirichlet data g = (1, 1)T on circle for Pp(Th) for p ∈ {0, 1, 2} and
S(Th) on initial and refined mesh (uniformly or according to Algorithm 4.6) for
the validation of V from Section 4.2.3

In Figure 4.9, the solution Φh with ansatz space S(Th) is plotted on the initial mesh
and on the uniformly refined mesh with N = 133. We see how the constant solution
is approximated using quadratic ansatz functions. On the initial mesh, we clearly see
the break points, i.e., the nodes of the geometry Γ, where Φh is only continuous, but not
differentiable. On the refined mesh, it is clearly visible that Φh is approximating a constant
function, but there are still some oscillations at the break points.

4.2.4. Combined validation for V and K

As a last validation, we consider the direct approach for the Dirichlet boundary value
problem with a known solution u . Since the column vectors of the fundamental solution
U ∗1,U

∗
2 (cf. Theorem 2.18) also solve the homogeneous Lamé equation (2.16), we may

consider them as a solution. However, as the fundamental solution has a singularity in the
origin, we shift the singularity to a point outside Ω. We define a shift vector s := (10, 0)T

and set

u(x) := U ∗1(x+ s) for x ∈ Ω.

The corresponding Dirichlet data g = u |Γ are then obtained by evaluating u(x) at the
boundary. The conormal derivative φ is then approximated using Symm’s integral equation.
As we can calculate the conormal derivative φ = dnu , we can compare the approximation
Φh with the exact solution φ. The `-th partial derivative of U ∗1 = (U∗11, U

∗
21)T is given by

∂`,yU
∗
i1(x) = − 3µ+ λ

4πµ(2µ+ λ)

x`

|x|2
δ1i +

µ+ λ

4πµ(2µ+ λ)

(δ`1xi + δ`ix1) |x|2 − 2x`x1xi

|x|4
.
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4. Numerical computation of discrete integral operators

(a) 1st component, initial mesh (b) 2nd component, initial mesh

(c) 1st component, refined mesh (d) 2nd component, refined mesh

Figure 4.9.: Φh on initial and uniformly refined mesh with N = 133 for S(Th) for the
validation of V from Section 4.2.3

The conormal derivative of U ∗1 then reads

(dnU
∗
1)i =

2∑
j=1

σij(U
∗
1)nj =

2∑
j=1

(
λδij(∂1U

∗
11 + ∂2U

∗
21) + µ(∂iU

∗
j1 + ∂jU

∗
i1)
)
nj .

We consider the boundary of the so called L-shape (cf. Figure 4.7c). The boundary of
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4.2. Validation of code with numerical examples

the geometry is parametrized on [0, 1] by the NURBS curve induced by

pγ = 1,

Ǩγ =
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(4.33)

As ansatz spaces, we consider S(Th), where we use the knots Ǩγ and weights Wγ from
(4.28) for the initial mesh T0, and then perform uniform mesh refinement and adaptive
refinement according to Algorithm 3.5 with the adaptivity constant θ = 0.9. We use the
(h–h/2)–estimator local contributions µ̃(z) for z ∈ Nh to steer the adaptive refinement.

In Figure 4.10, we see the exact solution plotted against the approximation on the initial
mesh and on the refined mesh, once for uniform refinement and once for adaptive refinement.
As we chose the node multiplicity equal to p = 1 for all nodes except the last node, the
approximation Φh is continuous at all those nodes. In Figure 4.10 the exact solution
φ appears to be piecewise linear and has discontinuities at the corners of the L-shape
geometry. The discontinuities stem from the fact that the normal vector jumps when
passing over a corner. In Figure 4.10a and 4.10b we see that the piecewise linear, globally
continuous function Φh cannot approximate the discontinuous φ very well. As we see in
Figure 4.10c-4.10f, the approximation improves with refinement, in particular for adaptive
refinement, which refines the mesh close to the corners. If we were to choose the nodes
of the initial grid with multiplicity p + 1 at every corner of the geometry, we would be
able to also approximate the discontinuities and thus have a better approximation. For
demonstration purposes we, however, used a globally continuous ansatz space.

In conclusion we see that we have a well working implementation of Vh and Fh.

67



4. Numerical computation of discrete integral operators

(a) 1st component, initial mesh (b) 2nd component, initial mesh

(c) 1st component, refined mesh (d) 2nd component, refined mesh

(e) 1st component, refined mesh
(magnified view)

(f) 2nd component, refined mesh
(magnified view)

Figure 4.10.: Approximate solution Φh for S(Th) on initial mesh and uniformly (N = 129)
and adaptively (N = 102) refined mesh for the combined validation of V and
K from Section 4.2.4
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5. Numerical examples

In this chapter, we present some numerical examples for the direct and indirect approach
for solving the Dirichlet boundary value problem (2.21), where we also investigate the
convergence rates of the (h–h/2)–estimator. We seek a solution φ ∈ H−1/2(Γ) to Symm’s
integral equation (2.37) for the direct approach and (4.27) for the indirect approach. Using
the Galerkin method, we then compute an approximate solution Φh ∈ Xh of (Φh,Ψh)V =
(F ,Ψh)Γ for all Ψh ∈ Xh, where F = (K + 1/2)g for the direct approach and F = g for
the indirect approach. We then again proceed as described in Section 4.1. for the Lamé
parameters, we choose λ = µ = 0.4.

For the geometry, we assume that the parametrization γ of Γ is given as in (4.2). Amongst
others we will consider the heart–shape boundary and the pacman geometry in this chapter,
which are visualized in Figure 5.1.

(a) heart–shape (b) pacman

Figure 5.1.: Geometries for numerical examples

For the heart–shape boundary (Figure 5.1a) the boundary of the geometry is parametrized
on [0, 1] by the NURBS curve induced by

pγ = 2,

Ǩγ =
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(5.1)
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5. Numerical examples

Next we describe the boundary parametrization of the pacman. To this end, let α :=
(2π)7/8. The boundary of the geometry is parametrized on [0, 1] by the NURBS curve
induced by

pγ = 2,
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(5.2)

For both of the above described geometries, we chose the knot multiplicity at the corners
of the geometry to pγ + 1 so that we can approximate discontinuities due to jumps in the
normal vector.

As approximation space, we again consider the NURBS space S(Th), where we use the
knots Ǩγ and weights Wγ from the corresponding geometry parametrization for the initial
mesh T0, and then perform uniform and adaptive refinement according to Algorithm 3.5
with adaptivity constant θ = 0.9. We use the local contributions µ̃(z) for all z ∈ Nh of
the (h–h/2)–estimator as refinement indicators. Furthermore, we also consider Pp(Th) as
an ansatz space and again perform uniform and adaptive refinement as above. We expect
a convergence rate of O(h3/2+p) = O(n−3/2−p) for the (h–h/2)–estimator in the case of
adaptive refinement.

5.1. Indirect BEM with constant Dirichlet boundary data

We first consider the indirect approach for the Dirichlet boundary value problem with
g = (1,−1)T . The corresponding integral equation reads

V φ =

(
1
−1

)
on Γ,

where we seek the unknown solution φ ∈ H−1/2(Γ), which is presumably not smooth. We
consider the following geometries, i.e., the square (see Figure 4.7a and NURBS curve data
(4.28)), the heart–shape (see Figure 5.1a and NURBS curve data (5.1)) and the pacman
(see Figure 5.1b and NURBS curve data (5.2)). As ansatz spaces, we consider S(Th), where
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5.1. Indirect BEM with constant Dirichlet boundary data

(a) square (b) heart–shape

(c) pacman

Figure 5.2.: (h–h/2)–estimator for Φh ∈ Xh = S(Th) with uniformly and adaptively refined
mesh for equation V φ = (1,−1)T from Section 5.1

we use the knots Ǩγ and weightsWγ from the corresponding geometry parametrization for
the initial mesh T0. Furthermore, we also consider Pp(Th) for p ∈ {0, 1, 2, 3}.

In Figure 5.2, we see the (h–h/2)–estimator plotted over the number of knots N for
uniform and adaptive refinement according to Algorithm 3.5 for S(Th). We expect a
convergence rate of O(N−2/3) for uniform refinement for all three examples considered,
which can be deduced from considering an exterior value problem and then measuring the
non convex outer angles.

On the heart–shape and the pacman geometry, the (h–h/2)–estimator shows the desired
convergence rate for the case of uniform refinement. For the square, the rate is almost what
we expect for uniform refinement. For adaptive refinement, all three geometries show the
desired rate, whereas for the square we observe a longer pre-asymptotic phase.

In Figure 5.3, we compare the convergence rates of the (h–h/2)–estimator for different
p ∈ {0, 1, 2, 3} with ansatz space Pp(Th) for uniform and adaptive refinement. For uniform
refinement, the estimator behaves similar to the S(Th) case for all geometries and all p
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5. Numerical examples

considered. For adaptive refinement, we see that the estimator eventually reaches the
desired convergence rate after some pre–asymptotic phase.

As a last example, we consider the spline space as ansatz space. Splines are piecewise
polynomial functions which are (p− 1)-times differentiable at each node. The spline space
can be derived from the NURBS space N̂ p(Ǩ,W) when choosing multiplicity one at each
node, except for the last node, where we have to choose multiplicity p+1. The weightsW are
then all chosen equal to 1. Similar as in Section 3.2.3, we then define the two-dimensional
splines space on Th and write Sp(Th). In Figure 5.4, we see the (h–h/2)–estimator for
Xh = Sp(Th) for p ∈ {0, 1, 2}. As before, we observe the expected convergence rate of
O(N−2/3) for uniform refinement and O(N−3/2−p) for adaptive refinement.

5.2. Direct BEM for analytic solution

We consider the holomorphic function u(z) = z̄2/3, which can be interpreted as a function
u : Ω → R2 and then is according to [ME14, Section 7.2.1 and Section 3.2] a solution to
the homogeneous Lamé equation. For the Dirichlet boundary data, we evaluate u at the
boundary to obtain

g(x, y) := u(x, y) =

(
Re(x− iy)2/3

Im(x− iy)2/3

)
, (x, y) ∈ Γ.

We make a direct approach and aim to solve Symm’s integral equation (2.37).
In [ME14, Section 7.2.1], this solution is investigated on the L-shape. Since we are able

to deal with curved geometries, we chose to consider the pacman geometry (see Figure
5.1b) with the NURBS data for the boundary given in (5.2).

As ansatz spaces, we consider S(Th), where we use the knots Ǩγ and weights Wγ from
(5.2) for the initial mesh T0 and then perform uniform or adaptive refinement according
to Algorithm 3.5. Furthermore, we also consider Pp(Th) for p ∈ {0, 1, 2}. For uniform
refinement, we expect a convergence rate of O(N−2/3) for the (h–h/2)–estimator. For
adaptive refinement, we expect O(N−3/2−p).

In Figure 5.5, we see that the estimator shows the expected rates. For adaptive refine-
ment, the mesh is strongly refined close to to the re–entrant corner of the pacman geometry,
where the conormal derivative φ has a singularity.

In Figure 5.6, we see that the convergence rates of the (h–h/2)–estimator also hold for
the ansatz spaces Pp(Th) for p ∈ {0, 1, 2}.
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5.2. Direct BEM for analytic solution

(a) square

(b) heart–shape

(c) pacman

Figure 5.3.: (h–h/2)–estimator for Φh ∈ Xh = Pp(Th) for p ∈ {0, 1, 2, 3} for uniformly and
adaptively refined mesh for equation V φ = (1,−1)T from Section 5.1
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5. Numerical examples

(a) square

(b) heart–shape

(c) pacman

Figure 5.4.: (h–h/2)–estimator for Φh ∈ Xh = Sp(Th) for p ∈ {0, 1, 2} for uniformly and
adaptively refined mesh for equation V φ = (1,−1)T from Section 5.1
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5.2. Direct BEM for analytic solution

Figure 5.5.: h − h/2−estimator for Φh ∈ Xh = S(Th) for pacman for holomorphic g from
Section 5.2

Figure 5.6.: h − h/2−estimator for Φh ∈ Xh = Pp(Th) for p ∈ {0, 1, 2} for pacman for
holomorphic g from Section 5.2
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A. Implementation

Our implementation relies on the implementation for the Laplace equation from Gregor
Gantner (cf. [Gan14]). For the Lamé equation, we did not only adapt the integral kernel
for the V and K operator but also made some modifications in order implement the more di-
mensional setting of the Lamé equation. The fundamental solution of the Laplace equation
and its normal derivative were replaced by the fundamental solution of the Lamé equation
and its conormal derivative. For a detailed description of the complete implementation we
refer to [Gan14].

A.1. Vmatrix.h and Vmatrix.c

The computation of the Matrix Vh is discussed in on Section 4.1.1.

Listing A.1: Vmatrix.h

1 #ifndef _Vmatrix_h

2 #define _Vmatrix_h

3
4 #include <math.h>

5 #include <stdio.h>

6 #include "Spline.h"

7
8 /* parameters:

9 Data_Gamma ... NURBSData* for geometry Gamma , see Structures.h

10 wcpoints1_gam ... first component of weighted control points

11 w_l^\gamma*C_l^\gamma for geometry corresponding to knots

12 wcpoints2_gam ... second component of weighted control points

13 w_l^\gamma*C_l^\gamma for geometry corresponding to knots

14 Data_Basis ... NURBSData* for Basis of approximation space

15 Data_Gauss ... QuadData* for quadrature with weight function 1 om [0,1],

16 see Structures.h

17 Data_LogGauss ... QuadData* for quadrature with weight function -log(x)

18 on [0,1], see Structures.h

19
20 comments:

21 we assume that:

22 -)path gamma induced by Data_Gamma and wcpoints_gam is either positively

23 orientated regular closed curve ,

24 which parametizes boundary Gamma of Lipschitz domain Omega with diam(Omega)<1

25 or regular open curve , in this case we assume #b=p_gam+1

26 -)#t_i^gamma <=p_gam+1

27 -)number of different entries in knots of Data_Gamma >= 4

28 -){t_i^gamma:i=1... N_gam }<={t_i:i=1...N}

29 -)#t_i <=p+1

30
31 */

32
33
34 double SquareIntegrand_V_smooth(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

35 double* wcpoints2_gam ,NURBSData* Data_Basis ,
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36 double s,double t,int i,int k,

37 double denominator ,double Jdet);

38 // returns log(|\ gamma(s)-\gamma(t)|/ denominator)

39 // *\tilde{R}_i(s)*\ tilde{R}_k(t)*Jdet ,

40 // where s!=t in [a,b), i,k in {1-p,...,N-#b+1}, denominator >0 and Jdet in \R

41
42
43 double SquareIntegrand_V_log(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

44 double* wcpoints2_gam ,NURBSData* Data_Basis ,

45 double s,double t,int i,int k,double Jdet);

46 // returns \tilde{R}_i(s)*\ tilde{R}_k(t)*Jdet ,

47 // where s!=t in [a,b), i,k in {1-p,...,N-#b+1} and Jdet in \R

48
49
50 double SquareIntegrand_V_rational(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

51 double* wcpoints2_gam ,NURBSData* Data_Basis ,

52 double s,double t,int i,int k,int j,int m,

53 double Jdet);

54 // returns (\ gamma_j(s)-\gamma_j(t))*(\ gamma_m(s)-\gamma_m(t))/|\ gamma(s)-\gamma(t)|

55 // *\tilde{R}_i(s)*\ tilde{R}_k(t)*Jdet ,

56 // where s!=t in [a,b), i,k in {1-p,...,N-#b+1}, j,m in {0,1} and Jdet in \R

57
58
59 double SquareIntegral_V_Identical(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

60 double* wcpoints2_gam ,NURBSData* Data_Basis ,

61 QuadData* Data_Gauss ,QuadData* Data_LogGauss ,

62 int i,int k,int l,int j,int m,int delta_jm ,

63 double lambda ,double mu);

64 // returns \int_0^1 \int_0^1 \check{G}_{l,l}(s,t) \tilde{R}_{i,l}(s)

65 // \tilde{R}_{k,l}(t) dt ds,

66 // where i,k in {1-p,...,N-#b+1},

67 // l in {max(i,1),...,min(i+p,N)} \cap {max(k,1)... , min(k+p,N)} with H_l >0,

68 // j,m,delta_jm in {0,1} and lambda ,mu in \R

69
70
71 double SquareIntegral_V_Adjacent(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

72 double* wcpoints2_gam ,NURBSData* Data_Basis ,

73 QuadData* Data_Gauss ,QuadData* Data_LogGauss ,

74 int i,int k,int l1,int l2,int j,int m,

75 int delta_jm ,double lambda ,double mu);

76 // returns \int_0^1 \int_0^1 \check{G}_{l1,l2}(s,t)

77 // \tilde{R}_{i,l1}(s) \tilde{R}_{k,l2}(t) dt ds for adjacent elements ,

78 // i.e. \gamma ([t_{l_1 -1},t_{l_1} \cap \gamma ([t_{l_2 -1},t_{l_2 }]) consists

79 // of one point , singularity at s=0 and t=1,

80 // i,k in {1-p,...,N-#b+1}, l1 in {max(i,1),...,min(i+p,N)},

81 // l2 in {max(k,1),...,min(k+p,N)} with min(H_l1 ,H_l2)>0, j,m,delta_jm in {0,1}

82 // and lmbda ,mu in \R

83
84
85 void build_Vmatrix(double* output ,NURBSData* Data_Gamma ,double* wcpoints1_gam ,

86 double* wcpoints2_gam ,NURBSData* Data_Basis ,

87 QuadData* Data_Gauss ,QuadData* Data_LogGauss ,double lambda ,

88 double mu);

89 // turns output[i+p-1+(k+p -1)*2*(N-multb +1+p)+j*(N-multb +1+p)+m*2*(N-multb +1+p)]

90 // into <V \hat{R}_k^m,\hat{R}_i^j>_{L^2( Gamma )} for i,k=1-p...N-#b+1, j,m=0,1,

91 // \hat{R}_i^j=R_{i,p}*e_j circ gamma ^(-1) are the transformed basis functions

92 // with e_j being the j-th unit vector

93
94 #endif

Listing A.2: Vmatrix.c

1 #include "Vmatrix.h"
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2
3
4 double SquareIntegrand_V_smooth(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

5 double* wcpoints2_gam ,NURBSData* Data_Basis ,

6 double s,double t,int i,int k,

7 double denominator ,double Jdet){

8
9 double tmp1 [2];

10 double tmp2 [2];

11 double diff_gam [2];

12 double R_til_i ,R_til_k; // \tilde{R}_i(s), \tilde{R}_k(t)

13
14 eval_NURBSCurve(tmp1 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,s);

15 // gamma(s)

16 eval_NURBSCurve(tmp2 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,t);

17 // gamma(t)

18 diff_gam [0] = tmp1 [0] - tmp2 [0];

19 diff_gam [1] = tmp1 [1] - tmp2 [1];

20 eval_NURBSCurveDeriv(tmp1 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,s);

21 // gamma ’(s)

22 eval_NURBSCurveDeriv(tmp2 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,t);

23 // gamma ’(t)

24 R_til_i = eval_NURBS(Data_Basis , i, s) * norm(tmp1);

25 R_til_k = eval_NURBS(Data_Basis , k, t) * norm(tmp2);

26 return log(norm(diff_gam )/ denominator )* R_til_i*R_til_k*Jdet;

27 }

28
29
30 double SquareIntegrand_V_log(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

31 double* wcpoints2_gam ,NURBSData* Data_Basis ,

32 double s,double t,int i,int k,double Jdet){

33
34
35 double tmp1 [2];

36 double tmp2 [2];

37 double R_til_i ,R_til_k; // \tilde{R}_i(s), \tilde{R}_k(t)

38
39 eval_NURBSCurveDeriv(tmp1 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,s);

40 // gamma ’(s)

41 eval_NURBSCurveDeriv(tmp2 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,t);

42 // gamma ’(t)

43 R_til_i = eval_NURBS(Data_Basis , i, s) * norm(tmp1);

44 R_til_k = eval_NURBS(Data_Basis , k, t) * norm(tmp2);

45 return -R_til_i*R_til_k*Jdet;

46 }

47
48
49 double SquareIntegrand_V_rational(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

50 double* wcpoints2_gam ,NURBSData* Data_Basis ,

51 double s,double t,int i,int k,int j,int m,

52 double Jdet){

53
54 double tmp1 [2];

55 double tmp2 [2];

56 double diff_gam [2];

57 double R_til_i ,R_til_k; // \tilde{R}_i(s), \tilde{R}_k(t)

58
59 eval_NURBSCurve(tmp1 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,s);

60 // gamma(s)

61 eval_NURBSCurve(tmp2 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,t);

62 // gamma(t)

63 diff_gam [0] = tmp1 [0] - tmp2 [0];

64 diff_gam [1] = tmp1 [1] - tmp2 [1];
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65 eval_NURBSCurveDeriv(tmp1 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,s);

66 // gamma ’(s)

67 eval_NURBSCurveDeriv(tmp2 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,t);

68 // gamma ’(t)

69 R_til_i = eval_NURBS(Data_Basis , i, s) * norm(tmp1);

70 R_til_k = eval_NURBS(Data_Basis , k, t) * norm(tmp2);

71
72 return R_til_i*R_til_k*Jdet*diff_gam[j]* diff_gam[m]/( norm(diff_gam ))/

73 (norm(diff_gam ));

74 }

75
76
77 double SquareIntegral_V_Identical(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

78 double* wcpoints2_gam ,NURBSData* Data_Basis ,

79 QuadData* Data_Gauss ,QuadData* Data_LogGauss ,

80 int i,int k,int l,int j,int m,int delta_jm ,

81 double lambda ,double mu){

82
83 double* nodes_gauss=get_QuadData_nodes(Data_Gauss );

84 double* weights_gauss=get_QuadData_weights(Data_Gauss );

85 int n_gauss=get_QuadData_n(Data_Gauss );

86 double* nodes_loggauss=get_QuadData_nodes(Data_LogGauss );

87 double* weights_loggauss=get_QuadData_weights(Data_LogGauss );

88 int n_loggauss=get_QuadData_n(Data_LogGauss );

89 int q1,q2;

90 double t_lm1=knotseq(Data_Basis ,l-1); // t_{l-1}

91 double t_l=knotseq(Data_Basis ,l); // t_{l}

92 double H_l=t_l -t_lm1; // H_l

93 double squareint =0; // integral over square

94 double factor_log = (-3)*mu -lambda; // factor in front of log term

95 double factor_rat = mu+lambda; // factor in front of rational term

96 double factor = 1/(4* M_PI*mu*(2*mu+lambda )); // generall factor

97 double intpoint1 , intpoint2; // first and second integration point

98 double denominator;

99 double Jdet; // Jacobi determinant for Duffy transformation

100
101 // smooth integrals

102 for (q1=0;q1<n_gauss;q1=q1+1) {

103 for (q2=0;q2<n_gauss;q2=q2+1) {

104 // first double integral

105 intpoint1= t_lm1+H_l*nodes_gauss[q1];

106 intpoint2 = t_lm1+H_l*( nodes_gauss[q1]*(1- nodes_gauss[q2]));

107 denominator=nodes_gauss[q1]* nodes_gauss[q2];

108 Jdet=nodes_gauss[q1];

109 if (delta_jm) {

110 squareint += weights_gauss[q1]* weights_gauss[q2]* factor_log*

111 SquareIntegrand_V_smooth(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

112 Data_Basis ,intpoint1 ,intpoint2 ,i,k,

113 denominator ,Jdet);

114 }

115 squareint += weights_gauss[q1]* weights_gauss[q2]* factor_rat*

116 SquareIntegrand_V_rational(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

117 Data_Basis ,intpoint1 ,intpoint2 ,i,k,j,m,Jdet);

118 // second double integral

119 intpoint1=t_lm1+H_l*(1- nodes_gauss[q1]);

120 intpoint2 = t_lm1 + H_l * (1+ nodes_gauss[q1]*( nodes_gauss[q2]-1));

121 denominator=nodes_gauss[q1]* nodes_gauss[q2];

122 Jdet=nodes_gauss[q1];

123 if (delta_jm) {

124 squareint += weights_gauss[q1]* weights_gauss[q2]* factor_log*

125 SquareIntegrand_V_smooth(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

126 Data_Basis ,intpoint1 ,intpoint2 ,i,k,

127 denominator ,Jdet);
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128 }

129 squareint += weights_gauss[q1]* weights_gauss[q2]* factor_rat*

130 SquareIntegrand_V_rational(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

131 Data_Basis ,intpoint1 ,intpoint2 ,i,k,j,m,Jdet);

132 }

133 }

134 // integrals with s-logarithmic singularity

135 if (delta_jm) {

136 for (q1=0;q1<n_loggauss;q1=q1+1) {

137 for (q2=0;q2<n_gauss;q2=q2+1) {

138 // first double integral

139 intpoint1=t_lm1+H_l*nodes_loggauss[q1];

140 intpoint2 = t_lm1 + H_l*( nodes_loggauss[q1]*(1- nodes_gauss[q2]));

141 Jdet=nodes_loggauss[q1];

142 squareint += weights_loggauss[q1]* weights_gauss[q2]* factor_log

143 *SquareIntegrand_V_log(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

144 Data_Basis ,intpoint1 ,intpoint2 ,i,k,Jdet);

145 // second double integral

146 intpoint1=t_lm1+H_l*(1- nodes_loggauss[q1]);

147 intpoint2 = t_lm1+H_l *(1+ nodes_loggauss[q1]*( nodes_gauss[q2] -1));

148 Jdet=nodes_loggauss[q1];

149 squareint += weights_loggauss[q1]* weights_gauss[q2]* factor_log

150 *SquareIntegrand_V_log(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

151 Data_Basis ,intpoint1 ,intpoint2 ,i,k,Jdet);

152 }

153 }

154 }

155 // integrals with t-logarithmic singularity

156 if (delta_jm) {

157 for (q1=0;q1<n_gauss;q1=q1+1) {

158 for (q2=0;q2<n_loggauss;q2=q2+1) {

159 // first double integral

160 intpoint1=t_lm1+H_l*nodes_gauss[q1];

161 intpoint2 = t_lm1+H_l*( nodes_gauss[q1]*(1- nodes_loggauss[q2]));

162 Jdet=nodes_gauss[q1];

163 squareint += weights_gauss[q1]* weights_loggauss[q2]* factor_log

164 *SquareIntegrand_V_log(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

165 Data_Basis ,intpoint1 ,intpoint2 ,i,k,Jdet);

166 // second double integral

167 intpoint1=t_lm1+H_l*(1- nodes_gauss[q1]);

168 intpoint2 = t_lm1+H_l *(1+ nodes_gauss[q1]*( nodes_loggauss[q2] -1));

169 Jdet=nodes_gauss[q1];

170 squareint += weights_gauss[q1]* weights_loggauss[q2]* factor_log

171 *SquareIntegrand_V_log(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

172 Data_Basis ,intpoint1 ,intpoint2 ,i,k,Jdet);

173 }

174 }

175 }

176 return squareint*factor;

177 }

178
179
180 double SquareIntegral_V_Adjacent(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

181 double* wcpoints2_gam ,NURBSData* Data_Basis ,

182 QuadData* Data_Gauss ,QuadData* Data_LogGauss ,

183 int i,int k,int l1,int l2,int j,int m,

184 int delta_jm ,double lambda ,double mu){

185
186
187 double* nodes_gauss=get_QuadData_nodes(Data_Gauss );

188 double* weights_gauss=get_QuadData_weights(Data_Gauss );

189 int n_gauss=get_QuadData_n(Data_Gauss );

190 double* nodes_loggauss=get_QuadData_nodes(Data_LogGauss );
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191 double* weights_loggauss=get_QuadData_weights(Data_LogGauss );

192 int n_loggauss=get_QuadData_n(Data_LogGauss );

193 int q1,q2;

194 double t_l1m1=knotseq(Data_Basis ,l1 -1); // t_{l_1 -1}

195 double t_l1=knotseq(Data_Basis ,l1); // t_{l_1}

196 double H_l1=t_l1 -t_l1m1; // H_{l_1}

197 double t_l2m1=knotseq(Data_Basis ,l2 -1); // t_{l_2 -1}

198 double t_l2=knotseq(Data_Basis ,l2); // t_{l_2}

199 double H_l2=t_l2 -t_l2m1; // H_{l_1}

200 double squareint =0; // integral over square

201 double factor_log = (-3)*mu -lambda; // factor in front of log term

202 double factor_rat = mu+lambda; // factor in front of rational term

203 double factor = 1/(4* M_PI*mu*(2*mu+lambda )); // generall factor

204 double intpoint1 , intpoint2; // first and second integration point

205 double denominator;

206 double Jdet; // Jacobi determinant of Duffy transformation

207
208 // smooth integrals

209 for (q1=0;q1<n_gauss;q1=q1+1) {

210 for (q2=0;q2<n_gauss;q2=q2+1) {

211 // first double integral

212 intpoint1=t_l1m1+H_l1*nodes_gauss[q1];

213 intpoint2 = t_l2m1 + H_l2 * (1- nodes_gauss[q1]* nodes_gauss[q2]);

214 denominator=nodes_gauss[q1];

215 Jdet=nodes_gauss[q1];

216 if (delta_jm) {

217 squareint += weights_gauss[q1]* weights_gauss[q2]* factor_log*

218 SquareIntegrand_V_smooth(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

219 Data_Basis ,intpoint1 ,intpoint2 ,i,k,

220 denominator ,Jdet);

221 }

222 squareint += weights_gauss[q1]* weights_gauss[q2]* factor_rat*

223 SquareIntegrand_V_rational(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

224 Data_Basis ,intpoint1 ,intpoint2 ,i,k,j,m,Jdet);

225 // second double integral

226 intpoint1=t_l1m1+H_l1*nodes_gauss[q1]* nodes_gauss[q2];

227 intpoint2 = t_l2m1 + H_l2 * (1- nodes_gauss[q2]);

228 denominator=nodes_gauss[q2];

229 Jdet=nodes_gauss[q2];

230 if (delta_jm) {

231 squareint += weights_gauss[q1]* weights_gauss[q2]* factor_log*

232 SquareIntegrand_V_smooth(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

233 Data_Basis ,intpoint1 ,intpoint2 ,i,k,

234 denominator ,Jdet);

235 }

236 squareint += weights_gauss[q1]* weights_gauss[q2]* factor_rat*

237 SquareIntegrand_V_rational(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

238 Data_Basis ,intpoint1 ,intpoint2 ,i,k,j,m,Jdet);

239 }

240 }

241 // integral with s-logarithmic singularity

242 if (delta_jm) {

243 for (q1=0;q1<n_loggauss;q1=q1+1) {

244 for (q2=0;q2<n_gauss;q2=q2+1) {

245 intpoint1=t_l1m1+H_l1*nodes_loggauss[q1];

246 intpoint2 = t_l2m1+H_l2* (1- nodes_loggauss[q1]* nodes_gauss[q2]);

247 Jdet=nodes_loggauss[q1];

248 squareint += weights_loggauss[q1]* weights_gauss[q2]* factor_log

249 *SquareIntegrand_V_log(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

250 Data_Basis ,intpoint1 ,intpoint2 ,i,k,Jdet);

251 }

252 }

253 }
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254 // integral with t-logarithmic singularity

255 if (delta_jm) {

256 for (q1=0;q1<n_gauss;q1=q1+1) {

257 for (q2=0;q2<n_loggauss;q2=q2+1) {

258 intpoint1=t_l1m1+H_l1*nodes_gauss[q1]* nodes_loggauss[q2];

259 intpoint2 = t_l2m1 + H_l2 * (1- nodes_loggauss[q2]);

260 Jdet=nodes_loggauss[q2];

261 squareint += weights_gauss[q1]* weights_loggauss[q2]* factor_log

262 *SquareIntegrand_V_log(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

263 Data_Basis ,intpoint1 ,intpoint2 ,i,k,Jdet);

264 }

265 }

266 }

267 return squareint*factor;

268 }

269
270
271 void build_Vmatrix(double* output ,NURBSData* Data_Gamma ,double* wcpoints1_gam ,

272 double* wcpoints2_gam ,NURBSData* Data_Basis ,

273 QuadData* Data_Gauss ,QuadData* Data_LogGauss ,double lambda ,

274 double mu){

275
276 double* nodes_gauss=get_QuadData_nodes(Data_Gauss );

277 double* weights_gauss=get_QuadData_weights(Data_Gauss );

278 int n_gauss=get_QuadData_n(Data_Gauss );

279 double* nodes_loggauss=get_QuadData_nodes(Data_LogGauss );

280 double* weights_loggauss=get_QuadData_weights(Data_LogGauss );

281 int n_loggauss=get_QuadData_n(Data_LogGauss );

282 double* knots=get_NURBSData_knots(Data_Basis );

283 int N=get_NURBSData_N(Data_Basis );

284 int p=get_NURBSData_p(Data_Basis );

285 double tmp [2];

286 int i,k,l1 ,l2,q1,q2 ,j,m;

287 double b=knots[N-1];

288 int multb =0; // #b

289 while (nearly_equal(knotseq(Data_Basis ,N-multb),b)) {multb=multb +1;}

290 double R_til[N-multb +1+p][p+1][ n_gauss ];

291 // R_til[i-1+p][l1-i][q1]=\ tilde{R}_{i,l1}( nodes_gauss[q1])

292 double gamma1[N][ n_gauss ];

293 // gamma1[l1 -1][q1] is first component of

294 // gamma(t_{l1 -1}+ H_l1*nodes_gauss[q1])

295 double gamma2[N][ n_gauss ];

296 // gamma2[l1 -1][q1] is second component of

297 // gamma(t_{l1 -1}+ H_l1*nodes_gauss[q1])

298 double squareint; // integral over square

299 double t_l1m1 ,t_l1 ,H_l1 ,t_l2m1 ,t_l2 ,H_l2;

300 // t_{l1 -1},t_l1 ,H_l1 ,t_{l2 -1},t_l2 ,H_l2

301 double intpoint; // integration point

302 int delta_jm;

303
304 // calculation of R_til

305 // R_i

306 for (i=1-p;i<=(N-multb +1);i=i+1) {

307 // elements with nonemty intersection with support of R_i

308 for (l1=max(i,1);l1 <=min(i+p,N);l1=l1+1) {

309 // quadrature points

310 for (q1=0;q1<n_gauss;q1=q1+1) {

311 t_l1m1=knotseq(Data_Basis ,l1 -1);

312 t_l1=knotseq(Data_Basis ,l1);

313 H_l1=t_l1 -t_l1m1;

314 intpoint=t_l1m1+H_l1*nodes_gauss[q1];

315 eval_NURBSCurveDeriv(tmp ,Data_Gamma ,wcpoints1_gam ,

316 wcpoints2_gam ,intpoint );
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317 R_til[i-1+p][l1 -i][q1]= eval_NURBS(Data_Basis , i,intpoint)

318 *norm(tmp);

319 }

320 }

321 }

322
323 // calculation of gamma1 , gamma2

324 for (l1=1;l1 <=N;l1=l1+1){

325 for (q1=0;q1<n_gauss;q1=q1+1){

326 t_l1m1=knotseq(Data_Basis ,l1 -1);

327 t_l1=knotseq(Data_Basis ,l1);

328 H_l1=t_l1 -t_l1m1;

329 intpoint=t_l1m1+H_l1*nodes_gauss[q1];

330 eval_NURBSCurve(tmp ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

331 intpoint );

332 gamma1[l1 -1][q1]=tmp [0];

333 gamma2[l1 -1][q1]=tmp [1];

334 }

335 }

336
337 // calculation of Vmatrix

338 for (j=0;j<=1;j=j+1) {

339 for (m=0;m<=j;m=m+1) {

340 delta_jm = (j==m);

341 // R_i

342 for (i=1-p;i<=(N-multb +1);i=i+1) {

343 // R_k

344 for (k=1-p;k<=i;k=k+1) {

345 output[i+p-1+(k+p -1)*2*(N-multb +1+p)+j*(N-multb +1+p)+

346 m*2*(N-multb +1+p)*(N-multb +1+p)]=0;

347 // elements with nonemty intersection with support of R_i

348 for (l1=max(i,1);l1 <=min(i+p,N);l1=l1+1) {

349 // elements with nonemty intersection with support of R_k

350 for (l2=max(k,1);l2 <=min(k+p,N);l2=l2+1) {

351 t_l1m1=knotseq(Data_Basis ,l1 -1);

352 t_l1=knotseq(Data_Basis ,l1);

353 t_l2m1=knotseq(Data_Basis ,l2 -1);

354 t_l2=knotseq(Data_Basis ,l2);

355 H_l1=t_l1 -t_l1m1;

356 H_l2=t_l2 -t_l2m1;

357 // quadrature

358 if (0<min(H_l1 ,H_l2 )){

359 // elements with no intersection

360 squareint =0;

361 if ((! nearly_equal(t_l1m1 ,t_l2m1 ))

362 && (! nearly_equal(t_l1m1 ,t_l2))

363 && (! nearly_equal(t_l1 ,t_l2m1 ))

364 && (! nearly_equal(t_l1 ,t_l2))

365 && ((l1!=(N-multb +1)) || (l2 !=1))

366 && ((l2!=(N-multb +1)) || (l1 !=1))) {

367 for (q1=0;q1<n_gauss;q1=q1+1) {

368 for (q2=0;q2<n_gauss;q2=q2+1) {

369 tmp [0]= gamma1[l1 -1][q1]

370 - gamma1[l2 -1][q2];

371 tmp [1]= gamma2[l1 -1][q1]

372 - gamma2[l2 -1][q2];

373 squareint +=

374 weights_gauss[q1]* weights_gauss[q2]

375 /(4* M_PI*mu*(2*mu+lambda ))

376 *( delta_jm *(( -3)*mu-lambda)

377 *log(norm(tmp ))+(mu+lambda )*

378 tmp[j]*tmp[m]/( norm(tmp))/

379 (norm(tmp )))* R_til[i-1+p][l1-i][q1]*
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380 R_til[k-1+p][l2 -k][q2];

381 }

382 }

383 }

384 // elements with intersection

385 else {

386 // identical elements

387 if (l1==l2){

388 squareint += SquareIntegral_V_Identical(

389 Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

390 Data_Basis ,Data_Gauss ,Data_LogGauss ,

391 i,k,l1,j,m,delta_jm ,lambda ,mu);

392 }

393 // adjacent elements

394 else{

395 // singularity at s=0,t=1

396 if (nearly_equal(t_l1m1 ,t_l2)

397 || ((l2==(N-multb +1)) && (l1 ==1))){

398 squareint += SquareIntegral_V_Adjacent(

399 Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

400 Data_Basis ,Data_Gauss ,Data_LogGauss ,

401 i,k,l1,l2 ,j,m,delta_jm ,lambda ,mu);

402 }

403 // singularity at s=1,t=0

404 else{

405 squareint += SquareIntegral_V_Adjacent(

406 Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

407 Data_Basis ,Data_Gauss ,Data_LogGauss ,

408 k,i,l2,l1 ,j,m,delta_jm ,lambda ,mu);

409 }

410 }

411 }

412 output[i+p-1+(k+p -1)*2*(N-multb +1+p)+j*(N-multb +1+p)+

413 m*2*(N-multb +1+p)*(N-multb +1+p)]+=

414 H_l1*H_l2*squareint;

415 }

416 }

417 }

418 if (i!=k){

419 // V symmetric

420 output[k+p-1+(i+p -1)*2*(N-multb +1+p)+j*(N-multb +1+p)+

421 m*2*(N-multb +1+p)*(N-multb +1+p)] =

422 output[i+p-1+(k+p -1)*2*(N-multb +1+p)+j*(N-multb +1+p)+

423 m*2*(N-multb +1+p)*(N-multb +1+p)];

424 }

425 if (j!=m) {

426 // V symmetric in blocks

427 output[i+p-1+(k+p -1)*2*(N-multb +1+p)+m*(N-multb +1+p)+

428 j*2*(N-multb +1+p)*(N-multb +1+p)] =

429 output[i+p-1+(k+p -1)*2*(N-multb +1+p)+j*(N-multb +1+p)+

430 m*2*(N-multb +1+p)*(N-multb +1+p)];

431 if (i!=k){

432 // V symmetric

433 output[k+p-1+(i+p -1)*2*(N-multb +1+p)+m*(N-multb +1+p)+

434 j*2*(N-multb +1+p)*(N-multb +1+p)] =

435 output[i+p-1+(k+p -1)*2*(N-multb +1+p)+m*(N-multb +1+p)+

436 j*2*(N-multb +1+p)*(N-multb +1+p)];

437 }

438 }

439 }

440 }

441 }

442 }
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443 }

A.2. Fvector.h and Fvector.c

The computation of the right-hand side vector Fh is discussed in on Section 4.1.2.

Listing A.3: Fvector.h

1 #ifndef _Fvector_h

2 #define _Fvector_h

3
4 #include <math.h>

5 #include <stdio.h>

6 #include "Spline.h"

7
8 /* parameters:

9 Data_Gamma ... NURBSData* for geometry Gamma , see Structures.h

10 wcpoints1_gam ... first component of weighted control points

11 w_l^\gamma*C_l^\gamma for geometry corresponding to knots

12 wcpoints2_gam ... second component of weighted control points

13 w_l^\gamma*C_l^\gamma for geometry corresponding to knots

14 Data_Basis ... NURBSData* for Basis of approximation space

15 Data_Gauss ... QuadData* for quadrature with weight function 1 on [0,1],

16 see Structures.h

17 Data_Gauss_small ... QuadData* (see Structures.h) for quadrature with weight

18 function 1 on [0,1] (with smaller number of nodes as Data_Gauss),

19 used for quadrature for identical elements or adjacent elements

20 in function build_Fvector

21 with_K ...0 to set Kg=0, 1 else

22
23 comments:

24 we assume that:

25 -)path gamma induced by Data_Gamma and wcpoints_gam is either positively

26 orientated regular closed curve ,

27 which parametizes boundary Gamma of Lipschitz domain Omega with diam(Omega)<1

28 or regular open curve , in this case we assume #b=p_gam+1

29 -)#t_i^gamma <=p_gam+1

30 -)number of different entries in knots of Data_Gamma >= 4

31 -){t_i^gamma:i=1... N_gam }<={t_i:i=1...N}

32 -)#t_i <=p+1

33
34 */

35
36 double PartDeriv_FundamentalSol(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

37 double* wcpoints2_gam ,int i,int k,int m,

38 double s,double t,double Jdet ,double lambda ,double mu);

39 // returns \partial_{i,t}\check{U}_{km}(s,t)

40
41
42 double Sigma(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

43 double* wcpoints2_gam ,int j,int p,int q,

44 double s,double t,double Jdet ,double lambda ,double mu);

45 // returns sigma_{pq}(\ check{U}_j)(s,t)

46
47
48 double SquareIntegrand_K(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

49 double* wcpoints2_gam ,NURBSData* Data_Basis ,

50 int i,int j,double s,double t,double Jdet ,

51 double lambda ,double mu);

52 // returns \gamma_{1,y}\check{U}(s,t)*\ tilde{g}(t)*\ tilde{R}_i(s)*Jdet ,

53 // where s!=t in [a,b), i,k in {1-p,...,N-#b+1} and Jdet in \R
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54
55
56 double SquareIntegral_K_Identical(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

57 double* wcpoints2_gam ,NURBSData* Data_Basis ,

58 QuadData* Data_Gauss ,int i,int j,int l,

59 double lambda ,double mu);

60 // returns \int_0^1 \int_0 ^1 \gamma_{1,y}\check{U}_{l,l}(s,t)

61 // \tilde{R}_{i,l}(s) \tilde{g}(t) dt ds,

62 // where i in {1-p,...,N-#b+1} and l in {max(i,1),...,min(i+p,N)} with H_l >0

63
64
65 double SquareIntegral_K_Adjacent(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

66 double* wcpoints2_gam ,NURBSData* Data_Basis ,

67 QuadData* Data_Gauss ,int i,int j,int l1,

68 int l2,int singtype ,double lambda ,double mu);

69 // returns \int_0^1 \int_0 ^1 \gamma_{1,y}\check{U}_{l1,l2}(s,t)

70 // \tilde{R}_{i,l1}(s) \tilde{g}(t) dt ds for adjacent elements ,

71 // i.e. \gamma ([t_{l_1 -1},t_{l_1} \cap \gamma([t_{l_2 -1},t_{l_2 }]) consists

72 // of one point , if singtype =0: singularity at s=0 and t=1

73 // else singularity at s=1 and t=0,

74 // i in {1-p,...,N-#b+1}, l1 in {max(i,1),...,min(i+p,N)} and l2 in {1,...,N}

75 // with min(H_l1 ,H_l2)>0

76
77
78 void build_Fvector(double* output ,NURBSData* Data_Gamma ,double* wcpoints1_gam ,

79 double* wcpoints2_gam ,NURBSData* Data_Basis ,

80 QuadData* Data_Gauss ,QuadData* Data_Gauss_small ,int with_K ,

81 double lambda ,double mu);

82 // turns output[i+p-1] into <Kg+g/2,\hat{R}_i>_{L_2(Gamma)} for i=1-p...N-#b+1,

83 // \hat{R}_i=R_{i,p} \circ gamma ^(-1) are the transformed basis functions

84
85
86 #endif

Listing A.4: Fvector.c

1 #include "Fvector.h"

2
3 double PartDeriv_FundamentalSol(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

4 double* wcpoints2_gam ,int i,int k,int m,

5 double s,double t,double Jdet ,double lambda ,

6 double mu){

7
8 double den=4* M_PI*mu*(2*mu+lambda );

9 double deriv =0;

10 double deriv_part =0;

11 double tmp1 [2];

12 double tmp2 [2];

13 double diff_gam [2]; // gamma(s)-gamma(t)

14
15 eval_NURBSCurve(tmp1 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,s);

16 // gamma(s)

17 eval_NURBSCurve(tmp2 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,t);

18 // gamma(t)

19 diff_gam [0] = tmp1 [0] - tmp2 [0];

20 diff_gam [1] = tmp1 [1] - tmp2 [1];

21
22 if (i==k){

23 deriv_part += diff_gam[m]/norm(diff_gam );

24 }

25 if (i==m){

26 deriv_part += diff_gam[k]/norm(diff_gam );

27 }
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28 deriv = ( -1)*( Jdet/norm(diff_gam ))* deriv_part;

29 deriv += 2*( diff_gam[i]/norm(diff_gam ))*( diff_gam[k]/norm(diff_gam ))*

30 (diff_gam[m]/norm(diff_gam ))*( Jdet/norm(diff_gam ));

31 deriv *= (mu+lambda )/den;

32 if (k==m){

33 deriv += (3*mu+lambda )/den*(( diff_gam[i])/ norm(diff_gam ))*

34 (Jdet/norm(diff_gam ));

35 }

36 return deriv;

37 }

38
39
40 double Sigma(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

41 double* wcpoints2_gam ,int j,int p,int q,

42 double s,double t,double Jdet ,double lambda ,double mu){

43
44 int r;

45 double div=0;

46 double sigma_val =0;

47 double eps_j_pq =0;

48
49 if (p==q){

50 for (r=0;r<=1;r=r+1){

51 div += PartDeriv_FundamentalSol(Data_Gamma ,wcpoints1_gam ,

52 wcpoints2_gam ,r,j,r,s,t,Jdet ,

53 lambda ,mu);

54 }

55 sigma_val += lambda*div;

56 }

57 sigma_val += mu*PartDeriv_FundamentalSol(Data_Gamma ,wcpoints1_gam ,

58 wcpoints2_gam ,p,j,q,s,t,Jdet ,

59 lambda ,mu);

60 sigma_val += mu*PartDeriv_FundamentalSol(Data_Gamma ,wcpoints1_gam ,

61 wcpoints2_gam ,q,j,p,s,t,Jdet ,

62 lambda ,mu);

63 return sigma_val;

64 }

65
66
67 double SquareIntegrand_K(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

68 double* wcpoints2_gam ,NURBSData* Data_Basis ,

69 int i,int j,double s,double t,double Jdet ,

70 double lambda ,double mu){

71
72 double tmp1 [2];

73 double tmp2 [2];

74 double nu[2];

75 double g_vec [2];

76 int p,q;

77 double R_til_i; // \tilde{R}_{i,p}(s), first resp. second

78 // coordinate of \check{g}(t)|\ gamma ’(t)|\nu(\gamma(t))

79 double squareint =0;

80
81
82 eval_NURBSCurve(tmp2 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,t);

83 // gamma(t)

84 g(g_vec ,tmp2);

85 // g_vec = g(gamma(t))

86 eval_NURBSCurveDeriv(tmp1 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,s);

87 // gamma ’(s)

88 eval_NURBSCurveDeriv(tmp2 ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,t);

89 // gamma ’(t)

90 R_til_i = eval_NURBS(Data_Basis ,i,s) * norm(tmp1);
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91 nu[0] = tmp2 [1];

92 nu[1] = -tmp2 [0];

93
94 for (p=0;p<=1;p=p+1) {

95 for (q=0;q<=1;q=q+1) {

96 // conormal derivative

97 squareint += nu[q] * g_vec[p] * Sigma(Data_Gamma ,wcpoints1_gam ,

98 wcpoints2_gam ,j,p,q,s,t,

99 Jdet ,lambda ,mu);

100 }

101 }

102 return squareint * R_til_i;

103 }

104
105
106 double SquareIntegral_K_Identical(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

107 double* wcpoints2_gam ,NURBSData* Data_Basis ,

108 QuadData* Data_Gauss ,int i,int j,int l,

109 double lambda ,double mu){

110
111 double* nodes_gauss=get_QuadData_nodes(Data_Gauss );

112 double* weights_gauss=get_QuadData_weights(Data_Gauss );

113 int n_gauss=get_QuadData_n(Data_Gauss );

114 int q1,q2;

115 double t_lm1=knotseq(Data_Basis ,l-1); // t_{l-1}

116 double t_l=knotseq(Data_Basis ,l); // t_{l}

117 double H_l=t_l -t_lm1; // H_l

118 double squareint =0; // integral over square

119 double intpoint1 , intpoint2; // first and second integration point

120 double Jdet; // Jacobi determinant for Duffy transformation

121 double tmp1 ,tmp2;

122
123 for (q1=0;q1<n_gauss;q1=q1+1) {

124 for (q2=0;q2<n_gauss;q2=q2+1) {

125 // first double integral

126 intpoint1=t_lm1+H_l*nodes_gauss[q1]* nodes_gauss[q2];

127 intpoint2=t_lm1+H_l*nodes_gauss[q1];

128 Jdet=nodes_gauss[q1];

129 tmp1=SquareIntegrand_K(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

130 Data_Basis ,i,j,intpoint1 ,intpoint2 ,Jdet ,

131 lambda ,mu);

132 squareint +=tmp1*weights_gauss[q1]* weights_gauss[q2];

133 // second double integral

134 intpoint1=t_lm1+H_l*nodes_gauss[q1];

135 intpoint2=t_lm1+H_l*nodes_gauss[q1]* nodes_gauss[q2];

136 Jdet=nodes_gauss[q1];

137 tmp2=SquareIntegrand_K(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

138 Data_Basis ,i,j,intpoint1 ,intpoint2 ,Jdet ,

139 lambda ,mu);

140 squareint +=tmp2*weights_gauss[q1]* weights_gauss[q2];

141 }

142 }

143 return squareint;

144 }

145
146
147 double SquareIntegral_K_Adjacent(NURBSData* Data_Gamma ,double* wcpoints1_gam ,

148 double* wcpoints2_gam ,NURBSData* Data_Basis ,

149 QuadData* Data_Gauss ,

150 int i,int j,int l1,int l2,int singtype ,

151 double lambda ,double mu){

152
153 double* nodes_gauss=get_QuadData_nodes(Data_Gauss );
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154 double* weights_gauss=get_QuadData_weights(Data_Gauss );

155 int n_gauss=get_QuadData_n(Data_Gauss );

156 int q1,q2;

157 double t_l1m1=knotseq(Data_Basis ,l1 -1); // t_{l_1 -1}

158 double t_l1=knotseq(Data_Basis ,l1); // t_{l_1}

159 double H_l1=t_l1 -t_l1m1; // H_{l_1}

160 double t_l2m1=knotseq(Data_Basis ,l2 -1); // t_{l_2 -1}

161 double t_l2=knotseq(Data_Basis ,l2); // t_{l_2}

162 double H_l2=t_l2 -t_l2m1; // H_{l_1}

163 double squareint =0; // integral over square

164 double intpoint1 , intpoint2; // first and second integration point

165 double Jdet; // Jacobi determinant of Duffy transformation

166
167 if (singtype ==0){

168 for (q1=0;q1<n_gauss;q1=q1+1) {

169 for (q2=0;q2<n_gauss;q2=q2+1) {

170 // first double integral

171 intpoint1=t_l1m1+H_l1*nodes_gauss[q1];

172 intpoint2 = t_l2m1+H_l2*(1- nodes_gauss[q1]* nodes_gauss[q2]);

173 Jdet=nodes_gauss[q1];

174 squareint += weights_gauss[q1]* weights_gauss[q2]

175 *SquareIntegrand_K(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

176 Data_Basis ,i,j,intpoint1 ,intpoint2 ,Jdet ,

177 lambda ,mu);

178 // second double integral

179 intpoint1=t_l1m1+H_l1*nodes_gauss[q1]*(1- nodes_gauss[q2]);

180 intpoint2 = t_l2m1 + H_l2 * nodes_gauss[q2];

181 Jdet=1- nodes_gauss[q2];

182 squareint += weights_gauss[q1]* weights_gauss[q2]

183 *SquareIntegrand_K(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

184 Data_Basis ,i,j,intpoint1 ,intpoint2 ,Jdet ,

185 lambda ,mu);

186 }

187 }

188 } else {

189 for (q1=0;q1<n_gauss;q1=q1+1) {

190 for (q2=0;q2<n_gauss;q2=q2+1) {

191 // first double integral

192 intpoint1=t_l1m1+H_l1*(1- nodes_gauss[q1]* nodes_gauss[q2]);

193 intpoint2 = t_l2m1 + H_l2 *nodes_gauss[q2];

194 Jdet=nodes_gauss[q2];

195 squareint += weights_gauss[q1]* weights_gauss[q2]

196 *SquareIntegrand_K(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

197 Data_Basis ,i,j,intpoint1 ,intpoint2 ,Jdet ,

198 lambda ,mu);

199 // second double integral

200 intpoint1=t_l1m1+H_l1*nodes_gauss[q1];

201 intpoint2 = t_l2m1

202 + H_l2 * nodes_gauss[q2] * (1 - nodes_gauss[q1]);

203 Jdet=1- nodes_gauss[q1];

204 squareint += weights_gauss[q1]* weights_gauss[q2]

205 *SquareIntegrand_K(Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

206 Data_Basis ,i,j,intpoint1 ,intpoint2 ,Jdet ,

207 lambda ,mu);

208 }

209 }

210 }

211 return squareint;

212 }

213
214
215 void build_Fvector(double* output ,NURBSData* Data_Gamma ,double* wcpoints1_gam ,

216 double* wcpoints2_gam ,NURBSData* Data_Basis ,
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217 QuadData* Data_Gauss ,QuadData* Data_Gauss_small ,

218 int with_K ,double lambda ,double mu){

219
220 double* nodes_gauss=get_QuadData_nodes(Data_Gauss );

221 double* weights_gauss=get_QuadData_weights(Data_Gauss );

222 int n_gauss=get_QuadData_n(Data_Gauss );

223 double* nodes_gauss_small=get_QuadData_nodes(Data_Gauss_small );

224 double* weights_gauss_small=get_QuadData_weights(Data_Gauss_small );

225 int n_gauss_small=get_QuadData_n(Data_Gauss_small );

226 double* knots_gam=get_NURBSData_knots(Data_Gamma );

227 int N_gam=get_NURBSData_N(Data_Gamma );

228 double* knots=get_NURBSData_knots(Data_Basis );

229 int N=get_NURBSData_N(Data_Basis );

230 int p=get_NURBSData_p(Data_Basis );

231 double tmp [2];

232 double g_vec [2];

233 int i,j,k,l1,l2,q1 ,q2;

234 double b=knots[N-1];

235 int multb =0; // #b

236 while (nearly_equal(knotseq(Data_Basis ,N-multb),b)) {multb=multb +1;}

237 double R_til[N-multb +1+p][p+1][ n_gauss ];

238 // R_til[i-1+p][l1-i][q1]=\ tilde{R}_{i,l1}( nodes_gauss[q1])

239 double squareint; // integral over square

240 double Jdet; // Jacobi determinant of Duffy transformation

241 double t_l1m1 ,t_l1 ,H_l1 ,t_l2m1 ,t_l2 ,H_l2;

242 // t_{l1 -1},t_l1 ,H_l1 ,t_{l2 -1},t_l2 ,H_l2

243 double intpoint1 , intpoint2; // first and second integration point

244 int index; // help index

245
246 // calculation of R_til

247 // R_i

248 for (i=1-p;i<=(N-multb +1);i=i+1) {

249 // elements with nonemty intersection with support of R_i

250 for (l1=max(i,1);l1 <=min(i+p,N);l1=l1+1) {

251 // quadrature points

252 for (q1=0;q1<n_gauss;q1=q1+1) {

253 t_l1m1=knotseq(Data_Basis ,l1 -1);

254 t_l1=knotseq(Data_Basis ,l1);

255 H_l1=t_l1 -t_l1m1;

256 intpoint1=t_l1m1+H_l1*nodes_gauss[q1];

257 eval_NURBSCurveDeriv(tmp ,Data_Gamma ,wcpoints1_gam ,

258 wcpoints2_gam ,intpoint1 );

259 R_til[i-1+p][l1 -i][q1] = eval_NURBS(Data_Basis ,i,intpoint1)

260 * norm(tmp);

261 }

262 }

263 }

264
265
266
267 if (with_K ==1){

268 // calculation of <Kg ,\hat{R}_i^j>_{L_2(Gamma )}

269 for (j=0;j<=1;j=j+1) {

270 // R_i

271 for (i=1-p;i<=(N-multb +1);i=i+1) {

272 output[i+p-1+j*(N-multb +1+p)]=0;

273 // elements with nonemty intersection with support of R_i

274 for (l1=max(i,1);l1 <=min(i+p,N);l1=l1+1) {

275 // all elements

276 for (l2=1;l2 <=N;l2=l2+1) {

277 t_l1m1=knotseq(Data_Basis ,l1 -1);

278 t_l1=knotseq(Data_Basis ,l1);

279 t_l2m1=knotseq(Data_Basis ,l2 -1);
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280 t_l2=knotseq(Data_Basis ,l2);

281 H_l1=t_l1 -t_l1m1;

282 H_l2=t_l2 -t_l2m1;

283 // quadrature

284 if (0<min(H_l1 ,H_l2 )){

285 squareint =0;

286 // elements with no intersection

287 if ((! nearly_equal(t_l1m1 ,t_l2m1 ))

288 && (! nearly_equal(t_l1m1 ,t_l2))

289 && (! nearly_equal(t_l1 ,t_l2m1 ))

290 && (! nearly_equal(t_l1 ,t_l2))

291 && ((l1!=(N-multb +1)) || (l2 !=1))

292 && ((l2!=(N-multb +1)) || (l1 !=1))) {

293 for (q1=0;q1<n_gauss;q1=q1+1) {

294 for (q2=0;q2<n_gauss;q2=q2+1) {

295 intpoint1 = t_l1m1+H_l1*nodes_gauss[q1];

296 intpoint2 = t_l2m1+H_l2*nodes_gauss[q2];

297
298 squareint +=

299 weights_gauss[q1]* weights_gauss[q2]*

300 SquareIntegrand_K(Data_Gamma ,

301 wcpoints1_gam ,wcpoints2_gam ,

302 Data_Basis ,i,j,intpoint1 ,intpoint2 ,

303 1,lambda ,mu);

304 }

305 }

306 }

307 // elements with intersection

308 else {

309 // identical elements

310 if (l1==l2){

311 squareint=SquareIntegral_K_Identical(

312 Data_Gamma ,wcpoints1_gam ,

313 wcpoints2_gam ,Data_Basis ,

314 Data_Gauss_small ,i,j,l1 ,

315 lambda ,mu);

316 }

317 // elements with point intersection

318 else {

319 // singularity at s=0,t=1

320 if (nearly_equal(t_l1m1 ,t_l2)

321 || ((l2==(N-multb +1)) && (l1 ==1))){

322 index =1;

323 while(! nearly_equal(t_l2 ,knots_gam[index -1])){

324 index=index +1;

325 if (index ==( N_gam +1)){ break;}

326 }

327 // t_l2 no knot of Gamma

328 if (index ==( N_gam +1)){

329 squareint=SquareIntegral_K_Adjacent(

330 Data_Gamma ,wcpoints1_gam ,

331 wcpoints2_gam ,Data_Basis ,

332 Data_Gauss_small ,i,j,

333 l1,l2 ,0,lambda ,mu);

334 }

335 // t_l2 knot of Gamma

336 else {

337 squareint=SquareIntegral_K_Adjacent(

338 Data_Gamma ,wcpoints1_gam ,

339 wcpoints2_gam ,Data_Basis ,

340 Data_Gauss ,i,j,l1,l2 ,0,

341 lambda ,mu);

342 }
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343 }

344 // singularity at s=1,t=0

345 else{

346 index =1;

347 while(! nearly_equal(t_l1 ,knots_gam[index -1])){

348 index=index +1;

349 if (index ==( N_gam +1)){ break;}

350 }

351 // t_l1 no knot of Gamma

352 if (index ==( N_gam +1)){

353 squareint=SquareIntegral_K_Adjacent(

354 Data_Gamma ,wcpoints1_gam ,

355 wcpoints2_gam ,Data_Basis ,

356 Data_Gauss_small ,i,j,

357 l1,l2 ,1,lambda ,mu);

358 }

359 // t_l1 knot of Gamma

360 else {

361 squareint=SquareIntegral_K_Adjacent(

362 Data_Gamma ,wcpoints1_gam ,

363 wcpoints2_gam ,Data_Basis ,

364 Data_Gauss ,i,j,l1,l2 ,1,

365 lambda ,mu);

366 }

367 }

368 }

369 }

370 output[i+p-1+j*(N-multb +1+p)] += H_l1 * H_l2 * squareint;

371 }

372 }

373 }

374 }

375 }

376 }

377
378
379 // calculation of <Kg+g/2,R_hat_i >_{L_2(Gamma )}

380 for (j=0;j<=1;j=j+1) {

381 // R_i

382 for (i=1-p;i<=(N-multb +1);i=i+1) {

383 if (with_K ==0){

384 output[i+p-1+j*(N-multb +1+p)]=0;

385 }

386 // elements with nonemty intersection with support of R_i

387 for (l1=max(i,1);l1 <=min(i+p,N);l1=l1+1) {

388 t_l1m1=knotseq(Data_Basis ,l1 -1); // t_{l1 -1}

389 t_l1=knotseq(Data_Basis ,l1); // t_l1

390 H_l1=t_l1 -t_l1m1;

391 // quadrature

392 if (0<H_l1) {

393 for (q1=0;q1<n_gauss;q1=q1+1) {

394 eval_NURBSCurve(tmp ,Data_Gamma ,wcpoints1_gam ,wcpoints2_gam ,

395 t_l1m1+H_l1*nodes_gauss[q1]);

396 g(g_vec ,tmp);

397 output[i+p-1+j*(N-multb +1+p)] += H_l1 *

398 weights_gauss[q1] * g_vec[j]/2 * R_til[i-1+p][l1-i][q1];

399 }

400 }

401 }

402 }

403 }

404 }
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