
B A C H E L O R A R B E I T

Conforming Bisection of Simplicial
Triangulations in 3D

ausgeführt am

Institut für

Analysis und Scientific Computing

TU Wien

unter der Anleitung von

Univ.Prof. Dr. Dirk Praetorius

und

Dipl.-Ing. Michael Innerberger

durch

Iris Feldhammer

Matrikelnummer: 01525686

Öfnerstraße 68

8990 Bad Aussee

Wien, am 6. Oktober 2022

Danksagung

An dieser Stelle möchte ich mich bei allen Personen bedanken, die mich beim Verfassen
dieser Arbeit unterstützt haben. Insbesondere gilt mein Dank meinen Betreuern Univ. Prof.
Dirk Praetorius und Dipl.-Ing. Michael Innerberger für Ihre intensive Betreuung und all
die investierte Zeit. Außerdem bedanke ich mich bei meinen Eltern, die mir dieses Studium
ermöglicht haben und mir immer mit einem o↵enen Ohr zur Seite standen.

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Bachelorarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 6. Oktober 2022
Iris Feldhammer

Contents

1 Introduction 1

2 Notation and Preliminaries 3

2.1 Refinement of Triangulations . 3
2.2 A Refinement Algorithm . 7

3 Oldest Edge Bisection 9

3.1 Numerical Experiments . 10
3.2 Implementation . 11
3.3 Interpretation of Results . 13

4 Longest Edge Bisection 17

5 A Refinement Rule for Arbitrary Three-Dimensional Triangulations 20

5.1 Refinement of Triangulations with an Initial Ordering 20
5.2 Refinement of Arbitrary Initial Triangulations 22

Bibliography 29

i

1 Introduction

The aim of this work is to introduce refinement rules for three-dimensional triangulations
as well as to analyse their properties and limitations. Of the investigated properties, the
most important one is shape-regularity of the resulting triangulations, i.e., how degener-
ated the resulting simplices are. We focus on the three-dimensional case and only consider
conforming bisection. The main result of this thesis is the analysis of the refinement rule
oldest edge bisection in Chapter 3. An implementation of this rule reveals that it does not
produce shape-regular triangulations.

In Chapter 2, we begin with an introduction to triangulations and their refinement. We
give the definitions of important notions concerning refinement, such as the definition of a
conforming triangulation and a refinement rule. Moreover, we introduce a refinement al-
gorithm that bisects an initial triangulation using a given refinement rule. This algorithm
always produces conforming triangulations. However, it does not always terminate for all
refinement rules or arbitrary triangulations. Thus, one has to ensure termination of the
algorithm. In the subsequent chapters, we introduce di↵erent refinement rules which can
be used for three-dimensional triangulations. For each rule, we investigate whether it leads
to termination of the refinement algorithm. Additionally, there may be conditions imposed
on the initial triangulation to ensure that the algorithm terminates.

In Chapter 3, we introduce a refinement rule called oldest edge bisection. This rule al-
ways bisects the edge that has been part of the element the longest. We show that this rule
ensures termination of the refinement algorithm given in Chapter 2. However, it is unclear
if this rule produces shape-regular triangulations. To check this, numerical experiments are
performed. Additionally, it is tested whether di↵erent tie-breakers for edges of the same
“age” during the refinement process influence the shape-regularity of the triangulation.
The experiments reveal that oldest edge bisection does not produce shape-regular trian-
gulations and that tie-breakers do not influence shape-regularity. To analyse this further,
we introduce the definition of a patch index and show that mesh refinement can only act
according to the patch index. With this result, we can see why the tie-breakers do not
influence the resulting triangulation.

In Chapter 4, we analyse the properties of a refinement rule called longest edge bisection.
With this rule, the longest edge of an element is considered as its refinement edge. Since the
length of an edge is not a unique property, we introduce two ways to ensure uniqueness of
the refinement edge. We show that using longest edge bisection with one of these additional
rules also leads to termination of the refinement algorithm. Lastly, we give an overview of
further results regarding longest edge bisection, especially with respect to shape-regularity.

1

1 Introduction

In Chapter 5, we present another refinement rule called newest vertex bisection, which
is defined for n-dimensional triangulations. This rule may not terminate for arbitrary tri-
angulations. However, if the initial triangulation fulfils a certain condition, it terminates;
see [Ste08]. This poses the question, whether it is possible to modify the rule such that
termination is ensured for all arbitrary triangulations. For two dimensions, this was shown
in [KPP13]. In [Sch17], the refinement rule was modified to ensure termination for arbi-
trary refinements in three dimensions. This is done by imposing an ordering of edges in
the initial triangulation. We introduce the rule proposed in [Sch17] and all relevant defini-
tions. We also take a closer look at the di↵erent types of elements that appear when using
this refinement rule. Finally, we give an overview of the strategy that was used to show
termination and note that the proof is similar to that of oldest edge bisection.

2

2 Notation and Preliminaries

The first section of this chapter introduces some notation and definitions regarding trian-
gulations and their refinement. In the second section, a refinement algorithm is presented.
The definitions and notations of this chapter are taken from [Ste08], which is formulated
for n dimensions, and from [Sch17], which focuses on the three-dimensional setting.

2.1 Refinement of Triangulations

Definition 2.1 (n-Simplex). Let n,m 2 N with 2 n m. We say that the (n+1)-tupel
T = [x0, . . . , xn] is an n-simplex in Rm, if x0, . . . , xn 2 Rm do not lie on an (n � 1)-
dimensional hyperplane. By T := conv{x0, . . . , xn}, we denote the corresponding physical
domain, which, by definition, is convex, compact and non-degenerated. The vectors xi

are called vertices of T . We denote by V(T) := {x0, . . . , xn} ✓ Rm the set of vertices of
T . We say that S = [x00, . . . , x

0
k
] is a k-subsimplex of T , if S is a k-simplex in Rm and

{x00, . . . , x0k} ✓ V(T). The 1-subsimplices are called edges of T . We denote by E(T) the set
of edges of T . The (n� 1)-subsimplices are called faces of T . We denote by F(T) the set
of faces of T . Since edges E 2 E(T) and faces F 2 F(T) are simplices, we note that the
physical domains E,F ✓ Rm are well-defined.

Remark. Note that we have defined an n-simplex as a tupel (and not a set) of vectors, i.e.,
the order of the vertices is fixed.

Definition 2.2 (Triangulation). Let ⌦ ⇢ Rn be an open set. Then, T is called a triangu-
lation of ⌦ if

T is a finite set of n-simplices T in Rn,

T covers the closure of ⌦, i.e., ⌦ =
S

T2T T ,

and the simplices in T are mutually essentially disjoint, i.e., for all T, T 0 2 T with
T 6= T 0 it holds that |T \ T 0| = 0, where | · | denotes the n-dimensional Lebesgue
measure.

We denote the set of all vertices in a triangulation T by V(T) :=
S

T2T V(T), the set of
all edges by E(T) :=

S
T2T E(T) and the set of all faces by F(T) :=

S
T2T F(T). The

n-simplices T 2 T are also called elements of the triangulation T .

There exist various ways of generating triangulations consisting of n-simplices. In this
work, we start with a given triangulation and aim to refine it by dividing elements into
smaller pieces. We only consider refinement via bisection. Essentially, this means that an
element is split in half resulting in two new elements. An exemplary bisection step of a
single element T = [x0, x1, x2, x3] is shown in Figure 2.1.

3

2 Notation and Preliminaries

Definition 2.3 (Bisection). Let T = [x0, . . . , xn] 2 T . The edge r(T) := [x0, xn] 2 E(T)
between the first and last vertex is called the refinement edge of T . When bisecting T ,
the midpoint y = (x0 + xn)/2 of the refinement edge r(T) becomes a new vertex. This
splits the element T into two sons s1(T) and s2(T), where V(s1(T)) = {x0, . . . xn�1, y} and
V(s2(T)) = {x1, . . . , xn, y}. Bisection of T results in a new triangulation T 0 = (T \{T}) [
{s1(T), s2(T)}.

During bisection, the refinement edge is split in half, turning it into two new edges [x0, y]
and [y, xn]. Additionally, another n� 1 new edges are created to connect the vertex y with
the other vertices of T .

Remark. Note that we only gave the sets of vertices of the son elements but not the elements
itself. There are multiple ways the vertices in s1(T) and s2(T) can be arranged and we do
not want to fix a specific order yet.

T

x0 x3

x2

x1

x0 x3

x2

x1

y

s2(T)

s1(T)

Bisection

������!

Figure 2.1: Bisection of an element T = [x0, x1, x2, x3] leading to the sons s1(T) and s2(T)
with V(s1(T)) = {x0, x1, x2, y} and V(s2(T)) = {x1, x2, x3, y}. On the left, the refinement
edge [x0, x3] is coloured in red. On the right, after bisection, the new vertex y and the two
new edges [x1, y] and [x2, y] are coloured in blue.

Remark. It is worth noting that bisection ensures that

|s1(T)| = |s2(T)| =
|T |
2

(2.1)

for the corresponding volume.

We are especially interested in triangulations that are conforming in the sense of the
next definition.

4

2 Notation and Preliminaries

Definition 2.4 (Conforming Triangulation). A triangulation T of ⌦ ⇢ Rn is called con-
forming, if, for all T, T 0 2 T with T 6= T

0, the intersection T \ T 0 is either empty or a
lower-dimensional subsimplex of both simplices, i.e., there exists 2 k n and a k-tupel
S = [z0, . . . , zk] such that V(S) = V(T) \ V(T 0).

Conformity ensures that the intersection of two elements is a subsimplex that will be
bisected the same way for both elements. An example for a conforming and a nonconforming
triangulation is given in Figure 2.2.

v2

v1

S1 S2

Figure 2.2: Example of a conforming triangulation on the left and a non-conforming tri-
angulation on the right. On the right, two elements S1 and S2 are coloured. Considering
the intersection of these elements S1 \ S2, one can see that this is not a subsimplex of S1.
Therefore, the triangulation on the right is not conforming. Also, the vertex v2 is not a
vertex of the element S1. This is called a hanging vertex. Connecting v2 to the vertex v1

of S1, and thereby bisecting S1, would result in a conforming triangulation.

Let T0 be a fixed initial triangulation of ⌦. From now on, we will only consider triangu-
lations T that are a refinement of T0. In the following, all elements are either part of the
initial triangulation T0 or stem from bisecting an element T0 2 T0 one or more times.

Definition 2.5 (Generation). For elements T0 2 T0, that are part of the initial triangula-
tion, we define the generation as gen(T0) := 0. If an element T is bisected into sons s1(T)
and s2(T), then gen(si(T)) := gen(T) + 1 for i = 1, 2.

Remark. Let T be an element that is generated by bisecting an initial element T0 k times.
Thus, there exists a sequence of elements T1, . . . , Tk, where Tj is a son of Tj�1, for all
j = 1, . . . , k, and Tk = T . Then, it holds that gen(T) = k if |T | = 2�k|T0|; see (2.1).

If we have an initial triangulation that is conforming, we are interested in maintaining
this property also for its refinements.

Definition 2.6 (Edge patch). Considering an edge E 2 E(T), the set of all elements

5

2 Notation and Preliminaries

containing E is called the edge patch of E:

T (E) := {T 2 T : E ⇢ T}.

The edge patch T (E) is called suitable for compatible bisection or compatibly bisectable,
if E = r(T) for all T 2 T (E), i.e., E is the refinement edge for all elements in the edge
patch.

Definition 2.7 (Compatible Bisection). Let T be a conforming triangulation and E 2
E(T). The triangulation T 0 results from T by compatible bisection of the edge patch
T (E), if T (E) is suitable for compatible bisection and

T 0 =
�
T \ T (E)

�
[
�
sj(T) : T 2 T (E), j = 1, 2

.

Thus, to form the refinement T 0, all elements in the edge patch T (E) are bisected, i.e.,
replaced by their sons. We note that the resulting triangulation is conforming.

There is usually more than one way to bisect an element and the choice of di↵erent
refinement edges results in di↵erent triangulations. The following definition of a refinement
rule allows us to specify the way we would like to bisect a given element.

Definition 2.8 (Refinement Rule). Let S := {T = [x0, . . . , xn] ✓ Rn : T is an n-simplex}.
A refinement rule R is a mapping

R : S ! S2

T 7! (s1(T), s2(T)) ,

where s1(T) and s2(T) are the sons of T resulting from a bisection step. Each simplex
T 2 S generates a unique binary tree with vertices in S, called the bisection tree of T .

Remark. Note, that for each simplex T 2 S its refinement edge r(T) = [x0, xn] is already
determined by the order of vertices in T . Thus, the vertices of its sons are also known.
The refinement rule R only has to define the order of the vertices in s1(T) and s2(T). In
particular, r(s1(T)) and r(s2(T)) only depend on T and the choice of R.

Remark. We have defined a refinement rule R as a function on the set of all simplices S. In
practice, knowledge of R is only needed on the set of elements which are part of an initial
triangulation T0 as well as the elements in their respective bisection trees.

Definition 2.9 (Uniform Refinement). Let T be a triangulation with gen(T) = k for
all T 2 T . Using a refinement rule R, we simultaneously bisect all elements in T . The
resulting (possibly non-conforming) triangulation T 0 is called a uniform refinement of T .
In T 0, all elements are of the same generation k + 1.

Remark. We have now seen two ways of refining a triangulation, namely compatible bisec-
tion and uniform refinement. When refining via compatible edge patch bisection, the edge
that is considered has to be the refinement edge of all the elements it belongs to. This
means it is bisected the same for all neighbouring elements. In particular, compatible edge
bisection of a conforming triangulation always leads to a conforming triangulation. Unlike
this, when uniformly refining a triangulation, all elements are bisected regardless of the way
the refinement edges are arranged. We note that the uniform refinement of a conforming
triangulation is not necessarily conforming, see Figure 5.6.

6

2 Notation and Preliminaries

2.2 A Refinement Algorithm

In this section, we present an algorithm that refines an initial triangulation using a given
refinement rule. It only uses compatible bisection steps. In particular, the resulting tri-
angulations are conforming and the refinement rule does not create hanging vertices. We
refer to the comments after Algorithm 1, but already note that Algorithm 1 may fail to
terminate the outer loop (while the inner loop is always finite).

Algorithm 1 refine(T ,M,R)

1: M := M \ T
2: repeat
3: let E⇤(M) = {r(T) : T 2 M}
4: repeat
5: let @E⇤(M) = {E 2 E(T) \ E⇤(M) : 9 T 2 T : E = r(T) and E(T) \ E⇤(M) 6= ;}
6: set E⇤(M) = E⇤(M) [@E⇤(M)
7: until @E⇤(M) = ;
8: let R = {T 2 T : r(T) 2 E⇤(M) and T (r(T)) is suitable for compatible bisection.}
9: set T =

�
T \ R

�
[
�
sj(T) : T 2 R, j = 1, 2

10: set M = M \ R
11: until M = ;

The input of Algorithm 1 consists of a conforming triangulation T , a set of marked
elements M ✓ T one wants to bisect, and a given refinement rule R. First, the set of
marked edges E⇤(M) is defined. It contains the refinement edges of all marked elements.
An edge can belong to more than one element and it does not have to be the refinement
edge for all of the elements it belongs to. This leads to the definition of the set @E⇤(M) in
line 4. It consists of all non-marked edges that are refinement edges for some elements T

which have a marked edge. This means that, if an element’s edge is marked and it is not
the refinement edge of that element, the refinement edge belongs to the set @E⇤(M). All
the edges in @E⇤(M) are marked additionally (line 5), i.e., added to the set of marked edges
E⇤(M). This inner loop always terminates, as there are only finitely many edges in the
triangulation. The set R contains all elements which are suitable for compatible bisection,
i.e., R contains all elements T , whose edge patch T (r(T)) is compatibly bisectable (line 7).
In line 9, the bisection step is carried out. All elements in R are refined and replaced by
their son elements. For marked elements that have been bisected in this step, the marker
is removed in line 10. The loop repeats for the remaining marked elements that have yet
to be bisected.

Remark. In general, the outer loop of refine does not have to terminate. The triangulation
T and the refinement rule could be given in a way that, at some point, there are no elements
T with marked refinement edge such that T (r(T)) is compatibly bisectable, i.e., R is empty
before all marked elements have been bisected; see Figure 2.3 for a triangulation where this
happens.

The following statement can be found in [Sch17, Remark 1.3.4].

7

2 Notation and Preliminaries

T1 T2

r(T1)
r(T2)

�
�

@
@@

Figure 2.3: A triangulation T = {T1, T2} for which refine does not terminate. The
refinement edge of T1 is shown in red, the one of T2 in blue.

Proposition 2.10. Let T0 be an initial triangulation, R a refinement rule and T a con-
forming refinement of T0. Let M be a set of marked elements such that refine(T ,M,R)
is well-defined, i.e., Algorithm 1 terminates. Then, for every T 2 M, it holds that

refine
�
T ,M,R

�
= refine

�
refine(T ,M\{T},R), {T},R

�
,

where the right-hand side is well-defined.

8

3 Oldest Edge Bisection

In the previous section, we have given a general definition of the refinement rules. This
section now gives an example for a possible refinement rule called oldest edge bisection. To
determine the refinement edges in a triangulation, we first define an ordering of all edges.
This ordering then determines how to bisect each element. Using this rule, we will be able
to ensure that Algorithm 1 terminates.

Definition 3.1 (ROE). Let T0 be an initial triangulation where each edge E0 2 E(T0) has
a unique index I(E0) 2 I = {1, . . . ,#E(T0)}. The indices for refinements of T0 are defined
inductively: Let T be a conforming refinement of T0 such that all edges E 2 E(T) are
already assigned an index I(E). The refinement edge r(T) of an element T 2 T is then
given as the edge with the smallest index,

r(T) = argmin
E2E(T)

I(E).

For E 2 E(T) let T (E) be compatibly bisectable. When T (E) is refined, let E1, . . . , EN be
the newly created edges. Let NT := maxE2E(T) I(E). For the new edges, define I(Ej) :=
NT + j, j = 1, . . . , N .

Remark. Using ROE , the refinement edge of an element T is the edge E with the smallest
index I(E). This edge is also the one that has been part of T for the longest time, making
it the “oldest” edge of the element, giving this rule the name oldest edge bisection.

Remark. In the definition of ROE , the di↵erent indices for edges which are part of the
initial triangulation T0 are assigned at random, with values from the set I. However, the
indices can also be assigned in such a way that they reflect a specific ordering of the edges,
e.g., by length.

This refinement rule can be used to ensure the termination of Algorithm 1. Thus, when
using ROE we can refine a given triangulation using only compatible bisection.

Proposition 3.2. Let T0 be an initial triangulation, T a conforming refinement of T0 and
T 2 T . Then the call refine(T , {T},ROE) terminates.

Proof. In general, the call refine(T ,M,ROE) terminates when each marked element T 2
M has been bisected at least once. Therefore, we have to show that after a finite number
of iterations the marked element T has been refined. Moreover, in each loop the set R has
to be nonempty for the algorithm to continue. This means that there always has to be at
least one element eT 2 T with a compatibly bisectable edge patch T (r(eT)). Initially, only
the refinement edge of T is marked, i.e., added to the set of marked edges E⇤(M) (line 3).
If T (r(T)) is a compatibly bisectable edge patch, we are able to bisect T and the algorithm
terminates. Else, we have to mark the refinement edges of all elements in T (r(T)). Again, if

9

3 Oldest Edge Bisection

one of those newly marked edges is not the refinement edge of all elements it belongs to, the
refinement edges of those elements are also marked. We repeat this until all elements with a
marked edge also have a marked refinement edge (line 5-6). The set of marked edges E⇤(M)
always contains an edge with a compatibly bisectable edge patch, namely the edge E with
the smallest index I(E). Since the smallest index is unique, this edge E is the refinement
edge of all elements in T (E). Thus, the set R in line 8 is not empty and in each iteration of
the outer loop at least one edge is bisected. During this bisection, new edges are generated
which are assigned indices according to Definition 3.1. In particular, the indices of these
newly generated edges are always larger than NT . Thus, with each iteration of the loop,
the oldest edge, i.e., the edge with the smallest index, is bisected and the overall values of
the edge indices increase. There are only finitely many edges in the triangulation T , hence
there are only finitely many edges older than r(T). Since the edges that are generated
during bisection of T are always assigned higher indices, we have that after finitely many
iterations r(T) is the edge with the smallest index in E⇤(M). Thus, we obtain that T (r(T))
is a compatibly bisectable edge patch and the call refine(T , {T},ROE) terminates.

In the two-dimensional case, ROE produces the same triangulations as “newest vertex
bisection”. This is a strategy in which the refinement edge of an element is chosen as the
one opposite to the newest vertex, the midpoint of the most recently bisected edge. We
will look at this refinement rule in more detail in the next chapter.

Proposition 3.3. For a triangulation T of ⌦ ⇢ R2 and an element T 2 T it holds that
the refinement edge given by ROE is always the one opposite to the most recently generated
vertex.

Proof. Let T := [x0, x1, x2] 2 T be an element that is bisected along its refinement edge
r(T) = [x0, x2]. The vertices of the sons of T are then given by s1(T) = {x0, x1, y} and
s2(T) = {x1, x2, y}, where y is the newly generated vertex. Since all newly generated edges
contain the vertex y, the oldest edge in both s1(T) and s2(T) is the edge that does not
contain y. The edge that does not contain the vertex y is also the edge opposite of that
vertex. Therefore, the refinement edge of T using ROE , which is given by the oldest edge
of an element, coincides with the edge opposite to the newest vertex y.

3.1 Numerical Experiments

In Proposition 3.2 we have shown that Algorithm 1 terminates when used with the refine-
ment rule ROE from Definition 3.1. Since Algorithm 1 only uses compatible bisection, we
also know that the resulting triangulation is always conforming. However, we do not know
if oldest edge bisection produces shape-regular triangulations, as is given in the following
definition.

Definition 3.4 (�-shape-regular). A triangulation T of ⌦ ⇢ R3 is called �-shape-regular
for some constant � > 0, if

�(T) := max
T2T

diam(T)3

|T | � < 1

10

3 Oldest Edge Bisection

The following numerical experiments were performed to check for shape-regularity of
triangulations produced with oldest edge bisection. According to Definition 3.1, during
refinement using oldest edge bisection, all edges are given a unique index. First, all initial
edges E0 are given an index I(E0) 2 I = {1, . . . ,#E(T0)}. Edges that are newly generated
during bisection are also assigned indices. This leads to the question, if the way these new
indices are assigned, influences the shape-regularity of the resulting triangulation. Two
di↵erent strategies of assigning indices were implemented.

Strategy 1. The goal of the first strategy is to try to preserve shape-regularity by
sorting the newly generated edges by length and assigning the lowest index to the
longest edge. This way, the longer edges are the ones with the lower indices and
therefore are bisected first.

Strategy 2. The second strategy tries to reverse this idea. First, the lowest two
indices are assigned to the two new edges that stem from bisecting the refinement
edge. All other indices are sorted by length again, but assigning the lowest index to
the shortest edge.

Algorithm 1 was implemented with an initial triangulation of Kuhn simplices, as can
be seen in Figure 3.2. For every refinement step, about 5 percent of all elements were
randomly chosen and marked for bisection. These elements were then bisected using the
refinement rule ROE . The marking of random elements and their subsequent refinement
is then repeated until the number of elements in the triangulation reaches a given value.
Finally, the shape regularity constant �(T) can be computed. The results can be seen in
Figure 3.1.

3.2 Implementation

The following data structures were used.

coordinates 2 RNV ⇥3, where NV is the number of vertices. Each row contains the
three-dimensional coordinates of a vertex. The vertex in the i-th row is given the index i.

elements 2 NNT⇥4, where NT is the number of elements. The i-th row stores the i-th
element. Each row in elements contains the 4 indices of the vertices that belong to the
element, where the vertex indices are given by the row number in coordinates.

edges 2 NNE⇥2, where NE is the number of edges. The i-th row stores the i-th edge.
Each row contains the two indices of the vertices belonging to the edge, where the vertex
indices are given by the row number in coordinates.

element2edges 2 NNT⇥6 stores the edges that belong to an element. The i-th row stores
the edges belonging to the i-th element. Each row contains the six indices of the edges
belonging to the element, where the edge indices are given by the row number in edges.
The first edge in each row vector is the refinement edge of the element, which is given by

11

3 Oldest Edge Bisection

(a) Strategy 1 (b) Strategy 2

Figure 3.1: Result of numerical experiments. After each refinement step, the number of
elements in the triangulation and the shape-regularity constant �(T) of that triangulation
T was computed. For each strategy, the whole refinement process was repeated 200 times
with di↵erent randomly marked elements with predetermined seed (plotted in grey). The
mean of all results is plotted in black. Both strategies create the same triangulations, see
Corollary 3.7. Thus, the di↵erent strategies do not influence shape-regularity. We can see
that the refinement rule ROE does not produce shape-regular triangulations.

the edge between the first and fourth vertex of the element.

age 2 NNE stores global edge indices that show how long an edge has been part of the
triangulation, i.e., the “age” of the edge. The index of the i-th edge is stored in the i-th
row. At the beginning, the refinement edges are assigned the value 0, all other edges are
assigned unique ascending indices. During bisection, newly generated edges are assigned
higher indices depending on the strategy that is used.

The values in age correspond to the edge indices I(E) from Definition 3.1. With the ex-
ception that in age all initial refinement edges are given the index 0 for implementational
reasons. Because they are bisected first, their edge indices do not further influence any
refinements.

During refinement, the marked elements are chosen randomly. To ensure repeatability,
this was done by specifying seeds for the random number generator that marks elements.
This guarantees that we are able to perform the same refinements with both strategies. In
the k-th simulation, a vector of random numbers {ki | i 2 N} is generated with seed k.
During a simulation, Algorithm 1 is called repeatedly, until the desired number of elements
in the triangulation is reached. In the experiments, this was done until the number of
elements reached 10000. For the `-th run of Algorithm 1, the marked elements are then
chosen randomly with seed k`.

12

3 Oldest Edge Bisection

Figure 3.2: Initial triangulation of the unit cube [0, 1]3 into Kuhn simplices. The refinement
edge is marked red.

3.3 Interpretation of Results

The numerical experiments have shown that the way indices are assigned to new edges
during bisection of an edge patch does not influence the resulting triangulation. This
means, that edges that were generated during bisection of the same edge patch are all part
of di↵erent elements by the time they are the oldest edge of an element. Thus, when an edge
is the oldest edge in an element, the element does not contain any edge that was generated
during bisection of the same edge patch as the oldest edge. To explore this further, we give
the definition of a patch index.

Definition 3.5 (Patch Index). Let T be an element of a triangulation T , r(T) its re-
finement edge (and therefore the edge with the lowest index) and P = T (r(T)) the edge
patch of the refinement edge. Furthermore, let NT = maxE2E(T) I(E) be the value of
the highest edge index in T . Let E1, . . . , EN be the set of edges generated by bisection
of the edge patch P. For all edges Ei, i = 1, . . . , N , we define their patch index p(Ei) as
p(Ei) = NT + 1. Thus, all edges generated by the bisection of r(T) are assigned a patch
index, which is given by the index of the youngest edge in the triangulation. Edges E that
are part of the initial triangulation are assigned patch index p(E) = 0.

Proposition 3.6 (Three Types of Patch Index Distributions). Let T 2 T be an element
and denote the patch indices of its edges by p(T) = [a b c d e f] with a b c d e f .
For elements that appear during refinement with oldest edge bisection, p(T) takes one of
the following three forms:

(i) p(T) = [a a a a a a], if gen(T) = 0,

(ii) p(T) = [a a a b b b] with a < b, if gen(T) = 1,

(iii) p(T) = [a b b c c c] with a < b < c, if gen(T) � 2.

The bisection steps that appear in the following proof are shown in Figures 3.3-3.5.
Because of symmetry and for clarity, we only consider one son element for each bisection
step.

13

3 Oldest Edge Bisection

Proof. Step 1: According to Definition 3.5, all edges E 2 E(T0) in the initial triangulation
T0 have the same patch index p(E) = a = 0. Thus, it holds that p(T0) = [a a a a a a] for
all initial elements T0 2 T0. According to Definition 2.5, for initial elements it holds that
gen(T0) = 0.

Step 2: Let T0 be an initial element. Thus it is of the form p(T0) = [a a a a a a]. When
bisecting T0, four new edges are generated, which all have the same patch index b > a. Two
edges with patch index b lie on the former refinement edge and therefore are distributed to
the two sons s1(T0) and s2(T0). The two edges connecting the new vertex y with the two
vertices that are not part of the refinement edge are shared between sons. Hence, bisecting
an element of the form p(T0) = [a a a a a a] always results in two elements s1(T0) and
s2(T0) of the form p(si(T)) = [a a a b b b], i = 1, 2. This is shown in Figure 3.3. Since
gen(T0) = 0, it holds that gen(s1(T0)) = gen(s2(T0)) = 1.

Step 3: Let T be an element with gen(T) = 1. Thus, it is of the form p(T) = [a a a b b b].
For T , there are three possible refinement edges, namely the edges with patch index a. Dur-
ing refinement, one of the edges with patch index a is bisected and each son element s1(T)
and s2(T) contains three new edges with patch index c. Therefore, the sons of T are of
the form p(si(T)) = [a b b c c c], i = 1, 2. This is shown in Figure 3.4. It holds that
gen(s1(T)) = gen(s2(T)) = 2.

Step 4: Let T 0 be an element with gen(T 0) = k � 2 of the form p(T 0) = [a b b c c c]. The
refinement edge in T

0 is the edge with the smallest patch index a, since it is also the edge
with the smallest edge index. During bisection of T 0, the newly generated edges receive
the patch index d. Hence, bisecting T

0 results in two elements of the form p(si(T 0)) =
[b c c d d d], i = 1, 2. This is shown in Figure 3.5. Again, it holds that gen(s1(T 0)) =
gen(s2(T 0)) = k + 1.

Corollary 3.7. Let T be a triangulation that was refined using ROE and let T 2 T with
gen(T) � 2. Then, the refinement edge of T is given by the unique edge with the smallest
patch index.

Remark. From Corollary 3.7, we can conclude that during refinement with ROE , the order
in which indices are assigned to newly generated edges does not influence the resulting
triangulation.

14

3 Oldest Edge Bisection

Bisection

��������!

(a) (b) (c)

[a a a a a a] [a a a b b b]

[a a a b b b]

Figure 3.3: Refinement of an initial element. The refinement edges are indicated by a
double line. All initial edges are coloured green and have patch index a = 0. After one
bisection step, four new edges are generated (coloured blue), they all have a patch index
of b with b > a. By symmetry, this sketch covers all possible cases. In both son elements,
there are three possible candidates for refinement edges. For the right element, these three
possibilities (a)-(c) are shown in the second row.

Bisection

��������!
[a a a b b b] [a b b c c c]

[a b b c c c]

Figure 3.4: Second bisection step of an initial element as given in Figure 3.3. The green
initial edges are assigned the patch index a = 0 and the newer blue edges have a patch index
of b where b > a. After the second bisection step, the newly generated edges (coloured pink)
have a patch index c where c > b > a. We can see that, after the second bisection step for
the son elements, there is only one possible choice of refinement edge. By symmetry, this
sketch covers all possible cases.

15

3 Oldest Edge Bisection

Bisection
��������!

[a b b c c c] [b c c d d d]

[b c c d d d]

Figure 3.5: Third bisection step of an initial element as given in Figure 3.3. Here the
newly generated edges (coloured orange) have a patch index of d. Both of the resulting son
elements contain one blue edge with patch index b, two pink edges with patch index c and
three orange edges with patch index d. Hence, they are again of the same type [b c c d d d].
By symmetry, this sketch covers all possible cases.

16

4 Longest Edge Bisection

This chapter discusses another variant of bisection, namely longest edge bisection. Using
this rule, the longest edge of an element is chosen as its refinement edge.

Definition 4.1 (Refinement rule RLE). Using the refinement rule RLE , the refinement
edge of an element T 2 T satisfies that

|r(T)| = max
E2E(T)

|E|.

Remark. In the case of RLE , for an element T and its refinement edge r(T) = [x0, xn], the
order of the nodes x0 and xn is not relevant, since we are only interested in the length of
the edge.

Figure 4.1: On the left, a conforming initial triangulation T0 is given. Uniform refinement
of T0 using RLE results in the non-conforming triangulation on the right. Hanging vertices
are coloured black [KPS16].

A summary of known results regarding longest edge bisection, as well as open prob-
lems, can be found in [KPS16]. In particular, we want to highlight the following results
regarding shape-regularity. In the two-dimensional case, it was shown in [Adl83] that dur-
ing the bisection process of a triangle using RLE , the resulting triangles in its bisection
tree fall into finitely many similarity classes. In the three-dimensional case, the analysis
is more complex, thus most of the results regarding longest edge bisection are limited to
the two-dimensional case. The shape-regularity of longest edge bisection in 3D is analysed
numerically in [HKK14], but the mathematical proof of shape-regularity is still an open
problem. However, numerical tests in [HKK14] indicate that their bisection algorithm using
longest edge bisection produces shape-regular families of 3D-triangulations.
As we were able to prove for ROE , we would like to show that Algorithm 1 terminates

when used with the refinement rule RLE . However, in general, longest edge bisection is
non-unique if the simplex T 2 T has multiple longest edges, i.e., #{E 2 E(T) | |E| =

17

4 Longest Edge Bisection

maxE02E(T) |E0| } > 1. Without a unique refinement edge, it is possible that the set R in
line 8 of Algorithm 1 is empty, as we cannot always find an edge that is the refinement edge
of all elements it belongs to. Thus, the call does not terminate. An example of such a case
can be seen in Figure 4.2. We propose two ways of ensuring uniqueness of the refinement
edge and prove that this leads to the termination of Algorithm 1.

Figure 4.2: A conforming two-dimensional triangulation T in which the refinement edge of
each element is marked with a line. In T , the longest edge of an element is not unique and,
thus, the refinement edge can be chosen such that there is no edge patch that is suitable
for compatible bisection. Hence Algorithm 1 does not terminate for this triangulation.

The first way of ensuring termination is similar to the method described in Chapter 3.

Definition 4.2 (R0
LE

). When using the refinement rule RLE , define edge indices as given
in Definition 3.1. If for some element T 2 T it holds that

#{E 2 E(T) | |E| = max
E02E(T)

|E0| } > 1,

i.e., T has multiple longest edges, the edge with the smallest index is chosen as the unique
refinement edge.

Proposition 4.3. Let T0 be a conforming initial triangulation, T a conforming refinement
of T0 and T 2 T . Then, the call refine(T , {T},R0

LE
) terminates.

Proof. The proof follows from arguments similar to that of Proposition 3.2. To show
termination of the call refine(T , {T},R0

LE
), at some point the edge patch T (r(T)) has to

be compatibly bisectable. Furthermore, in each iteration of the outer loop in Algorithm 1,
the set R has to be non-empty. Thus, in each iteration there has to be at least one marked
edge with a compatibly bisectable edge patch. First, the refinement edge of T is marked.
If r(T) has a compatibly bisectable edge patch, we are able to bisect our marked element
T and the call terminates. Otherwise, there has to be at least one element that contains
the edge r(T) but does not have r(T) as refinement edge, i.e., that element has an edge
that is longer than r(T) or it has an edge of the same length as r(T) but with a smaller
index. We mark the refinement edges of all such elements. Again, now there might exist
elements with a marked edge that is not their refinement edge, thus we repeat this step
until all elements with a marked edge also have a marked refinement edge. To be able to
continue with the call, the set of marked edges E⇤(M) now has to contain an edge with a

18

4 Longest Edge Bisection

compatibly bisectable edge patch. This is ensured by R0
LE

. Of all the edges in E⇤(M), we
first choose the edge with the greatest length. If there are multiple longest edges, we choose
the one with the smallest index, calling it E. If there was an edge that is part of the same
element as E and is longer or has the same length and a smaller index than E, it would be
the refinement edge of that element. However, then it would have also been marked and
thus be part of E⇤(M). Thus, E has to be the refinement edge of all elements it belongs
to and we can always find an edge in E⇤(M) with a compatibly bisectable edge patch.
Therefore, the set R in line 8 is not empty and in each iteration of the outer loop at least
one edge is bisected. Since we always choose the longest edge with smallest index as the
refinement edge for bisection (which halves the edge’s length), at some point, r(T) will be
the geometrically longest edge with smallest index in E⇤(M). Then, we obtain that T (r(T))
is a compatibly bisectable edge patch and the call refine(T , {T},R0

LE
) terminates.

The second way of ensuring termination uses the location of edges.

Definition 4.4 (R00
LE

). Let T be a triangulation of ⌦ ⇢ Rn that is bisected using
the refinement rule RLE . Let T 2 T be an element such that #{E 2 E(T) | |E| =
maxE02E(T) |E0| } = k, i.e. T has k edges E1, . . . , Ek of the same maximal length. Let

mE1 = (x11, . . . , x
1
n), . . . ,mEk = (xk1, . . . , x

k
n) be the coordinates of the midpoints of these

longest edges. Then, the unique refinement edge is chosen as the longest edge with the
lexicographically smallest coordinates of its midpoint.

Proposition 4.5. Let T0 be a conforming initial triangulation, T a conforming refinement
of T0 and T 2 T . Then, the call refine(T , {T},R00

LE
) terminates.

Proof. The proof is similar to that of Proposition 4.3. To ensure termination of Algorithm 1
using R00

LE
, we need to know that the edge patch of r(T) will be compatibly bisectable.

Also, for the call to continue, the set of marked edges E⇤(M) always has to contain an edge
with a compatibly bisectable edge patch. Such an edge has to be the refinement edge of
all the elements it is part of. To find it, we look at the longest edges in E⇤(M). If there is
a unique longest edge E in E⇤(M), it has to be the refinement edge of all elements in its
patch. If an element in the patch had a di↵erent refinement edge, it would have to be longer
than E, since all the refinement edges of the patch are also in the set E⇤(M). However,
then E would not be the longest edge of the set anymore. Therefore, the edge patch of
E is suitable for compatible bisection. If there are multiple longest edges in E⇤(M), the
refinement edge, according to R00

LE
, is given by the longest edge with the lexicographically

smallest coordinates of its midpoint. This edge then is the unique refinement edge, since
no two midpoints can have the same coordinates. Since bisection halves the length of the
refinement edge, at some point, r(T) will be the longest edge with the lexicographically
smallest coordinates of its midpoint.

19

5 A Refinement Rule for Arbitrary

Three-Dimensional Triangulations

We have seen in the previous chapters that the algorithm refine does not terminate
for arbitrary triangulations and refinement rules. In this chapter, we will introduce two
refinement rules. The first section analyzes a rule which leads to the termination of refine
under a special condition on the initial triangulation T0. This raises the question of whether
there exists a refinement rule which assures the termination of refine without a restriction
on the initial partition. That this is indeed possible for n = 2 was shown in [KPP13]. For
the three-dimensional case, such a result was presented in [Sch17] and we will analyze this
refinement rule in the second section.

5.1 Refinement of Triangulations with an Initial Ordering

In this section, we will present a refinement rule, which is known as newest vertex bisection,
and examine its properties. It was introduced for n-dimensional simplices in [Mau95] and
[Tra97]. Further analysis of the n-dimensional case was given in [Ste08], which is what we
will present in this section.

Definition 5.1 (Type). In the following, each simplex T = [x0, . . . , xn] will be assigned a
type �(T) 2 {0, . . . , n� 1}, denoted by T = [x0, . . . , xn]� .

Definition 5.2 (Refinement Rule RNV B). Let T = [x0, . . . , xn]� . Then, the son elements
of T are defined as

s1(T) := [x0, y, x1, . . . , x� , x�+1, . . . , xn�1](�+1) mod n,

s2(T) := [xn, y, x1, . . . , x� , xn�1, . . . , x�+1](�+1) mod n,

where y = (x0 + xn)/2 is the newly generated node being the midpoint of r(T) = [x0, xn].

Remark. In Definition 5.2, the cases �(T) = 0 and �(T) = n� 1 require additional expla-
nation.
If �(T) = 0, the subsequence (x1, . . . , x�) should be read as void, resulting in

s1(T) = [x0, y, x1, . . . , xn�1]1,

s2(T) = [xn, y, xn�1, . . . , x1]1.

If �(T) = n� 1, the subsequence (x�+1, . . . , xn�1) should be read as void, resulting in

s1(T) = [x0, y, x1, . . . , xn�1]0,

s2(T) = [xn, y, x1, . . . , xn�1]0.

20

5 A Refinement Rule for Arbitrary Three-Dimensional Triangulations

Example. We focus on the 3D case. Let T = [x0, x1, x2, x3]� . Depending on its type �(T),
bisecting T using RNV B yields the sons

�(T) = 0:

s1(T) = [x0, y, x1, x2]1, s2(T) = [x3, y, x2, x1]1,

�(T) = 1:

s1(T) = [x0, y, x1, x2]2, s2(T) = [x3, y, x1, x2]2,

�(T) = 2:

s1(T) = [x0, y, x1, x2]0, s2(T) = [x3, y, x1, x2]0.

Remark. Note that the type of an element T determines the refinement edge of its sons. For
these son elements, we again know the type and, hence, the way its sons are refined. Thus,
in a way, by defining a type �(T) the refinement rule is already “built-in”, i.e., knowing
the type of an element, we also know how it has to be refined. An example can be seen in
Figure 5.1.

Type 0

Type 1

Type 2

Figure 5.1: Refinement of elements of type 0, 1 and 2. The colouring of the edges symbolizes
the order in which they are bisected. Red edges are the refinement edges of the first
bisection, blue-dashed edges are bisected in the second refinement step and green-dotted
edges in the third step. In the first row, we start with an element of type 0, its sons then
both have type 1 and another uniform refinement step leads to four elements of type 2.
In the second and third row, we can see how the refinement steps look if we start with an
element of type 1 or 2. Note that the di↵erence between type 1 and type 2 is the choice of
refinement edges in the second step.

21

5 A Refinement Rule for Arbitrary Three-Dimensional Triangulations

Definition 5.3 (Partner Element). Rearranging the order of the vertices in an element
T = [x0, . . . , xn]� , we get the corresponding partner element

TP := [xn, x1, . . . , x� , xn�1, . . . , x�+1, x0]� ,

which results in the same sons as T , when refined via RNV B. Thus, T and its partner
element TP generate the same bisection tree.

Example. Let T = [x0, x1, x2, x3]� be an element in a three-dimensional triangulation, then
its partner element is

TP =

8
><

>:

[x3, x2, x1, x0]0 if � = 0,

[x3, x1, x2, x0]1 if � = 1,

[x3, x1, x2, x0]2 if � = 2.

By carrying out a refinement step of RNV B, one can see that both elements T and TP lead
to the same sons.

Definition 5.4 (Neighbours). Two elements T, T
0 2 T are called neighbours, or neigh-

bouring elements, if T \ T 0 2 F(T).

Definition 5.5 (Reflected Neighbours). Two neighbouring elements T, T
0 2 T are called

reflected neighbours, if �(T) = �(T 0) and if the ordered sequences of vertices of T , or of its
partner element TP , coincide with that of T 0 in all but one position.

It can be shown that RNV B terminates under the following conditions on the initial
triangulation T0. We will refer to this as initial ordering condition (IO):

(IO1) T0 is conforming and all elements are of the same type �.

(IO2) For all neighbouring elements T = [x0, . . . , xn]� and T
0 = [x00, . . . , x

0
n]� in T0 there

holds: If r(T) ✓ T \ T 0 or r(T 0) ✓ T \ T 0, they are reflected neighbours. Otherwise,
the pair of neighbouring sons of T and T

0 are reflected neighbours.

In two dimensions, one can always find an initial ordering and assignment of types of
elements such that condition (IO) is satisfied. This is shown in [BDD04, Lemma 2.1]. For
n > 2 this is not the case. As seen in [Sch17, Lemma 1.7.14], there exist triangulations
for which no such initial ordering is possible. However, in [Ste08, Appendix A] a method
is proposed which can refine conforming triangulations in such a way that they satisfy
condition (IO). Finally, with the condition (IO) being fulfilled, one can show that every
uniform refinement is conforming, see [Ste08, Theorem 4.3]. This observation is key to
prove that Algorithm 1 terminates.

5.2 Refinement of Arbitrary Initial Triangulations

In this section, we will present a refinement rule which ensures the termination of the refine-
ment algorithm from Section 2.2 for arbitrary initial triangulations T0. For two-dimensional

22

5 A Refinement Rule for Arbitrary Three-Dimensional Triangulations

T1
T2

F F

Figure 5.2: On the left, the face F is part of two elements T1 and T2, which have refine-
ment edges marked in red. On the right, after uniform bisection, the face F contains the
refinement edge of a son of T1 as well as the refinement edge of a son of T2, both coloured
blue and dashed. The refinement edge of F is therefore not unique.

triangulations such a refinement rule was presented in [KPP13]. We will focus on the three-
dimensional case, where a refinement strategy was given in [Sch17, Definition 1.8.4]. It is
based on an algorithm presented in [AM99, Section 3] and also uses the refinement rule
RNV B from the previous section. We begin by giving some additional definitions.

Definition 5.6 (Refinement Edges of Faces). Let T be a conforming triangulation of
⌦ ⇢ R3 and F 2 F(T). Let T1 and T2 be two elements in T with T1 \ T2 = F . In the case
that F is part of the boundary of T and thus only part of one element T1, define T1 = T2.
Let R be a refinement rule, and let s1(Ti) and s2(Ti) be the sons of the element Ti, i = 1, 2,
given by R. The set of refinement edges r(F) of F then depends on the refinement edges
of T1 and T2 and their sons.

If r(Ti) 2 E(F), then r(Ti) 2 r(F).

If r(Ti) 62 E(F) and r(s1(Ti)) 2 E(F), then r(s1(Ti)) 2 r(F).

If r(Ti) 62 E(F) and r(s2(Ti)) 2 E(F), then r(s2(Ti)) 2 r(F).

Remark. Note that, according to this definition, there are possibly multiple refinement
edges of a face F 2 F(T). If F is part of two elements Ti, i = 1, 2, they do not necessarily
both lead to the same refinement edge for F . An example for a situation where a face does
not have a unique refinement edge is given in Figure 5.2.

In the following, we are only interested in the case that a face F has a unique refinement
edge, as this ensures that F will be refined in the same way for both of the elements it is
part of. This motivates the following definition.

Definition 5.7 (Conformingly Marked). A conforming triangulation T together with a
refinement rule R is conformingly marked, if each face F 2 F(T) has a unique refinement
edge, i.e., #r(F) = 1.

The following refinement rule uses an ordering on the edges of the inital triangulation as
well as the refinement rule RNV B from Section 5.1. An example of refinement via this new
rule RNV B0 is given in Figure 5.3.

23

5 A Refinement Rule for Arbitrary Three-Dimensional Triangulations

Definition 5.8 (Refinement rule RNV B0). Let T be a triangulation of ⌦ ⇢ R3. The
refinement rule RNV B0 is defined as follows.

Choose a linear ordering on the set of edges E(T), such that every edge E 2 E(T) is
given an unique index in {1, . . . ,#E(T)}.

For T 2 T , set r(T) as the edge with the lowest index in E(T). For F 2 F(T), set
r(F) as the edge with the lowest index in E(F).

Let T = [x0, x1, x2, x3] 2 T with r(T) = [x0, x3]. Let F1 = [xi0 , xi1 , xi2], F2 =
[xj0 , xj1 , xj2] 2 F(T) be the faces that do not contain r(T), i.e., i0, i1, i2 2 {0, 1, 2}
and j0, j1, j2 2 {1, 2, 3}. Thus, r(F1) = [xi0 , xi2] and r(F2) = [xj0 , xj2] are the
refinement edges of F1 and F2 respectively. The first generation children of T are
then defined as

s1(T) = [xi0 , y, xi1 , xi2]1, s2(T) = [xj0 , y, xj1 , xj2]1,

where y = (x0 + x3)/2.

The sons s1(T) and s2(T) are then further bisected using RNV B.

Remark. Note that the ordering of edges in T defines the refinement edge for each element.
Thus, unlike in RNV B, we do not start with elements T0 with type �(T0) 2 {0, 1, 2}. In
fact, we will soon see that this strategy leads to di↵erent types of elements in the given
triangulation. However, after one refinement step, all son elements are defined to have type
1, which means we are then able to continue with the refinement rule RNV B.

x0

x2

x1

x3

x0

x2

x1

x3

x0

x2

x1

x3y0 y0

y1

y2

Figure 5.3: Refinement of an element via RNV B0 . Edges coloured red are refinement edges.
Thus, for the given element, the edge [x0, x3] received the lowest index during the ordering
step. The faces that do not contain the refinement edge are given by F1 = [x0, x1, x2] and
F2 = [x1, x2, x3].

24

5 A Refinement Rule for Arbitrary Three-Dimensional Triangulations

Lemma 5.9. After three uniform refinements of T 2 T using the refinement rule RNV B0,
every edge E 2 E(T) has been refined exactly once.

Proof. Let T = [x0, x1, x2, x3] and thus r(T) = [x0, x3]. Let F1 = [xi0 , xi1 , xi2], F2 =
[xj0 , xj1 , xj2] 2 F(T) be the faces that do not contain r(T), i.e., i0, i1, i2 2 {0, 1, 2} and
j0, j1, j2 2 {1, 2, 3}. Furthermore, let r(F1) = [xi0 , xi2] and r(F2) = [xj0 , xj2] be the refine-
ment edges of F1 and F2, respectively. The first generation children of T are then defined
as

s1(T) = [xi0 , y0, xi1 , xi2]1, s2(T) = [xj0 , y0, xj1 , xj2]1,

where y0 = (x0 + x3)/2. The two elements s1(T) and s2(T) are bisected via RNV B. This
results in the four elements

[xi0 , y1, y0, xi1]2, [xi2 , y1, y0, xi1]2, [xj0 , y2, y0, xj1]2 and [xj2 , y2, y0, xj1]2,

where y1 = (xi0 + xi2)/2 and y2 = (xj0 + xj2)/2. Note that y1 and y2 can denote the same
vertex, if s1(T) and s2(T) have the same refinement edge. The four refinement edges of
the next step are [xi0 , xi1], [xi2 , xi1], [xj0 , xj1] and [xj2 , xj1], which are all part of the inital
element T . The edges [x0, x3], [xi0 , xi2] and [xj0 , xj2] have already been bisected in the
previous steps. Therefore all edges in T have been refined exactly once.

Remark. Looking at the proof of Lemma 5.9 we can see that in the first three refinement
steps of RNV B0 only edges that were already a part of the given triangulation T are selected
as refinement edges. Therefore, the ordering on the edges of T does not just define the
refinement edge of elements in T but determines the refinement edges of the first three
bisection steps.

The ordering of edges leads to finitely many types of elements that can appear in the
inital triangulation. We obtain four di↵erent types, 0, 1, AO and OO depicted in Figure 5.4,
where the types 0 and 1 correspond to the types we already know from the previous section.
These di↵erent types were presented in [AM99]. They can best be described by the choice
of the two refinement edges for the second bisection step.

Type 0
Both edges intersect with the refinement edge of the first bisection but not with each
other.

Type 1
Both edges intersect with the refinement edge of the first bisection and with each
other.

Type AO
One of the edges intersects with the refinement edge of the first bisection and the
edges also intersect with each other.

Type OO
Both edges do not intersect with the refinement edge of the first bisection, i.e., they
are the same edge.

25

5 A Refinement Rule for Arbitrary Three-Dimensional Triangulations

Type 0

Type 1

Type AO

Type OO

rotation rotation
= =

rotation
=

Figure 5.4: Di↵erent types of elements that can appear when ordering the edges in a given
triangulation as is done in RNV B0 . The red edge is the refinement edge of the first bisection
and the two blue dashed edges are the refinement edges of the second bisection. The three
remaining edges are refined in the third bisection step.

26

5 A Refinement Rule for Arbitrary Three-Dimensional Triangulations

Type OO Type AO Type AO

Type AO Type 0 Type 1

Type AO Type 1 Type 0

������!

������!

������!

Figure 5.5: All possible combinations of refinement edges for the two sons of an element T .
The refinement edges of the sons of T are given by the refinement edges of the faces that
did not contain its refinement edge r(T). For the left son, this face is coloured pink, for
the son element on the right it is shown in grey.

27

5 A Refinement Rule for Arbitrary Three-Dimensional Triangulations

Type AO

L

R

Figure 5.6: Uniform refinement of an element with type AO using RNV B0 . Edges coloured
in red are next in line to be bisected, dashed edges coloured in blue are the refinement
edges of the resulting son elements. After two bisection steps, we can see that the resulting
triangulation is not conforming and produced a hanging node. On the right, two elements
L and R of the triangulation are coloured. The intersection of L and R is not a subsimplex
of R.

For RNV B with condition (IO), it is shown in [Ste08, Theorem 4.3] that every uniform
refinement is conforming. Furthermore, for a refinement rule which ensures that every
uniform refinement is conforming, one can show that Algorithm 1 terminates, see [Sch17,
Proposition 1.7.11]. For RNV B0 , not every uniform refinement is conforming and an ex-
ample for this can be seen in Figure 5.6. However, for RNV B0 , a weaker statement holds,
namely that every uniform refinement of generation 3n with n 2 N is conforming, see
[Sch17, Corollary 1.8.8]. It is based on a lemma in [AMP00, Lemma 3.2] showing a similar
property for their algorithm.
Using a di↵erent approach, in [Sch17, Section 1.8] it is shown that RNV B0 terminates

when used with Algorithm 1. Initially, a two-dimensional edge index is introduced. It
is defined in such a way, that the refinement edge of an element is also the edge with
the unique lexicographically smallest index. Using this index, one can reformulate RNV B0

into a rule that resembles oldest edge bisection. With this reformulation, it is possible to
show termination of RNV B0 , [Sch17, Proposition 1.8.14]. The proof is similar to that of
Proposition 3.2 for oldest edge bisection. In addition, the triangulations resulting from
refinement with RNV B0 are also shown to be shape-regular, see [Sch17, Proposition 1.8.15].

28

Bibliography

[Adl83] Andrew Adler. On the bisection method for triangles. Math. Comp., 40(162):571–
574, 1983.

[AM99] Douglas N. Arnold and Arup Mukherjee. Tetrahedral bisection and adaptive
finite elements. In Grid generation and adaptive algorithms (Minneapolis, MN,
1997), volume 113 of IMA Vol. Math. Appl., pages 29–42. Springer, New York,
1999.

[AMP00] Douglas N. Arnold, Arup Mukherjee, and Luc Pouly. Locally adapted tetrahedral
meshes using bisection. SIAM J. Sci. Comput., 22(2):431–448, 2000.

[BDD04] Peter Binev, Wolfgang Dahmen, and Ron DeVore. Adaptive finite element meth-
ods with convergence rates. Numer. Math., 97(2):219–268, 2004.

[HKK14] Antti Hannukainen, Sergey Korotov, and Michal Kř́ıžek. On numerical regularity
of the face-to-face longest-edge bisection algorithm for tetrahedral partitions. Sci.
Comput. Programming, 90:34–41, 2014.

[KPP13] Michael Karkulik, David Pavlicek, and Dirk Praetorius. On 2D newest vertex
bisection: optimality of mesh-closure and H

1-stability of L2-projection. Constr.
Approx., 38(2):213–234, 2013.

[KPS16] Sergey Korotov, Ángel Plaza, and José P. Suárez. Longest-edge n-section algo-
rithms: properties and open problems. J. Comput. Appl. Math., 293:139–146,
2016.

[Mau95] Joseph M. Maubach. Local bisection refinement for n-simplicial grids generated
by reflection. SIAM J. Sci. Comput., 16(1):210–227, 1995.

[Sch17] Patrick Schön. Scalable Adaptive Bisection Algorithms on Decomposed Simplicial
Partitions for E�cient Discretizations of Nonlinear Partial Di↵erential Equa-
tions. Ph.d. thesis, Albert-Ludwigs-Universität Freiburg, Fakultät für Mathe-
matik und Physik, 2017.

[Ste08] Rob Stevenson. The completion of locally refined simplicial partitions created by
bisection. Math. Comp., 77(261):227–241, 2008.

[Tra97] Christoph T. Traxler. An algorithm for adaptive mesh refinement in n dimen-
sions. Computing, 59(2):115–137, 1997.

29

