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Talk Abstract

We present a construction of prismatic Hardy space in-
finite elements for exterior Maxwell problems. They fit
into the discrete de Rham diagram and are well suited to
solve resonance problems. Numerical tests indicate ex-
ponential convergence in the number of unknowns for the
infinite elements.

Introduction

The time harmonic second order Maxwell system for
the electric field u € Hjo.(curl; ) is in variational form
given by

/qu~V><v—€n2u-vd:c:g(v) (1)
Q

for test functions v € Hcomp(curl; Q). ¢ is the lo-
cal permittivity,  C R? an unbounded domain and
Hioe(curl; Q) (Heomp(curl; Q) the space of vector
fields v which are together with the curl V x v locally
(compactly supported) in (L2(9))3.

We consider two types of problems: The scattering and
the resonance problem. The scattering problem consists
of finding a solution u to (1) for a given wavenumber x >
0 and a given functional g. In the resonance problem we
are looking for eigenpairs (x2, u) to (1) with g = 0 where
K is now a complex resonance with ®(x) > 0 and u the
resonance function.

Since the domain €2 is unbounded, both problems
have to be completed by a suitable radiation condition.
Whereas for the scattering problem the Silver-Miiller ra-
diation condition leads to a well-posed problem, the reso-
nance functions u of the resonance problem are exponen-
tially growing at infinity, so that the Silver-Miiller condi-
tion is not a valid characterization of outgoing waves. A
series representation in terms of Hankel functions of the
first kind and their derivatives (see [1]) or equivalently the
pole condition as discussed below remain valid for reso-
nance problems.

Pole Condition
We split the domain {2 into a bounded interior domain
Q; := QN P, P being a convex polyhedron, and an un-

bounded exterior domain €, := R3\ P, which is assumed
to be homogeneous with no sources. We use generalized
radial coordinates (£, 2) € [0,00) x I'

B, 1) =24 £(2 - W) 2

with T := Q; N Q. and V € P. The pole condition in the
form of [2, Def. 3.1] states roughly speaking that a func-
tion u € H. () is outgoing, if the Laplace transform
in generalized radial direction

(s, &) == /OOO e Su(F (&, 1))de (3)

belongs for each # € I to the Hardy space H~ (R) of
L? boundary values of holomorphic functions in C~ :=
{s € C| 3(s) < 0}. Note, that the Laplace transform
(3) is initially defined for {s € C | R(s) > 0}, but for
solutions to the Helmholtz equation

Vu - Vv — k2 uwvde = g(v), 4)
Qe

v € HY (), there exist a holomorphic extension of
@(-,2) to C~ and the pole condition is equivalent to a
series representation in terms of Hankel functions of the
first kind and for x > 0 to the Sommerfeld radiation con-
dition.

Since a solution u € Hj,.(curl; €2,) to (1) satisfies the
vector valued Helmholtz equation and since the Silver-
Miiller condition is equivalent to the Sommerfeld radi-
ation condition for the Cartesian components of u (see
[1]), we can formulate the pole condition as follows: A
function u = (uy,uz,u3)’ € Hyc(curl; Q) is outgo-
ing, if

a(s.) = [ twreaie©)

belongs for z € T to H™ (R) for each component j =
1,2,3.

Scalar Hardy Space Infinite Elements
In this section we give a short summary of the Hardy
space infinite elements for Helmholtz problems of [2],



[3]. In the interior domain {2; we use a standard finite
element method with a tetrahedral mesh and a surface tri-
angulation 7 of I'. Hence, we have a segmentation of {2,
into pyramidal frustums

K:={F(1)eR|£€>0,2€T} (6)

with a possibly curved surface triangle 7' € 7.

The local basis functions in K are tensor products of
“radial” basis functions in W and the surface basis func-
tions in W, that are the traces of the non-vanishing finite
element basis functions of the tetrahedron corresponding
to the surface triangle 7"

Wy = Wg Q Wr. (7N

For the “radial” basis functions we use a Mobius trans-
formation ¢, (z) = ikoZt} with R(kg) > 0 to construct
a family of unitary mappings

MHQ,&:: (@090/{0)' \/90%07 QAJEI_I_(’k‘:OIR)a 3)

of the rotated Hardy space H ™~ (koR) := {0 | 0(koe) €
H~(R)} into the Hardy space H*(S') of L? boundary
functions of holomorphic functions in the complex unit
disk D := {z € C | |z| < 1}. Using the Galerkin basis
We :=span{V¥_y, ..., ¥y } with

1 z—1
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U_i(2) : A ze St (9
j=0,..,N, forV := M, © € HY(SY) leads auto-
matically to an outgoing discrete solution. In this way the
radiation condition is incorporated in the function space.

Since (L7' M;L ¥;) (0) = 0 for j = 0,...,N and
(L7P M;L W_q) (0) = 1, the basis function ¥_ is used
to couple the Hardy space infinite elements of {2, to the
finite elements of ();. The parameter x should be adapted
to the wavenumber of the sought solution w.

Fig. 1 shows a scheme of the basis functions. The ten-
sor products with W_; are vertex (e), edge (H) and sur-
face (V) basis functions on the surface triangle 7', while
the tensor products with ¥, j = 0, ..., N, are infinite ray
(o), face (1J) and segment (V) basis functions.

It remains to derive a variational formulation in a tensor
product space involving H*(S1), i.e. in the scalar case
we have to transform the radial direction of the integrals
in (4) for each segment K of (. into the Hardy space
H™(S1). For this we first need to transform the pyramidal
frustum K = F(K) into the right prism K := [0, 0c0) x T
using the canonical transformations (see e.g. [4, Sec.
3.9D:
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Figure 1: basis functions in Wy = We @ Wy

Lemma 1 Let K C R3 such that K = F(K) with Ja-
cobian Matrix J = Jp, |J| the determinant of J, V; the
surface gradient and V¢ 3 = (0O¢, V)T

1. Foriv e HY(K) letv o F := . Then
(Vo)o F = J IV ;0.
2. Forv € H(curl,K) letvo F := JT%. Then

1
JV&@X\A/.

(Vxv)oF =— 7
7]

3. Forv € H(div,K) letvo F := ﬁJ V. Then

1
(V'V)OFZEV&Q-\A’.

Then we use for the infinite £ —direction the following
identity from ([2, Lemma A.1]), which holds for suitable
functions u and v:

/ T u(©)(©) dé = a(U.V) (10)

with U := M,y Lu, V := M, Lvin HT(S!) and

—2’i/€0

a(U,V) = /S UCWVE)d. D
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There are some more details of the method mainly con-
cerning the treatment of the Jacobian, which cannot be
presented here. They can be found in [2], [3].

Tensor Product Sequence
If the bounded interior domain is simply connected, the
standard sequence

V2 H(div, ) 5 L2 ()

(12)

HY()/RY H(curl, Q)



is exact. Since we are interested in resonance problems,
it is necessary to carry over this property to the discrete
spaces in order to avoid spurious resonances (see [4]).
The Hardy space infinite elements of the exterior domain
are built by using the tensor product of chain complexes
(see [5] for all details).

As presented in the previous section the local dis-
cretization W of the transformed space corresponding to
Hlloc(K ) is a tensor product of W (discrete transformed
H ([0,00))) and Wy (discrete H'(T')). The space of
transformed derivatives of W is by direct calculations the
space Wg’ :=span{¢_1, ...,y } with
g ie8j=0,..N

(13)
Thus, we have a one-dimensional “radial sequence

Voi(e) = g, Us() =

W, éf /
e — Wi (14)
Additionally, there exist two surface sequences

Vi VX Vjc .

HYT) =% H(Curl, T) "= L*(T), (15a)

VXV@

HY(T) 2% H(Div,T) Y& LX(T). (15b)

Using the discretization Vp € H(Curl,T') and X7 C
L?(T) of the first surface sequence, we get a discrete
block sequence

We@Wr — We@Vp — We®Xr
! ! ! (16)
W§,®WT — Wé@VT — Wé@XT-

The tensor product sequence is given by the direct sums
over the diagonals:

Wg@WTHW§®VT€BW£®WT

—)Wg@XT@Wé@VT—)Wé@XT. a7
Curl-Conforming Elements
As in the scalar case (1) is splitted into an interior part
€); handled by a standard finite element method, while
the exterior part (), is transformed segment by segment
using Lemma 1 and the identity (10) for the infinite &-
direction. The local Hardy space infinite element is given
by Vi := We@Vr®W;@Wr. Fig. 2 and Fig. 3 show the
arrangement of the basis functions specified below. Note,
that for curl-conforming elements only the tangential di-
rections indicated by the arrows are continuous over the
segment boundaries.

Figure 2: basis functions in W & Vr
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Figure 3: basis functions in W/} @ Wr

If vf““ € Vr denotes the edge basis functions of the
H(Curl, T') surface triangular element and v} € Vr the
surface triangle basis functions, the basis functions in Vi
are

. 0
1. edge functions VZE”“ = (\If ®VE“C>’

2. surface functions VI := < o ((J§©VT>’

0

4. two types of infinite face functions

) 0
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Eix
Fig,2 %’ ® w;
(b) Vj,l = < 0

5. and two types of segment functions

0
(a) vEL .~ < ) and

, T
®) V;(J,Q . (% ® wy )

) Vi
3. ray functions Vfi = <¢] ©w ),

0

Remember that the first component of the basis func-
tions is the infinite {-direction, while the second compo-
nent is the two-dimensional surface z.
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Figure 4: Right: H(curl, €;)-error of the HSM w.r.t.
the number NV of degrees of freedom in radial direction
compared to the finite element error and the error of a
first order absorbing boundary condition for the two
different domains €2; on the left; Left: Cross-section of
one Cartesian component of a magnetic dipole

Numerical Examples
In the first example we resolve a magnetic dipole lo-
cated at a point yy := (1,2, —1)7

o 1
cirle—y|

Ey(x) =V, x P 1
1

which is a radiating solution of (1) with given wavenum-
ber k = 1 and 2 := R?\ [-5,5]3. Fig. 4 shows a fast
convergence of the Hardy space method, such that setting
N = 5 suffices to reach the finite element error.

In the second example we solve the resonance prob-
lem for @ = R*\ K and K = [-1.2,1.2]%\
([-1,1]3U[1,1.2] x [-0.2,0.2]*) with perfectly con-
ducting boundary conditions £ x v = 0 at 0K.

In Fig. 5 the absolute value of two resonance functions
on a cross-section of the interior domain is shown. For
a closed cavity (Q = [~1,1]%), the resonances are pos-
itive and analytically given by x = /[ +m +n3 for
I,m,n € Ng such that Im + In + mn > 0.

aa

Figure 5: Cross-section of the absolute value of the two
resonance functions of the resonances close to
k=35 =272
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Figure 6: Resonances of an open cavity for two
different discretizations: ; = {z € Q| |z| < 2.5} and
Qi =[-17,1.73NnQ

Fig. 6 shows the real and imaginary part of the com-
puted resonances for two different discretizations. Both
discretizations give similar results for the cavity reso-
nances near the real axis. The exterior resonances with
in absolute values larger imaginary parts are mostly iden-
tical for the two discretizations, but for the resonances at
the bottom of Fig. 6 the discretizations are too coarse.
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