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Abstract We consider finite element simulations of the Helmholtz equation in unbounded domains. For
computational purposes, these domains are truncated to bounded domains using transparent boundary con-
ditions at the artificial boundaries. We present here two numerical realizations of transparent boundary
conditions: the complex scaling or perfectly matched layer method and the Hardy space infinite element
method. Both methods are Galerkin methods, but their variational framework differs. Proofs of conver-
gence of the methods are given in detail for one dimensional problems. In higher dimensions radial as well
as Cartesian constructions are introduced with references to the known theory.

1 Introduction

We consider finite element simulations of time-harmonic, scalar waves in open systems. Since standard
mesh based methods like finite element or finite difference methods are restricted to bounded domains,
for these methods unbounded domains of propagation have to be truncated to a bounded computational
domain. Typically, such a truncation results in artificial reflections at the truncation boundary. Due to the
non-locality of the waves, the reflections may pollute the solution in the whole computational domain.

The purpose of this paper is to present some high order transparent boundary conditions such that artifi-
cial reflections are minimized. Thereby we restrict ourselves to finite element based transparent boundary
conditions. For boundary element methods we refer e.g. to [34].

The simplest transparent boundary condition is the so-called first order absorbing boundary condition.
It has no extra costs, but the computational domain typically has to be quite large in order to minimize
artificial reflections. For a review of higher order local absorbing boundary conditions we refer to [24, 15].
For these transparent boundary conditions, as for all subsequent ones, additional unknowns are needed.
Since the construction and the theoretical framework are quite complicated, we will not present them in
this paper.

The so-called complex scaling or perfectly matched layer (PML) method (see e.g. [31, 19, 2, 8]) fits
very well into the variational framework of finite element methods. It surrounds the computational domain
with an artificial, anisotropic damping layer. It is very flexible and allows to reduce artificial reflections
as much as necessary. A downside is, that it can be difficult to find optimal method parameters, since it
depends on the damping profile, the thickness of the layer and on the finite element discretization in the
absorbing layer.

For infinite elements no artificial truncation is needed. The unbounded domain outside of the compu-
tational domain is discretized with special basis and test functions. For classical infinite element methods
(see [12, 13]) these functions fulfill the Sommerfeld radiation condition. Since the infinite elements are
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defined on an unbounded domain, integration over these basis and test functions needs to be done carefully.
Moreover, the discretization matrices typically have large condition numbers.

Hardy space infinite elements (see [20, 33, 32]) also discretize the whole unbounded domain, but the
basis functions are completely different to the classical ones. The basis functions are constructed using
the pole condition [35, 22] as radiation condition. Roughly speaking this radiation condition characterizes
outgoing waves by the poles of their Laplace transforms, which belong to a certain class of Hardy spaces.
The Hardy space infinite element method is a Galerkin method applied to a variational problem in a space
which is built using a Hardy space. Just as the PML method the Hardy space infinite element method allows
for arbitrary small discretization errors. It is even more flexible as the PML method and can be applied to
time harmonic wave equations with backward propagating modes, where standard PML methods fail (see
[17, 18]).

For the Helmholtz scattering problems given in Sec. 2 we present the PML (Sec. 3) and the Hardy
space infinite element method (Sec. 4). To explain the basic ideas, we start for both methods with a one
dimensional model problem, even though in one dimension there exists an easy to use exact transparent
boundary condition. These ideas are then generalized to higher dimensions using radial, as well as Cartesian
coordinates. In Sec. 5 we compare the two methods in terms of efficiency and programming effort.

2 Helmholtz scattering problems

In this section we start with the problem setting and the most popular radiation conditions in order to
control the behavior of solutions u to the Helmholtz equation for large arguments.

2.1 Problem setting

Let u be a solution to the Helmholtz equation

−∆u(x)−ω
2(1+ p(x))u(x) = 0, x ∈Ω ,

for an unbounded Lipschitz domain Ω ⊂ Rd , d = 1,2,3, with angular frequency ω > 0. p is a coefficient
function with compact support supp(p) := {x ∈ Rd : p(x) 6= 0} in an open ball BR := {x ∈Rd : |x|< R} of

radius R > 0. |x| :=
√

∑
d
j=1 |x j|2 denotes the standard Euclidean norm.

Moreover, let the boundary ∂Ω be contained in BR and let u fulfill the boundary condition

∂u
∂n

+αu = g, for x ∈ ∂Ω

with given functions α and g and the unit normal vector n pointing to the exterior of Ω . We refrain from
Dirichlet boundary conditions in order to simplify the presentation.

Since problems on unbounded domains Ω cannot be discretized with standard finite elements, we in-
troduce a bounded and star shaped Lipschitz domain D ⊂ Rd such that ∂Ω ⊂ D and p ≡ 1 in Rd \D.
Then Ω is the disjoint union of the bounded interior domain Ωint := Ω ∩D, the unbounded exterior domain
Ωext := Rd \D and the interface Γ := ∂Ωint∩∂Ωext. E.g. one could choose D = BR.

In Ωext, we are looking for solutions u of the homogeneous problem

−∆u−ω
2u = 0, in Ωext, (2.1a)
u = u0, on Γ , (2.1b)
u is outgoing for |x| → ∞. (2.1c)

The radiation condition (2.1c) ensures that (2.1) is uniquely solvable for all Dirichlet data u0 ∈ H1/2(Γ )
and all ω > 0, and that these solutions are physically meaningful. For such a unique solution uu0 we define



High order transparent boundary conditions for the Helmholtz equation 3

the so-called Dirichlet-to-Neumann operator DtN : H1/2(Γ )→ H−1/2(Γ ) by

DtNu0 :=
∂uu0

∂n
.

Here, the unit normal vector n on Γ points to the interior of Ωext. The interior problem for u ∈ H1(Ωint) in
weak form is given by∫

Ωint

(
∇u ·∇v−ω

2(1+ p)uv
)

dx+
∫

∂Ω

αuvds−
∫

Γ

(DtNu|Γ )vds =
∫

∂Ω

gvds (2.2)

for all test functions v ∈ H1(Ωint). Representation formulas of the Dirichlet-to-Neumann operator for d =
2,3 will be the subject of the following subsections.

In one dimension solutions to (2.1a) are given by linear combinations of x 7→ exp(iω|x|) and x 7→
exp(−iω|x|). Using the standard convention exp(−iωt) for the time-harmonic ansatz, x 7→ exp(iω|x|)
is a radiating solution. Hence, the Dirichlet-to-Neumann operator in one dimension is simply given by
DtNu0 = iωu0.

2.2 Sommerfeld radiation condition

Following [28] for time-harmonic waves of the form ℜ(u(x)exp(−iωt)), the averaged outward energy
flux through the interface Γ is given by

JΓ (u) :=− 1
2ω

ℑ

{∫
Γ

u
∂u
∂n

ds
}
.

Using Green’s first identity in a domain BR∩Ωext, it can be shown that

JΓ (u) =
1

4ω2 lim
R→∞

(
∓
∫

∂BR

∣∣∣∣∂u
∂n
∓ iωu

∣∣∣∣2 ds±
∫

∂BR

(∣∣∣∣∂u
∂n

∣∣∣∣2 +ω
2|u|2

)
ds

)
(2.3)

for all solutions u ∈ H2
loc(Ωext)

1 to (2.1a). Using (2.3) with the minus sign in the first integral, JΓ (u) is
non-negative for solutions to (2.1a), if u fulfills the Sommerfeld radiation condition

lim
|x|→∞

|x|(d−1)/2
(

∂u(x)
∂ |x|

− iωu(x)
)
= 0 uniformly for all directions

x
|x|

. (2.4)

Moreover, using (2.4) as radiation condition the problem (2.1) is uniquely solvable (see e.g. [36, Sec. 9,
Theorem 1.3]). So the Sommerfeld radiation condition leads to a well defined Dirichlet-to-Neumann oper-
ator.

It can also be used to construct an approximation to the exact Dirichlet-to-Neumann operator: If the
interface is a sphere of radius R > 0, then the so-called first order absorbing boundary condition is given
by u0 7→ iωu0. This Robin type boundary condition is only the exact boundary condition for d = 1. But
since for a numerical realization no extra costs are needed, it is widely used in practice for d = 2,3 as well.
Typically, R has to be quite large in order to guarantee, that the artificial reflections at Γ are negligible.

1 Hr
loc(Ω) denotes the space of functions, which belong to Hr(Ω̂) for each compact Ω̂ ⊂Ω .
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2.3 Dirichlet-to-Neumann operator

For x ∈ Ωext = Rd \BR we can use polar coordinates x = rx̂ with r := |x| > 0 and x̂ = x/r ∈ ∂B1 in order
to construct a representation formula for solutions u to the exterior problem (2.1). In polar coordinates the
Helmholtz equation (2.1a) is given by

−∂ 2u(rx̂)
∂ 2r

− d−1
r

∂u(rx̂)
∂ r

− 1
r2 ∆x̂ u(rx̂)−ω

2u(rx̂) = 0, r > R, x̂ ∈ ∂B1.

−∆x̂ is the negative Laplace-Beltrami operator. As it is hermitian and positive semi-definite, all eigenvalues
are non-negative. E.g. in [11] it is shown, that for d = 3 the eigenvalues are given by λν := ν(ν +1) with
multiplicities Mν := 2ν +1, ν ∈ N0

2. For d = 2 the eigenvalues are λν := ν2 with multiplicities Mν := 2
for ν ∈ N and M0 := 1 for ν = 0. The corresponding eigenfunctions, the spherical harmonics Y (µ)

ν , build a
complete orthonormal set of L2(∂B1). Hence, there holds

u(rx̂) =
∞

∑
ν=0

Mν

∑
µ=1

uν ,µ(r)Y
(µ)
ν (x̂), r > R, x̂ ∈ ∂B1 (2.5)

with uν ,µ(r) :=
∫

∂B1
u(rx̂)Y (µ)

ν (x̂)dx̂. The series converges for each r > R in the L2(∂B1) sense. If u is
a sufficiently smooth solution to (2.1a), we can differentiate under the integral and deduce that uν ,µ is a
solution to the (spherical) Bessel equation

−u′′ν(r)−
d−1

r
u′ν(r)+

(
λν

r2 −ω
2
)

uν(r) = 0, r > R. (2.6)

Solutions to (2.6) with ω = 1 are linear combinations of the (spherical) Hankel functions of the first and
second kind. We denote the Hankel functions (d = 2) and the spherical Hankel functions (d = 3) of the first
and second kind by H

(1,2)
ν . Their asymptotic behavior is given by

H
(1,2)

ν (t) =
Cd

t(d−1)/2 exp
(
±i
(

t− νπ

2

))(
1+O

(
1
t

))
, t→ ∞, (2.7a)

H
(1,2)′

ν (t) =
±iCd

t(d−1)/2 exp
(
±i
(

t− νπ

2

))(
1+O

(
1
t

))
, t→ ∞, (2.7b)

with C2 :=
√

2/π exp(∓iπ/4) and C3 := exp(∓iπ/2). Hence, there holds

lim
r→∞

r(d−1)/2
(
H

(1,2)′
ν ∓ iH

(1,2)
ν (r)

)
= 0.

In particular, the functions u(rx̂) := H
(1)

ν (ωr)Y (µ)
ν (x̂) solve the Helmholtz equation (2.1a) and satisfy the

Sommerfeld radiation condition (2.4). Moreover, using (2.3) we compute

JΓ (u) =

{
1

ωπ
, d = 2

1
2ω2 , d = 3

, (2.8)

i.e. the outward energy flux is positive and independent of ν and µ . So these functions radiate energy to
infinity and are therefore physically meaningful.

Remark 2.1 A second way of motivating the choice of outgoing solutions is the limiting absorption prin-
ciple (see e.g. [36, Sec. 9]). Similar to the idea of shifted Laplace preconditioners, we replace the positive
frequency ω in the Helmholtz equation by ω(1+εi) with ε > 0 adding artificial absorption to the problem.
Since the solutions to the perturbed problem should be bounded for r→ ∞, these solutions are given by

2 N denotes the set of all positive natural numbers and N0 := {0}∪N.
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uε(rx̂) :=H
(1)

ν (ω(1+ iε)r)Y (µ)
ν (x̂). Passing ε to the limit 0 leads again to the Hankel functions of the first

kind.

Using the Hankel functions of the first kind in (2.5) and incorporating the boundary condition (2.1b)
leads to the series representation

u(rx̂) =
∞

∑
ν=0

Mν

∑
µ=0

∫
∂B1

u0(Rx̂)Y (µ)
ν (x̂)dx̂

H
(1)

ν (ωR)
H

(1)
ν (ωr)Y (µ)

ν (x̂), r > R, x̂ ∈ ∂B1. (2.9)

For u0 ∈ L2(∂BR) it is shown in [11, Theorem 2.14], that this series as well as the series of the term by term
derivatives converges absolutely and uniformly on compact subsets of Ωext = R3 \BR. The results holds
true for Ωext = R2 \BR as well. Moreover, it is indeed a solution to (2.1) with the Sommerfeld radiation
condition and each solution to (2.1) satisfying the Sommerfeld radiation condition is given by (2.9). Hence,
(2.9) can be used to construct the Dirichlet-to-Neumann operator on spheres of radius R by

DtNu0 :=
∞

∑
ν=0

Mν

∑
µ=0

(∫
∂B1

u0(Rx̂)Y (µ)
ν (x̂)dx̂

)
ωH

(1)′
ν (ωR)

H
(1)

ν (ωR)
Y (µ)

ν (x̂). (2.10)

Note, that the roots of the (spherical) Hankel functions of the first kind have negative imaginary part and
therefore the denominator never vanishes for ωR > 0.

A second representation formula for solutions to (2.1) can be deduced using the fundamental solution
of the Helmholtz equation

Φ(x,y) :=

{
i
4H

(1)
0 (ω|x− y|), d = 2

iω
4π

H
(1)

0 (ω|x− y|), d = 3
.

In [11, 36]) is is shown, that for smooth boundary Γ a solution u of the exterior problem (2.1) combined
with the Sommerfeld radiation condition has the integral representation

u(x) =
∫

Γ

(
u(y)

∂Φ(x,y)
∂n(y)

− ∂u
∂n

(y)Φ(x,y)
)

ds(y), x ∈Ωext. (2.11)

This representation can be used to construct a Dirichlet-to-Neumann operator for arbitrary smooth bound-
aries Γ .

Remark 2.2 The representation formulas (2.9) and (2.11) can also be used as radiation conditions. Since
the (spherical) Hankel functions are holomorphic in {z∈C : ℜ(z)> 0}, the solutions u to (2.1) using these
radiation conditions are holomorphic with respect to complex frequencies ω with ℜ(ω)> 0. This is not the
case, if the Sommerfeld radiation condition is used, since for ω with ℜ(ω)> 0 and ℑ(ω)< 0 the Hankel
functions of the second kind fulfill the Sommerfeld radiation condition. So for resonance problems, where
the frequency is the sought complex resonance, the Sommerfeld radiation condition is not useful.

3 Complex scaling method

For test functions v ∈ H1(Ωext) with compact support in Ωext∪Γ , the variational form of (2.1) is given by∫
Ωext

(
∇u ·∇v−ω

2uv
)

dx =−
∫

Γ

DtNu0 vds. (3.1)

In the complex scaling or perfectly matched layer method the left hand side of this equation is first refor-
mulated such that the solution u and the integrand is exponentially decaying for |x| →∞. Then a truncation
of the unbounded domain Ωext to a bounded layer leads to an approximation of the Dirichlet-to-Neumann
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operator on the right hand side. As we will see, this approximation converges exponentially to the correct
Dirichlet-to-Neumann operator with respect to the thickness of the layer.

3.1 One dimensional PML

For simplicity we start with a one dimensional problem. Let u ∈ H1
loc(R+) be an outgoing solution to∫

∞

0

(
u′(x)v′(x)−ω

2(1+ p(x))u(x)v(x)
)

dx =−u′0v(0) (3.2)

for all test functions v∈H1(R+) with compact support in R≥0. u′0 ∈C denotes a given Neumann boundary
value of u′(0). If p ∈ L∞(R+) with supp(p)⊂ [0,R), u is given by

u(x) =

{
uint(x), x ∈Ωint := (0,R)
uint(R)exp(iω(x−R)), x ∈Ωext := (R,∞)

(3.3)

where uint ∈ H1(Ωint) is a solution to the interior problem.
For the complex scaling we use a twice continuously differentiable function τ : R≥0→R≥0 with τ(0) =

0 and τ(t)≥Ct, C > 0, for sufficiently large t. One might use simply the identity. For α ∈R and R > 0 the
complex scaling function is defined by

γτ,α,R(r) :=

{
r, r ≤ R
r+αiτ(r−R), r > R

. (3.4)

γτ,α,R is continuous and at least twice continuously differentiable for all r 6=R. For the monomials τ(t) = tk,
γτ,α,R is k− 1 times continuously differentiable at r = R and arbitrary smooth elsewhere. Based on the
complex scaling function we define the complex scaled variable

xγ(x) :=

{
x
|x|γτ,α,R(|x|), x ∈ Rd \{0}
0, x = 0.

(3.5)

Since outgoing solutions u are given by (3.3) and in particular since u|Ωext has a holomorphic extension,
the complex scaled function

uγ := u◦ xγ (3.6)

is well defined and solves the complex scaled Helmholtz equation

− ∂

∂x

(
u′γ(x)

γ ′
τ,α,R(x)

)
−ω

2
γ
′
τ,α,R(x)uγ(x) = 0, x > R. (3.7)

Note, that uγ inherits the regularity of γτ,α,R. Moreover, it decays exponentially for x→ ∞ if and only if
α > 0. Hence, partial integration on both sides yields

∫
Ωext

(
u′v′−ω

2uv
)

dx =−v(R)DtN(u(R)) =
∫

Ωext

(
u′γ ṽ′

γ ′
τ,α,R

−ω
2
γ
′
τ,α,Ruγ ṽ

)
dx

for all test functions v ∈ H1(Ωext) with compact support in [R,∞) and all ṽ ∈ H1(Ωext) with ṽ(R) = v(R).

Theorem 3.1. Let ω,α,R > 0, and p ∈ L∞(R+) with supp(p)⊂ [0,R). Moreover, let the assumptions on τ

be fulfilled. Then u ∈ H1
loc(R+) is an outgoing solution to (3.2) if and only if uγ ∈ H1(R+) defined in (3.6)

is a solution to
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∫
∞

0

(
u′γ v′

γ ′
τ,α,R

−ω
2(1+ p)γ ′τ,α,Ruγ v

)
dx =−u′0v(0), v∈H1(R+). (3.8)

Proof. We have already shown the first direction. Vice versa, let ũ be a solution to (3.8). Using test functions
v with compact support in (R,∞) and elliptic regularity results, ũext := ũ|(R,∞) ∈ H2((R,∞)) solves (3.7).
Hence, ũext is a linear combination of x 7→ exp(±iωγτ,α,R(x)). Since ℜ(±iωγτ,α,R(x)) = ∓ωατ(x−R)
and ũext ∈H2((R,∞)), we have ũext(x) = ũext(R)exp(iω(γτ,α,R(x)−R)). Plugging this into (3.8) and using
partial integration in [R,∞) for test functions v with compact support in [R,∞) leads to∫ R

0

(
ũ′v′−ω

2(1+ p))ũv
)

dx = iω ũ(R)v(R)−u′0v(0), v ∈ H1(Ωint),

i.e. to the correct Dirichlet-to-Neumann operator at x = R. Thus, u defined by (3.3) with uint := ũ|Ωint is
outgoing and solves (3.2). ut

Corollary 3.2 Let u be a solution to (3.8). Then u|Ωint is independent of the damping function γτ,α,R.

Of course, (3.8) is still posed on an unbounded domain R+ and cannot be discretized directly using stan-
dard finite element methods. But since the integrand is exponentially decaying, R+ is typically truncated to
a bounded domain (0,R+L) with L > 0 sufficiently large. Then, the truncated problem on H1((0,R+L))
is discretized using standard finite element methods.

3.2 Convergence of a one dimensional PML

Proving convergence of a truncated and discretized PML is typically done in the following way (see e.g.
[1, 23]): Similar to the last proof, the problem in the perfectly matched layer (R,R+L) is solved analytically
at first. This results into a perturbed Dirichlet-to-Neumann operator at the interface x = R. Typically the
error to the correct Dirichlet-to-Neumann operator is bounded by the complex scaled function at the trun-
cation boundary R+L, i.e. the truncation error decays exponentially with increasing layer thickness L. For
sufficiently large L > 0 it is then shown, that the truncated problem is uniquely solvable if the untruncated
problem is uniquely solvable.

Once this is established, compact perturbation arguments of strictly coercive operators can be used
to show, that the discrete problem on the truncated domain is uniquely solvable for sufficiently fine dis-
cretization. Moreover, using the generalized Céa Lemma the discretization error can be bounded by the
approximation error.

Here, we will use an approach, where truncation and discretization error are treated simultaneously. For
scalar waveguides this approach was proposed in [21]. For simplicity, let us assume that τ is the identity.
Then γ ′

τ,α,R(x) ≡ σ := 1+ iα for x > R and there exists a rotation θ ∈ {z ∈ C : |z| = 1,ℜ(z) > 0} and a
constant α1 > 0 such that

ℜ

(
θ

∫
∞

R

(
1
σ

∣∣u′∣∣2−ω
2
σ |u|2

)
dx
)
> α1‖u‖2

H1((R,∞)), u ∈ H1((R,∞)). (3.9)

Since ℜ(θ)> 0, the Gårding inequality

ℜ

(
θ

∫
∞

0

(
|u′|2

γ ′
τ,α,R

−ω
2(1+ p)γ ′τ,α,R |u|

2

)
dx+C

∫ R

0
|u|2dx

)
> α‖u‖2

H1(R+)
(3.10)

holds for u∈H1(R+) with constants α :=min{α1,ℜ(θ)}> 0 and C > 0 sufficiently large. Since L2((0,R))
is compactly embedded in H1((0,R)), a Fredholm operator of the form Aσ ,R +Kσ ,R : H1(R+)→ H1(R+)
can be associated to (3.8). Aσ ,R is continuous and strictly coercive and Kσ ,R is compact. Hence, Riesz-
Fredholm theory can be used to show convergence of the truncated and discretized problem with homoge-
neous Dirichlet boundary condition at the truncation boundary. Note, that L2(R+) is not compactly embed-
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ded in H1(R+), since R+ is unbounded. Hence, the compact pertubation argument for the low order term
in (3.10) cannot be used for the low order term in (3.9).

Theorem 3.3. Let Vh,L ⊂ { f ∈ H1((0,R+L)) : f (R+L) = 0} be a usual finite element discretization of
the truncated domain, such that for all v ∈ H1((0,R+ L)) with v(R+ L) = 0 the orthogonal projection
converges point wise, i.e.

lim
h→0

inf
vh∈Vh,L

‖v− vh,L‖H1((0,R+L)) = 0. (3.11)

If (3.8) is uniquely solvable with solution uγ ∈H1(R+), then there exist h0 > 0 and L0 ∈N such that for
all h≤ h0 and all L≥ L0 a unique solution uh,L ∈Vh,L to

∫ R+L

0

(
u′γ v′

γ ′
τ,α,R

−ω
2(1+ p))γ ′τ,α,Ruγ v

)
dx =−u′0v(0), v ∈Vh,L. (3.12)

exists and depends continuously on u′0. Moreover, there exists a constant C =C(h0,L0)> 0 such that

‖uγ −uh,L‖H1((0,R+L)) ≤C
(

inf
vh,L∈Vh,L

‖uγ − vh,L‖H1((0,R+L))+‖uγ‖H1((R+L,∞))

)
. (3.13)

Proof. We define a finite dimensional subspace of H1(R+) by

Ṽh,L := { f ∈ H1(R+) : f |(0,R+L) ∈Vh,L, f |[R+L,∞) ≡ 0}.

Since functions with compact support are dense in H1(R+), the orthogonal projection onto Ṽh,L converges
point-wise for h→ 0 and L→ ∞. So the first part of the theorem follows with [27, Theorem 13.7], since
(3.12) is the projection of (3.8) to Ṽh,L. The error estimation is a consequence of Céa’s Lemma (see e.g.
[27, Theorem 13.6]). ut

(3.13) includes truncation and discretization error. Since

|uγ(x)|= |uγ(R)|exp(−ωατ(x−R)), x > R,

the second term of (3.13) decays exponentially with respect to L. For the first term we introduce for fixed
ε > 0 and k ∈ N the functions

gε,k(x) :=

{
1, x≤ R+L− ε

1−
( x+ε−R−L

ε

)k
, x ∈ (R+L− ε,R+L)

(3.14)

such that x 7→ uγ(x)gε,k(x) belongs to Hk((0,R+L)) and vanishes at R+L. Hence, it can be approximated
by functions vh ∈ Vh,L using (3.11). The remaining H1((0,R+L))-error of x 7→ uγ(x)(1− gε,k(x)) again
decays exponentially with respect to L for fixed ε and k.

Remark 3.4 For functions u ∈Hk+1(Ω) the approximation error of finite element discretizations typically
is bounded by

inf
vh∈Vh

‖u− vh‖H1(Ω) ≤Chk‖u‖Hk+1(Ω). (3.15)

The constant C > 0 is independent of the mesh size h, but depends amongst others on the order k ∈N of the
used polynomials. See e.g. [6, Sec. 4.4] or [9, Theorem 3.2.1] for sufficient conditions on finite elements
such that (3.15) holds.

For those (3.11) is satisfied by density of H2(Ω) in H1(Ω). Moreover, (3.15) can be used to bound the
approximation error of uγ gε,k+1.
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Ωint

x

R(x)

Ωext

Γ

(a) radial

Ωint

R2

R1

Ωext

Γ

x

(b) Cartesian

Fig. 1 sketch of a complex scaling. The dotted lines indicate possible discontinuities of the Jacobian Dxxγ in Ωext.

3.3 Radial complex scaling

For problems in higher dimensions we may use radial complex scaling. Let us assume, that the interface
Γ between the interior and the exterior domain is piecewise smooth, i.e. there exists a parametrization of
Γ which is piecewise k times continuously differentiable with k ∈ N. Moreover, we require that for all
x ∈ Γ with normal vector nΓ (x) the scalar product x ·nΓ (x) does not vanish and that Γ is the boundary of
a domain D, which is star shaped shaped with respect to the origin. Most often, Γ is just a sphere, but e.g.
convex polyhedrons are also possible.

Using the complex scaling function of Sec. 3.1, we define as in (3.5) for all x ∈ Ω \ {0} the complex
scaled variable

xγ(x) :=
γ ′

τ,α,R(|x|)
|x|

x with R(x) := sup{r ∈ R+ : r
x
|x|
∈Ωint}. (3.16)

If 0 is contained in Ω , we define xγ(0) = 0. See Fig. 1(a) for a sketch of the radial complex scaling.
For a spherical complex scaling, i.e. Γ = ∂BR, R(x) = R becomes constant. It is straightforward to see,

that xγ(x) = x for all x ∈ Ωint and that ℑ(xγ(x)) = α
τ(|x|−R(x))
|x| x. Since τ increases at least linearly for

sufficiently large arguments, for α > 0 the imaginary part of the Cartesian components of xγ(x) increase at
least linearly with respect to the distance of x to the interface Γ .

Lemma 3.5. Let Γ̃ ⊂ Γ be parametrized by a k times continuously differentiable function η and let the
function τ in the definition of the complex scaling function γτ,α,R(x) be also k times continuously differen-
tiable. Then xγ is k times continuously differentiable in the pyramidal frustum {rx̂ ∈ Rd : r > 1, x̂ ∈ Γ̃ }.

On the interfaces between the pyramidal frustums and to the interior domain Ωint, xγ is at least contin-
uous.

Proof. For x ∈ Ωext ∪Γ there exists at least one intersection point of the rays {rx ∈ Rd : r > 0} with Γ ,
since Γ is the boundary of a domain containing the origin and not containing x. This intersection point
is unique, since otherwise the bounded domain would not be star shaped or there would be an x̂ ∈ Γ with
x ·nΓ (x̂) = 0. Clearly, this intersection point depends continuously on x. Hence, R(x) in the definition (3.16)
of the complex scaling depends continuously on x, since it is the Euclidean norm of this intersection point.
Since the complex scaling function γτ,α,R(x) is continuous with respect to the argument and to R, xγ(x) is
continuous in Ω .

Now, let x be in the interior of one pyramidal frustum {rx̂ ∈ Rd : r > 1, x̂ ∈ Γ̃ } and let Γ̃ = η(S)
with S ⊂ Rd−1. We have to show, that for x = r(x)η(ϕ(x)), ϕ ∈ S, the function r is k times continuously
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differentiable. Since R(x) in the definition of the complex scaling is given by R(x) = |x|/r(x) , this proves
the claim.

So we define F : Ωext×(R+×S)→Rd by F(x,(r,ϕ)) := x−rη(ϕ). Since the Jacobian Dr,ϕ F(x,(r,ϕ))=
(−η(ϕ),−rDϕ ηϕ) is always invertible due to the assumption x̂ ·n(x̂) 6= 0 with x̂ = η(ϕ) and since F is k
times continuously differentiable, the implicit function theorem guarantees the smoothness of r. ut

Explicit forms of the Jacobian Jγ(x) = Dxxγ(x) are complicated, but for the most common situation
Γ = ∂BR it is straightforward to compute

Jγ(x) =
γτ,α,R(|x|)
|x|

Idd +
γ ′

τ,α,R(|x|)|x|− γτ,α,R(|x|)
|x|3

xx>, x ∈Ω \{0}. (3.17)

xx> ∈ Rd×d denotes the dyadic product and Idd ∈ Rd×d the identity matrix. In the following we restrict
ourselves to spherical interfaces in order to simplify the proof.

Theorem 3.6. Let Γ be a sphere of radius R and let u∈H1
loc(Ωext) be a radiating solution to (3.1). If α > 0

and if τ is the identity, then uγ = u◦ xγ ∈ H1(Ωext) decays exponentially and there holds∫
Ωext

(
J−T

γ ∇uγ · J−T
γ ∇v−ω

2uγ v
)

det(Jγ)dx =−
∫

Γ

DtNu0 vds (3.18)

for all v ∈ H1(Ωext).
Vice versa, if α > 0 and if ũ ∈ { f ∈ H1(Ωext) : f |Γ = u0} is a solution to (3.18) for all v ∈ H1

0 (Ωext),
then (3.18) holds true for all v ∈ H1(Ωext).

Proof. The series representation (2.9) of a solution u to (3.1) converges absolutely and uniformly on com-
pact subsets of Ωext. The same holds true for the series of the term by term derivatives. Moreover, the spher-
ical Hankel functions are holomorphic in C \ {0} and the Hankel functions are holomorphic in C \R≤0.
Hence, the series representation has a holomorphic extension from x = rx̂ ∈ Ωext with r = |x| > R and
x̂ = x/r to complex variables x̃ = r̃x̂ with complex radius r̃ ∈ C\R≤0.

So uγ is well defined and the last lemma guarantees, that uγ ∈ H1
loc(Ωext). Based on the integral repre-

sentation (2.11) for a sphere in the interior of Ωext, it can be shown that uγ decays exponentially. So the
first part of the theorem follows with the chain rule for the transformation of the gradients.

The second part can be shown using a separation into (spherical) Bessel problems. For the details see
[10, Theorem 1]. ut

For a different kind of complex scaling it is shown in [4], that there holds a Gårding inequality for a
complex scaled bilinear form, which is similar to the one in (3.18) with Ω instead of Ωext. Hence, for this
modified complex scaling the same approach as for the one dimensional problem in Sec. 3.2 can be used.
The error induced by truncation and finite element discretization is again bounded by an exponentially
decaying truncation error and the usual finite element approximation error.

3.4 Cartesian complex scaling

If Γ is the boundary of a rectangle (d = 2) or a cuboid (d = 3), usually a Cartesian complex scaling is used.
In the radial complex scaling (3.16) basically the absolute value of x ∈Ωext is scaled. Hence, all Cartesian
components are scaled simultaneously with the same scaling function. In Cartesian complex scaling, each
Cartesian component can be scaled individually.

W.l.o.g. we assume, that Ωint = Ω ∩
⊗d

j=1(−R j,R j) with R j > 0, j = 1, . . . ,d. It general it is possible to

choose 2d different functions τ
(1,2)
j in the complex scaling function and 2d different constants α

(1,2)
j > 0,

j = 1, . . . ,d. For x = (x1, . . . ,xd)
> ∈Ω we define the complex scaled variable xγ = ((xγ)1, . . . ,(xγ)d)

> by
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(
xγ

)
j :=


γ

τ
(1)
j ,α

(1)
j ,R j

(x j), x j > R j

x j, x j ∈ [−R j,R j]

−γ
τ
(2)
j ,α

(2)
j ,R j

(−x j), x j <−R j

, j = 1, . . . ,d. (3.19)

In Fig. 1(b) a sketch of the Cartesian complex scaling is given. Since τ
(1,2)
j (0) = 0, xγ is continuous every-

where. The regularity of τ
(1,2)
j carries over to the regularity of xγ in {x ∈Ωext : x j 6=±R j, j = 1, . . . ,d}. The

Jacobian Jγ(x) for a Cartesian scaling is a diagonal matrix, where the diagonal entries are the derivatives of
the scaling functions. Therefore a Cartesian complex scaling is typically much easier to implement than a
radial complex scaling.

In contrast to the radial PML, the convergence theory is more involved, see e.g. [26, 5]. In [5, Theorem
5.8] it is shown, that for τ(t) = t and with some constraints on γ the truncation error decays exponentially
with respect to the thickness of the layer.

3.5 Choice of complex scalings and bibliographical remarks

Cartesian complex scaling typically is easier to implement than a radial one. But if the most popular linear
complex scaling τ(t) = t is used, one has to take into account the discontinuities of the Jacobian Jγ shown
in Fig. 1. Since the solution uγ in this case is only in H1(Ω), a high order finite element method would
suffer a lot (confer with Rem. 3.4). This can be avoided, if the finite element mesh is chosen such that the
discontinuities of Jγ are part of the skeleton of the mesh. Hence, uγ is smooth in the interior of each finite
element, which guarantees the standard approximation error estimates of high order methods. Of course,
choosing more regular damping functions also solves this issue.

The choice of the thickness of the complex scaling layer, the damping function and of the mesh in the
layer is delicate. For a linear complex scaling one might use a priori error estimators for the truncation
error of the form exp(−ωαL) with L being a measure for the layer thickness. Afterwards, for the truncated
problem standard mesh refinement strategies can be used (see e.g. [7]).

There is a vast amount of literature using the complex scaling method. In comparison theoretical results
are rare. Without claiming to be exhaustive, we mention the following references, where unique solvability
and exponential convergence of the truncated complex scaling problem is shown for Helmholtz problems
in free space. Note, that in most cases for the truncated problems standard finite element results can be
used.

The results in [29, 30] include spherical complex scaling as in (3.16) and some additional assumptions
on τ . In particular, due to an assumption τ ′′(t) > 0, linear complex scaling is not covered from the theory
there. [23] also deals with spherical complex scaling with one main difference: In this work, γ has to
be at least two times continuously differentiable in a bounded transition zone (R, R̃). Moreover, for all
r > R̃ the complex scaling is purely linear, i.e. γ(r) = σr. So in contrast to (3.4) with τ(t) = t, there is a
translation by (σ −1)R. A similar scaling is used in [4], where this translation is crucial for the existence
of a Gårding inequality. [3] uses spherical complex scaling with scaling functions of the form γ(r) =
r+ iσ(r) with σ(r) = log(R̂−1)− log(R̂− r) for r ∈ (1, R̂) with R̂ > 1. For this kind of complex scaling
no truncation is needed, but the coefficients in the complex scaled variational formulation become singular.
In [19] the spectral properties of untruncated radial complex scalings are investigated for ℜ(σ) = 1 and
two times continuously differentiable scaling functions. [25] extended this work with studies on truncated
radial complex scalings.

Cartesian complex scalings were studied e.g. in a series of papers by Joseph E. Pasciak and coauthors
[26, 5]. The last includes convergence results for linear complex scaling under some constraints on σ .
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4 Hardy space infinite element method

Classical infinite element methods (see [12, 13]) directly discretize the exterior variational formulation
(3.1) with special test and basis functions for |x|→∞. These basis functions have to satisfy the Sommerfeld
radiation condition (2.4). Hardy space infinite element methods use the same idea, but they are based on
the pole condition. This is another kind of radiation condition, which is to some extent equivalent to the
classical ones.

4.1 One dimensional pole condition

We start with this pole condition for one dimensional problems of the form (3.2). The details can be found
in [20, Sec. 2]. Arbitrary solutions u to (3.2), which do not fulfill a radiation condition, are given for x≥ R
by u(x) =Cuout(x−R)+Duinc(x−R) with complex constants C,D ∈ C and

uout(r) := exp(iωr), uinc(r) := exp(−iωr), r ≥ 0.

In the following we will use the Laplace transform (L v)(s) :=
∫

∞

0 exp(−sr)v(r)dr, ℜ(s) > 0, and for a
complex constant κ0 ∈ C\{0} a Möbius transform

(M κ0 v̂)(z) :=
1

z−1
v̂
(

iκ0
z+1
z−1

)
, z 6= 1. (4.1)

The constant κ0 will be the main parameter of the Hardy space infinite element method. It is somehow
equivalent to the complex scaling parameter σ = 1+αi for a linear complex scaling.

Since (
M κ0 L uout

)
(z) =

1
i(κ0−ω)z+ i(κ0 +ω)

, z ∈ C, (4.2)

(
M κ0 L uinc

)
(z) =

1
i(κ0 +ω)z+ i(κ0−ω)

, z ∈ C, (4.3)

M κ0 L {u(•+R)} is a meromorphic function with poles at
(

ω+κ0
ω−κ0

)±1
. For ω > 0 and ℜ(κ0)> 0, the pole

of M κ0 L uout has absolute value larger than 1. So M κ0 L uout can be expanded into the Taylor series

(
M κ0 L uout

)
(z) =

1
i(κ0 +ω)

∞

∑
j=0

(
ω−κ0

ω +κ0

) j

z j, z ∈ C,

which converges for all |z| ≤ 1. In particular, M κ0 L uout is holomorphic in the complex unit disk and
belongs to the Hardy space 3 H+(S1) of the complex unit sphere S1 := {z ∈ C : |z|= 1}.

If ℜ(κ0),ω > 0, M κ0 L uinc 6∈ H+(S1), since it has a pole with absolute value smaller than 1. So we
can use Hardy spaces in order to ensure, that a solution u to (3.2) only contains the outgoing solution uout.

Definition 4.1 (pole condition). Let H+(S1) denote the Hardy space of the complex unit sphere S1 and let
κ0 ∈ C with positive real part be fixed. Then a function u ∈ L2

loc((R,∞)) is outgoing, if M κ0 L u(•+R) is
well defined and belongs to H+(S1).

3 H+(S1)⊂ L2(S1) consists of functions of the form ∑
∞
j=0 α jz j , z ∈ S1, with a square summable series (α j). These functions

are boundary values of some functions, which are holomorphic in the complex unit disk. Equipped with the L2(S1) scalar
product, H+(S1) is a Hilbert space. For more details to Hardy spaces we refer to [14].
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4.2 Hardy space variational formulation in one dimension

In order to be able to use this radiation condition, we have to reformulate (3.2). First, we define interior
functions uint := u|(0,R), vint := v|(0,R) and shifted exterior functions uext(r) := u(r+R), vext(r) := v(r+R)
for r > 0. For these functions (3.2) is split into

−u′0v(0) = bint(uint,vint)+bext(uext,vext),

with interior and exterior bilinear forms

bint(uint,vint) :=
∫ R

0

(
u′int(x)v

′
int(x)−ω

2(1+ p(x))uint(x)vint(x)
)

dx,

bext(uext,vext) :=
∫

∞

0

(
u′ext(r)v

′
ext(r)−ω

2uext(r)vext(r)
)

dr.

Using test functions of the form vext(r) = vint(R)exp(iλ r) with ℑ(λ ) > 0 and ℜ(λ/κ0) > 0, we can use
the identity in [20, Lemma A.1] to show

bext(uext,vext) = qκ0(M κ0 L u′ext ,M κ0 L v′ext)−ω
2qκ0(M κ0 L uext ,M κ0 L vext), (4.4)

with the bilinear form q : H+(S1)×H+(S1)→ C defined by

qκ0(U,V ) :=
2κ0

2πi

∫ 2π

0
U(exp(iϕ))V (exp(−iϕ))dϕ, U,V ∈ H+(S1). (4.5)

qκ0 is almost the L2(S1) scalar product: Let z 7→ z denote the standard complex conjugation and let
C : H+(S1)→ H+(S1) denote the involution defined by (C V )(z) := V (z), z ∈ S1. Then qκ0(U,C V ) =
2κ0
2πi (U,V )L2(S1). Moreover, the monomials z 7→ z j, j ∈ N0, are orthogonal with respect to the bilinear form
qκ0 .

There are two main difficulties in (4.4). First we have to ensure, that our basis and test functions
are continuous at the interface x = R. Due to (4.2), e.g. for the test functions there holds vint(R) =

1
2iκ0

(
M κ0 L vext

)
(1). The right hand side would not be well defined for an arbitrary function V ∈

H+(S1) ⊂ L2(S1). The second challenge are the terms M κ0 L u′ext and M κ0 L v′ext , which have to be
computed if test functions for M κ0 L uext and M κ0 L vext are used.

Both issues can be solved with one modification. We define the operators T ± : C×H+(S1)→ H+(S1)
by

T ±(v0,V )(z) :=
1
2
(v0 +(z±1)V (z)) , z ∈ S1, (v0,V ) ∈ C×H+(S1). (4.6)

Lemma 4.2. Let v ∈ H1
loc(R+) ∩C(R≥0) be such that the Möbius and Laplace transformed function

M κ0 L v is well defined. Moreover, we assume that M κ0 L v ∈ T −(C× H+(S1)), i.e. there exists
(v0,V ) ∈ C×H+(S1) such that M κ0 L v = 1

iκ0
T −(v0,V ). Then v0 = v(0) and M κ0 L v′ = T +(v0,V ).

Proof. By a limit theorem of the Laplace transform, there holds

v(0) = lim
r→0

v(r) = lim
s→∞

s(L v)(s) = lim
z→1

iκ0
(
(z+1)

(
M κ0 L v

)
(z)
)
.

The limit of the right hand side exists, since by assumption
(
M κ0 L v

)
(z) = 1/(2iκ0)(v0 +(z− 1)V (z))

with V ∈ L2(S1). Hence, v0 = v(0). The second assertion follows from direct calculations with (L v′)(s) =
s(L v)(s)− v(0). ut

Using this lemma, the exterior bilinear form becomes

bext,κ0 ((u0,U),(v0,V )) := qκ0 (T +(u0,U),T +(v0,V ))−ω
2qκ0

(
1
iκ0

T −(u0,U),
1
iκ0

T −(v0,V )

)
,

(4.7)
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with (u0,U),(v0,V ) ∈ C×H+(S1). u0 and v0 represent the Dirichlet values of uext(0) = uint(R) and
vext(0) = vint(R) respectively. This allows a continuous coupling of classical finite elements for vint with
infinite elements for M κ0 L vext.

Lemma 4.3. For ℜ(κ0) > 0 there exists a rotation θ ∈ {z ∈ C : |z| = 1,ℜ(z) > 0} and a constant α > 0
such that for all (v0,V ) ∈ C×H+(S1)

ℜ
(
θbext,κ0 ((v0,V ),(v0,C V ))

)
≥ α‖(v0,V )‖2

C×H+(S1). (4.8a)

Moreover, bext,κ0 is continuous, i.e. there exists a constant C > 0 such that for all (u0,U),(v0,V ) ∈ C×
H+(S1) ∣∣bext,κ0 ((u0,U),(v0,V ))

∣∣≤C‖(u0,U)‖C×H+(S1)‖(v0,V )‖C×H+(S1). (4.8b)

The norm on C×H+(S1) is thereby defined as

‖(v0,V )‖C×H+(S1) :=
√
|v0|2 +‖V‖2

L2(S1)
, (v0,V ) ∈ C×H+(S1).

Proof. The continuity of bext,κ0 follows from the continuity of qκ0 and of the operators T ±. Since
2T ±(v0,V )(z) = v0 + zV (z)±V (z), the parallelogram identity leads to

‖T −(v0,V )‖2
L2(S1)+‖T +(v0,V )‖2

L2(S1) =
1
2
‖v0 +•V (•)‖2

L2(S1)+
1
2
‖V‖2

L2(S1)

=
1
2
|v0|2 +‖V‖2

L2(S1) ≥
1
2
‖(v0,V )‖2

C×L2(S1).

The last identity yields by orthogonality of the monomials z 7→ z j, j ∈ N0, in L2(S1). Choosing θ with
ℜ(θ) such that

ℜ

(
−2iκ0

2π
θ

)
=

1
π

ℑ(κ0θ) and ℜ

(
(−2iκ0)(−ω2)

2π(iκ0)2 θ

)
=

ω2

π|κ0|2
ℑ(κ0θ)

are positive, yields the claim. ut

Theorem 4.4. Let ω,R > 0, p ∈ L∞(R+) with supp(p) ⊂ [0,R), and κ0 ∈ C with positive real part. If
u is an outgoing solution to (3.2) and uint := u|(0,R), then there exists a function U ∈ H+(S1) such that
(uint,U) ∈ H1((0,R))×H+(S1) solves

−u′0v(0) = bint(uint,vint)+bext,κ0 ((uint(R),U),(vint(R),V )) (4.9)

for all test functions (vint,v) ∈ H1((0,R))×H+(S1). Vice versa, if (uint,U) ∈ H1((0,R))×H+(S1) is a
solution to (4.9), then uint is the restriction to (0,R) of an outgoing solution u ∈ H1

loc(R+) to (3.2).

Proof. For a radiating solution u to (3.2), M κ0 L u(•+R) = 1
iκ0

T −(u(R),U) with

U(z) =
(ω−κ0)u(R)

(κ0−ω)z+(κ0 +ω)
, z ∈ S1. (4.10)

We have already shown, that (uint,U)∈H1((0,R))×H+(S1) solves (4.9) for a special kind of test functions.
Since these test functions are dense in H+(S1) (see [20, Lemma A.2]) and since the bilinear form in (4.9)
is continuous, (4.9) holds true for all test functions in H1((0,R))×H+(S1).

Conversely, let (uint,U)∈H1((0,R))×H+(S1) be a solution to (4.9). As in the proof of Theorem 3.1, we
start with test functions (vint,V ) ∈ H1((0,R))×H+(S1) with vint ≡ 0. (4.9) reduces to the exterior bilinear
form with vint(R)= 0, which is coercive due to the last lemma. Hence, U is unique and due to the first part of
the proof given by (4.10). Plugging U into (4.7) with arbitrary test functions (vint,V )∈H1((0,R))×H+(S1)
leads to bext,κ0 ((uint(R),U),(vint(R),V ))= iωuint(R)vint(R), i.e. the correct Dirichlet-to-Neumann operator.

ut
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Corollary 4.5 Let (uint,U) ∈ H1((0,R))×H+(S1) be a solution to (4.9). Then uint is independent of the
parameter κ0.

4.3 Hardy space infinite elements in one dimension

Theorem 4.6. With the same assumptions as in Theorem 4.4 let Vint,h ⊂ H1((0,R)) be a standard finite
element space such that the orthogonal projection onto Vint,h converges point wise for all v ∈ H1((0,R)).
Moreover, let ΠN ⊂ H+(S1) denote the set of polynomials of maximal order N ∈ N0 and

Vh,N :=Vint,h×ΠN ⊂ H1((0,R))×H+(S1). (4.11)

If (4.10) is uniquely solvable with solution (uint,U) ∈ H1((0,R))×H+(S1), then for sufficiently small h
and sufficiently large N there exists a unique solution (uint,h,UN) ∈ Vh,N to (4.10) with test functions only
in Vh,N . Moreover, there exist constants C,c > 0 independent of h and L such that

‖uint,h−uint‖H1((0,R)) ≤C
(

inf
vint,h∈Vint,h

‖uint− vint,h‖H1((0,R))+ exp(−cN)

)
. (4.12)

Proof. Similarly to the linear complex scaling in Sec. 3.2 there holds a Gårding inequality in H1((0,R))×
H+(S1) and the theorem is a consequence of the projection method applied to a compact perturbation
of a coercive operator [27, Theorems 13.6 and 13.7]. For κ0 = ω there is no approximation error in the
Hardy space. Otherwise, U has a pole at p :=

(
ω+κ0
ω−κ0

)
, which has absolute value larger than one. Since

U(z) = uint(R)∑
∞
j=0 p−( j+1)z j, infVN∈ΠN ‖VN−U‖L2(S1) converges exponentially with p−(N+1). ut

In the one dimensional case the choice of the parameter κ0 is obvious: If κ0 = ω , we have U ≡ 0 and the
Hardy space method reduces to the correct Dirichlet-to-Neumann operator. In higher dimensions this is no
longer the case, but typically κ0 ≈ ω remains a good choice.

In contrast to the complex scaling method, no truncation error occurs and no mesh in the exterior domain
is needed. Moreover, we have exponential convergence with respect to the number of unknowns in the
Hardy space. But we have to implement a new bilinear form and a new infinite element.

In the one dimensional case this is extremely easy. As basis functions for (vint,h(R),VN) ∈ C×ΠN we
use Φ−1(z) := (1,0) and the monomials Φ j(z) := (0,z j), j = 0, . . . ,N. The operators T ±,N : C×ΠN →
ΠN+1 = span{z0, . . . ,zN+1} in this basis are given by the bidiagonal matrices

T±,N =
1
2


1 ±1

. . . . . .
1 ±1

1

 ∈ R(N+2)×(N+2).

Since qκ0 is orthogonal with respect to the monomials, we have

SN :=
(
qκ0 (T + Φ j,T + Φk)

)N
j,k=−1 = (−2iκ0)T>+,NT+,N , (4.13a)

MN :=
(
qκ0 (1/(iκ0)T −Φ j,1/(iκ0)T −Φk)

)N
j,k=−1 =

2i
κ0

T>−,NT−,N (4.13b)

and finally (
bext,κ0 (Φ j,Φk)

)N
j,k=−1 = SN−ω

2MN .

Only this matrix has to be implemented for Hardy space infinite elements in one dimension. The first row
and the first column belong to vint(R) and uint(R) respectively. Hence, they have to be coupled with the
corresponding degrees of freedoms of Vint,h ⊂ H1((0,R)).
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4.4 Radial Hardy space infinite elements

As for the complex scaling method there exists different ways to generalize one dimensional infinite ele-
ments to two or three dimensions. For generalized Cartesian Hardy space infinite elements in two dimen-
sions we refer to [33, Sec. 2.3.1.]. Here, we only use radial infinite elements. Since the correct mathematical
framework is rather involved, we restrict ourselves to the presentation of the numerical method. For a math-
ematically correct construction of the method we refer to [20] and for proof of convergence to [16].

We use the same assumptions on the interface Γ = Ωint ∩Ωext as for the radial complex scaling in
Sec. 3.3. For a parametrization η : S ⊂ Rd−1→ Γ of the interface, we parametrize the exterior domain by
F : R+×S→Ωext with

F(r,ϕ) := (1+ r)η(ϕ), r > 0,ϕ ∈ S. (4.14)

If η is piecewise smooth, due to Lemma 3.5 F is piecewise smooth in each segment of the exterior domain
(see Fig. 1(a)) and at least continuous everywhere. Hence, the exterior bilinear form in (3.1) is given by∫

R+×S

((
∂ruext
∇ϕ uext

)>
J−1J−>

(
∂rvext
∇ϕ vext

)
−ω

2uextvext

)
det(J)d(r,ϕ),

with uext := u ◦F , vext := v ◦F and Jacobian J(r,ϕ) = (η(ϕ),(1+ r)Dϕ η(ϕ)) ∈ Rd×d . Since J(r,ϕ) =

Ĵ(ϕ)
(

1 0
0 (1+r)Idd−1

)
with Ĵ(ϕ) := (η(ϕ),Dϕ η(ϕ)), we define

det(Ĵ(ϕ))Ĵ(ϕ)−1Ĵ(ϕ)−> =:
(

G11(ϕ) G21(ϕ)
>

G21(ϕ) G22(ϕ)

)
,

with G11(ϕ) ∈ R, G21(ϕ) ∈ Rd−1 and G22(ϕ) ∈ R(d−1)×(d−1) for all ϕ ∈ S. For the exterior bilinear form
we have to discretize the two integrals∫

Ωext
∇u ·∇vdx =

∫
S

∫
∞

0

(
(1+ r)d−1

∂ruext(r,ϕ)G11(ϕ)∂rvext(r,ϕ)

+(1+ r)d−2
∂ruext(r,ϕ)G21(ϕ)

>
∇ϕ vext(r,ϕ)

+(1+ r)d−2
∇ϕ uext(r,ϕ)>G21(ϕ)∂rvext(r,ϕ)

+(1+ r)d−3
∇ϕ uext(r,ϕ)>G22(ϕ)∇ϕ vext(r,ϕ)

)
dr dϕ

(4.15a)

and ∫
Ωext

uvdx =
∫

S

∫
∞

0
uext(r,ϕ)vext(r,ϕ)(1+ r)d−1det(Ĵ(ϕ))dr dϕ. (4.15b)

Similar to Def. 4.1 we formulate the radiation condition in terms of the Möbius and Laplace transformed
function: uext is outgoing if M κ0 L uext(•,ϕ) exists for all ϕ ∈ S and belongs to the Hardy space H+(S1).
In order to use this radiation condition, we transform the integrals

∫
∞

0 (. . .)dr in radial direction as in the
one dimensional case into the bilinear form (4.5) using the identity [20, Lemma A.1]. Special attention has
to be paid to the the factors (1+ r)±1.

In order to treat these, we first study the Möbius and Laplace transformation of a multiplication op-
erator. If M κ0 L v and

(
M κ0 L v

)′ belong to the Hardy space H+(S1), then M κ0 L {r 7→ rv(r)} =
−1

2iκ0
D M κ0 L v with

(D V )(z) := (z−1)2V ′(z)+(z−1)V (z), V ∈ H+(S1).

Hence, we deduce

M κ0 L
{

r 7→ (1+ r)±1v(r)
}
=

(
I − 1

2iκ0
D

)±1

M κ0 L v, (4.16)
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with the identity operator I : H+(S1)→H+(S1). For implementation the orthogonal projection onto ΠN+1
of I − 1

2iκ0
D : ΠN+1→ΠN+2 is useful. In the monomial basis it is given by

Dκ0 := IdN+2−
1

2iκ0


−1 1
1 −3 2

2 −5 3
. . . . . . . . .

N −2N−1 N
N+1 −2N−3

 ∈ C(N+2)×(N+2).

Note, that it is symmetric, i.e. D>κ0
= Dκ0 . For the inverse operator (I − 1

2iκ0
D)−1 we use the inverse D−1

κ0
as approximation.

We are now ready for a computation of the radial Hardy space infinite elements: Let Vh ⊂H1(Ωint) be a
standard finite element discretization of H1(Ωint) and let Ψ1, . . . ,ΨNΓ

with NΓ ∈N denote the non vanishing
traces of the finite element basis functions in H1(Ωint). We need standard finite element matrices on the
interface Γ

MΓ :=
(∫

S
det(Ĵ(ϕ))Ψj(ϕ)Ψk(ϕ)dϕ

)NΓ

j,k=1
, S00

Γ :=
(∫

S
Ψj(ϕ)G11(ϕ)Ψk(ϕ)dϕ

)NΓ

j,k=1
,

S10
Γ :=

(∫
S

(
∇ϕΨj(ϕ)

)>G21(ϕ)Ψk(ϕ)dϕ

)NΓ

j,k=1
, S11

Γ :=
(∫

S

(
∇ϕΨj(ϕ)

)>G22(ϕ)∇ϕΨk(ϕ)dϕ

)NΓ

j,k=1
,

and for the basis functions Φ−1, . . . ,ΦNr+1 ∈C×ΠNr defined in the last subsection the non-standard Hardy
space infinite elements

Mr :=
2i
κ0

T>−,Nr D
d−1
κ0

T−,Nr , S00
r :=

2i
κ0

T>−,Nr D
d−3
κ0

T−,Nr ,

S10
r :=−2T>+,Nr D

d−2
κ0

T−,Nr , S11
r := (−2iκ0)T>+,Nr D

d−1
κ0

T+,Nr .

For the tensor product basis functions Φ j⊗Ψk the discretization of
∫

Ωext
∇u ·∇vdx is due to (4.15) given

by
S := S11

r ⊗S00
Γ +S10

r ⊗S01
Γ

>
+S10

r
>⊗S10

Γ +S00
r ⊗S11

Γ . (4.17a)

The infinite element matrix for
∫

Ωext
uvdx is given by

M := Mr⊗MΓ . (4.17b)

As in the one dimensional case the basis functions Φ−1⊗Ψk, k = 1, . . . ,NΓ , have to be coupled to the
corresponding basis functions in H1(Ωint) in order to ensure continuity at the interface Γ .

Remark 4.7 If uint is a solution to (2.2), ũext a solution to (2.1), uext = ũext ◦F and

U(z,ϕ) :=
2iκ0 M κ0 L {uext(•,ϕ)}(z)−uint(η(ϕ))

z−1
,

then (uint,U) belongs to a subspace of H1(Ωint)×H+(S1)⊗L2(S). This subspace is constructed such that
the bilinear forms in (4.15) are continuous (see [20, Eq. (3.7) and Lemma A.3] for a slightly different
bilinear form or [16, Eq. (3.7)]). The Hardy space infinite element method is in this space a Galerkin
method with tensor product elements. In [16] a Gårding inequality is shown leading to super-algebraic
convergence with respect to the number of unknowns in the Hardy space.

The numerical results in [20, 33, 32] confirm this result. The main parameters of the method are κ0, the
number of unknowns in radial direction and the choice of the interface Γ . The numerical results indicate,
that κ0 ≈ ω is recommendable. The interface Γ has to be chosen carefully.

Of course, in order to minimize the computational effort in Ωint, one would like to choose Ωint as small
as possible. On the other hand the numerical results show, that the number of radial unknowns has to
be increased, if the distance of Γ to a source of the scattered wave becomes smaller. For a distance of
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one or two wavelengths typically less than 10 radial unknowns are needed to ensure, that the error of the
infinite elements is negligible. As mentioned in [16, Remark 3.3], highly anisotropic interfaces Γ should
be avoided, when radial infinite elements are used. For such interfaces Cartesian infinite elements as in [33,
Sec. 2.3.1.] are preferable.

5 Summary

We have presented PML and Hardy space infinite element methods for Helmholtz problems in open sys-
tems. Both methods are Galerkin methods and for both methods convergence can be shown. However, the
type of convergence is different.

PML methods converge exponentially with increasing layer thickness. The convergence with respect to
the finite element discretization of the perfectly matched layer depends on the used finite elements and typ-
ically is hk for polynomials of order k. Hardy space infinite element methods converge super-algebraically
with respect to the number of unknowns in radial direction and with the usual finite element convergence
order for the interface unknowns. In a comparison in [33] the Hardy space infinite element method was su-
perior to a complex scaling method for a two dimensional problem with inhomogeneous exterior domain.
Of course, this might change in a different situation.

For the Hardy space infinite element method the programming effort typically is noticeable larger than
for a standard PML. A non-standard infinite element with non-standard discretization matrix has to be
implemented. The matrix itself is very easy and do not require a remarkable effort. On the other hand a
standard PML will not converge, if the layer thickness or the damping is not increased. Realizing this in a
given finite element code is not an easy task neither.

One big advantage of both methods is the flexibility. In this chapter we have only used Helmholtz
problems in free space, but the methods can be used for wave-guides [1, 21] and inhomogeneous exterior
domains [33, 7] as well. Moreover, they are not restricted to scalar problems in frequency domain.

Acknowledgements Support from the Austrian Science Fund (FWF) through grant P26252 is gratefully acknowledged.
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