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Abstract. In this note, we connect two different topics from linear algebra and numerical analysis: hypocoercivity of semi-
dissipative matrices and strong stability for explicit Runge–Kutta schemes. Linear autonomous ODE systems with a non-coercive
matrix are called hypocoercive if they still exhibit uniform exponential decay towards the steady state. Strong stability is a property
of time-integration schemes for ODEs that preserve the temporal monotonicity of the discrete solutions. It is proved that explicit
Runge–Kutta schemes are strongly stable with respect to semi-dissipative, asymptotically stable matrices if the hypocoercivity
index is sufficiently small compared to the order of the scheme. Otherwise, the Runge–Kutta schemes are in general not strongly
stable. As a corollary, explicit Runge–Kutta schemes of order p ∈ 4N with s = p stages turn out to be not strongly stable. This
result was proved in [4], filling a gap left open in [8]. Here, we present an alternative, direct proof.

Hypocoercive ODEs

For linear autonomous ordinary differential equations (ODEs),

du
dt
= Lu, t > 0, u(0) = u0 ∈ Cn, (1)

with Lyapunov stable matrices L ∈ Cn×n (i.e., all eigenvalues of L have nonpositive real part and the purely imaginary
eigenvalues are non-defective), we are concerned with characterizing their short-time decay behavior. To this end, we
review first hypocoercivity properties of such systems [1, 10]:

Definition 1 (a) The matrix L ∈ Cn is called dissipative (resp. semi-dissipative) if its Hermitian part, LH :=
(L + L∗)/2 is negative definite (resp. negative semi-definite).

(b) −L is called hypocoercive (or positive stable) if there are constants λ > 0 and c ≥ 1 such that the matrix
exponential satisfies

∥eLt∥2 ≤ ce−λt, t ≥ 0.

(c) Let L ∈ Cn be semi-dissipative. Its hypocoercivity index (HC-index) mHC is defined as the smallest integer
m ∈ N0 (if it exists) such that

Tm :=
m∑

j=0

L j
S LH(L∗S ) j < 0,

where LS := (L − L∗)/2 denotes the skew-Hermitian part of L.

The HC-index of L characterizes the structural complexity of the interplay between LH and LS , and it is bounded by

0 ≤
n − rank LH

rank LH
≤ mHC(L) ≤ n − rank LH ≤ n − 1;



see [1, 3, 6]. Hence the matrix L is dissipative if and only if mHC(L) = 0. For later use, we consider the example

L =
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
∈ RN×N . (2)

Using the Kalman rank condition [1, Proposition 1], one easily verifies that L has (maximal) HC-index N − 1. More-
over, the matrix L is asymptotically stable, i.e., it has only eigenvalues with negative real part.

We recall that the HC-index gives a precise characterization of the short-time behavior of the solutions to (1):

Proposition 1 ([2]) Let the matrix L ∈ Cn×n be semi-dissipative. Then L is asymptotically stable (with HC-index
mHC ∈ N0) if and only if

∥etL∥2 = 1 − cta + O(ta+1) for t ∈ [0, ε), (3)

for some a, c, ε > 0. In this case, necessarily a = 2mHC + 1.

The sharp multiplicative factor c in (3) has been determined explicitly in [2, Theorem 2.7(b)].

Strong stability for Runge–Kutta methods

It is known that a matrix L ∈ Cn×n is Lyapunov stable if and only if there exists a positive definite Hermitian matrix P
such that

L∗P + PL ≤ 0. (4)

In this case, the solution u(t) of (1) is nonincreasing in the norm ∥ · ∥P :=
√
⟨·,P·⟩ :

d
dt
∥u(t)∥2P = ⟨u, (L

∗P + PL)u⟩ ≤ 0. (5)

It is often desirable that a numerical scheme for (1) reproduces this decay behavior on the discrete level.
Following [4], we consider here explicit Runge–Kutta schemes, where uk is an approximation for u(kτ), k ∈ N0,

and τ is the uniform time step:

uk = uk−1 + τ

s∑
i=1

biKk
i , Kk

i = L
(
uk−1 + τ

i−1∑
j=1

ai jKk
j

)
, i = 1, . . . , s, (6)

where bi ∈ C are the weights, ai j ∈ C are the coefficients of the Runge–Kutta matrix, and s ∈ N is the number of
stages. This scheme can be rewritten in compact form as uk = R(τL)uk−1, using its stability function R(z). For the
scheme (6) to have order p, one needs at least s ≥ p stages. In this case, its stability function takes the form

R(z) =
p∑

j=0

z j

j!
+

s∑
j=p+1

c j
z j

j!
, z ∈ C, cp+1 , 1, (7)

with some constants cp+1, . . . , cs ∈ C.
For the discrete analog of the monotonicity estimate (5), we shall use the following notions:

Definition 2 (a) The Runge–Kutta scheme (6) is strongly stable if for all matrix dimensions n ∈ N, for all
Lyapunov stable matrices L ∈ Cn×n, and for all Hermitian matrices P > 0 such that (4) holds, the numerical
solution to (1) satisfies ∥u1∥P ≤ ∥u0∥P for all initial data u0 ∈ Cn and sufficiently small time steps.

(b) The Runge–Kutta scheme (6) is strongly stable w.r.t. a subset L0 of Lyapunov stable matrices (of any dimension
n), if the condition from (a) holds for all L ∈ L0.



Strong stability of explicit Runge–Kutta schemes was studied in, e.g., [9, §4] and [8]. We shall focus on explicit
Runge–Kutta schemes with s = p stages. Their stability function is given by the first sum in (7), and their stability
behavior was analyzed in [8]:

They are
{

strongly stable if p ∈ 4N0 + 3 ,
not strongly stable if p ∈ 4N0 + 1 or p ∈ 4N0 + 2 ,

but the following instability result for the case p ∈ 4N was only found and proved recently in [4]:

Theorem 2 ([4]) Explicit Runge–Kutta schemes of order p ∈ 4N with s = p stages are not strongly stable.

While the proof of this result in [4] was based on the quite technical result in Proposition 1, we shall give here an
independent direct proof. In order to motivate our subsequent proof, we first cite another result from [4]. To this end,
we define the following subset of asymptotically stable (and thus Lyapunov stable) matrices:

Lm
AS := {L is semi-dissipative and asymptotically stable : mHC(L) ≤ m}, m ∈ N0.

Proposition 3 ([4]) All explicit Runge–Kutta schemes of order p ∈ N (with s ≥ p stages) are strongly stable
w.r.t. Lm

AS , if m ∈ N0 satisfies 2m + 1 ≤ p.

Proof (of Theorem 2). For each fixed p ∈ 4N, we shall analyze an asymptotically stable matrix L as a counterexample.
Due to Proposition 3, the HC-index of such L must be “large enough”. More precisely, we choose L of the form (2)
with N := 1 + p/2. It satisfies L ∈ Lm

AS with m = p/2, which violates the index condition in Proposition 3, and may
hence serve as a counterexample.

When choosing P = I, inequality (4) is satisfied, and it remains to show that

∥R(τL)∥2 := sup
∥u0∥=1

∥R(τL)u0∥ ≤ 1, where R(z) =
p∑

j=0

z j

j!
, (8)

does not hold on any interval τ ∈ [0, ε), with ε > 0 arbitrarily small, see Definition 2(a). Equivalently, we shall
show that the matrix function M(τ) := I − R(τL)∗R(τL) has a negative determinant on (0, ε) for sufficiently small
ε > 0. Hence, R(τL)∗R(τL) has at least one eigenvalue larger than one, and ∥R(τL)∥2 > 1 follows. We shall obtain the
inequality det M(τ) < 0, for τ small enough, from the subsequent lemma, thus closing this proof. □

Lemma 4 Let p ∈ 4N, and L of the form (2) with N := 1 + p/2. Then, M(τ) := I − R(τL)∗R(τL) satisfies

det M(τ) = cτN2
+ O(τN2+1) as τ→ 0 , (9)

with some c < 0 and R(z) defined in (8).

Proof. We only give a sketch of the proof here, the full details are given in [5].
First, we consider the Runge–Kutta method with p = s = 4, and hence N = 3. In this case, we compute the

matrix M(τ) explicitly:

M(τ) =

 τ
5/12 τ4/4 τ3/3
τ4/4 2τ3/3 τ2

τ3/3 τ2 2τ

 +
 O(τ6) O(τ5) O(τ4)
O(τ5) O(τ4) O(τ3)
O(τ4) O(τ3) O(τ2)

 as τ→ 0 .

The determinant of the first matrix yields the leading order coefficient:

det M(τ) = det

 τ
5/12 τ4/4 τ3/3
τ4/4 2τ3/3 τ2

τ3/3 τ2 2τ

 + O(τ10) = −
τ9

216
+ O(τ10) as τ→ 0.

Consequently, det M(τ) < 0 for sufficiently small τ > 0, which disproves (8) for p = 4.



For the general case p ≥ 8, we insert the stability matrix (7),

M(τ) = I −
( p∑

j=0

τ j

j!
(L∗) j

) ( p∑
ℓ=0

τℓ

ℓ!
Lℓ

)
,

expand the matrix coefficients Mi j of M(τ) in powers of τ and use properties of the matrices L and LH , leading to

Mi j = m̄i jτ
p+3−(i+ j) − n̄i jτ

p+1 + O(τp+4−(i+ j)),

where m̄i j and n̄i j are numbers depending on p and LH . The determinant of M(τ) can be computed by using the
Leibniz formula for determinants and definition N = p/2 + 1:

det M(τ) = det(m̄i j − n̄i j)1≤i, j≤Nτ
N2
+ O(τN2+1).

The remaining determinant can be calculated by taking into account the explicit formula of the Hankel determinant:

c := det(m̄i j − n̄i j)1≤i, j≤N = 2N
( N∏

i=1

1
(p/2 − i + 1)!

)2
∏

1≤i< j≤N(i − j)2∏N
i, j=1(i + ( j − 1))

(
1 −

(
p

p/2

))
.

We deduce from
(

p
p/2

)
> 1 that c < 0 as claimed in Lemma 4. In particular, for sufficiently small τ > 0, det M(τ) is

negative, which also finishes the proof of Theorem 2. □

Finally, we note that ∥R(τL)∥2 > 1, the condition to violate strong stability, can also be tested numerically. But
only for p = 4 the computation can be carried out in the standard double precision of Matlab: It shows that ε = 0.304
can be used, yielding max[0,ε] ∥R(τL)∥2 − 1 ≈ 1.3E-6. For larger values of p, this computation is numerically so
sensitive that we used octuple precision: For p = 8 one can use ε = 0.027, yielding max[0,ε] ∥R(τL)∥2 − 1 ≈ 9.0E-22,
and for p = 12, ε = 0.027 with max[0,ε] ∥R(τL)∥2 − 1 ≈ 7.2E-46.
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