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1 polynomial interpolation

goal: given (xi, fi), i = 0, . . . , n,

find p ∈ Pn s.t. p(xi) = fi, i = 0, . . . , n. (1.1)

applications (examples):

• “Extrapolation”: typically fi = f(xi) for an (unknown) function f . For x 6∈ {x0, . . . , xn}
the value p(x) yields an approximation to f(x).

• “Dense output/plotting of f”, if only the values fi = f(xi) are given (or, e.g., function
evaluations are too expensive)

• Approximation of f : integration or differentiation of f → integrate or differentiate the
interpolating polynomial p

1.1 Existence and uniqueness of the polynomial interpo-

lation problem

Theorem 1.1 (Lagrange interpolation) Let the points (“knots”) xi, i = 0, . . . , n, be dis-
trinct. Then there exists, for all values (fi)

n
i=0 ⊂ R, a unique interpolating polynomial p ∈ Pn.

It is given by

p(x) =

n∑

i=0

fiℓi(x), ℓi(x) =

n∏

j=0
j 6=i

x− xj

xi − xj
(1.2)

The polynomials (ℓi)
n
i=0 are called Lagrange basis of the space Pn w.r.t. the points (xi)

n
i=0.

Proof: 1. step: one observes that ℓi ∈ Pn, i = 0, . . . , n.
2. step: one asserts that ℓi(xj) = δij, i.e., ℓi(xi) = 1 and ℓi(xj) = 0 for j 6= i.
3. step: Steps 1+2 imply that p given by (1.2) is a solution to the polynomial interpolation
problem.
4. step: Uniqueness: Let p1, p2 ∈ Pn be two interpolating polynomials. Then, the difference
p := p1 − p2 is a polynomial of degree n with (at least) n + 1 zeros. A mathematical theorem
(“fundamental theorem of algebra”) states that a non-zero polynomial of (exact) degree n has
exactly n zeros (counting multiplicity). Hence, p ≡ 0, i.e., p1 = p2. ✷

Example 1.2 slide 2
The polynomial p ∈ P2 interpolating the data

(0, 0), (
π

4
,

√
2

2
) (

π

2
, 1)
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is given by

p(x) = 0 · ℓ0(x) +
√
2

2
· ℓ1(x) + 1 · ℓ2(x),

ℓ0(x) =
(x− π/4)(x− π/2)

(0− π/4)(0− π/2)
= 1− (1.909...)x+ (0.8105...)x2,

ℓ1(x) =
(x− 0)(x− π/2)

(π/4− 0)(π/4− π/2)
= (2.546...)x− (1.62...)x2

ℓ2(x) =
(x− 0)(x− π/4)

(π/2− 0)(π/2− π/4)
= −(0.636...)x+ (0.81...)x2.

That is, p(x) = (1.164...)x− (0.3357...)x2

Example 1.3 The data of Example 1.2 were chosen to be the values fi = sin(xi), i.e., f(x) =
sin x. An approximation to f ′(0) = 1 could be obtained as f ′(0) ≈ p′(0) = 1.164.... An

approximation to
∫ π/2

0
f(x) dx = 1 is given by

∫ π/2

0
p(x) dx = 1.00232...

finis 1.DS

1.2 Neville-Scheme

It is not efficient to evaluate the interpolating polynomial p(x) at a point x based on (1.2)
since it involves many (redundant) multiplications when evaluating the ℓi. Traditionally, an
interpolating polynomial is evaluated at a point x with the aid of the Neville scheme:

Theorem 1.4 Let x0, . . . , xn, be distinct knots and let fi, i = 0, . . . n, be the corresponding
values. Denote by pj,m ∈ Pm the solution of

find p ∈ Pm, s.t. p(xk) = fk for k = j, j + 1, . . . , j +m. (1.3)

Then, there hold the recursions:

pj,0 = fj , j = 0, . . . , n (1.4)

pj,m(x) =
(x−xj)pj+1,m−1(x)−(x−xj+m)pj,m−1(x)

xj+m−xj
m ≥ 1 (1.5)

The solution p of (1.1) is p(x) = p0,n(x).

Proof: (1.4) X
(1.5) Let π := be the right-hand side of (1.5). Then:

• π ∈ Pm

• π(xj) = pj,m−1(xj) = fj

• π(xj+m) = pj+1,m−1(xj+m) = fj+m

2



• for j + 1 ≤ i ≤ j +m− 1 there holds

π(xi) =
(xi − xj)

=fi︷ ︸︸ ︷
pj+1,m−1(xi)−(xi − xj+m)

=fi︷ ︸︸ ︷
pj,m−1(xi)

xj+m − xj

=

=
(xi − xj − xi + xj+m)fi

xj+m − xj
= fi

Theorem 1.1 implies π = pj,m.

✷

Theorem 1.4 shows that evaluating p at x can be realized with the following scheme:

x0 f0 =: p0,0(x) −→ p0,1(x) −→ p0,2(x) −→ . . . −→ p0,n(x) = p(x)

ր ր
... ր

x1 f1 =: p1,0(x) −→ p1,1(x)
...

ր
...

...

x2 f2 =: p2,0(x)
...

...
...

...
...

...
...

...
...

...
... −→ pn−2,2(x)

...
...

...
... ր

...
...

... −→ pn−1,1(x)
...

...
... ր

xn fn =: pn,0(x)

J here, the operation “
−→
ր ” is realized by formula (1.5) K

slide 3

Exercise 1.5 Formulate explicitly the algorithm that computes (in a 2-dimensional array) the
values pi,j. How many multiplications (in dependence on n) are needed? (It suffices to state α
in the complexity bound O(nα).)

The scheme computes the values “column by column”. If merely the last value p(x) is required,
then one can be more memory efficient by overwriting the given vector of data:

Algorithm 1.6 (Aitken-Neville Scheme)
Input: knot vector x ∈ Rn+1, vector y ∈ Rn+1 of values, evaluation point x ∈ R
Output: p(x), p solves (1.1)

for m = 1 : n do

for j = 0 : n−m do ⊲ array has triangular form

3



yj :=
(x−xj) yj+1−(x−xj+m) yj

xj+m−xj

end for

end for

return y0

Remark 1.7 • Cost of Alg. 1.6: O(n2)

• The knots xi need not be sorted.

• The Neville scheme, i.e., the algorithm formulated in Exercise 1.5 is particularly con-
venient, if additional data points are added at a later time: one merely appends one
additional row at the bottom.

1.3 Newton representation of the interpolating polyno-

mial (CSE)

The cost of evaluating the interpolating polynomial p at a single point x is O(n2). If the
interpolating polynomial has to be evaluated in many points x (e.g., for plotting), then it is of
interest to reduce the cost (i.e., number of floating point operations) from O(n2) to O(n) per
evaluation point x. The “classical” way to achieve this is with the Horner scheme.
The Newton polynomials ωj, j = 0, . . . , n, w.r.t. the knots x0, x1, . . . , xn, are given by

ωj(x) :=

j−1∏

i=0

(x− xi) (an empty product is defined to be 1);

written explicitly:

1, (x−x0), (x−x0)(x−x1), (x−x0)(x−x1)(x−x2), . . . , (x−x0)(x−x1) · · · (x−xn−1). (1.6)

These polynomials form a basis of Pn. That is, for every polynomial p(x) of degree n there are
coefficients d0, . . . , dn, such that

p(x) = d0 · 1 + d1(x− x0) + d2(x− x0)(x− x1) + d3(x− x0)(x− x1)(x− x2) (1.7)

+ · · · + dn(x− x0)(x− x1) · · · (x− xn−1). (1.8)

Example A particular case is x0 = x1 = · · · = xn−1. Then the representation of p is the Taylor polynomial (around x0). ✷

Once the coefficients di are available, the polynomial p(x) can be evaluated very efficiently by
rearranging (1.7) as follows:

p(x) = d0 + d1(x− x0) + d2(x− x0)(x− x1) + . . .+ dn(x− x0)(x− x1) . . . (x− xn−1) =

= d0 + (x− x0)

[
d1 + (x− x1)

[
d2 + (x− x2)

[
. . .
[
dn−1 + (x− xn−1)[dn]

]
. . .
]]]

This procedure is formalized in the following “Horner scheme”:

4



Algorithm 1.8 (Horner scheme)
Input: knots xi, coefficients di, evaluation point x

Output: p(x) =
n∑

j=0

dj ωj(x)

y := dn
for j = n− 1 : −1 : 0 do

y = dj + (x− xj)y
end for

return y

Remark 1.9 Cost:

• O(n2) to compute the coefficients dj (→ see below)

• O(n) to evaluate p(t) using Alg. 1.8

⇒ Horner scheme is useful, if p is evaluated at “many” points t.
The Horner scheme is particularly economical on multiplications. Thus, the Horner scheme is
useful in situations where multiplications are expensive. An example is the evaluation of matrix
polynomials p(A) =

∑n
i=0 aiA

i, since the multiplication of two N × N matrices A, B costs
O(N3) floating point operations.

Example (Conversion of binary numbers into decimal numbers) The binary number 1011binary means
1 · 20 + 1 · 21 + 0 · 22 + 1 · 23. With x = 2, we have to evaluate a polynomial at x = 2, which can be
done efficiently with the Horner scheme. ✷

We now answer the question how to determine the coefficients di in (1.7) for given data

(x0, f0), (x1, f1), . . . , (xn, fn).

This is achieved by using successively the interpolation conditions:

x = x0 in (1.7)
f0 = p(x0) = d0 (1.9)

x = x1 in (1.7)
f1 = p(x1) = d0 + d1(x1 − x0) = f0 + d1(x1 − x0)

⇒ d1 =
f1 − f0
x1 − x0

(1.10)

x = x2 in (1.7)

f2 = p(x2) = d0 + d1(x2 − x0) + d2(x2 − x0)(x2 − x1)

= f0 +
f1 − f0
x1 − x0

(x2 − x0) + d2(x2 − x0)(x2 − x1)

5



Rearranging yields

f2 − f1 + f1 − f0 −
f1 − f0
x1 − x0

(x2 − x0) = d2(x2 − x0)(x2 − x1)

⇐⇒ f2 − f1
x2 − x1

+
(f1 − f0)(x1 − x0)

(x1 − x0)(x2 − x1)
− (f1 − f0)(x2 − x0)

(x1 − x0)(x2 − x1)
= d2(x2 − x0)

⇐⇒ f2 − f1
x2 − x1

− (f1 − f0)(x0 − x1) + (f1 − f0)(x2 − x0)

(x1 − x0)(x2 − x1)
= d2(x2 − x0)

⇐⇒ f2 − f1
x2 − x1

− f1 − f0
x1 − x0

= d2(x2 − x0)

and finally

f2−f1
x2−x1

− f1−f0
x1−x0

x2 − x0
= d2 (1.11)

...

(1.9), (1.10), and (1.11) suggest to define the so-called divided differences :

zeroth divided difference
f [x0] := f(x0) = f0

first divided difference

f [x0, x1] :=
f(x1)− f(x0)

x1 − x0

=
f1 − f0
x1 − x0

=
f [x1]− f [x0]

x1 − x0

second divided difference

f [x0, x1, x2] :=

f2−f1
x2−x1

− f1−f0
x1−x0

x2 − x0

=
f [x1, x2]− f [x0, x1]

x2 − x0

Analogously, we obtain the third divided difference

f [x0, x1, x2, x3] :=

f3−f2
x3−x2

− f2−f1
x2−x1

x3−x1
−

f2−f1
x2−x1

− f1−f0
x1−x0

x2−x0

x3 − x0

=
f [x1, x2, x3]− f [x0, x1, x2]

x3 − x0

.

We recognize how the k-th divided difference should be defined:
The denominator is the difference xk−x0, the numerator is the difference between the (k−1)-th
divided difference for the knots x1, . . . , xk and the (k−1)-th divided difference for the knots
x0, x1, . . . , xk−1. Formally:

Definition 1.10 The divided differences are given by the following recursion:

f [xi] = f(xi) = fi, i = 0, 1, . . . , n,

and

f [x0, x1, . . . , xk] :=
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0
. (1.12)
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The above discussion suggests that the coefficients di in (1.7) are given by the divided differ-
ences. This is indeed the case:

Theorem 1.11 Let the knots x0, . . . , xn be distinct. Then the interpolating polynomial p has
the form

p(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1) (1.13)

+ · · · + f [x0, x1, . . . , xn](x− x0) · · · (x− xn−1).

Proof: For any polynomial π ∈ Pn of the form π(x) =
∑n

i=0 aix
i we define its leading coefficient

lc(π) := an. We show with the notation of Theorem 1.4 that, for any j, k,

lc(pj,k) = f [xj , . . . , xj+k]. (1.14)

To see (1.14), we proceed by induction on k. By definition, we have pj,0 = f [xj ] for all j. Let
us assume that (1.14) holds true for all k ≤ K. Then with the aid of Theorem 1.4

lc(pj,K+1)
Thm. 1.4

=
lc(pj+1,K)− lc(pj,K)

xj+(K+1) − xj

induction hyp.
=

f [xj+1, . . . , xj+1+K ]− f [xj, . . . , xj+K ]

xj+(K+1) − xj

Def. 1.10
= f [xj , . . . , xj+K+1].

This shows (1.14). From (1.14) we obtain the claim of the theorem (why?). ✷

Remark 1.12 Divided differences can be interpreted as approximations to derivatives.

1. Consider the specific knots x1 = x0+h, x2 = x0+2h, x3 = x0+3h, . . . for small h. Then
we have (the ≈ becomes an equality in the limit h→ 0):

f [x0, x1] =
f1 − f0

h
≈ f ′(x0)

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

2h
≈ 1

2

f ′(x1)− f ′(x0)

h
≈ 1

2
f ′′(x0)

f [x0, x1, x2, x3] =
f [x1, x2, x3]− f [x0, x1, x2]

3h
≈ 1

3

1
2
f ′′(x1)− 1

2
f ′′(x0)

h
≈ 1

2 · 3f
′′′(x0).

In general, one has

f [x0, x1, . . . , xk] ≈
1

k!
f (k)(x0). (1.15)

2. This observation suggests to define for x0 = x1 = . . . = xk the divided difference by

f [x0, x1, . . . , xk] :=
1

k!
f (k)(x0).

This definition also allows one to generalize the definition of divided differences to the
case when some knots coincide. With this generalized notion of divided differences (which
we do not give in detail here), the statement of Theorem 1.11 also holds if some knots
coincide.
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3. In general, for any knot sequence x0, . . . , xn there is an intermediate point

ξ ∈ (min{x0, . . . , xk},max{x0, . . . , xk})

such that

f [x0, . . . , xk] =
1

k!
f (k)(ξ)

Exercise 1.13 Formulate an algorithm similar to the Neville scheme to compute the divided
differences f [x0], . . . , f [x0, . . . , xn]. How expensive is the evaluation of an interpolating polyno-
mial of degree n in M points?

1.4 Extrapolation as a prime application of the Neville

scheme

slide 4
A typical application of the Neville scheme is the extrapolation of a function value that is
not directly accessible. The following example determines the derivative of a function if only
function values are available.

Exercise 1.14 Let u(x) = exp(x). We seek an approximation to u′(0). Define the function1

h 7→ D(h) :=

{
u(0+h)−u(0)

h
h 6= 0

u′(0) h = 0

Compute the Neville scheme for h = 2−j, j = 0, 1, . . . , 10. Compute a second array containing
the actual errors2. What do you observe in the first, second, and third column of the Neville
scheme?
slide 5

1.5 a simple error estimate

We now assume that the values fi are point values of a function f , i.e., fi = f(xi).
Question: how big is the error f(x)− p(x) for the interpolating polynomial p?
We have:

1the given definition of D(0) is natural since it is the limit limh→0 D(h). It is a formal definition since the
algorithm will not require knowledge of D(0).

2recall: u′(0) = exp(0) = 1
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Figure 1.1: Left: f(x) and the interpolating polynomial. Right: absolute value of the error
and upper bound.

Theorem 1.15 Let [a, b] ⊂ R and the knots xi ∈ [a, b], i = 0, . . . , n, be distinct. Let f ∈
C(n+1)([a, b]), and let p be the interpolating polynomial. Then for x ∈ [a, b] there exists a
ξ ∈ (a, b) such that

f(x)− p(x) = (x− x0) · · · (x− xn)
f (n+1)(ξ)

(n + 1)!
= ωn+1(x)

f (n+1)(ξ)

(n+ 1)!
, (1.16)

where

ωn+1(x) :=

n∏

j=0

(x− xi) = (x− x0) · · · (x− xn).

Proof: 1. step: (recalling the mean value theorem/Rolle’s theorem) Let g ∈ C1([a′, b′]) for an
interval [a′, b′] with g(a′) = g(b′). Then there exists ξ ∈ (a′, b′) such that g′(ξ) = 0.
2. step: The claim is trivial for x ∈ {x0, . . . , xn}. (Why?)
3. step: Let x 6∈ {x0, . . . , xn} be fixed. Consider the function

t 7→ g(t) := f(t)− p(t)−Kωn+1(t), K :=
f(x)− p(x)

ωn+1(x)

Then, g has at least n+ 2 zeros (the knots xi, i = 0, . . . , n, and x). By the first step, g′ has at
least n + 1 distinct zeros. Hence, (again by the first step) g′′ has n distinct zeros. Repeating
these considerations one sees that g(n+1) has at least one zero ξ. Hence, (note: p(n+1) ≡ 0 since

p ∈ Pn and ω
(n+1)
n+1 (x) = (n+ 1)!)

0 = g(n+1)(ξ) = f (n+1)(ξ)− p(n+1)(ξ)−Kω
(n+1)
n+1 (ξ) = f (n+1)(ξ)−K(n + 1)!.

Hence, K = f(n+1)(ξ)
(n+1)!

, which completes the proof. ✷

The error formula (1.16) yields bounds for the interpolation error:

Example 1.16 (cf. Example 1.2) Let f(x) = sin x and [a, b] = [0, π/2]. Let x0 = 0, x1 = π/4,
x2 = π/2. Then the interpolating polynomial p ∈ P2 satisfies in view of maxy∈R |f (3)(y)| =
maxy∈R | − cos y| ≤ 1

|f(x)− p(x)| ≤ |ω3(x)|
|f (3)(ξ)|

3!
≤ 1

6
|ω3(x)| =

1

6
|(x− 0)(x− π/4)(x− π/2)|.
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h m=0 m=1 m=2 m=3 m=4 m=5 m=6 m=7

20 1.000 4.14−1 2.52−1 1.68−1 1.15−1 8.06−2 5.66−2 3.99−2

2−1 7.07−1 2.93−1 1.79−1 1.19−1 8.17−2 5.70−2 4.00−2 2.82−2

2−2 5.00−1 2.07−1 1.26−1 8.40−2 5.77−2 4.03−2 2.83−2

2−3 3.54−1 1.46−1 8.93−2 5.94−2 4.08−2 2.85−2

2−4 2.50−1 1.04−1 6.31−2 4.20−2 2.89−2

2−5 1.77−1 7.32−2 4.46−2 2.97−2

2−6 1.25−1 5.18−2 3.16−2

2−7 8.84−2 3.66−2

2−8 6.25−2

Fehler
√
h

√
h

√
h

√
h

√
h

√
h

Figure 1.2: (cf. Example 1.18) Extrapolation error at h = 0 for the function h−1(u(h)−u(0))
with u(x) = |x|3/2.

Fig. 1.1 visualizes this estimate. The upper bound is pretty good in this example: it overestimates
the error merely by a factor 1.5.

Example 1.16 generalizes as follows:

Theorem 1.17 Let f ∈ C(n+1)([a, b]) and hi = qi, i = 0, 1, . . ., for a chosen 0 < q < 1. Let
x0 ∈ [a, b]. Denote by pi,m ∈ Pm the polynomial that interpolates f in the points x0 + hi+j,
j = 0, . . . , m. Then there exists a constant C > 0 (which depends on f , m, and q), such that
for m ≤ n+ 1

|f(x0)− pi,m(x0)| ≤ Chm+1
i (1.17)

Proof: From Theorem 1.15, we get (exercise!) for some ξ ∈ (x0, x0 + hi)

|f(x0)− pi,m(x0)| ≤
1

(m+ 1)!
|f (m+1)(ξ)|

∣∣∣∣∣
m∏

j=0

(x0 − (x0 + hi+j))

∣∣∣∣∣ ≤ Chm+1
i .

✷

If the function f is smooth, then the difference quotient D(h) = (f(x0 + h) − f(x0)/h is a
smooth function of h (Taylor expansion!). In that case, we may apply Theorem 1.17 to the
function h 7→ D(h). Then, Theorem 1.17 explains the convergence behavior that was observed
in Exercise 1.14 for the columns of the Neville scheme:
slide 5
The assumption that f be smooth (i.e. n in Theorem 1.17 is fairly large), is essential for the
rapid convergence behavior in the columns of the Neville scheme:

Example 1.18 slide 6
Consider the Neville scheme as in Exercise 1.14 for the function u(x) = |x|3/2, i.e., D(h) =√
|h|. Then D is not smooth—it is not even differentiable at h = 0. Fig. 1.2 shows the errors

|D(0)− pi,m(0)|. We observe that increasing m does not lead to better results.

Often the interpolation error is measured in a norm, e.g., the maximum norm. For an interval
[a, b], the maximum norm ‖g‖∞,[a,b] of a function g ∈ C([a, b]) is defined by

‖g‖∞,[a,b] := max
x∈[a,b]

|g(x)|. (1.18)
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Theorem 1.15 implies for the interpolation error

‖f − p‖∞,[a,b] ≤ ‖ωn+1‖∞,[a,b]

‖f (n+1)‖∞,[a,b]

(n+ 1)!
≤ (b− a)n+1‖f (n+1)‖∞,[a,b]

(n+ 1)!

Often, one approximates functions by piecewise polynomials as illustrated in the following
exercise:

Exercise 1.19 The goal is to approximate the function f on the interval [a, b] by a piecewise
polynomial of degree n. Proceed as follows: Partition [a, b] in N subintervals [tj , tj+1], j =
0, . . . , N − 1, of length h = (b − a)/N with tj = a + jh. In each subinterval [tj , tj+1] select
as the interpolation points xi,j := tj +

1
n
ih, i = 0, . . . , n, and approximate f on [tj, tj+1] by

the polynomial that interpolates f in the points xi,j, i = 0, . . . , n. In this way, one obtains a
function p that is a polynomial of degree n on each subinterval. Show:

‖f − p‖∞,[a,b] ≤
1

(n+ 1)!
hn+1‖f (n+1)‖∞,[a,b].

Sketch the function p for the case n = 1.
finis 2.DS

1.6 Extrapolation of function with additional structure

Sometimes, the function f to be approximated has additional structure that can (and should!)
be exploited. We illustrate this phenomenon for the approximation of the derivative of a
function using symmetric difference quotients:

Example 1.20 slide 7
Given a function u consider the function

Dsym(h) :=
u(0 + h)− u(0− h)

2h
= u′(0) +

1

3!
u(3)(0)h2 +

1

5!
u(5)(0)h4 + · · ·

The goal is to approximate Dsym(0) using only evaluations of u. We recognize that Dsym is a

function of h2, i.e., Dsym(h) = D̃(h2). If (hi, Dsym(hi)), i = 0, . . . , n, are given, then one could
obtain an approximation of Dsym(0) in 2 ways:

1. Interpolate the data (hi, Dsym(hi)), i = 0, . . . , n, and evaluate the interpolating polynomial
at h = 0.

2. Interpolate the data (h2
i , Dsym(hi)) = (h2

i , D̃(h2
i )), i = 0, . . . , n, and evaluate the interpo-

lating polynomial at h2 = 0.

Effectively, the first approach interpolates the function Dsym whereas the second approach in-

terpolates the function D̃. In practice, the interpolation of D̃ is again realized with a Neville
scheme:
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h m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
1 1.175201193643802 0.909180028331188 1.001883888526739 0.999862158028692 1.000000383252421 0.999999993723462

2−1 1.042190610987495 0.978707923477851 1.000114874340948 0.999991744175937 1.000000005896242 0

2−2 1.010449267232673 0.994763136625174 1.000007135446563 0.999999489538722 0 0

2−3 1.002606201928923 0.998696135741217 1.000000445277203 0 0 0

2−4 1.000651168835070 0.999674367893206 0 0 0 0

2−5 1.000162768364138 0 0 0 0 0

h h2 m = 0 m = 1 m = 2 m = 3 m = 4 m = 5
1 1 1.175201193643802 0.997853750102059 1.000003157261889 0.999999999319035 1.000000000000025 1.000000000000001

2−1 2−2 1.042190610987495 0.999868819314399 1.000000048661892 0.999999999997365 1.000000000000001

2−2 2−4 1.010449267232673 0.999991846827674 1.000000000757749 0.999999999999990

2−3 2−6 1.002606201928923 0.999999491137119 1.000000000011830

2−4 2−8 1.000651168835070 0.999999968207161

2−5 2−10 1.000162768364138

Figure 1.3: (cf. Example 1.20) Top: Extrapolation of the function h 7→ Dsym(h). Bottom:

Extrapolation of the function h2 7→ D̃(h2) for u(x) = exp(x). Correct digits are marked in
boldface.

h h2 m = 0 m = 1 m = 2 m = 3
h0 h2

0 Dsym(h0) = D00 D01 D02 D03

h1 h2
1 Dsym(h1) = D10 D11 D12 D13

h2 h2
2 Dsym(h2) = D20 D21 D22 D23

h3 h2
3 Dsym(h3) = D30 D31 D32 D33

h4 h2
4 Dsym(h4) = D40 D41 D42

...

h5 h2
5 Dsym(h5) = D50 D51

...

h6 h2
6 Dsym(h6) = D60

...
...

...
...

Di0 = Dsym(hi)

Dij = D(i+1) (j−1) −
h2
i+j

h2
i+j − h2

i

[
D(i+1) (j−1) −Di (j−1)

]
, j ≥ 1

Fig. 1.3 illustrates both approaches for the function u(x) = exp(x). We observe that the

extrapolation of D̃ yields much better results than the extrapolation of Dsym at comparable
costs. Intuitively, this can be seen as follows: Let p̃ ∈ Pm be the interpolant for the points
(h2

i+j , Dsym(hi+j)), j = 0, . . . , m. Then, p̃(h2) ∈ P2m interpolates the data (Exercise! Note:
Dsym is a symmetric function)

(hi+j , Dsym(hi+j), (−hi+j , Dsym(−hi+j)) = (−hi+j , Dsym(hi+j)), j = 0, . . . , m.

Effectively, therefore, p̃(h2) is an interpolating polynomial of degree 2m instead of m. From
Theorem 1.17 we therefore expect error bounds of the form Ch2m

i in column m of the Neville
scheme.

Exercise 1.14 and Example 1.20 present two different ways to approximate the derivative of
a function using difference quotients. The extrapolation based on “symmetric difference quo-
tients” Dsym of Example 1.20 yields much more accurate approximations than the extrapolation
based on the one-sided difference quotients of Exercise 1.14 at the same computational cost.
For smooth u, the former method is therefore preferred.
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Figure 1.4: Chebyshev points xCheb
i,n , i = 0, . . . , n, for n = 5 (left) and n = 25 (right).

1.7 Chebyshev polynomials

1.7.1 Chebyshev points

Question: If one is allowed to choose the interpolation points, which one should one choose?
The representation of the interpolation error (1.16) has the advantage of being an equality. It
has the disadvantage that the intermediate point ξ is not known and depends on the function
f and the chosen knots xi. Typically, one does not study the error in single points but studies
the interpolation error in a norm. Here, we consider the maximum norm and estimate

‖f − p‖∞,[a,b] ≤ ‖ωn+1‖∞,[a,b]︸ ︷︷ ︸
depends solely on the knots

‖f (n+1)‖∞,[a,b]

(n+ 1)!︸ ︷︷ ︸
depends solely on f and n

This shows that a sensible strategy to choose the knots xi, i = 0, . . . , n, is to minimize
‖ωn+1‖∞,[a,b]:

given n, find xi ∈ [a, b] s.t.‖ωn+1‖∞,[a,b] is minimal, (1.19)

where again ωn+1(x) = (x − x0) · · · (x − xn). This minimization problem has a solution, the
so-called Chebyshev points:

Theorem 1.21 (Chebyshev points) The minimization problem (1.19) has a solution given
by

xi =
a+ b

2
+

b− a

2
xCheb
i,n , xCheb

i,n := cos

(
π
2i+ 1

2n+ 2

)
, i = 0, . . . , n. (1.20)

For this choice of interpolation points, there holds

‖ωCheb
n+1 ‖∞,[a,b] = 2

(
b− a

4

)n+1

.

In particular, for every choice of interpolation points xi with corresponding polynomial ωn+1

there holds
‖ωn+1‖∞,[a,b] ≥ ‖ωCheb

n+1 ‖∞,[a,b].

Example 1.22 slide 8
The Chebyshev points xCheb

i,n , i = 0, . . . , n, for the interval [−1, 1] are not uniformly distributed
in the interval [−1, 1] but more closely spaced near the endpoints ±1. Fig. 1.4 illustrates this.
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1.7.2 Error bounds for Chebyshev interpolation

Question: How does the interpolation error compare to the best approximation error?

We fix the interval [a, b] = [−1, 1] and denote by ICheb
n f ∈ Pn the polyomial of degree n that

interpolates f in the Chebyshev points.

Exercise 1.23 The mapping f 7→ ICheb
n f is a linear map, i.e., for continuous functions f , g

and λ ∈ R there holds ICheb
n (f + g) = (ICheb

n f) + (ICheb
n g) as well as ICheb

n (λf) = λICheb
n f .

Exercise 1.24 Show that ICheb
n f = f for all polynomials f ∈ Pn. Hint: Uniqueness of polyno-

mial interpolation, Theorem 1.1.

We define the Lebesgue constant ΛCheb
n by

ΛCheb
n := max

x∈[−1,1]

n∑

i=0

|ℓCheb
i (x)|, (1.21)

where ℓCheb
i are the Lagrange interpolation polynomials for the Chebyshev points.

Theorem 1.25 (Chebyshev interpolation) There holds:

(i)
‖ICheb

n f‖∞,[−1,1] ≤ ΛCheb
n ‖f‖∞,[−1,1] (1.22)

(ii) There holds:
‖f − ICheb

n f‖∞,[−1,1] ≤ (1 + ΛCheb
n ) min

q∈Pn

‖f − q‖∞,[−1,1]

(iii) ΛCheb
n ≤ 2

π
ln(n + 1) + 1

Proof: Proof of (i):

‖ICheb
n f‖∞,[−1,1] = max

x∈[−1,1]
|(ICheb

n f)(x)| = max
x∈[−1,1]

|
n∑

i=0

f(xCheb
i,n )ℓCheb

i (x)|

≤ max
i=0,...,n

|f(xCheb
i,n )| max

x∈[−1,1]

n∑

i=0

|ℓCheb
i (x)| ≤ ‖f‖∞,[−1,1]Λ

Cheb
n

Proof of (ii): We employ Exercise 1.23, 1.24 and obtain for arbitrary q ∈ Pn

‖f − ICheb
n f‖∞,[−1,1]

Exer. 1.23, 1.24
= ‖f − q − ICheb

n (f − q)‖∞,[−1,1]

≤ ‖f − q‖∞,[−1,1] + ‖ICheb
n (f − q)‖∞,[−1,1]

(i)

≤ ‖f − q‖∞,[−1,1] + ΛCheb
n ‖(f − q)‖∞,[−1,1] = (1 + ΛCheb

n )‖f − q‖∞,[−1,1]

Proof of (iii): Literature. ✷
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Remark 1.26 (Interpretation of ΛCheb
n ) 1. The factor 1+ΛCheb

n measures how much worse
the approximation of f by the Chebyshev interpolation is compared to the best possible
polynomial approximation (in the norm ‖ · ‖∞,[−1,1]). The logarithmic growth of ΛCheb

n

is very slow so that Chebyshev interpolation is typically very good: for example, for (the
already rather high polynomial degree) n = 20 one has ΛCheb

n ≈ 2.9 and thus 1+ΛCheb
20 ≤ 4.

2. ΛCheb
n can also be understood as an amplification factor: If, instead of the exact func-

tion values f(xCheb
i,n ), perturbed values f̃i with |f̃i − f(xCheb

i,n )| ≤ δ are employed, then the

“perturbed” interpolation polynomial
∑

i f̃iℓ
Cheb
i satisfies (Exercise!)

‖(
n∑

i=0

f̃iℓ
Cheb
i )− ICheb

n f‖∞,[−1,1] ≤ ΛCheb
n δ.

In other words: Since ΛCheb
n of Chebyshev interpolation is moderate, perturbations or

errors in the values f(xCheb
i,n ) have a rather small impact on the error in the interpolating

polynomial.

Chebyshev interpolation converges very rapidly for for smooth functions:

Exercise 1.27 Consider the function f(x) = (4−x2)−1. Give an upper bound for minq∈Pn ‖f−
q‖∞,[−1,1] by selecting q as the Taylor polynomial of f about a suitable point.
Determine the interpolating polynomials ICheb

n f for n = 1, . . . , 10. Plot the error semilogarith-
mically (semilogy in matlab or matplotlib.pyplot.semilogy in python) versus n. To that
end, approximate the error ‖f − ICheb

n f‖∞,[−1,1] by simply computing the error in 100 points
that are uniformly distributed over [−1, 1].

1.7.3 Interpolation with uniform point distribution

For large n, the choice of the interpolation points may strongly impact the approximation
quality of the interpolation process. Whereas interpolation in the Chebyshev points usually
yields very good results, other systems of points may produce poor results even for functions f
that may seem “harmless’. The following example illustrates this:

Example 1.28 (Runge example) Consider f(x) = (1 + 25x2)−1 on the interval [−1, 1].
Fig. 1.5 shows the interpolation in Chebyshev and equidistant points. Whereas Chebyshev in-
terpolation works well, we observe failure for the interpolation in equidistant points.

The famous example of Runge of Example 1.28 shows that one should not use equidistant
points for interpolation by polynomials of high degree. If the data set is based on (more or less)
equidistant points, then one typically approximates by splines, i.e., piecewise polynomials of a
fixed degree (e.g., n ∈ {1, 2, 3}) as illustrated in Exercise 1.19. An important representative of
of this class is the “cubic spline” (see Section 1.8.2.)
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Figure 1.5: Interpolation of (1 + 25x2)−1 on [−1, 1]. Top row: interpolation in Chebyshev
points (n = 2, 12, 22, 42). bottom row: Interpolation in equidistant points (n = 2, 12, 22, 42).

1.8 Splines (CSE)

slide 9a
Splines are widely used to fit given data or to describe curves or surfaces, e.g., in CAD systems3.
Splines are piecewise polynomials on a partition ∆ of an interval [a, b]. The partition ∆ is
described by the knots a = x0 < x1 < · · ·xn = b. We denote the elements by Ii = (xi, xi+1),
i = 0, . . . , n− 1 and set hi := xi+1 − xi. We also set h := maxi hi.
For a partition ∆ (described by the knots xi, i = 0, . . . , n) and p, r ∈ N0 the spline space
Sp,r(∆) is defined as

Sp,r(∆) := {u ∈ Cr([a, b]) | u|Ii ∈ Pp ∀i}. (1.23)

Given values fi, i = 0, . . . , n, we say that s ∈ Sp,r(∆) is an interpolating spline if

s(xi) = fi, i = 0, . . . , n. (1.24)

1.8.1 Piecewise linear approximation

The simplest case is p = 1 and r = 0. The interpolation problem: Given knots a = x0 < x1 <
· · · < xn = b and the corresponding partition,

find s ∈ S1,0(∆) s.t. s(xi) = fi, i = 0, . . . , n. (1.25)

It is uniquely solvable and has as the solution

s(x) =
n∑

i=0

fiϕi(x),

3key words: Bézier curves. Extensions of the idea of splines are NURBS ( = nonuniform rational B-splines)
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where the ϕi continuous, piecewise linear function defined by the condition ϕi(xj) = δij (Exer-
cise: sketch the ϕi!) Concerning error estimates, one has from a generalization of Exercise 1.19
(check this!)

‖f − s‖∞,[a,b] ≤ Ch2‖f ′′‖∞,[a,b].

1.8.2 the classical cubic spline

The classical cubic spline space is given by the choices p = 3 and r = 2. The interpolation
problem is:

find s ∈ S3,2(∆) s.t. s(xi) = fi, i = 0, . . . , n. (1.26)

Obviously, (1.26) represents a system of n+1 equations. We now show that dimS3,2(∆) = n+3.
Hence, we will have to impose addition constraints.

Lemma 1.29 Let ∆ be a partition given by n+ 1 (distinct) knots x0, . . . , xn. Then

dimSp,r(∆) = n(p + 1)− (n− 1)(r + 1) (1.27)

Proof: Instead of a formal proof, we simply count the number of degrees of freedom/parameters
needed to describe a spline: We have dimPp = p + 1 so that the space of discontinuous
piecewise polynomials of degree p is (p + 1)n. The condition of Cr continuity at the n − 1
interior knots x1, . . . , xn−1 imposes (n − 1)(r + 1) conditions. Thus, we expect dimSp,r(∆) =
n(p+ 1)− (n− 1)(r + 1). ✷

For the case p = 3, r = 2, we get dimS3,2(∆) = 4n − 3(n − 1) = n + 3. The interpolation
conditions (1.26) yield n+1 conditions. Hence, two more conditions have to be imposed. These
two extra conditions are selected depending on the application. Typically, one of the following
four choices is made:

1. Complete/clamped spline: The user provides two additional values f ′
0, f

′
n ∈ R and imposes

the following two additional conditions:

s′(x0) = f ′
0, s′(xn) = f ′

n. (1.28)

2. Periodic spline: one assumes f0 = fn and imposes additionally

s′(x0) = s′(xn), s′′(x0) = s′′(xn). (1.29)

3. Natural spline: one imposes

s′′(x0) = 0, s′′(xn) = 0. (1.30)

4. “not-a-knot condition”: one requires that the jump of s′′′ at the knots x1 and xn−1 be
zero:

lim
x→x1−

s′′′(x) = lim
x→x1+

s′′′(x), lim
x→xn−1−

s′′′(x) = lim
x→xn−1+

s′′′(x). (1.31)

Concerning the accuracy of the interpolation method, we have:
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Theorem 1.30 Let f ∈ C4([a, b]) and h := maxi hi. Let fi = f(xi), i = 0, . . . , n. Then the
estimates

‖f − s‖∞,[a,b] ≤ Ch4‖f (4)‖∞,[a,b], ‖(f − s)′‖∞,[a,b] ≤ Ch3‖f (4)‖∞,[a,b]

hold in the following cases:

(i) s is the complete spline and f ′
0 = f ′(x0) and f ′

n = f ′(xn).

(ii) s is the periodic spline and f is additionally periodic, i.e., f ∈ C4(R) and f(x+(b−a)) =
f(x) for all x ∈ R.

(iii) s is the not-a-knot spline.

In particular, in each of these cases, the spline interpolation problem is uniquely solvable.

Remark 1.31 If only the values fi = f(xi) are available and a good spline approximation to f
is sought, then typically the not-a-knot interpolation is chosen. This is the default choice of the
spline command in matlab and in scipy.interpolate.CubicSpline. However, both matlab

and python also allow for other endpoint conditions.

minimization property of cubic splines

By Theorem 1.30, the cubic spline interpolation problems with any of the above 4 extra condi-
tions is uniquely solvable. In the three cases “complete spline”, “natural spline”, and “periodic
spline” the interpolating spline has an optimality property:

Theorem 1.32 (“energy minimization” of cubic splines) Let I = [a, b] and ∆ be a par-
tition given by a = x0 < x1 < · · ·xn = b. Let fi, i = 0, . . . , n, be given values.

(i) (complete spline) Let f ′
0, f ′

n ∈ R be additionally be given. Then the complete spline
s ∈ S3,2(∆) satisfies

‖s′′‖L2(I) ≤ ‖y′′‖L2(I) ∀y ∈ Ccomplete,

where Ccomplete is given by

Ccomplete = {v ∈ C2(I) | v(xi) = fi for i = 0, . . . , n and v′(x0) = f ′
0, v

′(xn) = f ′
n}.

(ii) (natural spline) The natural spline s ∈ S3,2(∆) satisfies

‖s′′‖L2(I) ≤ ‖y′′‖L2(I) ∀y ∈ Cnat,

where Cnat is given by

Cnat = {v ∈ C2(I) | v(xi) = fi for i = 0, . . . , n and v′′(x0) = v′′(xn) = 0}.

(iii) (periodic spline) Assume f0 = fn. Then the periodic spline s ∈ S3,2(∆) satisfies

‖s′′‖L2(I) ≤ ‖y′′‖L2(I) ∀y ∈ Cper,

where Cper is given by

Cper = {v ∈ C2(I) | v(xi) = fi for i = 0, . . . , n and v′(x0) = v′(xn) and v′′(x0) = v′′(xn)}.
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Remark 1.33 The minimization property explains the name “spline”. If one studies the de-
flection of an elastic “spline”, then the theory of linear elasticity states that the deflection is
such that the spline’s elastic energy is minimized. If y describes the deflection of this spline,
then in good approximation, the elastic energy of a spline is given by (ignoring physical units)
1
2
‖y′′‖2L2(I). Hence, if the spline is forced to pass through points (xi, fi), i = 0, . . . , n, then the

sought deflection s is the minimizer of the problem:

minimize
1

2
‖y′′‖2L2(I)

under the constraint y(xi) = fi, i = 0, . . . , n (plus possibly further conditions)

Theorem 1.32 states that the minimizer is the interpolating cubic spline if the additional con-
straints are that the spline is the “complete”, ”natural”, or “periodic” one.

computation of the cubic spline

The computation of the interpolating spline can be reduced to the solution of a linear system
of equations. In principle, one could make the ansatz that s is a cubic polynomial on each
element Ii = (xi, xi+1). The interpolation conditions s(xi) = fi, the continuity conditions

lim
x→xi−

s(j)(x) = lim
x→xi+

s(j)(x), i = 1, . . . , n− 1, j = 0, 1, 2

and the two additional conditions for complete/natural/periodic/not-a-knot splines describe a
linear system of equations that can be solved.

1.8.3 remarks on splines

Exercise 1.34 Show: for r ≥ p, one has Sp,r(∆) = Pp irrespective of the partition ∆.

Remark 1.35 For fixed, (low) r the spaces Sp,r are much more local than the spaces Pp. In
polynomial interpolation, changing one data value fi affects the interpolant everywhere. For
splines (with small r), the effect is much more local, i.e., a value only affects the spline inter-
polant in the neighborhood of the data point. This is of interest, e.g., in the following situations:

1. some data values have large errors (e.g., measurement errors): then the spline is only
wrong near the corresponding knot. In contrast, in polynomial interpolation, the approxi-
mation is affected everywhere.

2. point evaluation: if a spline is truely local (e.g., in the case r = 0), then the evaluation
of a spline at a point x requires only the data points near x, i.e., a local calculation.

Example 1.36 Fig. 1.6 shows polynomial interpolation and the (complete) cubic spline inter-
polation of the Runge example (cf. Example 1.28) on [−1, 1]. For n = 8, the n+1 = 9 knots are
uniformly distributed in [−1, 1]. We observe that, while the polynomial interpolation is rather
poor, the cubic spline is very good.
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Figure 1.6: polynomial interpolation and cubic spline interpolation for uniform knot distri-
bution; Runge example

1.9 Remarks on Hermite interpolation

A generalization of polynomial interpolation is Hermite interpolation. Its most general form is
as follows: Let x0, . . . , xn be n+1 distinct knots, and let di ∈ N0 be given for each i. Then, given
values f j

i , i = 0, . . . , n, j = 0, . . . , di, the Hermite interpolant is given by: Find p ∈ Pn+
∑n

i=0 di

s.t.
p(j)(xi) = f j

i , i = 0, . . . , n, j = 0, . . . , di. (1.32)

Remark 1.37 Hermite interpolation generalizes the polynomial interpolation problem (1.1):
the choice d0 = d1 = · · · = dn = 0 reproduces (1.1). Another extreme case is n = 0 and

d0 = N . Then p(x) =
∑N

j=0
fj
0

j!
(x− x0)

j. In particular, for f j
0 = f (j)(x0), we obtain the Taylor

polynomial of f of degree N .

One can show that problem (1.32) is uniquely solvable. One can also show that, if f j
i = f (j)(xi)

for a sufficiently smooth f , then an error bound analogous to that of Theorem 1.15 holds true
(see literature).
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1.10 trigonometric interpolation and FFT (CSE)

convention: In this chapter, i =
√
−1 with i2 = −1, that is, not an index. Numbering of

indices of vectors starts at 0.

1.10.1 trigonometric interpolation

motivation

Classical trigonometric polynomials are of the form

p(x) = a0 +

m∑

j=1

aj cos(jx) + bj sin(jx). (1.33)

A meaningful interpolation problem is: given 2m + 1 knots xk, k = 0, . . . , 2m and values yk
find the coefficients aj , bj such that

p(xk) = yk, k = 0, . . . , 2m. (1.34)

Using the Euler formula eix = cosx+ i sin x, one can rewrite trigonometric polynomials also in
the form

p(x) =

m∑

j=−m

cje
ijx, where cj =

1
2
(aj − ibj) for j ≥ 1 and c−j =

1
2
(aj + ibj) for j < 0.

(1.35)
Hence, the interpolation problem (1.34) of finding the coefficients aj and bj can equivalently be
posed as finding the coeffcients cj of p in the form (1.35) such that (1.34) holds.

Remark 1.38 (i) The trigonometric polynomial x 7→ p(x) is a 2π-periodic function. It
therefore is natural to assume that the knots xk ∈ [0, 2π).

(ii) The (continuous) Fourier transform is an important tool in signal processing, e.g., when
analyzing audio signals. In the simplest setting, a signal is assumed to be periodic (over
a given time interval (0, T )) and writing it as a Fourier series decomposes the signal into
different frequency components. These components are then analyzed or modified (e.g.,
low pass or high pass filters).

For T = 2π, the Fourier series is simply the representation

f(x) =

∞∑

j=−∞
fje

ixj, fj =
1

2π

∫ 2π

0

f(x)e−ixj dx, (1.36)

and fj are the Fourier coefficients. In order to avoid evaluating the integrals, one could
proceed as follows: 1) sample the signal in the points xj; 2) approximate f by its trigono-
metric interpolant p; 3) interpret the Fourier coefficients of p as (good) approximations
to the Fourier coefficients of f .
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a simplification of the trigonometric interpolation problem

Multiplying the polynomial p(x) in (1.35) by eimx, one arrives at

eimxp(x) = eimx
m∑

j=−m

cje
ijx =

2m∑

j′=0

cj′−me
ij′x

so that the interpolation problem (1.34) can be rephrased as finding a trigonometric polynmo-
mial p̃(x) of the form

∑2m
j′=0 cj′−me

ij′x such that p̃(xk) = ỹk := yke
imxk .

These considerations motivate us to introduce the following definition:

Definition 1.39 The polynomials p : R→ C, p(x) =
n−1∑
j=0

cje
ijx, cj ∈ C are called modified

trigonometric polynomials of degree n− 1.

The interpolation problem now reads: given distinct knots xj ∈ [0, 2π), j = 0, . . . , n − 1 and
values yj, j = 0, . . . , n− 1 solve:

find modified trigonometric polyomial p of degree n− 1 s.t.p(xj) = yj , j = 0, . . . , n− 1
(1.37)

Remark 1.40 The interpolation problem (1.34) for a polynomial of the form (1.35) can also be solved
with the same techniques as the problem (1.37). In particular, the FFT-techniques that we develop
below can be applied. See Remark 1.54 below for more details.
Reasons for introducing the modified trigonometric polynomials and the interpolation problem (1.37)
are mostly due to the fact that the DFT-matrix (and subsequently the FFT) take a form that is more
common in the literature and can be found in the matlab and numpy implementations.

Remark 1.41 The modified trigonometric polynomial x 7→ p(x) is a 2π-periodic function. The
coefficients cj are its Fourier coefficients.

The mathematics of the interpolation problem (1.37)

Theorem 1.42 Let xj ∈ [0, 2π), j = 0, . . . , n − 1 be distinct. Then (1.37) is uniquely
solvable for each sequence (yj)

n−1
j=0 ∈ Cn.

Proof: Set zj := eixj , j = 0, . . . , n−1. Then the zj are distinct. The ansatz p(x) =
n−1∑
k=0

ck e
ikx

yields the linear system of equations:




z00 z10 . . . zn−1
0

z01 z11 . . . zn−1
1

...
...

...
z0n−1 z1n−1 . . . zn−1

n−1




︸ ︷︷ ︸
=:Ṽ




c0
c1
...

cn−1




︸ ︷︷ ︸
=:c

=




y0
y1
...

yn−1




︸ ︷︷ ︸
=:y

(1.38)

Ṽ is a so-called Vandermonde matrix with det Ṽ =
∏

0≤j<k≤n−1

(zk − zj) 6= 0 ✷
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In the remainder of the chapter, we consider the uniform knot distribution

xj =
2πj

n
, j = 0, . . . , n− 1. (1.39)

It is expedient to introduce the root

ωn := e−
2πi
n , (1.40)

which satisfies ωn
n = 1. J note: ωj

n = e−ixj K
The matrix V of (1.38) is easily inverted under the assumption (1.39):

Theorem 1.43 Assume (1.39) and (1.40). Let y := (y0, . . . , yn−1)
⊤ ∈ Cn be given and

p(x) =
n−1∑
j=0

cj e
ijx be the solution to (1.37). Set

Vn :=
(
ωj·k
n

)n−1

j,k=0
J “DFT matrix” K (1.41)

Then:

(i) 1
n
Vn y = c J i.e., ck =

1
n

n−1∑
j=0

ωj·k
n yj K

(ii) 1√
n
Vn symmetric and unitary

(
i.e.,

(
1√
n
Vn

)−1

= 1√
n
VH

n = 1√
n
Vn

)

(iii) Vn =
(
ωn

jk
)n−1

j,k=0
=
(
ω−jk
n

)n−1

j,k=0

Proof: ad (iii): X

ad (ii): Let vj, j = 0, . . . , n− 1 be the columns of 1√
n
Vn. Then:

• vHk vk = 1
n

n−1∑
j=0

ω−jk
n ωjk

n = 1

• k 6= l :

vHk vl =
1

n

n−1∑

j=0

ω−jk
n ωlj

n =
1

n

n−1∑

j=0

(
ωl−k
n

)j geometr.
=

series

=
1

n

1−
(
ωl−k
n

)n

1− ωl−k
n

=
1

n

1− (ωn
n)

l−k

1− ωl−k
n

= 0 since ωn
n

(1.40)
= 1

ad(i): For the equidistant points xj , j = 0, . . . , n − 1, given by (1.39), the linear system of

equations (1.38) has the form Vnc = y
(ii)⇒ c = Vn

−1
y = 1√

n

(
1√
n
Vn

)−1

y = 1√
n

1√
n
Vny =

1
n
Vny. ✷

Exercise 1.44 Show the formula for the geometric series by multiplying out the right-hand
side:

1− xn+1 = (1− x)
n∑

i=0

xi, x 6= 1.
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Definition 1.45 The linear map

Fn : Cn → Cn

y =




y0
...

yn−1


 7→ Vn y

is called the discrete Fourier transform (DFT) of length n.
The inverse F−1

n is called IDFT (inverse discrete Fourier transform).

Remark 1.46 Theorem 1.43 yields

F−1
n y =

1

n
Vny =

1

n
Vny =

1

n
Fn(y) (1.42)

1.10.2 FFT

observation: The matrix Vn is fully populated. A naive realization of the DFT therefore
requires O(n2) arithmetic operations. Exploiting the special structure of Vn leads to the Fast
Fourier transform (FFT), which only needs O(n logn) arithmetic operations. The FFT is
a prime example of a divide and conquer algorithm.

Lemma 1.47 Let n = 2m, ω = e±
2πi
n . Let (y0, . . . , yn−1) ∈ Cn. Then the terms

αk :=

n−1∑

j=0

yj ω
kj k = 0, . . . , n− 1

with ξ := ω2 and l = 0, . . . , m− 1 can be computed as follows:

α2l =

m−1∑

j=0

gj ξ
jl with gj := yj + yj+m

α2l+1 =
m−1∑

j=0

hjξ
jl with hj := (yj − yj+m)ω

j j = 0, . . . , m− 1

Proof: Since ωnl = 1 we get

α2l =

n−1∑

j=0

yj ω
2lj =

n
2
−1∑

j=0

yj ω
2lj + yj+n

2
ω2l(j+n

2
) =

=

n
2
−1∑

j=0

ω2lj(yj + yj+n
2
ωln) =

n
2
−1∑

j=0

ω2lj(yj + yj+n
2
)
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Since ω
n
2 = −1 we have:

α2l+1 =

n−1∑

j=0

yj ω
(2l+1)j =

=

n
2
−1∑

j=0

ω(2l+1)jyj + yj+n
2
ω(2l+1)(j+n

2
) =

=

n
2
−1∑

j=0

ω2lj
(
yj ω

j + yj+n
2
· ωlnωjω

n
2

)
=

=

n
2
−1∑

j=0

(yj − yj+n
2
)ωjω2lj

✷

Lemma 1.47 shows that the computation of ŷ = (ŷ0, . . . , ŷn−1)
⊤ := Fn(y) can be reduced to

the computation of Fn
2
(g) and Fn

2
(h).

With n = 2m we have

(ŷ0, ŷ2, . . . , ŷn−2)
⊤ = Fm(g) , g = (yj + yj+m)

m−1
j=0

(ŷ1, ŷ3, . . . , ŷn−1)
⊤ = Fm(h) , h = ((yj − yj+m)ω

j
n)

m−1

j=0

This yields

Algorithm 1.48 (FFT)
Input: n = 2p, p ∈ N0, y = (y0, . . . , yn−1)

⊤ ∈ Cn

Output: ŷ = (ŷ0, . . . , ŷn−1) = Fn(y)

if n = 1 then

ŷ0 := y0
else

ω := e
−2πi
n

m := n
2

(gj)
m−1
j=0 := (yj + yj+m)

m−1
j=0

(hj)
m−1
j=0 := ((yj − yj+m)ω

j )
m−1

j=0

(ŷ0, ŷ2, . . . , ŷn−2) := FFT (m, g)
(ŷ1, ŷ3, . . . , ŷn−1) := FFT (m,h)

end if

return (ŷ)

Similarly for the Inverse Fourier Transform: (y̌0, . . . , y̌n−1) := F−1
n (y) (cf. first equation in

(1.42)):
(y̌0, y̌2, . . . , y̌n−2)

⊤ = 1
2
F−1

n
2
(g) , g = (yj + yj+m)

m−1
j=0

(y̌1, y̌3, . . . , y̌n−1)
⊤ = 1

2
F−1

n
2
(h) , h =

(
(yj − yj+m)ωn

j
)m−1

j=0
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Algorithm 1.49 (IFFT)
Input: n = 2p, p ∈ N0, y = (y0, . . . , yn−1)

⊤ ∈ Cn

Output: y̌ = F−1
n (y)

if n = 1 then

y̌0 := y0
else

ω := e
2πi
n

m := n
2

(gj)
m−1
j=0 := 1

2
(yj + yj+m)

m−1
j=0

(hj)
m−1
j=0 := 1

2
((yj − yj+m)ω

j )
m−1

j=0

(y̌0, y̌2, . . . , y̌n−2) := IFFT (m, g)
(y̌1, y̌3, . . . , y̌n−1) := IFFT (m,h)

end if

return (ŷ)

Cost of the FFT: Denote by A(n) the cost of the call of FFT (n,y) and let n = 2p, p ∈ N0.
Then:

A(n) ≤ 2A(n/2) + C︸︷︷︸
computation of g, h

n (1.43)

and thus:

A(n)
(1.43)

≤ 2A
(n
2

)
+ C n =

= 2A
(
2p−1

)
+ C 2p

(1.43)

≤
(1.43)

≤ 2

(
2A
(
2p−2

)
+ C 2p−1

)
+ C 2p =

= 22A
(
2p−2

)
+ 2C 2p

(1.43)

≤
(1.43)

≤ 22
(
2A
(
2p−3

)
+ C 2p−2

)
+ 2C 2p =

= 23A
(
2p−3

)
+ 3C 2p ≤ . . . ≤

≤ 2pA
(
20
)
+ pC 2p =

= nA(1) + (log2 n)C n ≤
≤ n · log2 n · C ′ mit C ′ = C + A(1)

slide 9b

1.10.3 Properties of the DFT

The DFT appears very prominently when one is trying to compute efficiently the convolution
of two sequences, which is defined in the following definition.

26



Definition 1.50 (i) A sequence f = (fj)j∈Z is called n-periodic, if fj+n = fj ∀j ∈ Z. Cn
per

denotes the space of the n-periodic sequences.

(ii) The DFT Fn is defined by:

Fn : Cn
per → Cn

per

(fj)j∈Z 7→
(

n−1∑
j=0

ωjk
n fj

)

k∈Z

Since ωn
n = 1 the DFT Fn is well-defined; J i.e., Fn((fj)j∈Z) is again an n-periodic

sequence K

(iii) the convolution ∗ is defined by:

∗ : Cn
per × Cn

per → Cn
per

(f, g) 7→ (f ∗ g)k :=

(
n−1∑
j=0

fk−j gj

)
∀k ∈ Z

(iv) the pointwise multiplication · is defined by:

· : Cn
per × Cn

per → Cn
per

(f, g) 7→ (f · g)k := fk · gk ∀k ∈ Z

Remark 1.51 The DFT of Def. 1.45 coincides with the definition of the DFT of Def. 1.50, if
one extends the finite sequence (fj)

n−1
j=0 n-periodically.

Theorem 1.52 For f , g ∈ Cn
per let f̂ := Fn(f), ĝ := Fn(g) be the Fourier transformations.

Then:

(i) Fn : Cn
per → Cn

per is linear.

(ii) F−1
n (f) = 1

n

(
n−1∑
j=0

ωn
jkfj

)

k∈Z

(iii) (convolution theorem)

f̂ ∗ g = Fn(f ∗ g) = f̂ · ĝ

Proof: Exercise ✷

Remark 1.53 In the context of periodic sequences, the DFT can alternatively be defined by

(Fnf)k :=
n−m−1∑

j=−m

ωjk
n fj (1.44)

for any m ∈ Z, i.e., it is only essential that the summation in j extends over one period but
not where it starts. This is easily seen by computing (we assume m ≥ 1)

n−m−1∑

j=−m

ω
jk
n fj =

−1∑

j=−m

ω
jk
n fj +

n−m−1∑

j=0

ω
jk
n fj =

−1∑

j=−m

ω
(j+n)k
n fj +

n−m−1∑

j=0

ω
jk
n fj =

n−1∑

j′=n−m

ω
j′k
n fj′−n +

n−m−1∑

j=0

ω
jk
n fj

f periodic
=

n−1∑

j=0

ω
jk
n fj
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The DFT of Def. 1.45 is (up to scaling) the definition employed in matlab or numpy. Often in
the literature, however, the DFT is defined differently from Def. 1.45, for example, as in (1.44)
with m = n/2 + 1. The above shows that these definitions coincide if one places oneself into
the setting of periodic sequences. This corresponds to rearranging the input data if necessary.

Remark 1.54 With Remark 1.53 we can easily solve the interpolation problem of finding the
vector (cj)

m
j=−m that solves the interpolation problem

m∑

j=−m

cje
ijxk = yk, k = −m, . . . ,m.

(Note that we conveniently posed the interpolation problem in the points xk, k = −m, . . . ,m.)
In matrix-vector notation, this is

y = Vc, V = (ωjk
n )mj,k=−m,

where we adopted the notation to index the matrix V for j, k = −m, . . . ,m rather than from 0
to 2m− 1. Inspection of the proof of Theorem 1.43 shows that (2m)−1/2V is unitary and that
hence

c =
1

2m
Vy.

That is:

ck =
1

2m

m∑

j=−m

ωjk
n yj , k = −m, . . . ,m,

which is the same formula as for the standard DFT—only the range of the summation has
changed. In view of Remark 1.53, this is the standard DFT (after suitably periodizing y and
c). In particular, the FFT techniques are applicable.

1.10.4 application: fast convolution of sequence

Example 1.55 Let f , g ∈ Cn
per. The naive evaluation of the convolution h := f ∗ g costs

O(n2) operations. It is more efficient to proceed with Theorem 1.52:

1.) compute f̂ and ĝ using FFT cost: O(n logn)

2.) compute ĥ := f̂ · ĝ cost: O(n)

3.) compute h = F−1
n

(
ĥ
)

using IFFT cost: O(n logn)

The convolution of finite (non-periodic) sequences is defined slightly differently, namely, for two
finite sequences (fj)

N−1
j=0 , (gj)

N−1
j=0 , its convolution is given by the sequence (cj)

N−1
j=0 with entries

cj =

j∑

k=0

fj−kgk. (1.45)

The sequence (cj)
N−1
j=0 can also be computed with the aid of the FFT:
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Example 1.56 let (fj)
N−1
j=0 , (gj)

N−1
j=0 be finite sequences.

goal: compute (hj)
N−1
j=0 given by hj =

j∑
k=0

fj−k gk, j = 0, . . . , N − 1

idea: periodize the two sequences (fj)
N−1
j=0 and (gj)

N−1
j=0 , so that Example 1.55 is applicable.

Procedure: Choose an n ≥ 2N of the form n = 2p for a p ∈ N0 and define f′ , g′ ∈ Cn
per by

f ′
j :=

{
fj for j = 0, . . . , N − 1
0 for j = N, . . . , n− 1

g′j :=

{
gj for j = 0, . . . , N − 1
0 for j = N, . . . , n− 1

Then:

f ′
j = 0 for N − n ≤ j ≤ −1 (1.46)

g′j = 0 for N ≤ j ≤ n− 1 (1.47)

For k ∈ {0, . . . , N − 1} we have:

(f′ ∗ g′)k =
n−1∑

j=0

f ′
k−j g

′
j

(1.47)
=

N−1∑

j=0

f ′
k−j gj =

k∑

j=0

f ′
k−j︸︷︷︸

=fk−j

gj +
N−1∑

j=k+1

f ′
k−j︸︷︷︸

=0 by (1.46)

gj =
k∑

j=0

fk−j gj

The convolution of non-periodic sequence arises, for example, when polynomials are multiplied.

Example 1.57 Let polynomials π1(x) =
∑N−1

j=0 fjx
j and π2(x) =

∑N−1
j=0 gjx

j of degree N − 1
be given. Then the product π1π2 is a polynomial of degree 2N − 2 given by

π1(x)π2(x) =

2(N−1)∑

j=0

hjx
j , hj =

j∑

k=0

fj−kgk,

where we implicitly assume that fk = gk = 0 for k ∈ {N, . . . , 2N − 2}. Hence, Example 1.56 is
applicable.

An application that exemplifies the use of the FFT in connection with the computation of the
convolution of sequences is the multiplication of very large numbers.

Example 1.58 (multiplication of numbers with many digits) The fast realization of the
multiplication of numbers with many digits is nowadays done by FFT4. Consider the multipli-
cation of two integers with n digits that are written as

x =
n∑

j=0

fjb
j , y =

n∑

j=0

gjb
j ,

where b ∈ N (e.g., b = 10) and the coefficients (“digits”) satisfy fj, gj ∈ {0, . . . , b − 1}. We
seek the representation of z = xy in the form z =

∑2n
j=0 cjb

j with cj ∈ {0, . . . , b − 1}. This is
very similar to Example 1.57, and a formal multiplication yields

xy =
2n∑

j=0

hjb
j , hj =

j∑

k=0

fj−kgk,

4This is also a building block of arbitrary precision arithmetic
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where we again assumed that fj = 0 = gj for j ∈ {n + 1, . . . , 2n}. The sequence (hj)j can be
calculated with cost O(n logn) using the FFT as described in Example 1.56. The sought coeffi-
cients (cj)j of z are obtained from the sequence (hj)j by one more sweep through the sequence
with cost O(n) that ensures that the coefficients cj satisfy cj ∈ {0, . . . , b − 1}. The following
loop overwrites the hj with the sought cj:

for j = 0 : 2n do

if hj ≥ b then ⊲ carrying over is necessary
hj := hj − ⌊hj/b⌋b
hj+1 := hj+1 + ⌊hj/b⌋

end if

end for

Example 1.59 (solving linear systems with circulant matrices) A matrix C ∈ Cn×n is
called circulant, if it has the form

C =




c0 cn−1 · · · c2 c1
c1 c0 cn−1 c2
... c1 c0

. . .
...

cn−2

. . .
. . . cn−1

cn−1 cn−2 · · · c1 c0




.

Introduce the vector c := (c0, . . . , cn−1)
T . Observe that the matrix-vector product Cx is a

convolution, i.e., the entries yj of the vector y = Cx are given by

yj =
n−1∑

k=0

cj−kxk,

where we view the sequence (cj)
n−1
j=0 as an element of Cn

per (i.e., extend the sequence (cj)
n−1
j=0

periodically). That is,
(Cx)j = (c ∗ x)j , j = 0, . . . , n− 1.

Hence, given b ∈ Cn, the linear system of equations Cx = b can also be written as

c ∗ x = b. (1.48)

Solving for x can be achieved with the FFT. To that end, write ĉ = Fn(c), x̂ = Fn(x), b̂ =
Fn(b) and observe:

1. Applying DFT on both sides of (1.48) gives by the convolution theorem ĉj x̂j = b̂j, j =
0, . . . , n− 1.

2. Hence, x̂j = b̂j/ĉj.

3. an inverse DFT of x̂ = (x̂j)
n−1
j=0 gives x.
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Hence, the work to solve Cx = b is 2 FFTs of length n and n divisions.

Example 1.60 Circulant matrices arise in the discretization of differential equations with pe-
riodic boundary conditions. Consider the problem

−u′′ + u = f on (0, 1), u(0) = u(1), u′(0) = u′(1)

discretized by a finite difference method on the regular the grid xi = ih, i = 0, . . . , N , h = 1/N .
That is, denoting by ui an approximation to u(xi) and replacing the differential operator by a
difference quotient one arrives at the following system of equations

−ui+1 − 2ui + ui−1

h2
+ ui = fi := f(xi), i = 0, . . . , N − 1,

Inserting the periodicity condition, i.e., uN = u0 and u−1 = uN−1 yields a linear system Au = f
with A ∈ RN×N given by

A =
1

h2
AD +M, AD =




2 −1 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 −1 2




, M =




1
. . .

. . .

1




The matrix A is a circulant matrix. Hence, the linear system Ax = b can be solved using the
FFT.
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2 Numerical integration

Goal: determine (approximately)
∫ b

a
f(x) dx

Quadrature formulas: We consider quadrature formulas of the form

∫ b

a

f(x) dx ≈ Qb
a(f) =

n∑

i=0

wif(xi) (2.1)

The points xi are called quadrature points, the numbers ωi quadrature weights.

Example 2.1 slide 10
Partition [a, b] in N subintervals [ti, ti+1], i = 0, . . . , N − 1 with ti = a+ ih, h = (b− a)/N . Let
mi := (ti + ti+1)/2 be the midpoints. Then the composite midpoint rule is

∫ b

a

f(x) dx ≈ Qb
a(f) =

N−1∑

i=0

hf(mi)

Example 2.2 The (composite) trapezoidal rule is given, with the notation of Example 2.1, by

∫ b

a

f(x) dx ≈ Qb
a(f) =

N−1∑

i=0

h
1

2
[f(ti) + f(ti+1)] = h

[
1

2
f(a) +

N−1∑

i=1

f(ti) +
1

2
f(b)

]
.

The Examples 2.1, 2.2 are typical representatives for the way composite quadrature rules are
generated:

1. define a quadrature rule Q̂(f) ≈
∫ 1

0
f(x) dx on a reference interval, e.g., [0, 1].

2. Partition the interval [a, b] in subintervals (ti, ti+1) of lengths hi = ti+1 − ti

3. The observation
∫ ti+1

ti
f(x) dx = hi

∫ 1

0
f(ti + hiξ) dξ motivates the definition

∫ b

a

f(x) dx =
N−1∑

i=0

∫ ti+1

ti

f(x) dx =
N−1∑

i=0

hi

∫ 1

0

f(ti + hiξ) dξ ≈
N−1∑

i=0

hiQ̂(f(ti + hi·))

Remark 2.3 Quadrature rules are normally formulated for a reference interval, which is typ-
ically [0, 1] or [−1, 1]. For a general interval [a, b], the rule is obtained by an affine change of
variables (as done above).

finis 3.DS
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2.1 Newton-Cotes formulas

The Newton-Cotes formulas for the integration on [0, 1] are examples of interpolatory quadra-
ture formulas. They are based on interpolating the integrand f and integrating the intepolating
polynomial. The interpolation points are uniformly distributed over [0, 1].

Example 2.4 (closed Newton-Cotes formulas) Let n ≥ 1 and xi =
i
n
, i = 0, . . . , n. The

interpolating polynomial p ∈ Pn is

p(x) =
n∑

i=0

f(xi)ℓi(x), ℓi(x) =
n∏

j=0
j 6=i

x− xj

xi − xj
.

Hence, the quadrature fromula is

∫ 1

0

f(x) dx ≈
∫ 1

0

p(x) dx =

∫ 1

0

n∑

i=0

f(xi)ℓi(x) dx =

n∑

i=0

f(xi)

∫ 1

0

ℓi(x) dx

︸ ︷︷ ︸
=:wi

=: Q̂cNC
n (f)

with the quadrature weights wi, i = 0, . . . , n, which are explicitly given in Fig. 2.1.

slide 11
The endpoints of the interval are quadrature points for the “closed” formulas of Example 2.4.
If, for example, integrands are not defined at an endpoint (e.g., 1/

√
x, log x), then it is more

convenient to have formulas that do not sample the integrand at the endpoint. Hence, another
very important class of Newton-Cotes formulas are the “open” formulas:

Example 2.5 (open Newton-Cotes-Formeln) Let n ≥ 0 and xi = 2i+1
2n+2

, i = 0, . . . , n.
Then the quadrature is given by

∫ 1

0

f(x) dx ≈
n∑

i=0

f(xi)

∫ 1

0

ℓi(x) dx

︸ ︷︷ ︸
=:wi

=: Q̂oNC
n (f), ℓi(x) =

n∏

j=0
j 6=i

x− xj

xi − xj
.

The choice n = 0 corresponds to the midpoint rule

∫ 1

0

f(x) dx ≈ Qmid(f) = f(1/2).

By construction the Newton-Cotes formulas are exact for polynomials f ∈ Pn. In fact, one can
show that, if n is even, then both the closed and the open Newton-Cotes formulas are exact for
polynomials f ∈ Pn+1.

Exercise 2.6 1. Show for the quadrature weights:
∑n

i=0wi = 1(= length of the interval [0, 1])
(hint: apply the quadrature formula to a suitable function f .)

2. Show that the quadrature formulas Q̂cNC
n , Q̂oNC

n are exact for f ∈ Pn.

3. Show the symmetry property wn−i = wi, i = 0, . . . , n. (hint: Use the symmetry of the
points with respect to 1/2. The symmetry of the weights is visible in Fig. 2.1.).
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n weight Q(f)−
∫ 1
0 f(x) dx name

1 1
2

1
2

1
12h

3f (2)(ξ) trapezoidal rule

2 1
6

4
6

1
6

1
90h

5f (4)(ξ) Simpson rule

3 1
8

3
8

3
8

1
8

3
80h

5f (4)(ξ) 3/8 rule

4 7
90

32
90

12
90

32
90

7
90

8
945h

7f (6)(ξ) Milne rule

5 19
288

75
288

50
288

50
288

75
288

19
288

275
12096h

7f (6)(ξ) —

6 41
840

216
840

27
840

272
840

27
840

216
840

41
840

9
1400h

9f (8)(ξ) Weddle rule

Figure 2.1: the closed Newton-Cotes formulas for the integration over [0, 1]. Quadrature
points are xi =

i
n
, i = 0, . . . , n; h = 1

n
.

4. Let n = 2m be even. Consider the function f = (x − 1/2)n+1, which is odd with respect

to 1/2. Show:
∫ 1

0
f(x) dx = 0 = Q̂cNC

n (f) = Q̂oNC
n (f). Conclude that the quadrature

formula is exact for polynomials of degree n+ 1. In particular, the midpoint rule is exact
for polynomials in P1, and the Simpson rule is exact for polynomials in P3.

The Newton-Cotes formulas are typically used for fixed n in composite rule. We illustrate the
convergence behavior for two important cases, the composite trapezoidal rule and the composite
Simpson rule. Let a = x0 < x1 < . . . < xN = b be a partition of [a, b] and hi := xi+1−xi. Then
the composite trapezoidal and Simpson rules are defined by

T{x0,...,xN}(f) :=
N−1∑

i=0

hi
1

2
(f(xi) + f(xi+1)) ,

S{x0,...,xN}(f) :=

N−1∑

i=0

hi
1

6

(
f(xi) + 4f(

xi + xi+1

2
) + f(xi+1)

)
.

Theorem 2.7 (i) Let f ∈ C([a, b]). Then:

∣∣∣∣
∫ b

a

f(x) dx− T{x0,...,xN}(f)

∣∣∣∣ ≤ 2

N−1∑

i=0

hi min
v∈P1

‖f − v‖∞,[xi,xi+1],

∣∣∣∣
∫ b

a

f(x) dx− S{x0,...,xN}(f)

∣∣∣∣ ≤ 2
N−1∑

i=0

hi min
v∈P3

‖f − v‖∞,[xi,xi+1].

(ii) Let f ∈ C2([a, b]). Then for h := maxi=0,...,N−1 hi

∣∣∣∣
∫ b

a

f(x) dx− T{x0,...,xN}(f)

∣∣∣∣ ≤
1

4

N−1∑

i=0

h3
i ‖f (2)‖∞,[xi,xi+1] ≤

1

4
(b− a)h2‖f (2)‖∞,[a,b]

(iii) Let f ∈ C4([a, b]). Then for h := maxi=0,...,N−1 hi with a constant C > 0

∣∣∣∣
∫ b

a

f(x) dx− S{x0,...,xN}(f)

∣∣∣∣ ≤ C

N−1∑

i=0

h5
i ‖f (4)‖∞,[xi,xi+1] ≤ C(b− a)h4‖f (4)‖∞,[a,b]
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Proof: We only prove the case of the trapezoidal rule—the assertion for the Simpson rule is
proved using similar techniques.
We denote by T{xi,xi+1}(f) = hi

1
2
(f(xi)+ f(xi+1)) the trapezoidal rule for the interval [xi, xi+1].

This rule is exact for polynomials of degree n = 1. Hence, for arbitrary v ∈ P1
∫ xi+1

xi

f(x) dx− T{xi,xi+1}(f) =

∫ xi+1

xi

f(x)− v(x) dx+

∫ xi+1

xi

v(x) dx− T{xi,xi+1}(f)

=

∫ xi+1

xi

f(x)− v(x) dx+ T{xi,xi+1}(v)− T{xi,xi+1}(f)

=

∫ xi+1

xi

f(x)− v(x) dx− T{xi,xi+1}(f − v).

Therefore,
∣∣∣∣
∫ xi+1

xi

f(x) dx− T{xi,xi+1}(f)

∣∣∣∣ ≤ (xi+1 − xi)‖f − v‖∞,[xi,xi+1] + |T{xi,xi+1}(f − v)|

≤ (xi+1 − xi)‖f − v‖∞,[xi,xi+1] + (xi+1 − xi)‖f − v‖∞,[xi,xi+1]

≤ 2hi‖f − v‖∞,[xi,xi+1].

Hence,

∣∣∣∣
∫ b

a

f(x)− T{x0,...,xN}(f)

∣∣∣∣ =
∣∣∣∣∣
N−1∑

i=0

∫ xi+1

xi

f(x) dx− T{xi,xi+1}(f)

∣∣∣∣∣ ≤
N−1∑

i=0

2hi min
v∈P1

‖f − v‖∞,[xi,xi+1]

which is the statement (i) for the trapezoidal rule. In order to conclude (ii), we select for each
subinterval [xi, xi+1] a polynomial v ∈ P1 that approximates f on [xi, xi+1] well, e.g., the linear
interpolant. From the error bound of Theorem 1.15 we obtain

min
v∈P1

‖f − v‖∞,[xi,xi+1] ≤
1

8
(xi+1 − xi)

2‖f ′′‖∞,[xi,xi+1],

from which we arrive at
∣∣∣∣
∫ b

a

f(x)− T{x0,...,xN}(f)

∣∣∣∣ ≤
1

4

N−1∑

i=0

h3
i ‖f ′′‖∞,[xi,xi+1].

With hi ≤ h we finally get

∣∣∣∣
∫ b

a

f(x)− T{x0,...,xN}(f)

∣∣∣∣ ≤
1

4

N−1∑

i=0

h3
i ‖f ′′‖∞,[xi,xi+1] ≤

1

4
h2

N−1∑

i=0

hi‖f ′′‖∞,[xi,xi+1]

≤ 1

4
h2‖f ′′‖∞,[a,b]

N−1∑

i=0

hi =
1

4
h2‖f ′′‖∞,[a,b](b− a).

✷

We say that a quadrature rule has order m if the the composite rule leads to error bounds of
the form Chm (for sufficiently smooth f). Die composite trapezoidal rule has therefore order
m = 2, the composite Simpson rule order m = 4. More generally, the proof of Theorem 2.7
shows that a Newton-Cotes formula (or, more generally, any composite rule) that is exact for
polynomials of degree n leads to a composite rule of order n + 1.
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h 20 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8

Ftrap ∼ 1/h 2 3 5 9 17 33 65 129 257

Etrap 1.4−1 3.6−2 8.9−3 2.2−3 5.6−4 1.4−4 3.5−5 8.7−6 2.2−6

FSimpson ∼ 1/h 3 5 9 17 33 65 129 257 513
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Figure 2.2: convergence behavior of composite trapezoidal and Simpson rule for smooth
integrand.

Example 2.8 slide 12
We compare the composite trapezoidal rule with the composite Simpson rule for integration on
[0, 1]. We partition [0, 1] in N subintervals of length h = 1/N . By Theorem 2.7 the errors
Etrap, ESimpson satisfy (F denotes the number of function evaluations):

Etrap(h) ≤ Ch2 ∼ CF−2, ESimpson ≤ Ch4 ∼ CF−4.

We show in Fig. 2.2 the error versus the number of function evaluations F , since this is a
reasonable cost measure of the method. We note that methods of a higher order are more
efficient than lower order methods.

Das O(h2) convergence behavior of the composite trapezoidal rule and the O(h4) behavior of
the compositive Simpson rule require f ∈ C2 and f ∈ C4, respectively:

Example 2.9 Integration of f(x) = x0.1 on [0, 1] does not yield O(h2) but merely O(h1.1) as
is visible on
slide 12
.

2.2 Romberg extrapolation

Extrapolation can be used to accelerate convergence of composite rules for smooth integrands.
We illustrate the procedure for the composite trapezoidal rule. For that, let the interval [a, b]
be partitioned in N subintervals (xi, xi+1) of length h = (b− a)/N with xi = a+ ih. Define

T (h) := h

N−1∑

i=0

1

2
(f(xi) + f(xi+1))
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The sought value of the integral
∫ b

a
f(x) dx = limh→0 T (h), so that one may use extrapolation

for the data (hi, T (hi)), i = 0, 1, . . . , with hi = (b − a)M−i for some chosen M ∈ N, M ≥ 2.1

In fact, T (h) has an “additional structure” (cf. Section 1.6): There holds the Euler McLaurin
formula (

slide 13a
)

T (h) =

∫ b

a

f(x) dx+ c1h
2 + c2h

4 + c3h
6 + · · · , (2.2)

where the coefficients ci depend on higher derivatives of f . Therefore, one will perform extrap-
olation as discussed in Section 1.6.
slide 13

Remark 2.10 Extrapolation of the composite trapezoidal rule for M = 2 yields in the first
columns of the Neville scheme the composite Simpson rule; in the second column, the composite
Milne rule arises. The choice M = 3 produces in the first column of the Neville scheme the
composite 3/8-rule.

finis 4.DS

2.3 non-smooth integrands and adaptivity

Example 2.9 shows that, for non-smooth integrands, composite quadrature rules based on
equidistant partitions x0 < x1 < · · · < xN do not work very well. Our goal is a choose the
partition in such a way that the composite trapezoidal rule yields convergence O(N−2), where
N is the number of quadrature points. In other words: the convergence (error vs. number of
function evaluations) is similar to the case of smooth integrands.
This can be achieved for quite a few integrands f if the partition is suitably adapted to f .
Basically, one should use small interval lengths hi where f is large (in absolute value) or varies
rapidly (i.e., higher derivatives of f are large):

Example 2.11 slide 14

Consider the composite trapezoidal rule for
∫ 1

0
f(x) dx mit f(x) = x0.1 for two partitions of

0 = x0 < x1 · · · < xN = 1 of the form

1. equidistant points: xi = (i/N), i = 0, . . . , N

2. points refined towards x = 0: xi = (i/N)β, i = 0, . . . , N mit β = 2

The convergence behavior of the composite trapezoidal rule is shown in Fig. 2.3. While the
convergence is only O(N−1.1) for the equidistant points, it is O(N−2) for the one where the
points are refined towards x = 0.

In practice, it is difficult to construct a good partition for a given integrand. One is therefore
interested in adaptive algorithms. Structurally, these algorithms proceed as outlined in Algo-
rithm 2.12: the accuracy of an approximation for the integration on an interval [a, b] (here:

1strictly speaking, T (h) is only defined for h of the form h = (b − a)/N , N ∈ N, so that one should write∫ b

a
f(x) dx = limN→∞ T (h(N)).
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Figure 2.3: (cf. Example 2.11) numerical integration of f(x) = x0.1 using composite trape-
zoidal rule based on a) equidistant nodes and b) nodes suitable refined towards x = 0.

using the trapezoidal rule) is estimated with a better rule (here: Simpson rule). If the esti-
mate accuracy does not meet the desired tolerance, then the interval [a, b] is subdivided into two
subintervals [a,m], [m, b] with midpoint m = (a+b)/2 and the quadrature routine is recursively
called for the two subintervals.
slide 15

Algorithm 2.12 (adaptive algorithm based on trapezoidal rule)

adapt(f,a,b,τ)

% approximates
∫ b

a
f(x) dx to given accuracy τ

% hmin = minimal interval length ; ρ ∈ (0, 1) safety factor
% T ([a, b]) = trapezoidal rule für [a, b]; S([a, b]) = Simpson rule for [a, b]
if (b− a) ≤ hmin return(S([a, b])) %forced termination!

if |S([a, b])− T ([a, b])| ≤ ρτ { % desired accuracy reached :)

return (S([a,b])) }
else {
%desired accuracy not reached → subdived [a, b] into [a,m] and [m, b]

m := (a + b)/2

I := adapt(f, a,m, τ/2) + adapt(f,m, b, τ/2)
return(I) }

2.4 Gaussian quadrature

Question: How to choose n + 1 quadrature points so that polynomials of the highest possible
degree are integrated exactly?
Answer: Gaussian quadrature integrates polynomials of degree 2n + 1 exactly. The n + 1
quadrature points (“Gaussian points”) of this quadrature rule are the zeros of the Legendre
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polynomial Ln+1.

2.4.1 Legendre polynomials Ln as orthogonal polynomials

We consider the interval [−1, 1]. On the space C([−1, 1]) we define a scalar product by

〈u, v〉 :=
∫ 1

−1

u(x)v(x) dx. (2.3)

We seek a sequence of polynomials Ln ∈ Pn, n = 0, 1, . . . ,, with the following properties:

(i) {L0, . . . , Ln} is a basis of Pn (for each n)

(ii) Ln is orthogonal to the space Pn−1, i.e,.

〈Ln, v〉 = 0 ∀v ∈ Pn−1. (2.4)

Such polynomials can be constructed inductively with a variant of the “Gram-Schmidt-orthogonalization”:
We choose 2,

L̃0(x) := 1, L̃1(x) := x.

We note that
〈L̃1, L̃0〉 = 0, (2.5)

so that (2.4) is satisfied for n = 1.

For L̃2 ∈ P2 we make the ansatz

L̃2(x) = xL̃1(x) + r1

for a polynomial r1 ∈ P1 to be determined. Writing r1 = a0L̃0 + a1L̃1 the orthogonality
conditions (2.4) imply the two equations

0
!
= 〈L̃2, L̃0〉 = 〈xL̃1(x), L̃0(x)〉+ a0 〈L̃0, L̃0〉︸ ︷︷ ︸

>0

+a1 〈L̃1, L̃0〉︸ ︷︷ ︸
=0 b/c of (2.5)

,

0
!
= 〈L̃2, L̃1〉 = 〈xL̃1(x), L̃1〉+ a0 〈L̃0, L̃1〉︸ ︷︷ ︸

=0 b/c of (2.5)

+a1 〈L̃1, L̃1〉︸ ︷︷ ︸
>0

.

for the coefficients a0, a1. This system of equations can obviously be solved and therefore L̃2 is
determined. By construction, we have (2.4) for n ≤ 2.

2since the “classical” Legendre polynomials Ln are scaled slightly differently (see below), we employ the

notation L̃n
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Inductively, we make for L̃3 the ansatz L̃3(x) = xL̃2(x) + r2(x) for an r2 ∈ P2. Again, (2.4)

yields after writing r2(x) =
∑2

i=0 aiL̃i(x) a linear system of equations for the ai:

0
!
= 〈L̃3, L̃0〉 = 〈xL̃2(x), L̃0〉+

2∑

j=0

aj〈L̃j , L̃0〉,

0
!
= 〈L̃3, L̃1〉 = 〈xL̃2(x), L̃1〉+

2∑

j=0

aj〈L̃j , L̃1〉,

0
!
= 〈L̃3, L̃2〉 = 〈xL̃2(x), L̃2〉+

2∑

j=0

aj〈L̃j , L̃2〉.

Again, since we already know (2.4) for n ≤ 2, the system of equations simplifies to

0
!
= (L̃3, L̃i) = 〈xL̃2, L̃i〉+ ai 〈L̃i, L̃i〉︸ ︷︷ ︸

>0

, i = 0, 1, 2.

This yields the coefficients ai and therefore L̃3. In this way, we can construct inductively the
polynomials L̃n ∈ Pn, n = 0, 1, . . . . Our procedure yields the representation

L̃n+1(x) = xL̃n(x)−
n∑

i=0

1

〈L̃i, L̃i〉
〈xL̃n, L̃i〉L̃i(x)

This can be simplified furthermore with the aid of (2.4):

〈xL̃n(x), L̃i(x)〉 = 〈L̃n(x), xL̃i(x)〉
(2.4)
= 0 für i+ 1 ≤ n− 1, (2.6)

Hence, we arrive at the so-called “3-term recurrence relation”

L̃n+1(x) = xL̃n(x)−
n∑

i=0

1

〈L̃i, L̃i〉
〈xL̃n(x), L̃i(x)〉L̃i(x) (2.7)

(2.6)
= xL̃n(x)−

n∑

i=n−1

1

〈L̃i, L̃i〉
〈xL̃n(x), L̃i(x)〉L̃i(x) (2.8)

= xL̃n(x)− ãnL̃n(x)− b̃nL̃n−1(x) = (x− ãn)L̃n(x)− b̃nL̃n−1(x), (2.9)

with

ãn =
〈xL̃n(x), L̃n(x)〉
〈L̃n, L̃n〉

, b̃n =
〈xL̃n(x), L̃n−1(x)〉
〈L̃n−1, L̃n−1〉

.

Polynomials that satisfy the conditions (i), (ii) are not unique. For example, each Ln could
be multiplied by a factor cn 6= 0. However, this is the only freedom, i.e., each system Ln that
satisfies the conditions (i), (ii) is of the form Ln = cnL̃n with the above constructed L̃n. The
“classiscal” Legendre polynomials Ln are fixed by the “normalization condition” Ln(1) = 1.
We have:

Theorem 2.13 (Legendre polynomials) There holds:
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A. There is a unique sequence (Ln)n∈N0 of polynomials Ln ∈ Pn, the Legendre polynomials,
that satisfy the following conditions:

(i) {L0, . . . , Ln} is a basis of Pn (for each n)

(ii) Ln is orthogonal to the space Pn−1, i.e., satisfies (2.4) for all n ∈ N0.

(iii) Ln(1) = 1 for all n ∈ N0.

B. The Legendre polynomials Ln have the explicit representation (“Rodrigues formula”)

Ln(x) =
1

2nn!

dn

dxn
(x2 − 1)n (2.10)

C. The Legendre polynomials satisfy the “3-term recurrence relation”

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x) (2.11)

Proof: Item A has essentially been shown already. Items B, C are essential seen by direct
computation—see the literature for details. ✷

Remark 2.14 The 3-term recurrence (2.11) is the standard way to evaluate Legendre polyno-
mials. The Legendre polynomials are a very important representative of the class of orthogonal
polynomials. Other important families of orthogonal polynomials are the Chebyshev polynomi-
als and the Jacobi polynomials. All orthogonal polynomials satisfy 3-term recurrence relations
and are typically evaluated in this way.

2.4.2 Gaussian quadrature

We will use the following result without proof:

Theorem 2.15 For each n ∈ N0, the Legendre polynomial Ln+1 has exactly n + 1 (pairwise
distinct) zeros x0, . . . , xn. Furthermore, xi ∈ (−1, 1) for all i.

Proof: Literature. ✷

With the aid of the n+1 zeros of Ln+1 we define the Gaussian quadrature as the interpolatory
quadrature, i.e., we interpolate the integrand in the n + 1 zeros of Ln+1 and integrate the
interpolating polynomial:

Gauss points: xG
i,n = zeros of Ln+1 (2.12a)

Gauss weights: wG
i,n =

∫ 1

−1

ℓi(x) dx, ℓi(x) =
n∏

j=0
j 6=i

x− xG
j,n

xG
i,n − xG

j,n

(2.12b)

By construction, this is a quadrature formula QGauss
n (f) :=

∑n
i=0w

G
i,nf(x

G
i,n) that is exact for

polynomials of degree n:
∫ 1

−1

g(x) dx = QGauss
n (g) ∀g ∈ Pn (2.13)

In fact, this rule is exact for polynomials of degree 2n + 1:
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Theorem 2.16 (Gaussian quadrature) The quadrature rule QGauss
n defined (2.12) satisfies:

QGauss
n (f) =

∫ 1

−1

f(x) dx ∀f ∈ P2n+1 (2.14)

wG
i,n > 0 i = 0, . . . , n. (2.15)

Furthermore, there is no quadrature rule with n + 1 points that is exact for all polynomials of
degree 2n+ 2.

Proof: Proof of (2.14): Let f ∈ P2n+1. With the aid of polynomial division (“Euklidian
algorithm”)

slide 15a
we write f as

f(x) = Ln+1(x)qn(x) + rn(x)

with two polynomials qn, rn ∈ Pn. Then
∫ 1

−1

f(x) dx =

∫ 1

−1

Ln+1(x)qn(x) dx

︸ ︷︷ ︸
=0 by (2.4)

+

∫ 1

−1

rn(x) dx

=

∫ 1

−1

rn(x) dx
(2.13)
= QGauss

n (rn) =

n∑

i=0

wG
i,nrn(x

G
i,n)

Ln+1(xG
i,n)=0

=

n∑

i=0

wG
i,nLn+1(x

G
i,n)qn(x

G
i,n) + rn(x

G
i,n) = QGauss

n (f)

Proof of (2.15): We apply the quadrature formula to ℓi:

wG
i,n

ℓi(xG
j,n)=δi,j
=

n∑

j=0

wj,nℓi(x
G
j,n)

ℓi(xG
j,n)=δi,j
=

n∑

j=0

wj,n(ℓi(x
G
j,n))

2

= QGauss
n (ℓ2i )

ℓ2i∈P2n,(2.14)
=

∫ 1

−1

ℓ2i (x) dx > 0.

Proof that no rule with n + 1 points is exact for all polynomials of P2n+2: Let xi, i = 0, . . . , n,
be the quadrature points of a rule. Consider

f(x) =

n∏

j=0

(x− xi)
2 ∈ P2n+2

Then 0 <
∫ 1

−1
f(x) dx, but Qn(f) = 0. ✷

Gaussian quadrature converges for integrands f ∈ C([−1, 1]) if n→∞:

Theorem 2.17 (convergence of Gaussian quadrature) There holds:
∣∣∣∣
∫ 1

−1

f(x) dx−QGauss
n (f)

∣∣∣∣ ≤ 4 min
v∈P2n+1

‖f − v‖∞,[−1,1]. (2.16)

In particular there holds
∫ 1

−1
f(x) dx = limn→∞QGauss

n (f) for each f ∈ C([−1, 1]).
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Proof: As in the proof of Theorem 2.7 we exploit that the quadrature rule is exact for poly-
nomials of a particular degree. For arbitrary v ∈ P2n+1 we have

∫ 1

−1

f(x) dx−QGauss
n (f)

Thm. 2.16
=

∫ 1

−1

(f(x)− v(x)) dx+QGauss
n (v)−QGauss

n (f)

=

∫ 1

−1

(f(x)− v(x)) dx+QGauss
n (v − f)

and therefore (note:
∑

i=0w
G
i,n = QGauss

n (1) =
∫ 1

−1
1 dx = 2)

∣∣∣∣
∫ 1

−1

f(x) dx−QGauss
n (f)

∣∣∣∣ ≤
∣∣∣∣
∫ 1

−1

f(x)− v(x) dx

∣∣∣∣+
∣∣QGauss

n (f − v)
∣∣

≤ 2‖f − v‖∞,[−1,1] +
n∑

i=0

|wG
i,n|︸ ︷︷ ︸

=wG
i,n b/c of (2.15)

|f(xG
i,n)− v(xG

i,n)|︸ ︷︷ ︸
≤‖f−v‖∞,[−1,1]

≤ (2 +
n∑

i=0

wG
i,n)‖f − v‖∞,[−1,1] = 4‖f − v‖∞,[−1,1].

Since v ∈ P2n+1 was arbitrary, we may pass to the minimum and arrive at the claim. ✷

Gaussian quadrature is very efficient for smooth integrands:

Example 2.18 We consider Gaussian quadrature with n+ 1 points on the interval [0, 1] (i.e.,
the quadrature points are xi =

1
2
(1 + xG

i,n) and the weights wi =
1
2
wG

i,n) for f1(x) = exp(x) and
f2(x) = x0.1. While very rapid convergence is visible for the smooth integrand f1, Gaussian
quadrature is not very efficient for the non-smooth integrand f2.
slide 16

Typically, Gaussian quadrature is also employed in composite rules. Then the number n+1 of
Gaussian points (per subinterval) is typically fixed. Convergence results analogous to those for
the composite trapezoidal and Simpson rule of Theorem 2.7 hold true.

Remark 2.19 There is no explicit formula for the Gauss points and weigths for n ≥ 5.
There are may implementations, e.g., gauleg.c from “Numerical Recipes” (also available as
gauleg.m)) or numpy.polynomial.legendre.leggauss.

finis 5.DS

2.5 Comments on the trapezoidal rule

The (composite) Gauss rules are much more efficient than then composite trapezoidal rule for
smooth integrands. There is one exception: the integration of smooth periodic functions over
one period. In this case, the trapezoidal rule converges very rapidly and is typically employed:
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f3(x) = exp(sin(8πx)).
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Example 2.20 We employ the composite trapezoidal rule for the numerical integration on
[−1, 1] for the following three periodic functions:

f1(x) = sin(πx), f2(x) = (cos(πx))10, f3(x) = exp(sin(8πx)).

We observe in Fig. 2.5: the composite trapezoidal rule is exact for rather large step sizes h for
f1; for somewhat large step sizes it is exact for the trigonometric polynomial f2; for f3 we also
observe fast convergence.
slide 17

2.6 Quadrature in 2D

Goal: Determine
∫
T
f(x) dx, where T ⊂ R2 is the reference triangle T = {(x, y) | 0 < x < 1, 0 <

y < 1− x} or the reference square S = (0, 1)2.
In principle, the typical construction of quarature rule for triangles or rectangles follows that
in 1D: one selects quadrature points and weights in such a way that certain polynomials are
integrated exactly.

2.6.1 Quadrature on squares

A quadrature rule for the square S is typically obtained from a 1D rule by a product construc-
tion. To that end, let

Q1D
n (f) :=

n∑

i=0

wif(xi) ≈
∫ 1

0

f(x) dx (2.17)

be a 1D rule. Then, one can define for functions F (x, y) the 2D rule

Q2D
n (F ) :=

n∑

i,j=0

wiwjF (xi, xj). (2.18)

Exercise 2.21 Let the 1D rule (2.17) be exact for polynomials of degree p, i.e., Q1D
n (f) =∫ 1

0
f(x) dx for all f ∈ Pp. Then the rule Q2D

n is exact for all polynomials F ∈ span{(xiyj | i, j =
0, . . . , p}.

2.6.2 Quadrature on triangles

Quadrature rules on the triangle T are typically created in one of the following two ways:

1. One selects points in T . The condition that certain polynomials are integrated exactly
determines the quadrature weights.

2. The triangle T is transformed to a square and a quadrature formula for the square S is
employed.
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Exercise 2.22 The simplest case is a quadrature rule with 1 point, e.g., the barycenter of
T . What is the corresponding quadrature weight so that the rule exact for polynomials of
degree 0? Show that this rule is in fact exact for polynomials of degree 1, i.e., for polynomials
F (x, y) = a + bx+ cy.
The next case is a quadrature rule with 3 points, e.g., the vertices of T . Construct the weights
such that the rule is exact for polynomials of degree 1.

Example 2.23 Let Q2D be a quadrature rule on S with N points xi = (xi, yi) ∈ S and corre-
sponding weights wi, i = 0, . . . , N . The substitution (“Duffy transformation”)

∫

T

F (x, y) dy dx =

∫ 1

x=0

∫ 1−x

y=0

F (x, y) dy dx =

∫ 1

x=0

∫ 1

η=0

F (x, (1− x)η)(1− x) dη dx

suggests the following quadrature rule on T :

∫

T

F (x, y) dy dx =

∫ 1

x=0

∫ 1

η=0

F (x, (1− x)η)(1− x) dη dx ≈
∑

i

F (xi, (1− xi)yi)(1− xi)wi.

Typically, rules Q2D for S are derived from 1D rules as described in Section 2.6.1. The 1D rule
can be a Newton-Cotes formula or a Gauss rule or a composite Newton-Cotes or Gauss rule.

2.6.3 Further comments

Integrals over “arbitray” domains G ⊂ R2 are typically done by composite rules, in which G
is decomposed into triangles or quadrilaterals and each subdomain is then treated by a rule of
the above type.
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2.7 Comments on Gaussian quadrature (CSE)

goal: compute the Gaussian quadrature points and weights
In principle, there are two approaches to compute the Gaussian quadrature points, both of
which are used in the numerical practice:

1. find the zeros of the Legendre polynomial Ln+1 by some Newton method (→ see below).
The starting values are taken to be the Chebyshev points, which are explicitly avail-
able. The Legendre polynomials are evaluated using the three-term recurrence relation.
Newton’s method requires also the derivatives L′

n+1, which also satisfies a three-term
recurrence relation.

2. Identify the zeros of Ln+1 as eigenvalues of a suitable symmetric matrix in R(n+1)×(n+1)

and compute those with some eigenvalue solver.

The following lemma shows how the zeros of Ln can be computed as the eigenalues of a matrix.

Lemma 2.24 Let the functions Li satisfy the three-term recurrence relation

Ln(x) = (anx+ bn)Ln−1(x)− cnLn−2(x), n = 1, 2, . . . , (L0 := 1;L1 := x) (2.19)

Assume that ai, ci > 0 for all i. Then, the zeros of Ln are the eigenvalues of the matrix J of
(2.21). Associated with each eigenvalue xi, i = 0, . . . , n − 1 is an eigenvector vi of J. These
eigenvectors are pairwise orthogonal.

Proof: The recurrence relation can be written as

x




L0(x)
L1(x)

...

...
Ln−1(x)




=




− b1
a1

1
a1

0 · · ·
c2
a2

− b2
a2

1
a2

· · ·

0
. . .

. . .
. . .

cn−1

an−1
− bn−1

an−1

1
an−1

cn
an

− bn
an




︸ ︷︷ ︸
=:T




L0(x)
L1(x)

...

...
Ln−1(x)




+




0
...
...
0

1
an
Ln(x)




(2.20)

we can write this as

xL = TL +
1

an
Ln(x)en,

where T ∈ Rn×n is a tridiagonal matrix and en = (0, 0, . . . , 0, 1)⊤ is a unit vector. This
shows that L = (L0(ξ), L1(ξ), . . . , Ln−1(ξ))

⊤ is an eigenvector for the eigenvalue ξ of T if
and only if Ln(ξ) = 0. Hence, the eigenvalues of T are the zeros xi of Ln with eigenvector
(L0(xi), . . . , Ln−1(xi))

⊤.
The tridiagonal matrix T can be made symmetric with a similarity transformation: for suitable
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diagonal matrix D = diag(d0, . . . , dn−1), there holds

DTD−1 = J =




α1 β1 0
β1 α2 β2

0
. . .

. . .
. . .

. . .
. . .

. . . βn−1

βn−1 αn




, αi := −
bi
ai
, βi =

(
ci+1

aiai+1

)1/2

.

(2.21)

(Exercise: check this!) Since D is a diagonal matrix, the eigenvectors of J are the form

vi = D




L0(xi)
...

Ln−1(xi)


 =




diL0(xi)
...

diLn−1(xi)


 . (2.22)

Since J is a symmetric matrix, its eigenvectors vi are pairwise orthogonal. ✷

Once the Gauss points x0, . . . , xn−1 (i.e., the zeros of Ln) have been determined, the weights wi,
i = 0, . . . , n − 1, can be computed by solving a linear system of equations from the exactness
condition ∫ 1

−1

f(x) dx =
n−1∑

j=0

wjf(xj), ∀f ∈ Pn−1. (2.23)

In fact, if the eigenvectors of the matrix J are available, then the weights wi can easily be
determined directly:

Lemma 2.25 Let v0, . . . ,vn−1 be a basis of Rn of eigenvectors of J corresponding to the eigen-
values xi, i = 0, . . . , n− 1. Then the quadrature weights are given by

wi(v
⊤
i vi) =

∫ 1

−1

L2
0(x) dx = 2((vi)1)

2, i = 0, . . . , n− 1.

Proof: By Lemma 2.24, the eigenvectors vi, i = 0, . . . , n− 1, of the matrix J are orthogonal,
i.e., v⊤

i vj = 0 for i 6= j. Formula (2.22) shows that

vi = di(L0(xi), . . . , Ln−1(xi))
⊤, i = 0, . . . , n− 1.

From the exactness condition (2.23) applied to the function f(x) = diLi(x), we get

∑

j

wjdiLi(xj) =

∫ 1

−1

diLi(x) dx
L0=1
= di

∫ 1

−1

L0(x)Li(x) dx
Lj orthog.

= δi0di‖L0‖2L2(−1,1)
L0=1
= 2diδi0

(2.24)
With the matrix V and the unit vector e1 given by

V := (v1, . . . ,vn−1), e1 = (1, 0, . . . , 0)⊤

the n equations in (2.24) can be written as

Vw = 2die1,
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where w = (w0, . . . , wn)
⊤. Multiplying from the left by the vector v⊤

i and using that the
eigenvectors are pairwise orthogonal yields

v⊤
i viwi = 2div

⊤
i e1 = 2di(vi)1

(vi)1=diL0=di
= 2((vi)1)

2

✷

2.7.1 Gaussian quadrature with weights

goal: given a positive function ω on (−1, 1), determine quadrature points xi, i = 0, . . . , n and
weights wi such that the exactness condition

∫ 1

−1

f(x)ω(x) dx =

n∑

i=0

wif(xi) (2.25)

holds for polymials of as a degree as possible. Proceeding as in the case of the classical Gaussian
quadrature (i.e., ω ≡ 1) one can show that

Theorem 2.26 If the function ω is positive on (−1, 1) and satisfies
∫ 1

−1
ω(x) dx <∞ there are

points xi ∈ (−1, 1), i = 0, . . . , n, and weights wi > 0 such that
∫ 1

−1

f(x)ω(x) dx =
n∑

i=0

wif(xi) ∀f ∈ P2n+1. (2.26)

In particular, for the quadrature error one has
∣∣∣∣∣

∫ 1

−1

f(x)ω(x) dx−
n∑

i=0

wif(xi)

∣∣∣∣∣ ≤ 2

(∫ 1

−1

ω(x) dx

)
inf

v∈P2n+1

‖f − v‖∞,[−1,1]. (2.27)

The theory is set up completely analogously to the case of the Gaussian quadrature: one
computes polynomials that are pairwise orthogonal with respect to the weighted inner product

〈u, v〉 =
∫ 1

−1

u(x)v(x)ω(x) dx.

Denoting these orthogonal polynomials Pn, the quadrature points xi, i = 0, . . . , n are the zeros
of Pn+1. The weights are obtained by requiring exactness of the quadrature rule for polynomials
of degree n.
Important examples are:

1. ω ≡ 1: the orthogonal polynomials are the Legendre polynomials Ln

2. ω(x) = (1− x2)−1: the orthogonal polynomials are the Chebyshev polynomials Tn

3. ω(x) = (1− x)α(1 + x)β for some α, β > −1: the orthogonal polynomials are the Jacobi

polynomials, usually denoted P
(α,β)
n . Note that the special case α = β = 0 corresponds

to the Legendre polynomials and α = β = −1/2 to the Chebyshev polynomials.

Example 2.27 We wish to evaluate the integral
∫ 1

−1
(1 − x)αf(x) dx. This is done with the

Gauss-Jacobi quadrature, i.e., the quadrature points are the zeros of P
(1/2,0)
n+1 (x) with corre-

sponding quadrature weights. The performance for the smooth function f(x) = ex is shown in
Fig. 2.6. By Theorem 2.26 we should expect very fast convergence.
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Figure 2.6: Gauss-Jacobi quadrature of
∫ 1

−1
(1− x)αex dx for α = 1/2.
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3 conditioning and error analysis

3.1 error measures

slide 18

slide 19

slide 20
Numerical simulations contain errors that come from various sources:

• Modelling error: when describing a problem with mathematical equations, various effects
are typically neglected (e.g., continuum models versus the atomic structure of gases or
solids)

• measurement errors: models typically contain parameters that have to be measured

• roundoff errors: computers work with finite precision numbers (typically floating point
numbers), so that an error is made in each floating point operation

• discretization errors: numerical methods are not exact. Examples we have encountered
are numerical differentiation and integration

errors are typically measured using norms :
slide 19a

Definition 3.1 (norm) A mapping ‖ · ‖ : Rn → R+
0 is called a norm, if

(i) (triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Rn

(ii) (homogeneity) ‖λx‖ = |λ|‖x‖ for all x ∈ Rn, λ ∈ R

(iii) (definiteness) ‖x‖ = 0 implies x = 0.

Example 3.2 Important norms on Rn are:

1. the euklidian norm ‖x‖2 :=
√∑n

i=1 |xi|2

2. the ∞-norm ‖x‖∞ := maxi=1,...,n |xi|

3. the 1-norm ‖x‖1 :=
∑n

i=1 |xi|

3.2 conditioning and stability of algorithms

The condition number of a problem measures how the (exact) mathematical problem deals with
perturbations/errors in the input data:

Definition 3.3 The condition number of a problem (described as the evaluation of a function
f) is the factor by which input perturbations are amplified in the worst case. One distinguishes:

(a) absolute condition number κabs(x) is the smallest number such that for all sufficiently small
∆x:

‖f(x)− f(x+∆x)‖ ≤ κabs(x)‖∆x‖.
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(b) relative condition number κrel(x) is the smallest number such that for all sufficiently small
∆x:

‖f(x)− f(x+∆x)‖
‖f(x)‖ ≤ κrel(x)

‖∆x‖
‖x‖

finis 6.DS
In practice, one can compute the condition number in terms of the derivative of f . In the interest
of simplicity, we consider the simple case f : R → R. If f ∈ C1, then Taylor expansion yields
f(x+∆x) = f(x) + f ′(x)∆x+ · · · so that (approximately) |f(x+∆x)− f(x)| ≤ |f ′(x)| |∆x|.
Hence, we see that (essentially)

κabs(x) = |f ′(x)|
For the relative condition number we obtain analogously (for f(x) 6= 0)

|f(x+∆x)− f(x)|
|f(x)| ≈ |f

′(x)∆x|
|f(x)| =

|f ′(x)| |x|
|f(x)|

|∆x|
|x| .

That is, we expect

κrel(x) =
|f ′(x)|
|f(x)| |x|.

In the following, we consider the relative condition number of a problem. We say that a
problem is well conditioned, if κrel(x) is “moderate” and it is called ill conditioned, if κrel(x) is
“large”. The notion of “moderate” and “large” are vague, since it depends on the setting and
the ultimate goal of the calculation whether a certain amplification of input errors is acceptable
or not.

Example 3.4 The addition of two positive numbers is well conditioned: Let x, y > 0 and ∆x,
∆y with |∆x|/x ≤ δ and |∆y|/y ≤ δ. Then

|(x+∆x) + (y +∆y)− (x+ y)|
|x+ y| ≤ |∆x|+ |∆y|

x+ y

x,y>0

≤ δx+ δy

x+ y
≤ δ,

i.e. κrel ≤ 1. The (relative) error in the result is at most as large as the (relative) input error.

Example 3.5 slide 21
Subtracting two numbers of similar size is ill-conditioned (“cancellation”). Consider the sub-
traction

x1 = 1.2345689? · 100
x2 = 1.2345679? · 100

where ? stands for an error/uncertainty in the input. The relative input error is thus of size
10−8. For the difference

x1 − x2 = 0.0000011? · 100 = 1.1? · 10−6

we get a relative error/uncertainty of 10−2. Thus, we have lost 6 digits. Correspondingly, the
(relative) condition number is κrel ≈ 1.8 · 106: auxiliary computation:

∣∣∣∣
(x + ∆x) − (y + ∆y) − (x − y)

x − y

∣∣∣∣ =

∣∣∣∣
∆x − ∆y

x − y

∣∣∣∣ ≤
|∆x| + |∆y|

|x − y|
.

This leads to 2 · 10−8/(1.1 · 10−6) ≈ 1.8 · 10−2 .

Exercise 3.6 Show that multiplication and division are well conditioned (relative condition-
ing).
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3.3 stability of algorithms

The algorithmic realization of a mathematical function f is typically done as a concatenation

f = f1 ◦ f2 · · · ◦ fN
of functions f1, . . . , fN , where one may think of the functions fi as “elementary functions” such
as the addition, subtraction, multiplication, division or as more complex subproblems such as
the evaluation of integrals, finding zeros of functions, solutions of differential equations. An
algorithm will typically not realize a function exactly, i.e., f will be approximated by

f̂ = f̂1 ◦ f̂2 · · · ◦ f̂N .

Examples of such approximations are:

• A computer realizes numbers typically as floating point numbers. Hence, already the
input is rounded. The elementary operations +, −, ∗, / cannot be realized exactly.

• Subproblems fi such as the evaluation of integrals are not exact but are tainted with
discretization errors.

An inaccuracy/error that results from using an approximation f̂i instead of fi is potentially

amplified by the subsequent functions f̂1, . . . , f̂i−1. A stability analysis of algorithms tries to
identify ill-conditioned subproblems f̂i and will possibly modify them. Modifying subproblems
f̂i (or choosing a different decomposition f1 ◦ · · · ◦ fN ′) is a sensible approach if some subprob-
lems are ill-conditioned but if at the same time the corresponding “exact” functions are well
conditioned. We illustrate this procedure with some simple examples in which cancellation (cf.
Example 3.5) is the culprit.

Example 3.7 slide 21
Consider the evaluation of the function f(x) = log(1 + x) for small x. The problem is well-
conditioned since

κrel(x) =
|f ′(x)||x|
|f(x)| =

|x|
(1 + x)| log(1 + x)| ≤ 2 (for x sufficiently close to 0)

The “naive” numerical realization is

x
f27→ w := (x+ 1)

f17→ logw.

The mapping f1 is ill-conditioned near w = x+ 1:

κrel(w) ≈
w

w| logw| =
1

| logw| =
1

log(1 + x)
≈ 1

x
.

Hence, we observe the following: The intermediate result 1 + x has a relative accuracy of 16
digits but the subsequent application of f2 may amplify (relative) inaccuracies by a factor ≈ 1/x.
For example, for x = 10−10 one has to fear that one loses 10 digits. Indeed, in matlab:

>> x=1.234567890123456e-10;

>> w=1+x; f=log(w)

f =

1.234568003306966e-10
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The true value (rounded to 16 digits) is f = 1.234567890047248e− 10. That is, although the
IEEE-floating point arithmetic of matlab uses 16 digits, the result has only 6 corret digits, i.e.,
10 digits were lost.
Since the original function f is well-conditioned, one may hope to find another algorithm that
circumvents this cancellation problem. Indeed, using, e.g., the Taylor approximation of f for
small x gives

f(x) = x− 1

2
x2 +

1

3
x3 − · · · (3.1)

and one obtains for x− x2/2 the value 1.234567890047248e− 10, which is correct to all digits.
This example is not untypical. The situation is such that the final result (here: x) is small but
that the intermediate results (here: 1 + x ≈ 1) are large relative to the final result. One should
fear that the small final result is then somehow obtained by subtracting numbers of similar size.
A different way of understanding the problem is: by (3.1) the final result is approximately x
so that one shouldn’t lose information contained in the digits of x. However, the intermediate
results remove information about x as the following calculation with 16 digits shows:

1.000000000000000
0.0000000001234567890123456
1.0000000001234568

Example 3.8 The two zeros of the quadratic equation x2 − 2px− q = 0 are given by

x0 = p−
√
p2 + q, x1 = p+

√
p2 + q. (3.2)

A (mathematically equivalent) alternative formula is given by

x1 = p+
√

p2 + q, (3.3a)

x0 = p−
√
p2 + q =

(p−
√
p2 + q)(p+

√
p2 + q)

p+
√
p2 + q

=
−q

p+
√
p2 + q

= − q

x1
(3.3b)

Consider the case p, q > 0. If p2 >> q we expect again cancellation when computing x0. Indeed,
in matlab:

>> p = 400000; q = 1.234567890123456;

>> r = sqrt(p^2+q); x0=p-r

x0 =

-1.543201506137848e-06

The exact solution is −1.543209862651343129e− 06. The reason is again cancellation in the
last step of the realization of the formula for x0. The alternative formula (3.3b) avoids this
subtraction and yields a result with 16 correct digits:

>> x1=p+sqrt(p^2+q);x0=-q/x1

x0 =

-1.543209862651343e-06

finis 7.DS
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


∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗







∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗




Figure 4.1: schematic representation of lower (left) and upper (right) matrices (n = 4); blank
spaces represent a 0

4 Gaussian elimination

goal: solve, for given A ∈ Rn×n and b ∈ Rn, the linear system of equations

Ax = b. (4.1)

In the sequel, we will often denote the entries of matrices by lower case letters, e.g., the entries
of A are (A)ij = aij . Likewise for vectors, we sometimes write xi = xi.

Remark 4.1 In matlab, the solution of (4.1) is realized by x = A\b. In python, the function
numpy.linalg.solve performs this. In both cases, a routine from lapack1 realizes the actual
computation. The matlab realization of the backslash operator \ is in fact very complex. A
very good discussion of many aspects of the realization of \ can be found in [1].

4.1 lower and upper triangular matrices

A matrix A ∈ Rn×n is

• an upper triangular matrix if Aij = 0 for j < i;

• a lower triangular matrix if Aij = 0 for j > i.

• a normalized lower triangular matrix if, in addition to being lower triangular, it satisfies
Aii = 1 for i = 1, . . . , n.

Linear systems where A is a lower or upper triangular matrix are easily solved by “forward
substitution” or “back substitution”:

Algorithm 4.2 (solve Lx = b using forward substitution)
Input: L ∈ Rn×n lower triangular, invertible, b ∈ Rn

Output: solution x ∈ Rn of Lx = b

for j = 1:n do

xj :=

(
bj −

j−1∑
k=1

ljkxk

)/
ljj J convention: empty sum = 0 K

end for

1linear algebra package, see en.wikipedia.org/wiki/LAPACK
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Algorithm 4.3 (solution of Ux = b using back substitution)
Input: U ∈ Rn×n upper triangular, invertible, b ∈ Rn

Output: solution x ∈ Rn of Ux = b

for j = n:-1:1 do

xj :=

(
bj −

n∑
k=j+1

ujkxk

)/
ujj

end for

The cost of Algorithms 4.2 and 4.3 are O(n2):

Exercise 4.4 Compute the number of multiplications and additions in Algorithms 4.2 and 4.3.

The set of upper and lower triangular matrices are closed under addition and matrix multipli-
cation2:

Exercise 4.5 Let L1, L2 ∈ Rn×n be two lower triangular matrices. Show: L1 + L2 and L1L2

are lower triangular matrices. If L1 is additionally invertible, then its inverse L−1
1 is also a

lower triangular matrix. Analogous results hold for upper triangular matrices.

Remark 4.6 (representation via scalar products) Alg. 4.2 (and analogously Alg. 4.3) can
be writen using scalar products:

for j = 1:n do

x(j) :=
[
b(j)− L(j, 1 : j − 1) ∗ x(1 : j − 1)

]/
L(j, j)

end for

The advantage of such a formulation is that efficient libraries are available such as BLAS
level 13. More generally, rather than realizing dot-products, matrix-vector products, or matrix-
matrix-products directly by loops, it is typically advantageous to employ optimized routines such
as BLAS.

Remark 4.7 In Remark 4.6, the matrix L is accessed in row-oriented fashion. One can reorganize the two loops so as to access L in a column-oriented
way. The following algorithm overwrites b with the solution x of Lx = b:

for j = 1:n-1 do

b(j) = b(j)/L(j, j)
b(j + 1 : n) := b(j + 1 : n) − b(j)L(j + 1 : n, j)

end for

2That is, they have the mathematical structure of a ring
3Basic Linear Algebra Subprograms, see en.wikipedia.org/wiki/Basic Linear Algebra Subprograms
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4.2 classical Gaussian elimination

slide 23
The classical Gaussian elimination process transforms the linear system (4.1) into upper trian-
gular form, which can then be solved by back substitution. We illustrate the procedure:

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
...

...
an1x1 + an2x2 + · · · + annxn = bn

(4.2)

Multiplying the 1st equation by

l21 :=
a21
a11

and subtracting this from the 2nd equation produces:

(a21 −
a21
a11

a11)
︸ ︷︷ ︸

0

x1 + (a22 −
a21
a11

a12)
︸ ︷︷ ︸

=:a
(2)
22

x2 + · · ·+ (a2n −
a21
a11

a1n)
︸ ︷︷ ︸

=:a
(2)
2n

xn = b2 −
a21
a11

b1
︸ ︷︷ ︸

=:b
(2)
2

(4.3)

Multiplying the 1st equation by

l31 :=
a31
a11

and subtracting this from the 3rd equation produces:

(a31 −
a31
a11

a11)
︸ ︷︷ ︸

0

x1 + (a32 −
a31
a11

a12)
︸ ︷︷ ︸

=:a
(2)
32

x2 + · · ·+ (a3n −
a31
a11

a1n)
︸ ︷︷ ︸

a
(2)
3n

·xn = b3 −
a31
a11

b1
︸ ︷︷ ︸

b
(2)
3

(4.4)

Generally, multiplying for i = 2, . . . , n, the 1st equation by li1 := ai1/a11 and subtracting this
from the ith equation yields the following equivalent system of equations:

a11x1 + a12x2 + · · · + a1nxn = b1
a
(2)
22 x2 + · · · + a

(2)
2n xn = b

(2)
2

...
...

a
(2)
n2 x2 + · · · + a

(2)
nnxn = b

(2)
n

(4.5)

Repeating this process for the (n− 1)× (n− 1) subsystem

a
(2)
22 x2 + · · · + a

(2)
2nxn = b

(2)
2

...
...

a
(2)
n2x2 + · · · + a

(2)
nnxn = b

(2)
n

of (4.5) yields

a11x1 + a12x2 + a13x3 + · · · + a1nxn = b1
a
(2)
22 x2 + a

(2)
23 x3 + · · · + a

(2)
2n xn = b

(2)
2

a
(3)
33 x3 + · · · + a

(3)
3n xn = b

(3)
3

...
...

a
(3)
n3 x3 · · · a

(3)
nnxn = b

(3)
n

(4.6)
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A

0

0

0
0

0

0

0

0
0

0

0

0 0

Figure 4.2: Gaussian elimination: reduction to upper triangular form

One repeats this procedure until one has reached triangular form. The following Alg. 4.8 realizes
the above procedure: It overwrites the matrix A so that its upper triangle contains the final
triangular form, which we will denote U below; the entries lik computed on the way will be
collected in a normalized lower triangular matrix L.

Algorithm 4.8 (Gaussian elimination without pivoting)
Input: A
Output: non-trivial entries of L and U; A is overwritten by U

for k = 1 : (n− 1) do

for i = (k + 1) : n do

lik :=
aik
akk

A(i, [k + 1 : n])+ = −lik · A(k, [k + 1 : n])
end for

end for

Remark 4.9 In (4.8) below, we will see that A = LU, where U and L are computed in
Alg. 4.8. Typically, the off-diagonal entries of L are stored in the lower triangular part of A so
that effectively, A is overwritten by its LU-factorization.

Exercise 4.10 Expand Alg. 4.8 so as to include the modifications of the right-hand side b.

4.2.1 Interpretation of Gaussian elimination as an LU-factorization

With the coefficients lij computed above (e.g., in Alg. 4.8) one can define the matrices

L(k) :=




1

0
. . .

...
. . .

. . .
... 0 1
...

... lk+1,k
. . .

...
...

... 0
. . .

...
...

...
...

. . .
. . .

0 · · · 0 ln,k 0 · · · 0 1




, k = 1, . . . , n− 1
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Exercise 4.11 Check that the inverse of L(k) is given by

(L(k))−1 =




1

0
. . .

...
. . .

. . .
... 0 1
...

... −lk+1,k
. . .

...
...

... 0
. . .

...
...

...
...

. . .
. . .

0 · · · 0 −ln,k 0 · · · 0 1




. (4.7)

Each step of the above Gaussian elimination process sketched in Fig. 4.2 is realized by a
multiplication from the left by a matrix, in fact, the matrix (L(k))−1 (cf. (4.7)). That is, the
Gaussian elimination process can be described as

A = A(1) → A(2) = (L(1))−1A(1) → A(3) = (L(2))−1A(2) = (L(2))−1(L(1))−1A(1) → . . .

→ A(n)
︸︷︷︸

=:U upper triangular

= (L(n−1))−1A(n−1) = . . . = (L(n−1))−1(L(n−2))−1 . . . (L(2))−1(L(1))−1A(1)

Rewriting this yields, the LU -factorization

A = L(1) · · ·L(n−1)
︸ ︷︷ ︸

=:L

U

The matrix L is a lower triangular matrix as the product of lower triangular matrices (cf.
Exercise 4.5). In fact, due to the special structure of the matrices L(k), it is given by

L =




1

l21
. . .

...
. . .

. . .

ln1 · · · ln,n−1 1




as the following exercise shows:

Exercise 4.12 For each k the product L(k)L(k+1) · · ·L(n−1) is given by

L(k)L(k+1) · · ·L(n−1) =




1

0
. . .

...
. . .

. . .
... 0 1
...

... lk+1,k 1
...

...
... lk+2,k+1

. . .
...

...
...

...
. . .

. . .

0 · · · 0 ln,k ln,k+1 · · · ln,n−1 1




.
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Thus, we have shown that Gaussian elimination produces a factorization

A = LU, (4.8)

where L and U are lower and upper triangular matrices determined by Alg. 4.8.

4.3 LU-factorization

In numerical practice, linear systems are solved by computing the factors L and U in (4.8) and
the system is then solved with one forward and one back substitution:

1. compute L, U such that A = LU

2. solve Ly = b using forward substitution

3. solve Ux = y using back substitution

Remark 4.13 In matlab, the LU-factorization is realized by lu(A). In python one can use
scipy.linalg.lu.

As we have seen in Section 4.2.1, the LU -factorization can be computed with Gaussian elimi-
nation. An alternative way of computing the factors L, U is given in the following section4

4.3.1 Crout’s algorithm for computing LU-factorization

We seek L, U such that




1

l21
. . .

...
. . .

. . .

ln1 · · · ln,n−1 1







u11 · · · · · · u1n

. . .
...

. . .
...

unn




!
=




a11 · · · · · · a1n
...

...
...

...
an1 · · · · · · ann




This represents n2 equations for n2 unknowns, i.e., we are looking for lij, uij, such that

aik
!
=

n∑

j=1

lij ujk, ∀i, k = 1, . . . , n.

L is lower triangular, U is upper triangular =⇒

aik
!
=

min(i,k)∑

j=1

lij ujk ∀i, k = 1, . . . , n (4.9)

4One reason for studying different algorithms is that the entries of L and U are computed in a different
order so that these algorithms differ in their memory access and thus potentially in actual timings.
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Idea:
Traverse the n2 equations in (4.9) in following order: (“Crout ordering”)]]

(1, 1) , (1, 2) , . . . , (1, n)
(2, 1) , (3, 1) , . . . , (n, 1)
(2, 2) , (2, 3) , . . . , (2, n)
(3, 2) , (4, 2) , . . . , (n, 2)

etc.

Procedure:

1. step: i = 1, k = 1, . . . , n in (4.9):

l11︸︷︷︸
=1

u1k
!
= a1k

⇒ U(1, :) can be computed

2. step: k = 1, i = 2, . . . , n in (4.9):

li1u11
!
= ai1

⇒ L([2 : n], 1) can be determined

3. step: i = 2, k = 2, . . . , n in (4.9):

l21︸︷︷︸
is known

by 2. step

u1k︸︷︷︸
is known

by 1. step

+ l22︸︷︷︸
=1

u2k
!
= a2k for k = 2, . . . , n

⇒ can compute U(2, [2 : n])

4. step: k = 2, i = 3, . . . , n in (4.9):

li1︸︷︷︸
known by
2. step

u12︸︷︷︸
known by
1. step

+li2 u22︸︷︷︸
known by
3. step

!
= ai2 for i = 3, . . . , n

⇒ can compute L([3 : n], 2)
...
...
...

The procedure is formalized in the following

Algorithm 4.14 (Crout’s LU-factorization)
Input: invertible matrix A ∈ Rn×n that has an LU-factorization
Output: the non-trivial entries of the normalized LU-factorization
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for i = 1 : n do

for k = i : n do

uik := aik −
i−1∑
j=1

lijujk

end for

for k = i+ 1 : n do

lki :=

(
aki −

i−1∑
j=1

lkjuji

)/
uii

end for

end for

Remark 4.15 (cost when solving (4.1) with LU-factorization)

• The LU-factorization dominates with O(n3) (more precisely: 2/3n3+O(n2) floating point
operations) the total cost, since the cost of back substitution and forward substitution are
O(n2)

• An advantage of an LU-factorization arises, when problems with multiple right-hand sides
are considered: solving Ax = b for M right-hand sides b, requires only a single LU-
factorization, i.e., the cost are 2

3
n3 + 2Mn2

In practice A is overwritten by its LU -decomposition:

Algorithm 4.16 (LU-factorization with overwriting A)
Input: A, invertible, A has a LU-factorization
Output: algorithm replaces aij with uij for j ≥ i
and with lij for j < i

for i = 1 : n do

for k = i : n do

aik := aik −
i−1∑
j=1

aij ajk

end for

for k = (i+ 1) : n do

aki :=

(
aki −

i−1∑
j=1

akj aji

)/
aii

end for

end for

4.3.2 banded matrices

A matrix A ∈ Rn×n is a banded matrix with upper bandwidth q and lower bandwidth p if aik = 0
for all i, k with i > k + p or k > i+ q. The following theorem shows that banded matrices are
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


a11 · · · a1,q+1

...
. . .

. . .

ap+1,1
. . .

. . .

. . .
. . .

. . .
. . .

. . . an−q,n

. . .
. . .

...
an,n−p · · · ann




Figure 4.3: banded matrix with upper bandwidth q and lower bandwidth p.

of interest if p and q are small (compared to n):

Theorem 4.17 Let A ∈ Rn×n be a banded matrix with upper bandwidth q and lower bandwidth
p. Let A be invertible and admit an LU-factorization. Then:

(i) L has lower bandwidth p and U has upper bandwidth q.

(ii) Cost to solve Ax = b:

(a) O(npq) floating point operations (flops) to determine LU-factorization

(b) O(np) flops to solve Ly = b

(c) O(nq) flops to solve Ux = y

Proof: (Exercise) Prove (i) for the special case of a tridiagonal matrix, i.e., p = q = 1. To that
end, proceed by induction on the matrix size n:

• n = 1 X

• for the induction step n→ n+1 make the ansatz

A =




0
...

An

...
0

an,n+1

0 · · · · · · 0 an+1,n an+1,n+1




!
=




Ln 0

l⊤ 1







Un u

0 ρ




and compute l⊤, u, and ρ. Use the structure of Ln, Un given by the induction hypothesis.

✷

slide 24
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4.3.3 Cholesky-factorization

A particularly important class of matrices A is that of symmetric positive definite (SPD)
matrices:

• A is symmetric, i.e., Aij = Aji for all i, j

• A is positive definite, i.e., x⊤Ax > 0 for all x 6= 0.

Remark 4.18 An alternative criterion for positive definiteness of a symmetric matrix is that
all its eigenvalues are positive.

For SPD matrices, one typically employs a variant of the LU -factorization, namely, the Cholesky-
factorization, i.e.,

A = CC⊤, (4.10)

where the Cholesky factor C is lower triangular (but not normalized, i.e., the entries Cii are
not necessarily 1).

Exercise 4.19 Formulate an algorithm to compute C. Hint: Proceed as in Crout’s method for
the LU-factorization.

Remark 4.20 If an SPD matrix A is banded with bandwidth p = q, then the Cholesky factor
C is also banded with the same bandwidth.

Remark 4.21 The cost of a Cholesky factorization (of either a full matrix or a banded matrix)
is about half of that of the corresponding LU-factorization since only half the entries need to be
computed.

Remark 4.22 A Cholesky factorization is computed in matlab with chol.

slide 25

4.3.4 skyline matrices

slide 26
Banded matrices are a particular case of sparse matrices, i.e., matrices with “few” non-zero
entries. We note that the LU -factors have the same sparsity pattern, i.e., the zeros of A
outside the band are inherited by the factors L, U.
Another important special case of sparse matrices are so-called skyline matrices as depicted on
the left side of Fig. 4.4. More formally, a matrix A ∈ Rn×n is called a skyline matrix, if for
i = 1, . . . , n there are numbers pi, qi ∈ N0 such that

aij = 0 if j < i− pi or i < j − qj . (4.11)

We have without proof:
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Figure 4.4: lines indicate non-zero entries. Left: skyline matrix, whose sparsity pattern is
inherited by LU -factorization. Right: not a skyline-Matrix and the LU -factorization does not
inherit the sparsity pattern.

A =




1 1 1
1 2 2

1 3 3
1 2 3 5 18

1 5
1 6

1 2 3 18 5 6 92




L = U⊤ =




1
1

1
1 2 3 1

1
1

1 2 3 4 5 6 1




Figure 4.5: A ∈ R7×7 and its LU -factorization.

Theorem 4.23 Let A ∈ Rn×n be a skyline matrix, i.e., there are pi, qi with (4.11). Let A
have an LU-factorization A = LU. Then the matrices L, U satisfy:

lij = 0 for j < i− pi, uij = 0 for i < j − qj .

Theorem 4.23 states that the factors L and U have the same sparsity pattern as A. Figure 4.5
illustrates this for a simple example. Obviously, this can be exploited algorithmically to econ-
omize on memory requirement and computing time by simply computing the non-zero entries
of L and U. Note that the matrices in Fig. 4.4 should not be treated as banded matrices as
then the bands p, q would be n. The right example in Fig. 4.4 is not a skyline matrix, and
the sparsity pattern of A is lost in the course of the LU -factorization: L ist in general a fully
populated lower triangular matrix and U a fully populated upper triangular matrix. This is
called fill in.

Exercise 4.24 The sparsity pattern of matrices can be checked in matlab with the command
spy. Check the sparsity patterns of the LU-factorization of the matrices A given above.

Remark 4.25 Modern solvers for sparse linear systems typically perform as a preprocessing
step row and column permutations so as to minimize fill-in during factorization. (→ see Ap-
proximate Minimum Degree, Reverse Cuthill-McKee).

slide 26a
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4.4 Gaussian elimination with pivoting

4.4.1 Motivation

So far, we assumed that A admits a factorization A = LU. However, even if A is invertible,
this need not be the case as the following example shows:

Exercise 4.26 Prove that the matrix

A =

(
0 1
3 2

)

does not have a factorization A = LU with normalized lower triangular matrix L and upper
triangular matrix U.

The key observation is that permuting the rows of A leads to a matrix that has an LU -
factorization: Let

P =

(
0 1
1 0

)

be the permutation matrix that interchanges the rows 1 and 2 of A:

PA =

(
3 2
0 1

)

This matrix has an LU -factorization. The general principle is:

Theorem 4.27 Let A ∈ Rn×n be invertible. Then there exists a permutation matrix P, a
normalized lower triangular matrix L, and an upper triangular matrix U such that LU = PA.
Here PA is a permutation of the rows of A.

Exercise 4.28 Let P be given by

P =




1
. . .

0 1
. . .

1 0
1

. . .




where the off-diagonal 1 are in the positions (i1, i2) and (i2, i1) (with i1 6= i2). Show: The matrix
PA is the matrix A with rows i1 and i2 interchanged. Furthermore, P−1 = P⊤ = P.
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4.4.2 Algorithms

A factorization as given in Theorem 4.27 can be obtained by modifying Alg. 4.8: if a definition
of an lij is not possible because a

(j)
jj = 0, then a row j′ from the rows {j + 1, . . . , n} is chosen

with a
(j)
jj′ 6= 0 (this is possible since otherwise A is rank deficient). One interchanges rows j and

j′ and continues with Alg. 4.8.
Mathematically, it is immaterial, which row j′ is chosen. Numerically, one typically chooses
the row j′ such that the corresponding entry a

(j)
jj′ is the largest (in absolute value) from the set

{a(j)jJ J = j + 1, . . . , n}. This is called partial pivoting.
To formalize the procedure, we need the concept of permutation matrices:

Definition 4.29 Let π : {1, . . . , n} → {1, . . . , n} be a permutation5. Then,

Pπ :=
(
eπ(1) , . . . , eπ(n)

)

denotes the corresponding permutation matrix.

Theorem 4.30 Let π : {1, . . . , n} → {1, . . . , n} be a permutation. Then:

(i) Pπ ei := eπ(i) ∀i

(ii) P−1
π = P⊤

π

(iii) PπA is obtained from A by row permutation: the i-th row of A becomes the π(i)-th row
of PπA. Put differently: (PπA)i,: = Aπ−1(i),: or, still equivalently, (Pπ−1A)i,: = Aπ(i),:.

(iv) APπ is obtained from A by column permutation: (APπ):,i = A:,π(i).

Proof: Exercise. (Prove (ii), then (iv). Finally (iii) using (ii) and transposes.) ✷

In practice, the LU-factorization of A with (row) pivoting operates directly on the matrix A,
i.e., overwrites the matrix A and the row permutations are not done explicitly but implicitly
with pointers. This leads to:

Algorithm 4.31 (Gaussian elimination with row pivoting) Input: invertibleA ∈ Rn×n

Output: factorization PA = LU, where A is overwritten by U:
uij = aπ(i),j and P = P−1

π = P⊤
π is implicitly given by the vector π

π := (1, 2, . . . , n)
for k = 1 : (n− 1) do

seek p ∈ {k, . . . , n} s.t. |apk| ≥ |aik| ∀i ≥ k
interchange k-th and p-th entry of vector π
for i = (k + 1) : n do

lπ(i),k :=
aπ(i),k

aπ(k),k

for j = (k + 1) : n do

aπ(i),j := aπ(i),j − lπ(i),k aπ(k),j

5That is, π is a bijection
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end for

end for

end for

Theorem 4.32 Let A ∈ Rn×n be invertible. Then Algorithm 4.31 yields a factorization
LU = PA, where L satisfies |lij| ≤ 1 ∀i, j. P is a permutation matrix.

Remark 4.33 The matlab/python commands to compute LU-factorization typically return
matrices L, U, P of a factorization LU = PA and perform (at least some) pivoting.

Exercise 4.34 Given a factorization LU = PA, determine the solution x of Ax = b.

4.4.3 numerical difficulties: choice of the pivoting strategy

Alg. 4.31 selected the largest element from among the possible pivot elements. Why this is a
good strategy becomes more clear when one studies the case that the pivot element is non-zero
but small as in the following example.
Consider for small ε the matrix

A =

(
ε 1
1 1

)

Its LU -factorization is

A =

(
1 0
ε−1 1

)(
ε 1
0 1− ε−1

)

Let now ε = 10−20. In typical floating point arithmetic (16 digits) one therefore expects this to

be realized as with approximate factors L̂, Û given by

L̂ =

(
1 0

1020 1

)
, Û =

(
10−20 1
0 −1020

)

If one performs (in matlab, say) the forward and back substitution for the linear system

L̂Ûx =

(
1
0

)

one obtains x = (0, 1) whereas the correct solution of the original problem is (up to machine
precision) x = (−1, 1). That is, the solution is completely inaccurate. In contrast, solving the
row-pivoted problem yields the correct solution.
Rather than fully analyzing round errors for the solution of linear systems, let us give a heuristic,
why the pivoting strategy is reasonable. Let us assume that the entries of the matrix A and the
right-hand side vector b and the solution vector x are “moderate” in size. If small pivots are
used, i.e., some a

(k)
kk is small during Gaussian elimination, then one should expect the entries of L

to be large (as in the above example). Hence, in the course of the forward or back substitution,
one should expect large intermediate values. If the final result is again “moderate”, then one
should fear that this is achieved by subtracting numbers of similar size. That is, one should
fear cancellation and thus loss of accuracy. In Alg. 4.31 the pivoting choice ensures that the
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entries of L are all bounded by 1, thus moderate. We stress that this is not an insurance against
roundoff problems as the pivoting strategy does not control the size of the entries of U. While
this is possible (“full pivoting”), it is usually avoided due to the cost considerations.

slide 27

4.5 condition number of a matrix A

An important quantity to assess the effect of errors in the data (i.e., the right-hand side b or
the matrix A) on the solution is the condition number (see (4.13) ahead). In order to define it,
let ‖ · ‖ be a norm on Rn. On the space of matrices A ∈ Rn×n, we define the induced matrix
norm by

‖A‖ := max
06=x∈Rn

‖Ax‖
‖x‖ . (4.12)

Exercise 4.35 Show:

1. If ‖ · ‖ = ‖ · ‖∞, then the induced matrix norm ‖ · ‖∞ is given by (“row sum norm”)

‖A‖∞ = max
i

n∑

j=1

|aij|

2. If ‖ · ‖ = ‖ · ‖1, then the induced matrix norm ‖ · ‖∞ is given by (“column sum norm”)

‖A‖1 = max
j

n∑

i=1

|aij |

3. For ‖ · ‖2 one has ‖A‖22 = λmax(A
⊤A), where λmax denotes the maximal eigenvalue.

Exercise 4.36 Prove: For A, B ∈ Rn×n there holds ‖AB‖ ≤ ‖A‖‖B‖.

We study the effect of perturbing the right-hand side b. We consider

Ax = b

A(x+∆x) = b+∆b

In order to estimate ∆x in terms of ∆b we note A∆x = ∆b as well as ‖b‖ = ‖AA−1b‖ ≤
‖A‖‖A−1b‖ so that

absolute error: ‖∆x‖ = ‖A−1∆b‖ ≤ ‖A−1‖‖∆b‖,

relative error:
‖∆x‖
‖x‖ =

‖A−1∆b‖
‖A−1b‖ ≤

‖A−1‖‖∆b‖
‖b‖/‖A‖ = ‖A‖‖A−1‖‖∆b‖

‖b‖ .

The quantity
κ(A) := ‖A‖‖A−1‖ (4.13)

is called the condition number of the matrix A (with respect to the norm ‖ · ‖). It measures
how a perturbation in the right-hand side b could impact the solution of the linear system.
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Remark 4.37 In floating point arithmetic, a rounding error ‖∆b‖/‖b‖ = O(ε) with machine
precision ε is typically unavoidable. Thus, εκ(A) indicates of the level of accuracy that could
at best be expected.

Remark 4.38 The condition number also appears when one assesses the impact of perturba-
tions of matrix entries. One has (see, e.g., the class notes of Schranz-Kirlinger)

‖∆x‖
‖x̃‖ ≤ κ(A)

‖∆A‖
‖A‖

where x and x̃ solve

Ax = b, (A+∆A)x̃ = b
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4.6 QR-factorization (CSE)

The basic idea above to solve linear systems is to write Ax = b as LUx = b since the linear
systems Ly = b and Ux = y are easily solved by forward and back substitution. We now
present a further factorization A = QR, the QR-factorization, where the factors Q and R are
such that the linear systems Qy = b and Rx = y are easily solved. Although computing the
QR-factorization is about twice as expensive as the LU -factorization it is the preferred method
for ill-conditioned matrices A.

4.6.1 orthogonal matrices

Definition 4.39 A matrix Q ∈ Rn×n is orthogonal, if Q⊤Q = I. On denotes the set of
orthogonal n× n-matrices.

Theorem 4.40 (i) The product of two orthogonal matrices is orthogonal; the inverse of an
orthogonal matrix is orthogonal.6

(ii) If Q ∈ On−k, then

(
Ik 0
0 Qn−k

)
∈ On

(iii) Q ∈ On ⇒ ‖Qx‖2 = ‖x‖2 ∀x ∈ Rn J that is, Q preserves length/euclidean norm—it
is this property that makes orthogonal matrices so attractive in numerics. K

Proof: Exercise. ✷

Remark 4.41 (multiplication by Q ∈ On is numerically stable) Consider relative errors:

‖Q(x+∆x)−Qx‖2
‖Qx‖2

=
‖Q∆x‖2
‖Qx‖2

= 1 ·︸︷︷︸
“amplification” factor

for rel. error

‖∆x‖2
‖x‖2

Exercise 4.42 Check that the Gram-Schmidt orthogonalization process for a matrix A ∈ Rn×n

produces an upper triangular matrix R and an orthogonal matrix Q with AR = Q. Hence, for
invertible R (i.e., invertible A), Gram-Schmidt provides a QR-factorization of A.

4.6.2 QR-factorization by Householder reflections

Definition 4.43 Let m ≥ n.

(i) R ∈ Rm×n is a generalized upper triangular matrix if rij = 0 ∀i > j, i.e.,

R =

(
R̃
0

)
with R̃ ∈ Um.

Um denotes the set of m×m upper triangular matrices.

6In other words: On is a group with respect to matrix multiplication.
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(ii) A factorization A = QR of a matrix A ∈ Rm×n with an orthogonal Q ∈ Om and a
generalized upper triangular matrix R is called a QR-factorization of A.

Theorem 4.44 Let A ∈ Rn×n be invertible. Then: A has a QR-factorization. It is unique if
one fixes the signs of the diagonal entries rii of R.

Proof: The existence follows from the explicit construction in Alg. 4.49 below. For definiteness’ sake,

assume that the signs of diagonal entries are fixed to be positive: rii > 0. Let QR = Q̃R̃ = A be two QR-factorizations. Since A is invertible, so is R.

Hence, Q′ := Q̃⊤Q = R̃R−1 =: R′. We have to R′ is upper triangular (as the product of two upper triangular matrices) and an orthogonal matrix

(since Q′ is orthogonal as the product of two orthogonal matrices). Thus, the columns of R′ are orthogonal and by using that R′ is upper triangular,

checking inner products of columns of R′ reveals that R′ is a diagonal matrix (e.g., 0 = (R′

:,1)
⊤(R′

:,2) = r′11r
′

12 and r11 6= 0). Diagonal matrices that

are orthogonal have +1 or −1 on the diagonal. One can show (e.g., by induction on n) that (R)−1
ii

= 1/rii and it is not difficult to see that the diagonal

entries of (R̃R−1)ii = R̃ii(R
−1)ii = r̃ii/rii. Since, by assumption, r̃ii and rii have the same sign, r̃ii/rii = 1. Hence, Q̃⊤Q = Q′ = R̃R−1 = I.

That is, Q̃ = Q and R̃ = R. ✷

The QR-factorization of A is schematically obtained as follows:

A =: A(0) =



∗ . . . ∗
...

...
∗ . . . ∗




Q1∈On−−−−−→ Q1A
(0) =: A(1) =




∗ . . . . . . ∗
0 ∗ . . . ∗
...

...
...

0 ∗ . . . ∗




A(1) =




∗ . . . . . . ∗
0 ∗ . . . ∗
...

...
...

0 ∗ . . . ∗




Q2∈On−−−−−→ Q2A
(1) =: A(2) =




∗ . . . . . . . . . ∗
0 ∗ . . . . . . ∗
... 0 ∗ . . . ∗
...

...
...

...
0 0 ∗ . . . ∗




A(2) =




∗ . . . . . . . . . ∗
0 ∗ . . . . . . ∗
... 0 ∗ . . . ∗
...

...
...

...
0 0 ∗ . . . ∗




Q3∈On−−−−−→ . . .
Qn−1∈On

−−−−−→A(n−1) =




∗ . . . . . . ∗
0

. . .
...

...
. . .

. . .
...

0 . . . 0 ∗




Then: Qn−1Qn−2 . . .Q1A = R.
That is, the sought QR-factorization is A = Q⊤

1 . . .Q⊤
n−1R.

The Qi are constructed using so-called Householder reflections, which are “elementary” orthog-
onal transformations:

Definition 4.45 (Householder reflections) Given v ∈ Rn with ‖v‖2 = 1 the matrix H =
I − 2vv⊤ is called the induced Householder reflection.

Lemma 4.46 (properties of Householder reflections) Let v ∈ Rn with ‖v‖2 = 1. Then
the matrix H = I − 2vv⊤ satisfies:

(i) H is symmetric, i.e., H⊤ = H)

(ii) H is an involution (H2 = I)
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x

v

e1

e2

Hx

Figure 4.6: The Householder H with Hx ‖ e1; cf. proof of Lemma 4.47

(iii) H is orthogonal (H⊤H = I)

Proof: Exercise.
The geometric interpretation of H is that the linear map represented by H is a reflection at
the hyperplane {x ∈ Rn|v⊤x = 0}. ✷

Lemma 4.47 Let x ∈ Rn \ {0} and e1 = (1, 0, . . . , 0)⊤ ∈ Rn. Then ∃ Q ∈ On with Qx ∈
span{e1}. In particular:

(i) if x ‖ e1, then Q := I

(ii) if x 6‖ e1, then set7 λ = signx1‖x‖2. Then H = I − 2vv⊤ with v = x+λe1

‖x+λe1‖2 has the

desired property Hx = −λe1.

Proof:

(i) X

(ii)

x+ λe1 =




x1 + (signx1)‖x‖2
x2

...
xn




‖x+ λe1‖22 =
(
|x1|+ ‖x‖2

)2
+

n∑

i=2

x2
i = 2‖x‖22 + 2|x1|‖x‖2 6= 0

(
I − 2vv⊤)x = x− 2

x+ λe1

2‖x‖22 + 2|x1|‖x‖2

(
x + signx1‖x‖2e1

)⊤
x

︸ ︷︷ ︸
‖x‖22+|x1|‖x‖2

= −λe1

✷

7we assume signx1 6= 0. If x1 = 0, then select signx1 arbitrarily as 1 or −1.
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Remark 4.48 (choice of λ) Househoulder reflections H with Hx ∈ span{e1} are not unique.
For example, v = x+λe1

‖x+λe1‖2 with λ = −
(
signx1

)
‖x‖2 is also possible. This choice, however, is

numerically unstable if x and e1 are nearly parallel, i.e., |x1| ≈ ‖x‖2. Then cancellation occurs
when computing x + λe1.

Algorithm 4.49 (Householder QR-factorization) Input: A ∈ Rm×n, m ≥ n, rank(A) =
n
Output: factorization A = QR with Q ∈ Om and R ∈ Rm×n generalized upper triangular
matrix. Q is given implicitly as Q−1 = Qn−1 · · ·Q1 J note: Q = Q1 · · ·Qn−1 since the Qi are
symmetric, i.e., Q⊤

i = Qi K

• set A(0) := A and select Q1 as a Householder reflection s.t. QA
(0)
:,1 ‖ e1 ∈ Rm

• “Householder step”:

A(1) := Q1A
(0) =




a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(1)
22 . . . a

(1)
2n

...
...

...

0 a
(1)
n2 . . . a

(1)
nn




• select Q̃1 as a Householder reflection s.t. Q̃1A
(1)
[2:m],2 ‖ e1 ∈ Rm−1

• set

Q2 =




1 0

0 Q̃1




• “Householder step”:




a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(1)
22 . . . a

(1)
2n

...
...

...

0 a
(1)
n2 . . . a

(1)
nn




= A(1) −→ Q2A
(1) =: A(2) =




a
(1)
11 . . . . . . . . . a

(1)
1n

0 a
(2)
22 . . . . . . a

(2)
2n

... 0 a
(2)
33 . . . a

(2)
3n

...
...

...
...

0 0 a
(2)
n3 . . . a

(2)
nn



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• analogously, the next steps are:




a
(1)
11 . . . . . . . . . a

(1)
1n

0 a
(2)
22 . . . . . . a

(2)
2n

... 0 a
(2)
33 . . . a

(2)
3n

...
...

...
...

0 0 a
(2)
n3 . . . a

(2)
nn




= A(2) −→




1 0
0 1

Q̃2




A(2) −→ . . .

· · · −→ A(n) =




∗ . . . . . . ∗
0

. . .
...

...
. . .

. . .
...

...
. . . ∗

0 . . . . . . 0
...

...
0 . . . . . . 0




Remark 4.50 (i) see literature (e.g., the book by Golub–van Loan) for a precise formulation

(ii) Algorithm 4.49 does not stop prematurely since rankA = n J if a column (a
(k)
k+1,k, . . . , a

(k)
k+1,n)

⊤

is zero, then A cannot have full column rank n! K

(iii) cost: For A ∈ Rn×n the algorithm requires 4
3
n3 arithmetic operations→ twice as expense

as LU-factorization and 4 times as expensive as a Cholesky decomposition.

(iv) storage: Q is typically not stored explicitly but merely the Householder vectors are stored.
One possibility of storing the factorization in place of A:

• store the entries rij , j > i in place of aij

• store the k-th Householder vector wk ∈ Rm+j−k in place of aik , i ≥ k

• store the rii separately

Remark 4.51 Although the QR-factorization is more expensive than the LU-factorization, it
is employed for its better numerical stability properties if the condition number of A is large.
slide 29

4.6.3 QR-factorization with pivoting

Analogously to LU-factorizations with pivoting one can perform QR-factorizations with piv-
oting by constructing factorizations QR = AP for a permutation matrix P. This is useful, for
example, to treat the case when m ≥ n and rankA < n (“rank-deficient case”).
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Procedure:

A(0)
P1= permutation matrix that moves the column of

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
A(0) with the largest ‖ · ‖2 norm to the first column

Ã(1) := A(0)P1

Householder
−−−−−−−−→ A(1) := Q1Ã

(1)

A(1)
P2: exchange columns 2 and p where

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
p≥2 and ‖A(1)

[2:n],p
‖2 = maxi≥2 ‖A(1)

[2:n],i
‖2

Ã(2) := A(1)P2

Householder
−−−−−−−−→ A(2) := Q2Ã

(2)

A(2) −→ . . . −→ A(k) =




∗ · · · · · · · · · · · · · · · ∗
0

. . .
...

...
. . .

. . .
...

...
. . . ∗ · · · · · · ∗

... 0 · · · · · · 0

...
...

...
...

0 · · · · · · · · · · · · · · · 0




= final form

termination:

• The procedure termines if the “remaining matrix”
(
a
(k)
ij

)
i,j,≥k+1

is the null matrix. Then

rankA = k

• The diagonal entries rii satisfy |r11| ≥ |r22| ≥ · · · ≥ |rkk| > 0 (exercise: why?). If the

submatrix A
(k)
[k′+1:end],[k′+1:end] has small norm, e.g., ‖A(k)

[k′+1:end],[k′+1:end]‖2 ≤ εmach‖A(k)‖2
with εmach being on the order of machine precision, then the rank of A is effectively k′.

4.6.4 Givens rotations

The application of a single Householder reflection affects many entries of the matrix. Some-
times, it is useful to work with orthogonal matrices that introduce zeros in a matrix in more
selective way, i.e., affect rather few entries at the same time. Givens rotations are then typically
employed. We mention that, for full matrices, a QR-factorization using Givens rotations is (by
a factor) more expensive than with Householder reflections.
For θ ∈ [0, 2π) set c := cos θ, s := sin θ. Then the Givens rotation G(i, j, θ) with i 6= j is
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defined as

G(i, j, θ) :=




1
. . .

1
c +s

1
. . .

1
−s c

1
. . .




Geometrically, G(i, j, θ) is a rotation by an angle θ in the two-dimensional plane span{ei, ej}.
Thus is an orthogonal matrix. We have

Lemma 4.52 Given i 6= j, θ ∈ [0, 2π) abbreviate

Ĝ :=

(
c s
−s c

)

Then:

(i) G(i, j, θ) is orthogonal

(ii) AG differs from A only in columns i and j and these are linear combinations of the
columns i, j of A:

(AG)(:, [i, j]) = A(:, [i, j])Ĝ

(iii) G⊤A differs from A only in rows i and j and these are linear combinations of the rows
i, j of A:

(G⊤A)([i, j], :) = Ĝ⊤A([i, j], :)

(iv) Let i 6= j and i′ 6= i. Then there is a Givens rotation G(i, i′, θ) such that (G⊤A)ij = 0.

Proof: We only show (iv). For that, we note

(G⊤A)([i, i′], [i, j]) = Ĝ⊤A([i, i′], [i, j]) =

(
c −s
s c

)(
Aii Aij

Ai′i Ai′j

)

=

(
∗ cAij − sAi′j

∗ ∗

)
.

Hence, the requirement (G⊤A)ij = 0 implies that θ should be chosen such that sAi′j = cAij .
1. case: Aij = 0: select c = 1, s = 0.

2. case: Aij 6= 0: select θ ∈ (0, π) as the solution of cot θ = −Ai′j

Aij
. ✷
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Lemma 4.52 informs us that one could also compute a QR-factorization of A using Givens
rotations. We sketch the procedure:

A =




∗ . . . ∗
∗ . . . ∗
...

...
∗ . . . ∗




G(1,2)

−−−−−→




∗ . . . . . . ∗
0 ∗ . . . ∗
∗ ∗ . . . ∗
...

...
...

∗ ∗ . . . ∗




G(1,3)

−−−−−→




∗ . . . . . . ∗
0 ∗ . . . ∗
0 ∗

...

∗
...

...
...

...
...

∗ ∗ . . . ∗




→ · · · G(1,n)−→




∗ . . . . . . ∗
0 ∗ . . . ∗
0 ∗

...

0
...

...
...

...
...

0 ∗ . . . ∗




G(2,3)−→




∗ ∗ . . . ∗
0 ∗ . . . ∗
0 0

...

0 ∗
...

...
...

...
0 ∗ . . . ∗




→ · · · G(n−1,n)→




∗ ∗ . . . ∗
0 ∗ . . . ∗
0 0

...

0 0
...

...
...

...
0 0 . . . ∗




The construction of a QR-factorization using Givens rotations is more expensive than the one
using Householder reflections for full matrices. Givens rotations are typically employed if the
matrix has already many zeros that one wishes to preserve by orthogonal transformations as
the following example shows.

Example 4.53 We compute the QR-factorization of an upper Hessenberg matrix.
(Upper) Hessenberg matrices A are matrices with Aij = 0 for i > j + 1 (i.e., upper triangular
and one additional subdiagonal may be nonzero). The basic step of the so-called QR-algorithm
for the (iterative) computation of eigenvalue of a matrix A is to compute the QR-factorization
of Q and then compute the product of these factors in reverse order, i.e., RQ. We show that,
if the matrix A is upper Hessenberg, then the product RQ is again upper Hessenberg.
We compute the matrix Q⊤ as the product Q⊤ = G(n − 1, n) · · ·G(2, 3)G(1, 2) of n − 1
Givens rotation to annihilate the subdiagonal entries of A. By construction Q⊤A is thus
upper triangular and is the factor R. Next, we multiply from the right by Q, i.e., we com-
pute (Q⊤A)Q = (Q⊤A)G(1, 2)⊤G(2, 3)⊤ · · ·G(n− 1, n)⊤. One then checks the multiplication
of (Q⊤A) by G(1, 2) introduces an additional non-zero term in the (2, 1) position. The subse-
quent multiplication by G(2, 3) introduces one in the (3, 2) position. Continuing in this fashion,
we see that Q⊤HQ is an (upper) Hessenberg matrix.
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5 Least Squares

slide 28
goal: Given A ∈ Rm×n, b ∈ Rm, determine a “reasonable” solution to

Ax = b (5.1)

.

Remark 5.1 For m > n, problem (5.1) is overdetermined so one cannot expect existence
of a classical solution. For m < n, problem (5.1) is underdetermined so one cannot expect
uniqueness.

A reasonable approach is to minimize the residual b − Ax in some norm of interest. The
ℓ2-norm ‖ · ‖2 is particularly convenient as we will later see.

Definition 5.2 (least squares solution) x ∈ Rn is called a least squares solution of Ax =
b, if it solves the following minimization problem:

Find x ∈ Rn s.t.‖b−Ax‖2 = min {‖b−Ay‖2 |y ∈ Rn} (5.2)

Although a theory for general A ∈ Rm×n can be developed, we consider, in the interest of
simplicity and brevity, in the present section only the case that A has full rank. That is, if
m ≥ n, then A has n linearly independent columns and if n ≥ m, then A has m linearly
independent rows.

Example 5.3 The matlab command polyfit actually solves a least squares problem: given
n + 1 data points (xi, yi), i = 0, . . . , n and m ≤ n, the coefficients (aj)

m
j=0 of the polynomial

π(x) :=
∑m

j=0 ajx
j are found such that

∑n
i=0(π(xi) − yi)

2 is minimized. matlab actually uses
the technique based on the QR-factorization described below.

5.1 Method of the normal equations

goal: derive a linear system of equations for the solution x of (5.2).
To that end, let x ∈ Rn be the solution of (5.2) and let v ∈ Rn be arbitrary but fixed. Define

π : R→ R

t 7→ ‖b−A(x+ tv)‖22 = ‖b−Ax− tAv‖22 = 〈b−Ax,b−Ax〉2 − 2t〈b−Ax,Av〉2 + t2‖Av‖22

π is (as a function of t) a quadratic polynomial and has, by the choice of x, a minimum at t = 0(
choose y = x+ tv in (5.2)

)
. Hence,

0 = π′(0) = 2〈b−Ax,Av〉2 = 2v⊤A⊤(b−Ax).

Since v ∈ Rn is arbitrary, we conclude that

0 = v⊤A⊤(b−Ax) ∀v ∈ Rn ⇒ A⊤(b−Ax) = 0 ∈ Rn.
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Hence, x satisfies the normal equations

A⊤Ax = A⊤b (5.3)

The normal equations (5.3) are a necessary condition for solutions x of (5.2). They are also
sufficient: By tracing back the above steps, one observes that, if x solves (5.3) then for every
fixed v the polynomial t 7→ ‖b−A(x+tv)‖22 has a minimum at t = 0. Since also ‖b−Ax‖22 =
π(0) ≤ π(1) = ‖b−A(x+v)‖22 for every v, one concludes ‖b−Ax‖22 ≤ ‖b−Ay‖22 ∀y ∈ Rn.
We have thus proved:

Theorem 5.4 x ∈ Rn solves (5.2), if and only if it solves (5.3).

In many applications the square system (5.3) is solvable and thus an option to solve the least
squares problem.

Theorem 5.5 Let m ≥ n and let the columns of A be linearly independent. Then A⊤A is an
invertible matrix, and the unique solution of (5.3) is the unique solution of (5.2).

Proof: If the columns ofA are linearly independent, thenA⊤Ay = 0 implies y = 0 (Exercise!).
Since A⊤A ∈ Rn×n is a square matrix, it is invertible. Thus (5.3) is uniquely solvable. By
Theorem 5.4 the problem (5.2) is uniquely solvable. ✷

finis 8.DS

5.2 least squares using QR-factorizations

A problem often encountered when solving the least squares problem (5.2) using the normal
equations (5.3) is that the matrix A⊤A is ill-conditioned, i.e., κ(A⊤A) is very large. In many
applications, therefore, one solves (5.2) using the QR-factorization of A in spite of the increased
cost.1

5.2.1 QR-factorization

Definition 5.6 (orthogonal matrix) A matrix Q ∈ Rn is an orthogonal matrix, if Q−1 =
Q⊤.

Example 5.7 In R3, reflections at a plane, rotations, or permutations matrices:



1
1
−1


 ,




1
cos θ sin θ
− sin θ cos θ


 ,




1
1

1




Orthgonal matrices realize transformations of Rn that preserve a) (euklidean) length and b)
angles:

Exercise 5.8 Let Q be an orthogonal matrix. Show:

1In the typically setting of m >> n, the cost based on QR-factorization is 2mn2 versus mn2 for the method
based on the normal equations.
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(a) ‖Qx‖2 = ‖x‖2 for all x ∈ Rn.

(b) x⊤y = ((Q)x)⊤(Qy) for all x, y ∈ Rn .

(c) ‖Q‖2 = ‖Q⊤‖2 = 1 and conclude κ(Q) = 1 (with respect to ‖ · ‖2).

(d) The columns of Q have length 1 and are pairwise orthogonal.

We have

Theorem 5.9 Let A ∈ Rm×n with linearly independent columns. Then A can be written as
A = QR, where Q ∈ Rm×m is orthogonal and R “upper triangular” matrix in the sense that
(Rij = 0 for i > j.

Proof: Applying the Gram-Schmidt orthogonalization process to the vectorsA:,1, A:,2, . . . ,A:,n

yields the first n columns of Q as well as R. The remaining m − n columns of Q have to be
selected such that the Q is orthogonal. ✷

Remark 5.10 There are several algorithms to compute the QR-factorization of A. Their cost
is O(m2n). In matlab, QR-factorization is realized with qr, in python as numpy.linalg.qr.

Remark 5.11 If m ≥ n and if A has full rank (i.e., the columns of A are linearly independent),
then the first n columns of Q are an orthogonal basis of the range of Q, i.e., the span of the
first n columns of Q is the span of the columns of A.

5.2.2 Solving least squares problems with QR-factorization

Let A = QR where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper triangular. We assume
m ≥ n. We partition

R =

(
R⋆

0

)
, R∗ ∈ Rn×n upper triangular.

If we assume that the columns of A are linearly independent, then the diagonal entries of the
matrix R∗ are non-zero, i.e., R∗ is invertible (since the columns of R are linearly independent).
We partition Q⊤b as

Q⊤b =

(
b∗

b̃

)
, b∗ = (Q⊤b)([1 : n]) ∈ Rn, b̃ = (Q⊤b)([n+ 1 : m]) ∈ Rm−n,

We observe that for arbitrary y we have

‖Ay− b‖2 = ‖QRy− b‖2 = ‖Q(Ry−Q⊤b)‖2 Ex. 5.8
= ‖Ry−Q⊤b‖2 = ‖R∗y − b∗‖22 + ‖b̃‖22.

This expression is minimized for the choice y = (R∗)−1b∗. We have thus arrived at the following
way to compute the minimizer:

1. [Q,R] = qr(A)
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2. compute Q⊤b and set b∗ = (Q⊤b)([1 : n])

3. solve R∗x = b∗ with back substitution

slide 28

Remark 5.12 The QR-factorization can also be used in the case m = n to solve a linear
system Ax = b with the following three steps:

1. compute the QR-factorization of A

2. solve Qy = b by computing y = Q⊤b

3. solve Rx = y by back substitution

The cost is about twice that of the procedure using an LU-factorization. It is, however, preferred
if κ(A) is large.

slide 29

Example 5.13 Consider

A =




1 1
ε 0
0 ε


 , b =




2
ε
ε


 , x =

(
1
1

)
, A⊤A =

(
1 + ε2 1

1 1 + ε2

)
.

Note Ax = b so that x is the exact solution of the least squares problem. We note κ(A⊤A) =
2
ε2
+ 1 so that A is ill-conditioned for small ε. In matlab:

>> e = 1e-7;

>> A = [1 1; e 0; 0 e]; b = [2;e;e];

>> x = (A’*A)\(A’*b) %solution using normal equations

x =

1.011235955056180

0.988764044943820

>> [Q,R] = qr(A) ;

>> bb=Q’*b ;

>> xx = R(1:2,1:2)\bb(1:2) %solution using QR-factorization

xx =

1.000000000000000

1.000000000000000

The method using the normal equations yields a solution with two digits of accuracy (consistent
with κ(A⊤A) ≈ 1014) whereas the method based on the QR-factorization yields the correct
solution.
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A =



∗ ∗
∗ ∗
∗ ∗


 = U




σ1 0
0 σ2

0 0


V⊤

Figure 5.1: structure of the SVD of an 3× 2 matrix; U, V are orthogonal

5.3 underdetermined systems

The system (5.1) is underdetermined if m < n. Let us assume that A has full rank, i.e., it has
m linearly independent rows. Then (5.1) has a solution. However, the solution is not unique.
One way to fix the solution is to seek the minimum norm solution, i.e., to find x∗ such that

‖x∗‖2 = min{‖y‖2 |Ay = b}.

A convenient tool to solve this minimization problem is the singular value decomposition (SVD)
of A.

5.3.1 SVD

The SVD is a very important tool in the analysis of matrices. Without proof, we state its
existence:

Theorem 5.14 (SVD) Let A ∈ Rm×n (m, n arbitrary). Then there exist σ1 ≥ σ2 ≥ · · · ≥
σmin{m,n} ≥ 0 and orthogonal matrices U ∈ Rm×m, V ∈ Rn×n, and Σ ∈ Rm×n with Σij = δijσi,
σi ≥ 0, such that

A = UΣV⊤, (5.4)

The values σi are called the singular values, the columns of U the left singular vectors and the
columns of the V the right singular vectors.
The SVD of a matrix A reveals many important properties of A:

Exercise 5.15 Let the singular values σi be sorted in descending order. Then:

1. Let σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = σr+2 = · · · = σmin{m,n} = 0. Then r is the rank of A.
(If all singular values are positive, then the matrix A has full rank).

2. The columns U(:, [1 : r]) form an orthogonal basis of the range ImA of A

3. The columms V(:, [r + 1 : n]) form an orthogonal basis of the kernel of A. The columns
V(:, [1 : r]) form an orthogonal basis of (kerA)⊥, the orthogonal complement of the kernel
of A.

Hint: The range ImB of a matrix B ∈ Rm×n is defined as {Bx |x ∈ Rn}. One way to define
the rank of B is to set rankB = dim ImB. Try to show that ImΣ = span{e1, . . . , er}. Con-
vince yourself that also ImΣV⊤ = span{e1, . . . , er} and that therefore ImUΣV⊤ = span{U(:
, 1), . . . ,U(:, r)}.

Exercise 5.16 Let UΣV⊤ be the SVD of A. Show: the eigenvalues of A⊤A are the eigenvalues
of the diagonal matrix Σ⊤Σ and those of AA⊤ the eigenvalues of the diagonal matrix ΣΣ⊤.
What can you say about the eigenvectors of the matrices A⊤A and AA⊤?
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Remark 5.17 In matlab/python, the SVD is available as svd/numpy.linalg.svd.

For r = rank(A), we introduce the matrices

Ũ = U(:, [1 : r]), Ṽ = V(:, [1 : r]), Σ̃ = Σ([1 : r], [1 : r]), V′ := V(:, [r + 1, n]).

We note that A = ŨΣ̃Ṽ⊤ and Σ̃ is invertible. This factorization of A is called the reduced
SVD. We also note that the columns ov V′ span the kernel of A.

Remark 5.18 A slightly different interpretation of the SVD is obtained by writing it as AV =
UΣ. Writing V = (v1, . . . ,vn), U = (u1, . . . ,um), this means Avi = σiui, i = 1, . . . , r, where
r = rank(A). That is, we have found pairwise orthogonal vectors vi that are mapped under A
to an orthogonal basis of the range of A.

Exercise 5.19 Show: V′(V′)⊤x is the orthogonal projection of x onto KerA. ṼṼ⊤x is the

orthogonal projection of of x onto (KerA)⊥. Analogously, ŨŨ⊤x is the orthgonal projection
of x onto RangeA.

5.3.2 Finding the minimum norm solution using the SVD

Let m ≤ n and assume (for simplicity) that A has full rank, i.e., r = rank(A) = m. Then

Ũ = U and the reduced SVD then takes the form A = UΣ̃Ṽ⊤. We observe that

x̃∗ := ṼΣ̃−1U⊤b

satisfies Ax∗ = b since

Ax̃∗ = UΣ̃Ṽ⊤ṼΣ̃−1U⊤b = UΣ̃Σ̃−1U⊤b = UU⊤b = b

We note that every solution x of Ax = b has the form x = x̃∗ +V′y for a y ∈ Rn−r. We also
note that x̃∗ is orthogonal to kerA (which is spanned by V′). That is: for every solution x of
Ax = b we have

‖x‖2 = ‖x̃∗‖2 + ‖V′y‖2,
which is obviously minimized by y = 0. Hence, x̃∗ is the sought minimum norm solution.

5.3.3 Solution of the least squares problem with the SVD

The least squares problem could, alternatively to using the QR-factorization, also be solved
with the SVD:

Exercise 5.20 Assume that m ≥ n and that an SVD of A (with full rank) is given. Formulate
a method to compute the solution of (5.2). Remark: Since computing an SVD is more expensive
than computing a QR-factorization, this is rarely done in practice.
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5.3.4 Further properties of the SVD

Exercise 5.21 Let A = UΣV⊤ be the SVD of a matrix A. Show:

(a) ‖A‖2F =
∑

i σ
2
i , where the Frobenius norm of A is given by ‖A‖2F =

∑
i,j |Aij|2.

(b) ‖A‖22 = maxi σ
2
i = σ2

1.

We have:

Theorem 5.22 Let A = UΣV⊤ be the SVD of the matrix A with rank r. Let the singular
values be sorted in descending order. Then for every ν ∈ {1, . . . , r} the matrix Aν := U(:, [1 :
ν])Σ([1 : ν], [1 : ν])V(:, [1 : ν])⊤ satisfies

‖A−Aν‖2 = min
B∈Rm×n : rank(B)=ν

‖A−B‖2,

‖A−Aν‖F = min
B∈Rm×n : rank(B)=ν

‖A−B‖F .

slide 30

Remark 5.23 The SVD can be used to determine the rank of a matrix by checking the number
of non-zero singular values. In practice, one has to select a cut-off ε > 0 (typically a little larger
than machine precision) and defines the rank r = #{σi | σi ≥ ε}.

finis 9.DS

5.3.5 The Moore-Penrose Pseudoinverse (CSE)

We consider the least squares problem without conditions on m, n, and the rank of A:

find x ∈ Rn s.t. ‖Ax− b‖2 ≤ ‖Ay− b‖2 ∀y ∈ Rn. (5.5)

This problem has solutions but possibly more than one. To enforce uniqueness, we seek again
the “minimum norm” solution, i.e., the x∗ ∈ Rn with the smallest norm. We have:

Theorem 5.24 Let A ∈ Rm×n with rankA = r. Let A = ŨΣ̃Ṽ⊤ be the reduced SVD of A.
Then x∗ := A+b with the Moore-Penrose pseudoinverse

A+ := ṼΣ̃−1Ũ⊤ (5.6)

is the minimum norm solution of the least squares problem (5.5).

Before proving Theorem 5.24, we formulate a representation of the orthogonal projection onto
a subspace, which takes a particularly simple form if an orthonormal basis of the space is
available:

Lemma 5.25 Let V ∈ Rn×k have orthonormal columns. Then the map x 7→ VV⊤x is the
orthogonal projection onto the subspace V spanned by the columns of V. If Ṽ ∈ Rn×(n−k) is
such that (V, Ṽ) is an orthogonal matrix (i.e., the space Ṽ spanned by the columns of Ṽ is the
orthogonal complement of V) then

x = VV⊤x + ṼṼ⊤x ∀x ∈ Rn. (5.7)
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Proof: We recall that the orthogonal projection Px ∈ V of x onto V is characterized by

(x− Px,y)2 = 0 ∀y ∈ V. (5.8)

We now check that Px := VV⊤x satisfies (5.8). We note that VV⊤x ∈ V and that any y′ ∈ V
can be written as y′ = Vy for some y ∈ Rk. We compute for arbitrary x ∈ Rn, y ∈ Rk:

(x−VV⊤x,Vy)2 = (V⊤(x−VV⊤x),y)2 = ((V⊤x−V⊤V︸ ︷︷ ︸
=I

V⊤x),y)2 = 0,

which shows (5.8). Similarly, ṼṼ⊤x is the orthogonal projection of x onto the space Ṽ. By

construction x−VV⊤x is in the orthogonal complement of V, i.e., in the space Ṽ. Hence, by
the projection property ṼṼ⊤(x − VV′x) = x − VV′x. Since Ṽ⊤V = 0, we obtain (5.7) by
rearranging the terms. ✷

Proof of Theorem 5.24: We decompose b into its component in RangeA and the rest using
Lemma 5.25:

b = ŨŨ⊤b+U′(U′)⊤b, U′ := U(:, [r + 1 : n]).

Next, we compute for arbitrary x ∈ Rn

‖Ax− b‖22 = ‖ŨΣ̃Ṽ⊤x− b‖22 = ‖Ũ(Σ̃Ṽ⊤x− Ũ⊤b) +U′(U′)⊤b‖22
= ‖Ũ(Σ̃Ṽ⊤x− Ũ⊤b)‖22 + ‖U′(U′)⊤b‖22
= ‖Σ̃Ṽ⊤x− Ũ⊤b‖22 + ‖U′(U′)⊤b‖22

This expression is minimal if we can find x such that

Ṽ⊤x = Σ̃−1Ũ⊤b. (5.9)

(We will see at the end of the proof that indeed such x exist.) Let us now seek the x∗ from all
x satisfying (5.9) with minimal norm. We write again with Lemma 5.25

x = ṼṼ⊤x+V′(V′)⊤x.

Hence, any x that satisfies (5.9) has to satisfy

‖x‖22 = ‖ṼṼ⊤x‖22 + ‖V′(V′)⊤x‖22
(5.9)
= ‖ṼΣ̃Ũ⊤b‖22 + ‖V′(V′)⊤x‖22.

We see that x∗ with the smallest norm should be such that (V′)⊤x∗ = 0. Then, we get

x∗ (V′)⊤x∗=0
= ṼṼ⊤x∗ (5.9)

= ṼΣ̃−1Ũ⊤b.

Indeed, this x∗ satisfies (V′)⊤x∗ = 0 as well as (5.9). Hence, we have found the unique minimum
norm solution. ✷

Let us interpret the Moore-Penrose pseudoinverse. To that end, we let us restrictA to (KerA)⊥,
which we denote by AK to emphasize that the domain of definition and range has changed:

AK : (KerA)⊥ → RangeA

Ṽz 7→ AṼz = ŨΣ̃Ṽ⊤Ṽz = ŨΣ̃z
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This map is a bijection. Indeed, since the columns of Ũ and Ṽ are linearly independent, the
inverse A−1

K is easily read off to be:2

A−1
K : Ũζ 7→ ṼΣ̃−1ζ

We now consider

Rm ortho. Proj.−→ RangeA
A−1

K−→ (KerA)⊥

b 7→ Ũ(Ũ⊤b) 7→ ṼΣ̃−1Ũ⊤b

This is precisely A+! Hence, the Moore-Penrose pseudoinverse takes from a vector b its com-
ponent in RangeA and then applies the well-defined inverse A−1

K that maps from RangeA to
(KerA)⊥.

Exercise 5.26 Let rankA = r. Show: ‖A+‖2 = σ−1
r .

5.3.6 Further remarks

• The Moore-Penrose pseudoinverse is the inverse of A if A ∈ Rn×n is invertible.

• In general, A+ shares some properties with the inverse: AA+A = A and (A+)+ = A.

Computing the SVD

The SVD is computed with variants of algorithms that compute eigenvalues and eigenvectors.
Since A⊤A = V⊤Σ⊤ΣV and AA⊤ = U⊤ΣΣ⊤U⊤, one could compute the SVD by computing
the eigenvalues and eigenvectors of A⊤A or AA⊤. However, since A⊤A and AA⊤ are typically
ill conditioned, one resorts to computing the eigenvalues and eigenvectors of the symmetric
matrix (

0 A⊤

A 0

)
,

whose eigenvalues are ±σi. A popular algorithm for the SVD is → Golub-Kahan.

2An alternative way to see that AK is a bijection is to check the dimensions: dim(KerA)⊥ = n−dimKerA
and by a linear algebra fact n = dim(KerA)⊥ + dimRangeA so that dim(KerA)⊥ = dimRangeA
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6 Nonlinear equations and Newton’s method

goal: determine zero x∗ of f(x∗) = 0
Since there are typically no exact solution formulas, the zero x∗ is approximated by iterates xn

with limn→∞ xn = x∗. The most common form is that of a fixed point iteration

xn+1 = Φ(xn) (6.1)

with an initial guess x0 that is taken sufficiently close to x∗. Thus, the iterative method is
described by the function Φ.

Exercise 6.1 Show: If xn → x∗ then x∗ is a fixed point of Φ, i.e., x∗ = Φ(x∗) (assumption:
Φ is continuous at x∗).

6.1 Newton’s method in 1D

goal: Find zero x∗ of f(x∗) = 0
Idea: linearize f at the current iterate xn and find zero of the linearization.
procedure:

1. xn = current iterate

2. L(x) := f(xn) + f ′(xn)(x − xn) J linearization is the tangent at xn, i.e., the Taylor
expansion up to the linear term K

3. xn+1 := zero of L, i.e.,

xn+1 = xn −
f(xn)

f ′(xn)
(6.2)

We recognize that the 1D-Newton method (6.2) has the form xn+1 = ΦNewton(xn) of a fixed
point iteration with ΦNewton given by

ΦNewton(x) = x− f(x)

f ′(x)
. (6.3)

Example 6.2 slide 1
x∗ =

√
a is the zero of f(x) = x2 − a. With f ′(x) = 2x, Newton’s method is

xn+1 = ΦNewton(xn) = xn −
f(xn)

f ′(xn)
= xn −

x2
n − a

2xn

.

The rapid convergence of the method is visible in Fig. 6.1 for the choice a = 2 and initial
value x0 = 2. In fact, we observe so-called quadratic convergence in that the error behaves like
|x∗ − xn+1| ≈ C|x∗ − xn|2 for some C > 0.
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Newton iterates error
(x0 = 2)

x1 1.5 8.578643762690485−2

x2 1.416666666666667 2.453104293571595−3

x3 1.414215686274510 2.1239014147411694−6

x4 1.414213562374690 1.5947243525715749−12

exact: 1.414213562373095

Figure 6.1: Newton’s method for computing
√
2 (cf. Example 6.2)

6.2 convergence of fixed point iterations

The key property that ensures convergence of the fixed point iteration (6.1) is that Φ is a
contraction:

Definition 6.3 The function Φ : Rd → Rd is a contraction (with respect to the norm ‖ · ‖)
near the point x∗ if there are q ∈ (0, 1) and ε > 0 such that

‖Φ(x)− Φ(y)‖ ≤ q‖x− y‖ ∀x,y ∈ Bε(x
∗). (6.4)

Exercise 6.4 Consider the case d = 1. Show: If Φ ∈ C1 and |Φ′(x∗)| < 1 near a point x∗,
then Φ is a contraction near x∗.

The following result shows that the contraction property implies convergence of the fixed point
iteration (6.1) if the initial value x0 is sufficiently close to the fixed point x∗.

Theorem 6.5 Let Φ be a contraction with contraction constant q ∈ (0, 1) near the fixed point
x∗ = Φ(x∗). Then there is ε > 0 such that for x0 ∈ Bε(x

∗) the iterates xn given by (6.1)
converge to x∗. Moreover,

‖x∗ − xn+1‖ ≤ q‖x∗ − xn‖ ∀n ∈ N0. (6.5)

Proof: Let ε > 0 be given by Def. 6.3 and xn ∈ Bε(x
∗). Then:

‖x∗ − xn+1‖ = ‖x∗ − Φ(xn)‖
x∗ fixed pt

= ‖Φ(x∗)− Φ(xn)‖
contraction property

≤ q‖x∗ − xn‖.

Hence, if x0 ∈ Bε(x
∗), then by induction all iterates xn ∈ Bε(x

∗) and ‖x∗ − xn‖ → 0. ✷

Exercise 6.4 gives an easy condition (in the scalar case d = 1) when the iteration (6.1) converges:

Exercise 6.6 Let d = 1 and Φ ∈ C1 satisfy |Φ′(x∗)| < 1 at the fixed point x∗ of Φ. Then the
iterates xn given by (6.1) converge to x∗ provided the initial value x0 is sufficiently close to x∗.
Remark: The vector-valued analog is as follows: The derivative Φ′ is a d×d matrix and if there
is a norm ‖ · ‖ such that ‖Φ′(x∗)‖ < 1 at a fixed point x∗ of Φ, then Φ is a contraction near x∗.

Example 6.7 slide 31
We seek a solution of the nonlinear equation

2− x2 − ex = 0. (6.6)
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n xn+1 = Φ1(xn) xn+1 = Φ2(xn)
0 0.592687716508341 0.559615787935423
1 0.437214425050104 0.522851128605001
2 0.672020792350124 0.546169619063046
3 0.204473907097276 0.531627015197373
4 0.879272743474883 0.540795632739194
5 stop: (2 − e0.87 < 0) 0.535053787215218
6 0.538664955236433
7 0.536399837485597
8 0.537823020842571
9 0.536929765486145

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

3

2-x 2

ex

.

Table 6.1: Left: fixed point iteration of Example 6.7. Right: x 7→ ex and x 7→ 2− x2

Graphical considerations show that there is exactly one positive solution x∗ ≈ 0.5. For x > 0
equation (6.6) can be converted to a fixed point form in several ways:

x =
√
2− ex =: Φ1(x), x = ln(2− x2) =: Φ2(x), (6.7)

The fixed point iterations based on Φ1 and Φ2 behave differently when initialized with x0 = 0.5
as is visible in Table 6.1: Whereas the iteration xn+1 = Φ2(xn) converges to the correct value
x∗ = 0.5372744491738 . . . the iteration xn+1 = Φ1(xn) does not converge. The reason is that
|Φ′

1(x
∗)| ≈ | − 1.59| > 1 whereas |Φ′

2(x
∗)| ≈ 0.31 < 1.

Theorem 6.5 shows that if Φ is a contraction, then one has linear convergence, i.e., the error
decreases by a factor q ∈ (0, 1) in each step. A special situation arises if Φ′(x∗) = 0. Then
faster convergence is possible:

Theorem 6.8 Let d = 1 and Φ ∈ Cp(Rd), p ≥ 2. Assume x∗ = Φ(x∗) and 0 = Φ(j)(x∗) for
j = 1, . . . , p − 1. Then there are C, ε > 0 such that for x0 ∈ Bε(x

∗) the iterates xn given by
(6.1) converge to x∗ and

|x∗ − xn+1| ≤ C|x∗ − xn|p ∀n ∈ N0.

Proof: By Theorem 6.5 we already know that the iterates converge to x∗ if ε is sufficiently
small. For the estimate, we modify the proof of Theorem 6.5. By Taylor expansion around x∗

we have

|x∗ − xn+1| = |Φ(x∗)− Φ(xn)| =
∣∣∣∣

1

(p− 1)!

∫ xn

x∗

(xn − t)p−1Φ(p)(t) dt

∣∣∣∣

≤ ‖Φ
(p)‖∞,Bε(x∗)

(p− 1)!
|x∗ − xn|p.

✷

In the setting of Theorem 6.8, we say that the iteration converges with order p. In particular,
for p = 2 the method converges quadratically. Example 6.2 shows that the Newton method
applied to the problem f(x) = x2 − a = 0 convergence quadratically. This is typical of the
Newton method:
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Corollary 6.9 Let d = 1 and f ∈ C2. Assume f(x∗) = 0 and f ′(x∗) 6= 0. Then Newton’s
method converges quadratically. That is, there are constants C, ε > 0 such that if |x∗− x0| ≤ ε
then the sequence (xn)n converges to x∗ and

|x∗ − xn+1| ≤ C|x∗ − xn|2 ∀n.

Proof: One computes (exercise!) dΦNewton

dx
(x∗) = 0. Hence, Theorem 6.8 implies (at least)

quadratic convergence. ✷

The quadratric convergence asserted in Cor. 6.9 requires f ′(x∗) 6= 0. This is not an artefact of
the proof:

Exercise 6.10 Apply Newton’s method to find the zero of f(x) = x2. Show that Newton’s
method converges only linearly.

6.3 Newton’s method in higher dimensions

Idee: as in 1D: linearize (= Taylor expansion up to linear terms) and find zero of linearization
procedure:

• in Rn: xn = current iterate

• linearization L(x) := f(xn) + f ′(xn)(x− xn) = linearization of f at xn, where

f ′(x) =




∂f1
∂x1

(x) ∂f1
∂x2

(x) · · · ∂f1
∂xn

(x)
∂f2
∂x1

(x) ∂f2
∂x2

(x) · · · ∂f2
∂xn

(x)
...

...
. . .

...
∂fn
∂x1

(x) ∂fn
∂x2

(x) · · · ∂fn
∂xn

(x)




• determine xn+1 as the zero of L , i.e.,

xn+1 := xn −
(
f ′(xn)

)−1

f(xn).

That is, the iteration function Φ is

ΦNewton(x) = x−
(
f ′(x)

)−1

f(x) (6.8)

The convergence of the method is analogous to the 1D situation:

Theorem 6.11 Let f ∈ C2(Bδ(x
∗)) for some δ > 0. Assume f(x∗) = 0 and f ′(x∗) is an

invertible matrix. Then there exist ε > 0 and C > 0 such that if x0 ∈ Bε(x
∗), then all iterates

xn are in Bε(x
∗), one has convergence xn → x∗, and

‖x∗ − xn+1‖ ≤ C‖x∗ − xn‖2 ∀n.

Theorem 6.11 states quadratic convergence of Newton’s method (provided the starting value is
sufficiently close to x∗) provided f ′(x∗) is invertible.
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Remark 6.12 In practice the Newton step is not realized by computing the inverse (f ′)−1 but
by solving a linear system:

1. compute f ′(xn) and the residual f(xn)

2. compute the correction by solving the linear system f ′(xn)δ = f(xn)

3. perform the update xn+1 := xn − δ

Remark 6.13 The residual f(xn) is some measure for the error x∗−xn. If f
′(x∗) is invertible,

then for xn sufficiently close to x∗, Taylor expansion indicates

f(xn) = f(xn)− f(x∗) ≈ f ′(x∗)(xn − x∗)

so that we can expect

‖(f ′(x∗))−1f(xn)‖ ≈ ‖x∗ − xn‖. (6.9)

The residual f(xn) still is a measure for the error, however, only up to a constant depending
on f ′(x∗):

‖f(xn)‖ ≤ ‖f ′(x∗)‖‖x∗ − xn‖+O(‖x∗ − xn‖2), (6.10)

‖x∗ − xn‖ ≤ ‖(f ′(x∗))−1‖‖f(xn)‖+O(‖x∗ − xn‖2). (6.11)

6.4 implementation aspects of Newton methods

stopping criteria

1. xn close to x∗ ⇒ quadratic convergence ⇒ ‖xn+1 − xn‖ is a good estimate for
‖xn − x∗‖:

‖xn − x∗‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − x∗‖︸ ︷︷ ︸
≤ c ‖xn−x∗‖2

≪ ‖xn−x∗‖

⇒ If each Newton step is cheap, then the stopping criterion is

‖xn+1 − xn‖ ≤ given tolerance

2. If Newton steps are expensive (e.g., for large systems of equations) then one can approx-
imate ‖xn+1 − xn‖ as follows:

‖xn+1 − xn‖ = ‖
(
f ′(xn)

)−1

f(xn)‖ ≈ ‖
(
f ′(xn−1)

)−1

f(xn)‖

This expression is computable since f ′(xn−1) has been determined for the computa-
tion of xn. If an LU -factorization of f ′(xn−1) is available, then the computation of
f ′−1(xn−1)f(xn) is comparatively cheap.
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computing f ′(xn):

1. problem: often f ′ is not explicitly available but only f (e.g., if f is available as a
C-code). Then f ′(xn) can be approximated by difference quotients.

2. problem: Computing f ′(xn) can be expensive (for example: for large d the d×d-matrix
f ′ has many entries) Then one often uses the simplified Newton method

xn+1 = xn −
(
f ′(x0)

)−1

f(xn)

Since one uses the same, fixed derivative (at the point x0), the method is only linearly
convergent.

Exercise 6.14 Let B ∈ Rd×d be invertible, f̃(x) := Bf(x). Then: f(x∗) = 0 if and only if

f̃(x∗) = 0, and the Newton iterates for computing the zeros of f and of f̃ coincide.

6.5 damped and globalized Newton methods

Problem: Newton’s method converges only locally, i.e., if x0 is sufficiently close to the zero x∗.
goal: methods that cope (reasonably well) with poor initial values x0.

6.5.1 damped Newton method

Problem: quite often, the Newton steps xn+1 − xn are too large for convergence.
slide 32
The way to cope with this problem is the damped Newton method where, for chosen λn ∈ (0, 1],
the update is

xn+1 := xn − λn(f
′(xn))

−1f(xn) (6.12)

For suitably small λn, this method converges for a larger regime of initial values x0. However,
the convergence is only linear. One is therefore interested in methods where the parameters λn

are selected adaptively and in particular λn = 1 for the iterates sufficiently close to x∗ so as
to obtain the quadratic convergence of the Newton method. An algorithm that realizes this is
given in Alg. 6.16.

6.5.2 a digression: descent methods

Let g : Rd → R be a given function. Minima of g can be sought with descent methods, which
are iterative methods that determine the next iterate xn+1 from a current iterate xn as follows:

1. select a search direction dn

2. select a step length λn such that for xn+1 := xn + λndn one has g(xn+1) < g(xn).
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The search direction dn is called a descent direction if the 1D function g̃(t) := g(xn + tdn)
satisfies g̃′(0) < 0, i.e., is decreasing for small t > 0. Put differently, dn needs to satisfy

∇g(xn) · dn < 0.

The method of steepest descent corresponds to the choice dn = −∇g(xn).
The second ingredient of a descent method is the choice of the step length λn. The “greedy”
approach would be to select λn such that

min
t>0

g̃(t) = g̃(λn).

Since this “line search” is still quite expensive, several other options are common that realize
the idea of selecting a step size with “sufficient” descent. We mention the so-called Armijo-rule:
Given σ ∈ (0, 1) and q ∈ (0, 1) one selects the largest step length of the form qk, k = 0, 1, . . . ,
such that

g̃(qk) < g̃(0) + σg̃′(0)qk,

or, written in terms of g

g(xn + qkdn) < g(xn) + σ(∇g(xn) · dn)q
k. (6.13)

This can be realized by trying the cases k = 0, 1, etc. in turn until (6.13) is satisfied. This step
length choice can be interpreted as trying to make fairly large steps with a reasonable reduction
of the functional g.

6.5.3 globalized Newton method as a descent method

observe: zeros of f are minima of x 7→ ‖f(x)‖22 = f(x)⊤f(x).
idea: View the damped Newton method as a descent method with search direction dn :=
−(f ′(xn))

−1f(xn) and step length parameter λn.
For this idea to work, we need to know that the so-called Newton direction

dn := −(f ′(xn))
−1f(xn) (6.14)

is a descent direction for g(x) := ‖f(x)‖22.
Lemma 6.15 Let f ∈ C2(Rd). Then: For given x and d := −(f ′(x))−1f(x) the function
g̃(λ) := g(x+ λd) has the Taylor expansion g̃(λ) = g(x)− 2λg(x) +O(λ2) for small λ.

Proof: For notational simplicity we consider the case d = 1. Then g(x) = f 2(x) and g̃(λ) =
f 2(x+ λd(x)) with d(x) = −(f ′(x))−1f(x). Then by Taylor, we have for small λ

g̃(λ) = g̃(0) + λg′(0) +O(λ2) = f 2(x) + λ2f(x)f ′(x)d(x) +O(λ2)

= f 2(x)− λ2f(x)f ′(x)
f(x)

f ′(x)
+O(λ2) = f 2(x)− 2λf 2(x) +O(λ2).

✷

Lemma 6.15 shows that the Newton direction is a descent direction and that, for λ sufficiently
small, we may achieve a descent

g(xn + λndn)− g(xn) ≈ 2λng(xn) (6.15)

⇒ sensible goals for selecting λ are:
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• if xn is close to x∗ then select λ = 1 (so that actual Newton steps with quadratic con-
vergence are performed!). We note that the quadratic convergence implies a descent of
almost ‖f(xn)‖2: for xn near x∗ we have

‖f(xn+1)‖2
(6.10)

≤ C1‖x∗ − xn+1‖22
quad. conv.

≤ C2‖x∗ − xn‖42
(6.11)

≤ C3‖f(xn)‖42.

In other words: for actual Newton steps, we expect ‖f(xn)‖22 − ‖f(xn+1)‖22 ≈ ‖f(xn)‖22.

• If xn is far from x∗, then select λ small but s.t. the descent ‖f(xn)‖22−‖f
(
xn+λd(xn)

)
‖22

is large. By (6.15), a descent ‖f(xn + λdn)‖22 − ‖f(xn)‖22 ≈ 2λn‖f(xn)‖22 is possible for
small λn

We wish to require the descent to be compatible with Newton steps. Therefore, we require a
descent of ≈ λn‖f(xn)‖22 rather than the “greedy” 2λn‖f(xn)‖22. This is what we enforce in the
following algorithm:

Algorithm 6.16 Input: initial value x0, parameter µ, q ∈ (0, 1)

λ0 := 1
n := 0
while (stopping criterion not satisfied) do

dn := −
(
f ′(xn)

)−1

f(xn)

while
(
‖f(xn)‖22 − ‖f(xn + λn dn)‖22 < µλn‖f(xn)‖22

)
do % reduce λ until sufficient amount of descent

λn := λn · q
end while

xn+1 := xn + λn dn

λn+1 := min
(
1, λn

q

)
% try a little large λ next time

end while

Remark 6.17 The ‖ · ‖2-norm was selected for convenience of exposition. Especially for large
systems, other norms may be more appropriate.

slide 32

6.6 Gauss-Newton

A practically relevant case is that of “nonlinear least squares problems”: given a function
F : Rn × Rm the goal is

Find x⋆ s.t. ‖F (x⋆)‖2 ≤ ‖F (x)‖2 ∀x ∈ Rn. (6.16)

Such problems arise, for example when fitting parameters x to measurements of a nonlinear
model.

95



(Local) minima x⋆ of the function g(x) := ‖F (x)‖22 satisfy ∇g(x⋆) = 0, i.e.,

G(x) := (F ′(x))⊤F (x)
!
= 0.

The Newton iteration is then1

G′(xn)∆xn = −G(xn), G′(x) = (F ′(x))⊤F ′(x) + (F ′′(x))⊤F (x). (6.17)

Let us next assume that F ′(x) has full rank near a solution x⋆ so that (F ′(x))⊤F ′(x) is invertible.
Let us also assume that

F (x⋆) = 0.

Then, F ′′(x)F (x) is small near the solution x⋆ so that one could replace in (6.17) the full deriva-
tive G′(x) = (F ′(x))⊤F ′(x) + (F ′′(x))⊤F (x) with a simplified version G′(x) ≈ (F ′(x))⊤F ′(x).
The resulting method is

(F ′(xn))
⊤F ′(xn)∆xn = −(F ′(xn))

⊤F (xn). (6.18)

These are the normal equations for the following linear least squares problem:

Find ∆xn s.t.‖F ′(xn)∆xn + F (xn)‖22 ≤ ‖F ′(xn)y + F (xn)‖22 ∀y ∈ Rn. (6.19)

Thus, the nonlinear least squares problem (6.16) has been reduced to a sequence of linear least
squares problems. The simplification is quite significant in that the second derivative G′′ does
not have to be computed! Normally in Newton methods, an approximation of the derivative
(here: G′) leads to a convergence reduction from quadratic to linear. In the present case, the
neglected term F ′′(x)F (x) is small and even vanishes asymptotically as x→ x⋆. Hence, there
is hope that the Gauss-Newton method still converges quadratically:

Theorem 6.18 Assume that F is sufficiently smooth, that F (x∗) = 0 and that F ′(x∗) has
full rank. Then, the Gauss-Newton method (6.19) converges locally quadratically, i.e., for x0

sufficiently close to x∗, the sequence of iterates xn satisfies

‖x∗ − xn+1‖2 ≤ C‖x∗ − xn‖22 ∀n.

If F (x∗) 6= 0 but still F ′(x∗) has full rank, then the Gauss-Newton method converges but only
linearly for starting values sufficiently close to the solution x∗.

Exercise 6.19 Consider the case n = m = 1. Formulate the Gauss-Newton method for solving
f(x⋆) = 0. Under the assumption f(x⋆) = 0 and f ′(x∗) 6= 0, show that the Gauss-Newton
method reduces to the standard Newton iteration for the problem of finding x⋆ with f(x∗) = 0.

1The second derivative G′′ is a third order tensor but we will not formally define this object as we will not
need it in the sequel. At this point, it suffices to accept that the notation is set up in such a way that what one
expects from simple calculus in 1D extends to multi-d
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6.7 Quasi-Newton methods (CSE)

Problem: often, the computation of f ′ is expensive.
simple solution: simplified Newton method where f ′(xn) is replaced with f ′(x0). Downside:
linear convergence
goal: methods that converge superlinearly but are cheaper than full Newton method

6.7.1 Broyden method

Setting: f ∈ C1(Rd;Rd), f(x∗) = 0, f ′(x∗) invertible
Broyden methods are iterative methods of the form xn+1 = xn−H−1

n f(xn) with suitable matrices
Hn.
idea of Broyden’s method

• after computing xn+1 compute the next Hn+1 from Hn

• Hn+1 is some kind of “approximation” to f ′(xn+1)

Taylor yields −f(xn+1) + f(xn) = f ′(xn+1)(xn − xn+1) + O(‖xn+1 − xn‖2) so that we expect
f ′(xn+1)(xn+1 − xn) ≈ f(xn+1) − f(xn) Hence, a resonable condition on Hn+1 is the “secant
condition”

Hn+1(xn+1 − xn)
!
= f(xn+1)− f(xn) (6.20)

Condition (6.20) does not fix Hn+1 (unless d = 1). A reasonable further condition is that Hn+1

does not deviate much from Hn, i.e., that Hn+1 −Hn be small. This leads to the problem:

Find Hn+1 satisfying (6.20) s.t. ‖Hn+1−Hn‖F = min{‖A−Hn‖F |A(xn+1−xn) = f(xn+1)−f(xn)}
(6.21)

This constrained minimization problem has a unique solution:

Hn+1 = Hn +
1

‖s‖22
(y −Hns) s

⊤, s = xn+1 − xn, y = f(xn+1)− f(xn). (6.22)

The reason is the following, more general result:

Lemma 6.20 Let B ∈ Rd×d, s, y ∈ Rd with s 6= 0. Then the matrix B+ ∈ Rd×d given by

B+ = B+
1

‖s‖22
(y −Bs)s⊤ (6.23)

solves the following constrained minimization problem:

Find the minimizer A of ‖A−B‖F under the constraint As = y (6.24)

Furthermore, the minimizer is unique.

Proof: We will only show that the given B+ solves the minimization problem. By construction,
B+s = y. For arbitrary A with As = y, we compute

‖B+ −B‖F = ‖ 1

‖s‖22
(y −Bs)s⊤‖F = ‖ 1

‖s‖22
(As−Bs)s⊤‖F = ‖(A−B)

s⊤

‖s‖22
‖F

‖GH‖F≤‖G‖F ‖H‖2
≤ ‖A−B‖F ‖ ss

⊤

‖s‖22
‖2

︸ ︷︷ ︸
=1 since ss⊤ is sym. with d− 1 EVs 0 and one EV 1

97



2 4 6 8

iteration number

10
-15

10
-10

10
-5

10
0

|x
k
 -

 x
*
| 2

Newton

Broyden

steepest desc.

Figure 6.2: Comparison of Newton method, Broyden method, and gradient method (See
Example 6.21).

✷

The update formula (6.20) yields the following Broyden method :

1. given Hn compute xn+1 = xn −H−1
n f(xn)

2. compute Hn+1 via (6.22).

Important features of this method are:

1. The method converges (locally) superlinearly, i.e., for some sequence εn → 0 there holds

‖xn+1 − xn‖ ≤ εn‖xn − xn−1‖

2. The Broyden updates are rank-1 updates. For rank-1 updates of matrices, the inverses can
be computed fairly cheaply with the Sherman-Morrison-Woodbury formula, which asserts
(exercise!) that for arbitrary invertible A ∈ Rd×d and vectors u, v (with v⊤A−1u 6= −1)
there holds

(A+ uv⊤)−1 = A−1 − 1

1 + v⊤A−1u
A−1uv⊤A−1. (6.25)

Example 6.21 slide 32a
We seek the zero x∗ = (0, 1)T of

F (x) =

(
(x1 + 3)(x3

2 − 7) + 18
sin(x2e

x1 − 1)

)
= 0

with initial value x0 = (−0.5, 1.4)T . The classical Broyden method is started with H0 = F ′(x0).
One observes in Fig. 6.2 in particular superlinear convergence of the Broyden method. For
comparison purposes also the gradient method (steepest descent) for f(x) := ‖F (x)‖22 with
σ = 0.9 and q = 0.5 (see Sec. 6.8.1) is shown.
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Remark 6.22 There are many important variations of the Broyden method. Consider for
example the case that Newton’s method is applied to find the minimum of a function f (see
Section 6.8.1). Then the Hessian of f is symmetric and — at least in the vicinity of the sought
minimum — positive definite. One would like to make Broyden-like updates that preserve sym-
metric and positive definiteness. Such methods exist: see PSB (“Powell symmetric Broyden”),
DFP (“Davidson-Fletcher-Powell”), BFGS (“Broyden-Fletcher-Goldfarb-Shanno”).

Remark 6.23 Just like globalized Newton methods, Broyden and Broyden-like methods are in
practice combined with algorithms that select the step length.

6.8 unconstrained minimization problems (CSE)

goal: minimize a function f : Rd → R
This problem can be approached in several ways, for example:

1. The minimizer satisfies ∇f(x∗) = 0 so that a (globalized) Newton method could be used.
We note that then the Hessian of f is required.

2. Descent method: These methods identify a descent direction for f (e.g., −∇f(xn)) and
then make a step that reduces f . These methods typically require only ∇f and are
discussed in Sec. 6.8.1.

3. Trust region methods: these methods approximate f locally by a quadratic function that
is minimized in a region where the quadratic approximation is deemed reliable. This is
sketched in Sec. 6.8.3.

6.8.1 gradient methods

The simplest minimization strategy is the following iteration, starting with an initial point x0:

1. select a search direction dn with ∇f(xn) · dn < 0

2. select a step length λn such that f(xn + λndn) < f(xn)

Concerning the search direction dn, the simplest one is the negative gradient: dn = −∇f(xn).
This is called the steepest descent direction.
There are many choices for the step length λn. The “greedy” approach is to take λn as the
minimizer of 1D optimization problem:

minimize t 7→ ϕ(t) := f(xn + tdn). (6.26)

Since this minimization problem is typically still difficult to solve, various simplified versions are
employed. A typical condition imposed on the step length λn is that each step make sufficient
descent, namely,

f(xn + λndn) < f(xn) + λnσ∇f(xn) · dn (6.27)

for some user chosen parameter σ. That is, the reduction in f should be proportional to the
step size as well as the directional derivative ∇f(xn) ·dn. One popular technique to ensure this
is the Armijo-rule: Given q ∈ (0, 1), one selects λn as the largest number of the form λn = qk,
k ∈ N0, such that the condition (6.27) is satisfied.
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6.8.2 gradient method with quadratic cost function

We consider the special case of a quadratric function f :

f(x) = γ + c⊤x +
1

2
x⊤Qx (6.28)

where γ ∈ R, c ∈ Rd, Q is SPD. J note: in the vicinity of a minimum of f , one expects
f to be close to a quadratic polynomial of this form by Taylor K. We employ as the search
direction dn := −∇f(xn). Rather than using the Armijo rule, we use the minimum rule since
the minimum can be computed: The minimum of ϕ : t 7→ f(xn + tdn) is explicitly given by

t = −f(xn) · dn

d⊤
nQdn

since

ϕ(t) = f(xn + tdn) = f(xn) + t∇f(xn) · dn +
1

2
t2d⊤

nQdn,

ϕ′(t) = ∇f(xn) · dn + td⊤
nQdn;

therefore, one step of the gradient method is

xn+1 = xn + tdn = xn −
∇f(xn) · dn

d⊤
nQdn

dn

The convergence can be estimate:

Lemma 6.24 Let f be given by (6.28) with an SPD matrix Q. Consider steepest descent, i.e.,
dn := −∇f(xn). Then:

f(xn+1)− f(x∗) ≤
(
λmax − λmin

λmax + λmin

)2

(f(xn)− f(x∗)) =

(
κ− 1

κ+ 1

)2

(f(xn)− f(x∗)),

‖xn+1 − x∗‖2Q ≤
(
λmax − λmin

λmax + λmin

)2

‖xn − x∗‖2Q =

(
κ− 1

κ+ 1

)2

‖xn − x∗‖2Q,

where ‖z‖2Q = z⊤Qz and κ = λmax/λmin is the condition number of Q.

Proof: Literature. ✷

Lemma 6.24 shows that the steepest descent method degrades if Q has widely differing eigen-
values (i.e., large condition number κ). This problem can be solved or at least mitigated by
selecting the search directions in a different way. In fact, if one takes an SPD matrix H (as a
“preconditioner”) and considers as the search direction

dn = −H∇f(xn)

then, one can show that

f(xn+1)− f(x∗) ≤
(
λmax(H

−1Q)− λmin(H
−1Q)

λmax(H−1Q) + λmin(H−1Q)

)2

(f(xn)− f(x∗)),

so that the contraction factor can be much smaller than in the unpreconditioned case. The
extreme case H = Q leads to convergence in one step.
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Remark 6.25 The minimization of the quadratic function f can be done explicitly with solution
x∗ = −Q−1c so that a (steepest) descent method seems useless. Nevertheless, the discussion of
quadratic functions f is of interest as it indicates weaknesses of the steepest descent methods
for general f : one should expect slow convergence if, for example, the Hessian of f has a large
condition number.

Returning to the quadratic problem, it is of interest to note that the minimum can also be
found as the zero of the function x 7→ ∇f(x). This is a linear function. The Hessian of f is
H = Q. Applying the Newton method yields convergence in one step. The Newton step is

xn+1 = xn −H−1∇f(xn).

This is precisely the preconditioned gradient method with the above identified optimal precon-
ditioner H = Q.

6.8.3 trust region methods

starting point: many minimization techniques are based on “sequential quadratic program-
ming”, i.e., the function f is approximated locally by a quadratric “model” of the form

qk(x) = f(xk) + gk · (x− xk) +
1

2
(x− xk)

TBk(x− xk), (6.29)

that is then minimized instead. Examples are:

• gk = ∇f(xk) and Bk = H(xk), where H(xk) is the Hessian of f at xn: → Newton’s
method if H(xk) SPD

• gk = ∇f(xk) and Bk = Id: → gradient method (with step length tk = 1)

Problems:

• the quadratic model is only valid in a small region near xk. Too large steps of the
minimization algorithm may lead to leaving the region of validity of the model.

• If Bk is not SPD, then the minimization problem is not meaningful.

In trust region methods the model qk is not minimized over Rd but merely on a ball B∆k
(xk)

for given ∆k:

Minimize qk(x) under the constraint ‖xk+1 − xk‖ ≤ ∆k. (6.30)

• (6.30) has a solution
• key ingredient of the algorithm is the steering of the ∆k.
• in order to assess whether the quadratic model is “good”, one defines

ρk :=
f(xk)− f(xk+1)

qk(xk)− qk(xk+1)
. (6.31)

J = ratio of actual descent and descent predicted by the model K
J denominator is always non-negative K If the model is “good”, then ρk ≈ 1 will be close to 1.
In particular, for ρk ≤ 0 no descent is achieved (since the denominator is positive!).
In trust region methods, the search directions and the step lengths are not selected separately.
Rather, they are selected in some sense simultaneously.
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Algorithm 6.26 (Trust region method) %input ∆̂, ∆0 ∈ (0, ∆̂), η ∈ [0, 1/4)

for k = 0, 1, . . . do {
minimize qk with minimizer x̂k+1

ρk = (f(x̂k+1)− f(xk))/(qk(x̂k+1)− qk(xk))
if ρk < 1/4 then ∆k+1 :=

1
4
∆k % Model “bad” → reduce trust region

else if (ρk > 3/4 and ‖x̂k+1 − xk‖ = ∆k) then ∆k+1 = min(2∆k, ∆̂)
% model “good”, minimizer at boundary → trust region apparently too small

else ∆k+1 = ∆k

if ρk > η then xk+1 := x̂k+1 % model OK, → accept step
else xk+1 := xk % model not OK → reject the step
}

Remark 6.27 The actual realization of a trust region method is non-trivial as the constrained
minimization problem of finding x̂k+1 has to be (approximately) solved. For actual realizations
of trust region methods: see literature.
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7 Eigenvalue problems

goal: compute some or all eigenvalues of A ∈ Rn×n

7.1 the power method

goal: compute largest (in absolute value) eigenvalue and corresponding eigenvector

Algorithm 7.1 (power method)

%input : A ∈ Rn×n, 0 6= x0 ∈ Rn

ℓ := 0 ; x0 :=
x0

‖x0‖2
, λ̃0 := xH

0 Ax0

repeat { xℓ+1 :=
Axℓ

‖Axℓ‖2
% approx. eigenvector

λ̃ℓ+1 := xH
ℓ+1Axℓ+1 % approx. eigenvalue

ℓ := ℓ+ 1

} until sufficiently accurate (7.1)

Theorem 7.2 LetA ∈ Rn×n have a basis of eigenvectors (i.e., A is diagonalizable) {v1, . . . ,vn}
with eigenvalues λ1, . . . , λn satisfying |λ1| > |λ2| ≥ · · · ≥ |λn|. Let x0 =

∑n
i=1 αivi with α1 6= 0

Then:

(i) The xℓ of Alg. 7.1 are well-defined.

(ii) ∃C > 0 s.t. |λ̃ℓ − λ1| ≤ C|λ2

λ1
|ℓ, ℓ = 0, 1, . . .

Proof: x0 =
∑

i αivi ⇒ Aℓx0 =
∑

i αiλ
ℓ
ivi. The assumption α1 6= 0 ∧ λ1 6= 0 implies

Aℓx0 6= 0∀ℓ. Inductively, this implies that xℓ 6= 0 for all ℓ and that xℓ = cℓA
ℓx0 for cℓ :=

1/‖Aℓx0‖2 6= 0. Therefore:

xℓ = cℓα1λ
ℓ
1



v1 +

n∑

i=2

αi

α1

(
λi

λ1

)ℓ

vi

︸ ︷︷ ︸
=:ǫℓ




. (7.2)

The assumption |λi| ≤ |λ2| < |λ1| ∀i = 2, . . . , n then implies

‖ǫℓ‖2 ≤
n∑

i=2

∣∣∣∣
αi

α1

∣∣∣∣
∣∣∣∣
λi

λ1

∣∣∣∣
ℓ

‖vi‖2 ≤ C

∣∣∣∣
λ2

λ1

∣∣∣∣
ℓ

for suitable C > 0. (7.3)

For ℓ large, we have that ‖ǫℓ‖2 is small ⇒

λ̃ℓ = xH
ℓ Axℓ

‖xℓ‖2=1
=

xH
ℓ Axℓ

‖xℓ‖22
=

(v1 + ǫℓ)
HA(v1 + ǫℓ)

‖v1 + ǫℓ‖22
=

vH
1 Av1 + vH

1 Aǫℓ + ǫHℓ Av1 + ǫHℓ Aǫℓ
||v1 + ǫℓ||22

=

=
λ1‖v1‖22 +O(‖ǫℓ‖2)
‖v1‖22 +O(‖ǫℓ‖2)

= λ1 +O(‖ǫℓ‖2)
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Hence, |λ1 − λ̃ℓ| ≤ C‖ǫℓ‖2 ≤ C
∣∣∣λ2

λ1

∣∣∣
ℓ

. ✷

Remark 7.3 1. Since v1 is not known, the requirement α1 6= 0 cannot be checked. In
practice, this is not a problem since:

• a randomly chosen x0 satisfies α1 6= 0 with probability 1

• rounding errors create a component in the direction of v1

2. analogous result holds for the eigenvalue converge if λ1 is a multiple eigenvalue

3. Algorithm 7.1 does not converge, if λ1 6= λ2 but |λ1| = |λ2|. This case arises, e.g., when
A ∈ Rn×n but A has complex eigenvalues.

4. greatest weakness of Algorithm 7.1: slow convergence if λ1 is not well-separated from

σ(A) \ {λ1}, i.e.,
∣∣∣λ2

λ1

∣∣∣ is close to 1.

5. common application: estimate ‖A‖22 = λmax(A
HA)

slide 33
In addition to providing approximations to the largest eigenvalue, Algorithm 7.1 also yields an
approximation to the corresponding eigenvector. To capture this convergence mathematically,
we introduce the notion of “distance” between the spaces spanned by two vectors:

Definition 7.4 Let {0} 6= S = span{x} and {0} 6= T = span{y}. We define

d(S, T ) := | sinϕ| =
√

1− cos2 ϕ, cosϕ =
x · y

‖x‖2‖y‖2
.

Remark 7.5 (geometric intepretation) ϕ is the angle between the vectors x and y. If
x ‖ y, then ϕ = 0, i.e., S = T and indeed d(S, T ) = 0. If x ⊥ y, then d(S, T ) = 1.

The following Theorem 7.6 shows that | sin∠(v1,xℓ)| → 0:

Theorem 7.6 Assumptions as in Theorem 7.2. Then ∃ C > 0 such that

d(span{v1}, span{xℓ}) ≤ C

∣∣∣∣
λ2

λ1

∣∣∣∣
ℓ

, ℓ = 0, 1, . . .

Proof: From (7.2), we get span{xℓ} = span{v1 + ǫℓ}. Hence from (7.3) and a calculation

d(span{xℓ}, span{v1}) ≤
‖ǫℓ‖2

‖v1 + ǫℓ‖2
≤ C

∣∣∣∣
λ2

λ1

∣∣∣∣
ℓ

✷
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7.2 Inverse Iteration

goal: eigenvalue other than the largest one

observation: if A is invertible and σ(A) = {λi | i = 1, . . . , n} then σ(A−1) = { 1
λi
| i = 1, . . . , n}

i.e., the largest (in absolute value) eigenvalue of A−1 is the reciprocal of the smallest one (in
absolute value) of A.

Algorithm 7.7 (inverse Iteration) ℓ := 0, x0 :=
x0

‖x0‖2
repeat {

- solve Ax̃ℓ+1 = xℓ

- xℓ+1 :=
x̃ℓ+1

‖x̃ℓ+1‖2

- λ̃ℓ+1 := xH
ℓ+1Axℓ+1

- ℓ := ℓ+ 1

} until sufficiently accurate

Remark 7.8 1. If 0 < |λn| < |λn−1| ≤ · · · ≤ |λ1|, then, analogous to Theorem 7.2, one has

|λn − λ̃l| ≤ C
∣∣∣ λn

λn−1

∣∣∣
ℓ

J exercise K

2. since a linear system is solved in each step → perform an LU-factorization of A at the
beginning

The inverse iteration is a special case of an inverse iteration with shift:

Algorithm 7.9 (inverse iteration with shift) % input A ∈ Rn×n, shift λ ∈ R, x0 ∈
Rn\{0}
ℓ := 0 ; x0 :=

x0

‖x0‖2

repeat {

- solve (A− λ)x̃ℓ+1 = xℓ

- xℓ+1 :=
x̃ℓ+1

‖x̃ℓ+1‖2

- λ̃ℓ+1 := xH
ℓ+1Axℓ+1

- ℓ := ℓ+ 1

} until sufficiently accurate

Theorem 7.10 Let A ∈ Rn×n be diagonalizable; λ ∈ R. Let the eigenvalues of A be numbered
such that |λ1 − λ| ≥ |λ2 − λ| ≥ · · · ≥ |λn−1 − λ| > |λn − λ| > 0.
Then: ∃ C > 0 such that the approximation λ̃ℓ computed by Algorithmus 7.9 satisfies:

|λn − λ̃ℓ| ≤ C

∣∣∣∣
λn − λ

λn−1 − λ

∣∣∣∣
ℓ
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Proof: analogous to that of Theorem 7.2. ✷

observation:

• inverse iteration with shift converges to the eigenvalue closest to the shift parameter λ→
it is possible to seek specific eigenvalues

• the closer λ is to an eigenvalue, the faster the convergence

idea: use, in each step of the iteration, as a shift parameter λ the best available approximation
to an eigenvalue → Rayleigh quotient iteration with shift λℓ = xH

ℓ Axℓ

Algorithm 7.11 (Rayleigh quotient iteration) % input A ∈ Rn×n, 0 6= x0 ∈ Rn, (=ini-
tial guess for eigenvector corresponding to sought eigenvalue)
ℓ := 0; x0 :=

x0

‖x0‖2
repeat {

- λ̃ℓ := xH
ℓ Axℓ

- solve (A− λ̃ℓ)x̃ℓ+1 = xℓ

- xℓ+1 :=
x̃ℓ+1

‖x̃ℓ+1‖2

} until sufficiently accurate

One expects better convergence of the Rayleigh quotient iteration than in the case of a fixed
shift. One has, for example:

Theorem 7.12 Let A ∈ Rn×n be symmetric, λ ∈ σ(A) be a simple eigenvalue with correspond-
ing eigenspace span{v}. Then: ∃ C > 0, ǫ0 > 0 such that ∀ǫ ∈ (0, ǫ0): If x0 ∈ Rn\{0} satisfies
the condition d(span{x0}, span{v}) < ǫ, then x1 (= one step of Algorithm 7.11) satisfies

d(span{x1}, span{v}) ≤ Cǫ3 and

∣∣∣∣
xH
0 Ax0

‖x0‖22
− λ

∣∣∣∣ ≤ Cǫ2.

Proof: See literature. Note in particular, that the result implies

∣∣∣∣
xH
1 Ax1

‖x1‖22
− λ

∣∣∣∣ ≤ Cǫ6. ✷

Remark 7.13 1. Analogous result holds also for general diagonalizable matrices: One then
has locally quadratic (instead of cubic) convergence.

2. Iterations with variable shift are more expensive than those with fixed shift for which a
factorization can be amortized over several iterations.

slide 33
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7.3 error estimates–stopping criteria

7.3.1 Bauer-Fike

Question:
Relation of σ(A) and σ(A+∆A)?

Theorem 7.14 (Bauer–Fike) LetA ∈ Rn×n be diagonalizable, i.e., ∃ T ∈ Rn×n with T−1AT =
diag(λ1, . . . , λn) =: D. Then: Let ∆A ∈ Rn×n. Then for any µ ∈ σ(A + ∆A) there holds
min |µ− λi| ≤ condp(T)‖∆A‖p, where condp(T) = ‖T‖p‖T−1‖p and p ∈ [1,∞] arbitrary.

Proof: Without loss of generality let µ ∈ σ(A + ∆A) \ σ(A). Let v be an eigenvector with
eigenvalue µ. Then:

((A+∆A)− µI)v = 0 ⇒ ((A− µI) + ∆A)v = 0 ⇒
(
I+ (A− µ)−1∆A

)
v = 0 ⇒

1 =
‖Iv‖p
‖v‖p

=
‖(A− µ)−1∆Av||p

‖v‖p
≤ ‖(A− µ)−1‖p

‖∆Av‖p
‖v‖p

A=T−1DT

≤ ‖
(
T−1(D− µ)T

)−1 ‖p‖∆A‖p ≤ ‖T−1‖p‖(D− µ)−1‖p‖T‖p‖∆A‖p
= ‖∆A‖p condp(T)‖ (D− µ)−1

︸ ︷︷ ︸
diag.

‖p = ‖∆A‖p condp(T) max
i=1,...,n

1

|λi − µ|

=
1

mini (λi − µ)
‖∆A‖p condp(T)

✷

Remark 7.15 condp(T) can be large if the eigenvectors of A are close to being linearly depen-
dent. This does not happen in the self-adjoint (symmetric) case:

Corollary 7.16 Let A ∈ Rn×n be self-adjoint (symmetric), ∆A ∈ Rn×n. Then:

∀ µ ∈ σ(A+∆A) : min
λ∈σ(A)

|µ− λ| ≤ ‖∆A‖2

Proof: A selfadjoint ⇒ A = QHDQ with Q orthogonal, i.e., cond2(Q) = 1 ✷

7.3.2 remarks on stopping criteria

A pair (x, λ̃) ∈ Rn \ {0} × R is an eigenpair, if Ax− λ̃x = 0
hope: For (x, λ̃) not necessarily an eigenpair, the residual Ax− λ̃x is a useful measure for the
deviation from an eigenpair. We have

Theorem 7.17 A ∈ Rn×n diagonalizable, (T−1AT = D), ‖x‖2 = 1, λ̃ ∈ R. Set r := Ax− λ̃x.
Then:
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(i) minλ∈σ(A) |λ− λ̃| ≤ cond2(T )‖r‖2

(ii) minλ∈σ(A) |λ− λ̃| ≤ ‖r‖2 if A is selfadjoint (symmetric).

(iii) If λ̃ = xHAx and A is selfadjoint and λ̃ sufficiently close to a simple eigenvalue of A,
then

min
λ∈σ(A)

|λ− λ̃| ≤ C‖r‖22

Proof: ad (i): (perturbation argument)
The matrix A+∆A := A− rxH satisfies

• ‖∆A‖2 = ‖r‖2

• λ̃ ∈ σ(A+∆A), since (A+∆A)x = Ax− r xHx︸︷︷︸
=1

= λ̃x

The claim follows from Bauer-Fike (Theorem 7.14).
ad (ii): follows from (i)
ad (iii): see literature. ✷
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7.4 orthogonal Iteration

recall: the power iteration generates a sequence (Aℓ span{x0})∞l=0 of 1-D spaces that converge
to an invariant subspace of the matrix A (in fact, the eigenspace corresponding to the largest
eigenvalue).

Idea: Perform power iteration on a k-dimensional space (described by X0 ∈ Rn×k)
Hope: The sequence (AℓX0)

∞
ℓ=0 of k-dimensional spaces converges1 to the invariant subspace

that is spanned by the k dominant eigenvectors.
essential for the numerical realization:
The power iteration in Sec. 7.1 used a normalization of the vector in each space (i.e., an ONB of
the space spanned by Aℓx0 was created). Here, an ONB of the space spanned by the columns
of AℓX0 is created.

Algorithm 7.18 (orthogonal iteration) % input: A ∈ Rn×n, X0 ∈ Rn×k with linearly in-
dependent columns.
ℓ := 0
X0 =: Q0R0, where Q0 ∈ Rn×k has orthogonal columns, R ∈ Rk×k upper triangular.
repeat {

Xℓ+1 := AQℓ

1actually, we haven’t introduced the notion of distance on the space of k-dimensional spaces, so that this
statement has to remain vague
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Xℓ+1 =: Qℓ+1Rℓ+1 % reduced QR-decomposition of Xℓ+1 :
Qℓ+1 ∈ Rn×k has orthogonal columns

Rℓ+1 ∈ Rk×k is upper triangular

ℓ := ℓ+ 1

} until sufficiently accurate

Remark 7.19 1. The columns of Qℓ form an ONB of the space AℓS0 where S0 is the space
spanned by the columns of X0.

2. Orthogonalization is numerically essential: without orthogonalization one performs only
k independent vector iterations that all converge to the same dominant eigenspace.

Theorem 7.20 Let A ∈ Rn×n be diagonalizable, {v1, . . . ,vn} basis of Rn of eigenvectors with
corresponding eigenvalues λ1, . . . , λn. Let |λ1| ≥ |λ2| ≥ . . . |λk| > |λk+1| ≥ · · · ≥ |λn|.
Let S0 ⊂ Rn be the k-dimensional subspace spanned by the columns of X0 ∈ Rn×k and assume
S0 ∩ span{vk+1, . . . ,vn} = {0}. Then, there exists C > 0 such that the k eigenvalues λ̃i,ℓ,
i = 1, . . . , k, of QH

ℓ AQℓ satisfy

min
λ∈σ(A)

|λ̃i,ℓ − λ| ≤ C

∣∣∣∣
λk+1

λk

∣∣∣∣
ℓ

, i = 1, . . . , k, ℓ = 0, 1, . . . ,

Furthermore, for any matrix Q′
ℓ ∈ Rn×(n−k) such that (Qℓ,Q

′
ℓ) is an orthogonal matrix, one

has for the block matrix

Aℓ := (Qℓ,Q
′
ℓ)

HA(Qℓ,Q
′
ℓ) =

(
A11 A12

A21 A22

)

that

‖A21‖2 ≤ C

∣∣∣∣
λk+1

λk

∣∣∣∣
ℓ

.

Proof: see literature. ✷

Remark 7.21 The matrix (Qℓ,Q
′
ℓ)

HA(Qℓ,Q
′
ℓ) is similar to the matrix A. Hence, its eigen-

values are the same as those of A. Theorem 7.20 states that the eigenvalues of the block A11

are close to the k largest eigenvalues of A. Theorem 7.20 also states that the block A21 tends
to zero as ℓ→∞. That is, the sequence of matrices Aℓ tends to block diagonal form.
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7.5 Basic QR-algorithm

A first way to understand the classical QR-algorithm (without refinements such as shift strate-
gies) is to view it as the orthogonal iteration with starting matrix X0 = I ∈ Rn×n:

Algorithm 7.22 (orthogonal iteration with X0 = I) % input: A ∈ Rn×n, X0 := I ∈
Rn×n

ℓ := 0
X0 =: Q0R0, where Q0 ∈ Rn×n has orthogonal columns, R ∈ Rn×n upper triangular.
repeat {
Xℓ+1 := AQℓ

Xℓ+1 =: Qℓ+1Rℓ+1 % QR-decomposition of Xℓ+1 :
Qℓ+1 ∈ Rn×n has orthogonal columns

Rℓ+1 ∈ Rn×n is upper triangular

ℓ := ℓ+ 1

} until sufficiently accurate

Remark 7.23 Algorithm 7.22 actually performs n orthogonal iterations simultaneously. That
is, for each k ∈ {1, . . . , n}, the first k columns of Qℓ are those that would be created by the
orthogonal iteration Alg. 7.18 started with X0 = [e1, . . . , ek]. To see this, we compute with
X0 = I

Aℓ I = AℓX0 = Aℓ−1AX0 = Aℓ−1Q1R1 = Aℓ−2AQ1R1 = Aℓ−2Q2R2R1 = · · · = QℓRℓ · · ·R1

Since the product Rℓ · · ·R1 is upper triangular as a product of upper triangular matrices, we see
that the columns of Aℓ[e1, . . . , ek] are linear combinations of the first k columns of Qℓ. Hence,
for invertible A, the first k columns of Qℓ form an ONB of the space AℓS0, where S0 is the
space spanned by X0 = [e1, . . . , ek]. See also Remark 7.19.

Since Alg. 7.22 performs n simultanenous orthogonal iterations (by Remark 7.23) Theorem 7.20
suggests that the sequence of matrices

Aℓ := QH
ℓ AQℓ

converges to upper triangular form. Indeed, if |λ1| > |λ2| > · · · > |λn| (and the technical condi-
tions span{e1, . . . , ek}∩ span{vk+1, . . . ,vn} = {0} for every k ∈ {1, . . . , n}) then Theorem 7.20
asserts that each block Aℓ([1 : k], [k + 1 : n]) of Aℓ tend to zero. Since the matrices Aℓ are
similar to A, the eigenvalues of Aℓ and A coincide. Thus, the diagonal entries of the matrices
Aℓ converge to the eigenvalues of A.
The basic QR-algorithm creates the matrices Aℓ in a more efficient way than computing QH

ℓ AQ
directly. One makes the following observations:

Xℓ+1 = AQℓ = Qℓ+1Rℓ+1,

Aℓ = QH
ℓ AQℓ = QH

ℓ Qℓ+1︸ ︷︷ ︸
=:Q̂ℓ+1

Rℓ+1 is “the” QR-decomposition of Aℓ,

Aℓ+1 = QH
ℓ+1AQℓ+1 = (QℓQ̂ℓ+1)

HAQℓ+1 = Q̂H
ℓ+1Q

H
ℓ AQℓQ̂ℓ+1 = Q̂H

ℓ+1AℓQ̂ℓ+1 = Rℓ+1Q̂ℓ+1.
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(The QR-decomposition is indeed unique for invertible matrices if one additionally fixes the
sign of the diagonal entries of the R-factor—cf. Theorem 4.44.) We conclude that Aℓ+1 is
obtained from Aℓ by computing “the” QR-factorization of Aℓ and then multiplying the factors
in reverse order. This is the classical QR-algorithm:

Algorithm 7.24 (basic form of classical QR-algorithm without shift and deflation)
% input: A ∈ Rn×n

ℓ := 0; A0 := A
repeat {

Aℓ =: QℓRℓ % QR-decomposition of Aℓ

Aℓ+1 := RℓQℓ

ℓ := ℓ+ 1

} until sufficiently accurate

Remark 7.25 Computationally, Alg. 7.24 is still too expense as each QR-decomposition costs
O(n3). In practice, A is brought to Hessenberg form (with cost O(n3)) and then each QR-
decomposition is only O(n2), see Example 4.53. This is comptuationally essential: assuming
that O(n) QR-steps are needed to compute the n eigenvalues, the total cost are then O(n3) +
O(n)O(n2) = O(n3). If, instead, cost O(n3) are incurred for each QR-step, then one expects
the total cost to be O(n)O(n3) = O(n4).

Remark 7.26 In practice, the QR-algorithm is combined with the Rayleighquotient iteration
idea, i.e., with suitable shifts. This improves the convergence of the algorithm.

finis 11.DS
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7.6 Jacobi method(CSE)

7.6.1 Schur representation

goal: eigenvalue-revealing representation of A
Diagonalizable matrices A can be written as A = TDT−1 with the diagonal matrix D. This is
an eigenvalue-revealing representation. However, if cond(T) is large, then this representation
is numerically not advisable. In this case, an alternative is the Schur form

Theorem 7.27 (Schur form) Let A ∈ Cn×n. Then there is a unitary2 matrix Q ∈ Cn×n and
an upper triangular matrix R with A = QRQH . The diagonal entries of R are the eigenvalues
(according to multiplicity) of A.

Proof: We prove the theorem by induction on n. For n = 1 the theorem is obviously true.
Suppose it is true for all matrices in R(n−1)×(n−1). Let v ∈ Rn be an eigenvector of A, i.e.,
Av = λv. Let the columns of V′ ∈ Cn×(n−1) be such that V := (v,V′) is unitary (i.e., the
columns of V′ are an ONB of the orthogonal complement of span{v}).

VHAV =

(
λ w⊤

0 C

)
, w ∈ Rn−1, C ∈ R(n−1)×(n−1).

By the induction hypothesis, there is a unitary Q ∈ R(n−1)×(n−1) such that QHCQ = R′ is
upper triangular. Then (

1 0
0 Q

)H

VHAV

(
1 0
0 Q

)

is upper triangular. Thus we have obtained the desired Schur decomposition for A ∈ Cn×n. ✷

Remark 7.28 In Matlab, the Schur form of a matrix can be computed with schur.

7.6.2 Jacobi method

The QR-method for eigenvalue computations is based on the idea of finding a sequence of
orthogonal matrices Qn such that the Q⊤

nAQn converge to upper triangular form. Since these
are similarity transformations of A, the diagonal entries of the upper triangular matrix contains
the eigenvalues. If the entries in the lower part are small, then these diagonal entries are indeed
good approximations to the eigenvalues:

Exercise 7.29 Consider a matrix R + ∆A where R is upper triangular. Show, using Theo-
rem 7.14 that for each λ ∈ σ(R+∆A) there is a diagonal entry Rii

|λ−Rii| ≤ C‖∆A‖2,

where the constant C depends on R but is independent of ∆A.

2i.e., QHQ = I
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A simpler form than the QR-method is Jacobi’s method, which constructs the Qn by Givens
rotations. Recall the definition of Givens rotations G(i, j, θ) of Section 4.6.4. We also introduce
for a matrix A

off(A)2 :=
∑

i,j
i 6=j

|Aij|2 = ‖A‖2F −
n∑

i=1

|Aii|2. (7.4)

We consider symmetric matrices A. The basic step of the Jacobi eigenvalue procedure consists
of three steps:

1. select a pair (i, j) with 1 ≤ i < j ≤ n

2. select θ such that (we write again c = cos θ, s = sin θ)

(
Bii Bij

Bji Bjj

)
=

(
c s
−s c

)⊤(
Aii Aij

Aji Ajj

)(
c s
−s c

)
(7.5)

is diagonal

3. overwrite A with B = G(i, j, θ)⊤AG(i, j, θ)

In other words: one makes a similarity transformation of A with a Givens rotation in such a
way that the entries (i, j) and (j, i) of A are annihilated. We now show that the transformed
matrix has a smaller off-diagonal part:

Lemma 7.30 Let A be symmetric. Let B := G(i, j, θ)⊤AG(i, j, θ), where θ is chosen such
that Bij = Bji = 0. Then

off(B)2 = off(A)2 − 2A2
ij.

Proof: We consider the transformation (7.5). Since the Frobenius norm is invariant under
orthogonal transformations, we have

A2
ii +A2

jj + 2A2
ij = B2

ii +B2
jj + 2B2

ij = B2
ii +B2

jj. (7.6)

Hence, we get

off(B)2 = ‖B‖2F −
n∑

k=1

|Bkk|2

= ‖A‖2F −
∑

k 6∈{i,j}
|Bkk|2 − |Bii|2 − |Bjj|2

only rows/colums i, j are touched
= ‖A‖2F −

∑

k 6∈{i,j}
|Akk|2 − |Bii|2 − |Bjj|2

= ‖A‖2F −
n∑

k=1

|Akk|2 + |Aii|2 + |Ajj|2 − |Bii|2 − |Bjj|2

(7.6)
= off(A)2 − 2|Aij|2.

✷
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Lemma 7.30 suggests that one should select the pair (i, j) such that |Aij| is as large as possible.
That is, taking the largest possible off-diagonal entry yields, with N = n(n− 1)/2

off(A)2 ≤ N(A2
ij +A2

ji) (7.7)

and therefore

off(B)2 =
Lemma 7.30

= off(A)2 −
(
|Aij|2 + |Aji|2

) (7.7)

≤
(
1− 1

N

)
off(A)2.

Thus, the Jacobi method converges to upper triangular form3

Remark 7.31 1. Searching the largest off-diagonal entry incurs large costs. Practically, one
therefore simply loops through the off-diagonal entries of A. → “cyclic Jacobi” method.

2. The convergence is linear. However, the asymptotic convergence is actually quadratic,
i.e., for the k-th matrix A(k) one has off(A(k+N))2 ≤ C off(A(k))4.

3. The Jacobi method is not competitive with the QR-algorithm in general. However, if A
is already close to diagonal, then it is an option.

4. Variants exist that produce the SVD of A.

7.7 QR-algorithm with using Hessenberg form (CSE)

Computationally, each QR-factorization in the basic QR-algorithm (Algorithm 7.24) incurs
cost O(n3). The situation changes if A has Hessenberg form4. As discussed in Example 4.53
it is possible to compute the QR-factorization of a Hessenberg matrix with cost O(n2) (using
Givens rotations). Moreover, the multiplication RQ is also achieved with cost O(n2) and the
resulting matrix RQ has again upper Hessenberg form. In conclusion, it is computationally
advantageous to bring a matrix A to Hessenberg form prior to applying the QR-algorithm (or
the variants that we will describe below) to it.

7.8 QR-algorithm with shift (CSE)

goal: convergence acceleration of QR-algorithm using shifts.
mathematical background: Implicitly the QR-algorithm with shift performs an inverse iteration

for AH so that choosing Rayleigh quotients as shift leads to rapid convergence.
So far, we assumed A to be real (although this is by no means essential). Since we want to
allow complex shifts, we allow A to be complex. We note that the concept of QR-factorizations
also holds for complex matrices.5

A generalization of the basic QR-algorithm is the QR-algorithm with shift:

3the matrix A is symmetric and the multiplications with the Givens rotations produce symmetric matrices.
Since symmetric upper triangular matrices are in fact diagonal, the Jacobi method applied to symmetric matrices
converges to diagonal form.

4upper triangular and one subdiagonal is allowed to be nonzero, i.e., Aij = 0 for j > i+ 1
5in fact, the eigenvalue algorithms are probably better understood by viewing A ∈ Cn×n and specializing to

real matrices if necessary
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Algorithm 7.32 (QR-Algorithm with shift) ℓ := 0 A0 := A
repeat {
- choose shift µ(ℓ)

- Aℓ − µ(ℓ) := Qℓ+1Rℓ+1

- Aℓ+1 := Rℓ+1Qℓ+1 + µ(ℓ)

} until Aℓ is sufficiently close to upper triangular form

Exercise 7.33 Check that Aℓ and Aℓ+1 are similar and hence have the same eigenvalues.

Let us consider the case that the shift µ(ℓ) is an eigenvalue of Aℓ. Then, Aℓ − µ(ℓ) is singular
and therefore Rℓ+1 has a zero on its diagonal. Let this be the Rnn entry (this would happen, if
a QR-factorization with pivoting is employed). Then, the row vector (Rℓ+1Qℓ+1)(n, :) is zero so
thatAℓ+1(n, :) = (Rℓ+1Qℓ+1+µ(ℓ))(n, :) = (0, 0, . . . , 0, µ(ℓ)). That is, Aℓ+1 has “block triangular
form” and µ(ℓ) is identified as one eigenvalue of Aℓ+1. We also note that “deflation” is then
possible, i.e., one could continue with the (n− 1)× (n− 1) submatrix Aℓ+1(1 : n− 1, 1 : n− 1)
instead of Aℓ+1. In general one would expect that a shift close to an eigenvalue leads to a
small off-diagonal entry Aℓ+1(n, n − 1) so that, by Theorem 7.14, the entry Aℓ+1(n, n) is a
good approximation to an eigenvalue.

Lemma 7.34 Let the shifts µ(ℓ) be such that µ(ℓ) 6∈ σ(A) ∀ℓ.

orthogonal iteration with shift QR-iteration with shift

Q̂0 := I A0 := A(
A− µ(ℓ)

)
Q̂ℓ =: Q̂ℓ+1Rℓ+1 Aℓ − µ(l) =: Qℓ+1Rℓ+1

Aℓ+1 := Rℓ+1Qℓ+1 + µ(ℓ)

Then: ∀ℓ:

(i)
(
A− µ(ℓ)

) (
A− µ(ℓ−1)

)
. . .
(
A− µ(0)

)
Q̂0 = Q̂ℓ+1R̂ℓ+1 with R̂ℓ+1 = Rℓ+1 . . .R1

(ii) Aℓ = Q̂H
ℓ AQ̂ℓ

(iii) Q̂ℓ = Q1 · · ·Qℓ

Proof: Exercise. Define the matrices Qℓ and Rℓ by the QR-iteration with shift, i.e., by Aℓ − µ(ℓ) = QℓRℓ. Define the matrices

Q̂ℓ := Q1 · · ·Qℓ and R̂ℓ := Rℓ · · ·R1. Then (iii) is satisfied by definition. To see (ii) we compute

Aℓ+1 = Rℓ+1Qℓ+1 + µ
(ℓ+1)

= µ
(ℓ+1)

+ Q
H
ℓ+1(Aℓ − µ

(ℓ+1)
)Qℓ+1 = Q

H
ℓ+1AℓQℓ+1.

Hence, an induction argument will show (ii).

We now show that matrices Q̂ℓ defined above satisfy (i). To that end, we compute

Q̂ℓ+1R̂ℓ+1 = Q̂ℓQℓ+1Rℓ+1R̂ℓ = Qℓ(Aℓ − µ
(ℓ)

)R̂ℓ
(ii)
= Q̂ℓ(Q̂

H
ℓ AQ̂ℓ − µ

(ℓ)
)R̂ℓ = (A − µ

(ℓ)
)Q̂ℓR̂ℓ (7.8)

Hence, an induction argument shows (i).

It remains to see that the Q̂ℓ actually satisfy

(A − µ
(ℓ)

)Q̂ℓ = Qℓ+1Rℓ+1.

Since the Ri are invertible, this follows from (7.8) by multiplying both sides with R̂
−1
ℓ

, which gives

Q̂ℓ+1Rℓ+1 = Q̂ℓ+1R̂ℓ+1R̂
−1
ℓ

(7.8)
= = (A − µ

(ℓ)
)Q̂ℓR̂ℓR̂

−1
ℓ

= (A − µ
(ℓ)

)Q̂ℓ.

✷
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We have observed in Remark 7.23 that the orthogonal iteration (with X0 = I) performs several

orthogonal iterations simultaneously. That is, the first k columns of Q̂ℓ are an ONB of the
space Aℓ[e1, . . . , ek]. More generally, Lemma 7.34 shows that the first k columns of Q̂ℓ are an
ONB of (A− µ(ℓ)) · · · (A− µ(0))[e1, . . . , ek].
The following Lema 7.35 shows that in the case without shift that (AH)−ℓen is a multiple of

the last column of Q̂ℓ:

Lemma 7.35 Let A ∈ Cn×n be invertible. Define the permutation matrix

P =




1

. .
.

1




J BP = B(:, [n : −1 : 1]);PHB = PB = B([n : −1 : 1], :) K

Let Aℓ = Q̂ℓR̂ℓ with Q̂ℓ unitary and R̂ℓ upper triangular. Then:

(AH)−ℓen = (AH)−ℓPe1 = Q̂ℓ(P (PHR̂−H
ℓ P)e1︸ ︷︷ ︸
‖e1

)

︸ ︷︷ ︸
‖en

= multiple of last column of Q̂ℓ

Proof: direct calculation. ✷

Lemma 7.35 shows that the last columns of the matrices Qℓ correspond to an inverse iteration
for AH . More generally, one can show for the case with shifts:

Lemma 7.36

(AH − µ(ℓ))−1 · · · (AH − µ(0))−1en = multiple of Q̂ℓ(:, n).

with Q̂ℓ given by Lemma 7.34.

Proof: Computation/literature. ✷

That is, the last column of Q̂ℓ corresponds to an inverse iteration for AH with shifts related to
the shifts of the QR-iteration. Hence it is sensible to select the shifts µ(ℓ) of the QR-iteration
such that µ(ℓ) is the Rayleigh quotient for qn := Q̂ℓ(:, n):

µ(ℓ) :=
qH
n A

Hqn

‖qn‖22
= qH

n A
Hqn = (Q̂ℓen)

HAH(Q̂ℓen).

Hence,

µ(ℓ) :=
(
(Q̂ℓen)

HAH(Q̂ℓen)
)H

= eHn Q̂
H
ℓ AQ̂ℓen = eHn Aℓ+1en = Aℓ+1(n, n).

That is, the shift should be taken as the bottom lower entry Aℓ+1(n, n) of Aℓ+1. We have arrive
at the classical QR-algorithm with (single) shift:
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Algorithm 7.37 (classical QR-Algorithm with (Rayleigh) shift and Hessenberg form)
ℓ := 0, A0 := hessenberg(A)
repeat {
- choose shift µ(ℓ) := Aℓ(n, n)
- Aℓ − µ(ℓ) := Qℓ+1Rℓ+1

- Aℓ+1 := Rℓ+1Qℓ+1 + µ(ℓ)

} until Aℓ is sufficiently close to upper triangular form

Exercise 7.38 Show that if µ is an eigenvalue of A, then µ is an eigenvalue of AH .

A few comments are in order:

1. The general behavior of the QR-algorithm with (Rayleigh) shift is that one has rapid con-
vergence (quadratic convergence!) towards one eigenvalue since it behaves like a Rayleigh
quotient method. Furthermore, one has linear convergence towards the remaining eigen-
values.

2. The rapid convergence towards one eigenvalue make deflation possible → iterate on a
smaller matrix!

3. For deflation, monitor Aℓ(n − 1, n): Since one will perform the QR-algorithm for A0

in Hessenberg form (so that all Aℓ have Hessenberg form — cf. Remark 7.25) Aℓ is
Hessenberg, and it has only two non-zero entries in the nth row, namely, Aℓ(n, n − 1)
and Aℓ(n, n). Hence, deflation can be done when Aℓ(n, n− 1) is sufficiently small (e.g., a
small multiple of machine precision). That is, if Aℓ(n− 1, n) is deemed sufficiently small,
the entry Aℓ(n, n) is recognized as an eigenvalue and the search for further eigenvalues is
done by applying the QR-method to the (n−1)×(n−1) submatrix A(1 : n−1, 1 : n−1).
This reduction has two positive effects: a) one reduces the size of the matrix one operators
one (i.e., reduction in computational cost) and b) the shift strategy (leading to quadratric
convergence!) focuses on the next eigenvalue.

Given the importance of the potential of deflation, we reformulate Algorithm 7.37 to include
deflation

Algorithm 7.39 (classical QR-Algorithm with (Rayleigh) shift, Hessenberg form, and deflation)
% signature: [ev] = qr(A)
% input: matrix A in Hessenberg form (i.e., call hess(A) prior to calling qr)
% output: list of eigenvalues ev
ℓ := 0
repeat {
- choose shift µ(ℓ) := Aℓ(n, n)
- Aℓ − µ(ℓ) := Qℓ+1Rℓ+1 % QR-decomposition of Aℓ − µ(ℓ)

- Aℓ+1 := Rℓ+1Qℓ+1 + µ(ℓ)

} until |Aℓ(n− 1, n)| is sufficiently small
[ev′] = qr(Aℓ(1 : n− 1, 1 : n− 1)) % recursive call with submatrix Aℓ(1 : n− 1, 1 : n− 1)
return [ev′,Aℓ(n, n)] % return Aℓ(n, n) and the eigenvalues of Aℓ(1 : n− 1, 1 : n− 1)

slide 35a
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7.8.1 further comments on QR

Problem: in particular, for real matrices with eigenvalues appearing in complex conjugate pairs,

it is possible for the Rayleigh quotient method to fail: A =

(
0 1
1 0

)
. Then the QR-iteration

(with shift) yields Aℓ = A∀ℓ.
solution:(Wilkinson-shift):
consider the two eigenvalues λ1, λ2 of A(n − 1 : n, n − 1 : n) and choose the shift as the
eigenvalue that is closer to A(n, n).
Problem: QR-algorithm does not converge with Wilkinson shift:

A =




0 0 1
1 0 0
0 1 0


 σ(A) = {1, 1

2
(−1 +

√
3i),

1

2
(−1−

√
3i)}

here, the (Wilkinson) shift is 0 and all eigenvalues have absolute value 1. Indeed, Aℓ = A for
all ℓ.
solution: If the QR-iteration does not converge, then make a “random shift”. In general, this
leads to a separation (in absolute value) of the eigenvalues and thus convergence: If λ3 6= λ1 6=
λ2 6= λ3, but |λ1| = |λ2| = |λ3|, then |λ2 − λ| 6= |λ1 − λ| 6= |λ2 − λ| 6= |λ3 − λ|.

7.8.2 real matrices

Suppose A is real and one is not interested in complex shifts (e.g., because one wishes to stay
with real arithmetic). In this case, eigenvalues appear in complex conjugate pairs λ, λ. One
can therefore makes two QR-steps with shifts λ and λ. It is possible to combine these two steps
purely in real arithmetic.
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8 Conjugate Gradient method (CG)

Goal: iterative solution of Ax∗ = b, A ∈ RN×N symmetric positive definite
“rules”: employ solely the matrix-vector multiplication x 7→ Ax

Remark 8.1 In many applications A can be very large but sparse, i.e., A has only few non-
zero entries per row. Then, the matrix-vector multiplication is feasible but a factorization of A
may be infeasible (Cholesky factors of A typically need much more memory than A).

We will employ two scalar products:

• (x,y)2 := xTy =
∑

i xiyi (“euklidean scalar product”)

• (x,y)A := xTAy (“energy scalar product”)

Exercise 8.2 (·, ·)A is a scalar product and ‖x‖A:=
√

(x,x)A is a norm on RN .

Notation:

• x0 ∈ RN arbitrary (=initial value)

• x∗ solution of Ax∗ = b

• r0 := b−Ax0 = initial residual

• e0 := x∗ − x0 = initial error

• define, for each ℓ ∈ N the Krylov space

Kℓ := Kℓ(A, r0) = span{r0,Ar0, . . . ,A
ℓ−1r0}

We have the residual equation
Ae0 = r0 (8.1)

Question: Can one approximate e0 well from the spaces Kℓ (for “small” ℓ)? Consider the best
approximation

find ẽℓ ∈ Kℓ, s.t. ‖e0 − ẽℓ‖A ≤ ‖e0 − x‖A ∀x ∈ Kℓ (8.2)

Correspondingly, one obtains an approximation xℓ := x0 + ẽℓ of the original problem. Since
e0 = x∗ − x0, we may characterize eℓ also as:

find xℓ ∈ x0 +Kℓ s.t. ‖x∗ − xℓ‖A ≤ ‖x∗ − x‖A ∀x ∈ x0 +Kℓ (8.3)

The solution xℓ of (8.3) can also be characterized as follows:

Lemma 8.3 The following are equivalent for xℓ ∈ x0 +Kℓ:

(i) xℓ solves (8.3)

(ii) (x∗ − xℓ,v)A = 0 ∀v ∈ Kℓ

(iii) (rℓ,v)2 = 0 ∀v ∈ Kℓ, where rℓ := b−Axℓ
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Proof:
(ii) ⇔ (iii): (x∗ − xℓ,v)A = 0 ∀v ∈ Kℓ ⇔ (A(x∗ − xℓ),v)2 = 0 ∀v ∈ Kℓ ⇔ (b − Axℓ,v)2 =
0 ∀v ∈ Kℓ

(i) =⇒ (ii): Define for arbitrary v ∈ Kℓ the function π : R→ R by π(t) := ‖x∗ − xℓ + tv‖2A =
‖x∗ − xℓ‖2A + 2t(x∗ − xℓ, v)A + t2|v|2A
By assumption, π has a minimum at t = 0⇒ 0 = π′(0) = (x∗ − xℓ,v)A.
Since v ∈ Kl is arbitrary, the claim follows.
(ii) =⇒ (i): Let xℓ ∈ x0 +Kℓ be such that (x∗ − xℓ,v)A = 0 ∀v ∈ Kℓ

Hence, the function π defined above has, for each fixed v, its minimum at t = 0 =⇒ π(0) ≤
π(t) ∀t ∈ R. Since v is arbitrary, (i) follows. ✷

For small ℓ, the ℓ× ℓ linear system of equations corresponding to (8.2) (or, alternatively, (8.3))
could be set up and solved (exercise!). However, the CG-algorithm proceeds in a much more
economical way that determines xℓ as a cheap update of xℓ−1.
xℓ − x0 ∈ Kℓ implies

rℓ = b−Axℓ = b−Ax0 −A(xℓ − x0) = r0︸︷︷︸
∈K0⊂Kℓ+1

−A(xℓ − x0︸ ︷︷ ︸
∈Kℓ

)

︸ ︷︷ ︸
∈Kℓ+1

∈ Kℓ+1,

i.e., rℓ ∈ Kℓ+1. Since rℓ is orthogonal to Kℓ (cf. Lemma 8.3,(iii)), we obtain inductively that

Kℓ+1 = span{r0, r1, . . . , rℓ}.

We now focus on the algorithmic construction of the approximations xℓ. To that end, it is
convenient to determine vectors d0, d1, . . . , such that {d0, . . . ,dℓ} is an orthogonal basis (w.r.t.
the (·, ·)A-scalar product) of Kℓ+1. This is achieved with Gram-Schmidt orthogonalization: In
view of Kℓ = span{r0, . . . , rℓ−1} = span{d0, . . . ,dℓ−1} and Kℓ+1 = span{r0, . . . , rℓ}, we have
that dℓ has the form

dℓ = rℓ −
ℓ−1∑

i=0

βidi

for suitable βi. The orthogonality conditions

(dℓ,di)A = 0 for 0 ≤ i ≤ ℓ− 1

produce

βi =
(rℓ,di)A
‖di‖2A

, i = 0, . . . , ℓ− 1.

For i ≤ ℓ− 2 we have

βi =
(rℓ,di)A
‖di‖2A

=
(rℓ,

∈AKi+1⊂Ki+2⊂Kℓ=span{r0,...,rℓ−1}︷︸︸︷
Adi )2
‖di‖2A

Lemma 8.3,(iii)
= 0.

Therefore,

dℓ = rℓ − βℓ−1dℓ−1, βℓ−1 =
(rℓ,dℓ−1)A
‖dℓ−1‖2A

. (8.4)
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Next, we derive recursions for the xℓ and rℓ: Since xℓ − xℓ−1 = (xℓ − x0) − (x0 − xℓ−1) ∈ Kℓ

and the orthogonality of Lemma 8.3,(ii) implies that xℓ − xℓ−1 = (xℓ − x∗) − (x∗ − xℓ−1) is
(·, ·)A-orthogonal to Kℓ−1 we conclude

xℓ − xℓ−1 = αℓdℓ−1

for some αℓ ∈ R. To derive an equation for the unknown αℓ we note that applying A to this
equation yields

αℓAdℓ−1 = A(xℓ − xℓ−1) = Axℓ − b− (Axℓ−1 − b) = −rℓ + rℓ−1

so that

αℓ(Adℓ−1, rℓ−1)2 = (−rℓ + rℓ−1, rℓ−1)2
Lemma 8.3, (iii)

= ‖rℓ−1‖22. (8.5)

We have thus obtained:

(α) dℓ = rℓ − βℓ−1dℓ−1, βℓ−1 given by (8.4)

(β) rℓ = rℓ−1 − αℓAdℓ−1, αℓ given by (8.5).

(γ) xℓ = xℓ−1 + αℓdℓ−1

Remark 8.4 Computationally, is it better to compute αℓ, βℓ as follows:

αℓ =
‖rℓ−1‖22

(dℓ−1, rℓ−1)A
=

‖rℓ−1‖22
(dℓ−1,dℓ−1 + βℓ−2dℓ−2)A

=
‖rℓ−1‖22
‖dℓ−1‖2A

βℓ−1 =
(rℓ,dℓ−1)A
‖dℓ−1‖2A

=
(rℓ,Adℓ−1)2
‖dℓ−1‖2A

= −
(rℓ,

rℓ−rℓ−1

αℓ
)2

‖dℓ−1‖2A
=
−‖rℓ‖22

αℓ‖dℓ−1‖2A
= − ‖rℓ‖

2
2

‖rℓ−1‖22
We have thus derived the following algorithm:

Algorithm 8.5 (CG) % input: SPD matrix A, b ∈ RN , initial vector x0

% output: (approx.) solution xn ≈ A−1b

r0 := b−Ax0, d0 := r0
for ℓ = 1, . . . , until stopping criterion is satisfied do {
αℓ :=

‖rℓ−1‖22
‖dℓ−1‖2A

rℓ := rℓ−1 − αℓAdℓ−1

xℓ := xℓ−1 + αℓdℓ−1

βℓ−1 := − ‖rℓ‖22
‖rℓ−1‖22

dℓ := rℓ − βℓ−1dℓ−1

}

slide 36
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Remark 8.6 • CG ist very economical w.r.t. memory requirements: merely 4 vectors of
length N have to be kept in memory concurrently (xℓ, rℓ, dℓ, Adℓ).

• In exact arithmetic, CG terminates with the exact solution after at most N steps. Tech-
nically, one may view CG therefore as a direct solver. Round-off problems, however, stop
the method from realizing the exact solution after N steps.

8.1 convergence behavior of CG

• A ∈ RN×N SPD ⇒ ∃ ONB {ξ1, . . . , ξN} of RN consisting of eigenvectors of A with
corresponding eigenvalues λi, i = 1, . . . , N

• x =
∑N

i=1 xiξi ⇒ ‖x‖2A = (x,Ax)2 =
∑

i,j(xiξi, λjxjξj) =
∑

i,j x
2
iλjδij =

∑N
i=1 x

2
iλi

• p ∈ Pm ∧ x =
∑

i xiξi ⇒ p(A)x =
∑

i p(λi)ξixi:
Write p(A) =

∑m
j=0 pjA

j =⇒ p(A)x =
∑

j pjA
j
∑

i xiξi =
∑

i,j pjxiλ
j
i ξi =

∑
i xiξip(Ai)

• p ∈ Pm and x =
∑

xiξi =⇒ ‖p(A)x‖2A =
∑

x2
i |p(λi)|2λi:

‖p(A)x‖2A = (p(A)x,Ap(A)x)2 =
∑

i,j

(xiξip(λi),xjξjλjp(λj))2

=
∑

i,j

xixjp(λi)p(λj)λj (ξi, ξj)2︸ ︷︷ ︸
δi,j

=
∑

i

|xi|2λi|p(λi)|2

In view of Kℓ = span{r0, . . . ,Aℓ−1r0} = {q(A)r0 | q ∈ Pℓ−1} and r0 = Ae0:

‖x∗ − xℓ‖A = min
x∈x0+Kℓ

‖x∗ − x‖A = min
z∈Kℓ

‖e0 − z‖A = min
z∈Kℓ=span{r0,...,Aℓ−1r0}

‖e0 − z‖A

= min
q∈Pℓ−1

‖e0 − q(A)r0‖A = min
q∈Pℓ: q(0)=0

‖e0 − q(A)e0‖A = min
q∈Pℓ: q(0)=1

‖q(A)e0‖A.

Therefore:

Theorem 8.7 The iterates xℓ of the CG method satisfy

‖x∗ − xℓ‖A = min
q∈Pℓ: q(0)=1

‖q(A)e0‖A

We estimate further with e0 =
∑

xiξi:

‖q(A)e0‖2A ≤
∑

i

x2
iλiq

2(λi) ≤ max
λ∈σ(A)

q2(λ)
∑

i

x2
iλi = max

λ∈σ(A)
q2(λ)‖e0‖2A

Hence:
‖x∗ − xℓ‖A ≤ min

q∈Pℓ: q(0)=1
max
λ∈σ(A)

|q(λ)| ‖e0‖A
finis 12.DS
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Theorem 8.8 Let A ∈ RN×N be SPD , 0 < λmin(A) ≤ λmax(A), κ := cond2(A) = λmax(A)
λmin(A)

.
Then: The iterates of the CG method satisfy

‖x∗ − xℓ‖A ≤ 2

(√
κ− 1√
κ + 1

)ℓ

‖e0‖A

Proof: We have
‖x∗ − xℓ‖A ≤ min

q=Pℓ, q(0)=1
max
λ∈σ(A)

|q(λ)|
︸ ︷︷ ︸

≤maxλ∈[λmin, λmax] |q(λ)|

‖e0‖A

We select a specific q:

q(x) :=
Tℓ(

a+b−2x
b−a

)

Tℓ(
b+a
b−a

)
a = λmin, b = λmax

Tℓ(x) = Chebyshev polynomial = 1
2

[
(x+

√
x2 − 1)ℓ + (x−

√
x2 − 1)ℓ

]
and uses

max
x∈[a,b]

∣∣∣∣Tℓ

(
a+ b− 2x

b− a

)∣∣∣∣ = max
x∈[−1,1]

|Tℓ(x)| = 1.

✷

Remark 8.9 Theorem 8.8 shows that the condition number of A is very important for the
convergence behavior of the CG method. For matrices A with large condition number, one will
therefore apply the CG not to A directly but to B−1A where the SPD matrix B is SPD. For
more, see literature on the so-called “preconditioned CG” (PCG).
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Lℓ = AKℓ

O

r0

(·, ·)2

Kℓ

O

e0

(·, ·)A

Figure 8.1: The orthogonality conditions (8.7) and Lemma 8.3, (ii).

8.2 GMRES (CSE)

goal: iterative methods for non-symmetric matrices A ∈ RN×N .

technique: for the Krylov space Kℓ := span{r0, . . . ,Aℓ−1r0} GMRES seek xℓ ∈ x0 + Kℓ such
that

‖b−Axℓ‖2 ≤ ‖b−Ax‖2 ∀x ∈ x0 +Kℓ (8.6)

The minimization property (8.6) implies an orthogonality condition:

Exercise 8.10 Show that the residual rℓ := b−Axℓ satisfies

(b−Axℓ,v)2 = (rℓ,v)2 = 0 ∀v ∈ AKℓ. (8.7)

Hint: Proceed as in the proof of Lemma 8.3 or in the derivation of the normal equations in
Least Squares. (Note: GMRES can effectively be understood as a Least Squares method!)

Remark 8.11 The form (8.7) of GMRES suggests generalizations of GMRES: given a second
space Lℓ one could consider: Find xℓ ∈ x0 +Kℓ such that

(b−Axℓ)2 = (rℓ,v)2 = 0 ∀v ∈ Lℓ. (8.8)

Different choices of Lℓ lead to different method. The choice Lℓ = Kℓ leads (for SPD matrices)
to the CG-method (cf. Lemma 8.3), the choice Lℓ = AKℓ to the classical GMRES.

One can show (this is not complicated, see literature) that for invertible matrices A GMRES
finds (in exact arithmetic) the exact solution in N steps. As with the CG method, the impor-
tance lies in the fact that in practice good approximations are obtained ℓ << N .

Computing the xℓ

As in the CG method, one computes the approximations xℓ successively until one is found that
is sufficiently accurate. It is, of course, essential that the xℓ be computed efficiently from the
orthogonality conditions (8.7). The general procedure is:

• ConstructV = [v1, . . . ,vℓ] anN×ℓmatrix the columns of which form a basis for the space
Kℓ. It will be computationally convenient to choose the vectors v1, . . . ,vℓ orthogonal.
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• Construct W = [w1, . . . ,wℓ] an n × ℓ matrix the columns of which form a basis for the
space Lℓ = AKℓ.

• Write the approximate solution as

xℓ = x0 +Vy,

where y ∈ Rℓ is the vector of weights to be determined.

• Enforcing the orthogonality conditions (8.7) the system of equations

WTAVy = WT r0, (8.9)

from which the approximate solution xℓ can be written as

xℓ = x0 +V(WTAV)−1WT r0. (8.10)

We note that the matrix WTAV is only of the order ℓ × ℓ; therefore its inversion is
affordable (for ℓ ≪ N). In exact arithmetic the choice of the basis of Kℓ (i.e., the
choice of V) is immaterial and the vectors {r0,Ar0, . . . ,A

ℓ−1r0} could be used. However,
then the corresponding matrix V is rather ill-conditioned (recall: the vectors Ajr0 are
scaled versions of the vectors of the power method, and they converge to the dominant
eigenvector!) so that one expects numerical difficulties when solving (8.9). In practice,
therefore, some orthogonalization as discussed next is advised.

8.2.1 realization of the GMRES method

GMRES computes the vectors v1, . . . , successively such that the {v1, . . . ,vℓ} is a basis of Kℓ.
Then the linear system described by (8.10) is solved in an efficient way.
We note (exercise!) that Kℓ+1 = AKℓ ⊃ Kℓ for all ℓ. In the following, we will make the
assumption that the inclusion is strict: Kℓ $ Kℓ+1 for all ℓ of interest. That is, dimKℓ = ℓ+1.
One can show (see literature) that the case Kℓ = Kℓ+1 is a fortuitous case as then xℓ = x∗

(“lucky breakdown”).
The first step of the GMRES algorithm is to generate a vectors v1, . . . ,. Since we want the
vectors vj , j = 1, . . . , ℓ, to be orthogonal, we will construct them using a variant of the Gram-
Schmidt orthogonalization procedure given in Alg. 8.12 (in practice, a variant, the so-called
“modified Gram-Schmidt” procedure, is used that is numerically more stable—see lines 5–8 of
Alg. 8.14).

Algorithm 8.12 (Arnoldi, standard Gram-Schmidt variant)
% input r0;
%output: ONB of Kℓ = span{r0, . . . ,Aℓ−1r0}
1: v1 = r0/‖r0‖2
2: for j = 1, 2, . . . , ℓ do

3: for i = 1, 2, . . . , j do

4: hij = (Avj ,vi)
5: end for

6: wj = Avj −
∑j

i=1 hijvi
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7: hj+1,j = ‖wj‖2
8: vj+1 = wj/hj+1,j

9: end for

The algorithm generates the (ℓ+ 1)× ℓ Hessenberg matrix

H̄ℓ =




(Av1,v1) (Av2,v1) (Av3,v1) . . . (Avℓ,v1)
(Av1,v2) (Av2,v2) (Av3,v2)

(Av2,v3) (Av3,v3)

(Av3,v4)
. . .
. . . (Avℓ,vℓ)

(Avℓ,vℓ+1)




∈ R(ℓ+1)×ℓ

together with the orthonormal vectors vi =
wi−1

‖wi−1‖2 that are produced by the Gram-Schmidt

orthogonalization procedure:

w1 = Av1 − (Av1,v1)v1

w2 = Av2 − (Av2,v1)v1 − (Av2,v2)v2

...

as well as
‖wℓ‖2 = (wℓ,vℓ+1)2 = (Avℓ,vℓ+1)2 = hℓ+1,ℓ.

Exercise 8.13 Assuming that Alg. 8.12 doesn’t terminate prematurely, the vectors vj, j =
1, . . . , ℓ, form an orthonormal basis of the Krylov space Kℓ.

We set Vℓ := (v1,v2, . . . ,vℓ) ∈ RN×ℓ. Since the vectors vj , j = 1, . . . , ℓ, are orthonormal and
since Avj ∈ span{v1, . . . ,vj+1} and thus Avj =

∑j+1
i=1 (Avj,vi)vi we get

AVℓ = [Av1 . . . Avℓ]

=

[
(Av1,v1)v1 + (Av1,v2)v2 . . .

ℓ+1∑

i=1

(Avℓ,vi)vi

]

= Vℓ+1H̄ℓ. (8.11)

Additionally,

V⊤
ℓ AVℓ = V⊤

ℓ Vℓ+1H̄ℓ = [ I | 0 ]H̄ℓ = Hℓ (8.12)

where Hℓ is the square matrix obtained by removing the last row of H̄ℓ.
We abbreviate

β := ‖r0‖2
and note that βv1 = r0. Additionally, we observe βVℓ+1e1 = βv1 = r0, where e1 =
(1, 0, 0, . . . , 0)⊤ ∈ Rℓ+1.
GMRES minimizes the residuum (cf. (8.6)). Hence, seeking xℓ in the form xℓ = x0 +Vℓy we
can write

b−Axℓ = b−A(x0 +Vℓy) = r0 −AVℓy = βv1 −Vℓ+1H̄ℓy

= Vℓ+1(βe1 − H̄ℓy);
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exploiting the fact that the columns of Vℓ+1 are orthonormal, we can determine the vector y
by (8.6), i.e., y is the minimizer of

‖b−Axℓ‖2 = min
x∈x0+Kℓ

‖b−Ax‖2 = min
y∈Rℓ
‖βe1 − H̄ℓy‖2. (8.13)

One way to solve for y is to set up and solve the normal equations using the Cholesky factor-
ization with cost O(ℓ3). However, since H̄ has Hessenberg form, its QR-factorization can be
computed with O(ℓ2) using, e.g., Givens rotations. The pseudo-code for the GMRES-algorithm
now be given as Algorithm 8.14.

Algorithm 8.14 (GMRES (basic form)) % input: x0, number of steps ℓ

1: Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β
2: Define the (ℓ+ 1)× ℓ matrix H̄ℓ and set elements hij to zero
3: for j = 1, 2, . . . , ℓ do

4: wj = Avj

5: for i = 1, . . . , j do

6: hij = (wj ,vi)
7: wj = wj − hijvi

8: end for

9: hj+1,j = ‖wj‖2.
10: If hj+1,j = 0 goto 12 % lucky break—exact solution found
11: vj+1 = wj/hj+1,j

12: end for

13: Compute yℓ as the minimizer of ‖βe1 − H̄(1 : j + 1, 1 : j)y‖22 (e.g., QR-factorization)
14: xℓ = x0 +Vℓyℓ

A few comments concerning Alg. 8.14 are:

Remark 8.15 • The derivation of Alg. 8.14 assumed that matrix H̄ has full rank since we
assumed that dimKℓ = ℓ+ 1. Alg. 8.14 takes this into account by stopping if hj+1,j = 0,
which happens if Kj+1 = Kj. However, a more careful analysis of the algorithm reveals
that if H̄ does not have full rank, i.e., if Kj = Kj+1, then GMRES has actually found the
exact solution x∗. This situation is therefore called a “lucky breakdown”.

• Solving the minimization problem in line 13 is done by QR-factorization of the Hessenberg
matrix H̄, e.g., with Givens rotations.

• The algorithm is implemented differently in practice. The parameter ℓ is not determined
a priori. Instead, a maximum number ℓmax is given (typically dictated by the computa-
tional resources). The vectors v1,v2, . . . ,vℓ are computed successively together with the
matrices H̄ℓ; that is, if the vectors vj, 1 ≤ j ≤ ℓ − 1 and the matrix H̄ℓ−1 have already
been computed, one merely needs to compute vℓ and the matrix H̄ℓ is obtained from
H̄ℓ−1 by adding one column and the entry hℓ+1,ℓ. An appropriate termination condition
(typically, the size of the residual ‖b −Axℓ‖2) is employed to stop the iteration. If the
maximum number of iterations has been reached without triggering the termination con-
dition, then a restart is done, i.e., GMRES is started afresh with the last approximation
xℓmax as the initial guess. This is called restarted GMRES(ℓmax) in the literature.
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Figure 8.2: Convergence history of GMRES (A is SPD).
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Remark 8.16 Faute de mieux, the residual ‖b−Axℓ‖2 is typically used as a stopping criterion
in GMRES. It should be noted that for matrices A with large κ2(A), the error may be large in
spite of the residual being small:

‖x− xℓ‖2
‖x‖2

≤ κ2(A)
‖b−Axℓ‖2
‖b‖2

.

Example 8.17 Matlab has a robust version of restarted GMRES that can be used for exper-
imentation. Applying this version of GMRES to the SPD matrix A ∈ R1806×1806 bcsstk14.mtx

of MatrixMarket with exact solution x = (1, 1, · · · , 1)⊤ results in the convergence history plot-
ted in Fig. 8.2. We note that the residual decays as the number if iterations increases. If the
number of iterations reaches the problem size, the exact solution should be found. As in this
example, this doesn’t happen in practice due to round-off problems, but the residual is quite
small. It should be noted that, generally speaking, GMRES is employed in connection with a
suitable preconditioner. We expect this to greatly improve the convergence behavior.
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9 numerical methods for ODEs

goal: solve, for given y0 ∈ R and function f the initial value problem

y′(t) = f(t, y(t)), y(0) = y0 (9.1)

We will be interested in the solution y in the interval [0, T ]. The numerical methods will seek
approximations yi ≈ y(ti) in the points

0 = t0 < t1 < · · · < tN = T.

We denote by hi := ti+1 − ti the step lengths and by h := maxi hi the maximal step length.

9.1 Euler’s method

The simplest method is the explicit Euler method. Starting from the known value y0 = y(t0)
we seek an approximation y1. By Taylor approximation we observe

y(t1) = y(t0) + h0y
′(t0) +O(h2

0)
(9.1)
= y0 + h0f(t0, y0) +O(h2).

Hence, we are led to the approximation

y1 := y0 + h0f(t0, y0).

Since we assume that y1 is a good approximation to y(t1), we may repeat the Taylor argument to
obtain y2 := y1+h1f(t1, y1). This leads to the explicit Euler method : define the approximations
yi to the exact values y(ti) successively by

yi+1 := yi + hif(ti, yi), i = 0, . . . , N − 1. (9.2)

It is not obvious that the final approximation y(T ) − yN = y(tN) − yN really is a good one
as errors over many steps may accumulate. Indeed, while the Taylor approximation is valid in
the first step (y0 is exact), already in the second step we replace y(t1) with the approximation
y1 in the Taylor approximation and we have to expect that this additional error is potentially
amplified by the recursion (9.2). Nevertheless, under reasonable assumptions the explicit Euler
method converges. For the proof, we need the notion of the consistency error τ : Let t 7→ y(t)
be the exact solution. The consistency error τeE(t, h) of the explicit Euler method at t is defined
as

τeE(t, h) := y(t+ h)− [y(t) + hf(t, y(t))] (9.3)

We recognize that τeE measures the error of one step of the method when started with the
exact value y(t). We note that Taylor’s formula gives

|τeE(t, h)| ≤
1

2
h2‖y′′‖∞,[0,T+h] (9.4)

Theorem 9.1 (convergence of explicit Euler) Let f ∈ C1(R2) with bounded derivatives,
i.e., there is L > 0 such that |∇f(t, x)| ≤ L for all (t, x) ∈ R2. Then there exists C > 0 such
that for the approximation yi obtained by (9.2)

max
i=0,...,N−1

|y(ti)− yi| ≤ CeLTh.
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Proof: We define the errors
ei := y(ti)− yi

and note that e0 = 0. For simplicity of notation, we assume a uniform step length hi = h
(exercise: check that the proof also works for variable step size). We seek a recursion for the
errors. To that end, we write

yi+1 = yi + hf(ti, yi),

y(ti+1) = y(ti) + hf(ti, y(ti)) + τ(ti, h).

We obtain

ei+1 = ei + h [f(ti, y(ti))− f(ti, yi)]︸ ︷︷ ︸
(y(ti)−yi)∂yf(ti,ξ)

+τ(ti, h),

where used the intermediate value theorem for some ξ between yi and y(ti). We obtain

|ei+1| ≤ |ei|+ h |y(ti)− yi|︸ ︷︷ ︸
=|ei|

|∂yf(ti, ξ)|︸ ︷︷ ︸
≤L

+|τ(ti, h)| ≤ (1 + hL)|ei|+ |τ(ti, h)| ≤ ehL|ei|+ |τ(ti, h)|

We now repeatedly use this estimate:

|ei| ≤ ehL|ei−1|+ |τ(ti−1, h)| ≤ ehL
[
ehL|ei−2|+ |τ(τi−2, h)|

]
+ |τ(ti−1, h)|

= e2hL|ei−2|+ ehL|τ(τi−2, h)|+ |τ(ti−1, h)|

≤ · · · ≤ eihL|e0|+
i−1∑

j=0

ejhL|τ(ti−j−1, h)|

We note that e0 = 0. For the sum, we use that jh = tj ≤ T and (9.4) to infer

|ei| ≤
i−1∑

j=0

ejhL|τ(ti−j−1, h)| ≤
1

2
eTL

i−1∑

j=0

h2‖y′′‖∞,[0,T+h] =
1

2
eTL‖y′′‖∞,[0,T+h]ih

2 ≤ 1

2
eTL‖y′′‖∞,[0,T+h]Th,

which is the desired first order convergence. ✷

Example 9.2 hier ein Beispiel fuer expliziten Euler

The explicit Euler method was motivated by Taylor expansion around ti to obtain the value
yi+1 at ti+1. Alternatively, one could perform Taylor expansion around ti+1. That is,

y(ti) = y(ti+1) + (ti − ti+1) y′(ti+1)︸ ︷︷ ︸
=f(ti+1,y(ti+1))

+O(h2
i ),

so that, by replacing y(ti) with yi and y(ti+1) with yi+1 and dropping the O(h2
i ), we get the

implicit Euler method
yi+1 = yi + hif(ti+1, yi+1). (9.5)

The method is implicit since yi+1 is obtained from yi by solving a (in general) nonlinear equation.
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Exercise 9.3 Formulate the Newton method to compute yi+1 given yi.

Analogous to the consistency error for the explicit Euler method (9.4), we have for the consis-
tency error for the implicit Euler method the equation

τiE(t, h) = y(t+ h)− h [y(t) + hf(t+ h, y(t+ h))] , (9.6)

where t 7→ y(t) is again the exact solution of y′(t) = f(t, y(t)). Taylor expansion again gives
τiE(t, h) = O(h2) for exact solutions y ∈ C2. One can show that the implicit Euler method
satisfies

max
i
|y(ti)− yi| ≤ Ch.

Both explicit and implicit Euler method are first order methods. finis 13.DS

9.2 Runge-Kutta methods

The explicit and implicit Euler methods are one-step methods1 of order 1. A generalization of
these two one-step methods are methods of the form

yi+1 = yi + hiΦ(ti, hi, yi, yi+1) (9.7)

for some given increment function Φ (Φ(ti, hi, yi, yi+1) = f(ti, yi) is the explicit Euler, Φ(ti, hi, yi, yi+1) =
f(ti+hi, yi+1) is the implicit Euler method.) We are interested in deriving increment functions
Φ such that the method is of order p, i.e., that (given sufficient smoothness of f) one has

max
i
|y(ti)− yi| ≤ Chp.

9.2.1 explicit Runge-Kutta methods

There are many different ways to introduce one-step methods of order higher than 1. Here, we
motivate the structure of so-called Runge-Kutta-methods by extrapolation techniques, which
we encountered already in Section 1.4. The extrapolation technique relies on comparing two
different approximations: a) one step of the explicit Euler with step length h and b) two steps
of the explicit Euler method with step length h/2, viz

y
(1)
1 = y0 + hf(t0, y0),

y
(2)
1 = y1/2 +

h

2
f(t1/2, y1/2), y1/2 = y0 +

h

2
f(t0, y0), t1/2 = t +

h

2

From the above developments, each of these approximations has error O(h2), i.e.,

y(t1)− y
(1)
1 = τ (1)(t0, h) = O(h2),

y(t1)− y
(2)
1 = τ (2)(t0, h) = O(h2).

1that is, the value yi+1 is determined by yi and not, for example, by yi and yi−1
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We define the actual step of the method as a linear combination of y
(1)
1 and y

(2)
1 in such a way

that the resulting consistency error is y(t1) − y1 = O(h3). To that end, we carefully employ
Taylor’s theorem:

y(t1) = y(t0)︸︷︷︸
y=y0

+hy′(t0) +
1

2
h2y′′(t0) +O(h3),

y
(1)
1 = y0 + hy′(t0)

y
(2)
1 = y1/2 +

h

2
f(t1/2, y1/2) = y0 +

h

2
f(t0, y0) +

h

2
f(t0 +

h

2
, y0 +

h

2
f(t0, y0))

= y0 +
h

2
f(t0, y0) +

h

2

[
f(t0, y0) + ∂tf(t0, y0)

h

2
+ ∂yf(t0, y0)

h

2
f(t0, y0) +O(h2)

]

= y0 + hf(t0, y0) +
h2

4
[∂tf(t0, y0) + ∂yf(t0, y0)f(t0, y0)] +O(h3)

Next, we use that t 7→ y(t) is a solution of the differential equation, i.e., y′(t) = f(t, y(t)).
Hence, by differentation with respect to t we get with the chain rule

y′′(t) = ∂tf(t, y(t)) + ∂yf(t, y(t))y
′(t) = ∂tf(t, y(t)) + ∂yf(t, y(t))f(t, y(t)).

In particular, for t = t0 and y(t0) = y0, we obtain

y
(2)
1 = y0 + hy′(t0) +

h2

4
y′′(t0) +O(h3)

Therefore, for parameters α, β we can compute

y(t1)− [αy
(1)
1 + βy

(2)
1 ]

= y0 + hy′(t0) +
h2

2
y′′(t0) +O(h3)− α[y0 + hy′(t0, y0)]− β[y0 + hy′(t0) +

h2

4
y′′(t0) +O(h3)]

= y0(1− α− β) + y′(t0)h[1− α− β] + y′′(t0)h
2

[
1

2
− β

1

4

]
+O(h3)

The conditions on α and β are therefore

1− α− β = 0

2− β = 0

with solution β = 2 and α = −1. The method is therefore y1 = 2y
(2)
1 − y

(1)
1 or, more explicitly,

k1 := f(t0, y0), (9.8a)

k2 := f(t0 +
h

2
, y0 +

h

2
k1), (9.8b)

y1 := 2

(
y0 +

h

2
k1 +

h

2
k2

)
− y0 + hk1) = y0 + hk2 (9.8c)

This method is of order 2, i.e., maxi |y(ti)−yi| ≤ Ch2 (for sufficiently smooth exact solution y).
In principle, even higher order methods can be constructed by this extrapolation idea. However,
a more general class of methods emerges from the structure in (9.8), the explicit Runge-Kutta
methods :
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Definition 9.4 (explicit Runge-Kutta method) For a given number of stages s ∈ N, pa-
rameters ci ∈ [0, 1], bi ∈ R and aij ∈ R define

k1 = f(t0, y0),

k2 = f(t0 + c2h, y0 + ha21k1),

...

ks = f(t0 + csh, y0 + h
s−1∑

j=1

asjkj)

and the update y1 = y0+h
∑s

i=1 biki. The method is compactly described by the Butcher tableau:

0 0
c2 a21 0
c3 a31 a32 0
...

...
cs as1 · · · as,s−1 0

b1 b2 · · · bs

Exercise 9.5 Write down the Butcher tableau for the explicit Euler method and the method of
order 2 derived above.

Example 9.6 (RK4) A popular explicit Runge-Kutta method is RK4 with 4 stages and order
4 given by y1 = y0 + hΦ(t, y1, h), where

Φ(t, y, h) :=
1

6
[k1 + 2k2 + 2k3 + k4] ,

k1 := f(t, y),

k2 := f

(
t+

h

2
, y +

1

2
hk1

)
,

k3 := f

(
t+

h

2
, y +

1

2
hk2

)
,

k4 := f (t+ h, y + hk3) .

The corresponding Butcher tableau is

0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

2
6

2
6

1
6

Exercise 9.7 Program RK4 and apply it to the right-hand side f1(t, y) = y and y0 = 1. Plot
the error at T = 1 versus h for h = 2−n, n = 1, . . . , 10.

Exercise 9.8 The solution of y′(t) = f(t), y(t0) = 0 is given by y(t) =
∫ t

t0
f(τ) dτ . Hence,

for right-hand sides of the form f(t, y) = f(t), a Runge-Kutta method results in a quadrature
formula. Which quadrature formula is obtained for RK4?
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9.2.2 implicit Runge-Kutta methods

The form of the explicit Runge-Kutta methods in Def. 9.9 suggests a generalization, the so-
called implicit Runge-Kutta methods :

Definition 9.9 (implicit Runge-Kutta method) For a given number of stages s ∈ N, pa-
rameters ci ∈ [0, 1], bi ∈ R and aij ∈ R define the stages ki, i = 1, . . . , s as the solution of the
following (nonlinear) system of equations:

ki = f(t0 + cih, y0 + h

s∑

j=1

aijkj), i = 1, . . . , s.

One step of the implicit Runge-Kutta is then given by y1 = y0 + h
∑s

i=1 biki. The method is
compactly described by the Butcher tableau:

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
. . .

...
cs as1 · · · as,s−1 as

b1 b2 · · · bs

Exercise 9.10 Show that the implicit Euler method is a 1-stage implicit Runge-Kutta method
by writing down the corresponding Butcher tableau.

Example 9.11 (θ-scheme) For θ ∈ [0, 1] the scheme with Butcher tableau

θ θ
1

is called the θ-scheme. It is given by

k1 = f(t0 + θh, y0 + θhk1), y1 = y0 + hk1

The auxiliary variable k1 can be eliminated using y0 + θhk1 = θ(y0 + hk1) + (1 − θ)y0 =
θy1 + (1− θ)y1 so that it is

y1 = y0 + hf(t0 + θh, θy1 + (1− θ)y0)

We recognize the explicit Euler method for θ = 0 and the implicit Euler method for θ = 1. For
θ = 1/2, the method is called “midpoint rule” (the simplest Gauss rule). We mention that the
θ-scheme is of order 1 for θ 6= 1/2 and it is of order 2 for θ = 1/2.

9.2.3 why implicit methods?

Explicit Runge-Kutta methods are usually preferred over implicit methods as they do not
require solving a (nonlinear) equation in each step. These nonlinear equations are typically
solved by Newton’s method (or some variant), and the user has to provide the derivative ∂yf .
Nevertheless, implicit Runge-Kutta methods (or variants) are the method of choice for certain
classes of problems such as stiff ODEs. A typical situation where implicit methods shine are
problems that describe problems with vastly differing time-scales. In these situations, explicit
methods would require very small step sizes for reasonable results whereas implicit methods
achieve good accuracy with much larger step sizes.
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Example 9.12 Consider the solution of initial value problem

y′ = Ay, y(0) =




1
0
−1


 , A =



−21 19 −20
19 −21 20
40 −40 −40


 .

The eigenvalues of A are given by λ1 = −2, λ2 = −40(1 + i), λ3 = −40(1− i). The solution is:

y1(t) =
1

2
e−2t +

1

2
e−40t (cos 40t+ sin 40t) ,

y2(t) =
1

2
e−2t − 1

2
e−40t (cos 40t+ sin 40t) ,

y3(t) = −e−40t (cos 40t− sin 40t) .

All 3 solution components vary rather rapidly in the regime 0 ≤ t ≤ 0.1 so that a step length
restriction h << 1 seems plausible. For t > 0.1, however, the components y1 and y2 vary rather
slowly (the rapidly oscillatory contribution has been damped out due to the factor e−40t) and
y3 is close to zero. From an approximation point of view, therefore, one would hope that larger
time steps are possible. However, Fig. 9.1 shows that, for example, for h = 0.05, the explicit
Euler method yields completely unacceptable results. Indeed, one can show that the explicit
Euler method can only be expected to yield acceptable results if the step length h satisfies the
stability condition

|1 + hz| ≤ 1 z ∈ {λ1, λ2, λ3}
i.e., it has to satisfy h ≤ 1

40
= 0.025. In contrast, the implicit Euler method, which is also visible

in Fig. 9.1 performs much better since it does not have to satisfy such a stability condition.

slide 37a

slide 38

slide 39

slide 40 finis 14.DS

9.2.4 the concept of A-stability (CSE)

The above examples have shown that for certain examples of ODEs explicit methods “fail” in
the sense that convergence only sets in for very small step sizes. In contrast, (certain) implicit
methods perform well for much larger step sizes. Mathematically, the notion of A-stability
captures the difference in behavior.

the stability function R

Consider the scalar model equation

y′ = λy, y(0) = y0 (9.9)

where λ ∈ C. The exact solution is y(t) = eλty0. One step of length h of an RK-method has
the form

y1 = R(λh)y0, (9.10)

where R(z) is a polynomial for an explicit method and a rational function for an implicit
method:
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Figure 9.1: Comparison of explicit and implicit Euler method for the stiff problem of Exam-
ple 9.12: exact solution (top left) and numerical approximation.
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Exercise 9.13 Show:

1. explicit Euler method: R(z) = 1 + z

2. implicit Euler method: R(z) = 1/(1− z)

3. θ-scheme with θ = 1/2: R(z) = 1+z/2
1−z/2

4. RK4: R(z) = 1 + z + z2

2!
+ z3

3!
+ z4

4!

Without proof, we mention that for any RK-method that leads to a convergent method the
stability function R has the form R(z) = 1 + z +O(z2) as z → 0.

Definition 9.14 An RK-method is said to be A-stable, if

|R(z)| ≤ 1 ∀z with Re z ≤ 0.

Exercise 9.15 If R is a polynomial, then the corresponding RK-method cannot be A-stable.
Since the function R associated with an explicit RK-method is a polyomial, explicit RK-methods
cannot be A-stable.
In particular, the explicit Euler method is not A-stable whereas the implicit Euler method is.
The θ-scheme with θ = 1/2 is A-stable. See also Fig. 9.2.

Consider the case Reλ ≤ 0. Then the exact solution y(t) = eλty0 stays bounded for t → ∞.
(For Reλ < 0 the solution even decays to 0.) From (9.10) we see that the discrete solutions yi
are given by

yi = (R(λh))iy0, i = 0, 1, . . . ,

Hence, for the discrete approximations to be bounded (as i→∞), we have to require |R(λh)| ≤
1. Since Reλ ≤ 0 and h > 0, we see that this is ensured for A-stable methods irrespective of
h > 0.
Put differently: A-stability of an RK-method ensures that the property that the solution y(t) =
eλty0 is bounded (for Reλ ≤ 0) is reproduced by the numerical method for any h > 0.

Example 9.16 A-stability ensures boundedness of the discrete solution for Reλ ≤ 0 and any
h. For Reλ < 0 and sufficiently small h the condition |R(λh)| ≤ 1 is ensured. We illustrate
this for the explicit Euler method: For the explicit Euler method, one has R(λh) = 1 + λh.
Hence, for λ < 0 one has

|R(λh)| ≤ 1 ⇐⇒ |1 + λh| ≤ 1 ⇐⇒ h ≤ 2

|λ| .

If λ << −1, then this condition on h is very restrictive.
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Figure 9.2: stability regions {z ∈ C | |R(z)| ≤ 1} for explicit Euler, implicit Euler, RK4, and
implicit midpoint rule.
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stability of RK-methods

To get insight into the performance of an RK-method, we consider the model

y′ = Ay, y(t0) = y0 (9.11)

where A ∈ Cn×n is a (constant) matrix. Such a model may be viewed as a linearization of a
more complex ODE and one hopes that studying the RK-method applied to the linearization
captures the key properties. We assume additionally that A can be diagonalized:

A = T−1DT

so that after the change of variables ŷ = Ty the ODE (9.11) is equivalent to

ŷ′ = Dŷ, ŷ(t0) = ŷ0 = Ty0. (9.12)

It can be checked that for RK-methods, one step of the RK-method could be computed in
two different ways: either one applies the RK-method directly to (9.11) or one applies it to the
transformed equation (9.12) and transforms back. This is depicted in Fig. 9.3. The RK-method
applied to (9.12) is simpler to understand since it reduces to the application of the RK-method
to scalar problems of the form (9.9) where λ ∈ C is a diagonal entry of D, i.e., an eigenvalue
of A. One step of length h of an RK-method applied to (9.9) has the form ŷi+1

k = R(λkh)ŷ
i
k

where R(z) is the stability function and we use the subscript k to indicate the component of
the vector ŷ while the superscripts i+1 and i indicate the association with time steps ti+1 and
ti. Hence,

ŷi+1
k = R(λkh)ŷ

i
k = · · · = (R(λkh))

i+1ŷ0
k, k = 1, . . . , n,

If Reλk << −1 then one is well-advised to ensure |R(λkh)| ≤ 1 to reproduce this boundedness
of the exact solution component. For A-stable methods, this is ensured no matter what h is.
The following considerations argue why this is a sensible condition. For simplicity of notation,
we assume that the eigenvalues λk are real (so as to be able to formulate conditions on λk

instead of on Reλk):

• One may expect a good approximation for those components ŷk for which |λkh| is small.
For these components, one has R(λkh) ≈ 1 (note that R(z) = 1 + O(z) in the examples
of Exercise 9.13). Suppose that for some λk << −1 and an h > 0 one has |R(λkh)| > 1. If
the RK-method is applied to the diagonalized form (9.12), then the error in these compo-
nent ŷk is very large while the other components may be reasonably well approximated.
One may be tempted to argue that this is acceptable since that solution component is
practically zero (and thus known!) so that there is no need to approximate it numeri-
cally anyway. However, if the RK-method is applied to the original form (9.11), then the
presence of a single eigenvalue λk with |R(λkh)| > 1 will ruin all components since the
transformation y = T−1ŷ mixes all components of ŷ so that one expects that all compo-
nents of y1 have contributions of ŷ1

k (unless T−1 has special structure). In other words:
When applying the RK-method to (9.11), the time step h > 0 is dictated by
the maximum of {−λj | j = 1, . . . , n}. However, is very unsatisfactory that solution
components ŷk with large −λk dictate the step size although they hardly contribute to
the exact solution.
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y
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yi+1 change of variables←−−−−−−−−−−−−−−
yi = T−1ŷi

ŷi+1

Figure 9.3: RK-method applied to y′ = Ay and to ŷ = Dŷ after change of variables. The
superscripts i and i+ 1 refer to the time steps ti and ti+1.

• Related to the above point is a consideration of error propagation. In each step of the
RK, some consistency error is made. Consider again the RK-method in the variable ŷ
and an initial error ê0. For λk << −1 and |R(λkh)| > 1 the error in the kth component
is actually damped by the exact evolution (by a factor eλkh) whereas it is amplified by a
factor |R(λkh)| by the RK-method. Thus, initial errors are amplified by a factor |R(λkh)|i
in the ith step. Fixing ti = ih, we rewrite this amplification factor as

|R(λkh)|i = |R(λkh)|ti/h =
(
|R(λkh)|1/h

)ti
.

For fixed ti and |R(λkh)| > 1, we have that |R(λkh)|1/h is very large. In conclusion,
we have to expect that the method will dramatically amplify initial errors for small h.
Again, this error amplification in one component will affect all components if one applies
the RK-method to the original form (9.11).

What about λk > 0? In a nutshell: large (positive) λk also impose step size restrictions, i.e.,
they also require that λkh be small. However, this step size restriction is acceptable since it is
necessary to approximate the solution. To be more specific, we note that the error amplification
discussed above arises for |R(λkh)| > 1 and this situation occurs also for λk > 0 (e.g., for the
explicit Euler method is R(λkh) = 1 + λkh). However, the exact solution grows as well so that
the amplification of the relative error is not dramatic. To fix ideas, consider the explicit Euler
method. Then with initial error êk the relative error at ti is

|R(λkh)|i|ê0k|
|ŷ0

k|
eλkti =

|ê0k|
|ŷ0

k|
(1 + λkh)

ti/h

eλkti
≤ |ê

0
k|
|ŷ0

k|
= rel. error at t0,

where we used (1 + x) ≤ ex so that (1 + λkh)
tiλk/(λkh) ≤ etiλk .
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9.3 Multistep methods (CSE)

goal: high order methods with less function evaluations than RK-methods
observation: one-step methods such as RK-methods do not make use of the “history” available
→ reuse previous function evaluations for efficiency increase
setting: we employ uniform step size h (multistep methods with variable step size are rather
complicated!)
notation: ti = t0 + ih, fi := f(ti, yi)

9.3.1 Adams-Bashforth methods

Let r ∈ N0. Given (ti−k, yi−k), . . . , (ti, yi) we wish to find yi+1. To motivate the method, we
note that the exact solution satisfies

y(ti+1) = y(ti) +

∫ ti+1

ti

y′(t) dt = y(ti) +

∫ ti+1

ti

f(t, y(t)) dt. (9.13)

Noting that we have approximations to f(ti−j, y(ti−j)) ≈ fi−j , j = 0, . . . , k, in our hand, we
approximate the integrand by its interpolating polynomial of degree k, i.e.,

f(t, y(t)) ≈
k∑

j=0

fi−jℓi−j(t), ℓi−j(t) :=

k∏

s=0
s 6=j

t− ti−s

tj−s − ti−s

In view of ti = t0 + hi and the change of variables t = ti + hτ we compute

∫ ti+1

ti

k∑

j=0

fi−jℓi−j(t) dt =
k∑

j=0

fi−j

∫ ti+1

ti

k∏

s=0
s 6=j

t− ti−s

tj−s − ti−s
=

k∑

j=0

fi−jh

∫ τ=1

τ=0

k∏

s=0
s 6=j

τ + s

j − i
dτ

︸ ︷︷ ︸
βj

We note that βj is independent of h and f and can be precomputed (see Example 9.17). We
have thus arrived at the Adams-Bashforth method

yi+1 = yi + h

k∑

j=0

βjfi−j (9.14)

Example 9.17 Adams-Bashforth methods (explicit):

k = 0 yi+1 = yi + hfi (explicit Euler)

k = 1 yi+1 = yi + h
1

2
(3fi − fi−1)

k = 2 yi+1 = yi + h
1

12
(23fi − 16fi−1 + 5fi−2)

k = 3 yi+1 = yi + h
1

24
(55fi − 59fi−1 + 37fi−2 − 9fi−3)
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Theorem 9.18 The k + 1-step Adams-Bashforth method is a method of order k + 1, i.e., if
f is sufficiently smooth, then the consistency error (i.e., the error in one step) is O(hk+2).
Specifically, provided the initial errors |y(ti)− yi|, i = 0, . . . , k, are O(hk+1) then

max
i
|y(ti)− yi| ≤ Chk+1,

where the constant C depends on f and the terminal time T = tN .

We note that the method requires only one evaluation of f per step. It is therefore more
economical than the RK-methods (if the number of function evaluations is taken as the cost
measure).

9.3.2 Adams-Moulton methods

The Adams-Bashforth method above is an explicit method. The Adams method exist also in
implicit variant. This method is derived in a way very similar to (9.13) by simply changing the
domain of integration. The exact solution satisfies

y(ti+1) = y(ti) +

∫ ti+1

ti

f(t, y(t)) dt. (9.15)

Again, replacing the integrand with the polynomial interpolating in (ti+1−j , yi+1−j), j = 0, . . . , k,
we arrive at the method

yi+1 = yi +

k∑

j=0

fi+1−j

∫ ti+1

ti

ℓi+1−j(t) dt, ℓi+1−j(t) =

k∏

s=0
s 6=j

t− ti+1−s

ti+1−j − ti+1−s
dt

Again, the terms
∫ ti+1

ti
ℓi+1−j(t) dt are of the form hβj for some coefficients βj depending only

on k (Exercise!). The first few Adams-Moulton methods are given in the following example:

Example 9.19 Adams-Moulton method (implicit):

k = 0 yi+1 = yi + hfi+1 (implicit Euler)

k = 1 yi+1 = yi + h
1

2
(fi+1 + fi) (trapezoidal rule)

k = 2 yi+1 = yi + h
1

12
(5fi+1 + 8fi − fi−1)

k = 3 yi+1 = yi + h
1

24
(9fi+1 + 19fi − 5fi−1 + fi−2)

Theorem 9.20 The k-step Adams-Moulton method2 is a method of order k+1, i.e., if f is suf-
ficiently smooth, then the consistency error (i.e., the error in one step) is O(hk+2). Specifically,
provided the initial errors |y(ti)− yi|, i = 0, . . . , k, are O(hk+1) then

max
i
|y(ti)− yi| ≤ Chk+1,

where the constant C depends on f and the terminal time T = tN .

2for k = 0, the Adams-Moulton method is the implicit Euler method, i.e., also a 1-step method
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The Adams-Moulton methods are implicit methods since the involve fi+1 = f(ti+1, yi+1) to
compute the yi+1.

Exercise 9.21 The Adams-Moulton method have fixed point form for the unknown yi+1 and
could be solved with the fixed point iteration (cf. (6.1)). Assume that f is smooth. Show, using
Theorem 6.5, that the fixed point iteration converges for sufficiently small h.

In practice of Adams-Moulton methods, the fixed point iteration discussed in Exercise 9.21 is
refined:

Remark 9.22 (predictor-corrector method) A reasonable starting guess for yi+1 is yi. (By Tay-
lor, one expects yi+1 − yi = O(h).) A better approximation could be obtained by an explicit Adams-
Bashforth method. Then, one performs m steps of the fixed-point iteration (9.16). That is,

y
(0)
i+1 := approximation obtained from an Adams-Bashforth method (P )

for n = 0, . . . ,m− 1 do{
f
(n)
i+1 := f(ti+1, y

(n)
i+1) (E)

y
(n+1)
i+1 := yi + hβ0f

(n)
i+1 + h

k∑

j=1

f(ti+1−jyi+1−j), (C)

}

In this context, the first step is called “prediction” (denoted P) and the m steps of evaluating f are
called “evaluate” (denoted E) and “correction” (denoted C). Correspondingly method is abbreviated
P (EC)m.

9.3.3 BDF methods

The most important class of linear multistep methods are the BDF methods (“backward dif-
ferentiation methods”). The BDF methods are suitable for stiff problems.
The BDF-k methods is obtained by interpolating (ti+1−j , yi+1−j), j = 0, . . . , k by a polynomial
of degree k and collocating the differential equation in the point ti+1:

interpolating polynomial: πk(t) :=
k∑

j=0

yi+1−jℓi+1−j(t), ℓi+1−j(t) =
k∏

s=0
s 6=j

t− ti+1−s

ti+1−j − ti+1−s

,

collocate in ti+1: π′
k(ti+1)

!
= f(ti+1, πk(ti+1)) = f(ti+1, yi+1).

Example 9.23 We consider the simplest case, k = 1:

interpolating polynomial: πk(t) := yi+1
t− ti
h
− yi

t− ti+1

h

collocate in ti+1: π′
k(ti+1) =

yi+1 − yi
h

!
= f(ti+1, πk(ti+1)) = f(ti+1, yi+1).

This is the implicit Euler method.

More generally, we have:

143



Example 9.24

k = 1 yi+1 − yi = hfi+1 (implict Euler)

k = 2 yi+1 −
4

3
yi +

1

3
yi−1 = h

2

3
fi+1 BDF2

k = 3 yi+1 −
18

11
yi +

9

11
yi−1 −

2

11
yi−2 = h

6

11
fi+1 BDF3.

Theorem 9.25 The BDFk-method is a method of order k, i.e., if f is sufficiently smooth then
the consistency error (i.e., the error in one step of the method) is O(hk+1). Specifically, provided
the initial errors |y(ti)− yi|, i = 0, . . . , k − 1, are O(hk) then

max
i
|y(ti)− yi| ≤ Chk

Remark 9.26 Since the BDF methods are typically employed for stiff problems, the implicit
equations are not solved by a simple fixed point iteration but by Newton’s method or a Newton-
like method.

9.3.4 Remarks on multistep methods

The Adams methods and the BDF-formulas are special cases of so-called linear multistep meth-
ods, which are update formulas of the form

k∑

j=0

αjyi+1−j = h

k∑

j=0

βjfi+1−j (9.16)

for coefficients αj, βj . These methods are explicit if βj = 0, otherwise they are implicit.

Starting value:

A multistep method determines yi+1 from several previous values yi+1−j, j = 1, . . . , k. Since at
the beginning only y0 is given, one needs to compute the initial values y1, . . . , yk by some other
method. For example, a Runge-Kutta method is employed. These values need to be computed
to accuracy O(hp), where p is the order of the multistep method (p = k+1 for Adams-Bashforth
and Adams-Moulton, p = k for BDFk).
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