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Local convergence of the boundary element method on polyhedral domains
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Abstract

The local behavior of the lowest order boundary element method on quasi-uniform meshes
for Symm’s integral equation and the stabilized hyper-singular integral equation on polygo-
nal/polyhedral Lipschitz domains is analyzed. We prove local a priori estimates in L? for Symm’s
integral equation and in H' for the hypersingular equation. The local rate of convergence is limited
by the local regularity of the sought solution and the sum of the global regularity and additional
regularity provided by the shift theorem for a dual problem.

1 Introduction

The boundary element method (BEM) for the discretization of boundary integral equation is an es-
tablished numerical method for solving partial differential equations on (un)bounded domains. As an
energy projection method, the Galerkin BEM is, like the finite element method (FEM), (quasi-)optimal
in some global norm. However, often the quantity of interest is not the error on the whole domain, but
rather a local error on part of the computational domain.

For the FEM, the analysis of local errors goes back at least to [NS74]; advanced versions can be found
in [Wah91, DGS11]. For Poisson’s problem, the local error estimates typically have the form

— < i — -1 _
I UhHHl(BO)NX;g{hHU Xl gy + B Mlu—unll g2 s,y » (1.1)

where u is the exact solution, uy, the finite element approximation from a space X}, of piecewise poly-
nomials, and By € Bj are open subsets of ) with R := dist(By, dBj). Thus, the local error in the
energy norm is bounded by the local best approximation on a larger domain and the error in the weaker
L?-norm. The local best approximation allows convergence rates up to the local regularity; the L?-error
is typically controlled with a duality argument and limited by the regularity of the dual problem as well
as the global regularity of the solution. Therefore, if the solution is smoother locally, we can expect
better rates of convergence for the local error.

Significantly fewer works study the local behavior of the BEM. The case of smooth two dimensional
curves is treated in [Sar87, Tra95], and in [ST96] three dimensional screen problems are studied.
[RW85, RW88] provide estimates in the L°°-norm on smooth domains. However, for the case of
piecewise smooth geometries such as polygonal and polyhedral domains, sharp local error estimates
that exploit the maximal (local) regularity of the solution are not available. Moreover, the analyses of
[Sar87, Tra95, ST96] are tailored to the energy norm and do not provide optimal local estimates in
stronger norms.



In this article, we obtain sharp local error estimates for lowest order discretizations on quasi-uniform
meshes for Symm’s integral equation in the L?-norm and for the (stabilized) hyper-singular integral
equation in the H'-seminorm on polygonal/polyhedral domains. Structurally, the local estimates are
similar to (1.1): The local error is bounded by a local best approximation error and a global error in a
weaker norm. More precisely, our local convergence rates depend only on the local regularity and the
sum of the global regularity and the additional regularity of the dual problem on polygonal/polyhedral
domains. Numerical examples show the sharpness of our analysis. As discussed in Remark 2.4 below,
our results improve [Sar87, Tra95, ST96] as estimates in L? (for Symm’s equation) and H I (for the
hyper-singular equation) are obtained there from local energy norm estimates with the aid of inverse
estimates, thereby leading to a loss of h~/2. In contrast, we avoid using an inverse inequality to go
from the energy norm to a stronger norm.

The paper is structured as follows. We start with some notations and then present the main results for
both Symm’s integral equation and the hyper-singular integral equation in Section 2. In Section 3 we are
concerned with the proofs of these results. First, some technical preliminaries that exploit the additional
regularity on piecewise smooth geometries to prove some improved a priori estimates for solutions of
Poisson’s equation as well as for the boundary integral operators are presented. Then, we prove the
main results, first for Symm’s equation, then for the stabilized hyper-singular equation. In principle, the
proofs take ideas from [Wah91], but due to the non-locality of the BEM solutions, important modifi-
cations are needed. However, similarly to [Wah91] a key step is to apply interior regularity estimates,
provided recently by [FMP16, FMP15], and to use some additional smoothness of localized boundary
integral operators (commutators). Finally, Section 4 provides numerical examples that underline the
sharpness of our theoretical local a priori estimates.

1.1 Notation on norms

For open sets w C RY, we define the integer order Sobolev spaces H*(w), k& € Ny, in the standard
way [McLO00, p. 73ff]. The fractional Sobolev space H***(w), k € Ny, s € (0,1) are defined by the
Slobodeckii norm as described in [McLO0O, p. 73ff]. The spaces H*(w), s > 0, consist of those function
whose zero extension to R? is in H*(R?). The spaces H~*(w), s > 0, are taken to be the dual space of
H® (w). We will make use of the fact that for bounded Lipschitz domains w

H*(w) = H*(w) Vs el0,1/2). (1.2)

For Lipschitz domains  C R? with boundary I" := 9 we define Sobolev spaces H*(T") with s € [0, 1]
as described in [McLO00, p. 96ff] using local charts. For s > 1, we define the spaces H*(I") in a non-
standard way: H*(T") consists of those functions that have a lifting to H'/?*5(R¢%), and we define the
norm || |-t by

ey = Wl (13)

vlpr=u

Correspondingly, there is a lifting operator
L: H' () — H3%5(RY) (1.4)

with the lifting property (Lu)|r = w, which is by definition of the norm (1.3) bounded. The spaces
H=3(I'), s > 0, are the duals of H*(I"). Their norm is defined as

(u,v)
HUHH*S(F) = osup .
verrs(r) |1Vl s (r)
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Remark 1.1 (equivalent norm definitions) (i) For s > 1 an equivalent definition of the norm || -

[l zrs(r) in (1.3) would be to replace || - || grs11/2gay with || - || grs+1/2(q). L€,
HUHHs(r) = UeH}};ES(Q)’ HU||Hs+1/2(Q)-
vlp=u

This follows from the existence of the universal extension operator E : L?(2) — L*(R%) de-
scribed in [Ste70, Chap. VI.3], which asserts that E is also a bounded linear operator H*(Q) —
H*(RY) for any k > 0.

(ii) The trace operator vy : H*TV2(R?) — H*(T) is a continuous operator for 0 < s < 1 (cf.
[McL00, Thm. 3.38], [SS11, Thm. 2.6.8]). [SS11, Thm. 2.6.11] (cf. also [McLOO, Thm. 3.37])
assert the existence of a continuous lifting L in the range 0 < s < 1 as well so that (1.3) is an
equivalent norm for 0 < s < 1 as well.

(iii) For polygonal (in 2D) and polyhedral (in 3D) Lipschitz domains the spaces H*(T") in the range
s € (1,3/2) can be characterized alternatively as follows: Let I';, i = 1,..., N, be the affine
pieces of ', which may be identified with an interval (for the 2D case) or a polygon (for the 3D
case). Then

ue€ H(I) <= ulp, ¢ H*T;) Vie{l,...,N} anduc CI). (1.5)

The equivalence (1.5) gives rise to yet another norm equivalence for the space H*(T'), namely,
N

[l sy ~ 2252 lull sy

The condition u € C°(T) is a compatibility condition. More generally, for s > 3/2 similar, more

complicated compatibility conditions can be formulated to describe the space H*(I") in terms of
piecewise Sobolev spaces. .

Finally, we will need local norms on the boundary. For an open subset I'y C I" and s > 0, we define
local negative norms by

(u, w)
lullg-spy = sup ———-. (1.6)
o) = e Iwllger
supp wCTl'o

In the following, we write i for the interior trace operator, i.e., the trace operator from the inside of
the domain and v§** for the exterior trace operator. For the jump of the trace of a function u we use the
notation [you] = v"™u — v§*'u. In order to shorten notation, we write 7o for the trace, if the interior

and exterior trace are equal, i.e., [you] = 0.

We denote the interior and exterior conormal derivative by 7™y := Vu - n;, 7$%u := Vu - n., with
the interior and exterior normal vectors 7;, n.. The jump of the normal derivative across the boundary
is defined by [0,,u] := y™u — v§*'u, and we write J,,u for the normal derivative if [9,,u] = 0.

2 Main Results

We study bounded Lipschitz domains Q C R%, d > 2 with polygonal/polyhedral boundary T := 0f).



2.1 Symm’s integral equation

The elliptic shift theorem for the Dirichlet problem is valid in a range that is larger than for general
Lipschitz domains. We characterize this extended range by a parameter aup € (0, 1/2) that will pervade
most of the estimates of the present work. It is defined by the following assumption:

Assumption 1 Q C R? d > 2is a bounded Lipschitz domain whose boundary consists of finitely many
affine pieces (i.e., S} is the intersection of finitely many half-spaces). Rq > 0 is such that the open ball
Br,,(0) C R? of radius Rq that is centered at the origin contains ). The parameter ap € (0,1/2) is
such that for every € € (0, ap| there is C. > 0 such that the a priori bound

1T fll /242 (B o) < Ce lFll =12+ 0)\1) Vf € H 27 (Bg, (0)\T) 2.1
holds, where u := T f € H'(Bg,(0) \ T') denotes the solution of

—Au=f inBgr,(0)\T,  ~yu=0 onl'UJBg,(0). (2.2)
The norms |- 57+ Brg, (O\D) § > 0 are understood as the sum of the norm on 2 and Bg,, (0)\(, i.e.,
a7 =l s () + Il Q-
H#(BRrg, (0)\I') H#(Q) H#(Brg, (0)\)

Remark 2.1 The condition on the parameter ap in Assumption 1 can be described in terms of two
Dirichlet problems, one posed on §) and one posed on Br,,(0) \ Q. For each of these two domains, a
shift theorem is valid, and ap is determined by the more stringent of the two conditions. It is worth
stressing that the type of boundary condition on 0Bpr,(0) is not essential in view of the smoothness of
0BRr,,(0) and dist(I", 0Bg,(0)) > 0.

In the case d = 2 the parameter ap is determined by the extremal angles of the polygon (). Specifically,
let0 <wj; <2m, j =1,...,J, be the interior angles of the polygon ). Then, Assumption 1 is valid for
any ap > 0 that satisfies

1 1 . . T T
—<—-+ap< min ming —, — » < 1.
2 2 Jj=1,....,J wj 2 — wj

(Note that wj #  for all j so that the right inequality is indeed strict.) .

We consider Symm’s integral equation in its weak form: Given f € H'/ M) findp € H -1/ 2(T) such
that

Vo, ) oy = () 2y V0 € HTVA(D). (2.3)

Here, the single-layer operator V' is given by
Vola) = [ Glo—oly)ds,, e,
r

where, with the surface measure |S?~!| of the Euclidean sphere in R, we set

_\5711| log |z — vy, ford =2,

2.4
+\Sd1—1| lz —y|~@2), ford > 3. 24

G(x7y) - {



The single layer operator V' is a bounded linear operator in L(H ~1/2+3(T'), H'/2¥5(I)) for |s| < 3,
[SS11, Thm. 3.1.16]. It is elliptic for s = 0 with the usual proviso for d = 2 that diam(2) < 1, which
we can assume by scaling.

Let 75, = {T1,...,Tn} be a quasiuniform, regular and ~-shape regular triangulation of the boundary
L. By S%°(Ty) := {u € L*(T) : u|g;is constant VT; € 75} we denote the space of piecewise constants
on the mesh 7j,. The Galerkin formulation of (2.3) reads: Find ¢;, € S%9(7},) such that

<V¢h7¢h>L2(r) = <f7 T/Jh>L2(r) Vb, € SO’O('E)- (2.5)

The following theorem is one of the main results of this paper. It estimates the Galerkin error in the
L?-norm on a subdomain by the local best approximation error in L? on a slightly larger subdomain
and the global error in a weaker norm.

Theorem 2.2 Let Assumption 1 hold and let Ty, be a quasiuniform, y-shape regular triangulation. Let
¢ € H-'/2(T) and ¢y, € S°O(Ty,) satisfy the Galerkin orthogonality condition

(V(o—on),vn) =0 Vb, € S¥Ty). (2.6)

Let Ty, T be open subsets of T with Ty C T C I'and R := dist(Iy, 81A“) > 0. Let h be sufficiently
small such that at least Cy, 2t < L with a fixed constant C, p depending only on ap. Assume that

DR = 12
¢ € L*(T'). Then, we have

16 uluay € (16 =l + 10— dnllar-enr) -

The constant C > 0 depends only on T, Ty, f, d, R, and the ~y-shape regularity of Tp,.

If we additionally assume higher local regularity as well as some (low) global regularity of the solution
¢, this local estimate implies that the local error converges faster than the global error, which is stated
in the following corollary.

Corollary 2.3 Let the assumptions of Theorem 2.2 be fulfilled. Let T T be a subset with T - T and
dist(T', 8T) > R > 0. Additionally, assume ¢ € H~Y2+(T) N H3(T) with a > 0, 8 € [0,1]. Then,
we have

||¢ o ¢h||L2(FO) < Chmin{l/Q—i—a—i—aD,B}

with a constant C' > 0 depending only on ", T'y, f, f, d, R, a, B, and the ~-shape regularity of Tp,.

In the results of [NS74, Wah91] singularities far from the domain of interest have a weaker influence
on the local convergence for the FEM. Corollary 2.3 shows that this is similar in the BEM. Singularities
either of the solution (represented by «) or the geometry (represented by ap) are somewhat smoothed
on distant parts of the boundary, but still persist even far away.

Remark 2.4 In comparison to [ST96], Corollary 2.3 gives a better result for the rate of convergence
of the local error in the case where the convergence is limited by the global error in the weaker norm.
More precisely, for the case ¢ € H/? (f) QLQ(F), [ST96] obtains the local rate of 1/2, which coincides
with our local rate. However, if p € H 1(I‘), we obtain a rate of 1 in the L2-norm, whereas the rate in
[ST96] remains at 1/2. .



Remark 2.5 Even for smooth functions f, the solution ¢ of (2.3) is, in general, not better than H(T")
with a = % + ap. Recall from Remark 2.1 that ap is determined by the mapping properties for both
the interior and the exterior Dirichlet problem. A special situation therefore arises if Symm’s integral
equation is obtained from reformulating an interior (or exterior) Dirichlet problem. To be specific,

consider again the case d = 2 of a polygon Q) with interior angles wj, j = 1,...,J. We rewrite the
boundary value problem —Aw = 0 in Q with u|p = g as the integral equation
1
Vo = (2 + K > g

for the unknown function ¢ = Opu with the double layer operator K defined by K¢(x) :=
Jr 0nG(x,y)(y)dsy. Then, p € H*(T') for any o with o« < 1/2 4 min; ‘j—] .

2.2 The hyper-singular integral equation
For the Neumann problem, we assume an extended shift theorem as well.

Assumption 2 Q C R? d > 2 is a bounded Lipschitz domain whose boundary consists of finitely many
affine pieces (i.e., S} is the intersection of finitely many half-spaces). Rq > 0 is such that the open ball
Br,,(0) C RY of radius Rq that is centered at the origin contains Q). The parameter ay € (0, ap),
where ap is the parameter from Assumption 1, is such that for every ¢ € (0, ay] there is Ce > 0 such
that for all f € H=Y/?7¢(Bg,(0)\T) and g € H*(T) with Jo f+ Jrg = 0 the a priori bound

1T W[ mr3/2+= (B, o) < Ce (HfHHﬂ/%a(BRQ o\ Tt HgHHe(r)) (2.7)
holds, where v := Tf € H'(Bg,(0) \ ') denotes the solution of
—Au=f inQ, Yy =g onT, (u, 1>L2(Q) =0,
—Au = f in Bg,(0)\Q, VW'u=g onT, Yty =0 on dBrg(0).

The condition on the parameter oy again can be described in terms of two problems, a pure Neumann
problem posed in €2, for which we need a compatibility condition, and a mixed Dirichlet-Neumann
problem posed on Bg,(0)\Q, which is uniquely solvable without the need to impose a solvability
condition for f, g.

The parameter «y again depends only on the geometry and the corners/edges that induce singularities.
In fact, on polygonal domains, i.e., d = 2, ap = ay, see, e.g., [Dau88].

Studying the inhomogeneous Neumann boundary value problem —Awu = 0, 0,u = g, leads to the
boundary integral equation of finding ¢ € H'Y?(I') such that Wy = f with f € H~'/?(T") sat-
isfying the compatibility condition (f,1) ;2 (ry = 0 and the hyper-singular integral operator W' €
L(H'Y2(I'), H-'/2(I")) defined by

We(x) = —0n, / On,G(x —y)po(y)ds,, ze€T.
r

We additionally assume that I" is connected, so that the hyper-singular integral operator has a kernel
of dimension one consisting of the constant functions. Therefore, the boundary integral equation is not
uniquely solvable. Employing the constraint (¢, 1) = 0 leads to the stabilized variational formulation

W, ) oy + (0 Doy (s D) oy = (F ) 2y VY € H'(I), (2.8)
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which has a unique solution ¢ € H/?(T"), see, e.g., [Ste08].

For the Galerkin discretization we employ lowest order test and trial functions in SY1(73) = {u €
HY(T) : u|g, € P1VTj € Ty}, which leads to the discrete variational problem of finding ¢, € S (7T5)
such that

(Weon, ¥n) rory + (s 1) 2y (ns U oy = (Fr0nd a2y Yoon € SV (Th). (2.9)

The following theorem presents a result analogous to Theorem 2.2 for the hyper-singular integral equa-
tion. The local error in the H!-seminorm is estimated by the local best approximation error and the
global error in a weak norm.

Theorem 2.6 Let Assumption 2 hold and let Ty, be a quasiuniform, y-shape regular triangulation. Let
© € HY2(T) and @), € S (Ty,) satisfy the Galerkin orthogonality condition

(W(p—n),vn) + (0 —on 1) (Yp, 1) =0 Voo € SVH(Th). (2.10)

Let Ty, T be open subsets of T" with Ty C r C I'and R := dist(Iy, af) > 0. Let h be sufficiently
small such that at least Co % < % with a fixed constant C,,, depending only on ay. Assume that
¢ € HY(T). Then, we have

o= enllnry <€ (o=l + o = enlla-once )

The constant C' > 0 depends only on T", 'y, f, d, R, and the ~y-shape regularity of Tp,.

Again, assuming additional regularity, the local estimate of Theorem 2.6 leads to a faster rate of local
convergence of the BEM for the stabilized hyper-singular integral equation.

Corollary 2.7 Let the assumptions of Theorem 2.6 be fulfilled. Let f~C T be a subset with T - T,
dist(T, 1) > R > 0. Additionally, assume ¢ € H'/?+(T') 0 H'*A(T) with a > 0, 3 € [0, 1]. Then,
we have

with a constant C > O depending only on ", T, f, f, d, R, a, B, and the ~y-shape regularity of Tp.

3 Proof of main results

This section is dedicated to the proofs of Theorem 2.2, Corollary 2.3 for Symm’s integral equation and
Theorem 2.6 and Corollary 2.7 for the hyper-singular integral equation.

We start with some technical results that are direct consequences of the assumed shift theorems from
Assumption 1 for the Dirichlet problem and Assumption 2 for the Neumann problem.



3.1 Technical preliminaries

The shift theorem of Assumption 1 implies the following shift theorem for Dirichlet problems:

Lemma 3.1 Let the shift theorem from Assumption 1 hold and let u be the solution of the inho-
mogeneous Dirichlet problem —Aw = 0 in Br,(0)\I', vou = g on I' U 0Bg,(0) for some
g € H'2(T'UdBg,(0)).

(i) There is a constant C' > 0 depending only on ) and op such that
[l grr2=ep (B o010y < C 9l =00 (rUBBA, (0) - (3.1
(ii) Let ¢ € (0,ap] and B C B’ C Bpy(0) be nested subdomains with dist(B,0B') > 0. Let
n € C®(RY) be a cut-off function satisfying n = 1 on B, suppn C B, and Inllersy <
dist(B,0B')~* for k € {0,1,2}. Assume ng € H'T(I"). Then
el gssase ey < € (lallzs ey + Ingllaery) (3.2)

Here, the constant C' > 0 additionally depends on dist(B,0B’).

Proof: Proof of (i): Let v solve —Av = w in Bg,(0)\I', vov = 0 on I' U 0Bg,(0) for w €
H~Y2*tep(Bp_ (0)\I'). Then, in view of (1.2),

(W, w0) 12y (0)\1)

HUH 1/2—« = Sup
P BraOND - pisan (8o, 00 101172400 (B4, 0\

— (U, AV) 125, 00\
e Sup .

wenr=1/2+D (B ) 1Wlla-1/2000 (5, @)\r)
Integration by parts on ) and Bg,, (0)\( leads to

{w, AV} L2 (g o) = AW V) 2B, o) T (00U [OnV]) 20 + (Y0U; V) 1298, (0))
= (9, [anUDL?(F) + (9, 8nv>L2(BBRQ (0))

We split the polygonal boundary I' = [ J" , T, into its (smooth) faces I'y and prolong each face I'y to the
hyperplane T'?°, which decomposes R? into two half spaces Qf Let x, € L?(T") be the characteristic
function for I'y. Since the normal vector on a face does not change, we may use the trace estimate (note:
0 < ap < 1/2) facewise, to estimate

m
H[aﬂvaO‘D(F) S Z [xe[Vv-n HHaD (Ty) Z V| 1/24ap (QENBR (0))
=1 =1

S vllgsrevan (B, o0 - (3.3)



~

As the boundary 0Bp,(0) is smooth, standard elliptic regularity yields ||0,v|| HOD (9B, (0)) <
1]l 372+ (1, (0y\ry- This leads to

‘(97 [0nv]) 21y + (9, anU>L2(8BRQ(O))‘

[l ga72=ap (B o\1) S wEH_1/2+i1;IzBRQ(O)\F) [l g7-1/200 (B, 1)
< . 190151~ ruomng ©) (12l 0n e + 1020l o 054, 01))
- weH1/>teD (Bg, (0)\T") ||wHH‘1/2+“D(BRQ(0)\F)
S 9l z-ep ruoBa, ©) Sup [0l 320 (B4 O)\1)

weH=1/2+aD (Bp_ (O\T) lwll gr-1/240p (Brg, (0\T')
S 9l - (ruaBa, ) »

where the last inequality follows from Assumption 1.

Proof of (ii): With the bounded lifting operator £ : H'*¢(I') — H3/?*¢(Bp, (0)\TI') from (1.4), the
function u := n?u — nL(ng) satisfies

—AU = —2nVn - Vu — (An®)u + A(nL(ng)) in B, (0)\T,
You =0 onI"'U 0Bg,, (0).

With the shift theorem from Assumption 1 we get
2 ~
||UHH3/2+E(B\F) < HU UHH3/2+E(B\F) < ||U||H3/2+E(BRQ(0)\F) + ||77£(779)||H3/2+6(BRQ(0)\F)

S H277V77 -Vu + (AUZ)UHLz(BRQ(O)\F) + HA<77£(779)>HH*1/2+€(BRQ(O)\F)

HILMI r3r2+= (B, 00\1)
S Mullgnry + 1£0I sz, o) S el grsae + 119l ey

which proves the second statement. O

The following lemma collects mapping properties of the single-layer operator V' that exploits the present
setting of piecewise smooth geometries:

Lemma 3.2 Define the single layer potential 1% by
Vo(z) = / G(x —y)o(y)dsy, zeRI\T. (3.4)
r
(i) The single layer potential V is a bounded linear operator from H*(T') to H3/*+ (BRrg, (0)\I') for

—1<s<1/2

(ii) The single-layer operator V is a bounded linear operator from H~1/2+s (T') to H 1/ 2+s5(T) for
-1/2<s< 1

(iii) The adjoint double-layer operator K' is a bounded linear operator from H~/ 25(T) to
H=Y245(D) for —1/2 < s < 1.



Proof: Proof of (i): The case s € (—1,0) is shown in [SS11, Thm. 3.1.16], and for s = —1 we refer
to [Ver84]. For the case s € [0,1/2), we exploit that I is piecewise smooth. We split the polygonal
boundary I' = (J;2, T into its (smooth) faces Fg Let x; € L%(T") be the characteristic function for
Iy. Then, for ¢ € H*(T'), we have Vi = > ity V(xep). We prolong each face I'y to the hyperplane
I'7°, which decomposes R? into two half spaces Qi Due to s < % we have x,p € H*(I'}°). Since the
half spaces Q;t are smooth, we may use the mapping properties of V on smooth geometries, see, €.g.,
[McL00, Thm. 6.13] to estimate

7l s ggoney & 270

m
pseqgy S 2Pl S Ielancry -
/=1 /=1

Proof of (ii): The case —1/2 < s < 1/2 is taken from [SS11, Thm. 3.1.16]. For s € (1/2,1) the result
follows from part (i) and the definition of the norm || - || zs(ry given in (1.3).

Proof of (iii): The case —1/2 < s < 1/2 is taken from [SS11, Thm. 3.1.16]. With K’ = 0,V — %Id
the case s € (1/2,1) follows from part (i) and a facewise trace estimate (3.3) since

S ”SOHHS*1/2(F)7

Hs— 1/2

(ry ~ H SOHHH

which finishes the proof. O

In addition to the single layer operator V', we will need to understand localized versions of these oper-
ators, i.e., the properties of commutators. For a smooth cut-off function 17 we define the commutators

(Cyo)(x) = (V(nd) —nV(e)(x) = /FG(x, y)(n(x) = n(y))$(y)dsy, (3.5)
(CIO) (@) = (Cy(nd) — nCy(9))(x) = /FG(-%', y)(n(x) = n(y))*d(y)ds,. (3.6)
Since the singularity of the Green’s function at = = y is smoothed by 7n(x) — n(y), we expect that the

commutators Cy), Cyl have better mapping properties than the single-layer operator, which is stated in
the following lemma.

Lemma 3.3 Let ) € CS°(R?) be fixed.

(i) The commutator Cy, is a skew-symmetric and continuous mapping C,, : H='7¢(I') — H*¢(T")
forall —ap < e < ap.

(ii) The commutator C) is a symmetric and continuous mapping Cy : H=1=%p(T') — H*tep(T)).

In both cases, the continuity constant depends only on ||1||yy1.0 ra), §2, and the constants appearing in
Assumption 1.

Proof: Proof of (i): Since V' is symmetric, we have

(Chd) = (Vnd) =V (9),0) = (3.V () = Vinw)) = = (8,Cy)

i.e., the skew-symmetry of the commutator C,,. A similar computation proves the symmetry of the
commutator C,/.
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Let0<e<ap, ¢ € H‘HE(F) and u := quAS XN/(ngg) ~(gi)) with the single-layer potential V.
Since the volume potential V ¢ is harmonic and in view of the jump relations [0 qu] =0, [0n Vqﬁ] —¢
satisfied by V c.f. [SS11, Thm. 3.3.1], we have

—Au=2Vn- V1~/$+ An‘N/qg inRAT,
[You] =0, [Opu] =0 onl".

We may write u = N (2V7 - V‘7q§ + Anf/@ with the Newton potential

Nf(z):= | G —y)f(y)dy, (3.7)

R4

since v and N (2Vn - VVo+ An?q@) have the same decay for |x| — oo. The mapping properties of the
Newton potential (see, e.g., [SS11, Thm. 3.1.2]), as well as the mapping properties of V' of Lemma 3.2,
(i) provide

lullgse(pyoney S [0 Vo+ AV o

[v4] <
HY/2+2(Bp, (0\I')

N

’ ~

¢

e (3.8)

The definition of C;, and the definition of the norm ||-| 1+ (r) from (1.3) prove the mapping properties
of Cy, for 0 < ¢ < ap. The skew-symmetry of (), directly leads to the mapping properties for the case
—ap <e<0.

Using different mapping properties of the Newton potential (see, e.g., [SS11, Thm. 3.1.2]), we may also
estimate in the same way

= l[ull g12+e (g, 001y S H HH— : (3.9)

Cod
H n® HY/2+2(Bpg, (0)\I) 1/2+¢(Bpg, (0)\T')

Proof of (ii): Let v := 57?775 = 577 (ngg) — 775,75. Since
AC,(n¢) — nACyd = =2V - VCyé — AnCrd — 2|V|> Vo,
the function v solves

—Av =4V - VCyh + 280Cyd + 2|V|* Vo inRAT,
[Yov] =0, [Ohv] =0 onT.

Again, the function v and the Newton potential have the same decay for |z| — oo, and the mapping

A~ o~

properties of the Newton potential as well as the previous estimate (3.9) for C),¢ provide

_ _ Y
ol /220 B onry S ||£90 - VCy + 2A0Cod +2 |V V¢HH_1/2+QD(BRQ(O)\F)

S 77¢HHU2+QD(BRQ(O)\F) + HV¢HH1/2+QD(BRQ(O)\F)
ap<1/2
S (ZSHH—1/2+C¥D(BRQ (O\T) S HVQSHHI/Q‘O‘D(BRQ(O)\F) . (3.10)
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We apply Lemma 3.1 to V. Since dist(I", 0BR,,(0)) > 0 we have that V¢ is smooth on 0BRg, (0),
and we can estimate this term by an arbitrary negative norm of ¢ on I' to obtain

(3.1)
<

L PRSI S (2! PRVSPPINES) L PR 2 Py

The additional mapping properties of V' of Lemma 3.2, (ii) and the symmetry of V' imply

<V$,w> <$, Vw>
L2(I) L2(T)
HV¢H = sup ————————= = sup ———————
H=D( weH*D (T') HwHHO‘D IT) weH*D (') HwHHaD(p)
Fl ey 1V e
S swp =g 2 -
weH*D (T) ||wHHO‘D(F) H™ D (
Inserting this in (3.10) leads to
lolsr2on sy one) S (9] 41men ey
which, together with the definition of the H'**P(I")-norm from (1.3), proves the lemma. O

The shift theorem for the Neumann problem from Assumption 2 implies the following shift theorem.

Lemma 3.4 Let the shift theorem from Assumption 2 hold, and let u be the solution of the inhomoge-
neous problems

~Au=0 inQ, Yu =gy onT, (u, 1) p2(0) =0,
—Au=0 in BRQ (0)\57 71 fu = gn onl, 76ntu =9p on aBRQ (0)7

where gy € H™/2(T") with (gn, 1) 2 (ry = 0, and gp € H'/?(BR,(0)).
(i) There is a constant C' > 0 depending only on 2 and oy such that
HUHHUQ—O‘N(BRQ(O)\F) <C (”gN|’H717‘3‘N(F) + HQDHH*aN(aBRQ(O))) : G.11)
(ii) Let ¢ € (0,an]. Let B C B’ C Bpg,(0) be nested subdomains with dist(B,0B’) > 0 and
n be a cut-off function n € C°(R?) satisfying n = 1 on B, suppn C B/, and ||77||Ck(B/) S
dist(B,dB’)~* for k € {0,1,2}. Assume ngn € H®(T). Then
[ull gra/24<(prry < € (HUHH1(B/\F) + ||779NHH6(F)) : (3.12)

Here, the constant C' > 0 depends on Q, ay, and dist(B,0B’).

Proof: Proof of (i): Let v solve

—Av=w—w inQ, Aty =0 onT, (v, 1>L2(Q) =0,
—Av=w inBg,(0\Q, 7 =0 onT, Yy =0 ondBg,(0),

12



forw € H~Y/2TN(Bp,, (0)\T') and @ := ﬁ (w, 1) 12y Then, with (u, 1) /2y = 0 we have

(u, w>L2(BRQ (0\I')

HUH 1/2—a - sup
H N(BRQ (0\T") weH/2+ay (BRQ (O\D) ||wHH*1/2+O‘N (BRQ (0)\I)

{u,w— @L?(Q) + (u, w>L2(BRQ(o)\§)

= sup

weH=V/2+aN (Bp, (O\T) w172+ (B, o)
B - <u7 AU)LQ(BRQ(O)\F)
= sup

wer=1/2+0n (Bg (O\) 1@ E=172408 (B4 (1)
Integration by parts on 2 and Bg,, (0)\(2 leads to

(u, AU>L2(BRQ(0)\F) = (Au, U>L2(BRQ(O)\F) = (Onu, ['YOUDLQ(F) + (ou, aﬂU>L2(8BRQ(O))
= —{gn:[0v]) L2 (ry + (905 9n0) 1298, (0)) -
The definition of the norm (1.3) implies

6" Lo 0y = W0 llsr2vem (g o)

and the same estimate holds for 4$*%v. Since O Bg,,(0) is smooth, we may estimate

10l ren @55, (o)) S IVl z372 40 (B 1)

This leads to

(9N [rov]) L2(I) — (9D 8n”>L2(8BRQ (0))

]| gy1/2-a S sup
H N (Brg (ONT) weH /22N (Bg, (0)\I) ”wHH?l/HaN (Brg (0\D)

< H!JNHH—l—aN(r) ||[70U]||Hl+azv(r) + HgDHH_O‘N(BBRQ (0)) HanUHHaN(aBRQ(O))

weH 124N (B (O\D) @l gr-1/24an (Bg, O)\T)

1ol 737240 n (Brg O0T)

S (lonllg-1-an @) + 9Dl r=on o sup
( H N(T) H— N ( BRQ(O))) wEH_1/2+aN(BRQ(O)\F) HwHHfl/QJFO‘N(BRQ(O)\F)

S lgnllg-1-en ) + 90l o @84, (0))
where the last inequality follows from Assumption 2.

Proof of (ii): Since n = 0 on OBR,,, the function u := nu satisfies

—Al = —2Vp-Vu — (An)u in Brg, (0)\T,
VG = (8um)y6 ™ u + ngn onT,
VP = (Onm)y u + g onT,
,Y(i]ntﬁ =0 on aBRQ (0)

With the shift theorem from Assumption 2 we get with the trace inequality ||(9,1)7§" u|| ;1 2ry S
HUHHI(B'\F) that
[ull oo pyry < Nallsrzsemp oy S 1VR-Vut (An)ull2p,, 0)\r)

+ [/ (Onm) 75 u|

||U||H1(B/\F) + ||779N||H€(F) J

ext

He(T) + H(ann)% UHHE(F) + ”779N||H€(F)

N
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which proves the second statement. O

The following lemma collects mapping properties of the double-layer operator K and the hyper-singular
operator W that exploit the present setting of piecewise smooth geometries:

Lemma 3.5 Define the double layer potential K by
Ko(z) := / On, G(z — y)o(y)ds,, e RI\T. (3.13)
r

(i) The double layer potential K is a bounded linear operator from HY*(T) to H3/2+s (BRry,(0)\I')
for —1 < s < ap.

(ii) The double layer operator K is a bounded linear operator from HY/?*+5(') to H'/*+5(T") for
—-1/2<s<1/2+ ay.

(iii) The hyper singular operator W is a bounded linear operator from H'/?>*5(T') to H=1/2+5(T") for
—1/2 —any <s< 1/2+QN.

Proof: Proof of (i): With the mapping properties of the single layer potential V €
L(H*(T), H3?*3(Br,(0)\I')) from Lemma 3.2, the mapping properties of the solution operator of
the Dirichlet problem from Assumption 1 (7" : H'*5(T") — H?/?+3(Bp,,(0)\I')), and the assumption
ay < ap, the mapping properties of K follow from Green’s formula by expressing K in terms of V/,
T, and the Newton potential \/. For details, we refer to [SS11, Thm. 3.1.16], where the case s € (—1,0)
is shown.

Proof of (ii): The case —1/2 < s < 1/2 s taken from [SS11, Thm. 3.1.16]. For s € (1/2,1/2+ay] the
result follows from part (i), the definition of the norm [|[| s +1/2(r) givenin (1.3), and K = YK +11d.

Proof of (iii): The case —1/2 < s < 1/2 is taken from [SS11, Thm. 3.1.16]. Since W = —anf(, we
get with a facewise trace estimate as in the proof of Lemma 3.1, estimate (3.3), that

% [[%e]

||W(pHH71/2+s(F) = ‘ an[?(PH ) 5 HSD||H1/2+5(F),

H—1/2+3(F H1+s(Q

which finishes the proof for the case s € (1/2,1/2 + ay]. With the symmetry of W, the case s €
[—1/2 — an, —1/2) follows. O
For a smooth function 7, we define the commutators
Chp = Wnp) —nWeo, (3.14)
Cl@) = Cy(nP) —nCy(B) = W(*P) — 20W (nP) +n*W (). (3.15)
By the mapping properties of 1, both operators map H'/2(T') — H~/2(I"). However, Cy, is in fact an
operator of order 0 and C,! is an operator of positive order:

Lemma 3.6 Fixn € C5°(RY).

(i) Let s € (—1/2,1/2). Then, the commutator C, can be extended in a unique way to a bounded
linear operator H*(I') — H?*(I") that satisfies the bound

IChell sy < Cllell sy Ve € H*(T). (3.16)

The constant C depends only on ) and the choice of s. Furthermore, the operator is skew-
symmetric (with respect to the extended L*-inner product).
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(ii) The commutator C,) is a symmetric and continuous mapping C;l : H=“N(T') — H~ (T"). The con-
tinuity constant depends only on ||n||yy1.0 ra), §2 and the constants appearing in Assumption 2.

Proof: Proof of (i): 1. step: We show (3.16) for the range 0 < s < 1/2. For ¢ €ﬁ1/2(I‘), consider the
potential C,p := K(ny) —nK(p) — V((0,n)p) with the single layer potential V' and the double layer
potential K from (3.13).

Using the jump conditions Vel = 0, [0 V¢] = —¢ for V and additionally the jump relations
(oK ¢ = ¢, [On K¢] = 0 satisfied by K from [SS11, Thm. 3.3.1], we observe that the function
u := Cpp solves

—Au=2Vn-VKp+ (An)Kg in RAT,

hou =0, [Onu] = =010 K] — [0,V (9an)] = 0 onI'.
The decay of u - the dominant part is the single-layer potential - and the Newton potential N (2Vny -
VEKo+ (An)Kgp) for |z| — oo are the same, which allows us to write u = N (2Vn-VK o+ (An)lﬂp)

With the mapping properties of the Newton potential and the standard mapping properties of K from
[SS11, Thm. 3.1.16] it follows that

< VK K <
Jull s one) |0 VEe+ 8] SR e gy S 19
(3.17)
The trace estimate applied facewise as in the proof of Lemma 3.1, estimate (3.3), and (3.17) lead to
[onCuel| .y = 10mtlaroey S Wellsrovo oy el (3.18)

Furthermore, using Lemma 3.2, (i) we arrive at
10,V (@)l 1o x) S NIV )| 3245 (B, o0\1) S 1121 73 - (3.19)
Next, we identify 8nC~n. With W = —871[?, K = 8,1‘7 — % dK=1 5 1d —|—’yth, we compute

0nCry = W — W(ng) — K'((9un)p) — (Oun) K¢

Recalling the mapping property K', K : H5(I') — H*(T') and the relation 9,V = $1d —K' we get
with the aid of (3.18), (3.19)

W (ne) —nWellgsay S lellas - (3.20)
2. step: Since H'/?(T") is dense in H*(T'), s € (0,1/2), the operator C, can be extended (in a unique
way) to a bounded linear operator H*(I") — H*(T").

3. step: The operator C,, is skew-symmetric: The operator W maps H 1/ ) - H -1/ 2(T) and is
symmetric. The skew-symmetry of C, then follows from a direct calculation.

4. step: The skew-symmetry of C,, allows us to extend (in a unique way) the operator as an operator
H—3(T) — H~*(I") for 0 < s < 1/2 by the following argument: For ¢, 1) € H'/?(I") we compute

<Cn807¢> = _<‘Pvcn¢>- (3.2

Since C,, : H*(I') — H*(I") for 0 < s < 1/2, we see that, ¢ — (¢,Cy?) on the right-hand side
of (3.21) extends to a bounded linear functional on H~*(T"). Hence, C,, : H*(I') — H~*(I") for
0<s<1/2
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5. step: We have C,, : H*(I") — H*(T") for s € (—1/2,1/2) \ {0}. An interpolation argument allows
us to extend the boundedness to the remaining case s = 0.

Proof of (ii): Since
AC,(np) — 1ACyp = —2V1 - VCu3 — AnCy@ — 2|V K& — AV (0.,9)),
the function v := C)$ := C~,7 (n@) — 77C~,7{5. solves
—Av =4V - VCo P + 2A1C, 5 + 2 |Vn|? K& + A(nV (8,3)) inRAT,
[vov] =0, [Opv] =0 onl"

Again, the decay of v and the Newton potential applied to the right-hand side of the equation are the
same, and the mapping properties of the Newton potential provide

~ ~ 2 T~ i o~
< C.3 R’AH
S HC77<10HH1/2+QN (Br, (0\I) + H ¥ H—1/2+aN(BRQ (O\I)
#|ve

H'/?+eN (Bpg, (0\I)

Lemma 3.2

< Ko Bl gr-1+a
S A o 2 ety
O¢N<1/2 -
s &4 [ Py (3.22)

H!'/27N (BRg (0)\I')
We apply Lemma 3.4 to K§ — 7@ Since dist(I', 0Bg,(0)) > 0 we have that K3 is smooth on
0BR,,(0), and we can estimate this term by an arbitrary negative norm of ¢ on I" to obtain

(3.11)

Ro- | & Wl + 9
S T S L e [

H~%N (0Bg, (0))
S Wl gr-enqy + 18l g-ax () -
The mean value can be estimated with 72 = \x!2, the observation Ar? = 4, and integration by parts by
K7 5 |(Raar)| 5 |(bRa0n®) |+ [ (i Eert)
S K& (K =1/2)0.r%)| + (W, 1%)]
S M@l g-an @y + Wl g-1-an ry »

where the last step follows since K’ is a bounded operator mapping H*~ (I') — H®N(T") from
Lemma 3.2. The additional mapping properties of W of Lemma 3.5, (iii) and inserting this in (3.22)
leads together with a facewise trace estimate to

HanUHHaN(r) S ”v||H3/2+QN(BRQ(O)\F) S H@”H*QN(F)'
Now, the computation
C1® = 0uC + K'((9um)n@) — 1K' ((9:m)®) + 2(0am)70Cy (@) — (0um)V ((9am)@),

the mapping properties of V' and the commutator of K’ (as normal trace of the commutator 5,, from
Lemma 3.3, c.f. (3.8)) prove the lemma. Il
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3.2 Symm’s integral equation (proof of Theorem 2.2)
The main tools in our proofs are the Galerkin orthogonality
(V(¢—n).tn) =0V € S(Th), (3.23)
and a Caccioppoli-type estimate for discrete harmonic functions that satisfy the orthogonality
(You,n) =0 Vb, € S®O(T),suppyy, € DNT. (3.24)
More precisely, the space of discrete harmonic functions on an open set D C R? is defined as
Hp(D) := {v € H(D\T'): v is harmonic on D\T,

3o € S°°(T;,) s.t. [0,v]|par = ?|prr, v satisfies (3.24)}. (3.25)

Proposition 3.7 [FMP16, Lemma 3.9] For discrete harmonic functions u € Hp(B'), the interior reg-
ularity estimate

| =

1
IVull g2y S AHVUHLQ(B’) gHUHm(B/) (3.26)

holds, where B and B’ are nested boxes and d := dist(B,0B’) > 0 satisfies 8h < d. The hidden
constant depends only on ), d, and the y-shape regularity of Tp,.

As a consequence of this interior regularity estimate and Lemma 3.1, we get an estimate for the jump
of the normal derivative of a discrete harmonic potential.

Lemma 3.8 Let Assumption 1 hold and B C B’ C Bp,(0) be nested boxes with d := dist(B,0B') >
0 and h be sufficiently small so that the assumption of Proposition 3.7 holds. Let u := V(h with
Ch € SOO(Th) and assume v € Hy(B'). Let T € BNT and n € C3°(RY) be an arbitrary cut-off
function satisfying n = 1 on B'. Then,

0wl gy < C (B2 E220) ol oy + B IV Ghllg-on oy + (Gl g2y ) - B2D)

The constant C > 0 depends only on §2,d, c/i: the ~y-shape regularity of Tp,
constants appearing in Assumption 1.

77||W1,o<>(Rd), and the

Proof: We split the function 4 = ugy + Unear, Where the near field wpe,r and the far field g, solve the
Dirichlet problems

—AUpear = 0 in Br,, (0)\I', YolUnear = NV Cp onI"UJBg,(0),
—Augyr =0 in BRQ (O)\F7 YoUfar = (1 - n)VCh onI'U aBRQ (0)
We first consider vilntunear - the case fyf"tunear is treated analogously.

Let 7 be another cut-off function satisfying 77 = 1 on I and supp7 C B. The multiplicative trace
inequality, see, e.g., [Mel0S5, Thm. A.2], implies for any ¢ < 1/2 that

int 2e/(1+42¢) HV(T] near)Hl/ (1+2¢)

H7 unearHL2(f) N H'Yi nunear HLQ BAT) S Hv(nunear)HLQ(Q H/2+e(Q)
2 1+2 1/(142
SJ Hv(nunear)” E/ €) Hn neath{g/ng;)B) (3.28)
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Since Unear € Hp(B'), we use the interior regularity estimate (3.24) for the first term on the right-hand
side of (3.28), and the second term of (3.28) can be estimated using (3.2) of Lemma 3.1. In total, we
get fore < ap < 1/2 that
2e/(142 1/(142
IV (Punear) 75y > Wittnear | 14721

2e/(142¢) ( >1/(1+25)

S <h |V tnear|| 2 Byt ||Unear||L2(B')> ||Unear||H1(B') + ||77VCh||H1+E(F)

26/(1+2€ || 1/(1+2€)
L2 B’) UneaIHHl(B/)

2e/(14-2¢) 1/(142¢) 2e¢/(142 1/(142¢)
+ Nnearl 70552 1V Call 5 + B2 42 | Vatnearl| 55552 IV Gall g bi 2 )

=T+ T+ 15+ Ty. (3.29)

< p2e/(1+2¢) HunearHH1 (B + [|tnear|

Let Z;, be the nodal interpolation operator. The mapping properties of V' from Lemma 3.2, (ii), the
commutator C;, from (3.5) as well as an inverse inequality, see, e.g., [GHSO05, Thm. 3.2], lead to

Vel S IV e + 106 iseqry S 1hlleqey + 1l -sseqr
S ||Ih(77)fh||Hs(F) + [(n - Ihn)ChHHe(r) + HChHH—H—s(F)
S )Gkl L2y + G ey + i 1Skl L2y + ISRl =142
S 177 (1= Zamullaqey + I0Gall o) + 1Gnlr-ro-qo
S 07 (InGull ey + IGhlr-1cry) - (3:30)

With the classical a priori estimate for the inhomogeneous Dirichlet problem in the H'-norm, the com-
mutator C;), and Lemma 3.3, we estimate

Ty = 02 ugearl| g1 1y S B2 [0V Gl g oy

< p%e/0Fe) (HV("?QL)HHI/?(F + ||C77§hHH1/2 )

10559 o mnii/ o ||nv<huz/1i:2f>
(3.30

) B B 1/(142¢)
S IO a1 (7 Gy + 27 [l 1))

(3.31)
S B (InGall oy + lnll-acry ) - (332)

We apply (3.1), (since = 0 on Bg,,(0) only the boundary terms for I" appear) together with Young’s
inequality ab < aP/p + b?/q applied with p = (1 + 2¢)/2¢, ¢ = 1 4 2¢ to obtain

(3.1),(3.30) 1/(1+2¢)
2¢/(142¢) 1/(142 2e¢/(1+42¢)
Ty = Junearl 7550 ™ VG S VG5 e (B2 Il oy + A5 Gnl 1o )

Sht HnVChHH*O‘D(F) + h° H77<hHL2(F) + h* |l g

Similarly, we get for the second term in (3.29)

(3.1) i
Ty = lunearl| 745y lmeall iy = 23 gV Gl L0 ) 27002 famear 31

(3.31)
< ht HnVChHH*O‘D(F) + ||"7<hHL2(F) + R ||ChHH*1*O‘D(F) .

18



Inserting everything in (3.29) and using h < 1 gives

[Ontnearl| p2r) S he/ (1429) <||77ChHL2 ry + 1Sl -1 )+h 0Vl o ) -

Applying the same argument for the exterior Dirichlet boundary value problem leads to an estimate for
the jump of the normal derivative

”[anunear]HL2(r) < pe/0F2) (HUChHLQ +H<hHH )+h 1H77VChHH ap(T) *

It remains to estimate the far field ug,,, which can be treated similarly to the near field using a trace
estimate and Lemma 3.1. Applying Lemma 3.1 with a cut-off function 7 satisfying 7 = 1 on B and
supp 77 C B’ the boundary term in (3.2) disappears since 77(1—7) = 0, which simplifies the arguments:

IN

11Ot | 27 110 (gl 2y S ttarll gras2+< )
() @)

S HufarHHl(B/) + [In(1 - W)VChHHHE(r) - ”UfarHHl(B/)
S M@ =mVellmeroasa, o) S IChla-1/20)

which proves the lemma. (]

We use the Galerkin projection IT : H~1/2(T") — S%0(7},), which is, for any e H1/? (T), defined

by
(V(6-118),9n) =0 vy € S°(T). (3.33)

We denote by I}, the L?(I")-orthogonal projection given by
<Ihu,vh>L2(F) - <’UJ7 vh>L2(F) V?)h € 5070(771)

This operator has the following super-approximation property, [NS74]: For any discrete function 1, €
S90(T;,) and a cut-off function i we have (with implied constants depending on ||7||yy1,0)

”nwh - [h(nwh)H%ﬁ(F) g h? Z Hv(nwh)“%ﬁ(T) S h? Hd}hH%Q(suppn) : (3.34)
TeTn

The following lemma provides an estimate for the local Galerkin error and includes the key steps to the
proof of Theorem 2.2.

Lemma 3.9 Let the assumptions of Theorem 2.2 hold. Let Fg be an open subset of r wzth Ty C I‘O c’r
and R = dist(Iy, 8F0) > 0. Let h be sufficiently small such that at least < 13- Assume that

NS LQ(I‘O). Then, we have
H¢ - ¢hHL2(F0) < C( inf 1 H¢ - Xh”Lz(fB) + H¢ - (bhHH—lﬁ(fB)

Xn€SOO(Th)

+hPIU220) 1 — | iy + 116 = Onll -1 )

The constant C' > 0 depends only on I, g, d, R, and the ~y-shape regularity of Tp.
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Proof: We define e := ¢ — ¢y, open subsets I'g C I'y C I'y--- C I's C 1/“6, and volume boxes
By C By C By--- C Bs C R% where B; N T' = T';. Throughout the proof, we use multiple cut-
off functions n; € C§° (]Rd), t = 1,...,5. These smooth functions 7; should satisfy 7; = 1 on I';_1,
supp7 C B; and |[Vnill oo g,y S +. We write

lell72ryy < Imellzaiy = (me,me) = (e, nie). (3.35)

With the Galerkin projection II from (3.33), we obtain
Imellzay = (e,nie) = (nse, nie) = (M(nse), nie) + (e — M(nze), nie) . (3.36)
I )

With an inverse inequality and the L?-orthogonal projection I;,, which satisfies the super-approximation
property (3.34) for ns ¢, we get

1n56n — T (n5dn) 2y S Im5dn — In(s@n)ll 2y + 110 (50n) — TL(nsdn) |l 2y
S Bl oy + 072 Hn(56n) = s dn) | r-1/2ry
S Pllonll o) + W2\ Tu(nsén) = nsbnll g-1r20y + B2 Insén — Tnsén) | g-12(ry
< hllénl o (3.37)

where the last estimate follows from Céa’s lemma and super-approximation. The same argument leads
to

1756 — (159 [l 121 I75¢ — In(50) || L2(ry + n(150) — IL(n50) | 21y

<
S sl oy + 22 1T (ns6) — s d) |l 12y
S sl Loy - (3.38)

In fact, this argument shows L2-stability of II:

Il 2y S Illp2ey Vo € LA(D). (3.39)
The bounds (3.37), (3.38) together imply

[(nse = T(nse),nie)| < ||niel| 2 p (||775¢ = H(n50)l| L2y + lIm56n — H(%%)”m(r))
S lmelzey (1m0l ey + A Ionlaqes, )
S el (LD 16l o, + el o)) - (3.40)
For the first term on the right-hand side of (3.36), we want to use Lemma 3.8. Since [871‘7@1] =—(, €
S90(T;,) for any discrete function ¢, € S%9(7,), we need to construct a discrete function satisfying

the orthogonality condition (3.24). Using the Galerkin orthogonality with test functions v, with support
supp ¢, C I'4 and noting that 75 = 1 on supp %, we obtain with the commutator C;,, defined in (3.5)

0 = (Vesmsvn) = (Ve vn) = (V(nse) — Cpse, ¥p)
= (V(nse) = 15Cnse,¥n) = (V(nse — V7 (n5C56)), ton)
= (V(nse) = WV~ (115Cns))), 9on) - (3.41)

Thus, defining
G = T(nse) — & with &, == IV (n5Cyp5€)), (3.42)
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we get on the volume box By C R? a discrete harmonic function
U= ‘7Ch € Hh(B4).

The correction &, can be estimated using the L2-stability (3.39) of the Galerkin projection, the mapping
properties of V1, Cys» and the commutator Cyl; from Lemma 3.3 by

thHLQ(F) - HH(V_l(nf)C%e))H[ﬁ(r) 5 Hv_l(n5c7]5€)HL2(F) 5 H775C775€HH1(F)
1Crns (se)ll 1 1y + HC;?;eHHl(F) S lnsell g-1ry + llell g—1-apry - (3.43)

N

We write

(I(nse), nie)y = (I(nse) — &, nie) + (&n.mie) = (Cr.mie) + (&n,mie) . (3.44)

For the second term in (3.44) we use

(3.43)
(B < Nnll oy Iell oy S (msellisry + lella--on ) Imell gy - 3:45)

We treat the first term in (3.44) as follows: We apply Lemma 3.8 with the boxes B2 and Bs - since
we assumed h < 12R, the condition 8/ < dist(Bz, 9B3) can be fulfilled - to the discrete harmonic
function V'(}, € H;,(By) and the cut-off function 74. The jump condition [0, u] = —(j, leads to

||ChHL2(supp171) S H[anu]HLQ(Fl)
< R0y Gl oy + 0 04V Gl i () + 11Ghll 172y - (3:46)

The definition of (,, the bound (3.43), and the H~/ 2_stability of the Galerkin projection lead to

Inllirmroy S el + I€llm-raq
< lnsell grviagey + llell g1 ey - (3.47)

With the L2-stability (3.39) of the Galerkin projection and (3.43) we get

[Chll2ry S lImsellpaqry + 1€nll L2
S msell g2y + el g-1-an ) - (3.48)

We use the orthogonality of (;, on I'y expressed in (3.24) and the L?-orthogonal projection I}, to estimate

Vi, naw Vin, naw — I w
194V illyg-opy = sup Vh,naw) _ sup (VChyma h(naw))
weron () [Wlgen)  wemep@y  wlgen
75V Cull gy Imaw — Tn(naw)|l -1 (p o
p () @) < pl+ap (IlnschHL2<r) + |nd5ChIIH1(p))
weHD (T') ||w”H°‘D(F)
< piten (|\775Ch||L2(r) + ||Ch||H—1(F)> ) (3.49)

Inserting (3.47)—(3.49) in (3.46) and using h < 1, we arrive at

IChllzouppm S (A72/F20) 522 Y ol oy + Gl

§ haD/(l—l-?OéD) ||n56||L2(F) + ||775€HH*1/2(F) =+ ||6||H_1_°‘D(F) . (3.50)
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Combining (3.36), (3.44) with (3.40), (3.45), (3.50), and finally (3.35), we get

+ haD/(1+2aD) ||

ImelZay < (1602, + lell oo, ell ey + lellg-1-an ey ) el ey -

Since we only used the Galerkin orthogonality as a property of the error ¢ — ¢y, we may write ¢ — ¢y, =
(¢ — xn) + (xn — ¢n) for arbitrary x;, € S%°(T,) and we have proven the inequality claimed in
Lemma 3.9. O

In order to prove Theorem 2.2, we need a lemma:

Lemma 3.10 For every § > 0 there is a bounded linear operator Js : H~1(I') — L?*(T") with the
following properties:

(i) (stability): For every —1 < s <t < 0 there is Cs; > 0 (depending only on s, t, ) such that
||J5U||Ht(1") < 6S_tCSHJ5uHH5(F)f0r allu € HS(F).

(ii) (locality): for w C T the restriction (Jsu)|., depends only on ul.,, with ws := UzewBs(x) NT.

(iii) (approximation): For every —1 < t < s < 1 there is Cs; > 0 (depending only on s, t, Q) such
that ||u — Jsul| grry < Cs16°~||ull gs(ry for all w € H*(T).

Proof: Operators with such properties are obtained by the usual mollification procedure (on a length
scale O(0) for domains in R?). This technique can be generalized to the present setting of surfaces with
the aid of localization and charts. 0

Now, we can prove our main result, a local estimate for the Galerkin-boundary element error for Symm’s
integral equation in the L?-norm.

Proof of Theorem 2.2: Starting with Lemma 3.9, it remains to estimate the two terms
hop/(1420p) lell 25y and llell -1z Where € := ¢ — ¢p.

Lo _
R/2 =
{z € R? : dist({z},T0) < &} and || V||, < - Let 7 be another cut-off function with 77 = 1 on
B and suppn NI C T'1, where dist(I/’\o, 81/’\1) > R. Select § = ch with a constant ¢ = O(1) such

We start with the latter. Let 7 € C°°(R?) be a cut-off-function with 7j = 1 on Lo, supp nCB

o

R/2+h _
that the operator J.;, of Lemma 3.10 has the support property supp J.,(7) C Bg% e
the operator I, o Jo, : H-H(T) — S%0(T) with the L2-orthogonal projection Iy,. It is easy to see that

we may assume that

We will employ

supp(Iy o Jop (7)) C BE(}Q o (3.51)
Concerning the approximation properties, we have
|w = Ip o Jepull gr-1(ry < llu — Jenul| g-1(ry + [ Jenre — I o Jepul| -1 (r)
S (eh) Pl g-ray + Pldenull 2y S Bl ooy (B.52)
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With the definition of the commutators C, Cﬁﬁ, the Galerkin orthogonality satisfied by e, and the fact
that V : H=1/2(I") — HY?(T') is an isomorphism, we get

H'ﬁ@HHfl/?(r) = sup M S sup M
weH/2(T) HwHH1/2(F) YEH—1/2(T) |WHH—1/2(F)
_ (Ve, ) + (Cqe,¥) _ sup (Ve,mp — I, o Jen () + (Cre, ¥)
weH=1/2(T) H@ZJHH*l/?(F) WEH—1/2(T) H@Z’HH*/?(F)
S, Ve, mp — I, o Jon () + (Cre, )
WEH-1/2(T) 191 172y
— s (V(me), i — I o Jep () — (Cre, o — I o Jen () — (e, Cieb)
WEH-1/2(I) 191 =172
— swp (V (@), b — I o Jen () — (C5(7e), ) — In o Jen (1))
peH-1/2(T) 191l g-172(r
(Clle. 7 — I o Jen(ii) ) — (e, )
" ol
<”7~7€||L2(F) + HeHH*l*‘lD(F)) 17 — I o Jch(ﬁiﬁ)HHfl(r) + ||€”H*1*QD(F) HwHH*hLO‘D(F)
~ we;g%(r) 19l g-1/2(r)
<Sh'/? lell oy + llellz—1-an(ry - (3.53)

The first term on the right-hand side of (3.53) can be treated in the same way as the term
hop/(1+2ap) llell 2 ;) from the right-hand side of Lemma 3.9.

We set m := {—(HQD)(HMD)}

ap

i=0,...,m—1such that dist(T;, Blf:l) > R,T,, C I. Since the term hp/(1+2op) HeHLz(ﬁ) again

. The assumption C,, D% < 1—12 allows us to define m nested domains I';,

contains a local L2-norm, we may use Lemma 3.9 and (3.53) again on the larger set f‘; C I' to estimate

haD/(l-l—ZOéD)HeHLz(ﬁ < haD/(1+2“D)< inf

) o~ Xheso,o(ﬂl)‘w_)(hup(f;)

+han/(1+2ap) H€||L2(FA2) + ||€”H*1*‘*D(F) )

Inserting this into the initial estimate of Lemma 3.9 (using h < 1) leads to
HeHLQ(FO) < C<Xh€ég’£(77z) H¢ - Xh”L2(f;)

+h20/ 200016 — Gyl o ) + 16— Gnll pr1-an )

Now, the L2-term on the right-hand side is multiplied by h2er/(1+2eD) je  the square of the initial
factor. Iterating this argument m — 2-times, provides the factor A2/ (1+2a0) "and by choice of m, we
have h!tep < pmen/(1+2aD) Together with an inverse estimate we obtain

pitep H‘fHLZ(f) > hHaD H¢ - Xh”p(f) + pitor Hqﬁh - Xh”Lz(f)
S B d = xnll oy + Ion = xall g-1-an @
S R 6 Xl gy + llell ey + 16 = Xallgor-en sy
S e —xall 2@ + el g—1-enry
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which proves the theorem. 0

Proof of Corollary 2.3: The assumption ¢ € H~1/2+(T") 0 HA(T") leads to

. . < B ~
Xheérolg(n) ||¢ XhHLz(p) S h ||¢“H¢’(F)
||6”H—1/2(F) S h* ||¢”H—1/2+0(F)’

where the second estimate is the standard global error estimate for the BEM, see [SS11].

It remains to estimate [|e[| —1-ap (), Which is treated with a duality argument: We note that Assump-

tion 1 and the jump relations imply the following shift theorem for V: If w € H'+P(T") and v solves
Vi =w e Ho0 (D), then & € HP(T) and [[¢] grop (1) S [l rivap r)- Hence

_ <€, w> < |<67 V¢>| _ |<V€’ 711 - H¢>|
lell g-1-ap @y = sup T ———— 5 Sup o = P
wem+ap @ Wl grvap oy ™ wemen @) Wllgenry  yemenm)  1¥llgen ()
Vel gz ¥ = || g-1/2p a
5 sup (H;H 0 S h1/2+ P H€HH71/2(F)
YeHD (') HD (')
S RYEOD ]| sy -

Therefore, the term of slowest convergence has an order of O(h™®{1/2+a+ap.6}) "which proves the
Corollary. O

Remark 3.11 The term of slowest convergence in the case of high local regularity is the global error
in the negative H 1P (T')-norm, which is treated with a duality argument that uses the maximum
amount of additional regularity on the polygonal/polyhedral domain. Therefore, further improvements
of the convergence rate cannot be achieved with our method of proof. In fact, the numerical examples
in the next section confirm this observation, i.e., that the best possible convergence is O(hl/ 2ratap),

The trivial estimate |ne|| ;1,2 S ||n€ll p2(ry immediately implies that the local convergence in the

energy norm is at least of order (’)(hl/ 2ratan) qs well. Again, analyzing the proof of Lemma 3.9,
we observe that an improvement is impossible, since the limiting term is once more in the negative
H=1=20(T")-norm. .

Remark 3.12 Remark 3.11 states that the local rate of convergence is limited by the shift theorem of
Assumption 1. If the geometry ) is smooth, then elliptic shift theorems for the Dirichlet problem hold
in a wider range, e.g., if f € H 1/ 2(Q), we may getu € H 5/ 2(Q). It can be checked that in this setting,
an estimate of the form

_ < _ . _
¢ — dull2rg) S Xheég{g(ﬁ) 16 =Xl 2@y + 1 = énlla—2(r)
is possible since the commutator Cy° in (3.43) maps H%(T') — HY(T) in this case. If an even better
shift theorem holds, then the H%-norm can be further weakened by using commutators of higher
order. The best possible achievable local rates are then O(hP) in L?*(Ty) for ¢ € H5(T), B € [0,1]
and O(hY/**8) in the H=/%(T'y)-norm. .
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3.3 The hyper-singular integral equation (proof of Theorem 2.6)

We start with the Galerkin orthogonality

(W (o —on)n) + (o = ¢n, 1) (n, 1) =0 Wby, € SVH(Tp) (3.54)
and a Caccioppoli-type estimate on D C R¢ for functions characterized by the orthogonality

(On, n) + 1 (n, 1) = 0 Wy, € SV(Ty), supp e, € DT (3.55)

for some i1 € R. Here, we define the space of discrete harmonic functions Hé\/ (D, p) for an open set
D cR%and i € R as

HN(D, p) := {v € H'(D\I'): v is harmonic on D\T', [8,,v] = 0,
3o € SY(Ty) st [vov]| prr = U] par, v satisfies (3.55)}. (3.56)

Proposition 3.13 [FMP15, Lemma 3.8] For discrete harmonic functions u € Hﬁ[(B’, ), we have the
interior regularity estimate

h 1
IVull 2 gy S é\HVUHLQ (B/\I') EHUHLQ(B/\F) +[ul, (3.57)

where B and B’ are nested boxes and d := dist(B, 0B') satisfies 8h < d. The hidden constant depends
only on §2, d, and the ~y-shape regularity of Tp,.

Again we use the Galerkin projection IT : H'/2(T") — SV1(7},) now defined by
(W (e —Ip), 9on) + (¢ — I, 1) (Y, 1) =0 Vi, € S (Th). (3.58)

The following lemma collects approximation properties of the Galerkin projection. These properties
will be applied in both Lemma 3.16 and Lemma 3.17 below.

Lemma 3.14 Let 11 be the Galerkin projection defined in (3.58) and 1,7 € C§°(RY) be cut-off func-
tions, where 7j = 1 on supp n. For o € H*(T'), we have for s € [1/2,1]

e = ) s () < C 0@l g ry - (3.59)
For ¢y, € SVY(Ty),we have for s € [1/2,1]

[nen = IL(npn) | sy < Chlien gy - (3.60)
The constant C > 0 depends only on §Q, the y-shape regularity of T, and |[1||y1.00 (ra)-
Proof: Let 7, be a quasi-interpolation operator with approximation properties in the H*-seminorm,

e.g., the Scott-Zhang-projection ([SZ90]). Then, super-approximation (since o5, € S!(7;)) and an
inverse inequality, see, e.g., [GHSO0S5, Thm. 3.2], as well as Céa’s lemma imply

nen —Mer)lgsry < Inen — Tn(nen) sy + [Tn(nen) — Inen) | s
S R Aenl gy + BP0 Tn(nen) — THen) | ey
S hlienlgsy + 2770 | Tn(en) = nonl ey
0 |77s0h — T(nen) | gr1/o(ry
S R Renl gy + BP0 | Tunen) = nenl ey S B IRR oy -
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The same argument leads to
Ine — H(W’)’Hs(r) S ’ﬁ<P|Hs(r) ’

and consequently to the H !-stability of the Galerkin-projection. O

In the following, we need stability and approximation properties of the Scott-Zhang projection 7, in
the space H'*~N (") provided by the following lemma.

Lemma 3.15 Ler J, be the Scott-Zhang projection defined in [SZ90]. Then, for s € [0,3/2) we have
| Tnull s vy < Csllull gsry Vu € H*(T) (3.61)
and therefore, for every 0 < t < s < 3/2
lu = Tnull ey < Csth® lull s ry.- (3.62)

The constants Cs, Cs; > 0 depend only on (Q, the y-shape regularity of Ty, and s, t.

Proof: We start with the proof of (3.61). The stability for the case s = 1 is given in [SZ90] and the
stability for the case s = 0 (note that I is a closed surface without boundary) is discussed in [AFF* 15,
Lemma 7]. By interpolation, (3.61) follows for 0 < s < 1. The starting point for the proof of (3.61) for
s € (1,3/2) is that, by Remark 1.1, (iii), we may focus on a single affine piece I'; of I" and can exploit
that the notion of H*(T';) coincides with the standard notion on intervals (in 1D) and polygons (in 2D).
In particular, H*(T;) can be defined as the interpolation space between H'(T';) and H*(T;).

Since Ju € C°(I'), Remark 1.1, (iii) implies for s € (1,3/2)

N N
| Tn|| sy ~ Z | Tnull s (r,) and [ w]l sy ~ Z 1wl s (ry)-
=1 =1

It therefore suffices to show || Zyul| s,y < Cllull gs(r,)-
Since H*(T;) is an interpolation space between H'(T';) and H?(T';), we can find (cf. [BS78]), for every
t > 0, a function u; € H?(T';) with
lutll g2y S tS_QHUHHS(Fi): el gsryy S Nwllas
lu = uillmrey S ullmsr,)- (3.63)
Let Ij, be an approximation operator with the simultaneous approximation property

lue = Inuel| oy + b~ Vlue — ol S 02wl g2y (3.64)

see, e.g., [BS78], [BS02, Thm. 14.4.2]. With an inverse inequality, cf. [DFGT01, Appendix], the H 1
stability of the Scott-Zhang projection, and (3.63), (3.64), we estimate

v — Tnull gsry)
S llu = el sy + lue — Tnuel sy + 1TnIn(ue) — we)ll s ey + | Tn(w — ue) | s oy
Sl = el sy + e — Inwell s ey + B wg — Tnwgl ey +h ™D — wel| gy
(3.64)

< llu = wll e ey + P20 el 2,y + T = el g ey

(3.63)
S Nullmswy + P25 lul gy + b8 sy
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Choosing t = O(h), we get the H*(T';)-stability of 7}, and thus also the H*(I")-stability of 7.

We only prove the approximation property (3.62) for s € (1,3/2) as the case s € [0, 1] is covered by
standard properties of the Scott-Zhang operator.

Case 1 <t < s < 3/2: we observe with the stability properties of 7, and the approximation properties
of I h

N N
lu — Tnull ey ~ Z lu — Tnull gy S A5 Z [l s (o) ~ B Nl sy - (3.65)
) i=1

Case t = 0: we observe with the stability properties of /5, and the approximation properties of I,

N N
lu — Tnhull L2y ~ Z lu — Tnull L2,y S P° Z lull s,y ~ B2 l[ullms ). (3.66)
=1 =1

Case 0 < t < 1: The remaining cases are obtained with the aid of an interpolation inequality:

- . (3.66),(3.65) (1—t) 3 (s—1)t -t
lw = Inullgery S llu = Tnullps F)HU —Inullgpy S RTTURT  ullgs ey = B ful s s

which concludes the proof. U

Lemma 3.16 Let Assumption 2 hold and B C B' C B" be nested boxes with d := dist(B,dB') =
dist(B’,0B") > 0 and h be sufficiently small so that the assumption of Proposition 3.13 holds. Let
u = K, with ¢, € SV (T,) and assume u € H}Y (B", ) for the box B" C B, (0) and some i € R.

LetT C BNT. Then,
|[’YOU]|H1(f) <C <haN ’Ch’Hl(F) + ”Ch”HW(F) + |M|> . (3.67)

The constant C > 0 depends only on 2, d, the 7-shape regularity of Tn, ||1ly1.0 (re), and the constants
appearing in Assumption 2.

Proof: Step 1: Splitting into near and far-field.

Let n € C§°(RY) be a cut-off function satisfying n = 1 on B’ and suppn C B”. We define the
near-field upear and the far field ug,, as potentials Upear = K vp — K vy, With K vy = Iﬁll fQ K Vh,

Ufar 1= I~(Vh — I?l/h, where vy, v, € SH1(T},) are BEM solutions of

Wop, ) = W —nz,¥n) Y, € SUH(TL)
Wup, ) = (L—n)W +nz,n) Vb, € SU(Th)

with (vp,1) = 0 = (v, 1). Here, z is a function with z = p on I' N B’ such that the compatibility
condition (nW ¢, —nz,1) = ((n — 1)W{, — nz,1) = 0 holds. Since (W ({},1) = 0 such a function
exists. More precisely, we choose z € L?(I') to be the piecewise constant function

i on 'N B,
z =

Wp,1)— i
MW Ch,1)—p frapr otherwise.
f(B”\B’)ﬁl"77
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The function vy, + v, solves
(W (vn + va), ¥n) = (Wh,thn) Vi € SUH(Th),

which implies vy, + vy, = (p, + ¢ for a constant c. Therefore, v := Upear + Ugar = u + Ke— f((vh + vp).
Since [yo K ¢] = c this implies

H’YOuHHl(f) = H’YOUHHl(f) S H'YOUnear”Hl(f) + H’Youfar”Hl(f) .

The definition of z and = 1 on B’ lead to

2 2
nW<h71 — K i W - 71
I =iy = [ n2<< ) = 1 Jr _M> - n2<<n G = 1) >>
(B"\B")nT" f(B//\B/)mF n (B"\B")Nr f(B"\B’)ﬁl" n
S WG, — ), DI

Consequently, we obtain

Iz = 1)l ey S 10OVG = 1), DS InW G = m)lg=1-o ) S B (IW Gl oy + 11l )

(3.68)

The last inequality follows from the orthogonality of W ¢}, to discrete functions in S**(7;,) on B” and
the arguments shown in (3.69) below (specifically: go through the arguments of (3.69) with z = p).

Step 2: Approximation of the near field.

Let 7}, denote the Scott-Zhang projection. The ellipticity of W on H'/2(I')/R and the orthogonality
(3.55) of W ¢, imply

nWCh_leyw
lonlgizgy S NW —nellgoeqy = sup )
werm2ry  wllgzm

(WCh,nw — Tn(nw)) — (nz, w) + p(Jh(nw),1)

T wemi Tz
_ sup W, nw = In(nw)) — (n(z — p), w) — p{nw — Jn(nw), 1)
weH/2(I) ”w||H1/2(F)
(HWChHL2(F) + W) Inw — Tn(nw)ll g2y + I0(z = ) =120y Nwll 22y
wel2(r) Tl

P2 (IW Gall ey + 1) + Iz = 1)l /2y

NG AN A

h'/? (HWChHLz(r) + !u!) : (3.69)

With the same arguments and Lemma 3.15 we may estimate
W G =2l -1 oy S B (IWGhlaqey + 1) + [ = llgrenry - (3.70)

Let v solve W1 = w — w for w € H*N(T). Then ¢y € H'tN(T'). Together with the mapping
properties of W from Lemma 3.5, (vp, 1) = 0, the definition of vy,, and the stability and approximation
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properties of 7;, from Lemma 3.15, we obtain

(vp, w) (vp, w — W)
Wopl gr-1-a < lvnll -« = sup ——"—F—= sup ———"
IWenlamew) Slonlamene) = S0 - Tallyen @y~ wemin Tellgo
[(on, Wip)| |(Won, b — Tnth) + (Wop, Tn))|
< sup ————"—=  sup
peH TN (T) ”wHHlJ“"N(F) YEHITAN(T) HT/’HHHQN(F)
oy L0VORG = T) + (VG — 2).5h)
YEHMN(T) ||w||H1+aN(I‘)
IWen 1720 19 — Tl rragey + 10V G — Dl -1 0y 1T s
S osup
WeH TN (I) HW‘HHQN(F)
(3.69),(3.70),(3.68)
SR (WG ey + ) (3.71)

With the mapping properties of W from Lemma 3.5, an inverse estimate, and (3.69) we obtain for
0<e<apn

Worllgey S lonllgieery S 2772 llvnll gy
(3.69) B
S 0 (WG ey + Iul)
< 8 (Ul + 1) - (3.72

We first consider 'y(i)ntunear - the case fySXt Upear 1 treated analogously. By construction of wye,y, we have

<8nuneara ¢h> = <_th7 ¢h> = <_77W<h + nz, wh>
= (Onu, Yp) + p (Y, 1) =0 Vo, € SYN(Th), suppyn € B'NT (3.73)

since z = p, 7 = 1 on supp v¥p,. Therefore, Uyesr € HQ/(B’ 0).

Let 7) be another cut-off function satisfying 7 = 1 on T and suppn C B. The multiplicative trace
inequality, see, e.g., [Mel05, Thm. A.2], implies for any ¢ < 1/2 that

in 2¢/(14-2¢) 1/(142
Y tnearl g1 7y S IV Ftmear) | 2y S 1V (Fetnean) 34y > 119 Fttnear) s et

S I Gtnear) 1575y > 1 tncarll 82220 - (3.74)

Since Upear € ’H{I\[ (B’,0), we may use the interior regularity estimate (3.55) with = 0 for the first
term on the right-hand side of (3.74). The second factor of (3.74) can be estimated using (3.12) of
Lemma 3.4. In total, we get for ¢ < ay < 1/2 that

2 1+2 1/(14+2
Hv(nunear)u 6/( + 2 ”77 nearH [(42e)

H3/2+S(B)
2e/(142¢) 1/(14+2¢)
S (h HvunearHLQ(B' + HunearHL2 B’ ) : (HunearHHl Byt HanunearHHE(F)>
2e/(142¢) 1/(142
12109 e )+ uncr G55 a5 3
2e/(142 1/(142¢) 2e/(142¢) 1/(1+2
+ unear 725 I 0l + B2 042 [ e 5 552 W0 15
=T +To+T5+ Ty (3.75)
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The mapping properties of K imply with (3.69) and (3.72)

(3.69)
Ty = 0102 el sy S W%/ fonll ey S B2 (Gl gy + i)
(3.76)

~

(3.72)
T = 1200 | Va4 557 W o157 22402 (il oy + )

We apply (3.11) - upear has mean zero - and since K vy, is smooth on 0Bpg,(0), we can estimate
||

to

< —a . Togeth ith (3.72), (3.71), and Y« ’s i lity this lead
H-o (9B () [[vnll gr-an (r)- Together with (3.72), (3.71), and Young’s inequality this leads

2 1 2 1 1 2
T = unearl| 7502 W on | e
(3.11),(3.72)

~ (1+2¢)
S, hfs/(1+2€) <HWU}'L”H—1—QN(F) + HKUh

2e/(142¢)
womomnoy) (1l + )

1 - (3.71) .
S0 (IWonlg=r-on oy + lonllz=on ) + 5 (Iallasry + o) S 0 + ) (1l oy + )

Similarly, we get for the second term in (3.75)

2e/(142¢) 1/(142
T2 HunearHLi/Bj)_ c ||Unea.r||H/1((§/)€)

(3.

11) ~ 2e/(1+2e)
< R/ (HWUhHH—l—aN(r) + HKU}ZH > :

H™*N(0Br,(0))

1/(142¢)
p(e+1/2)/(142¢) (||Ch||H1<F> Tl |)

S 072 (IW ol s (o) + Wonll = (o)) + 0725 (IGal1 ) + 1)
S (/e 25 (Gl oy + Ll ) -
Inserting everything in (3.75) and choosing € = a/y gives

%i)ntunear‘m(f) < (R2oN/(2aN)H1/2 | p1/2%an | pan | p2en/(142an)) (HChHﬂl(r) 4 w)
< 0 (Il oy + Iul) -

Applying the same argument for the exterior trace leads to an estimate for the jump of the trace

[otunear] sy S A (UG llzr gy + i) -

Step 3: Approximation of the far field.
We define the function v € H'/?(T) as the solution of

Wv=(1-n)W¢, +nz, (v, 1) =0.

Then, we have
(W —wn), ) =0 Voo, € SV(Th).
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Let Ty := Kv — Kv where Kv = 2 (K v, 1 and 7 be another cut-off function with 77 = 1
|Q‘ Lz(Q)

on T and supp 7 C B. Then, with the Galerkin projection II, the triangle inequality and the jump
conditions of K imply

H’Youfar”Hl(f) = WVh‘Hl(f) < |nvn — H(ﬁ”)‘Hl(f) + |H(ﬁV)‘H1(f) . (3.77)

The smoothness of Kv on §B R, (0) and the coercivity of W on H'/?(T) /R lead to

% Y PRt L PRy

We apply Lemma 3.4 with a cut-off function 7 satisfying 77 = 1 on B and supp7 C B’. Thenn = 1
and z = p on B’ imply 7j(1 — n) = 0 and 7nz = 7ju. The H'-stability of the Galerkin projection from
Lemma 3.14, a facewise trace estimate, and similar estimates as for the near field imply

|H(ﬁV)‘H1(f) S WV|H1(F) S ||afarHH3/2+E(B\F)
(3.12) N
S Ul grgnry + 10 =)W+ n2) || ey
< Nnallgn gy + I 17l oy
< B ~ _T
S A=Wl ooy By = Kool
S M@ =)W +nzllg-z@y + 1l S G2 wy + Iz = Wl g-12@) + |4l
(3.68)
S Ckllgzmy + lul- (3.78)

It remains to estimate the first term on the right-hand side of (3.77). With an inverse estimate and
Lemma 3.14 we get

v = W) ey S v — TG0 sy + B2 MGG — 70) gy
S hlvalgiey + G G7 M) /2y
< W2 lwnll g2y + W2 T (v, — )| gy - (3.79)
We use the abbreviation e, := v — vj. The ellipticity of W on H'/?(T')/R and the definition of the
Galerkin projection II imply
T @e) 1Ty S (W (T(@e)), T(Re,)) + [(T(Fe,), 1)
= (W(Il(7ey) — Tew), W(Tew)) + (W (Tey ), W(Tes)) + [(M(7ey ), 1)
= (W(ne,), (@ey)) + ey, 1) ((7ey), 1)
[(W (e ), 1 (new )| + (1€l g-1/2 0y IT@en) | iz -

With the commutator C; we get
(W(ney),I(ne,)) = <ﬁW(e,,) + Cgew, H(ﬁe,,)) .

The definition of the Galerkin projection and the super-approximation properties of the Scott-Zhang
projection J, lead to

(Wley),Mll(ne,)) = (Wiew),n(7e,) — Tn(1(7ey)))
W (e) | 172y 11 (77€r) — T (IL(77€))| 1721y
hllv = vall ey ILGE0) | a2 ry -

S
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For the term involving C;, we get

‘<Cﬁ(ev)a H(ﬁeu»‘ HCﬁ(ll - Vh)HH—O‘N(F) ”H(ﬁel/)HHl/?(F)

S
S v- VhHH*O‘N(I‘) HH(ﬁ@u)HHl/z(r)-

A duality argument implies [le, || oy ) < hl/2+an 1]l gr1/2 () for details we refer to the proof of
Corollary 2.7. Inserting everything in (3.79) leads to

fion =) ey S B2l ey + B2 v = nll ey + 5N Wl ey
S RN = WG+ 2l -2y S B (IGalloragey + lal)

Finally, this implies with (3.77) and (3.78) that

ol gy S (1 +AY) (IGallor2ey + L)

which proves the lemma. 0

Lemma 3.17 Lel p, @y, be solutions of (2.8), (2.9) and let I'y, T be subsets of ' withT'g C T CTand
R :=dist(Iy, 0I") > 0. Let h be sufficiently small such that at least % < & andn € CP(RY) be an

arbitrary cut-off function withn =1 on L'y, suppn NI C L. Then, we have

o=@l < O( it o=l +h lo = onlme) +

+lIn(e = en)ll gz + e = Prll-ew(ry )

with a constant C' > 0 depending only on T", Ty, f, d, R, and the ~y-shape regularity of Tp,.

Proof: We define e := ¢ — ¢p, subsets ['g C 'y C Ty CT's C 'y C f, and volume boxes By C B; C
By C By C By C R% where B; N T = T;. Throughout the proof, we use multiple cut-off functions
n € C§° (]Rd), i =1,...,4. These smooth functions n; should satisfy n; = 1 on I';_1, suppn C B;
and Vil oo,y S 7

We want to use Lemma 3.16. Since [1oK (] = ¢, € S%(75) for any discrete function ¢, € S*(75),
we need to construct a discrete function satisfying the orthogonality (3.55). Using the Galerkin orthog-
onality with test functions with support supp ¥, C I's and noting that 73 = 1 on supp ¢, we obtain

with the commutator C,,, defined in (3.14), the abbreviation 73C,,e = ﬁ (n3Cyye, 1), and the Galerkin
projection II from (3.58)

(We,maton) + (e, 1) (Yn, 1) = (m3We,¥p) + (e, 1) (¢n, 1)
(W(nse) — Cpge, ¥n) + (e, 1) (Yn, 1)
= <W 7]36 773C773€ "73C773€)77:Z)h> - <"73C7736 ¢h> + <€’ 1> <11Z)h, 1>
(
(

0 —
W (nse — W (n3Cyse — 13Cge))s o) — 773(37736 1) (Yn, 1) + (e, 1) (¥p, 1)

W (IT(13e) H(W1<nscnge—nscn3e>>>,wh>—|§ (n5Cases 1) (0, 1) + e, 1) (5, 1)
— (nge —II(nze), 1) (Yp, 1) . (3.80)
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Here and below, we understand the inverse W ~! as the inverse of the bijective operator W : H. ; & (I) :=

{ve HY2T) : (v,1) = 0} — H, V*(T") := {v € H-V2(") : (v,1) = 0}. Since W~ mapps into
H i /2 (T") no additional terms in the orthogonality (3.80) appear. Thus, defining

Ch = Tl(nze) — & with &, = TH(W ™ (n3Cpge — 13Cy5€)),
we get on a volume box B, C R? a discrete harmonic function

U = f((h € HQ[(BQ,M%

where 11 = (e, 1) — 11y (n3Cise, 1) — (13e — M(1p5e), 1).
With the Galerkin projection II from (3.58) and 773 = 1 on supp 77, we write
lell gy S llmell gy S lm(nse = Wmse))ll g ey + ImCall ey + Iménllgry - 3.8

Lemma 3.14 leads to
Inse = (nse) | grry S Pllmaenll gy + Imaell gy < B lnaell gy + (b + 1) Inaol| gy (3-82)

Using the H!-stability of the Galerkin projection II, the mapping properties of W ! and Cy; as well as
Lemma 3.6, the correction &y, can be estimated by

HH(WA(WCﬁse - WTBe))HHl(F) S HWﬁl(ni%Cnse - 773677736)"1{1(1“)

S H773C773€ - mum(r) S ||773C7736||L2(r)

S NCos mse)ll 2y + IG5l Loy

S ”773€||L2(r) + ||e||H*°‘N(1") : (3.83)
For the second term on the right-hand side of (3.81) we have |71l 1 (1) < 111 VGl 20y +IChll 2y
We apply Lemma 3.16 to u = I?Ch € ’H{l\[(BQ, ) and obtain

ImVenllzary < 1Sy = [hou)l gy
S PN Gkl gy + Gl ey + el - (3.84)
The H'-stability of the Galerkin-projection from Lemma 3.14 and (3.83) lead to

16l ey S Imsellz ey + llellg—an (3.85)

as well as
Chll 2 ey S lImsell ey + llel g—an ry - (3.86)

With the estimate [{e,1)| < |[l€|[ -y ) and previous arguments (using (3.83), Lemma 3.14, and
Lemma 3.6), we may estimate

lul S llellg-an oy + lImsell gz + lInsell g2y - (3.87)

Inserting (3.85)—(3.87) in (3.84), we arrive at

ImCullgr ey S ImVGllzwy + ISl 2y < AN <H773€||H1(r) + ”eHH*O‘N(F))

el oy + el a-on )
<R el gy + el ey + el -an 13-88)
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Combining (3.82), (3.83), and (3.88) in (3.81), we finally obtain

lellgiwryy S Pllmaellgr oy + Imaell gy + 2 lel i @) + llmaell gz ey + el g-on )
S el + B el ey + Imaell gy + llellg-an ) -
Since we only used the Galerkin orthogonality as a property of the error e, we may write ¢ — ¢ =

(@ — xn) + (xn — n) for arbitrary x;, € SV1(T;,) with supp x5, C I and we have proven the claimed
inequality. U

Proof of Theorem 2.6: Starting from Lemma 3.17, it remains to estimate the terms and
hN 1@ = onl g ) and [19(e = on)ll a2 7)-

The terms are treated as in the proof of Theorem 2.2. Rather than using the operator I, o J.;, we may
use the Scott-Zhang projection. g

Proof of Corollary 2.7: The assumption ¢ € H/2+%(I') 0 H'*(T) leads to
Xhegl’fl(ﬁ) o — Xh”Hl(f) < h? H‘P”Hwﬁ(f)
H€HH1/2(F) SENC H%D||H1/2+a(r) )
where the second estimate is the standard global error estimate for the Galerkin BEM applied to the
hyper-singular integral equation, see [SS11].

For the remaining term, we use a duality argument. Let 1) solve Wi = w —w € H*N(T'), (¢, 1) =0,
where W = ﬁ (w,1). Then v € H'T*N(T), and since (e, 1) = 0, we get with the Scott-Zhang
projection J and Lemma 3.15

H€H _ <67w> _ (e,w—@) < ‘(6, W¢>|
H-oN(T) — sup 7” ‘ = sup T S sup —_—
weHN () ||W |H‘1N(F) wEH*N (I) ”wHHaN(r) YeH TN (I) WHHHW(F)
_ ’<W671/}_\.7h1/}>‘
= sup

YpeHITAN(T) ’WHHH&N(F)
< sup IWell g2y 190 = Tnll gi/2ry
~ yeHITAN(T) ||¢||H1+QN(F)

< pl/2+atan H<P”H1/2+DC(F) .

S RPN le]| ey

Therefore, the term of slowest convergence has an order of @ (h™ir{1/2+atan.A}) which proves the
Corollary. 0

4 Numerical Examples

In this section we provide some numerical examples to underline the theoretical results of Section 2.

We only consider Symm’s integral equation on quasi-uniform meshes. Provided the right-hand side
and the geometry are smooth enough, it is well-known, that the lowest order boundary element method
in two dimensions converges in the energy norm with the rate N~3/2, where N denotes the degrees
of freedom. In our examples we will consider problems, where the rate of convergence with uniform
refinement is reduced due to singularities.
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In order to compute the error between the exact solution and the Galerkin approximation, we prescribe
the solution u(r, §) = r* cos(af) of Poisson’s equation in polar coordinates. Then, the normal deriva-
tive ¢ = 0,u of w is the solution of

Vo = (K +1/2)yu.

The regularity of ¢ is determined by the choice of . In fact, we have ¢ € H~ /> *=¢(I"), ¢ > 0, and
locally ¢ € H 1(f) for all subsets I' C T that are a positive distance away from the singularity at the
origin.

The lowest order Galerkin approximation to ¢ is computed using the MATLAB-library HILBERT
([AEF*14]), where the errors in the L?-norm are computed using two point GauB-quadrature. The error
in the local H~'/2-norm is computed with erH?{,l/g(F) ~ (V(xe), xe), where  is the characteristic
function for a union of elements I'g C T'.

4.1 Example 1: L-shaped domain
We start with examples in two dimensions on a rotated L-shaped domain visualized in Figure 1.

041
031
021

011

011
-0.2|

-0.3F

Figure 1: L-shaped domain, local error computed on red part.

On the L-shaped domain, the dual problem permits solutions of regularity H'/6—¢ (T") for arbitrary

€>0,sowehaveaD:%—€.

Figure 2 shows the global convergence rate in the energy norm (blue) as well as the local convergence
rates on the red part of the boundary (I'y, union of elements) in the L?-norm (red) as well as the H —1/2_
norm (brown). The black dotted lines mark the reference curves of order N —? for various 8> 0.

In the left plot of Figure 2 we chose o = %, which leads to o + ap = % — ¢ and, indeed, we observe
convergence in the local L?-norm of almost order 1, which coincides with the theoretical rate obtained
in Corollary 2.3. The error in the local H~'/2-norm is smaller than the error in the L?-norm, but does
converge with the same rate, i.e., an improvement of Theorem 2.2 in the energy norm is not possible.
The right plot in Figure 2 shows the same quantities for the choice o = %. Obviously, in this case the
rates of convergence are lower, and the local L?-error does not converge with the best possible rate of
one, but rather with the expected rate of N—19/24 = N—1/2=a=ap a5 predicted by Corollary 2.3.

4.2 Example 2: Z-shaped domain

For our second example, we change the geometry to a rotated Z-shaped domain visualized in Figure 3.
Here, the dual problem permits solutions of regularity H*P (I") with ap = ﬁ —e.
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Figure 2: Local and global convergence of Galerkin-BEM for Symm’s equation, L-shaped domain,

o= % (left), o = é, loc = % (right).

o4 -03 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Figure 3: Z-shaped domain, local error computed on red part.

We again observe the expected rate of N~ for the global error in the energy norm in Figure 4.
However, in contrast to the previous example on the L-shaped domain, we do not obtain a rate

of one for the local error in the L2-norm for the case a@ = %, but rather a rate of N 19/ 21 since
2 +ap+a =12 —e. For the choice o = %, we observe a rate of O(N~Y2=1/14=1/8y — O(N—39/56),

which once more matches the theoretical rate of N—1/2—a—ap,
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