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WAVE NUMBER-EXPLICIT ANALYSIS FOR GALERKIN

DISCRETIZATIONS OF LOSSY HELMHOLTZ PROBLEMS∗

JENS M. MELENK† , STEFAN A. SAUTER‡ , AND CÉLINE TORRES ‡

Abstract. We present a stability and convergence theory for the lossy Helmholtz equation and
its Galerkin discretization. The boundary conditions are of Robin type. All estimates are explicit
with respect to the real and imaginary part of the complex wave number ζ ∈ C, Re ζ ≥ 0, |ζ| ≥ 1.
For the extreme cases ζ ∈ iR and ζ ∈ R≥0, the estimates coincide with the existing estimates in the
literature and exhibit a seamless transition between these cases in the right complex half plane.
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AMS subject classifications. 35J05, 65N30, 65N12

1. Introduction. For many problems in time-harmonic acoustic scattering, the
Helmholtz equation serves as a model problem, and its numerical discretization is a
topic of vivid research. For homogeneous, isotropic material the differential operator
is given by

Lζu := −∆u+ ζ2u,

where ζ = Re ζ+i Im ζ =: ν−k i with ν > 0 and k ∈ R denotes the wave number. The
solution is highly oscillatory if |Im ζ| ≫ 1, which makes the discretization challenging
with respect to both, stability and accuracy. To study this problem systematically
the case of purely imaginary wave numbers ζ = − i k, k ∈ R, has often been used
in the literature as a model problem for designing and analyzing numerical methods.
However, in many applications waves are damped, e.g., by friction and viscoelastic
effects in the material or loss via sound radiation or flow of vibration energy out of
the physical scatterer (see, e.g., [18]).

Another important application is the approximation of the inverse Laplace trans-
form by contour quadrature where the Helmholtz operator has to be discretized at
many complex frequencies in the right complex half plane (see, e.g., [5]).

For the two extreme cases ζ = − i k and ζ = ν, k ∈ R, ν ∈ R≥0, a fairly complete
theory for standard Galerkin hp-finite elements is available and the error estimates
are explicit with respect to the wave number ζ, the mesh width h of the finite element
mesh, and the polynomial degree p: a) For ζ = − i k and large |k| the problem is
highly indefinite and a “resolution condition” of the form

|k|h
p

≤ C together with p ≥ C log |k|

has to be imposed in order to ensure solvability of the Galerkin equations and quasi-
optimality ([9, 10, 8, 2]); b) for ζ = ν > 0 and ν = O (1), the problem is properly
elliptic and Céa’s lemma ensures well-posedness and quasi-optimality without any
resolution condition; c) for ζ = ν ≫ 1, the solution exhibits boundary layers. Al-
though the Galerkin discretization is always well-posed in this last situation, special
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meshes should be used that are adapted to the boundary layers (see, e.g., [11, 16, 7]
and references there). In this paper, we will develop a unified theory for Galerkin
discretizations of Lζ with Robin boundary conditions that is applicable for all ζ ∈ C,
Re ζ ≥ 0, and |ζ| ≥ 1. All estimates are explicit in terms of Re ζ and Im ζ and re-
produce the limiting cases of purely real and imaginary ζ. It is shown that, for the
sectorial case, i.e., the wave number lies in a sectorial neighborhood of the real axis
in the right complex half plane, well-posedness and quasi-optimality is a consequence
of coercivity while for Re ζ → 0 the estimates tend continuously to the purely imag-
inary case ζ = − i k. We follow the general theory developed in [9, 10] and refine
the estimates to be explicit with respect to the real and imaginary part of the wave
number.

The paper is structured as follows. In Sect. 2 we introduce the Helmholtz model
problem with Robin boundary conditions and formulate some geometric and algebraic
assumptions on the data. Further, we define for the wave number the (well-behaved)
sectorial and the (more critical) non-sectorial region.

The estimate of the continuity constant for the sesquilinear form is derived in
Sect. 3. Sect. 4 is devoted to the analysis of the inf-sup constant for the continuous
sesquilinear form. If the real part of the wave number is positive the estimate follows
simply from the coercivity of the sesquilinear form. However, this bound degenerates
as Re ζ → 0. This can be remedied by a different proof: first one uses suitable test
functions to derive stability estimates for an adjoint problem with L2 right-hand sides
and then by employing this result for the estimate of the inf-sup constant in a vicinity
of the imaginary axis.

The key role for the analysis of the Galerkin discretization is played by a regular
decomposition of the Helmholtz solution. In Sect. 5, we introduce a splitting of the
Helmholtz solution into a part with (low)H2-regularity and wave number-independent
regularity constant and an analytic part with a more critical wave number dependence.
First, this is derived for the full space solution by generalizing the results for purely
imaginary frequencies in [9]. In the case of bounded domains, we generalize the itera-
tion argument in [10, Sect. 4] to general complex frequencies. In addition, this requires
sharp estimates of frequency-depending lifting operators which we also present in this
section.

Sect. 6 is devoted to the estimate of the discrete inf-sup constant for the standard
Galerkin discretization of the Helmholtz equation. We will derive two type of esti-
mates: one requires that the finite dimensional space for the Galerkin discretization
satisfies a certain resolution condition and allows for robust (as Re ζ → 0) stability
and quasi-optimal convergence estimates; the other one avoids a resolution condition
while the constants in the estimates tend towards ∞ as Re ζ → 0 but stay robust
for the sectorial case. Numerical examples in Sect. 7 illustrate the application of our
analysis in the context of hp-FEM.

2. Setting. We consider the Helmholtz problem

−∆u+ ζ2u = f in Ω,

∂nu+ ζu = g on Γ := ∂Ω,
(2.1)
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for f ∈ L2(Ω) and g ∈ L2(Γ). We assume that the wave number (frequency) ζ
satisfies1

(2.2) ζ ∈ C
◦
≥0 := {ζ ∈ C≥0 | |ζ| ≥ 1} ,

where, for ρ ∈ R,

C>ρ := {ξ ∈ C | Re ξ > ρ} and C≥ρ := {ξ ∈ C | Re ξ ≥ ρ} .

Note that the choice ζ = − i k leads to the standard Helmholtz case. The frequency
domain C◦

≥0 is split into the sectorial and non-sectorial cases

Sβ := {ξ ∈ C
◦
≥0 : |Im ξ| < βRe ξ},

Sc
β := {ξ ∈ C

◦
≥0 : |Im ξ| ≥ βRe ξ}

for some β > 0. Our focus is on the derivation of stability and error estimates that are
explicit in the real and imaginary part of ζ but less on the development of a theory
with minimal assumptions on the geometry of the domain. In this light we impose
the following simplifying assumption.

Assumption 2.1. Ω ⊂ R3 is a bounded domain with analytic boundary that is
star-shaped with respect to a ball.

We note that our results can be extended to convex polygonal domains in a
straightforward way following the arguments in [10].

Let L2 (Ω) denote the usual Lebesgue space with scalar product denoted by (·, ·)
(complex conjugation is on the second argument) and norm ‖·‖L2(Ω) := ‖·‖ := (·, ·)1/2.
Let V = H1 (Ω) denote the usual Sobolev space and let γ0 : H1 (Ω) → H1/2 (Γ) be
the standard trace operator. We introduce the sesquilinear forms

a0,ζ (u, v) := (∇u,∇v) +
(
ζ2u, v

)
∀u, v ∈ V,

and

bζ (γ0u, γ0v) := (ζγ0u, γ0v)Γ ∀u, v ∈ V,

where (·, ·)Γ is the L2 (Γ) scalar product.
The weak formulation of the Helmholtz problem with Robin boundary conditions

(2.1) is given as follows: For F = (f, ·) + (g, γ0·)Γ ∈ V ′, we seek u ∈ V such that

(2.3) aζ (u, v) := a0,ζ (u, v) + bζ (γ0u, γ0v) = F (v) ∀v ∈ V.

In the following, we will omit explicitly writing the trace operator γ0 when it is clear
that it is implied.

3. The Continuity Constant. In this section, we will estimate the continuity
constant of the sesquilinear form aζ (·, ·). We equip the Sobolev space V with the
indexed norm ‖·‖|ζ|, where, for ρ > 0, we set

(3.1) ‖u‖ρ,Ω = ‖u‖ρ :=
(
‖∇u‖2 + ρ2 ‖u‖2

)1/2
.

1The condition |ζ| ≥ 1 can be replaced by |ζ| ≥ ρ0 for any ρ0 > 0. However, the constants in
our estimates, possibly, deteriorate as ρ0 → 0.
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More generally, for measurable subsets T ⊂ Ω we write

‖u‖ρ,T :=
(
‖∇u‖2L2(T ) + ρ2‖u‖2L2(T )

)1/2

The L2-norm on Γ is denoted by ‖ · ‖Γ. On H1/2(Γ) we introduce the weighted norm

(3.2) ‖g‖Γ,ρ :=
(
‖g‖2H1/2(Γ) + ρ‖g‖2Γ

)1/2
,

for ρ > 0.

Theorem 3.1. The sesquilinear form aζ is continuous and

(3.3) |aζ (u, v)| ≤ (1 + Cb) ‖u‖|ζ| ‖v‖|ζ| ∀u, v ∈ H1 (Ω)

with Cb independent of ζ ∈ C≥0.

Proof. The continuity estimate for the sesquilinear form bζ (·, ·) is a simple con-
sequence of the multiplicative trace inequality (see [4, p.41, last formula])

(3.4) ‖γ0u‖Γ ≤ Ctrace ‖u‖1/2 ‖u‖1/2H1(Ω) .

Hence

(3.5)
√
|ζ| ‖γ0u‖L2(Γ) ≤ Ctrace (|ζ| ‖u‖)1/2 ‖u‖1/2H1(Ω) ≤ C ‖u‖|ζ| ,

which implies the continuity of bζ (·, ·)

(3.6) |bζ (γ0u, γ0v)| ≤ Cb ‖u‖|ζ| ‖v‖|ζ| ∀u, v ∈ H1 (Ω)

for a constant Cb independent of ζ ∈ C◦
≥0 and u, v.

4. The Inf-Sup Constant of aζ (·, ·). Our goal in this section is to estimate
the inf-sup constant

(4.1) γζ := inf
u∈V

sup
v∈V

|aζ (u, v)|
‖u‖|ζ| ‖v‖|ζ|

,

which implies well-posedness of (2.3). This involves two different theoretical tech-
niques: In Sect. 4.1 we consider the case Re ζ > 0 and obtain estimates from the
coercivity of the sesquilinear form. These estimates give stable bounds for the secto-
rial case but deteriorate as Re ζ → 0 in the non-sectorial case. In Sect. 4.2 we employ
the sesquilinear form with a suitably selected test function and obtain sharp estimates
also for the non-sectorial case.

4.1. The Inf-Sup Constant for Re ζ > 0. The estimate of the inf-sup constant
in the following Lemma 4.1 is a direct consequence of the technique used in [1].

Lemma 4.1. Let Ω ⊂ R3 be a bounded Lipschitz domain and let ζ ∈ C◦
>0. Then

the inf-sup constant γζ of (4.1) for the sesquilinear form aζ (·, ·) (cf. (2.3)) satisfies

(4.2) γζ ≥ Re ζ

|ζ| .

For every F ∈ V ′, problem (2.3) has a unique solution. In particular if there are
f ∈ L2 (Ω), g ∈ L2 (Γ) such that F (v) = (f, v) + (g, v)Γ, then the solution u satisfies

(4.3) ‖u‖|ζ| ≤
1

Re ζ

(
‖f‖+ C

√
|ζ| ‖g‖Γ

)
.
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Proof. We follow the idea of the proof in [1]. We choose v = ζ
|ζ|u. For the

sesquilinear form with Robin boundary conditions we have

Re aζ

(
u,

ζ

|ζ|u
)

=
Re ζ

|ζ| ‖u‖2|ζ| + |ζ| ‖u‖2Γ ≥ Re ζ

|ζ| ‖u‖2|ζ| .

The positivity of the inf-sup constant γζ implies unique solvability (see, e.g., [12,
Thm. 2.1.44]; the above argument can be used to show [12, (2.34b)]). We obtain

‖u‖|ζ| ≤
|ζ|
Re ζ

sup
v∈H1(Ω)\{0}

|F (v)|
‖v‖|ζ|

≤ |ζ|
Re ζ

(
‖f‖
|ζ| + ‖g‖L2(Γ) sup

v∈H1(Ω)\{0}

‖v‖Γ
‖v‖|ζ|

)
.

A multiplicative trace inequality in the form of (3.5) leads to (4.3).

Lemma 4.2. Let Ω ⊂ R3 be a smooth domain that is star-shaped with respect to
a ball or let Ω be a convex polyhedron. Let the functional F ∈ V ′ be of the form
F (v) = (f, v) + (g, v)Γ with f ∈ L2 (Ω) and g ∈ L2 (Γ). Then, problem (2.3) has a
unique solution and satisfies

(4.4) ‖u‖|ζ| ≤ CS

(
1

1 + Re(ζ)
‖f‖+ 1√

1 + Re(ζ)
‖g‖Γ

)

for some CS independent of ζ ∈ C◦
≥0.

Remark 4.3. In [3], a stability estimate is proved that is related to (4.4) if Re ζ
is sufficiently small. For ζ ∈ Sc

β , the estimate (4.4) is non-degenerate for Re ζ → 0 in
contrast to (4.2) and the result in [3].

Proof. Without loss of generality, we assume that Ω is star-shaped with respect
to the origin. We will fix a parameter β > 1 sufficiently large at the end of the proof.
We distinguish between two cases.

Case a: ζ ∈ Sβ. The condition |ζ| ≥ 1 leads to

Re ζ >
(
1 + β2

)−1/2 |ζ| ≥
(
1 + β2

)−1/2
(4.5)

and Lemma 4.1 becomes applicable:

γζ ≥ Re(ζ)

|ζ| ≥ 1√
1 + β2

,

which implies (4.4) for ζ ∈ Sβ.
Case b: ζ ∈ Sc

β. For Re ζ > 0, existence and uniqueness follows from Lemma 4.1
while the well-posedness in the case Re ζ = 0 is a consequence of [6, Prop. 8.1.3]. We
write ζ = Re ζ + i Im ζ =: ν − i k so that ζ ∈ Sc

β implies |k| ≥ βν for β > 1. First let

ν ≥ 1. We choose v = ζ
|ζ|u and consider the real part of (2.3), which yields

(4.6)
ν

|ζ| ‖∇u‖
2
+ ν|ζ|‖u‖2 + |ζ| ‖u‖2Γ ≤ |(f, u)|+ |(g, u)|.

Young’s inequality on the right-hand side leads to

|(f, u)|+ |(g, u)| ≤ 1

2ν|ζ| ‖f‖
2 +

ν|ζ|
2

‖u‖2 + 1

2|ζ| ‖g‖
2
Γ +

|ζ|
2
|u|2Γ.
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These two inequalities imply

‖∇u‖2 + |ζ|2
2

‖u‖2 + |ζ|2
2ν

‖u‖2Γ ≤ 1

2ν2
‖f‖2 + 1

2ν
‖g‖2Γ,

which is the desired (4.4) in view of ν ≥ 1.
The proof for ν < 1 is essentially a repetition of the arguments in the proof of

[6, Prop. 8.1.4] using the inequalities for three different test functions in (2.3) and
Young’s inequality. For completeness, we show the relevant inequalities. The first
test function is v = u yielding, after taking the real part,

(4.7) ‖∇u‖2 − (k2 − ν2)‖u‖2 + ν‖u‖2Γ ≤ |(f, u)|+ |(g, u)Γ|.
Next we choose v = − sign(k)u and consider the imaginary part to get

(4.8) 2|k|ν‖u‖2 + |k|‖u‖2Γ ≤ |(f, u)|+ |(g, u)Γ|.
As a last test function we use v (x) = 〈x,∇u (x)〉; note that the assumptions on the
domain imply via elliptic regularity theory that v ∈ V . Integration by parts yields
with d = 3 (we write d to indicate the generalization to arbitrary spatial dimension
d)

Re aζ (u, v) = Re
(
(∇u,∇〈x,∇u〉) + ζ2 (u, 〈x,∇u〉) + ζ (u, 〈x,∇u〉)Γ

)

= ‖∇u‖2 + 1

2

(
x,∇

(
‖∇u‖2

))
+Re

(
ζ2 (u, 〈x,∇u〉) + ζ (u, 〈x,∇u〉)Γ

)

=

(
1− d

2

)
‖∇u‖2 + 1

2

(
〈x, n〉 , ‖∇u‖2

)

Γ
+
d
(
k2 − ν2

)

2
‖u‖2

+

(
ν2 − k2

)

2
(〈x, n〉 u, u)Γ +Re (ζ (u, 〈x,∇u〉)Γ) + 2νk Im (u, 〈x,∇u〉)

≤ |(f, 〈x,∇u (x)〉)|+ |(g, 〈x,∇u (x)〉)Γ|.
Rearranging yields

d(k2 − ν2)

2
‖u‖2 + 1

2
(〈x, n〉, |∇u|2)Γ ≤

(
d

2
− 1

)
‖∇u‖2 + k2

2
(〈x, n〉|u|2)Γ(4.9)

+ |ζ|‖u‖Γ‖〈x,∇u〉‖Γ + 2νk‖u‖‖〈x,∇u〉‖+ |(f, 〈x,∇u〉)|+ |(g, 〈x,∇u〉)Γ|.
We remark that (4.8) and (4.7) give

k‖u‖2Γ
(4.8)

≤ |(f, u)|+ ‖g‖Γ‖u‖Γ ≤ |(f, u)|+ 1

2k
‖g‖2Γ +

k

2
‖u‖2Γ,(4.10)

‖∇u‖2 ≤ (k2 − ν2)‖u‖2 + |(f, u)|+ |(g, u)Γ|,(4.11)

which allows for controlling ‖u‖Γ and ‖∇u‖ in terms of k‖u‖ and the data f , g:

k‖u‖2Γ ≤ 2

k
‖f‖(k‖u‖) + 1

k
‖g‖2Γ,(4.12)

‖∇u‖2 ≤ (k2 − ν2)‖u‖2 + 3

k
‖f‖(k‖u‖) + 2

k
‖g‖2Γ.(4.13)

Since Ω is assumed to be star-shaped, one has 0 < c1 ≤ 〈x, n(x)〉 ≤ c2 for all x ∈ Γ.
Inserting this and (4.13) into (4.9) gives with c3 = diamΩ

(k2 − ν2)‖u‖2 + c1
2
‖∇u‖2Γ ≤ k2

c2
2
‖u‖2Γ +

(
d

2
− 1

)(
3

k
‖f‖k‖u‖+ 2

k
‖g‖2Γ

)

+ |ζ|‖u‖Γ‖〈x,∇u〉‖Γ + 2νk‖u‖‖〈x,∇u〉‖+ |(f, 〈x,∇u〉)| + |(g, 〈x,∇u〉)Γ|.
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The proof can be completed with suitable applications of Young’s inequality, use of
(4.12), (4.13), and selecting β sufficiently large to treat the term νk‖u‖‖〈x,∇u〉‖ ≤
c3νk‖u‖‖∇u‖.

4.2. The Inf-Sup Constant of aζ (·, ·) for ζ ∈ Sc
β. In the following Theo-

rem 4.4 we will prove an alternative estimate (compared to (4.2)) for the inf-sup
constant that is robust as Re ζ → 0. To estimate this constant we employ the stan-
dard ansatz u ∈ V and v = u+ z for some z ∈ V . Then

aζ (u, u+ z) = ‖u‖2|ζ| + aζ (u, z) + bζ (γ0u, γ0u) +
(
ζ2 − |ζ|2

)
‖u‖2 .

The choice of z will be related to some adjoint problem.the next section.

Theorem 4.4. Let Ω ⊂ R3 be a smooth domain that is star-shaped with respect
to a ball or let Ω be a convex polyhedron. Then there exists a constant c > 0 such that
for all ζ ∈ C◦

≥0 the inf-sup constant γf of (4.1) satisfies

γζ ≥ 1

1 + c |Im ζ|
1+Re ζ

.

Proof. Let ν = Re ζ and k = − Im ζ and set σ = 1/
√
2. First, we consider the

case ζ ∈ C◦
≥0 with ν ≥ σ.

From Lemma 4.1 we have for any ζ ∈ C◦
≥σ the estimate

γζ ≥ Re ζ

|ζ| =
1√

1 +
(
k
ν

)2 ≥ 1

1 + |k|
ν

≥ 1

1 + c |k|
ν+1

for c = 1 +
√
2.

It remains to consider the case ζ ∈ C◦
≥0 with ν < σ. Let u, z ∈ V and set

v = u+ z. Then

(4.14) aζ (u, v) = ‖u‖2|ζ| +
(
ζ2 − |ζ|2

)
‖u‖2 + ζ (u, u)Γ + aζ (u, z) .

We consider the adjoint problem: find z ∈ V such that

(4.15) aζ (z, w) = α2 (u,w) ∀w ∈ V with α2 := |ζ|2 − ζ
2
= −2k i ζ,

which is well-posed according to Lemma 4.2 and satisfies

‖z‖|ζ| ≤ CS |α|2 ‖u‖ = 2CS |kζ| ‖u‖ ≤ 2CS |k| ‖u‖|ζ| .

For this choice of z, we consider the real part of (4.14) and obtain

Reaζ (u, v) ≥ ‖u‖2|ζ| + ν ‖u‖2Γ ≥ ‖u‖2|ζ| .

Hence

‖v‖|ζ| ≤ (1 + 2CS |k|) ‖u‖|ζ|
and

γζ ≥ 1

1 + 2CS |k| ≥
1

1 + c̃ |k|
ν+1

for 0 ≤ ν ≤ σ.
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5. Regular Decomposition of the Helmholtz Solution. In this section,
we develop a regular decomposition of the solution of the Helmholtz problem (2.1)
based on a frequency splitting of the right-hand side. The frequency splitting for
functions defined on the full space R3 is defined via their Fourier transform (Sect.
5.1). For functions defined on finite domains, we derive the regular splitting using
a lifting operator (Sect. 5.3). This generalizes the theory developed in [9, 10] to
complex frequencies and the resulting estimates are explicit with respect to the real
and imaginary part of the wave number.

5.1. The Full Space Adjoint Problem for ζ ∈ Sc
β. The first result concerns

the adjoint problem for the full space Ω = R3. Let φ ∈ L2 (Ω) be a function with
compact support. We choose R > 0 sufficiently large so that the open ball BR with
radius R centered at the origin contains suppφ. We consider the problem

(−∆+ ζ2)z = φ in R
3,

∣∣∣∣
〈

x

‖x‖ ,∇z (x)
〉
+ ζz (x)

∣∣∣∣ = o
(
‖x‖−1

)
as ‖x‖ → ∞.

(5.1)

To analyze this equation we employ Fourier transformation and introduce a cutoff
function µ ∈ C∞ (R≥0) satisfying :w

(5.2)

suppµ ⊂ [0, 4R] , µ|[0,2R] = 1, |µ|W 1,∞(R≥0) ≤
Cµ

R
,

∀x ∈ R≥0 : 0 ≤ µ (x) ≤ 1, µ|[4R,∞[ = 0, |µ|W 2,∞(R≥0) ≤
Cµ

R2
.

The fundamental solution to the Helmholtz operator Lζu = −∆u+ ζ2u in R3 is
given by

G (ζ, x) := g (ζ, ‖x‖) with g (ζ, r) :=
e−ζr

4πr
.

It satisfies
∣∣∣∣
〈

x

‖x‖ ,∇xG (ζ, x)

〉
+ ζG (ζ, x)

∣∣∣∣ = o
(
‖x‖−1

)
for ‖x‖ → ∞

so that z is given by z = G(ζ) ∗ φ. Define M (x) := µ (‖x‖) and

zµ (x) :=
(
G
(
ζ
)
M
)
∗ φ :=

∫

BR

G
(
ζ, x− y

)
M (x− y)φ (y) dy ∀x ∈ R

3.

The properties of µ ensure zµ|BR = z|BR . To analyze the stability and regularity of
zµ we introduce a frequency splitting of the solution zµ = zH2 + zA that depends on
the complex frequency ζ ∈ C≥0 and a parameter λ ≥ λ0 > 1.

Lemma 5.1. Let φ ∈ L2
(
R3
)
such that suppφ is contained in a ball BR := BR(0)

of radius R > 0 centered at the origin, and let µ be a cutoff function satisfying (5.2).
Then there exists a constant C > 0 depending only on R and µ such that the solution
z = G

(
ζ
)
∗ φ of (5.1) and zµ :=

(
G
(
ζ
)
M
)
∗ φ satisfy z|BR

= zµ|BR
and

(5.3) ‖zµ‖|ζ| ≤
C

1 + Re ζ
‖φ‖ ∀ζ ∈ C≥0.
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Furthermore, for every λ ≥ λ0 > 1 and ζ ∈ C≥0 with Im ζ 6= 0 there exists a λ- and
ζ-dependent splitting zµ = zH2 + zA satisfying

‖∇pzH2‖ ≤ C′ λ

λ− 1

( |ζ|
Im ζ

)2

(λ |Im ζ|)p−2 ‖φ‖ ∀p ∈ {0, 1, 2},(5.5)

‖∇pzA‖ ≤ C′ 1 + |ζ|
1 + Re ζ

(√
3λ |Im ζ|

)p−2

‖φ‖ ∀p ∈ N0.(5.6)

Here, |∇pzA| stands for a sum over all derivatives of order p (see (5.16)). The
constant C′ depends only on λ0, R, and µ.

Remark 5.2. As the estimates in Lemma 5.1 degenerate for Im ζ → 0, we will
employ Lemma 5.1 for ζ ∈ Sc

β for fixed β > 0. Then |Im ζ| ≥ βRe ζ and we have

(5.7) |Im ζ| ≤ |ζ| ≤ C̃ |Im ζ| with C̃ :=

√
1 + β2

β
.

In particular, ζ ∈ Sc
β implies Im ζ 6= 0.

Proof. For ζ ∈ C≥0, we set ν = Re ζ and k = − Im ζ. In order to construct the
splitting z = zH2+zA, we start by recalling the definition of the Fourier transformation
for functions with compact support

ŵ (ξ) = F (w) = (2π)−d/2
∫

Rd

e− i〈ξ,x〉 w (x) dx ∀ξ ∈ R
d

and the inversion formula

w (x) = F−1 (w) = (2π)−d/2
∫

Rd

ei〈x,ξ〉 ŵ (ξ) dξ ∀x ∈ R
d.

Next, we introduce a frequency splitting of a function w ∈ L2 (Ω) depending on ζ and
a parameter λ > 1 by using the Fourier transformation. The low- and high-frequency
part of w is given by

(5.8) LR3w := F−1
(
χλ|k|F (w)

)
and HR3w := F−1

((
1− χλ|k|

)
F (w)

)

where χδ is the characteristic function of the open ball with radius δ > 0 centered at
the origin.

We construct a decomposition of zµ

(5.9) zµ = zH2 + zA.

as follows: We decompose the right-hand side φ in (5.1) via

(5.10) φ = φ|k| + φc|k| = LR3φ+HR3φ.

Accordingly, we define the decomposition of zµ by

(5.11) zH2 :=
(
G
(
ζ
)
M
)
⋆ φc|k| and zA :=

(
G
(
ζ
)
M
)
⋆ φ|k|.

The Fourier transform of G
(
ζ, ·
)
M is given by

(
̂G
(
ζ, ·
)
M

)
(ξ) = σ

(
ζ, ‖ξ‖

)
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with

σ (ζ, s) = (2π)−3/24π

∫ ∞

0

g (ζ, r) µ (r) r2
sin (rs)

rs
dr.

In the following we will analyze the symbol σ (ζ, ·). We have:

|sσ (ζ, s)| = (2π)−3/2

∣∣∣∣
∫ ∞

0

e−ζr µ (r) sin (rs) dr

∣∣∣∣

≤ (2π)−3/2

∫ 4R

0

e−νr dr = 4R

√
2

π
E0 (4Rν)

with E0 (t) :=
1−e−t

t ≤ C0

1+t . Applying integration by parts leads to

σ (ζ, s) = (2π)−3/2

∫ ∞

0

e−ζr µ (r)
sin (rs)

s
dr

= (2π)−3/2 1

ζ

∫ ∞

0

e−ζr ∂r

(
µ (r)

sin (rs)

s

)
dr

= (2π)−3/2 1

ζ

∫ ∞

0

e−ζr

(
µ′ (r)

sin (rs)

s
+ µ (r) cos rs

)
dr.

This allows for the estimate

|σ (ζ, s)| = (2π)−3/2 1

|ζ|

∣∣∣∣
∫ ∞

0

e−ζr

(
µ′ (r)

sin (rs)

s
+ µ (r) cos rs

)
dr

∣∣∣∣

≤ (2π)−3/2 1

|ζ|

∫ 4R

0

e−νr

(
Cµ

R
r + 1

)
dr

≤ 4R(2π)−3/2 1

|ζ| (4CµE1 (4νR) + E0 (4Rν))

with

E1 (t) =
1− e−t(1 + t)

t2
≤ E2

0 (t) .

Hence,

|σ (ζ, s)| ≤ 4R(2π)−3/2E0 (4Rν)

|ζ| (1 + 4CµE0(4Rν)) .

Since E0 (t) ≤ 1 we end up with

|σ (ζ, s)| ≤ 4R (1 + 4Cµ) (2π)
−3/2E0 (4Rν)

|ζ| .

As a consequence, we have proved that

|ζ| ‖zµ‖ ≤ 4R (1 + 4Cµ)E0 (4Rν) ‖φ‖ ,
‖∂izµ‖ ≤ 4RE0 (4Rν) ‖φ‖

so that we have

‖zµ‖|ζ| ≤
√
2 + (1 + 4Cµ)

2 (16πR)E0 (4Rν) ‖φ‖ .
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This shows (5.3). In the following we estimate higher order derivatives. For the
product s2σ (s), we get

∣∣s2σ (ζ, s)
∣∣ = (2π)−3/2

∣∣∣∣
∫ ∞

0

e−ζr µ (r) s sin (rs) dr

∣∣∣∣

= (2π)−3/2

∣∣∣∣
∫ ∞

0

e−ζr µ (r) ∂r cos (rs) dr

∣∣∣∣

≤ (2π)−3/2

(∣∣∣∣
∫ ∞

0

cos (rs) ∂r
(
e−ζr µ (r)

)
dr

∣∣∣∣ + 1

)

≤ (2π)−3/2|ζ|
∣∣∣∣
∫ ∞

0

cos (rs) e−ζr µ (r) dr

∣∣∣∣

+ (2π)−3/2

(∣∣∣∣
∫ ∞

0

cos (rs) e−νr µ′ (r) dr

∣∣∣∣ + 1

)

=: T I + T II.

The estimates

T I ≤ (2π)−3/24RE0 (4Rν) |ζ|,(5.12)

T II ≤ (2π)−3/24CE0 (4Rν)(5.13)

follow from the properties of µ (cf. (5.2)). As a simple consequence we obtain for
m ≥ 2

(5.14)
∣∣s2σ (ζ, s)

∣∣ ≤ (2π)−3/24 (C +R|ζ|)E0 (4Rν)

and

(5.15) sup
0<s<λ|k|

|smσ (ζ, s)| ≤ (2π)−3/24C0

(
C +R|ζ|
1 + 4Rν

)
(λ |k|)m−2

.

Hence for α ∈ N3
0, |α| = 2, we have

‖∂αzµ‖ ≤ 4 (R |ζ|+ C)E0 (4Rν) ‖φ‖

and

‖∇pzA‖ =

√√√√√
∑

α∈N
3

0

|α|=p

(
p

α

)
‖∂αzA‖2 ≤ C′E0 (4Rν) (1 + |ζ|) (λ |k|)p−2 3p/2 ‖φ‖

≤ C′′ 1 + |ζ|
1 + ν

(√
3λ |k|

)p−2

‖φ‖ ∀p ∈ N≥2.(5.16)

The bounds (5.16) expresses the desired estimate (5.6). A direct application of (5.14)
does not lead to (5.5) as it introduces an undesired factor |ζ|. This is removed by
noting that is suffices to consider s = ‖ξ‖ with s ≥ λ|k| and that only the estimates
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for T I need to be refined. This is achieved with an integration by parts:

∣∣T I
∣∣ = (2π)−3/2|ζ|

∣∣∣∣∣

∫ 4R

0

cos (rs) e−ζr µ (r) dr

∣∣∣∣∣

= (2π)−3/2|ζ|
∣∣∣∣∣

(
ζ

ζ2 + s2
+

∫ 4R

0

e−ζr(ζ cos(rs)− s sin(rs))

ζ2 + s2
µ′ (r) dr

)∣∣∣∣∣

≤ (2π)−3/2

(
|ζ|2

|ζ2 + s2|

(
1 +

C

R

∫ 4R

0

e−νr dr

)

+
|ζ| s

|ζ2 + s2|

∣∣∣∣∣

∫ 4R

0

e−ζr sin (rs)µ′ (r) dr

∣∣∣∣∣

)
.

Observe

|ζ|2
|ζ2 + s2| =

|ζ|2√
(ν2 + s2 − k2)

2
+ 4ν2k2

≤ |ζ|2
s2 − k2

≤
( |ζ|
Im ζ

)2
1

λ2 − 1
.

Also we have

s|ζ|
ν2 + (s2 − k2)

≤ λ |k| |ζ|
ν2 + k2 (λ2 − 1)

≤ λ

λ2 − 1

|ζ|
|Im ζ| .

Hence,

(5.17)
∣∣T I
∣∣ ≤ (2π)−3/2 C

λ− 1

( |ζ|
Im ζ

)2

.

This leads to

∣∣s2σ (ζ, s)
∣∣ ≤ (2π)−3/2C

λ

λ− 1

( |ζ|
Im ζ

)2

for |s| ≥ λ |k|

and, in turn,

|spσ (ζ, s)| ≤ (2π)−3/2C
λ

λ− 1

( |ζ|
Im ζ

)2

(λ |Im ζ|)p−2
for |s| ≥ λ |k| , p = 0, 1, 2.

From this, assertion (5.5) follows.

5.2. The Helmholtz Solution with Robin Boundary Conditions. In this
section, we will derive a regularity result in the spirit of Lemma 5.1 for ζ ∈ Sc

β for the
interior problem with Robin boundary conditions:

(5.18) −∆u+ ζ2u = f in Ω, ∂nu+ ζu = g on Γ.

Note that Assumption 2.1 implies well-posedness of (5.18) via Lemma 4.2. The
solution operator for (5.18) is denoted Sζ : L2 (Ω)×H1/2 (Γ) → V .

Theorem 5.3. Let Assumption 2.1 be valid and fix β > 0. Then there exist
constants C, γ > 0 such that for every f ∈ L2(Ω), g ∈ H1/2 (Γ), and ζ ∈ Sc

β, the
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solution u = Sζ(f, g) of (5.18) can be written as u = uA+uH2 , where, for all p ∈ N0,

‖uA‖|ζ| ≤ C

(
1

1 + Re(ζ)
‖f‖+ 1√

1 + Re(ζ)

1√
|ζ|

‖g‖Γ,|ζ|

)
,(5.20)

‖∇p+2uA‖L2(Ω) ≤ C
γp

|ζ| max{p, |ζ|}p+2

(
1

1 + Re(ζ)
‖f‖+ 1√

|ζ|
‖g‖Γ,|ζ|

)
,(5.21)

‖uH2‖H2(Ω) + |ζ|‖uH2‖|ζ| ≤ C
(
‖f‖+ ‖g‖Γ,|ζ|

)
.(5.22)

Proof. The proof is the generalization of the proof in [10] for real wave numbers
to more general ζ ∈ C◦

≥0 with emphasis on the explicit dependence of the estimates
on the real and imaginary part. It follows from Lemmata 5.11 and 5.12, which are
presented in Sect. 5.3 ahead.

5.3. The Solution Operators Nζ, S
∆
ζ , SL

ζ , and Sζ. For the analysis we
introduce low- and high pass frequency filters for a bounded domain as well as for
its boundary. Let EΩ : L2(Ω) → L2(R3) be the extension operator of Stein, [17,
Chap. VI]. Then for f ∈ L2 (Ω) we set

(5.23) LΩf := (LRd (EΩf))|Ω and HΩf := (HRd (EΩf))|Ω ,

for LRd and HRd defined in (5.8) for some λ > 1. By [10, Lemmas 4.2, 4.3], these
operators have the following stability properties:

‖LΩf‖Hs(Ω) ≤ Cs‖f‖Hs(Ω), s ≥ 0,(5.24)

‖HΩf‖Hs′ (Ω) ≤ Cs,s′ |λ Im ζ|s′−s‖f‖Hs(Ω), 0 ≤ s′ ≤ s,(5.25)

where the constant Cs depends on s and Cs,s′ depends on s, s
′ but is independent of

λ and ζ.
To define frequency filters on the boundary we employ a lifting operator GN

defined in Lemma 5.4 below with the mapping property GN : Hs(Γ) → H3/2+s(Ω)
for every s > 0 and ∂nG

Ng = g. We then define HN
Γ and LN

Γ by

(5.26) HN
Γ (g) := ∂nHΩ

(
GN (g)

)
, LN

Γ (g) := ∂nLΩ

(
GN (g)

)
.

In particular, we have HN
Γ : H1/2 (Γ) → H1/2(Γ) and LN

Γ : H1/2 (Γ) → H1/2(Γ).

Lemma 5.4 (Def. of lifting GN ). Let ∂Ω be smooth. Given ζ ∈ C≥0, define
u := GNg as the solution of

−∆u+ |ζ|2 u = 0 in Ω, ∂nu = g.

Then the following holds:

‖GNg‖|ζ| .
1√
|ζ|

‖g‖Γ,(5.27)

‖GNg‖H2(Ω) . ‖g‖Γ,|ζ| .(5.28)

Proof. The energy estimate (5.27) follows from the coercivity of the pertinent
sesquilinear form. The H2-estimate follows from elliptic regularity theory.
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Lemma 5.5 (properties of LΓ and HΓ). Let ∂Ω be smooth. Fix q ∈ (0, 1). Then
there is λ > 1 in the definition of LN

Γ and HN
Γ such that the following holds (with

implied constants independent of q):

‖LN
Γ g‖Hs(Γ) . |ζ|s−1/2 ‖g‖Γ,|ζ|, s ∈ {0, 1/2},(5.29)

‖HN
Γ g‖Hs(Γ) . q1/2−s|ζ|s−1/2‖g‖Γ,|ζ|, s ∈ {0, 1/2}.(5.30)

Proof. Recall that LN
Γ g := γ0g

N , where

(5.31) gN := 〈n∗,∇LΩG
Ng〉

and n∗ denotes an analytic extension of the normal n : Γ → S2 on Ω to a tubular
neighborhood T ⊂ Ω of Γ and γ0 is the standard trace operator. Using (3.5) yields

‖LN
Γ g‖Γ ≤ C

1√
|ζ|

‖gN‖|ζ|,T

= C

(
√
|ζ|‖gN‖L2(T ) +

1√
|ζ|

‖∇gN‖L2(T )

)

≤ C

(
√
|ζ|‖∇LΩG

Ng‖+ 1√
|ζ|
∥∥∇∇⊺LΩG

Ng
∥∥
)
,

where ∇∇⊺ denotes the Hessian of a function. From (5.24)

‖LN
Γ g‖Γ .

√
|ζ|‖GNg‖H1(Ω) +

1√
|ζ|
∥∥GNg

∥∥
H2(Ω)

Lemma 5.4

. |ζ|−1/2‖g‖Γ,|ζ|.

For s = 1/2, we note

‖LN
Γ g‖H1/2(Γ) . ‖GNg‖H2(Ω) . ‖g‖Γ,|ζ|.

The proof of (5.30) is similar. We note

‖HΩG
N‖H2(Ω)

(5.25)
. ‖GN‖H2(Ω) . ‖g‖Γ,|ζ|,

‖HΩG
N‖H1(Ω)

(5.25)
. q |ζ|−1 ‖GN‖H2(Ω) . q |ζ|−1 ‖g‖Γ,|ζ|,

where q is related to λ via (5.25) and can be made arbitrarily small by selecting λ
appropriately. Hence, recalling that HN

Γ g = ∂nHΩG
Ng we get

‖HN
Γ g‖H1/2(Γ) . ‖GNg‖H2(Ω) . ‖g‖Γ,|ζ|,

‖HN
Γ g‖Γ . ‖GNg‖1/2H1(Ω)‖GNg‖1/2H2(Ω) . q1/2|ζ|−1/2‖g‖Γ,|ζ|.

Next, we introduce the solution operators Nζ , S
∆
ζ , SL

ζ .
1. We denote by u := Nζf = G(ζ) ∗ f the solution of the full space Helmholtz

problem with Sommerfeld radiation condition (in the weak sense):

(−∆+ ζ2)u = f in R
3,

∣∣∣∣
∂u

∂r
+ ζu

∣∣∣∣ = o
(
‖x‖−1

)
as ‖x‖ → ∞,

for f ∈ L2(R3) with compact support. Here ∂/∂r denotes the derivative in
radial direction x/‖x‖.
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2. S∆
ζ (g) is the solution operator to the problem

−∆u+ |ζ|2u = 0 in Ω,

∂nu+ ζu = g on Γ,

for g ∈ L2(Γ).
3. We define SL

ζ (f, g) := Sζ(LΩf, L
N
Γ g) as the solution operator to the problem

(2.1) for analytic right-hand sides LΩf , L
N
Γ g.

The proof of the next lemma is a direct consequence of Lemma 5.1.

Lemma 5.6 (properties of Nζ). Let Im ζ 6= 0. For f ∈ L2(R3) with supp f ⊂
BR := BR(0), the function u = Nζf satisfies −∆u+ ζ2u = f on BR. For any λ > 1
(appearing in the definition of the operator HR3 defined in (5.8)) there exist C > 0
depending only on R and µ such that

‖Nζ(HR3f)‖|ζ|,BR
≤ C

1

λ− 1

( |ζ|
|Im ζ|

)3

| Im ζ|−1‖f‖L2(R3),(5.32a)

‖Nζ(HR3f)‖H2(BR) ≤ C
λ

1− λ

( |ζ|
Im ζ

)2

‖f‖L2(R3).(5.32b)

Furthermore, for β > 0 the following is true: given q ∈ (0, 1) one can select λ > 1
such that for all ζ ∈ Sc

β

‖Nζ(HR3f)‖|ζ|,BR
≤ q| Im ζ|−1‖f‖L2(R3),(5.33a)

‖Nζ(HR3f)‖H2(BR) ≤ Cλ,β‖f‖L2(R3).(5.33b)

Proof. (5.32) is a direct consequence of Lemma 5.1. The bounds (5.33) follow
from (5.32).

The next two lemmata generalize the results in [10, Lemmas 4.5, 4.6] to complex
wave numbers ζ.

Lemma 5.7 (properties of S∆
ζ ). Let Ω be a bounded Lipschitz domain and β > 0.

For g ∈ L2(Γ) the function u = S∆
ζ (g) satisfies

‖u‖|ζ| . ‖g‖H−1/2(Γ),(5.34a)

‖u‖|ζ| . |ζ|−1/2‖g‖Γ,(5.34b)

‖u‖Γ . |ζ|−1‖g‖Γ(5.34c)

uniformly for all ζ ∈ Sc
β. If Γ is smooth and g ∈ H1/2(Γ) then additionally

‖u‖H2(Ω) . ‖g‖Γ,|ζ|
Proof. The proof is essentially given in [10, Lemma 4.5].

A combination of Lemma 5.5 and Lemma 5.8 imply the following corollary.

Corollary 5.8 (properties of S∆
ζ ◦HN

Γ ). Let Assumption 2.1 be satisfied, β > 0,

and let q ∈ (0, 1). There exists λ > 1 defining the high frequency filter HN
Γ such that

for every g ∈ H1/2(Γ) and every ζ ∈ Sc
β we have

‖S∆
ζ (HN

Γ g)‖|ζ| ≤ q
1

|ζ| ‖g‖Γ,|ζ| ,

‖S∆
ζ (HN

Γ g)‖H2(Ω) . ‖g‖Γ,|ζ| .
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Lemma 5.9 (analyticity of SL
ζ ). Let Assumption 2.1 be valid and let λ > 1

appearing in the definition of LΩ and LN
Γ be fixed. Then there exist constants C,

γ > 0 independent of ζ ∈ C◦
≥0 such that, for every g ∈ H1/2 (Γ) and f ∈ L2 (Ω) ,

the function uA = Sζ(LΩf, L
N
Γ g) is analytic on Ω and satisfies for all p ∈ N0 the

estimates

‖uA‖|ζ| ≤ C

(
1

1 + Re(ζ)
‖f‖+ 1√

1 + Re(ζ)

1√
|ζ|

‖g‖Γ,|ζ|

)
,(5.35)

∥∥∇p+2uA
∥∥ ≤ Cγp max {|ζ|, p+ 2}p+2 |ζ|−1

×
(

1

1 + Re(ζ)
‖f‖+ 1√

1 + Re(ζ)

1√
|ζ|

‖g‖Γ,|ζ|

)
.(5.36)

Proof. From Lemma 4.2, we have

(5.37) ‖uA‖|ζ| ≤ C

(
1

1 + Re(ζ)
‖LΩf‖+

1√
1 + Re(ζ)

‖LN
Γ g‖Γ

)
.

The combination of (5.37), Lemma 5.4, Lemma 5.5 and (5.24) leads to

‖uA‖|ζ| ≤ C

(
1

1 + Re(ζ)
‖f‖+ 1√

1 + Re(ζ)
|ζ|−1/2‖g‖Γ,|ζ|

)
.

To estimate higher derivatives, we employ [7, Prop. 5.4.5] in a similar way as in
the proof of [10, Lemma 4.13]. To apply [7, Prop. 5.4.5] an estimate of the constant

CG1
:= |ζ|−1

√
‖gN‖2L2(T ) + |ζ|−2 ‖∇gN‖2L2(T )

is needed, where gN is defined in (5.31). We track the dependence of CG1
on |ζ| in

a modified way (compared to [10, p. 1225]): we use inequalities (5.27) and (5.28) to
obtain

(5.38) CG1
≤ C|ζ|−2‖g‖Γ,|ζ|.

Estimate (5.36) then follows from [7, Prop. 5.4.5].

Corollary 5.10. Fix β > 0. Let f , f̃ ∈ L2(Ω) and ζ ∈ Sc
β. Set ũ = Nζ(HΩf̃).

If g has the form g = (∂nũ+ ζũ) then the function uA = Sζ(LΩf, L
N
Γ g) satisfies for

all p ∈ N0

∥∥∇p+2uA
∥∥ ≤ Cβγ

p max {|ζ|, p+ 2}p+2 |ζ|−1

×
(

1

1 + Re(ζ)
‖f‖+ 1√

1 + Re(ζ)

1√
|ζ|

‖f̃‖
)
.

If f̃ = f , this gives

∥∥∇p+2uA
∥∥ ≤ Cβγ

p max {|ζ|, p+ 2}p+2 |ζ|−1 1

(1 + Re ζ)
‖f‖ .
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Proof. We proceed in the same way as in [10, Lemma 4.12] with k = Im ζ and
estimate the constant CG1

in (5.38). Lemma 5.6 and (3.5) lead to

‖ũ‖Γ ≤ C |ζ|−1/2 ‖ũ‖|ζ| ≤ C |ζ|−3/2 ‖f̃‖(5.39a)

‖ũ‖H1/2(Γ) ≤ C‖ũ‖H1(Ω) ≤ C |ζ|−1 ‖f̃‖,(5.39b)

‖∂nũ‖Γ ≤ C ‖∇ũ‖1/2 ‖ũ‖1/2H2(Ω) ≤ C |ζ|−1/2 ‖f̃‖,(5.39c)

‖∂nũ‖H1/2(Γ) ≤ C ‖ũ‖H2(Ω) ≤ C‖f̃‖.(5.39d)

This implies

(5.40) ‖∂nũ+ ζũ‖L2(Γ) .
1√
|ζ|

‖f̃‖, ‖∂nũ+ ζũ‖H1/2(Γ) . ‖f̃‖,

and

CG1
:=

1

|ζ|3/2 ‖ (∂nũ+ ζũ) ‖Γ +
1

|ζ|2 ‖ (∂nũ+ ζũ) ‖H1/2(Γ) ≤ C |ζ|−2 ‖f̃‖.

In the same way as at the end of the proof of Lemma 5.9 we obtain

∥∥∇p+2uA
∥∥ ≤ Cβγ

p max {|ζ|, p+ 2}p+2 |ζ|−1

×
(

1

1 + Re(ζ)
‖f‖+ 1√

1 + Re(ζ)

1√
|ζ|

‖f̃‖+ 1

|ζ| ‖f̃‖
)
.

Lemma 5.11 (properties of Sζ(f, 0)). Let β > 0, Assumption 2.1 be valid, and
ζ ∈ Sc

β. For every q ∈ (0, 1), there exist constants C, K > 0, depending on β such

that for every f ∈ L2(Ω) and ζ ∈ Sc
β, the function u = Sζ(f, 0) can be written as

u = uA + uH2 + ũ, where

‖uA‖|ζ| ≤
C

1 + Re(ζ)
‖f‖,

‖∇p+2uA‖ ≤ C

1 + Re(ζ)
|ζ|−1Kpmax{p+ 2, |ζ|}p+2‖f‖ ∀p ∈ N0,

‖uH2‖|ζ| ≤ q|ζ|−1‖f‖,
‖uH2‖H2(Ω) ≤ C‖f‖.

For a function f̃ with ‖f̃‖ ≤ q‖f‖ the remainder ũ = Sζ(f̃ , 0) satisfies

−∆ũ+ ζ2ũ = f̃ , ∂nũ+ ζũ = 0.

Proof. Define

uIA := Sζ(LΩf, 0), uIH2 := Nζ(HΩf).

Here, the parameter λ defining the filter operators LΩ and HΩ is still at our disposal
and will be selected at the end of the proof. Then, uIA satisfies the desired bounds by
Lemma 5.9. Lemma 5.6 gives

‖uIH2‖|ζ| ≤ q′|ζ|−1‖f‖ and ‖uIH2‖H2(Ω) ≤ C‖f‖.
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Also, the parameter q′ ∈ (0, 1) depends on λ and is still at our disposal. In fact, in
view of the statement of Lemma 5.6 it can be made sufficiently small by taking λ
sufficiently large.

The function uI := u− (uIA + uIH2) solves

(5.41) −∆uI + ζ2uI = 0, ∂nu
I + ζuI = −

(
∂nu

I
H2 + ζuIH2

)
.

Next, we define the functions uIIA and uIIH2 by

uIIA := Sζ

(
0,−LN

Γ

(
∂nu

I
H2 + ζuIH2

))
, uIIH2 := S∆

ζ

(
−HN

Γ

(
∂nu

I
H2 + ζuIH2

))
.

Then, the analytic part uIIA satisfies again the desired analyticity bounds by Lemma 5.9
and Corollary 5.10 . For the function uIIH2 we obtain from Lemma 5.8 and inequalities
(5.39) (set ũ = uIH2) the estimates

‖uIIH2‖|ζ| ≤ q′|ζ|−1
∥∥∂nuIH2 + ζuIH2

∥∥
Γ,|ζ|

≤ Cq′|ζ|−1‖f‖,
‖uIIH2‖H2(Ω) .

∥∥∂nuIH2 + ζuIH2

∥∥
Γ,|ζ|

. ‖f‖.

Let ν = Re ζ and k = − Im ζ. We now set uA := uIA + uIIA and uH2 := uIH2 + uIIH2 and
conclude that the function ũ := u− (uA + uH2) satisfies

−∆ũ+ ζ2ũ = f̃ := 2
(
k2 + i νk

)
uIIH2 , ∂nũ+ ζũ = 0.

For f̃ we obtain

‖f̃‖ ≤ C|ζ|‖uIIH2‖|ζ| ≤ Cq′‖f‖.

Hence, by taking λ sufficiently large so that q′ is sufficiently small, we arrive at the
desired bound.

Lemma 5.12 (properties of Sζ(0, g)). Let β > 0 and Assumption 2.1 be valid.
Let q ∈ (0, 1). Then there exist constants C, K > 0 independent of ζ ∈ Sc

β (but

depending on β) such that for every g ∈ H1/2(Γ) the function u = Sζ(0, g) can be
written as u = uA + uH2 + ũ, where for all p ∈ N0

‖uA‖|ζ| ≤
C√

1 + Re ζ

1√
|ζ|

‖g‖Γ,|ζ| ,

‖∇p+2uA‖ ≤ C|ζ|−1Kpmax{p+ 2, |ζ|}p+2 1√
1 + Re(ζ)

1√
|ζ|

‖g‖Γ,|ζ| ,

‖uH2‖|ζ| ≤ q
1

|ζ| ‖g‖Γ,|ζ| ,

‖uH2‖H2(Ω) ≤ C ‖g‖Γ,|ζ| .

For a g̃ with ‖g̃‖Γ,|ζ| ≤ ‖g‖Γ,|ζ| the remainder ũ = Sζ(0, g̃) satisfies the equation

−∆ũ+ ζ2ũ = 0 ∂nũ+ ζũ = g̃.

Proof. The proof is very similar to that of Lemma 5.11. Define

uIA := Sζ(0, L
N
Γ g) and uIH2 := S∆

ζ (HN
Γ g).
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Then uIA is analytic and satisfies the desired analyticity estimates by Lemma 5.9. For
uIH2 we have by Corollary 5.8

‖uIH2‖|ζ| ≤ q′
1

|ζ| ‖g‖Γ,|ζ| ,(5.42)

‖uIH2‖H2(Ω) . ‖g‖Γ,|ζ|(5.43)

where q′ ∈ (0, 1) is at our disposal and depends on the parameter λ in the definition of
HN

Γ and LN
Γ . Upon abbreviating ν = Re ζ and k = − Im ζ the function uI := uIA+uIH2

satisfies

−∆uI + ζuI = −2
(
k2 + i νk

)
︸ ︷︷ ︸

=i kζ

uIH2 , ∂nu
I + ζuI = g

together with

(5.44) ‖2 ikζuIH2‖ ≤ C|ζ|‖uIH2‖|ζ|
(5.42)
≤ Cq′‖g‖Γ,|ζ|.

Next, we define uIIA and uIIH2 by

uIIA := Sζ

(
LΩ

(
2
(
k2 + i νk

)
uIH2

)
, 0
)
and uIIH2 := Nζ

(
HΩ

(
2
(
k2 + i νk

)
uIH2

))
.

Here, in order to apply the operator Nζ , we extend HΩ

(
2
(
k2 + i νk

)
uIH2

)
by zero

outside of Ω. By Lemma 5.9 and (5.44), we see that uIIA satisfies the desired analyticity
estimates. For the function uIIH2 , we obtain from Lemma 5.6

‖uIIH2‖|ζ| ≤ q′|ζ|−1‖2(k2 + i νk)uIH2‖ ≤ Cq′‖uIH2‖|ζ|
(5.42)
≤ C (q′)

2 |ζ|−1‖g‖Γ,|ζ|,

‖uIIH2‖H2(Ω) ≤ C‖|ζ|2uIH2‖ . |ζ|‖uIH2‖|ζ|
(5.42)
. q′‖g‖Γ,|ζ|.

We set uA := uIA + uIIA and uH2 := uIH2 + uIIH2 . Then uA and uH2 satisfy the desired
estimates and ũ := u− (uA + uH2) satisfies

−∆ũ+ ζ2ũ = 0, ∂nũ+ ζũ = g̃ := −
(
∂nu

II
H2 + ζuIIH2

)

with

‖g̃‖Γ,|ζ| . |ζ|3/2‖uH2‖Γ + |ζ|1/2‖∂nuH2‖Γ + |ζ|‖uIIH2‖H1/2(Γ) +
∥∥∂nuIIH2

∥∥
H1/2(Γ)

≤ C′
(
|ζ|‖uIIH2‖|ζ| +

∥∥uIIH2

∥∥
H2(Ω)

)
≤ C′′q′‖g‖Γ,|ζ|.

The result follows by selecting λ sufficiently large so that q′ is sufficiently small.

6. Discretization. We apply the regularity theory of the previous section to the
of hp-finite element method. Let S̃ζ be the solution operator of the adjoint problem:
find z ∈ V such that

(6.1) aζ (z, w) = (u,w) ∀w ∈ V.

Let S ⊂ V be a closed subspace and define the adjoint approximability

η(S) := sup
f∈L2(Ω)\{0}

inf
v∈S

‖S̃ζf − v‖|ζ|
‖f‖ .
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6.1. Discrete Inf-Sup Constant γdisc and Quasi-Optimality. For Re ζ > 0,
the existence and uniqueness of the Galerkin solution follows from Lemma 4.1. If
ζ = − i k is purely imaginary, well-posedness and quasi-optimality of the Galerkin
discretization are shown in [10] under the restriction that

|k| η(S) ≤ 1

4(1 + Cb)
,

where Cb is the constant appearing in (3.3). In the next theorem, we derive an
estimate of the discrete inf-sup constant for general ζ ∈ C◦

≥0.

Theorem 6.1. For ζ ∈ C≥0 let the sesquilinear form aζ be given by (2.3). Then
the discrete inf-sup constant

γdisc := inf
u∈S\{0}

sup
v∈S\{0}

|aζ (u, v)|
‖u‖|ζ| ‖v‖|ζ|

satisfies the following:
1. If Re ζ > 0, then

γdisc ≥
Re ζ

|ζ| .

2. If ζ ∈ C◦
≥0 and (Im ζ)2

|ζ| η(S) ≤ 1
4(1+Cb)

then,

(6.2) γdisc ≥ c
1 + Re ζ

|ζ| ,

for a constant c independent of ζ.

Remark 6.2. The resolution condition (6.2) is not an artifact of the theory: in [8,
Ex. 3.7], a domain Ω, a finite element space S, and a purely imaginary wave number
ζ = − i k are presented where the Galerkin discretization leads to a system matrix
that is not invertible.

Proof of Theorem 6.1. Let ζ = ν − i k. The first statement follows directly from
the continuous inf-sup constant in Lemma 4.1. We prove the second statement. Let
u ∈ S and choose v = u+ z, where z = 2k2S̃ζ (u). Then it is simple to check that

Rea(u, u+ z) ≥ ‖u‖2|ζ|.
Let zS ∈ V be the best approximation of z with respect to the ‖·‖|ζ| norm. Then

Re a(u, u+ zS) = Re a(u, u+ z) + Re a(u, zS − z)

≥ ‖u‖2|ζ| − (1 + Cb)‖u‖|ζ|‖z − zS‖
≥ ‖u‖2|ζ| − 2k2(1 + Cb)η(S)‖u‖|ζ|‖u‖

≥
(
1− 2

k2

|ζ| (1 + Cb)η(S)

)
‖u‖2|ζ|

≥ 1

2
‖u‖2|ζ|.

Moreover

‖u+ zS‖|ζ| ≤ ‖u‖|ζ| + ‖z − zS‖|ζ| + ‖z‖|ζ|

≤
(
1 +

1

2(1 + Cb)
+ CS

2k2

(1 + ν) |ζ|

)
‖u‖|ζ|
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and, in turn, we have proved

(6.3) γdisc ≥
Re a(u, u+ zS)

‖u‖|ζ|‖u+ zS‖|ζ|
≥ 2

2 + 1
1+Cb

+ 4k
|ζ|

k
ν+1CS

.

A simple calculation shows that there exists a constant c > 0 independent of ζ ∈ C◦
≥0

such that the right-hand side in (6.3) is bounded from below by the right-hand side
in (6.2).

Theorem 6.3. Assume that Re ζ > 0. Then the Galerkin method based on S is
quasi-optimal, i.e., for every u ∈ V there exists a unique uS ∈ S with a(u − uS , v)−
b(u− uS , v) = 0 for all v ∈ S, and

‖u− uS‖|ζ| ≤
|ζ|

Re(ζ)
(1 + Cb) inf

v∈S
‖u− v‖|ζ|.(6.4)

‖u− uS‖L2(Ω) ≤ (1 + Cb)η(S)‖u− uS‖|ζ|.(6.5)

Equation (6.4) is a direct consequence of the discrete inf-sup constant proved
in Theorem 6.1. Estimate (6.5) follows from the proof of the next theorem (see
(6.9)). We note here that for ζ ∈ Sβ , the ratio |ζ|/Re ζ is bounded from above and no
resolution assumption is required. In the next theorem, we find that under a resolution
assumption, the estimate (6.4) can be improved, such that it is non-degenerate for
Re ζ −→ 0.

Theorem 6.4. If

(6.6) Re ζ ≥ 0 and
(Im ζ)2

|ζ| η(S) ≤ 1

4(1 + Cb)
,

then the Galerkin method based on S is quasi-optimal and

‖u− uS‖|ζ| ≤ 2(1 + Cb) inf
v∈S

‖u− v‖|ζ|,(6.7)

‖u− uS‖L2(Ω) ≤ (1 + Cb)η(S)‖u− uS‖|ζ|.(6.8)

Proof. We prove the theorem in the case where ν = Re ζ ≥ 0. Let e := u − uS
and define ψ := S̃ζe. Let ψS be the best approximation to ψ with respect to the ‖·‖|ζ|
norm. The Galerkin orthogonality implies

‖e‖2 = aζ(e, ψ) = aζ(e, ψ − ψS) ≤ (1 + Cb)‖e‖|ζ|‖ψ − ψS‖|ζ|
≤ (1 + Cb)η(S)‖e‖|ζ|‖e‖.

This yields

(6.9) ‖e‖ ≤ (1 + Cb)η(S)‖e‖|ζ|
in both cases. Let k = − Im ζ. We compute for v ∈ S

‖e‖2|ζ| = Re
(
aζ(e, e) + 2k2‖e‖2

)

≤ Re
(
aζ(e, u− v) + 2k2‖e‖2

)

≤ (1 + Cb)‖e‖|ζ|‖u− v‖ζ + 2
k2

|ζ| (1 + Cb)η(S)‖e‖2|ζ|,

which leads to (6.7) under the condition k2

|ζ|η(S) ≤ 1
4(1+Cb)

.
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6.2. Impact on hp-FEM Approximation. We have shown in Sect. 6.1, that
the Galerkin solution uS ∈ S of the Helmholtz problem with Robin boundary condi-
tions (5.18) with ζ ∈ Sc

β is quasi-optimal for any closed subspace S ⊂ V , if the adjoint
approximability η(S) fulfills the resolution condition

(Im ζ)2

|ζ| η(S) ≤ 1

4(1 + Cb)
.

Let Shp be the hp-FEM space described in [9, Sect. 5]. Similarly as in [10, 9], one can
show that the Galerkin method based on Shp is quasi-optimal if

(6.10)
|ζ|h
p

≤ C and p ≥ C log

(
e+

|Im(ζ)|
1 + Re(ζ)

)
.

More specifically, one can prove that there exist constants C, σ > 0 that depend on
the shape regularity of the triangulation such that for ever f ∈ L2(Ω) the function

u = S̃|ζ|(f) = S|ζ|(αf, 0) satisfies for the regular decomposition u = uA + uH2 given
by Theorem 5.3

| Im ζ|2
|ζ| inf

w∈S
‖uH2 − w‖|ζ| ≤ C

| Im ζ|
|ζ|

(
| Im ζ|h

p
+

( | Im ζ|h
p

)2
)
‖f‖,(6.11a)

| Im ζ|2
|ζ| inf

w∈S
‖uA − w‖|ζ| ≤

C
| Im ζ|2
|ζ|

1

1 + Re(ζ)

(
1

p
+

|ζ|h
σp

)(
h

p
+

( |ζ|h
σp

)p)
‖f‖,

(6.11b)

(see [9, Sect. 5], in particular the proof of [9, Thm. 5.5] for details). By choosing h
and p as in (6.10) the right-hand sides in (6.11a) and (6.11b) imply the resolution
assumption (6.6) and therefore the optimal convergence for the Galerkin solution.

If ζ ∈ Sβ no resolution condition is needed for the quasi-optimality of the problem
(cf. Theorem 6.3). In that case, the solution is typically smooth in the domain and
exhibits, for large Re ζ, a boundary layer. Such problems can be handled by suitable
meshes capable to resolve the layers such as Shishkin meshes in the context of the
h-version of the FEM [11, 16, 7] and “spectral boundary layer meshes” in the context
of the hp-FEM, [15, 7].

7. Numerical Experiments. We consider the domain Ω = B1(0) ⊂ R2 and
the equation

−∆u+ ζ2u = 1 in Ω,

∂nu+ ζu = 0 on Γ = ∂Ω.

Using Bessel functions and polar coordinates, the solution is given as

u(r) = c1J0(i ζr) + ζ−2, c1 =
i

ζ2
1

J1(i ζ)− i J0(i ζ)
.

We consider values of ζ with

ζ = |ζ|eiα,
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where

α =
π

2
(1− α̃), α̃ ∈ {0, 2−6, 2−4, 2−2, 2−1, 1},

|ζ| ∈ {1, 10, 50, 100}.
The purely imaginary wave number corresponds to the choice α = π/2 and α = 0
to the real-valued case. We consider the h-FEM on quasi-uniform meshes for p ∈
{1, 2, 3, 4}. The results are presented Fig. 1, where the error is plotted versus the
number of degrees of freedom per wavelength

N|ζ| =
2π

√
DOF

|ζ|
√

|Ω|
= O

(
p

h|ζ|

)
.

The calculations were carried out within the hp-FEM framework NgSolve, [13, 14].
The following features are visible in Fig. 1:

a) A plateau before convergence sets in.
b) A pollution effect for ζ close to the imaginary axis (α = π/2). That is,

asymptotic quasi-optimality sets in for larger N|ζ| as |ζ| becomes larger for
Arg ζ close to π/2.

c) The pollution effect decreases with increasing polynomial degree. In partic-
ular, the asymptotic behavior is reached for smaller values of N|ζ| as p is
increased.

d) The pollution effect decreases with decreasing angle α.
The observation a) reflects a natural resolution condition for the problem class under
consideration; that is, the best approximation error can only be expected to be small
if N|ζ| ∼ |ζ|h/p is small. The pollution effect observed in b) is well-documented
for the purely imaginary case Re ζ = 0. Fig. 1 shows that it is present also for
Re ζ 6= 0 (and large Im ζ), albeit in a mitigated form. Theorem 6.4 quantifies how
this pollution effect is weakened as the ratio Re ζ/ Im ζ increases. More specifically,
the resolution condition (6.10), which results from applying Theorem 6.4 to high order
methods, illustrates the helpful effect of Re ζ 6= 0. In the limiting case Im ζ = 0, the
Galerkin method is an energy projection method and even monotone convergence can
be expected in the energy norm on sequences of nested meshes.

The observation c) is also well-documented for the purely imaginary case Re ζ = 0
and mathematically explained in [9, 10]. The regularity of the present work permits
to extend the hp-FEM analysis of [9, 10] to the case Re ζ 6= 0 as done in Sect. 6.2. The
observation that the asymptotic convergence regime is reached for smaller N|ζ| as p
is increased can be understood qualitatively from Theorem 6.4 and the bounds (6.11)
for η. Consider, for notational simplicity, the case Re ζ = 0. Then quasi-optimality
of the hp-FEM is reached if

|ζ|η(S) .
(
1 +

h|ζ|
p

)(
h|ζ|
p

+ |ζ|
(
h|ζ|
σp

)p) !

. 1.

Recalling N|ζ| = O(h|ζ|/p) allows us to simplify the condition for quasi-optimality as

1

N|ζ|
+ |ζ|

(
1

σN|ζ|

)p !

. 1.

This shows that for larger p quasi-optimality of the hp-FEM may be expected for
small N|ζ|.

Finally, observation d) can again be explained by Theorem 6.4 since the factor
(Im ζ)2/|ζ| is reduced as the ratio Re ζ/ Im ζ increases.
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